WO2015096657A1 - 有机发光元件 - Google Patents

有机发光元件 Download PDF

Info

Publication number
WO2015096657A1
WO2015096657A1 PCT/CN2014/094225 CN2014094225W WO2015096657A1 WO 2015096657 A1 WO2015096657 A1 WO 2015096657A1 CN 2014094225 W CN2014094225 W CN 2014094225W WO 2015096657 A1 WO2015096657 A1 WO 2015096657A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
aryl
heterocyclic
cycloalkyl
Prior art date
Application number
PCT/CN2014/094225
Other languages
English (en)
French (fr)
Inventor
金光男
王鹏
徐芳荣
钟陵智
石垣刚
田中大作
池田武史
西山卓哉
Original Assignee
东丽先端材料研究开发(中国)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东丽先端材料研究开发(中国)有限公司 filed Critical 东丽先端材料研究开发(中国)有限公司
Priority to EP14874470.9A priority Critical patent/EP3089232B1/en
Priority to JP2016542176A priority patent/JP6680209B2/ja
Priority to KR1020167018778A priority patent/KR102255037B1/ko
Priority to US15/108,149 priority patent/US10483488B2/en
Priority to CN201480070877.6A priority patent/CN105849930B/zh
Publication of WO2015096657A1 publication Critical patent/WO2015096657A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/818Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/653Aromatic compounds comprising a hetero atom comprising only oxygen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom

