WO2019149062A1 - 芳香胺化合物、覆盖层材料及发光元件 - Google Patents

芳香胺化合物、覆盖层材料及发光元件 Download PDF

Info

Publication number
WO2019149062A1
WO2019149062A1 PCT/CN2019/071782 CN2019071782W WO2019149062A1 WO 2019149062 A1 WO2019149062 A1 WO 2019149062A1 CN 2019071782 W CN2019071782 W CN 2019071782W WO 2019149062 A1 WO2019149062 A1 WO 2019149062A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
light
organic light
aryl
Prior art date
Application number
PCT/CN2019/071782
Other languages
English (en)
French (fr)
Inventor
孙枋竹
王鹏
金光男
李进才
Original Assignee
东丽先端材料研究开发(中国)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东丽先端材料研究开发(中国)有限公司 filed Critical 东丽先端材料研究开发(中国)有限公司
Priority to KR1020207021786A priority Critical patent/KR20200115509A/ko
Priority to US16/961,513 priority patent/US20210053954A1/en
Priority to JP2020536988A priority patent/JP2021508729A/ja
Priority to CN201980004447.7A priority patent/CN111194315B/zh
Publication of WO2019149062A1 publication Critical patent/WO2019149062A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/12Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3026Top emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a novel aromatic amine compound for an organic light-emitting device, a cover layer material containing the aromatic amine compound, and a light-emitting element, and particularly to an aromatic amine compound for an organic light-emitting element, a cover layer material, and a light-emitting element, which have greatly improved light extraction efficiency.
  • the organic light-emitting element is a self-luminous display device, and has characteristics such as light weight, wide viewing angle, low power consumption, and high contrast.
  • the principle of light emission of the organic light-emitting element is that holes and electrons injected from the electrode are recombined in the light-emitting layer to return to the ground state via the excited state, at which time light is generated.
  • This light-emitting element has a feature of being thin and capable of high-intensity light emission at a low driving voltage and capable of multi-color light emission by selecting a light-emitting material, and thus has attracted attention.
  • the organic light emitting element may be classified into a bottom emitting organic light emitting element and a top emitting organic light emitting element according to a direction in which light generated by the organic light emitting layer is emitted.
  • the bottom emission organic light-emitting element light is incident on the substrate side, a reflective electrode is formed on the upper portion of the organic light-emitting layer, and a transparent electrode is formed on the lower portion of the organic light-emitting layer.
  • the organic light-emitting element is an active matrix element, since the portion of the thin film transistor is opaque, the light-emitting area is reduced.
  • the transparent electrode is formed on the upper portion of the organic light-emitting layer, and the reflective electrode is formed on the lower portion of the organic light-emitting layer, so that the light is directed in a direction opposite to the substrate side, whereby the light is transmitted.
  • the area is increased and the brightness is increased.
  • an organic coating layer is formed on the upper translucent metal electrode through which the light of the light-emitting layer is transmitted, thereby adjusting the optical interference distance and suppressing the external interference.
  • Light reflection and extinction caused by surface plasmon energy movement see Patent Documents 1 to 6).
  • Patent Document 2 discloses that a refractive index of 1.7 or more is formed on an upper translucent metal electrode of a top emission organic light-emitting element.
  • the organic coating layer increases the luminous efficiency of the red and green light-emitting organic light-emitting elements by about 1.5 times.
  • the material of the organic coating layer used is an amine derivative, a quinolol complex or the like.
  • Patent Document 4 discloses that a material having an energy gap of less than 3.2 eV affects a blue wavelength and is not suitable for use in an organic coating layer, and an organic coating material used is an amine derivative having a specific chemical structure or the like.
  • Patent Document 5 discloses that, in order to realize a blue light-emitting element having a low CIEy value, the refractive index change amount of the organic cover layer material at a wavelength of 430 nm to 460 nm is ⁇ n>0.08, and the organic overcoat material used is an anthracene derivative having a specific chemical structure. Wait.
  • Patent Document 6 discloses that an organic light-emitting device having an excellent color purity can be obtained by using an organic coating material such as a thiophene or a pyrrole type.
  • Patent Document 1 WO2001/039554
  • Patent Document 2 JP Special Opening 2006-156390
  • Patent Document 3 JP Special Opening 2007-103303
  • Patent Document 4 JP Special Opening 2006-302878
  • Patent Document 5 WO2011/043083
  • Patent Document 6 CN104744450A
  • an amine derivative having a specific structure having a high refractive index or a material satisfying a specific parameter is used as an organic coating material to improve light extraction efficiency and color purity, but the luminous efficiency has not been solved yet. And the problem of color purity, especially in the case of preparing blue light-emitting elements.
  • the present invention provides an aromatic amine compound for improving light extraction efficiency and color purity of an organic light-emitting device, an organic light-emitting device material containing the aromatic amine compound, an organic light-emitting device cover layer material, and an organic light-emitting device.
  • the aromatic amine compound provided by the present invention has a thiophene structure, a furan structure or a pyrrole structure, it has excellent film stability and a high refractive index, and can solve the problem of improving light extraction efficiency and improving color purity.
  • X 1 and X 2 are selected from a sulfur atom, an oxygen atom or NR, wherein each R is selected from the group consisting of hydrogen, deuterium, an alkyl group which may be substituted, a cycloalkyl group which may be substituted, a heterocyclic ring which may be substituted a base, a substituted alkenyl group, a substituted cycloalkenyl group, a substituted alkynyl group, a substituted alkoxy group, a substituted alkylthio group, a substituted aryl ether group, An aryl sulfide group which may be substituted, an aryl group which may be substituted, a heteroaryl group which may be substituted, a carbonyl group which may be substituted, a carboxyl group which may be substituted, an oxycarbonyl group which may be substituted, a amino group which may be substituted
  • R is selected from the group consisting of hydrogen, deuterium, an alky
  • L 1 and L 2 may be the same or different and are respectively selected from the group consisting of an arylene group, a heteroarylene group or a direct bond;
  • Ar 1 is selected from the group consisting of arylene
  • Ar 2 and Ar 3 may be the same or different heteroaryl groups
  • R 1 and R 2 may be the same or different and are respectively selected from the group consisting of hydrogen, deuterium, halogen, alkyl which may be substituted, cycloalkyl which may be substituted, heterocyclic group which may be substituted, and alkene which may be substituted a cycloalkenyl group which may be substituted, an alkynyl group which may be substituted, an alkoxy group which may be substituted, an alkylthio group which may be substituted, an aryl ether group which may be substituted, an aryl sulfide which may be substituted a aryl group which may be substituted, a heteroaryl group which may be substituted, a cyano group which may be substituted, a carbonyl group which may be substituted, a carboxyl group which may be substituted, an oxycarbonyl group which may be substituted, a carbamoyl group which may be substituted One or more of an alkylamino group which may be substituted,
  • R 1 and R 2 are one or more of an aryl group or a heteroaryl group which may be substituted.
  • the refractive index of the compound can be increased.
  • X 1 and X 2 are selected from a sulfur atom;
  • L 1 and L 2 are selected from an arylene group; and
  • R 1 and R 2 are an aryl group.
  • the alkyl group is a C1-C20 alkyl group
  • the cycloalkyl group is a C3-C20 cycloalkyl group
  • the heterocyclic group is a C2-C20 heterocyclic group.
  • alkenyl is C2-C20 alkenyl
  • cycloalkenyl is C3-C20 cycloalkenyl
  • alkynyl is C2-C20 alkynyl
  • alkoxy is C1-C20 alkoxy
  • alkylthio Is a C1-C20 alkylthio group
  • the aryl ether group is a C6-C40 aryl ether group
  • the aryl sulfide group is a C6-C60 aryl sulfide group
  • the aryl group is a C6-C60 aryl group.
  • the aryl group is a C4-C60 aromatic heterocyclic group.
  • the Ar 1 is a non-fused ring arylene group.
  • the Ar 2 and Ar 3 are heteroaryl groups directly bonded to nitrogen, that is, groups having no other non-heteroaryl groups between the nitrogen atom and the heteroaryl group, and these non-heteroaryl groups.
  • Groups of the group include, but are not limited to, arylene groups.
  • the present invention also provides an organic light-emitting device material comprising the above-described aromatic amine compound.
  • the organic light-emitting device of the present invention comprises: a substrate, a first electrode, a light-emitting layer containing one or more organic layer films, a second electrode, and a cover layer; and the organic light-emitting element contains the organic light-emitting device material described above.
  • the present invention further provides an organic light-emitting element cover layer material containing the above-described aromatic amine compound.
  • the present invention further provides an organic light emitting device comprising a substrate, a first electrode, one or more organic layer films including a light emitting layer, and a second electrode element, the light emitting element further having a cover layer; the cover layer The organic light-emitting element covering layer material is contained.
  • the mechanism of the present invention can be considered as follows (but does not bind the present invention to any object): the aromatic amine compound provided by the present invention has excellent film stability and high refractive index because of having a thiophene structure, a furan structure or a pyrrole structure, and can be solved. Both the problem of improving light extraction efficiency and improving color purity is taken into consideration.
  • a compound represented by Formula 1 having a thiophene structure, a furan structure or a pyrrole structure is used in the cover layer material, so that it has a high glass transition temperature and a steric hindrance effect, thereby having superior film stability.
  • the thiophene structure, the furan structure or the pyrrole structure can increase the absorption coefficient of the compound and obtain a higher attenuation coefficient, and the higher the absorption coefficient and the attenuation coefficient (k), the higher the refractive index, so that the film in the ultraviolet visible range can be obtained.
  • the higher refractive index, in addition, the heteroaryl group has the property of increasing the polarizability, and the refractive index can be further increased.
  • an aromatic amine compound having a high refractive index is used in the cover layer material, whereby an organic light-emitting element having a large improvement in light-emitting extraction efficiency and having superior color purity is obtained.