Definitions

  • the organic light emitting device is a self-luminous display device, which has the characteristics of lightness, wide viewing angle, low power consumption, high contrast, and the like.
  • the principle of light emission of an organic light-emitting element is that light is generated when holes and electrons injected from an electrode return to a ground state via an excited state by recombination in a light-emitting layer.
  • This light-emitting element has a feature of being thin and capable of high-intensity light emission at a low driving voltage and capable of multi-color light emission by selecting a light-emitting material, and thus has attracted attention.
  • the organic light emitting element may be classified into a bottom emitting organic light emitting element and a top emitting organic light emitting element according to a direction in which light generated by the organic light emitting layer is emitted.
  • the bottom emission organic light-emitting element light is incident on the substrate side, a reflective electrode is formed on the upper portion of the organic light-emitting layer, and a transparent electrode is formed on the lower portion of the organic light-emitting layer.
  • the organic light-emitting element is an active matrix element, since the portion in which the thin film transistor is formed is opaque, the light-emitting area is reduced.
  • the transparent electrode is formed on the upper portion of the organic light-emitting layer, and the reflective electrode is formed on the lower portion of the organic light-emitting layer, so that the light is directed in a direction opposite to the substrate side, whereby the light is transmitted.
  • the area is increased and the brightness is increased.
  • an organic coating layer is formed on the upper translucent metal electrode that transmits light of the light-emitting layer, thereby adjusting the optical interference distance and suppressing the external interference.
  • Light reflection and extinction caused by surface plasmon energy movement see Patent Documents 1 to 5).
  • Patent Document 2 discloses that a refractive index of 1.7 or more is formed on an upper translucent metal electrode of a top emission organic light-emitting element.
  • the organic coating layer increases the luminous efficiency of the red and green light-emitting organic light-emitting elements by about 1.5 times.
  • the material of the organic coating layer used is an amine derivative, a quinolol complex or the like.
  • Patent Document 4 discloses that a material having an energy gap of less than 3.2 eV affects a blue wavelength and is not suitable for use in an organic coating layer, and an organic coating material used is an amine derivative having a specific chemical structure or the like.
  • Patent Document 1 WO2001/039554
  • Patent Document 2 JP2006-156390
  • Patent Document 3 JP2007-103303
  • Patent Document 4 JP2006-302878
  • Patent Document 5 WO2011/043083.
  • an amine derivative having a specific structure having a high refractive index or a material satisfying a specific parameter is used as an organic coating material to improve light extraction efficiency and color purity.
  • degree but the problem of both luminous efficiency and color purity has not been solved, especially in the case of preparing a blue light-emitting element.
  • a material for a cover layer uses a material satisfying a specific parameter, particularly a compound having a thiophene structure, a furan structure or a pyrrole structure which satisfies a specific parameter requirement, a compound having a fluorene structure, a compound having a fluorene structure, and capable of solving both light and light. Take out the efficiency and improve the color purity.
  • the present invention provides an organic light-emitting element comprising a substrate, a first electrode, one or more organic layer films including a light-emitting layer, and a second electrode element, wherein the light-emitting element further has a cover layer;
  • the organic material has an attenuation coefficient at least at a point in the wavelength range of 430 nm to 460 nm of more than 0.10, and an attenuation coefficient of 0.10 or less in a wavelength range of 460 nm to 500 nm.
  • the cover layer effectively protects the second electrode and the organic light-emitting layer on the second electrode from the influence of moisture, oxygen, and contaminants on the outside, it is possible to prevent the life of the organic light-emitting element from deteriorating.
  • the top emission light-emitting element has an advantage of enlarging the light-emitting surface than the low-emission light-emitting element, thereby improving light extraction efficiency.
  • a substrate, a first electrode, one or more organic layer films including a light-emitting layer, and a second electrode and a cover layer through which light emitted from the light-emitting layer is transmitted are laminated in this order;
  • the cover layer is a layer that increases the light extraction rate.
  • an organic light-emitting element having greatly improved light extraction efficiency and excellent color purity.
  • the cover layer is found to have a high refractive index. It can be seen from the results of the optical simulation shown in Fig. 1 that a large refractive index of the overcoat material can provide a high refractive index, and a wavelength region exhibiting a high refractive index varies with the maximum absorption wavelength of the overcoat material. After intensively researching on the basis of the above results, the inventors have found that in order to obtain a coating material excellent in characteristics in an organic light-emitting element, it is preferable that at least one point of the attenuation coefficient in the wavelength range of 430 nm to 460 nm is larger than 0.10.
  • the attenuation coefficient of the cover layer material is at least a point greater than 0.12 in the wavelength range of 430 nm to 460 nm. Further, it has been found that when the coating layer has good transparency, the light-emitting efficiency can be improved and a high color purity element can be obtained. Therefore, it is preferable that the light extraction efficiency-improving layer material has an attenuation coefficient of 0.1 or less in a range of wavelengths of 460 nm or more and 500 nm or less.
  • a compound having one or more of a thiophene structure, a furan structure or a pyrrole structure, a compound having a fluorene structure, and a compound having a fluorene structure are preferable.
  • the attenuation coefficient and the absorption coefficient have the relationship shown by the following formula (A). (where: ⁇ : absorbance coefficient, k: attenuation coefficient, ⁇ : optical frequency, c: speed of light)
  • the attenuation coefficient is proportional to the absorption coefficient, and therefore, the material having a high absorption coefficient has a high attenuation coefficient.
  • a compound having a thiophene structure, a furan structure or a pyrrole structure due to its structure On the other hand, a very high absorption coefficient is exhibited, and therefore, a high attenuation coefficient can be obtained, and a high refractive index can be expected.
  • the substituent of the compound having a thiophene structure, a furan structure or a pyrrole structure is easily modified, it is possible to easily make the attenuation coefficient at least a point in the wavelength range of 430 nm to 460 nm larger than 0.10 and the wavelength in the range of 430 nm or more and 500 nm or less.
  • the attenuation coefficient is below 0.10. Therefore, a compound of a thiophene structure, a furan structure or a pyrrole structure is preferred.
  • a compound of a thiophene structure, a furan structure or a pyrrole structure is specifically represented by the following formula (1).
  • X is a sulfur atom, an oxygen atom or N-R;
  • R is selected from the group consisting of hydrogen, deuterium, alkyl, cycloalkyl, heterocyclyl, alkenyl, cycloalkenyl, alkynyl, alkoxy, alkylthio, aryl ether, aryl One or more of the group consisting of a thioether group, an aryl group, a heteroaryl group, a carbonyl group, a carboxyl group, an oxycarbonyl group, a carbamoyl group, an alkylamino group or a silane group;
  • R 1 to R 4 may be the same or different and are respectively selected from an alkyl group, a cycloalkyl group, a heterocyclic group, an alkenyl group, a cycloalkenyl group, an alkynyl group or an alkoxy group which may be substituted by hydrogen, deuterium or halogen.
  • R 1 to R 4 may be the same or different and are respectively selected from an alkyl group, a cycloalkyl group, a heterocyclic group, an alkenyl group, a cycloalkenyl group, an alkynyl group or an alkoxy group which may be substituted by hydrogen, deuterium or halogen.
  • R 1 to R 4 may be the same or different and are respectively selected from an alkyl group, a cycloalkyl group, a heterocyclic group, an alkenyl group, a cycloalkenyl group, an alkynyl group or an alkoxy group which may be substituted by hydrogen,
  • a plurality of groups may be bonded to adjacent substituents to form a ring; in the case of substitution, the substituent is selected from the group consisting of hydrazine, halogen, C1-C15 alkyl group, C3-C15 cycloalkyl group, C3- a heterocyclic group of C15, a C2-C15 alkenyl group, a C4-C15 cycloalkenyl group, a C2-C15 alkynyl group, a C1-C15 alkoxy group, a C1-C15 alkylthio group, a C6-C55 aryl group.
  • the cycloalkyl group is preferably a C3-C20 cycloalkyl group; further preferably one or more of a cyclopropyl group, a cyclohexyl group, a norbornyl group, or a saturated alicyclic hydrocarbon group such as an adamantyl group.
  • the above cycloalkyl group may have a substituent or may have no substituent.
  • the alkenyl group is preferably a C2-C20 alkenyl group; more preferably one or more of an unsaturated aliphatic hydrocarbon group containing a double bond such as a vinyl group, an allyl group, or a butadienyl group.
  • the above alkenyl group may have a substituent or may have no substituent.
  • the cycloalkenyl group is preferably a C3-C20 cycloalkenyl group; further preferably one of an unsaturated alicyclic hydrocarbon group containing a double bond such as a cyclopentenyl group, a cyclopentadienyl group, or a cyclohexenyl group; A variety.
  • the above cycloalkenyl group may have a substituent or may have no substituent.
  • the alkynyl group is preferably a C2-C20 alkynyl group; more preferably an unsaturated aliphatic hydrocarbon group containing a triple bond such as an ethynyl group.
  • the above alkynyl group may have a substituent or may have no substituent.
  • the aryl ether group is preferably a C6-C60 aryl ether group; more preferably a functional group such as a phenoxy group bonded to an aromatic hydrocarbon group via an ether bond.
  • the aryl ether group may or may not have a substituent.
  • the aryl group is preferably a C6-C60 aryl group; more preferably one or more of an aromatic hydrocarbon group such as a phenyl group, a naphthyl group, a biphenyl group, a phenanthryl group, a phenylterphenyl group or a fluorenyl group.
  • the aryl group may have a substituent or may have no substituent.
  • the heteroaryl group is preferably a C4-C60 aromatic heterocyclic group; further preferably a furyl group, a thienyl group, a pyrrole, a benzofuranyl group, a benzothienyl group, a dibenzofuranyl group, a dibenzophenylene group, One or more of a pyridyl group, a quinolyl group and the like.
  • the aromatic heterocyclic group may have a substituent or may have no substituent.
  • the halogen atom is selected from fluorine, chlorine, bromine, or iodine.
  • the carbonyl group, carboxyl group, oxycarbonyl group, carbamoyl group, or alkylamino group may have a substituent or may have no substituent.
  • the number of carbon atoms of the alkylamino substituent is not particularly limited, and is usually in the range of 2 or more and 60 or less.
  • the siloxane group is represented by a functional group such as a trimethylsiloxane group or the like which bonds a silicon atom via an ether bond, and the siloxane group may or may not have a substituent.
  • the substituent is selected from the group consisting of hydrazine, halogen, C1-C15 alkyl, C3-C15 cycloalkyl, C3-C15 heterocyclic, C2-C15 alkenyl, C4-C15 cycloalkenyl, C2 - alkynyl group of C15, alkoxy group of C1-C15, alkylthio group of C1-C15, aryl ether group of C6-C55, aryl sulfide group of C6-C55, aryl group of C6-C55, C5- One or more of an aromatic heterocyclic group of C55, a carbonyl group, a carboxyl group, an oxycarbonyl group, a carbamoyl group, an alkylamino group of C1-C40, or a silane group having a C1-C15 silicon atom number of 1-5.
  • the coating layer uses a compound having a high refractive index and superior film stability, such as a thiophene structure, a furan structure or a pyrrole structure, which can solve both the improvement of light extraction efficiency and the stability of time. Qualitative issues.
  • R is selected from the group consisting of hydrogen, deuterium, alkyl, cycloalkyl, heterocyclyl, alkenyl, cycloalkenyl, alkynyl, alkoxy, alkylthio, aryl ether, aryl sulfide One or more of the group consisting of a aryl group, an aryl group, a heteroaryl group, a carbonyl group, a carboxyl group, an oxycarbonyl group, a carbamoyl group, an alkylamino group or a silane group;
  • R 1 to R 4 may be the same or different and are respectively selected from an alkyl group, a cycloalkyl group, a heterocyclic group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an alkoxy group, or an alkyl group which may be substituted by hydrogen, hydrazine or halogen.
  • L 1 is selected from an arylene group or a heteroarylene group and forms a single bond with one or more of R 1 to R 4 ;
  • R 5 and R 6 may be the same or different and are respectively selected from an alkyl group which may be substituted, a cycloalkyl group which may be substituted, an aryl group which may be substituted, a heteroaryl group which may be substituted or a heterocyclic group which may be substituted. ;
  • n 1 is an integer of 1-4, and at least one of R 1 to R 4 is bonded to L 1 ; in the case of the substitution, the substituent is selected from fluorene, halogen, C1-C15 alkyl, C3- a cycloalkyl group of C15, a heterocyclic group of C3-C15, an alkenyl group of C2-C15, a cycloalkenyl group of C4-C15, an alkynyl group of C2-C15, an alkoxy group of C1-C15, an alkane of C1-C15.
  • a thio group an aryl ether group of C6-C55, an aryl sulfide group of C6-C55, an aryl group of C6-C55, an aromatic heterocyclic group of C4-C55, a carbonyl group, a carboxyl group, an oxycarbonyl group, a carbamoyl group, One or more of an alkylamino group of C1-C40 or a silane group of C1-C15 having 1 to 5 silicon atoms.
  • the arylene group is preferably a C6-C60 aryl group; more preferably one of an aromatic hydrocarbon group such as a phenylene group, a naphthylene group, a biphenylylene group, a phenanthrylene group, a benzenetriphenylene group or a fluorenylene group; kind or more.
  • an aromatic hydrocarbon group such as a phenylene group, a naphthylene group, a biphenylylene group, a phenanthrylene group, a benzenetriphenylene group or a fluorenylene group; kind or more.
  • Afang The group may have a substituent or may have no substituent.
  • the heteroarylene group is preferably a C4-C60 aromatic heterocyclic group; further preferably a furanyl group, a thienylene group, a pyrrolylene group, a benzofuranyl group, a benzotrithylene group, or a dibenzophenone
  • a benzylidene a pyridylene group, a pyridylene group or a quinolinyl group.
  • the subaromatic heterocyclic group may have a substituent or may have no substituent.
  • the refractive index is proportional to the polarizability and density. For materials with high polarizability and density, the refractive index is larger.
  • n refractive index
  • wavelength of illumination light
  • P ⁇ polarizability
  • V molecular volume
  • the heteroaryl group has a property of increasing the polarizability, so that a high refractive index can be obtained. Further, in the above formula (2), at least one of R 5 to R 6 is a heteroaryl group from the viewpoints of non-crystallinity and film stability. A pyridyl group or a quinolyl group is preferred.
  • n 1 is preferably 1 or 2 from the viewpoint of heat resistance at the time of film formation such as easy synthesis and resistance heating vapor deposition.
  • the compound of the thiophene structure, the furan structure or the pyrrole structure in the invention further preferably has the following formula (3).
  • X is a sulfur atom, an oxygen atom or N-R;
  • R is independently selected from the group consisting of hydrogen, deuterium, alkyl, cycloalkyl, heterocyclyl, alkenyl, cycloalkenyl, alkynyl, alkoxy, alkylthio, aryl ether, aryl sulfide which may be substituted
  • R 7 to R 8 may be the same or different and are respectively selected from an alkyl group, a cycloalkyl group, a heterocyclic group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an alkoxy group, or an alkyl group which may be substituted by hydrogen, deuterium or halogen.
  • L 2 , L 3 are each selected from an arylene group or a heteroarylene group
  • R 9 to R 12 may be the same or different and are respectively selected from an alkyl group which may be substituted, a cycloalkyl group which may be substituted, an aryl group which may be substituted, a heteroaryl group which may be substituted or a heterocyclic group which may be substituted
  • the substituent is selected from the group consisting of hydrazine, halogen, C1-C15 alkyl, C3-C15 cycloalkyl, C3-C15 heterocyclic, C2-C15 alkenyl, C4 -C15 cycloalkenyl, C2-C15 alkynyl, C1-C15 alkoxy, C1-C15 alkylthio, C6-C55 aryl ether, C6-C55 aryl sulfide, C6 An aryl group of C55, an aromatic heterocyclic group of C4-C55, a carbonyl group, a carboxyl group, an oxycarbony
  • the compound having a thiophene structure, a furan structure or a pyrrole structure is not particularly limited, and specific examples thereof are as follows.
  • the attenuation coefficient and the absorption coefficient have the relationship shown by the following formula (A). (where: ⁇ : absorbance coefficient, k: attenuation coefficient, ⁇ : optical frequency, c: speed of light)
  • the attenuation coefficient is proportional to the absorption coefficient, and therefore, the material having a high absorption coefficient has a high attenuation coefficient.
  • a compound having a fluorene structure exhibits a very high absorption coefficient due to its structure, and therefore, a high attenuation coefficient can be obtained, and a high refractive index can be expected.
  • the compound substituent having a fluorene structure is easily modified, it is possible to easily make at least one point in the wavelength range of the attenuation coefficient of 430 nm to 460 nm larger than 0.10 and the attenuation coefficient in the range of wavelength 460 nm or more and 500 nm or less to be 0.10 or less. Therefore, a compound of the oxime structure is preferred.
  • the compound of the fluorene structure in the present invention is specifically represented by the following formula (4).
  • R 13 to R 22 may be the same or different and are respectively selected from an alkyl group, a cycloalkyl group, a heterocyclic group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an alkoxy group, or an alkyl group which may be substituted by hydrogen, hydrazine or halogen.
  • a ring may be bonded to an adjacent substituent to form a ring; in the case of the substituent, the substituent is selected from the group consisting of anthracene, halogen, a C1-C15 alkyl group, a C3-C15 cycloalkyl group, and a C3-C15 group.
  • the alkyl group is preferably a C1-C20 alkyl group; further preferably a methyl group, an ethyl group, a n-propyl group, an isopropyl group, an n-butyl group or a sec-butyl group.
  • a saturated aliphatic hydrocarbon group such as a phenyl group or a tert-butyl group.
  • the above alkyl group may have a substituent or may have no substituent.
  • the cycloalkyl group is preferably a C3-C20 cycloalkyl group; further preferably one or more of a cyclopropyl group, a cyclohexyl group, a norbornyl group, or a saturated alicyclic hydrocarbon group such as an adamantyl group.
  • the above cycloalkyl group may have a substituent or may have no substituent.
  • the heterocyclic group is preferably a C3-C20 heterocyclic group; more preferably one or more of an aliphatic ring having an atom other than carbon in a ring such as a pyran ring, a piperidine ring or a cyclic amide.
  • the above heterocyclic group may have a substituent or may have no substituent.
  • the alkenyl group is preferably a C2-C20 alkenyl group; more preferably one or more of an unsaturated aliphatic hydrocarbon group containing a double bond such as a vinyl group, an allyl group, or a butadienyl group.
  • the above alkenyl group may have a substituent or may have no substituent.
  • the cycloalkenyl group is preferably a C3-C20 cycloalkenyl group; further preferably one of an unsaturated alicyclic hydrocarbon group containing a double bond such as a cyclopentenyl group, a cyclopentadienyl group, or a cyclohexenyl group; A variety.
  • the above cycloalkenyl group may have a substituent or may have no substituent.
  • the alkynyl group is preferably a C2-C20 alkynyl group; more preferably an unsaturated aliphatic hydrocarbon group containing a triple bond such as an ethynyl group.
  • the above alkynyl group may have a substituent or may have no substituent.
  • the alkoxy group is preferably a C1-C20 alkoxy group; more preferably one or more of a functional group such as a methoxy group, an ethoxy group, or a propoxy group bonded to an aliphatic hydrocarbon group via an ether bond.
  • the aliphatic hydrocarbon group may have a substituent or may have no substituent.
  • the alkylthio group is a group in which an oxygen atom of an alkoxy group is substituted with a sulfur atom. It is preferably a C1-C20 alkylthio group; the alkylthioalkyl group may have a substituent or may have no substituent.
  • the aryl ether group is preferably a C6-C60 aryl ether group; more preferably a functional group such as a phenoxy group bonded to an aromatic hydrocarbon group via an ether bond.
  • the aryl ether group may or may not have a substituent.
  • the aryl sulfide group is a group in which an oxygen atom of an ether bond of an aryl ether group is substituted with a sulfur atom. Preferred is a C6-C60 aryl sulfide group.
  • the aromatic hydrocarbon group in the aryl sulfide group may or may not have a substituent.
  • the aryl group is preferably a C6-C60 aryl group; more preferably one or more of an aromatic hydrocarbon group such as a phenyl group, a naphthyl group, a biphenyl group, a phenanthryl group, a phenylterphenyl group or a fluorenyl group.
  • the aryl group may have a substituent or may have no substituent.
  • the heteroaryl group is preferably a C4-C60 aromatic heterocyclic group; further preferably a furyl group, a thienyl group, a pyrrole, a benzofuranyl group, a benzothienyl group, a dibenzofuranyl group, a dibenzothiophenyl group, One or more of a pyridyl group, a quinolyl group and the like.
  • the aromatic heterocyclic group may have a substituent or may have no substituent.
  • the halogen atom is selected from fluorine, chlorine, bromine, or iodine.
  • the carbonyl group, carboxyl group, oxycarbonyl group, carbamoyl group, or alkylamino group may have a substituent or may have no substituent.
  • the carbon number of the alkylamino substituent is not particularly limited, and is usually in the range of 2 or more and 60 or less.
  • the silyl group represents a functional group having a bond to a silicon atom such as a trimethylsilyl group, and the silane group may have a substituent or may have no substituent.
  • the carbon number of the silane group is not particularly limited. It is usually in the range of 3 or more and 20 or less. Further, the number of silicon is usually in the range of 1 or more and 6 or less.
  • the siloxane group represents a functional group such as a trimethylsiloxane group or the like which is bonded to a silicon atom via an ether bond, and the siloxane group may have a substituent or may have no substituent.
  • the substituent is selected from the group consisting of hydrazine, halogen, C1-C15 alkyl, C3-C15 cycloalkyl, C3-C15 heterocyclic, C2-C15 alkenyl, C4-C15 cycloalkenyl, C2 - alkynyl group of C15, alkoxy group of C1-C15, alkylthio group of C1-C15, aryl ether group of C6-C55, aryl sulfide group of C6-C55, aryl group of C6-C55, C5- One or more of an aromatic heterocyclic group of C55, a carbonyl group, a carboxyl group, an oxycarbonyl group, a carbamoyl group, an alkylamino group of C1-C40, or a silane group having a C1-C15 silicon atom number of 1-5.
  • the compound of the fluorene structure represented by the above formula (4) forms a steric hindrance effect by substituting the same or different substituents, thereby having superior film stability.
  • a compound having a fluorene structure is preferred, which has the following formula (5).
  • R 13 to R 22 may be the same or different and are each selected from the group consisting of hydrogen, deuterium, halogen, or an alkyl group, a cycloalkyl group, a heterocyclic group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an alkoxy group, which may be substituted.
  • L 4 is selected from arylene or heteroarylene and forms a single bond with one or more of R 13 -R 22 ;
  • R 23 and R 24 may be the same or different and are respectively selected from an alkyl group which may be substituted, a cycloalkyl group which may be substituted, an aryl group which may be substituted, a heteroaryl group which may be substituted or a heterocyclic group which may be substituted.
  • n 2 is an integer of 1-4, and at least one of R 13 to R 22 is bonded to L 4 ; in the case of the substitution, the substituent is selected from fluorene, halogen, C1-C15 alkyl, C3 -C15 cycloalkyl, C3-C15 heterocyclic group, C2-C15 alkenyl group, C4-C15 cycloalkenyl group, C2-C15 alkynyl group, C1-C15 alkoxy group, C1-C15 Alkylthio group, aryl ether group of C6-C55, aryl sulfide group of C6-C55, aryl group of C6-C55, aromatic heterocyclic group of C4-C55, carbonyl group, carboxyl group, oxycarbonyl group, carbamoyl group One or more of an alkylamino group of C1-C40 or a silane group of C1-C15 having 1 to 5 silicon atoms.
  • the arylene group is preferably a C6-C60 aryl group; more preferably one of an aromatic hydrocarbon group such as a phenylene group, a naphthylene group, a biphenylylene group, a phenanthrylene group, a benzenetriphenylene group or a fluorenylene group; kind or more.
  • the arylene group may have a substituent or may have no substituent.
  • the heteroarylene group is preferably a C5-C60 aromatic heterocyclic group; further preferably a furanyl group, a thienylene group, a pyrrolylene group, a benzofuranyl group, a benzothylene group, or a dibenzophenone
  • a benzylidene a pyridylene group, a pyridylene group or a quinolinyl group.
  • the subaromatic heterocyclic group may have a substituent or may have no substituent.
  • the refractive index is proportional to the polarizability and density. For materials with high polarizability and density, the refractive index is larger.
  • n refractive index
  • wavelength of illumination light
  • P ⁇ polarizability
  • V molecular volume
  • the heteroaryl group has a property of increasing the polarizability, from which a high refractive index can be obtained. Further, since the ruthenium structure has high planarity, the interaction between molecules is strong, and thus the ruthenium derivative tends to have a high density, and from this point, it is expected that a high refractive index can be obtained.
  • At least one of R 23 to R 24 is a heteroaryl group from the viewpoint of non-crystallinity and film stability.
  • a pyridyl group or a quinolyl group is preferred.
  • n 2 is preferably 1 or 2 from the viewpoint of heat resistance in film formation such as easy synthesis and resistance heating vapor deposition.
  • a compound having a fluorene structure is preferred, which has the following formula (6).
  • R 25 to R 32 may be the same or different and are respectively selected from the group consisting of hydrogen, deuterium, halogen, or an alkyl group, a cycloalkyl group, a heterocyclic group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an alkoxy group which may be substituted.
  • L 5 , L 6 are each selected from an arylene group or a heteroarylene group
  • R 33 to R 36 may be the same or different and are respectively selected from an alkyl group which may be substituted, a cycloalkyl group which may be substituted, an aryl group which may be substituted, a heteroaryl group which may be substituted or a heterocyclic group which may be substituted
  • the substituent is selected from the group consisting of hydrazine, halogen, C1-C15 alkyl, C3-C15 cycloalkyl, C3-C15 heterocyclic, C2-C15 alkenyl, C4 -C15 cycloalkenyl, C2-C15 alkynyl, C1-C15 alkoxy, C1-C15 alkylthio, C6-C55 aryl ether, C6-C55 aryl sulfide, C6 An aryl group of C55, an aromatic heterocyclic group of C4-C55, a carbonyl group, a carboxyl group, an oxycarbony
  • the compound of the oxime structure is not particularly limited, and specific examples thereof are as follows.
  • the attenuation coefficient and the absorption coefficient have the relationship shown by the following formula (A). (where, ⁇ : absorbance coefficient, k: attenuation coefficient, ⁇ : optical frequency, c: speed of light)
  • the attenuation coefficient is proportional to the absorption coefficient, and therefore, the material having a high absorption coefficient has a high attenuation coefficient.
  • a compound having a fluorene structure exhibits a very high absorption coefficient due to its structure, and therefore, a high attenuation coefficient can be obtained, and a high refractive index can be expected.
  • the compound substituent having a fluorene structure is easily modified, at least one of the wavelength range of the attenuation coefficient of 430 nm to 460 nm can be easily made larger than 0.10, and the attenuation coefficient in the range of 430 nm or more and 500 nm or less can be made 0.10 or less. Therefore, a compound of the oxime structure is preferred.
  • the compound of the oxime structure in the present invention has the following formula (7).
  • R 37 to R 46 may be the same or different and are respectively selected from an alkyl group, a cycloalkyl group, a heterocyclic group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an alkoxy group which may be substituted by hydrogen, hydrazine or halogen.
  • R 37 to R 46 may be the same or different and are respectively selected from an alkyl group, a cycloalkyl group, a heterocyclic group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an alkoxy group which may be substituted by hydrogen, hydrazine or halogen.
  • R 37 to R 46 may be the same or different and are respectively selected from an alkyl group, a cycloalkyl group, a heterocyclic group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an alkoxy group which may be substitute
  • the alkyl group is preferably a C1-C20 alkyl group; further preferably a methyl group, an ethyl group, a n-propyl group, an isopropyl group, a n-butyl group or a sec-butyl group.
  • a saturated aliphatic hydrocarbon group such as a phenyl group or a tert-butyl group.
  • the above alkyl group may have a substituent or may have no substituent.
  • the alkoxy group is preferably a C1-C20 alkoxy group; more preferably one or more of a functional group such as a methoxy group, an ethoxy group, or a propoxy group bonded to an aliphatic hydrocarbon group via an ether bond.
  • the aliphatic hydrocarbon group may have a substituent or may have no substituent.
  • the siloxane group represents a functional group such as a trimethylsiloxane group or the like which is bonded to a silicon atom via an ether bond, and the siloxane group may have a substituent or may have no substituent.
  • the compound of the above oxime structure represented by the above formula (7) forms a steric hindrance effect by substituting the same or different substituents, thereby having superior film stability.
  • a compound having a fluorene structure is preferred, which has the following formula (8).
  • R 47 to R 56 may be the same or different and are each selected from the group consisting of hydrogen, deuterium, halogen, or an alkyl group, a cycloalkyl group, a heterocyclic group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an alkoxy group, which may be substituted.
  • L 7 is selected from arylene or heteroarylene and forms a single bond with one or more of R 47 -R 56 ;
  • R 57 , R 58 may be the same or different and are respectively selected from an alkyl group which may be substituted, a cycloalkyl group which may be substituted, an aryl group which may be substituted, a heteroaryl group which may be substituted or a heterocyclic group which may be substituted ;
  • n 3 is an integer of from 1 to 4, but at least one of R 47 to R 56 is bonded to L 7 ; the substituent is selected from the group consisting of an anthracene, a halogen, a C1-C15 alkyl group, a C3-C15 cycloalkyl group, a heterocyclic group of C3-C15, an alkenyl group of C2-C15, a cycloalkenyl group of C4-C15, an alkynyl group of C2-C15, an alkoxy group of C1-C15, an alkylthio group of C1-C15, C6-C55 Aryl ether group, C6-C55 aryl sulfide group, C6-C55 aryl group, C4-C55 aromatic heterocyclic group, carbonyl group, carboxyl group, oxycarbonyl group, carbamoyl group, C1-C40 alkylamino group Or one or more of silane groups having a
  • the arylene group is preferably a C6-C60 aryl group; more preferably one of an aromatic hydrocarbon group such as a phenylene group, a naphthylene group, a biphenylylene group, a phenanthrylene group, a benzenetriphenylene group or a fluorenylene group; kind or more.
  • the arylene group may have a substituent or may have no substituent.
  • the heteroarylene group is preferably a C4-C60 aromatic heterocyclic group; further preferably a furanyl group, a thienylene group, a pyrrolylene group, a benzofuranyl group, a benzotrithylene group, or a dibenzophenone
  • a benzylidene a pyridylene group, a pyridylene group or a quinolinyl group.
  • the subaromatic heterocyclic group may have a substituent or may have no substituent.
  • the refractive index is proportional to the polarizability and density. For materials with high polarizability and density, the refractive index is larger.
  • n refractive index
  • wavelength of illumination light
  • P ⁇ polarizability
  • V molecular volume
  • the heteroaryl group has a property of increasing the polarizability, from which a high refractive index can be obtained. Further, since the ruthenium structure has high planarity, the interaction between molecules is strong, and thus the ruthenium derivative tends to have a high density, and from this point, it is expected that a high refractive index can be obtained.
  • At least one of R 57 to R 58 is a heteroaryl group from the viewpoint of non-crystallinity and film stability.
  • a pyridyl group or a quinolyl group is preferred.
  • n 3 is preferably 1 or 2 from the viewpoint of heat resistance in film formation such as easy synthesis and resistance heating vapor deposition.
  • a compound having a fluorene structure is preferred, which has the following formula (9).
  • L 8 , L 9 are each selected from an arylene group or a heteroarylene group
  • the compound of the oxime structure is not particularly limited, and specific examples thereof are as follows.
  • the synthesis of the coating material represented by the above formulas (1), (4), and (7) can be carried out by a known method.
  • a coupling reaction of a halogenated hydrazine with an arylboronic acid in the presence of a palladium catalyst, a coupling reaction of a halogenated hydrazine with a diamine compound, and the like are not limited to these methods.
  • the organic light-emitting device of the present invention has, in order, a substrate, a first electrode, one or more organic layer films including a light-emitting layer, a second electrode that transmits light emitted from the light-emitting layer, and a cover layer, and the light-emitting layer passes electric energy. Glowing.
  • the material used in the first electrode is preferably a metal such as gold, silver or aluminum having a high refractive index property or a metal alloy such as an APC alloy. These metals or metal alloys may also be laminated in multiple layers. Further, a transparent conductive metal oxide such as tin oxide, indium oxide, indium tin oxide (ITO) or indium zinc oxide (IZO) may be laminated on the upper surface and/or the lower surface of the metal, the metal alloy or the laminate thereof.
  • a transparent conductive metal oxide such as tin oxide, indium oxide, indium tin oxide (ITO) or indium zinc oxide (IZO) may be laminated on the upper surface and/or the lower surface of the metal, the metal alloy or the laminate thereof.
  • the method for forming the above electrode may be, for example, resistance heating deposition, electron beam evaporation, sputtering, ion plating, or gel coating, and the like, and is not particularly limited. Further, the first electrode and the second electrode function as an anode with respect to the organic film layer and the other as a cathode depending on the work function of the material used.
  • the organic layer may be composed of only a light-emitting layer, a hole transport layer/light-emitting layer, 2) a light-emitting layer/electron transport layer, and 3) a hole transport layer/light-emitting layer/electron transport layer, 4)
  • the hole injection layer/hole transport layer/light emitting layer/electron transport layer, and 5) a structure in which a hole injection layer/hole transport layer/light emitting layer/electron transport layer/electron injection layer or the like is laminated.
  • each of the above layers may be either a single layer or a plurality of layers.
  • the anode side electrode is bonded to the hole input layer or the hole transport layer
  • the cathode side electrode is bonded to the electron input layer or the electron transport layer.
  • the hole transport layer can be formed by a method of laminating or mixing one or more kinds of hole transport materials, or by a method using a mixture of a hole transport material and a polymer binder.
  • the hole transporting material needs to efficiently transport holes from the positive electrode between the electrodes to which the electric field is applied. Therefore, it is desirable that the hole injection efficiency is high and the injected holes can be efficiently transported. Therefore, the hole transporting material is required to have an appropriate ion potential, and has a large hole mobility, and further, is excellent in stability, and is unlikely to cause impurities which may become traps during production and use.
  • the substance satisfying such conditions is not particularly limited, and may be, for example, 4,4'-bis(N-(3-methylphenyl)-N-phenylamino)biphenyl (TPD), 4,4'- Bis(N-(1-naphthyl)-N-phenylamino)biphenyl (NPD), 4,4'-bis(N,N-bis(4-biphenylyl)amino)biphenyl (TBDB), Biphenylamine such as bis(N,N-diphenyl-4-phenylamino)-N,N-diphenyl-4,4'-diamino-1,1'-biphenyl (TPD232), 4, 4 ',4"-tris(3-methylphenyl(phenyl)amino)triphenylamine (m-MTDATA), 4,4',4"-tris(1-naphthyl(phenyl)amino)triphenylamine ( 1-TNATA)
  • a hole injecting layer may be provided between the anode and the hole transporting layer.
  • the organic light-emitting element can achieve a low driving voltage and improve the durability life.
  • the hole injection layer is generally preferably a material having a lower ion potential than the hole transport layer material.
  • a benzidine derivative or a star-type triarylamine material group such as the above TPD232 may be used, and a phthalocyanine derivative or the like may also be used.
  • the hole injection layer is composed of an acceptor compound alone or that the acceptor compound is doped in another hole transport layer.
  • the light-emitting layer may be any one of a single layer and a plurality of layers, and may be formed of a light-emitting material (host material, dopant material), which may be a mixture of the host material and the dopant material, or may be only
  • the main material can be used in either case. That is, in each of the light-emitting layers of the light-emitting element of the present invention, only the host material or only the dopant material may emit light, or the host material and the dopant material may emit light together. From the viewpoint of efficiently utilizing electric energy and obtaining light of high color purity, it is preferable that the light-emitting layer is formed by mixing a host material and a dopant material.
  • the luminescent material examples include a fused ring derivative such as ruthenium or osmium which is conventionally known as an illuminant, a metal chelating quinolin compound such as tris(8-hydroxyquinoline)aluminum, and a dibenzofuran derivative.
  • a fused ring derivative such as ruthenium or osmium which is conventionally known as an illuminant
  • a metal chelating quinolin compound such as tris(8-hydroxyquinoline)aluminum
  • dibenzofuran derivative a fused ring derivative
  • the substance, the carbazole derivative, the indolocarbazole derivative, the polyphenylenevinylene derivative, the polyparaphenylene derivative, and the polythiophene derivative in the polymer are not particularly limited.
  • the host material contained in the luminescent material is not particularly limited, and ruthenium, phenanthrene, anthracene, a compound having a fused aromatic ring or a derivative thereof, N,N'-dinaphthyl-N,N', such as benzophenanthrene, tetracene, anthracene, benzo[9,10]phenanthrene, fluoranthene, anthracene, anthracene or the like -Aromatic amine derivatives such as diphenyl-4,4'-diphenyl-1,1'-diamine, metal chelating quinolin compounds such as tris(8-hydroxyquinoline)aluminum, pyrrolopyrrole a derivative, a dibenzofuran derivative, a carbazole derivative, an indolocarbazole derivative, a triazine derivative, and a polyphenylene vinylene derivative or a polyparaphenylene group can be used in the polymer.
  • a phosphorescent material may be doped in the light-emitting layer.
  • the phosphorescent material is a material that can also be phosphorescent at room temperature.
  • a phosphorescent material is used as the dopant, it is required to be substantially capable of phosphorescence at room temperature, but is not particularly limited, and is preferably organic containing at least one metal selected from the group consisting of indium, germanium, antimony, palladium, platinum, rhodium, and iridium.
  • Metal complex compound From the viewpoint of having high phosphorescence luminous efficiency at room temperature, an organometallic complex having indium or platinum is more preferable.
  • the electron transporting material used in the electron transporting layer is not particularly limited, and examples thereof include a condensed aromatic ring derivative such as naphthalene or an anthracene, and a styrene-based aromatic group represented by 4,4'-di(diphenylvinyl)biphenyl. a cyclic derivative, an anthracene derivative such as hydrazine or biphenyl fluorene, a phosphine oxide derivative, a hydroxyquinoline complex such as tris(8-hydroxyquinoline)aluminum, a benzohydroxyquinoline complex, or a hydroxyazole complex.
  • a condensed aromatic ring derivative such as naphthalene or an anthracene
  • a cyclic derivative an anthracene derivative such as hydrazine or biphenyl flu
  • the heteroaryl ring containing an electron-withdrawing nitrogen has high electrophilicity. Electron transport with electron-withdrawing nitrogen The material readily accepts electrons from a cathode having a high electrophilicity, and thus the driving voltage of the light-emitting element can be lowered. Further, since the electron supply to the light-emitting layer is increased and the probability of recombination in the light-emitting layer is increased, the light-emitting efficiency is improved.
  • heteroaryl ring containing an electron-withdrawing nitrogen examples include a pyridine ring, a pyrazine ring, a pyrimidine ring, a quinoline ring, a quinoxaline ring, a naphthyridine ring, a pyrimidopyrimidine ring, a benzoquinoline ring, and a phenanthrene ring.
  • a porphyrin ring an imidazole ring, an oxazole ring, an oxadiazole ring, a triazole ring, a thiazole ring, a thiadiazole ring, a benzoxazole ring, a benzothiazole ring, a benzimidazole ring, or a phenamimidazole ring, etc. .
  • examples of the compound having such a heteroaromatic ring structure include a benzimidazole derivative, a benzoxazole derivative, a benzothiazole derivative, an oxadiazole derivative, a thiadiazole derivative, and a triazole derivative.
  • An oligopyridine derivative such as a pyrazine derivative, a phenanthroline derivative, a quinoxaline derivative, a quinoline derivative, a benzoquinoline derivative, a bipyridine or a terpyridine.
  • the fused aromatic ring skeleton is preferably an anthracene skeleton, an anthracene skeleton or a phenanthroline skeleton.
  • the above electron transporting material may be used singly or in combination of two or more kinds of the above electron transporting materials, or one or more other electron transporting materials may be mixed and used in the above electron transporting material.
  • a donor compound can also be added.
  • the donor compound refers to a compound which facilitates electron injection from the cathode or the electron injecting layer to the electron transporting layer by improving the electron injecting energy barrier, thereby improving the electrical conductivity of the electron transporting layer.
  • the donor compound of the present invention include an alkali metal, an alkali metal-containing inorganic salt, an alkali metal-organic complex, an alkaline earth metal, an alkaline earth metal-containing inorganic salt, or an alkaline earth metal and an organic substance.
  • alkali metal or the alkaline earth metal include an alkali metal such as lithium, sodium or barium having a low work function and an effect of improving electron transporting ability, or an alkaline earth metal such as magnesium or calcium.
  • an electron injecting layer may also be provided between the cathode and the electron transporting layer.
  • the electron injecting layer is inserted for the purpose of assisting electron injection from the cathode to the electron transporting layer, and when inserted, a compound having a heteroaromatic ring structure containing electron-withdrawing nitrogen may be used, or a layer containing the above donor compound may be used.
  • an inorganic substance of an insulator or a semiconductor can also be used. By using these materials, it is possible to effectively prevent the short-circuiting of the light-emitting element and to improve the electron injectability, which is preferable.
  • At least one metal compound selected from the group consisting of an alkali metal chalcogenide, an alkaline earth metal chalcogenide, an alkali metal halide, and an alkaline earth metal halide is preferably used. Further, a complex of an organic substance and a metal can also be used favorably.
  • Examples of the method for forming the respective layers constituting the light-emitting element include resistance heating vapor deposition, electron beam evaporation, sputtering, molecular lamination, or coating, and the like, and are not particularly limited, but generally, from the viewpoint of element characteristics It is preferable to use resistance heating vapor deposition or electron beam evaporation.
  • the thickness of the organic layer varies depending on the electric resistance value of the luminescent material, and is not limited, but is preferably 1 to 1000 nm.
  • the film thickness of each of the light-emitting layer, the electron transport layer, and the hole transport layer is preferably 1 nm or more and 200 nm or less, and more preferably 5 nm or more and 100 nm or less.
  • the cover layer of the present invention can achieve high luminous efficiency by containing at least one compound containing the above compound having a thiophene structure, a furan structure or a pyrrole structure, a compound having an anthracene or a compound having a fluorene structure.
  • a compound having a thiophene structure, a furan structure or a pyrrole structure has a high refractive index because of its very high absorption coefficient. Further, since it has excellent film forming properties of the vapor-deposited film, various underlayers such as glass and metal have a stable refractive index and a coefficient of decay.
  • the refractive index and the coefficient of decay are often largely changed.
  • the phosphine oxide derivative is laminated to a thickness of 20 nm to 120 nm. More preferably, the laminate thickness is from 40 nm to 80 nm. In addition, from the viewpoint of maximizing the luminous efficiency, it is more preferable to improve the light extraction efficiency.
  • the layer thickness is from 50 nm to 70 nm.
  • the method for forming the coating layer is not particularly limited, and examples thereof include resistance heating vapor deposition, electron beam evaporation, sputtering, molecular lamination method, coating method, inkjet method, doctor blade method, and laser transfer method, and are not particularly limited. .
  • the light-emitting element of the present invention has a function of converting electric energy into light.
  • the electric energy a direct current is mainly used, and a pulse current or an alternating current can also be used.
  • the current value and the voltage value it should be selected in such a manner that the maximum brightness can be obtained with the lowest possible energy.
  • the light-emitting element of the present invention can be suitably used as a flat display which is displayed in, for example, a matrix and/or a field.
  • the matrix method refers to a two-dimensional arrangement of pixels for display in a checkered or mosaic shape, and displays characters or images by a collection of pixels.
  • the shape and size of the pixel depend on the application. For example, in an image and a character display of a computer, a monitor, and a television, a quadrangular pixel having a side length of 300 ⁇ m or less is generally used, and in the case of a large display such as a display panel, a pixel having a side length of mm is used.
  • monochrome display it is only necessary to arrange pixels of the same color, but in the case of color display, red, green, and blue pixels are arranged to be displayed. In this case, there are typically triangular and striped shapes.
  • the field mode in the present invention refers to a mode in which a pattern is formed and an area determined by the arrangement of the pattern is illuminated to display predetermined information.
  • Examples thereof include a digital clock, a time in a thermometer, a temperature display, an operation state display of an audio device, an electromagnetic cooker, and the like, and a panel display of a car.
  • the matrix display and the field display can coexist in the same panel.
  • Figure 2 shows the refractive index (n) and attenuation coefficient (k) values for a particular wavelength of Cap007.
  • Figure 5 is a graph of refractive index (n) and attenuation coefficient (k) for a particular wavelength of Cap 208.
  • Figure 8 shows the refractive index (n) and attenuation coefficient (k) values for a particular wavelength of Cap052.
  • Fig. 11 is a refractive index (n) and an attenuation coefficient (k) value of a specific wavelength of Com-1.
  • Figure 13 is a graph showing the refractive index (n) and attenuation coefficient (k) of a specific wavelength of Com-3.
  • Fig. 16 is a refractive index (n) and an attenuation coefficient (k) value of a specific wavelength of Com-6.
  • Cap260 N,N'-biphenyl-N,N'-bis(6-quinolinyl)-1,1'-phenyl-4,4'-diamine
  • Cap261 N,N'-biphenyl-N,N'-bis(3-pyridine)-diphenylethylene-4,4'-diamine
  • NPD N,N'-diphenyl-N,N'-bis(1-naphthyl)-1,1'-biphenyl-4,4'-diamine
  • the alkali-free glass substrate (Asahi Glass Co., Ltd., AN100) was subjected to a UV ozone washing treatment for 20 minutes. Then, it was placed in a vacuum evaporation apparatus and evacuated until the degree of vacuum in the apparatus was higher than 1 ⁇ 10 -3 Pa. Under this condition, a film of about 50 nm was deposited on the substrate by resistance heating deposition. The vapor deposition rate was 1 nm/s.
  • the refractive index and attenuation coefficient of the film samples prepared above were measured at Toray Research and Research Center (Toray). Research Center. Inc., the instrument used is an elliptically polarized spectrum (J.A. Woollam M-2000).
  • Cap007 (60 nm) was then evaporated as a cover layer.
  • the sealing member made of an alkali-free glass was sealed with an epoxy resin adhesive.
  • the light-emitting element was subjected to a direct current of 10 mA/cm 2 at room temperature in the air, and the luminance and color purity were measured from a light-emitting luminescence meter (CS1000, Konica Minolta Co., Ltd.) for light-emitting of the sealing plate.
  • Cap007 as a cover layer, a high-performance light-emitting element with high luminous efficiency and high color purity is obtained.
  • the organic light-emitting element was evaluated. The evaluation results are shown in Table 2.
  • Example 2 The same as Example 1 except that the cover layer material was Cap010.
  • the organic light-emitting element was evaluated. The evaluation results are shown in Table 2.
  • Example 2 The same as Example 1 except that the cover layer material was Cap018.
  • the organic light-emitting element was evaluated. The evaluation results are shown in Table 2.
  • Example 2 The same as Example 1 except that the cover layer material was Cap 208.
  • the organic light-emitting element was evaluated. The evaluation results are shown in Table 2.
  • Example 2 The same as Example 1 except that the cover layer material was Cap259.
  • the organic light-emitting element was evaluated. The evaluation results are shown in Table 2.
  • Example 2 The same as Example 1 except that the cover layer material was Cap011.
  • the organic light-emitting element was evaluated. The evaluation results are shown in Table 2.
  • Example 2 The same as Example 1 except that the cover layer material was Cap052.
  • the organic light-emitting element was evaluated. The evaluation results are shown in Table 2.
  • Example 2 The same as Example 1 except that the cover layer material was Cap260.
  • the organic light-emitting element was evaluated. The evaluation results are shown in Table 2.
  • Example 2 The same as Example 1 except that the cover layer material was Cap 261.
  • the organic light-emitting element was evaluated. The evaluation results are shown in Table 2.
  • Example 1 The same as Example 1 except that the cover layer material was Com-1.
  • the organic light-emitting element was evaluated. The evaluation results are shown in Table 2.
  • Example 2 The same as Example 1 except that the cover layer material was Com-2.
  • the organic light-emitting element was evaluated. The evaluation results are shown in Table 2.
  • Example 2 The same as Example 1 except that the cover layer material was Com-3.
  • the organic light-emitting element was evaluated. The evaluation results are shown in Table 2.
  • Example 2 The same as Example 1 except that the cover layer material was Com-4.
  • the organic light-emitting element was evaluated. The evaluation results are shown in Table 2.
  • Example 2 The same as Example 1 except that the cover layer material was Com-5.
  • the organic light-emitting element was evaluated. The evaluation results are shown in Table 2.
  • Example 2 The same as Example 1 except that the cover layer material was Com-6.
  • the organic light-emitting element was evaluated. The evaluation results are shown in Table 2.
  • optical constant (refractive index: n, attenuation coefficient: k) is the decimal point 3 digits rounded off
  • the light-emitting elements of Examples 1 to 9 satisfy both high luminous efficiency and high color purity. Further, the light-emitting elements of Comparative Examples 1 to 6 were equivalent to the color purity of the examples, but the luminous efficiency was lower than that of the examples, and high luminous efficiency and high color purity could not be simultaneously satisfied.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Quinoline Compounds (AREA)
  • Pyridine Compounds (AREA)