  • the above alkyl group is preferably a C1-C20 alkyl group; further preferably one of a saturated aliphatic hydrocarbon group such as a methyl group, an ethyl group, a n-propyl group, an isopropyl group, a n-butyl group, a sec-butyl group or a t-butyl group; A variety.
  • the above alkyl group may have a substituent or may have no substituent.
  • the above cycloalkyl group is preferably a C3-C20 cycloalkyl group; more preferably one or more of a cyclopropyl group, a cyclohexyl group, a norbornyl group, or a saturated alicyclic hydrocarbon group such as an adamantyl group.
  • the above cycloalkyl group may have a substituent or may have no substituent.
  • the heterocyclic group is preferably a C2-C20 heterocyclic group; more preferably one or more of an aliphatic ring having an atom other than carbon in a ring such as a pyran ring, a piperidine ring or a cyclic amide.
  • the above heterocyclic group may have a substituent or may have no substituent.
  • the above alkenyl group is preferably a C2-C20 alkenyl group; more preferably one or more of an unsaturated aliphatic hydrocarbon group containing a double bond such as a vinyl group, an allyl group or a butadienyl group.
  • the above alkenyl group may have a substituent or may have no substituent.
  • the above cycloalkenyl group is preferably a C3-C20 cycloalkenyl group; more preferably one or more of an unsaturated alicyclic hydrocarbon group containing a double bond such as a cyclopentenyl group, a cyclopentadienyl group, or a cyclohexenyl group; kind.
  • the above cycloalkenyl group may have a substituent or may have no substituent.
  • the alkynyl group is preferably a C2-C20 alkynyl group; more preferably an unsaturated aliphatic hydrocarbon group containing a triple bond such as an ethynyl group.
  • the above alkynyl group may have a substituent or may have no substituent.
  • the alkoxy group is preferably a C1-C20 alkoxy group; more preferably one or more of a functional group such as a methoxy group, an ethoxy group or a propoxy group bonded to an aliphatic hydrocarbon group via an ether bond.
  • the aliphatic hydrocarbon group may have a substituent or may have no substituent.
  • the above alkylthio group is a group in which an oxygen atom of an alkoxy group is substituted with a sulfur atom. It is preferably a C1-C20 alkylthio group; the alkylthioalkyl group may have a substituent or may have no substituent.
  • the aryl ether group is preferably a C6-C40 aryl ether group; more preferably a functional group such as a phenoxy group bonded to an aromatic hydrocarbon group via an ether bond.
  • the aryl ether group may or may not have a substituent.
  • the above aryl sulfide group is a group in which an oxygen atom of an ether bond of an aryl ether group is substituted with a sulfur atom.
  • Preferred is a C6-C60 aryl sulfide group.
  • the aromatic hydrocarbon group in the aryl sulfide group may or may not have a substituent.
  • the above aryl group is preferably an C6-C60 aryl group; more preferably one or more of an aromatic hydrocarbon group such as a phenyl group, a naphthyl group, a biphenyl group, a phenanthryl group, a benzene terphenyl group or a fluorenyl group.
  • the aryl group may have a substituent or may have no substituent.
  • the above heteroaryl group is preferably a C4-C60 aromatic heterocyclic group; further preferably a furyl group, a thienyl group, a pyrrole group, a benzofuranyl group, a benzothienyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a pyridine One or more of a group or a quinolinyl group or the like.
  • the aromatic heterocyclic group may have a substituent or may have no substituent.
  • the above carbonyl group, carboxyl group, oxycarbonyl group, carbamoyl group or alkylamino group may have a substituent or may have no substituent.
  • the number of carbon atoms of the alkylamino substituent is not particularly limited, and is usually in the range of 2 or more and 60 or less.
  • the above silane group is represented by a functional group having a bond to a silicon atom such as a trimethylsilyl group, a triethylsilyl group, a dimethyl tert-butylsilyl group, or a triphenylsilyl group, and the silane group may have a substitution.
  • the base may also have no substituents.
  • the number of carbon atoms of the silane group is not particularly limited, and is usually in the range of 1 or more and 40 or less.
  • the above substituent is selected from the group consisting of hydrazine, halogen, C1-C15 alkyl, C3-C15 cycloalkyl, C3-C15 heterocyclic, C2-C15 alkenyl, C4-C15 cycloalkenyl, C2 - alkynyl group of C15, alkoxy group of C1-C55, alkyl fluorenyl group of C1-C55, aryl ether group of C6-C55, aryl sulfide group of C6-C55, aryl group of C6-C55, C4-C55
  • the aromatic amine compound is not particularly limited, and the following examples are preferred.
  • the synthesis of the aromatic amine compound represented by the above formula 1 can be carried out by a known method. For example, a Buchwald-Hartwig reaction using nickel or palladium, a Ullman reaction using copper, but not limited to these methods.
  • the above reaction is preferably a Buchwald-Hartwig reaction in view of mild reaction conditions and superior selectivity of various functional groups.