Abstract

一种有机发光元件,包含基板,第一电极,含有一种以上有机层膜的发光层,第二电极的发光元件,发光元件具有覆盖层;其中覆盖层含有的有机材料的衰减系数在430nm-460nm波长范围中至少一点大于0.10,且460nm-500nm的波长范围中,衰减系数为0.10以下。有机发光元件可实现高发光效率及色再现性,可用于有机EL显示器、液晶显示器的背光源、照明、计器类等光源、标示板、标识灯等。

Description

有机发光元件 技术领域
本发明涉及有机发光元件,特别是光取出效率得到大幅改善的有机发光元件。
背景技术
有机发光元件是一种自发光的显示装置,具有轻薄、广视角、低耗电、高对比等特点。
有机发光元件的发光原理是,在从电极注入的空穴与电子在发光层通过再结合而经由激发态回复到基态时产生光。该发光元件具有薄型且能在低驱动电压下高亮度发光以及能通过选择发光材料而进行多色发光的特征,因此倍受关注。
该研究自从由柯达公司的C.W.Tang等揭示有机薄膜元件能以高亮度发光以来,对于其应用,已有许多研究。有机薄膜发光元件被采用在手机主显示屏等中,其实用化取得切实进展。但是,还存在很多技术课题,其中,元件的高效率化和低耗电是一个很大的课题。
根据有机发光层产生的光所发射的方向,有机发光元件可以分为底发射有机发光元件和顶发射有机发光元件。在底发射有机发光元件中,光射向基板侧,在有机发光层的上部形成有反射电极,在有机发光层的下部形成有透明电极。这种情况下,当有机发光元件为有源矩阵元件时,由于形成有薄膜晶体管的部分不透光,所以,发光面积减小。另一方面,在顶发射有机元件中,透明电极形成在有机发光层的上部,反射电极形成在有机发光层的下部,所以光射向与基板侧相反的方向,由此,光所透过的面积增加,亮度提高。
现有技术中,为了提高顶发射有机发光元件的发光效率,所采用的方法有在使发光层的光透过的上部半透明金属电极上形成有机覆盖层,以此调节光学干涉距离,抑制外光反射和由表面等离子体能量移动引起的消光等(可参见专利文献1~5)。
例如,专利文献2记载,在顶发射有机发光元件的上部半透明金属电极上形成折射率在1.7以上、膜厚
Figure PCTCN2014094225-appb-000001
的有机覆盖层,使红色发光和绿色发光有机发光元件的发光效率提高了约1.5倍。所用的有机覆盖层的材料是胺衍生物、喹啉醇络合物等。
专利文献4记载,能隙小于3.2eV的材料会影响蓝色波长,不适合用于有机覆盖层,使用的有机覆盖层材料是具有特定化学结构的胺衍生物等。
专利文献5记载,要实现低CIEy值的蓝色发光元件,有机覆盖层材料在波长430nm-460nm的折射率变化量为Δn>0.08,使用的有机覆盖层材料是具有特定化学结构的蒽衍生物等。
专利文献
专利文献1:WO2001/039554
专利文献2:JP2006-156390
专利文献3:JP2007-103303
专利文献4:JP2006-302878
专利文献5:WO2011/043083。
发明内容
如上所述,在现有技术中,使用具有高折射率的特定结构的胺衍生物或使用符合特定参数要求的材料作为有机覆盖层材料来改善光取出效率和色纯 度,但是尚未解决兼顾发光效率和色纯度的问题,特别是在制备蓝光发光元件的情况下。
本发明者发现覆盖层材料使用满足特定参数的材料,尤其是满足特定参数要求的具有噻吩结构、呋喃结构或吡咯结构的化合物,具有芘结构的化合物,具有蒽结构的化合物,能够解决兼顾提高光取出效率与改善色纯度的问题。
本发明提供一种有机发光元件,其包含基板、第一电极、包括发光层在内的一层以上有机层膜、第二电极元件,所述发光元件还具有覆盖层;所述覆盖层中含有有机材料,该有机材料在430nm-460nm的波长范围中的至少一点上的衰减系数大于0.10,且在460nm-500nm的波长范围中,衰减系数为0.10以下。
本发明的覆盖层既可以位于第一电极和第二电极之间,也可以位于第二电极和覆盖层之间,还可以位于第二电极之上。
由于覆盖层在第二电极上有效地保护第二电极和有机发光层避免受到外面的湿气,氧气和污染物的影响,从而能够防止有机发光元件的寿命下降。顶发射发光元件比低发射发光元件具有扩大发光面的优点,从而提高光取出效率。
在本发明的有机发光元件中,优选基板、第一电极、包括发光层在内的一层以上的有机层膜、使前述发光层发射的光透过的第二电极、覆盖层依次层叠;其中,覆盖层是提高光取出率的层。
根据本发明,能够得到发光取出效率大幅度提高且具有优越的色纯度的有机发光元件。
在上述通过使用覆盖层材料来实现高发光效率、高色纯度的发光元件中,要 求覆盖层具有高的折射率。从图1所示的光学模拟的结果可以看出,覆盖层材料的衰减系数大,则可以得到高折射率,显示高折射率的波长区域会随着覆盖层材料的最大吸收波长而变化。在以上结果的基础上进行了深入研究后,本发明者发现,要得到在有机发光元件中的特性优异的覆盖层材料,优选衰减系数在430nm-460nm波长范围中的至少一点必须大于0.10。为了得到更高折射率,进一步优选覆盖层材料的衰减系数在430nm-460nm波长范围中的至少一点大于0.12。此外还发现,由于覆盖层具有良好的透明性时能使发光效率提高及得到高色纯度元件,因此,优选光取出效率改善层材料在波长460nm以上500nm以下的范围内的衰减系数在0.1以下。
如上所述,要得到性能优越的覆盖层材料,覆盖层应含有衰减系数在430nm-460nm波长范围中至少一点大于0.10,且460nm-500nm的波长范围中,衰减系数为0.10以下的有机材料。
作为满足上述特性的有机材料,优选具有噻吩结构、呋喃结构或吡咯结构中的一种或多种的化合物,具有芘结构的化合物,具有蒽结构的化合物。
使用上述满足特性参数要求的材料作为覆盖层材料,可得到优越的性能。
上述满足参数的具有噻吩结构、呋喃结构或吡咯结构的化合物详述如下:
衰减系数和吸光系数有下式(A)的所示的关系。(式中,α:吸光系数、k:衰减系数、ω:光频率、c:光速)
Figure PCTCN2014094225-appb-000002
如式(A)显示衰减系数和吸光系数成正比,因此,吸光系数高的材料,其衰减系数也高。具有噻吩结构、呋喃结构或吡咯结构的化合物由于其结构 而显示非常高的吸光系数,因此,能得到高的衰减系数,从而可以期待能得到高的折射率。
进一步,具有噻吩结构、呋喃结构或吡咯结构的化合物取代基修饰容易,因此,能够容易地使衰减系数在430nm-460nm波长范围中的至少一点大于0.10,并使波长430nm以上500nm以下的范围内的衰减系数在0.10以下。所以优选噻吩结构、呋喃结构或吡咯结构的化合物。
在本发明中,噻吩结构、呋喃结构或吡咯结构的化合物,具体地如以下通式(1)所示。
Figure PCTCN2014094225-appb-000003
X为硫原子、氧原子或N-R;
其中,R选自由氢,氘,可被取代的烷基、环烷基、杂环基、链烯基、环烯基、炔基、烷氧基、烷硫基、芳基醚基、芳基硫醚基、芳基、杂芳基、羰基、羧基、氧羰基、氨基甲酰基、烷氨基或硅烷基组成的组中的一种或多种;
其中,R1~R4可以相同或不同,分别选自由氢,氘,卤素,可被取代的烷基、环烷基、杂环基、链烯基、环烯基、炔基、烷氧基、烷硫基、芳基醚基、芳基硫醚基、芳基、杂芳基、氰基、羰基、羧基、氧羰基、氨基甲酰基、烷氨基或硅烷基组成的组中的一种或多种,也可以与相邻的取代基键合而形成环;所述被取代的情况下,取代基选自氘、卤素、C1-C15的烷基、C3-C15的环烷基、C3-C15的杂环基、C2-C15的链烯基、C4-C15的环烯基、C2-C15的炔基、C1-C15的烷氧基、C1-C15的烷硫基、C6-C55的芳基醚基、C6-C55的芳基硫醚基、C6-C55的芳基、C5-C55的芳香族杂环基、羰基、羧基、氧羰基、氨基甲酰基、C1-C40的烷氨基、或C3-C15的硅原子数为1-5的硅烷基 中的一种或多种。
在上述R1~R4所表示的基团中,所述烷基优选为C1-C20的烷基;进一步优选为甲基、乙基、正丙基、异丙基、正丁基、仲丁基或叔丁基等饱和脂肪族烃基中的一种或多种。上述烷基可以具有取代基也可以没有取代基。
所述环烷基优选为C3-C20的环烷基;进一步优选为环丙基、环己基、降冰片基、或金刚烷基等饱和脂环式烃基中的一种或多种。上述环烷基可以具有取代基也可以没有取代基。
所述杂环基优选为C3-C20的杂环基;进一步优选为吡喃环、哌啶环、或环状酰胺等环内具有碳以外的原子的脂肪族环中的一种或多种。上述杂环基可以具有取代基也可以没有取代基。
所述链烯基优选为C2-C20的链烯基;进一步优选为乙烯基、烯丙基、或丁二烯基等包含双键的不饱和脂肪族烃基中的一种或多种。上述链烯基可以具有取代基也可以没有取代基。
所述环烯基优选为C3-C20的环烯基;进一步优选为环戊烯基、环戊二烯基、或环己烯基等包含双键的不饱和脂环式烃基中的一种或多种。上述环烯基可以具有取代基也可以没有取代基。
所述炔基优选为C2-C20的炔基;进一步优选为乙炔基等包含三键的不饱和脂肪族烃基。上述炔基可以具有取代基也可以没有取代基。
所述烷氧基优选为C1-C20的烷氧基;进一步优选为甲氧基、乙氧基、或丙氧基等介由醚键键合脂肪族烃基的官能团中的一种或多种。该脂肪族烃基可以具有取代基也可以没有取代基。
所述烷硫基是烷氧基的氧原子被置换为硫原子的基团。优选为C1-C20的烷硫基;烷硫基的烷基可以具有取代基也可以没有取代基。
所述芳基醚基优选为C6-C60的芳基醚基;进一步优选为苯氧基等介由醚键键合芳香族烃基的官能团。芳基醚基可以具有取代基也可以没有取代基。
所述芳基硫醚基是芳基醚基的醚键的氧原子被置换为硫原子的基团。优选为C6-C60的芳基硫醚基。芳基硫醚基中的芳香族烃基可以具有取代基也可以 没有取代基。
所述芳基优选为C6-C60的芳基;进一步优选为苯基、萘基、联苯基、菲基、苯三联苯基或芘基等芳香族烃基中的一种或多种。芳基可以具有取代基也可以没有取代基。
所述杂芳基优选为C4-C60的芳香族杂环基;进一步优选为呋喃基、噻吩基、吡咯、苯并呋喃基、苯并噻吩基、二并苯呋喃基、二并苯噻吩基、吡啶基或喹啉基等中的一种或多种。芳香族杂环基可以具有取代基也可以没有取代基。
所述卤素原子选自于氟、氯、溴、或碘。
所述羰基、羧基、氧羰基、氨基甲酰基、烷氨基可以具有取代基也可以没有取代基。对于烷氨基取代基的碳数没有特别限制,通常为2以上60以下的范围。
所述硅烷基表示为例如三甲基甲硅烷基等具有与硅原子键合的键的官能团,硅烷基可以具有取代基也可以没有取代基。对于硅烷基的碳数没有特别限制,通常为3以上20以下的范围。另外,硅数通常为1以上6以下的范围。
所述硅氧烷基表示为例如三甲基硅氧烷基等介由醚键键合硅原子的官能团,硅氧烷基可以具有取代基也可以没有取代基。
所述取代基选自氘、卤素、C1-C15的烷基、C3-C15的环烷基、C3-C15的杂环基、C2-C15的链烯基、C4-C15的环烯基、C2-C15的炔基、C1-C15的烷氧基、C1-C15的烷硫基、C6-C55的芳基醚基、C6-C55的芳基硫醚基、C6-C55的芳基、C5-C55的芳香族杂环基、羰基、羧基、氧羰基、氨基甲酰基、C1-C40的烷氨基、或C3-C15的硅原子数为1-5的硅烷基中的一种或多种。
上述通式(1)所示噻吩结构、呋喃结构或吡咯结构的化合物,取代相同或不相同取代基可以形成空间位阻效应,从而具有优越的薄膜稳定性。
以上结果得出,覆盖层使用具有高折射率和优越的薄膜稳定性的噻吩结构、呋喃结构或吡咯结构的化合物,能够解决兼顾提高光取出效率与经时稳 定性问题。
由于具有取代胺基的噻吩结构、呋喃结构或吡咯结构的化合物,显示非常高的吸光系数,因此,能得到高的衰减系数,从而可以期待能得到高的折射率。
本发明中的噻吩结构、呋喃结构或吡咯结构的化合物,优选具有如下通式(2)。
Figure PCTCN2014094225-appb-000004
X为硫原子、氧原子或N-R;
R选自由氢,氘,可被取代的烷基、环烷基、杂环基、链烯基、环烯基、炔基、烷氧基、烷硫基、芳基醚基、芳基硫醚基、芳基、杂芳基、羰基、羧基、氧羰基、氨基甲酰基、烷氨基或硅烷基组成的组中的一种或多种;
R1~R4可以相同或不同,分别选自由氢,氘,卤素,可被取代的烷基、环烷基、杂环基、链烯基、环烯基、炔基、烷氧基、烷硫基、芳基醚基、芳基硫醚基、芳基、杂芳基、氰基、羰基、羧基、氧羰基、氨基甲酰基、烷氨基或硅烷基组成的组中的一种或多种,也可以与相邻的取代基键合而形成环;
L1选自亚芳基或杂亚芳基且与R1-R4中的一种或多种形成单键;
R5、R6可以相同或不同,分别选自可被取代的烷基、可被取代的环烷基、可被取代的芳基、可被取代的杂芳基或可被取代的杂环基;
n1为1-4的整数,且R1~R4中至少一个与L1键合;所述被取代的情况下,取代基选自于氘、卤素、C1-C15的烷基、C3-C15的环烷基、C3-C15的杂环基、C2-C15的链烯基、C4-C15的环烯基、C2-C15的炔基、C1-C15的烷氧基、C1-C15的烷硫基、C6-C55的芳基醚基、C6-C55的芳基硫醚基、C6-C55的芳基、C4-C55的芳香族杂环基、羰基、羧基、氧羰基、氨基甲酰基、C1-C40的烷氨基、或C3-C15的硅原子数为1-5的硅烷基中的一种或多种。
所述亚芳基优选为C6-C60的芳基;进一步优选为亚苯基、亚萘基、亚联苯基、亚菲基、亚苯三联苯基或亚芘基等芳香族烃基中的一种或多种。亚芳 基可以具有取代基也可以没有取代基。
所述亚杂芳基优选为C4-C60的芳香族杂环基;进一步优选为亚呋喃基、亚噻吩基、吡咯亚基、亚苯并呋喃基、亚苯并噻吩基、亚二并苯呋喃基、亚二并苯噻吩基、亚吡啶基或亚喹啉基等中的一种或多种。亚芳香族杂环基可以具有取代基也可以没有取代基。
其他取代基与上文所述取代基的说明相同。
另外,如Lorentz-Lorent式所示,折射率与极化率和密度成正比。极化率和密度大的材料,其折射率越大。
Figure PCTCN2014094225-appb-000005
n:折光率,λ:照射光波长,Pλ:极化率,V:分子体积
杂芳基具有提高极化率的性能,从而能得到高的折射率。进一步,从非结晶性及薄膜稳定性的角度考虑,上述通式(2)中,R5~R6中的至少一种是杂芳基。优选吡啶基、或喹啉基。
另外,从容易合成和电阻加热蒸镀法等成膜时耐热性角度考虑,n1优选1或2。
本发明中噻吩结构、呋喃结构或吡咯结构的化合物,进一步优选具有如下通式(3)。
Figure PCTCN2014094225-appb-000006
X为硫原子、氧原子或N-R;
R分别选自由氢,氘,可被取代的烷基、环烷基、杂环基、链烯基、环烯基、炔基、烷氧基、烷硫基、芳基醚基、芳基硫醚基、芳基、杂芳基、羰基、羧基、氧羰基、氨基甲酰基、烷氨基或硅烷基组成的组中的一种或多种;
R7~R8可以相同或不同,分别选自由氢,氘,卤素,可被取代的烷基、环烷 基、杂环基、链烯基、环烯基、炔基、烷氧基、烷硫基、芳基醚基、芳基硫醚基、芳基、杂芳基、氰基、羰基、羧基、氧羰基、氨基甲酰基、烷氨基或硅烷基组成的组中的一种或多种,也可以与相邻的取代基键合而形成环;
L2,L3分别选自亚芳基或杂亚芳基;
R9~R12可以相同或不同,分别选自可被取代的烷基、可被取代的环烷基、可被取代的芳基、可被取代的杂芳基或可被取代的杂环基;所述被取代的情况下,取代基选自于氘、卤素、C1-C15的烷基、C3-C15的环烷基、C3-C15的杂环基、C2-C15的链烯基、C4-C15的环烯基、C2-C15的炔基、C1-C15的烷氧基、C1-C15的烷硫基、C6-C55的芳基醚基、C6-C55的芳基硫醚基、C6-C55的芳基、C4-C55的芳香族杂环基、羰基、羧基、氧羰基、氨基甲酰基、C1-C40的烷氨基、或C3-C15的硅原子数为1-5的硅烷基中的一种或多种。
所述噻吩结构、呋喃结构或吡咯结构的化合物,没有特别限定,具体可列举如下的例子。
Figure PCTCN2014094225-appb-000007
Figure PCTCN2014094225-appb-000008
Figure PCTCN2014094225-appb-000009
Figure PCTCN2014094225-appb-000010
Figure PCTCN2014094225-appb-000011
Figure PCTCN2014094225-appb-000012
Figure PCTCN2014094225-appb-000013
Figure PCTCN2014094225-appb-000014
Figure PCTCN2014094225-appb-000015
上述满足参数的具有芘结构的化合物详述如下:
衰减系数和吸光系数有下式(A)的所示的关系。(式中,α:吸光系数、k:衰减系数、ω:光频率、c:光速)
Figure PCTCN2014094225-appb-000016
如式(A)显示衰减系数和吸光系数成正比,因此,吸光系数高的材料,其衰减系数也高。具有芘结构的化合物由于其结构而显示非常高的吸光系数,因此,能得到高的衰减系数,从而可以期待能得到高的折射率。
进一步,具有芘结构的化合物取代基修饰容易,因此,能够容易地使衰减系数430nm-460nm波长范围中至少一点大于0.10,并使波长460nm以上500nm以下的范围内的衰减系数在0.10以下。所以优选芘结构的化合物。
本发明中芘结构的化合物,具体如下通式(4)所示。
Figure PCTCN2014094225-appb-000017
R13~R22可以相同或不同,分别选自由氢,氘,卤素,可被取代的烷基、环烷基、杂环基、链烯基、环烯基、炔基、烷氧基、烷硫基、芳基醚基、芳基硫醚基、芳基、杂芳基、氰基、羰基、羧基、氧羰基、氨基甲酰基、烷氨基或硅烷基组成的组中的一种或多种,也可以与相邻的取代基键合而形成环;所述被取代的情况下,取代基选自于氘、卤素、C1-C15的烷基、C3-C15的环烷基、C3-C15的杂环基、C2-C15的链烯基、C4-C15的环烯基、C2-C15的炔基、C1-C15的烷氧基、C1-C15的烷硫基、C6-C55的芳基醚基、C6-C55的芳基硫醚基、C6-C55的芳基、C4-C55的芳香族杂环基、羰基、羧基、氧羰基、氨基甲酰基、C1-C40的烷氨基、或C3-C15的硅原子数为1-5的硅烷基中的一种或多种。
在上述R13~R22所表示的基团中,所述烷基优选为C1-C20的烷基;进一步优选为甲基、乙基、正丙基、异丙基、正丁基、仲丁基或叔丁基等饱和脂肪族烃基中的一种或多种。上述烷基可以具有取代基也可以没有取代基。
所述环烷基优选为C3-C20的环烷基;进一步优选为环丙基、环己基、降冰片基、或金刚烷基等饱和脂环式烃基中的一种或多种。上述环烷基可以具有取代基也可以没有取代基。
所述杂环基优选为C3-C20的杂环基;进一步优选为吡喃环、哌啶环、或环状酰胺等环内具有碳以外的原子的脂肪族环中的一种或多种。上述杂环基可以具有取代基也可以没有取代基。
所述链烯基优选为C2-C20的链烯基;进一步优选为乙烯基、烯丙基、或丁二烯基等包含双键的不饱和脂肪族烃基中的一种或多种。上述链烯基可以具有取代基也可以没有取代基。
所述环烯基优选为C3-C20的环烯基;进一步优选为环戊烯基、环戊二烯基、或环己烯基等包含双键的不饱和脂环式烃基中的一种或多种。上述环烯基可以具有取代基也可以没有取代基。
所述炔基优选为C2-C20的炔基;进一步优选为乙炔基等包含三键的不饱和脂肪族烃基。上述炔基可以具有取代基也可以没有取代基。
所述烷氧基优选为C1-C20的烷氧基;进一步优选为甲氧基、乙氧基、或丙氧基等介由醚键键合脂肪族烃基的官能团中的一种或多种。该脂肪族烃基可以具有取代基也可以没有取代基。
所述烷硫基是烷氧基的氧原子被置换为硫原子的基团。优选为C1-C20的烷硫基;烷硫基的烷基可以具有取代基也可以没有取代基。