  • Ar 2 and Ar 3 are different substituents, they are synthesized in stages according to the theoretical mixing ratio of the amine and the halide.
  • the specific synthesis is as shown in the following formula 2,
  • Hal represents a halogen such as a chlorine atom, a bromine atom or an iodine atom, or a pseudohalogen such as a trifluoromethanesulfonate group.
  • the aromatic amine compound of the formula 1 in the present invention may be used singly or in combination with other materials in the organic light-emitting device.
  • the organic light-emitting device of the present invention is an organic light-emitting device containing an aromatic amine compound, and the organic light-emitting device has a substrate, a first electrode, and one or more organic layer films including a light-emitting layer in this order, and transmits light emitted from the light-emitting layer.
  • the second electrode and the light extraction efficiency improving layer ie, the cover layer
  • the light emitting layer emits light by electric energy.
  • the substrate to be used is preferably a glass substrate such as soda glass or alkali-free glass.
  • the thickness of the glass substrate is not particularly limited as long as it is sufficient to maintain mechanical strength. Therefore, 0.5 mm or more is sufficient.
  • the material of the glass is preferably as small as possible because the amount of ions eluted from the glass is as small as possible.
  • commercially available protective coatings such as SiO 2 may also be used.
  • the substrate does not have to be glass, and for example, an anode may be formed on the plastic substrate.
  • the material used in the first electrode is preferably a metal such as gold, silver or aluminum having a high refractive index property or a metal alloy such as an APC alloy. These metals or metal alloys may also be laminated in multiple layers. Further, a transparent conductive metal oxide such as tin oxide, indium oxide, indium tin oxide (ITO) or indium zinc oxide (IZO) may be laminated on the upper surface and/or the lower surface of the metal, the metal alloy or the laminate thereof.
  • a transparent conductive metal oxide such as tin oxide, indium oxide, indium tin oxide (ITO) or indium zinc oxide (IZO) may be laminated on the upper surface and/or the lower surface of the metal, the metal alloy or the laminate thereof.
  • the material used in the second electrode is preferably a material that forms a translucent or transparent film that transmits light.
  • a material that forms a translucent or transparent film that transmits light For example, silver, magnesium, aluminum, calcium or an alloy of these metals, a transparent conductive metal oxide such as tin oxide, indium oxide, indium tin oxide (ITO) or indium zinc oxide (IZO). These metals, alloys, or metal oxides may also be laminated in multiple layers.
  • the method for forming the above electrode may be, for example, resistance heating deposition, electron beam evaporation, sputtering, ion plating, or gel coating, and the like, and is not particularly limited. Further, the first electrode and the second electrode function as an anode with respect to the organic film layer and the other as a cathode depending on the work function of the material used.
  • the organic layer may be composed of only a light-emitting layer, a hole transport layer/light-emitting layer, 2) a light-emitting layer/electron transport layer, and 3) a hole transport layer/light-emitting layer/electron transport layer, 4)
  • the hole injection layer/hole transport layer/light emitting layer/electron transport layer, and 5) a structure in which a hole injection layer/hole transport layer/light emitting layer/electron transport layer/electron injection layer or the like is laminated.
  • each of the above layers may be either a single layer or a plurality of layers.
  • the anode side electrode is bonded to the hole input layer or the hole transport layer
  • the cathode side electrode is bonded to the electron input layer or the electron transport layer.
  • the hole transport layer can be formed by a method of laminating or mixing one or more kinds of hole transport materials, or by a method using a mixture of a hole transport material and a polymer binder.
  • the hole transporting material needs to efficiently transport holes from the positive electrode between the electrodes to which the electric field is applied. Therefore, it is desirable that the hole injection efficiency is high and the injected holes can be efficiently transported. Therefore, the hole transporting material is required to have an appropriate ion potential, and has a large hole mobility, and further, is excellent in stability, and is unlikely to cause impurities which may become traps during production and use.
  • the substance satisfying such conditions is not particularly limited, and may be, for example, 4,4'-bis(N-(3-methylphenyl)-N-phenylamino)biphenyl (TPD), 4,4'- Bis(N-(1-naphthyl)-N-phenylamino)biphenyl (NPD), 4,4'-bis(N,N-bis(4-biphenylyl)amino)biphenyl (TBDB), Biphenylamine such as bis(N,N-diphenyl-4-phenylamino)-N,N-diphenyl-4,4'-diamino-1,1'-biphenyl (TPD232), 4, 4 ',4"-tris(3-methylphenyl(phenyl)amino)triphenylamine (m-MTDATA), 4,4',4"-tris(1-naphthyl(phenyl)amino)triphenylamine ( 1-TNATA)
  • a heterocyclic compound such as an oxadiazole derivative, a phthalocyanine derivative or a porphyrin derivative, or a fullerene derivative
  • a polycarbonic acid having the above monomer in a side chain is also preferable.
  • styrene derivatives, polythiophene, polyaniline, polyfluorene, polyvinylcarbazole and polysilane is also preferable.