所述芳基醚基优选为C6-C60的芳基醚基;进一步优选为苯氧基等介由醚键键合芳香族烃基的官能团。芳基醚基可以具有取代基也可以没有取代基。
所述芳基硫醚基是芳基醚基的醚键的氧原子被置换为硫原子的基团。优选为C6-C60的芳基硫醚基。芳基硫醚基中的芳香族烃基可以具有取代基也可以没有取代基。
所述芳基优选为C6-C60的芳基;进一步优选为苯基、萘基、联苯基、菲基、苯三联苯基或芘基等芳香族烃基中的一种或多种。芳基可以具有取代基也可以没有取代基。
所述杂芳基优选为C4-C60的芳香族杂环基;进一步优选为呋喃基、噻吩基、吡咯、苯并呋喃基、苯并噻吩基、二苯并呋喃基、二苯并噻吩基、吡啶基或喹啉基等中的一种或多种。芳香族杂环基可以具有取代基也可以没有取代基。
所述卤素原子选自于氟、氯、溴、或碘。
所述羰基、羧基、氧羰基、氨基甲酰基、烷氨基可以具有取代基也可以没有取代基。烷氨基取代基碳数没有特别限制,通常为2以上60以下的范围。
所述硅烷基表示的例如三甲基甲硅烷基等具有与硅原子键合的键的官能团,硅烷基可以具有取代基也可以没有取代基。硅烷基的碳数没有特别限制, 通常为3以上20以下的范围。另外,硅数通常为1以上6以下的范围。
所述硅氧烷基表示的例如三甲基硅氧烷基等介由醚键键合硅原子的官能团,硅氧烷基可以具有取代基也可以没有取代基。
所述取代基选自氘、卤素、C1-C15的烷基、C3-C15的环烷基、C3-C15的杂环基、C2-C15的链烯基、C4-C15的环烯基、C2-C15的炔基、C1-C15的烷氧基、C1-C15的烷硫基、C6-C55的芳基醚基、C6-C55的芳基硫醚基、C6-C55的芳基、C5-C55的芳香族杂环基、羰基、羧基、氧羰基、氨基甲酰基、C1-C40的烷氨基、或C3-C15的硅原子数为1-5的硅烷基中的一种或多种。
上述通式(4)所示的芘结构的化合物,取代相同或不相同取代基形成空间位阻效应,从而具有优越的薄膜稳定性。
以上结果得出,覆盖层使用具有高折射率和优越的薄膜稳定性的芘结构的化合物,能够解决兼顾提高光取出效率与经时稳定性问题。
由于具有取代胺基的芘结构的化合物,显示非常高的吸光系数,因此,能得到高的衰减系数,从而可以期待能得到高的折射率。
本发明中优选芘结构的化合物,具有如下通式(5)。
Figure PCTCN2014094225-appb-000018
R13~R22可以相同或不同,分别选自由氢,氘,卤素,或可被取代的烷基、环烷基、杂环基、链烯基、环烯基、炔基、烷氧基、烷硫基、芳基醚基、芳基硫醚基、芳基、杂芳基、氰基、羰基、羧基、氧羰基、氨基甲酰基、烷氨基或硅烷基组成的组中的一种或多种,也可以与相邻的取代基键合而形成环;
L4选自亚芳基或杂亚芳基且与R13-R22中的一种或多种形成单键;
R23、R24可以相同或不同,分别选自可被取代的烷基、可被取代的环烷基、可被取代的芳基、可被取代的杂芳基或可被取代的杂环基;n2为1-4的整数, 且R13~R22中至少一个与L4键合;所述被取代的情况下,取代基选自于氘、卤素、C1-C15的烷基、C3-C15的环烷基、C3-C15的杂环基、C2-C15的链烯基、C4-C15的环烯基、C2-C15的炔基、C1-C15的烷氧基、C1-C15的烷硫基、C6-C55的芳基醚基、C6-C55的芳基硫醚基、C6-C55的芳基、C4-C55的芳香族杂环基、羰基、羧基、氧羰基、氨基甲酰基、C1-C40的烷氨基、或C3-C15的硅原子数为1-5的硅烷基中的一种或多种。
所述亚芳基优选为C6-C60的芳基;进一步优选为亚苯基、亚萘基、亚联苯基、亚菲基、亚苯三联苯基或亚芘基等芳香族烃基中的一种或多种。亚芳基可以具有取代基也可以没有取代基。
所述亚杂芳基优选为C5-C60的芳香族杂环基;进一步优选为亚呋喃基、亚噻吩基、吡咯亚基、亚苯并呋喃基、亚苯并噻吩基、亚二并苯呋喃基、亚二并苯噻吩基、亚吡啶基或亚喹啉基等中的一种或多种。亚芳香族杂环基可以具有取代基也可以没有取代基。
其他取代基与上文所述取代基的说明相同。
另外,如Lorentz-Lorent式所示,折射率是极化率和密度成正比。极化率和密度大的材料,其折射率越大。
Figure PCTCN2014094225-appb-000019
n:折光率,λ:照射光波长,Pλ:极化率,V:分子体积
杂芳基具有提高极化率的性能,从这一点能得到高的折射率。进一步,芘结构具有高的平面性,因而,分子间的相互作用强,由此,芘衍生物具有密度增大的倾向,从这一点上也可以期待能够得到高的折射率。
进一步,从非结晶性及薄膜稳定性角度考虑,上述通式(5)中,R23~R24中的至少一种是杂芳基。优选吡啶基、或喹啉基。
另外,从容易合成和电阻加热蒸镀法等成膜时耐热性角度考虑,n2优选1或2。
本发明中进一步优选芘结构的化合物,具有如下通式(6)。
Figure PCTCN2014094225-appb-000020
其中,R25~R32可以相同或不同,分别选自由氢,氘、卤素,或可被取代的烷基、环烷基、杂环基、链烯基、环烯基、炔基、烷氧基、烷硫基、芳基醚基、芳基硫醚基、芳基、杂芳基、氰基、羰基、羧基、氧羰基、氨基甲酰基、烷氨基或硅烷基组成的组中的一种或多种,也可以与相邻的取代基键合而形成环;
L5,L6分别选自亚芳基或亚杂芳基;
R33~R36可以相同或不同,分别选自可被取代的烷基、可被取代的环烷基、可被取代的芳基、可被取代的杂芳基或可被取代的杂环基;所述被取代的情况下,取代基选自于氘、卤素、C1-C15的烷基、C3-C15的环烷基、C3-C15的杂环基、C2-C15的链烯基、C4-C15的环烯基、C2-C15的炔基、C1-C15的烷氧基、C1-C15的烷硫基、C6-C55的芳基醚基、C6-C55的芳基硫醚基、C6-C55的芳基、C4-C55的芳香族杂环基、羰基、羧基、氧羰基、氨基甲酰基、C1-C40的烷氨基、或C3-C15的硅原子数为1-5的硅烷基中的一种或多种。
所述芘结构的化合物,没有特别限定,具体可列举如下的例子。
Figure PCTCN2014094225-appb-000021
Figure PCTCN2014094225-appb-000022
上述满足参数的具有蒽结构的化合物详述如下:
衰减系数和吸光系数有下式(A)的所示的关系。(式中,α:吸光系数、 k:衰减系数、ω:光频率、c:光速)
Figure PCTCN2014094225-appb-000023
如式(A)显示衰减系数和吸光系数成正比,因此,吸光系数高的材料,其衰减系数也高。具有蒽结构的化合物由于其结构而显示非常高的吸光系数,因此,能得到高的衰减系数,从而可以期待能得到高的折射率。
进一步,具有蒽结构的化合物取代基修饰容易,因此,能够容易地使衰减系数430nm-460nm波长范围中至少一点大于0.10,并使波长430nm以上500nm以下的范围内的衰减系数在0.10以下。所以优选蒽结构的化合物。
本发明中蒽结构的化合物,具有如下通式(7)。
Figure PCTCN2014094225-appb-000024
其中,R37~R46可以相同或不同,分别选自由氢,氘,卤素,可被取代的烷基、环烷基、杂环基、链烯基、环烯基、炔基、烷氧基、烷硫基、芳基醚基、芳基硫醚基、芳基、杂芳基、氰基、羰基、羧基、氧羰基、氨基甲酰基、烷氨基或硅烷基组成的组中的一种或多种,也可以与相邻的取代基键合而形成环;所述被取代的情况下,取代基选自于氘、卤素、C1-C15的烷基、C3-C15的环烷基、C3-C15的杂环基、C2-C15的链烯基、C4-C15的环烯基、C2-C15的炔基、C1-C15的烷氧基、C1-C15的烷硫基、C6-C55的芳基醚基、C6-C55的芳基硫醚基、C6-C55的芳基、C4-C55的芳香族杂环基、羰基、羧基、氧羰基、氨基甲酰基、C1-C55的烷氨基、或C3-C15的硅原子数为1-5的硅烷基中的一种或多种。
在上述R37~R46所表示的基团中,所述烷基优选为C1-C20的烷基;进一步优选为甲基、乙基、正丙基、异丙基、正丁基、仲丁基或叔丁基等饱和脂 肪族烃基中的一种或多种。上述烷基可以具有取代基也可以没有取代基。
所述环烷基优选为C3-C20的环烷基;进一步优选为环丙基、环己基、降冰片基、或金刚烷基等饱和脂环式烃基中的一种或多种。上述环烷基可以具有取代基也可以没有取代基。
所述杂环基优选为C3-C20的杂环基;进一步优选为吡喃环、哌啶环、或环状酰胺等环内具有碳以外的原子的脂肪族环中的一种或多种。上述杂环基可以具有取代基也可以没有取代基。
所述链烯基优选为C2-C20的链烯基;进一步优选为乙烯基、烯丙基、或丁二烯基等包含双键的不饱和脂肪族烃基中的一种或多种。上述链烯基可以具有取代基也可以没有取代基。
所述环烯基优选为C3-C20的环烯基;进一步优选为环戊烯基、环戊二烯基、或环己烯基等包含双键的不饱和脂环式烃基中的一种或多种。上述环烯基可以具有取代基也可以没有取代基。
所述炔基优选为C2-C20的炔基;进一步优选为乙炔基等包含三键的不饱和脂肪族烃基。上述炔基可以具有取代基也可以没有取代基。
所述烷氧基优选为C1-C20的烷氧基;进一步优选为甲氧基、乙氧基、或丙氧基等介由醚键键合脂肪族烃基的官能团中的一种或多种。该脂肪族烃基可以具有取代基也可以没有取代基。
所述烷硫基是烷氧基的氧原子被置换为硫原子的基团。优选为C1-C20的烷硫基;烷硫基的烷基可以具有取代基也可以没有取代基。
所述芳基醚基优选为C6-C60的芳基醚基;进一步优选为苯氧基等介由醚键键合芳香族烃基的官能团。芳基醚基可以具有取代基也可以没有取代基。
所述芳基硫醚基是芳基醚基的醚键的氧原子被置换为硫原子的基团。优选为C6-C60的芳基硫醚基。芳基硫醚基中的芳香族烃基可以具有取代基也可以没有取代基。
所述芳基优选为C6-C60的芳基;进一步优选为苯基、萘基、联苯基、菲基、苯三联苯基或芘基等芳香族烃基中的一种或多种。芳基可以具有取代基 也可以没有取代基。
所述杂芳基优选为C4-C60的芳香族杂环基;进一步优选为呋喃基、噻吩基、吡咯基、苯并呋喃基、苯并噻吩基、二并苯呋喃基、二并苯噻吩基、吡啶基或喹啉基等中的一种或多种。芳香族杂环基可以具有取代基也可以没有取代基。
所述卤素原子选自于氟、氯、溴、或碘。
所述羰基、羧基、氧羰基、氨基甲酰基、烷氨基可以具有取代基也可以没有取代基。烷氨基取代基碳数没有特别限制,通常为2以上60以下的范围。
所述硅烷基表示的例如三甲基甲硅烷基等具有与硅原子键合的键的官能团,硅烷基可以具有取代基也可以没有取代基。硅烷基碳数没有特别限制,通常为3以上20以下的范围。另外,硅数通常为1以上6以下的范围。
所述硅氧烷基表示的例如三甲基硅氧烷基等介由醚键键合硅原子的官能团,硅氧烷基可以具有取代基也可以没有取代基。
所述取代基选自氘、卤素、C1-C15的烷基、C3-C15的环烷基、C3-C15的杂环基、C2-C15的链烯基、C4-C15的环烯基、C2-C15的炔基、C1-C15的烷氧基、C1-C15的烷硫基、C6-C55的芳基醚基、C6-C55的芳基硫醚基、C6-C55的芳基、C5-C55的芳香族杂环基、羰基、羧基、氧羰基、氨基甲酰基、C1-C40的烷氨基、或C3-C15的硅原子数为1-5的硅烷基中的一种或多种。
上述通式(7)所示蒽结构的化合物,取代相同或不相同取代基形成空间位阻效应,从而具有优越的薄膜稳定性。
以上结果得出,覆盖层使用具有高折射率和优越的薄膜稳定性的蒽结构的化合物,能够解决兼顾提高光取出效率与经时稳定性问题。
由于具有取代胺基的蒽结构的化合物,显示非常高的吸光系数,因此,能得到高的衰减系数,从而可以期待能得到高的折射率。
本发明中优选蒽结构的化合物,具有如下通式(8)。
Figure PCTCN2014094225-appb-000025
R47~R56可以相同或不同,分别选自由氢,氘,卤素,或可被取代的烷基、环烷基、杂环基、链烯基、环烯基、炔基、烷氧基、烷硫基、芳基醚基、芳基硫醚基、芳基、杂芳基、氰基、羰基、羧基、氧羰基、氨基甲酰基、烷氨基或硅烷基组成的组中的一种或多种,也可以与相邻的取代基键合而形成环;
L7选自亚芳基或杂亚芳基且与R47-R56中的一种或多种形成单键;
R57,R58可以相同或不同,分别选自可被取代的烷基、可被取代的环烷基、可被取代的芳基、可被取代的杂芳基或可被取代的杂环基;
n3为1-4的整数,但R47~R56中至少一个与L7键合;所述取代基选自于氘、卤素、C1-C15的烷基、C3-C15的环烷基、C3-C15的杂环基、C2-C15的链烯基、C4-C15的环烯基、C2-C15的炔基、C1-C15的烷氧基、C1-C15的烷硫基、C6-C55的芳基醚基、C6-C55的芳基硫醚基、C6-C55的芳基、C4-C55的芳香族杂环基、羰基、羧基、氧羰基、氨基甲酰基、C1-C40的烷氨基、或C3-C15的硅原子数为1-5的硅烷基中的一种或多种。
所述亚芳基优选为C6-C60的芳基;进一步优选为亚苯基、亚萘基、亚联苯基、亚菲基、亚苯三联苯基或亚芘基等芳香族烃基中的一种或多种。亚芳基可以具有取代基也可以没有取代基。
所述亚杂芳基优选为C4-C60的芳香族杂环基;进一步优选为亚呋喃基、亚噻吩基、吡咯亚基、亚苯并呋喃基、亚苯并噻吩基、亚二并苯呋喃基、亚二并苯噻吩基、亚吡啶基或亚喹啉基等中的一种或多种。亚芳香族杂环基可以具有取代基也可以没有取代基。
其他取代基与上文所述取代基的说明相同。
另外,如Lorentz-Lorent式所示,折射率是极化率和密度成正比。极化率和密度大的材料,其折射率越大。
Figure PCTCN2014094225-appb-000026
n:折光率,λ:照射光波长,Pλ:极化率,V:分子体积
杂芳基具有提高极化率的性能,从这一点能得到高的折射率。进一步,蒽结构具有高的平面性,因而,分子间的相互作用强,由此,蒽衍生物具有密度增大的倾向,从这一点上也可以期待能够得到高的折射率。
进一步,从非结晶性及薄膜稳定性角度考虑,上述通式(8)中,R57~R58中的至少一种是杂芳基。优选吡啶基、或喹啉基。
另外,从容易合成和电阻加热蒸镀法等成膜时耐热性角度考虑,n3优选1或2。
本发明中进一步优选蒽结构的化合物,具有如下通式(9)。
Figure PCTCN2014094225-appb-000027
R59~R66可以相同或不同,分别选自由氢,氘,卤素,或可被取代的烷基、环烷基、杂环基、链烯基、环烯基、炔基、烷氧基、烷硫基、芳基醚基、芳基硫醚基、芳基、杂芳基、氰基、羰基、羧基、氧羰基、氨基甲酰基、烷氨基或硅烷基组成的组中的一种或多种,也可以与相邻的取代基键合而形成环;
L8,L9分别选自亚芳基或亚杂芳基;
R67~R70可以相同或不同,分别选自可被取代的烷基、可被取代的环烷基、 可被取代的芳基、可被取代的杂芳基或可被取代的杂环基;所述被取代的情况下,取代基选自于氘、卤素、C1-C15的烷基、C3-C15的环烷基、C3-C15的杂环基、C2-C15的链烯基、C4-C15的环烯基、C2-C15的炔基、C1-C15的烷氧基、C1-C15的烷硫基、C6-C55的芳基醚基、C6-C55的芳基硫醚基、C6-C55的芳基、C4-C55的芳香族杂环基、羰基、羧基、氧羰基、氨基甲酰基、C1-C40的烷氨基、或C3-C15的硅原子数为1-5的硅烷基中的一种或多种。
所述蒽结构的化合物,没有特别限定,具体可列举如下的例子。
Figure PCTCN2014094225-appb-000028
Figure PCTCN2014094225-appb-000029
上述通式(1)、(4)、(7)所示的覆盖层材料的合成可以使用已知的方法进行。例如在钯催化剂存在下的卤代芘与芳基硼酸偶合反应、卤代芘与二胺化合物偶合反应等,但并不限定于这些方法。
下面具体说明本发明的有机发光元件的实施方式。本发明的有机发光元件依次具有基板、第一电极、包括发光层在内的一层以上的有机层膜、使前述发光层发出的光透过的第二电极和覆盖层,发光层通过电能而发光。
在本发明的发光元件中,所用的基板优选为钠玻璃或无碱玻璃等玻璃基 板。对于玻璃基板的厚度,只要是足以保持机械强度的厚度即可,因此,0.5mm以上就足够。对于玻璃的材质,由于从玻璃中溶出的离子越少越好,因此,优选无碱玻璃。另外,市场上销售的涂有SiO2等防护涂层的也可以使用。此外,如果第一电极稳定地发挥功能,则基板不必一定为玻璃,例如,也可以在塑料基板上形成阳极。
第一电极中使用的材料优选为具有高折射率特性的金、银、铝等金属或APC系合金之类的金属合金。这些金属或金属合金也可以是多层层叠。此外,可在金属、金属合金或它们的层积体的上面和/或下面层叠氧化锡、氧化铟、氧化锡铟(ITO)、氧化锌铟(IZO)等透明导电性金属氧化物。
第二电极中使用的材料优选为可形成能使光透过的半透明或透明膜的材料。例如,银、镁、铝、钙或这些金属的合金,氧化锡、氧化铟、氧化锡铟(ITO)、氧化锌铟(IZO)等透明导电性金属氧化物。这些金属、合金、或金属氧化物也可以是多层层叠。
上述电极的形成方法可以是电阻加热蒸镀、电子束蒸镀、溅射、离子喷镀、或胶涂布法等,没有特别限制。此外,第一电极与第二电极根据所使用的材料的功函数,其中一方相对于有机膜层起阳极作用,另一方起阴极作用。
有机层除了可以仅由发光层构成以外,还可以是由1)空穴传输层/发光层,2)发光层/电子传输层,3)空穴传输层/发光层/电子传输层,4)空穴注入层/空穴传输层/发光层/电子传输层,5)空穴注入层/空穴传输层/发光层/电子传输层/电子注入层等层叠而成的结构。此外,上述各层可以分别是单层或多层中的任一种。采用1)~5)的结构时,阳极侧电极与空穴输入层或空穴传输层接合,阴极侧电极则与电子输入层或电子传输层接合。
空穴传输层可通过将空穴传输材料的一种或二种以上层叠或混合的方法,或通过使用空穴传输材料和高分子粘合剂的混合物的方法来形成。空穴传输材料需要在施加了电场的电极之间高效率地传输来自正极的空穴,因此希望空穴注入效率高、能够高效率地传输注入的空穴。因此,要求空穴传输材料具有适当离子势,且空穴迁移率大,进而,稳定性优异,制造及使用时不容易产生会成为陷阱的杂质。对满足这样的条件的物质,没有特别限定,例如可以是4,4’-二(N-(3-甲基苯基)-N-苯基氨基)联苯(TPD)、4,4’-二(N-(1-萘基)-N-苯基氨基)联苯(NPD)、4,4’-二(N,N-二(4-联苯基)氨基)联苯(TBDB)、二(N,N-二苯基-4-苯基氨基)-N,N-二苯基-4,4’-二氨基-1,1’-联苯(TPD232)等联苯胺,4,4’,4”-三(3-甲基苯基(苯基)氨基)三苯胺(m-MTDATA)、4,4’,4”-三(1-萘基(苯基)氨基)三苯胺(1-TNATA)等称作星型三芳胺的材料组,具有咔唑骨架的材料,其中优选咔唑类多聚体,具体可列举二(N-芳基咔唑)或二(N-烷基咔唑)等二咔唑衍生物、三咔唑衍生物、四咔唑衍生物、三苯系化合物、吡唑啉衍生物、芪系化合物、肼系化合物、苯并呋喃衍生物、噻吩衍生物、噁二唑衍生物、酞菁衍生物、卟啉衍生物等杂环化合物、或富勒烯衍生物,在聚合物系中,还优选侧链上具有上述单体的聚碳酸酯或苯乙烯衍生物、聚噻吩、聚苯胺、聚芴、聚乙烯基咔唑和聚硅烷等。此外,还可以使用P型Si、P型SiC等无机化合物。
可在阳极和空穴传输层之间设置空穴注入层。通过设置空穴注入层,可使有机发光元件实现低驱动电压,提高耐久寿命。空穴注入层通常优选使用比空穴传输层材料的离子势低的材料。具体地,例如可以是上述TPD232之类的联苯胺衍生物、星型三芳胺材料组,另外也可以使用酞菁衍生物等。此外, 还优选空穴注入层由受体性化合物单独构成,或受体性化合物掺杂在别的空穴传输层中使用。受体性化合物可列举例如三氯化铁(III)、氯化铝、氯化镓、氯化铟、氯化锑等金属氯化物,氧化钼、氧化钒、氧化钨、氧化钌等金属氧化物,三(4-溴苯基)六氯锑酸铵(TBPAH)等电荷转移配位物。此外,还可以是分子内具有硝基、氰基、卤素或三氟甲基的有机化合物、醌系化合物、酸酐系化合物、富勒烯等。