  • an inorganic compound such as P-type Si or P-type SiC can also be used.
  • a hole injecting layer may be provided between the anode and the hole transporting layer.
  • the organic light-emitting element can achieve a low driving voltage and improve the durability life.
  • the hole injection layer is generally preferably a material having a lower ion potential than the hole transport layer material.
  • a benzidine derivative or a star-type triarylamine material group such as the above TPD232 may be used, and a phthalocyanine derivative or the like may also be used.
  • the hole injection layer is composed of an acceptor compound alone or that the acceptor compound is doped in another hole transport layer.
  • the acceptor compound examples include metal chlorides such as iron trichloride (III), aluminum chloride, gallium chloride, indium chloride, and cesium chloride, and metal oxides such as molybdenum oxide, vanadium oxide, tungsten oxide, and cerium oxide. , a charge transfer ligand such as tris(4-bromophenyl)hexachloroantimonate (TBPAH). Further, it may be an organic compound having a nitro group, a cyano group, a halogen or a trifluoromethyl group in the molecule, an anthraquinone compound, an acid anhydride compound, a fullerene or the like.
  • metal chlorides such as iron trichloride (III), aluminum chloride, gallium chloride, indium chloride, and cesium chloride
  • metal oxides such as molybdenum oxide, vanadium oxide, tungsten oxide, and cerium oxide.
  • a charge transfer ligand such as tris(4-brom
  • the light-emitting layer may be any one of a single layer and a plurality of layers, and may be formed of a light-emitting material (host material, dopant material), which may be a mixture of the host material and the dopant material, or may be only
  • the main material can be used in either case. That is, in each of the light-emitting layers of the light-emitting element of the present invention, only the host material or only the dopant material may emit light, or the host material and the dopant material may emit light together. From the viewpoint of efficiently utilizing electric energy and obtaining light of high color purity, it is preferable that the light-emitting layer is formed by mixing a host material and a dopant material.
  • the host material and the dopant material may be one type or a combination of a plurality of types, and any of them may be used.
  • the doping material may be added to the entire host material or may be added to a portion, either in any case.
  • the doping material may be either laminated or dispersed, either in any case.
  • the doping material can control the luminescent color.
  • the amount of the dopant material is too large, the concentration extinction phenomenon occurs. Therefore, the amount thereof is preferably 20% by weight or less, and more preferably 10% by weight or less based on the host material.
  • the doping method may be a method of co-evaporation with a host material, or a method of simultaneously vapor-depositing after mixing with a host material.
  • the luminescent material examples include a fused ring derivative such as ruthenium or osmium which is conventionally known as an illuminant, a metal chelating quinolin compound such as tris(8-hydroxyquinoline)aluminum, and a dibenzofuran derivative.
  • a fused ring derivative such as ruthenium or osmium which is conventionally known as an illuminant
  • a metal chelating quinolin compound such as tris(8-hydroxyquinoline)aluminum
  • dibenzofuran derivative a fused ring derivative
  • the substance, the carbazole derivative, the indolocarbazole derivative, the polyphenylenevinylene derivative, the polyparaphenylene derivative, and the polythiophene derivative in the polymer are not particularly limited.
  • the host material contained in the luminescent material is not particularly limited, and ruthenium, phenanthrene, anthracene, benzophenanthrene, tetracene, anthracene, benzo[9,10]phenanthrene, fluoranthene, anthracene, anthracene, etc. may be used.
  • a cyclic compound or a derivative thereof an aromatic amine derivative such as N,N'-dinaphthyl-N,N'-diphenyl-4,4'-diphenyl-1,1'-diamine, or the like a metal chelate hydroxyquinoline compound such as (8-hydroxyquinoline)aluminum, a pyrrolopyrrole derivative, a dibenzofuran derivative, a carbazole derivative, an indolocarbazole derivative, a triazine derivative,
  • the polymer may, for example, be a polyphenylene vinylene derivative, a polyparaphenylene derivative, a polyfluorene derivative, a polyvinylcarbazole derivative or a polythiophene derivative, and is not particularly limited.
  • the doping material is not particularly limited, and examples thereof include a compound having a condensed aromatic ring such as naphthalene, anthracene, phenanthrene, anthracene, benzophenanthrene, anthracene, benzo[9,10]phenanthrene, fluoranthene, anthracene or anthracene.
  • a phosphorescent material may be doped in the light-emitting layer.
  • the phosphorescent material is a material that can also be phosphorescent at room temperature.
  • a phosphorescent material is used as the dopant, it is required to be substantially capable of phosphorescence at room temperature, but is not particularly limited, and is preferably organic containing at least one metal selected from the group consisting of indium, germanium, antimony, palladium, platinum, rhodium, and iridium.
  • Metal complex compound From the viewpoint of having high phosphorescence luminous efficiency at room temperature, an organometallic complex having indium or platinum is more preferable.