本发明中,发光层可以是单层、多层中的任一种,可分别用发光材料(主体材料、掺杂材料)形成,其可以是主体材料和掺杂材料的混合物,也可以仅为主体材料,任一情况都可以。即,在本发明发光元件的各发光层中,可以是仅主体材料或仅掺杂材料发光,也可以是主体材料和掺杂材料一起发光。从高效率地利用电能、得到高色纯度的发光的角度考虑,优选发光层由主体材料和掺杂材料混合而成。另外,主体材料和掺杂材料分别可以为一种,也可以为多种的组合,任一情况都可以。掺杂材料可以添加在整个主体材料中,也可以添加在一部分中,任一情况都可以。掺杂材料可以是层叠的,也可以分散的,任一情况都可以。掺杂材料可以控制发光色。掺杂材料的量过多时会发生浓度消光现象,因此,其用量相对于主体材料,优选为20重量%以下,更优选为10重量%以下。掺杂方法可以是与主体材料共蒸镀的方法,也可以是预先与主体材料混合后同时蒸镀的方法。
作为发光材料,具体而言,可使用以往作为发光体而已知的蒽、芘等稠环衍生物,三(8-羟基喹啉)铝等金属螯合类羟基喹啉化合物、二苯并呋喃衍生物、咔唑衍生物、吲哚并咔唑衍生物,聚合物中的聚亚苯基亚乙烯基衍生物、聚对亚苯基衍生物、以及聚噻吩衍生物等,没有特别限定。
对发光材料中所含有的主体材料没有特别限定,可以使用蒽、菲、芘、 苯并菲、并四苯、苝、苯并[9,10]菲、荧蒽、芴、茚等具有稠芳环的化合物或其衍生物、N,N’-二萘基-N,N’-二苯基-4,4’-二苯基-1,1’-二胺等芳香族胺衍生物、三(8-羟基喹啉)铝等金属螯合类羟基喹啉化合物、吡咯并吡咯衍生物、二苯并呋喃衍生物、咔唑衍生物、吲哚并咔唑衍生物、三嗪衍生物,在聚合物中,可以使用聚亚苯基亚乙烯基衍生物、聚对亚苯基衍生物、聚芴衍生物、聚乙烯基咔唑衍生物、聚噻吩衍生物等,没有特别限定。
此外,对掺杂材料没有特别限制,可列举萘、蒽、菲、芘、苯并菲、苝、苯并[9,10]菲、荧蒽、芴、茚等具有稠芳环的化合物或其衍生物(例如2-(苯并噻唑-2-基)-9,10-二苯基蒽等)、呋喃、吡咯、噻吩、噻咯、9-硅杂芴、9,9’-螺二硅杂芴、苯并噻吩、苯并呋喃、吲哚、二苯并噻吩、二苯并呋喃、咪唑并吡啶、菲咯啉、吡啶、吡嗪、萘啶、喹喔啉、吡咯并吡啶、噻吨等具有杂芳环的化合物或其衍生物、硼烷衍生物、二苯乙烯基苯衍生物、氨基苯乙烯基衍生物、吡咯甲川衍生物、二酮基吡咯并[3,4-c]吡咯衍生物、香豆素衍生物、咪唑、噻唑、噻二唑、咔唑、噁唑、噁二唑、三唑等唑衍生物、芳香族胺衍生物等。
另外,发光层中也可以掺杂磷光发光材料。磷光发光材料为室温下也可以磷光发光的材料。使用磷光发光材料作为掺杂剂时,需要基本上能够在室温下磷光发光,但没有特别限定,优选含有选自铟、钌、铑、钯、铂、锇和铼中的至少一种金属的有机金属络合化合物。从室温下具有高的磷光发光效率的角度考虑,更优选具有铟或铂的有机金属络合物。作为与磷光发光性掺杂剂组合使用的主体材料,吲哚衍生物、咔唑衍生物、吲哚并咔唑衍生物,具有吡啶、嘧啶、三嗪骨架的含氮芳香族化合物衍生物,多芳基苯衍生物、 螺芴衍生物、三聚茚、苯并[9,10]菲等芳香烃化合物衍生物,二苯并呋喃衍生物、二苯并噻吩等含有氧族元素的化合物,羟基喹啉铍络合物等有机金属络合物可良好地使用,但基本上只要比使用的掺杂剂的三重态能大、电子和空穴能从各自层输送层顺利地注入或传输,则没有特别限定。另外,可以含有2种以上三重态发光掺杂剂,也可以含有2种以上主体材料。此外,也可以含有一种以上的三重态发光掺杂剂和一种以上的萤光发光掺杂剂。
在本发明中,电子传输层为电子从阴极注入、再将电子传输的层。电子传输层宜具有高的电子注入效率,且能高效率地传输注入的电子。因此,电子传输层优选由电子亲和力和电子迁移率大且稳定性优异、制造及使用时不容易产生会成为陷阱的杂质的物质构成。但是,在考虑空穴和电子的传输均衡时,如果电子传输层主要发挥可以高效率地阻止来自阳极的空穴不再结合而流向阴极侧的作用,则即使由电子传输能力不那么高的材料构成,改善发光效率的效果也会与由电子传输能力高的材料构成的情况同等。因而,在本发明中的电子传输层中,可以高效率地阻止空穴迁移的空穴阻止层作为等同物也包含在内。
对电子传输层中使用的电子传输材料没有特别限定,可列举萘、蒽等稠芳环衍生物、以4,4’-二(二苯基乙烯基)联苯为代表的苯乙烯基系芳环衍生物、蒽醌、联苯醌等醌衍生物、氧化膦衍生物、三(8-羟基喹啉)铝等羟基喹啉络合物、苯并羟基喹啉络合物、羟基唑络合物、偶氮甲碱络合物、环庚三烯酚酮金属络合物或黄酮醇金属络合物,从降低驱动电压、能够得到高效率发光的角度考虑,优选使用具有杂芳环结构的化合物,所述杂芳环结构由选自碳、氢、氮、氧、硅、磷中的元素构成并且含有吸电子性氮。
含有吸电子性氮的杂芳环具有高亲电子性。具有吸电子性氮的电子传输 材料容易接受来自具有高亲电子性的阴极的电子,因而可以降低发光元件的驱动电压。此外,由于向发光层的电子供给增大、在发光层再结合的概率增加,因而发光效率提高。作为含有吸电子性氮的杂芳环,可以列举例如,吡啶环、吡嗪环、嘧啶环、喹啉环、喹喔啉环、萘啶环、嘧啶并嘧啶环、苯并喹啉环、菲咯啉环、咪唑环、噁唑环、噁二唑环、三唑环、噻唑环、噻二唑环、苯并噁唑环、苯并噻唑环、苯并咪唑环、或菲并咪唑环等。
另外,作为具有这些杂芳环结构的化合物,可以列举出例如苯并咪唑衍生物、苯并噁唑衍生物、苯并噻唑衍生物、噁二唑衍生物、噻二唑衍生物、三唑衍生物、吡嗪衍生物、菲咯啉衍生物、喹喔啉衍生物、喹啉衍生物、苯并喹啉衍生物,联吡啶、三联吡啶等低聚吡啶衍生物。上述衍生物具有稠芳环骨架时,玻璃转化温度提高,且电子迁移率增加,由此,降低发光元件的驱动电压的效果增大,因而优选。此外,从发光元件的耐久寿命提高、合成容易、原料容易购得的角度考虑,优选上述稠芳环骨架为蒽骨架、芘骨架或菲咯啉骨架。
上述电子传输材料可以单独使用,也可以将二种以上的上述电子传输材料混合使用,或将一种以上的其它电子传输材料混合到上述电子传输材料中使用。另外,也可以添加给体化合物。这里,给体化合物是指通过改善电子注入能障而使电子容易从阴极或电子注入层向电子传输层注入、进而改善电子传输层的电传导性的化合物。作为本发明的给体化合物的优选例,可列举:碱金属、含有碱金属的无机盐、碱金属与有机物的络合物、碱土金属、含有碱土金属的无机盐、或碱土金属与有机物的络合物等。作为碱金属、或碱土金属的优选种类,可列举低功函数且改善电子传输能力的效果大的锂、钠、或铯之类的碱金属或镁、钙之类的碱土金属。
本发明中,也可在阴极和电子传输层之间设置电子注入层。通常,电子注入层是以帮助电子从阴极注入到电子传输层为目的而插入的,插入时,可以使用含有吸电子性氮的杂芳环结构的化合物,也可以使用含有上述给体化合物的层。另外,在电子注入层中,还可以使用绝缘体或半导体的无机物。使用这些材料,可以有效地防止发光元件短路,且可以提高电子注入性,因而优选。作为这些绝缘体,优选使用选自碱金属硫族化物、碱土金属硫族化物、碱金属卤化物及碱土金属卤化物中的至少一种金属化合物。另外,有机物与金属的络合物也可良好地使用。
作为构成发光元件的上述各层的形成方法,可列举电阻加热蒸镀、电子束蒸镀、溅射、分子层叠法、或涂层法等,没有特别限制,但是,通常,从元件特性的角度考虑,优选电阻加热蒸镀或电子束蒸镀。
有机层的厚度视发光物质的电阻值而异,不能限定,但优选为1~1000nm。发光层、电子传输层、空穴传输层的膜厚分别优选为1nm以上200nm以下,更优选为5nm以上100nm以下。
本发明的覆盖层通过含有上述具有噻吩结构、呋喃结构或吡咯结构的化合物、具有芘的化合物或具有蒽结构的化合物中的至少含有一种化合物,能够实现高发光效率。具有噻吩结构、呋喃结构或吡咯结构的化合物因为具有非常高的吸光系数,从而具有高的折射率。更进一步,因为具有优异的蒸镀薄膜的成膜性能,不论玻璃和金属等各种各样的底层都具有稳定的折射率和消衰系数。蒸镀薄膜的成膜性能低的材料的底层变化的时候,折射率和消衰系数往往也会发生较大的变化。为了使高发光效率极大化、实现色再现性,优选使氧化膦衍生物以20nm~120nm的厚度层叠。更优选层叠厚度为40nm~80nm。另外,从可以使发光效率极大化的角度考虑,更优选光取出效率改善 层厚度为50nm~70nm。
对覆盖层的形成方法没有特别限定,可列举电阻加热蒸镀、电子束蒸镀、溅射、分子层叠法、涂层法、喷墨法、刮板法、激光转印法等,没有特别限制。
本发明的发光元件具有可以将电能转换为光的功能。这里,作为电能,主要使用直流电流,也可以使用脉冲电流或交流电流。对电流值及电压值没有特别限制,但考虑到元件的耗电量和寿命时,应以能以尽可能低的能量得到最大亮度的方式来选择。
本发明的发光元件可良好地用作以例如矩阵及/或字段方式进行显示的平面显示器。
矩阵方式是指用于显示的像素以方格状或马赛克状等二维配置,通过像素的集合来显示文字或图像。像素的形状、尺寸视用途而定。例如,在计算机、监控器、电视的图像及文字显示中,通常使用边长在300μm以下的四边形的像素,另外,在显示面板那样的大型显示器的情况下,使用边长为mm等级的像素。在单色显示的情况下,只要排列同色的像素即可,但在彩色显示的情况下,将红、绿、蓝色像素排列进行显示。这种情况下,典型的有三角型和条纹型。而且,该矩阵的驱动方法可以是逐线驱动方法和有源矩阵中的任一种。逐线驱动虽然其构造简单,但在考虑操作特性时,有时会有有源矩阵优异的情况,因此,需要根据用途灵活使用。
本发明中的字段方式是指形成图案、使由该图案的配置所确定的区域发光、从而显示预先确定的信息的方式。可列举例如:数字钟、温度计中的时刻、温度显示,音响设备、电磁灶等的工作状态显示及汽车的面板显示等。而且,所述矩阵显示和字段显示可以共存在同一个面板中。
本发明的发光元件优选用作照明光源,可以提供比现有的薄且轻、可进行面发光的光源。
附图说明
图1为吸收光谱和折射率的光学模拟。
图2为Cap007的特定波长的折射率(n)和衰减系数(k)值。
图3为Cap010的特定波长的折射率(n)和衰减系数(k)值。
图4为Cap018的特定波长的折射率(n)和衰减系数(k)值。
图5为Cap208的特定波长的折射率(n)和衰减系数(k)值。
图6为Cap259的特定波长的折射率(n)和衰减系数(k)值。
图7为Cap011的特定波长的折射率(n)和衰减系数(k)值。
图8为Cap052的特定波长的折射率(n)和衰减系数(k)值。
图9为Cap260的特定波长的折射率(n)和衰减系数(k)值。
图10为Cap261的特定波长的折射率(n)和衰减系数(k)值。
图11为Com-1的特定波长的折射率(n)和衰减系数(k)值。
图12为Com-2的特定波长的折射率(n)和衰减系数(k)值。
图13为Com-3的特定波长的折射率(n)和衰减系数(k)值。
图14为Com-4的特定波长的折射率(n)和衰减系数(k)值。
图15为Com-5的特定波长的折射率(n)和衰减系数(k)值。
图16为Com-6的特定波长的折射率(n)和衰减系数(k)值。
具体实施方式
在下面的实施例和比较例中,分别使用了下述化合物:
Cap007(2,5-二(4-(N-4-联苯基)-(N-3-吡啶基)氨基苯基)噻吩)、
Cap010(2,5-二(4-(N-4-联苯基)-(N-4-吡啶基)氨基苯基)噻吩)、
Cap018(2,5-二(4-(N-3-联苯基)-(N-3-吡啶基)氨基苯基)噻吩)、
Cap208(1,6-二(4-(N-3-吡啶基)-(N-苯基)氨基苯基)芘、
Cap259(2-((4-(1-苯基-1H-苯并[d]咪唑基))苯基)-9,10-二(2-萘基)蒽)、
Cap011(2,5-二(4-(N-4-联苯基)-(N-2-吡啶基)氨基苯基)噻吩)、
Cap052(2,5-二(4-(N-4-联苯基)-(N-3-吡啶基)氨基苯基)呋喃)、
Cap260(N,N’-联苯基-N,N’-二(6-喹啉)-1,1’-苯基-4,4’-二胺)、
Cap261(N,N’-联苯基-N,N’-二(3-吡啶)-二苯基乙烯-4,4’-二胺)、
Com-1(NPD)、
Com-2(N,N,N’,N’-四(4-联苯基)二氨基亚联苯)、
Com-3(9-苯基-9’-(3,5-二苯基)苯基-3,3’-9H-联咔唑)、
Com-4(9-(2-萘基)-10-(4-(1-萘基)苯基)蒽)、
Com-5(1-[4-(9H-咔唑基)苯基]-6-苯基芘)、
Com-6(2,5-二(4-(N-4-联苯基)-(N-3-吡啶氨基))萘)、
NPD(N,N’-二苯基-N,N’-二(1-萘基)-1,1’-联苯-4,4’-二胺)、
F4-TCNQ(2,3,5,6-四氟-7,7’,8,8’-四氰二甲基对苯醌)、
BH(9-(2-萘基)-10-(4-(1-萘基)苯基)蒽)、
BD(E-7-(4-(二苯基氨基)苯乙烯基)-N,N-二苯基-9,9’-二甲基芴基-2-胺)、
Alq3(三(8-羟基喹啉)铝)。
关于本说明书中记载的化合物,在本说明书中同时记载了其化学式命名和结构式的情况下,化合物的结构以结构式为准。
薄膜样品的制作方法
对无碱玻璃基板(旭硝子株式会社,AN100)进行20分钟的UV臭氧洗涤处理。然后放置在真空蒸镀装置内,进行排气,直至装置内的真空度高于1×10-3Pa,在该条件下通过电阻加热蒸镀法在基板上蒸镀约50nm的薄膜。蒸镀速度为1nm/s。
测定上述制得的薄膜样品折射率和衰减系数在东丽分析研究中心(Toray  Research Center.Inc.),使用仪器是椭圆偏振光谱(J.A.Woollam社M-2000)。
(Cap007)
Figure PCTCN2014094225-appb-000030
表1所示Cap007的光学常数
【表1】
Figure PCTCN2014094225-appb-000031
※光学常数(折射率:n、衰减系数:k)是小数点3位数四舍五入
发光元件的评价方法
实施例1
无碱玻璃在异丙醇中15分钟超声波洗涤后,在大气中进行30分钟UV臭氧洗涤处理。利用真空蒸镀法,首先蒸镀铝100nm作成阳极,随后在阳极上空穴注入层(NPD和F4-TCNQ(重量比97∶3),50nm),空穴传输层(NPD,80nm),蓝色发光层(BH和BD(重量比97∶3,20nm),电子传输层(Alq3,30nm),电子注入层(LiF,1nm)依次层叠蒸镀后,共蒸镀Mg和Ag(重量比10∶1,15nm)作成半透明阴极。
上述使用化合物如下所示。
(NPD)
Figure PCTCN2014094225-appb-000032
(F4-TCNQ)
Figure PCTCN2014094225-appb-000033
(BH)
Figure PCTCN2014094225-appb-000034
(BD)
Figure PCTCN2014094225-appb-000035
(Alq3)
Figure PCTCN2014094225-appb-000036
随后蒸镀Cap007(60nm)作为覆盖层。
最后在干燥氮气氛围的手套箱里,用环氧树脂粘合剂把无碱玻璃制的封口板封发光元件。
上述发光元件在室温,大气中,加10mA/cm2直流电流,从封口板的发光用分光放射辉度计(CS1000,柯尼卡美能达株式会社)测试了亮度和色纯度。使用上述测定值测定光度效率为6.5cd/A,色纯度为CIE(x,y)=(0.139,0.051)。使用Cap007作为覆盖层得到高发光效率,高色纯度的高性能发光元件。
对有机发光元件进行评价。评价结果见表2。
实施例2
除了覆盖层材料为Cap010以外,其余与实施例1相同。
对有机发光元件进行评价。评价结果见表2。
实施例3
除了覆盖层材料为Cap018以外,其余与实施例1相同。
对有机发光元件进行评价。评价结果见表2。
实施例4
除了覆盖层材料为Cap208以外,其余与实施例1相同。
对有机发光元件进行评价。评价结果见表2。
实施例5
除了覆盖层材料为Cap259以外,其余与实施例1相同。
对有机发光元件进行评价。评价结果见表2。
实施例6
除了覆盖层材料为Cap011以外,其余与实施例1相同。
对有机发光元件进行评价。评价结果见表2。
实施例7
除了覆盖层材料为Cap052以外,其余与实施例1相同。
对有机发光元件进行评价。评价结果见表2。
实施例8
除了覆盖层材料为Cap260以外,其余与实施例1相同。
对有机发光元件进行评价。评价结果见表2。
实施例9
除了覆盖层材料为Cap261以外,其余与实施例1相同。
对有机发光元件进行评价。评价结果见表2。
比较例1
除了覆盖层材料为Com-1以外,其余与实施例1相同。
对有机发光元件进行评价。评价结果见表2。
比较例2
除了覆盖层材料为Com-2以外,其余与实施例1相同。
对有机发光元件进行评价。评价结果见表2。
比较例3
除了覆盖层材料为Com-3以外,其余与实施例1相同。
对有机发光元件进行评价。评价结果见表2。
比较例4
除了覆盖层材料为Com-4以外,其余与实施例1相同。
对有机发光元件进行评价。评价结果见表2。
比较例5
除了覆盖层材料为Com-5以外,其余与实施例1相同。
对有机发光元件进行评价。评价结果见表2。
比较例6
除了覆盖层材料为Com-6以外,其余与实施例1相同。
对有机发光元件进行评价。评价结果见表2。
下面是实施例,比较例中用到的覆盖层材料的化学结构式。
(Cap010)/实施例2
Figure PCTCN2014094225-appb-000037
(Cap018)/实施例3
Figure PCTCN2014094225-appb-000038
(Cap208)/实施例4
Figure PCTCN2014094225-appb-000039
(Cap259)/实施例5
Figure PCTCN2014094225-appb-000040
(Cap011)/实施例6
Figure PCTCN2014094225-appb-000041
(Cap052)/实施例7
Figure PCTCN2014094225-appb-000042
(Cap260)/实施例8
Figure PCTCN2014094225-appb-000043
(Cap261)/实施例9
Figure PCTCN2014094225-appb-000044
(Com-1)/比较例1
Figure PCTCN2014094225-appb-000045
(Com-2)/比较例2
Figure PCTCN2014094225-appb-000046
(Com-3)/比较例3
Figure PCTCN2014094225-appb-000047
(Com-4)/比较例4
Figure PCTCN2014094225-appb-000048
(Com-5)/比较例5
Figure PCTCN2014094225-appb-000049
(Com-6)/比较例6
Figure PCTCN2014094225-appb-000050
【表2】
Figure PCTCN2014094225-appb-000051
※光学常数(折射率:n、衰减系数:k)是小数点3位数四舍五入
从上述表2所示,实施例1~实施例9的发光元件是同时满足高发光效率和高色纯度。另外,比较例1~比较例6的发光元件与实施例的色纯度是同等,但发光效率比实施例低,不能同时满足高发光效率和高色纯度。
本说明书中提到的所有专利文献、非专利文献均通过引用的方式并入本文。本说明书中提到的“多种”包含大于一种的所有情况,即,“一种或多种”包括一种、两种、三种、……等等。本说明书中针对某数值范围分别记载上限和下限时,或者以上限和下限组合的方式记载某数值范围时,其中记载的各上限和各下限可任意组合为新的数值范围,这与直接明确记载组合而成的数值范围的记载形式应被视为是相同的。在不偏离本发明主旨的情况下,本领域技术人员可对本发明进行改变和改良,这些也包括在本发明的范围内。