  • an anthracene derivative As a host material used in combination with a phosphorescent dopant, an anthracene derivative, a carbazole derivative, an indolocarbazole derivative, a nitrogen-containing aromatic compound derivative having a pyridine, a pyrimidine or a triazine skeleton,
  • An aromatic hydrocarbon compound derivative such as an arylbenzene derivative, a spiroindole derivative, a trimeric europium, a benzo[9,10]phenanthrene, a dibenzofuran derivative, a dibenzothiophene or the like, an oxygen group-containing compound, and a hydroxyl group.
  • An organic metal complex such as a quinoline ruthenium complex can be suitably used, but basically, as long as the triplet energy of the dopant used is larger and electrons and holes can be smoothly injected or transported from the respective layer transport layers, There is no particular limitation. Further, two or more kinds of triplet light-emitting dopants may be contained, or two or more types of host materials may be contained. In addition, more than one triplet luminescent dopant and one or more fluorescent luminescent dopants may also be included.
  • the electron transport layer is a layer in which electrons are injected from the cathode and electrons are transferred.
  • the electron transport layer preferably has high electron injection efficiency and can efficiently transport the injected electrons. Therefore, the electron transport layer is preferably composed of a substance having a large electron affinity and electron mobility and excellent stability, and which is less likely to cause impurities which are traps during production and use.
  • the electron transport layer mainly functions to efficiently prevent holes from the anode from being combined and flowing to the cathode side, even materials having a lower electron transporting ability are not so high.
  • the effect of improving the luminous efficiency is also equivalent to the case of a material having a high electron transporting ability. Therefore, in the electron transport layer in the present invention, the hole blocking layer which can efficiently prevent hole migration is also included as an equivalent.
  • the electron transporting material used in the electron transporting layer is not particularly limited, and examples thereof include a condensed aromatic ring derivative such as naphthalene or an anthracene, and a styrene-based aromatic group represented by 4,4'-di(diphenylvinyl)biphenyl. a cyclic derivative, an anthracene derivative such as hydrazine or biphenyl fluorene, a phosphine oxide derivative, a hydroxyquinoline complex such as tris(8-hydroxyquinoline)aluminum, a benzohydroxyquinoline complex, or a hydroxyazole complex.
  • a condensed aromatic ring derivative such as naphthalene or an anthracene
  • a cyclic derivative an anthracene derivative such as hydrazine or biphenyl flu
  • a substance, an azomethine complex, a cycloheptatrienol metal complex or a flavonol metal complex, preferably having a heteroaromatic ring structure from the viewpoint of lowering the driving voltage and enabling high-efficiency luminescence A compound having a heteroaryl ring structure composed of an element selected from the group consisting of carbon, hydrogen, nitrogen, oxygen, silicon, and phosphorus and containing electron-withdrawing nitrogen.
  • the heteroaryl ring containing an electron-withdrawing nitrogen has high electrophilicity.
  • An electron transporting material having electron-withdrawing nitrogen readily accepts electrons from a cathode having high electrophilicity, so that the driving voltage of the light-emitting element can be lowered. Further, since the electron supply to the light-emitting layer is increased and the probability of recombination in the light-emitting layer is increased, the light-emitting efficiency is improved.
  • heteroaryl ring containing an electron-withdrawing nitrogen examples include a pyridine ring, a pyrazine ring, a pyrimidine ring, a quinoline ring, a quinoxaline ring, a naphthyridine ring, a pyrimidopyrimidine ring, a benzoquinoline ring, and a phenanthrene ring.
  • a porphyrin ring an imidazole ring, an oxazole ring, an oxadiazole ring, a triazole ring, a thiazole ring, a thiadiazole ring, a benzoxazole ring, a benzothiazole ring, a benzimidazole ring, or a phenamimidazole ring, etc. .
  • examples of the compound having such a heteroaromatic ring structure include a benzimidazole derivative, a benzoxazole derivative, a benzothiazole derivative, an oxadiazole derivative, a thiadiazole derivative, and a triazole derivative.
  • An oligopyridine derivative such as a pyrazine derivative, a phenanthroline derivative, a quinoxaline derivative, a quinoline derivative, a benzoquinoline derivative, a bipyridine or a terpyridine.
  • the fused aromatic ring skeleton is preferably an anthracene skeleton, an anthracene skeleton or a phenanthroline skeleton.
  • the above electron transporting material may be used singly or in combination of two or more kinds of the above electron transporting materials, or one or more other electron transporting materials may be mixed and used in the above electron transporting material.
  • a donor compound can also be added.
  • the donor compound refers to a compound which facilitates electron injection from the cathode or the electron injecting layer to the electron transporting layer by improving the electron injecting energy barrier, thereby improving the electrical conductivity of the electron transporting layer.
  • the donor compound of the present invention include an alkali metal, an alkali metal-containing inorganic salt, an alkali metal-organic complex, an alkaline earth metal, an alkaline earth metal-containing inorganic salt, or an alkaline earth metal and an organic substance.