Claims (17)

  1. 有机发光元件,其特征在于:包含基板、第一电极、包括发光层在内的一层以上有机层膜、第二电极元件,所述发光元件还具有覆盖层;所述覆盖层中含有有机材料,该有机材料在430nm-460nm的波长范围中的至少一点上的衰减系数大于0.10,且在460nm-500nm的波长范围中,衰减系数为0.10以下。
  2. 根据权利要求1所述的有机发光元件,其特征在于:所述的有机材料在430nm-460nm的波长范围中的至少一点上的衰减系数大于0.12,且在460nm-500nm的波长范围中,衰减系数为0.10以下。
  3. 根据权利要求1或2所述的有机发光元件,其特征在于:所述覆盖层中所含的有机材料为具有噻吩结构、呋喃结构或吡咯结构中的一种或多种的化合物。
  4. 根据权利要求3所述的有机发光元件,其特征在于:所述具有噻吩结构、呋喃结构或吡咯结构的化合物具有下述通式(1):
    Figure PCTCN2014094225-appb-100001
    其中,X选自硫原子、氧原子、或N-R,R选自氢、氘、可被取代的烷基、可被取代的环烷基、可被取代的杂环基、可被取代的链烯基、可被取代的环烯基、可被取代的炔基、可被取代的烷氧基、可被取代的烷硫基、可被取代的芳基醚基、可被取代的芳基硫醚基、可被取代的芳基、可被取代的杂芳基、可被取代的羰基、可被取代的羧基、可被取代的氧羰基、可被取代的氨基甲酰基、可被取代的烷氨基或可被取代的硅烷基;
    其中,R1~R4相同或不同,分别独立选自氢、氘、卤素、可被取代的烷基、可被取代的环烷基、可被取代的杂环基、可被取代的链烯基、可被取代的环烯基、可被取代的炔基、可被取代的烷氧基、可被取代的烷硫基、可被取代的芳基醚基、可被取代的芳基硫醚基、可被取代的芳基、可被取代的杂芳基、可被取代的氰基、可被取代的羰基、可被取代的羧基、可被取代的氧羰基、可被取代的氨基甲酰基、可被取代的烷氨基或可被取代的硅烷基,也可以与相邻的取代基键合而形成环;
    所述被取代的情况下,取代基分别独立选自氘、卤素、C1-C15的烷基、C3-C15的环烷基、C3-C15的杂环基、C2-C15的链烯基、C4-C15的环烯基、C2-C15的炔基、C1-C15的烷氧基、C1-C15的烷硫基、C6-C55的芳基醚基、C6-C55的芳基硫醚基、C6-C55的芳基、C5-C55的芳香族杂环基、羰基、羧基、氧羰基、氨基甲酰基、C1-C40的烷氨基、或C3-C15的硅原子数为1-5的硅烷基中的一种或多种。
  5. 根据权利要求3所述的有机发光元件,其特征在于:所述具有噻吩结构、呋喃结构或吡咯结构的化合物具有下述通式(2):
    Figure PCTCN2014094225-appb-100002
    其中,X选自硫原子、氧原子、或N-R,R选自氢、氘、可被取代的烷基、可被取代的环烷基、可被取代的杂环基、可被取代的链烯基、可被取代的环烯基、可被取代的炔基、可被取代的烷氧基、可被取代的烷硫基、可被取代的芳基醚基、可被取代的芳基硫醚基、可被取代的芳基、可被取代的杂芳基、可被取代的羰基、可被取代的羧基、可被取代的氧羰基、可被取代的氨基甲酰基、可被取代的烷氨基或可被取代的硅烷基;
    其中,R1~R4相同或不同,分别独立选自氢、氘、卤素、可被取代的烷基、可被取代的环烷基、可被取代的杂环基、可被取代的链烯基、可被取代的环烯基、可被取代的炔基、可被取代的烷氧基、可被取代的烷硫基、可被取代的芳基醚基、可被取代的芳基硫醚基、可被取代的芳基、可被取代的杂芳基、可被取代的羰基、可被取代的羧基、可被取代的氧羰基、可被取代的氨基甲酰基、可被取代的烷氨基或可被取代的硅烷基,也可以与相邻的取代基键合而形成环;
    L1选自亚芳基或杂亚芳基且与R1-R4中的一种或多种形成单键;
    R5、R6相同或不同,分别独立选自可被取代的烷基、环烷基、芳基、杂芳基或杂环基,n1是1-4的整数,且R1-R4中至少一个与L1形成键;
    所述被取代的情况下,取代基分别独立选自氘、卤素、C1-C15的烷基、C3-C15的环烷基、C3-C15的杂环基、C2-C15的链烯基、C4-C15的环烯基、C2-C15的炔基、C1-C15的烷氧基、C1-C15的烷硫基、C6-C55的芳基醚基、C6-C55的芳基硫醚基、C6-C55的芳基、C5-C55的芳香族杂环基、羰基、羧基、氧羰基、氨基甲酰基、C1-C40的烷氨基、或C3-C15的硅原子数为1-5的硅烷基中的一种或多种。
  6. 根据权利要求5所述的有机发光元件,其特征在于:n1是1或2。
  7. 根据权利要求6所述的有机发光元件,其特征在于:所述具有噻吩结构、呋喃结构或吡咯结构的化合物具有下述通式(3):
    Figure PCTCN2014094225-appb-100003
    其中,X选自硫原子、氧原子、或N-R,R选自氢、氘、可被取代的烷基、 可被取代的环烷基、可被取代的杂环基、可被取代的链烯基、可被取代的环烯基、可被取代的炔基、可被取代的烷氧基、可被取代的烷硫基、可被取代的芳基醚基、可被取代的芳基硫醚基、可被取代的芳基、可被取代的杂芳基、可被取代的羰基、可被取代的羧基、可被取代的氧羰基、可被取代的氨基甲酰基、可被取代的烷氨基或可被取代的硅烷基;
    其中,R7~R8相同或不同,分别独立选自氢、氘、卤素、可被取代的烷基、可被取代的环烷基、可被取代的杂环基、可被取代的链烯基、可被取代的环烯基、可被取代的炔基、可被取代的烷氧基、可被取代的烷硫基、可被取代的芳基醚基、可被取代的芳基硫醚基、可被取代的芳基、可被取代的杂芳基、可被取代的氰基、可被取代的羰基、可被取代的羧基、可被取代的氧羰基、可被取代的氨基甲酰基、可被取代的烷氨基或可被取代的硅烷基,也可以与相邻的取代基键合而形成环;
    L2、L3分别选自亚芳基或亚杂芳基;
    R9~R12分别选自可被取代的烷基、环烷基、芳基、杂芳基或杂环基;
    所述被取代的情况下,取代基分别独立选自氘、卤素、C1-C15的烷基、C3-C15的环烷基、C3-C15的杂环基、C2-C15的链烯基、C4-C15的环烯基、C2-C15的炔基、C1-C15的烷氧基、C1-C15的烷硫基、C6-C55的芳基醚基、C6-C55的芳基硫醚基、C6-C55的芳基、C5-C55的芳香族杂环基、羰基、羧基、氧羰基、氨基甲酰基、C1-C40的烷氨基、或C3-C15的硅原子数为1-5的硅烷基中的一种或多种。
  8. 根据权利要求1或2所述的有机发光元件,其特征在于:所述覆盖层含有具有芘结构的化合物。
  9. 根据权利要求8所述的有机发光元件,其特征在于:所述具有芘结构 的化合物具有下述通式(4):
    Figure PCTCN2014094225-appb-100004
    其中,R13~R22相同或不同,分别独立选自氢、氘、卤素、可被取代的烷基、可被取代的环烷基、可被取代的杂环基、可被取代的链烯基、可被取代的环烯基、可被取代的炔基、可被取代的烷氧基、可被取代的烷硫基、可被取代的芳基醚基、可被取代的芳基硫醚基、可被取代的芳基、可被取代的杂芳基、可被取代的氰基、可被取代的羰基、可被取代的羧基、可被取代的氧羰基、可被取代的氨基甲酰基、可被取代的烷氨基或可被取代的硅烷基,也可以与相邻的取代基键合而形成环;
    所述被取代的情况下,取代基分别独立选自氘、卤素、C1-C15的烷基、C3-C15的环烷基、C3-C15的杂环基、C2-C15的链烯基、C4-C15的环烯基、C2-C15的炔基、C1-C15的烷氧基、C1-C15的烷硫基、C6-C55的芳基醚基、C6-C55的芳基硫醚基、C6-C55的芳基、C5-C55的芳香族杂环基、羰基、羧基、氧羰基、氨基甲酰基、C1-C40的烷氨基、或C3-C15的硅原子数为1-5的硅烷基中的一种或多种。
  10. 根据权利要求9所述的有机发光元件,其特征在于:所述具有芘结构的化合物具有下述通式(5):
    Figure PCTCN2014094225-appb-100005
    其中R13~R22至少一种是杂芳基或经杂芳基取代的芳基;其中,R13~R22相同或不同,分别独立选自氢、氘、卤素、或可被取代的烷基、可被取代的环烷基、可被取代的杂环基、可被取代的链烯基、可被取代的环烯基、可被取代的炔基、可被取代的烷氧基、可被取代的烷硫基、可被取代的芳基醚基、可被取代的芳基硫醚基、可被取代的芳基、可被取代的杂芳基、可被取代的氰基、可被取代的羰基、可被取代的羧基、可被取代的氧羰基、可被取代的氨基甲酰基、可被取代的烷氨基或可被取代的硅烷基,也可以与相邻的取代基键合而形成环;
    L4选自亚芳基或杂亚芳基且与R13-R22中的一种或多种形成单键;
    R23、R24相同或不同,分别独立选自可被取代的烷基、可被取代的环烷基、可被取代的芳基、可被取代的杂芳基或可被取代的杂环基;n2是1-4的整数,且R13~R22中至少一个与L4形成键;
    所述被取代的情况下,取代基分别独立选自氘、卤素、C1-C15的烷基、C3-C15的环烷基、C3-C15的杂环基、C2-C15的链烯基、C4-C15的环烯基、C2-C15的炔基、C1-C15的烷氧基、C1-C15的烷硫基、C6-C55的芳基醚基、C6-C55的芳基硫醚基、C6-C55的芳基、C5-C55的芳香族杂环基、羰基、羧基、氧羰基、氨基甲酰基、C1-C40的烷氨基、或C3-C15的硅原子数为1-5的硅烷基中的一种或多种。
  11. 根据权利要求10所述的有机发光元件,其特征在于:n2是1或2。
  12. 根据权利要求11所述的有机发光元件,其特征在于:所述具有芘结构的化合物具有下述通式(6):
    Figure PCTCN2014094225-appb-100006
    其中,R25~R32相同或不同,分别独立选自氢、氘、卤素、或可被取代的烷基、可被取代的环烷基、可被取代的杂环基、可被取代的链烯基、可被取代的环烯基、可被取代的炔基、可被取代的烷氧基、可被取代的烷硫基、可被取代的芳基醚基、可被取代的芳基硫醚基、可被取代的芳基、可被取代的杂芳基、可被取代的氰基、可被取代的羰基、可被取代的羧基、可被取代的氧羰基、可被取代的氨基甲酰基、可被取代的烷氨基或可被取代的硅烷基,也可以与相邻的取代基键合而形成环;
    L5、L6分别独立选自亚芳基或亚杂芳基;
    R33~R36相同或不同,分别独立选自可被取代的烷基、可被取代的环烷基、可被取代的芳基、可被取代的杂芳基或可被取代的杂环基;
    所述被取代的情况下,取代基分别独立选自氘、卤素、C1-C15的烷基、C3-C15的环烷基、C3-C15的杂环基、C2-C15的链烯基、C4-C15的环烯基、C2-C15的炔基、C1-C15的烷氧基、C1-C15的烷硫基、C6-C55的芳基醚基、C6-C55的芳基硫醚基、C6-C55的芳基、C5-C55的芳香族杂环基、羰基、羧基、氧羰基、氨基甲酰基、C1-C40的烷氨基、或C3-C15的硅原子数为1-5的硅烷基中的一种或多种。
  13. 根据权利要求1或2所述的有机发光元件,其特征在于:所述覆盖层含有具有蒽结构的化合物。
  14. 根据权利要求书13所述的有机发光元件,其特征在于:所述具有蒽结构的化合物具有下述通式(7):
    Figure PCTCN2014094225-appb-100007
    其中,R37~R46相同或不同,分别独立选自氢、氘、卤素、可被取代的烷基、可被取代的环烷基、可被取代的杂环基、可被取代的链烯基、可被取代的环烯基、可被取代的炔基、可被取代的烷氧基、可被取代的烷硫基、可被取代的芳基醚基、可被取代的芳基硫醚基、可被取代的芳基、可被取代的杂芳基、可被取代的氰基、可被取代的羰基、可被取代的羧基、可被取代的氧羰基、可被取代的氨基甲酰基、可被取代的烷氨基或可被取代的硅烷基,也可以与相邻的取代基键合而形成环;
    所述被取代的情况下,取代基分别独立选自氘、卤素、C1-C15的烷基、C3-C15的环烷基、C3-C15的杂环基、C2-C15的链烯基、C4-C15的环烯基、C2-C15的炔基、C1-C15的烷氧基、C1-C15的烷硫基、C6-C55的芳基醚基、C6-C55的芳基硫醚基、C6-C55的芳基、C5-C55的芳香族杂环基、羰基、羧基、氧羰基、氨基甲酰基、C1-C40的烷氨基、或C3-C15的硅原子数为1-5的硅烷基中的一种或多种。
  15. 根据权利要求14所述的有机发光元件,其特征在于:所述具有蒽结构的化合物具有下述通式(8):
    Figure PCTCN2014094225-appb-100008
    其中,R47~R56相同或不同,分别独立选自氢、氘、卤素、或可被取代的烷基、可被取代的环烷基、可被取代的杂环基、可被取代的链烯基、可被取代的环烯基、可被取代的炔基、可被取代的烷氧基、可被取代的烷硫基、可被取代的芳基醚基、可被取代的芳基硫醚基、可被取代的芳基、可被取代的杂芳基、可被取代的氰基、可被取代的羰基、可被取代的羧基、可被取代的氧羰基、可被取代的氨基甲酰基、可被取代的烷氨基或可被取代的硅烷基,也可以与相邻的取代基键合而形成环;
    L7选自亚芳基或杂亚芳基且与R47-R56中的一种或多种形成单键;
    R57、R58相同或不同,分别独立选自可被取代的烷基、可被取代的环烷基、可被取代的芳基、可被取代的杂芳基或可被取代的杂环基,n3是1-4的整数,且R47-R56中的至少一种与L7形成键;
    所述被取代的情况下,取代基分别独立选自氘、卤素、C1-C15的烷基、C3-C15的环烷基、C3-C15的杂环基、C2-C15的链烯基、C4-C15的环烯基、C2-C15的炔基、C1-C15的烷氧基、C1-C15的烷硫基、C6-C55的芳基醚基、C6-C55的芳基硫醚基、C6-C55的芳基、C5-C55的芳香族杂环基、羰基、羧基、氧羰基、氨基甲酰基、C1-C40的烷氨基、或C3-C15的硅原子数为1-5的硅烷基中的一种或多种。
  16. 根据权利要求15所述的有机发光元件,其特征在于:n3是1或2。
  17. 根据权利要求16所述的有机发光元件,其特征在于:所述具有蒽结构的化合物具有下述通式(9):
    Figure PCTCN2014094225-appb-100009
    其中,R59~R66相同或不同,分别独立选自氢、氘、卤素、或可被取代的烷基、可被取代的环烷基、可被取代的杂环基、可被取代的链烯基、可被取代的环烯基、可被取代的炔基、可被取代的烷氧基、可被取代的烷硫基、可被取代的芳基醚基、可被取代的芳基硫醚基、可被取代的芳基、可被取代的杂芳基、可被取代的氰基、可被取代的羰基、可被取代的羧基、可被取代的氧羰基、可被取代的氨基甲酰基、可被取代的烷氨基或可被取代的硅烷基,也可以与相邻的取代基键合而形成环;
    L8、L9分别独立选自亚芳基或亚杂芳基;
    R67~R70相同或不同,分别独立选自可被取代的烷基、可被取代的环烷基、可被取代的芳基、可被取代的杂芳基或可被取代的杂环基;
    所述被取代的情况下,取代基分别独立选自氘、卤素、C1-C15的烷基、C3-C15的环烷基、C3-C15的杂环基、C2-C15的链烯基、C4-C15的环烯基、C2-C15的炔基、C1-C15的烷氧基、C1-C15的烷硫基、C6-C55的芳基醚基、C6-C55的芳基硫醚基、C6-C55的芳基、C5-C55的芳香族杂环基、羰基、羧基、氧羰基、氨基甲酰基、C1-C40的烷氨基、或C3-C15的硅原子数为1-5的硅烷基中的一种或多种。
PCT/CN2014/094225 2013-12-26 2014-12-18 有机发光元件 WO2015096657A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14874470.9A EP3089232B1 (en) 2013-12-26 2014-12-18 Organic light-emitting element
JP2016542176A JP6680209B2 (ja) 2013-12-26 2014-12-18 有機発光素子
KR1020167018778A KR102255037B1 (ko) 2013-12-26 2014-12-18 유기 발광 소자
US15/108,149 US10483488B2 (en) 2013-12-26 2014-12-18 Organic light-emitting element
CN201480070877.6A CN105849930B (zh) 2013-12-26 2014-12-18 有机发光元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310728921.5 2013-12-26
CN201310728921.5A CN104752619A (zh) 2013-12-26 2013-12-26 有机发光元件

Publications (1)

Publication Number Publication Date
WO2015096657A1 true WO2015096657A1 (zh) 2015-07-02

Family

ID=53477532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/094225 WO2015096657A1 (zh) 2013-12-26 2014-12-18 有机发光元件

Country Status (7)

Country Link
US (1) US10483488B2 (zh)
EP (1) EP3089232B1 (zh)
JP (1) JP6680209B2 (zh)
KR (1) KR102255037B1 (zh)
CN (2) CN104752619A (zh)
TW (1) TWI673892B (zh)
WO (1) WO2015096657A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111755618A (zh) * 2019-03-28 2020-10-09 江苏三月光电科技有限公司 一种含有覆盖层的有机电致发光装置及用途

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104744450A (zh) * 2013-12-26 2015-07-01 东丽先端材料研究开发(中国)有限公司 芳香胺化合物、发光元件材料及发光元件
CA3002752A1 (en) 2015-10-26 2017-05-04 Oti Lumionics Inc. Method for patterning a coating on a surface and device including a patterned coating
TWI619703B (zh) * 2016-05-18 2018-04-01 昱鐳光電科技股份有限公司 用於有機電激發光元件之化合物及使用該化合物之有機電激發光元件
WO2018198052A1 (en) 2017-04-26 2018-11-01 Oti Lumionics Inc. Method for patterning a coating on a surface and device including a patterned coating
CN110832660B (zh) 2017-05-17 2023-07-28 Oti照明公司 在图案化涂层上选择性沉积传导性涂层的方法和包括传导性涂层的装置
KR102641027B1 (ko) * 2017-05-31 2024-02-28 롬엔드하스전자재료코리아유한회사 유기 전계 발광 소자
WO2018221978A1 (en) * 2017-05-31 2018-12-06 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent device
CN109728180B (zh) * 2017-10-30 2020-10-09 中节能万润股份有限公司 一种含有覆盖层的有机电致发光器件
KR102509038B1 (ko) * 2018-01-26 2023-03-13 삼성디스플레이 주식회사 표시 장치
US11751415B2 (en) 2018-02-02 2023-09-05 Oti Lumionics Inc. Materials for forming a nucleation-inhibiting coating and devices incorporating same
CN108484569B (zh) * 2018-03-07 2020-06-30 中国科学院化学研究所 一种噻吩桥联四胺芘空穴传输材料及其在钙钛矿太阳能电池中的应用
CN112074966A (zh) 2018-05-07 2020-12-11 Oti照明公司 用于提供辅助电极的方法和包含辅助电极的装置
CN109285866B (zh) * 2018-09-21 2021-05-14 上海天马微电子有限公司 显示面板、显示面板的制造方法和显示装置
JP7390739B2 (ja) 2019-03-07 2023-12-04 オーティーアイ ルミオニクス インコーポレーテッド 核生成抑制コーティングを形成するための材料およびそれを組み込んだデバイス
US11832473B2 (en) 2019-06-26 2023-11-28 Oti Lumionics Inc. Optoelectronic device including light transmissive regions, with light diffraction characteristics
JP7386556B2 (ja) 2019-06-26 2023-11-27 オーティーアイ ルミオニクス インコーポレーテッド 光回折特性に関連する用途を備えた光透過領域を含む光電子デバイス
CN110283143B (zh) * 2019-07-10 2022-01-04 吉林奥来德光电材料股份有限公司 芳胺类化合物及包含该化合物的有机发光器件
KR20220045202A (ko) 2019-08-09 2022-04-12 오티아이 루미오닉스 인크. 보조 전극 및 파티션을 포함하는 광전자 디바이스
WO2022123431A1 (en) 2020-12-07 2022-06-16 Oti Lumionics Inc. Patterning a conductive deposited layer using a nucleation inhibiting coating and an underlying metallic coating
KR102535239B1 (ko) 2021-11-05 2023-05-30 남호진 배터리용 버스 바의 제조방법 및 그로써 제조된 배터리용 버스 바
KR20220112216A (ko) 2022-07-21 2022-08-10 남호진 배터리용 버스 바의 연속 자동화 제조장치

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001039554A1 (en) 1999-11-22 2001-05-31 Sony Corporation Display device
JP2006156390A (ja) 2004-11-26 2006-06-15 Samsung Sdi Co Ltd 有機電界発光素子及びその製造方法
JP2006302878A (ja) 2005-03-24 2006-11-02 Kyocera Corp 発光素子、その発光素子を備えた発光装置及びその製造方法
JP2007103303A (ja) 2005-10-07 2007-04-19 Toshiba Matsushita Display Technology Co Ltd 有機el表示装置
CN101257744A (zh) * 2006-12-22 2008-09-03 索尼株式会社 有机电致发光器件和显示器
CN101656300A (zh) * 2008-08-18 2010-02-24 三星移动显示器株式会社 包括光效率改善层的有机发光二极管
WO2011043083A1 (ja) 2009-10-09 2011-04-14 出光興産株式会社 有機エレクトロルミネッセンス素子
CN102074568A (zh) * 2009-11-25 2011-05-25 三星移动显示器株式会社 有机发光二极管显示器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3840235B2 (ja) * 2003-06-27 2006-11-01 キヤノン株式会社 有機発光素子
US20080164809A1 (en) 2006-12-22 2008-07-10 Sony Corporation Organic electroluminescent device and display apparatus
JP2009027091A (ja) * 2007-07-23 2009-02-05 Sony Corp 有機電界発光素子および表示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001039554A1 (en) 1999-11-22 2001-05-31 Sony Corporation Display device
JP2006156390A (ja) 2004-11-26 2006-06-15 Samsung Sdi Co Ltd 有機電界発光素子及びその製造方法
JP2006302878A (ja) 2005-03-24 2006-11-02 Kyocera Corp 発光素子、その発光素子を備えた発光装置及びその製造方法
JP2007103303A (ja) 2005-10-07 2007-04-19 Toshiba Matsushita Display Technology Co Ltd 有機el表示装置
CN101257744A (zh) * 2006-12-22 2008-09-03 索尼株式会社 有机电致发光器件和显示器
CN101656300A (zh) * 2008-08-18 2010-02-24 三星移动显示器株式会社 包括光效率改善层的有机发光二极管
WO2011043083A1 (ja) 2009-10-09 2011-04-14 出光興産株式会社 有機エレクトロルミネッセンス素子
CN102074568A (zh) * 2009-11-25 2011-05-25 三星移动显示器株式会社 有机发光二极管显示器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3089232A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111755618A (zh) * 2019-03-28 2020-10-09 江苏三月光电科技有限公司 一种含有覆盖层的有机电致发光装置及用途
CN111755618B (zh) * 2019-03-28 2022-09-09 江苏三月科技股份有限公司 一种含有覆盖层的有机电致发光装置及用途

Also Published As

Publication number Publication date
US10483488B2 (en) 2019-11-19
CN105849930B (zh) 2018-06-29
EP3089232A4 (en) 2017-06-21
EP3089232A1 (en) 2016-11-02
TW201532331A (zh) 2015-08-16
CN104752619A (zh) 2015-07-01
EP3089232B1 (en) 2020-12-02
KR20160103027A (ko) 2016-08-31
CN105849930A (zh) 2016-08-10
TWI673892B (zh) 2019-10-01
US20170018733A1 (en) 2017-01-19
KR102255037B1 (ko) 2021-05-24
JP2017503317A (ja) 2017-01-26
JP6680209B2 (ja) 2020-04-15

Similar Documents

Publication Publication Date Title
WO2015096657A1 (zh) 有机发光元件
TWI739046B (zh) 有機發光元件
TWI631111B (zh) 芳香胺化合物、發光元件材料及發光元件
WO2019149062A1 (zh) 芳香胺化合物、覆盖层材料及发光元件
TW202017742A (zh) 發光元件、含有其的顯示器、照明裝置及感測器
WO2021036683A1 (zh) 芳香胺化合物、覆盖层材料及发光元件
WO2014124600A1 (zh) 有机发光元件
WO2014124599A1 (zh) 有机发光元件
CN112920177A (zh) 芳香单胺化合物、覆盖层材料及发光元件
KR20190064202A (ko) 유기 화합물과 이를 포함하는 유기발광다이오드 및 유기발광 표시장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14874470

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016542176

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167018778

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014874470

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014874470

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15108149

Country of ref document: US