  • alkali metal or the alkaline earth metal include an alkali metal such as lithium, sodium or barium having a low work function and an effect of improving electron transporting ability, or an alkaline earth metal such as magnesium or calcium.
  • an electron injecting layer may also be provided between the cathode and the electron transporting layer.
  • the electron injecting layer is inserted for the purpose of assisting electron injection from the cathode to the electron transporting layer, and when inserted, a compound having a heteroaromatic ring structure containing electron-withdrawing nitrogen may be used, or a layer containing the above donor compound may be used.
  • an inorganic substance of an insulator or a semiconductor can also be used. By using these materials, it is possible to effectively prevent the short-circuiting of the light-emitting element and to improve the electron injectability, which is preferable.
  • At least one metal compound selected from the group consisting of an alkali metal chalcogenide, an alkaline earth metal chalcogenide, an alkali metal halide, and an alkaline earth metal halide is preferably used. Further, a complex of an organic substance and a metal can also be used favorably.
  • Examples of the method for forming the respective layers constituting the light-emitting element include resistance heating vapor deposition, electron beam evaporation, sputtering, molecular lamination, or coating, and the like, and are not particularly limited, but generally, from the viewpoint of element characteristics It is preferable to use resistance heating vapor deposition or electron beam evaporation.
  • the thickness of the organic layer varies depending on the electric resistance value of the luminescent material, and is not limited, but is preferably 1 to 1000 nm.
  • the film thickness of each of the light-emitting layer, the electron transport layer, and the hole transport layer is preferably 1 nm or more and 200 nm or less, and more preferably 5 nm or more and 100 nm or less.
  • the light extraction efficiency coating layer of the present invention contains the above compound having a thiophene structure, a furan structure or a pyrrole structure.
  • a compound having a thiophene structure, a furan structure or a pyrrole structure in order to maximize high luminous efficiency and achieve color reproducibility, it is preferred to laminate a compound having a thiophene structure, a furan structure or a pyrrole structure at a thickness of from 20 nm to 120 nm. More preferably, the laminate thickness is from 40 nm to 80 nm. Further, from the viewpoint of maximizing the luminous efficiency, it is more preferable that the light extraction efficiency coating layer has a thickness of 50 nm to 70 nm.
  • the method for forming the light extraction efficiency coating layer is not particularly limited, and examples thereof include resistance heating vapor deposition, electron beam evaporation, sputtering, molecular lamination method, coating method, inkjet method, doctor blade method, and laser transfer method. There are no special restrictions. Among them, the vapor deposition method is the most popular formation method. Substances that are easily crystallized during this process can affect the overall performance of the device.
  • the light-emitting element of the present invention has a function of converting electric energy into light.
  • the electric energy a direct current is mainly used, and a pulse current or an alternating current can also be used.
  • the current value and the voltage value it should be selected in such a manner that the maximum brightness can be obtained with the lowest possible energy.
  • the light-emitting element of the present invention can be suitably used as a flat display which is displayed in, for example, a matrix and/or a field.
  • the matrix method refers to a two-dimensional arrangement of pixels for display in a checkered or mosaic shape, and displays characters or images by a collection of pixels.
  • the shape and size of the pixel depend on the application. For example, in an image and a character display of a computer, a monitor, and a television, a quadrangular pixel having a side length of 300 ⁇ m or less is generally used, and in the case of a large display such as a display panel, a pixel having a side length of mm is used.
  • monochrome display it is only necessary to arrange pixels of the same color, but in the case of color display, red, green, and blue pixels are arranged to be displayed. In this case, there are typically triangular and striped shapes.
  • the driving method of the matrix may be any one of a line-by-line driving method and an active matrix.
  • the structure of the line-by-line drive is simple, when the operational characteristics are considered, the active matrix may be excellent, and therefore, it is required to be used flexibly depending on the application.
  • the field mode in the present invention refers to a mode in which a pattern is formed and an area determined by the arrangement of the pattern is illuminated to display predetermined information.
  • Examples thereof include a digital clock, a time in a thermometer, a temperature display, an operation state display of an audio device, an electromagnetic cooker, and the like, and a panel display of a car.
  • the matrix display and the field display can coexist in the same panel.
  • the light-emitting element of the present invention is preferably used as an illumination light source, and can provide a light source that is thinner and lighter than the prior art and can emit light on the surface.
  • the aromatic amine compound of the present invention is exemplified by the following examples, but is not limited to the aromatic amine compounds exemplified in the examples and the synthesis methods.
  • Toluene, xylene, methanol, 3-aminopyridine, etc. were purchased from Sinopharm; 4,4'-dibromobiphenyl, 2-(4-bromophenyl)-5-phenylthiophene, etc. were purchased from Zhengzhou Haikuo Optoelectronics Co., Ltd. The company; various palladium catalysts were purchased from Aldrich.
  • Com-2 N, N, N', N'-tetrakis(4-biphenyl)diaminobiphenyl
  • NPD N,N'-diphenyl-N,N'-bis(1-naphthyl)-1,1'-biphenyl-4,4'-diamine (structure is as follows)
  • F4-TCNQ 2,3,5,6-tetrafluoro-7,7',8,8'-tetracyanodimethyl p-benzoquinone (structure is as follows)
  • Alq 3 tris(8-hydroxyquinoline) aluminum (structure is as follows)
  • the alkali-free glass substrate (Asahi Glass Co., Ltd., AN100) was subjected to UV ozone washing treatment for 20 minutes, and further installed in a vacuum vapor deposition apparatus to perform evacuation until the degree of vacuum in the apparatus was higher than 1 ⁇ 10 -3 Pa. Under the conditions, the compound [12] was vapor-deposited by a resistance heating vapor deposition method to prepare a film of about 50 nm. The vapor deposition rate was 0.1 nm/s.
  • the refractive index and attenuation coefficient of the film samples prepared above were determined at Toray Research Center (Inc.), and the instrument used was an ellipsometry (J.A. Woollam M-2000).
  • the organic light-emitting element was evaluated. The evaluation results are shown in Table 2.
  • Example 1 The same as Example 1 except that the compound [8] was changed to the compound [4].
  • the organic light-emitting element was evaluated. The evaluation results are shown in Table 2.
  • Example 1 The same as Example 1 except that the compound [8] was changed to the compound [23].
  • the organic light-emitting element was evaluated. The evaluation results are shown in Table 2.
  • Example 1 The same as Example 1 except that the compound [8] was changed to the compound [38].
  • the organic light-emitting element was evaluated. The evaluation results are shown in Table 2.
  • Example 1 The same as Example 1 except that the compound [8] was changed to the compound [43].
  • the organic light-emitting element was evaluated. The evaluation results are shown in Table 2.
  • Example 1 The same as Example 1 except that the compound [8] was changed to NPD.
  • Example 2 The same as Example 1 except that the compound [8] was changed to SPA.
  • the organic light-emitting element was evaluated. The evaluation results are shown in Table 2.
  • the sealing member made of an alkali-free glass was sealed with an epoxy resin adhesive.
  • the light-emitting element was subjected to a direct current of 10 mA/cm 2 at room temperature in the air, and the luminance and color purity were measured from a light-emitting luminescence meter (CS1000, Konica Minolta Co., Ltd.) for light-emitting of the sealing plate.
  • a high-performance light-emitting element having high luminous efficiency and high color purity was obtained.
  • the organic light-emitting element was evaluated. The evaluation results are shown in Table 3.
  • Example 7 The same as Example 7 except that the cover layer material was the compound [1].
  • the organic light-emitting element was evaluated. The evaluation results are shown in Table 3.
  • Example 7 The same as Example 7 except that the cover layer material was the compound [4].
  • the organic light-emitting element was evaluated. The evaluation results are shown in Table 3.
  • Example 7 The same as Example 7 except that the cover layer material was the compound [23].
  • the organic light-emitting element was evaluated. The evaluation results are shown in Table 3.
  • Example 7 The same as Example 7 except that the cover layer material was the compound [38].
  • the organic light-emitting element was evaluated. The evaluation results are shown in Table 3.
  • Example 7 The same as Example 7 except that the cover layer material was the compound [43].
  • the organic light-emitting element was evaluated. The evaluation results are shown in Table 3.
  • Example 7 The same as Example 7 except that the cover layer material was NPD.
  • the organic light-emitting element was evaluated. The evaluation results are shown in Table 3.
  • Example 7 The same as Example 7 except that the cover layer material was SPA.
  • the organic light-emitting element was evaluated. The evaluation results are shown in Table 3.
  • the light-emitting elements of Examples 7 to 12 simultaneously satisfy high luminous efficiency and high color purity.
  • the light-emitting elements of Comparative Examples 3 to 4 corresponded to the color purity of the examples, but the luminous efficiency was lower than that of the respective examples.
  • the light-emitting elements in the respective examples had higher luminous efficiency than Comparative Examples 3 and 4.
  • the aromatic amine compound of the present invention is suitable for use in an organic light-emitting device material, and a light-emitting element which satisfies both high light-emitting efficiency and high color purity is a more excellent cover material.

Abstract

本发明提供一种用于改善有机发光元件的光取出效率以及色纯度的结构如通式(1)所示的芳香胺化合物、含有该芳香胺化合物的有机发光元件材料、有机发光元件覆盖层材料以及有机发光元件。由本发明提供的有机发光元件可实现高发光效率及色再现性,本发明的有机发光元件可用于有机EL显示器、液晶显示器的背光源、照明、计器类等的光源、标示板、标识灯等。本发明提供大幅度提高发光取出效率而且具有优越色纯度的有机发光元件。

Description

芳香胺化合物、覆盖层材料及发光元件 技术领域
本发明涉及有机发光元件用新型芳香胺化合物、含有该芳香胺化合物的覆盖层材料及发光元件,特别是光取出效率得到大幅改善的有机发光元件用芳香胺化合物、覆盖层材料及发光元件。
背景技术
有机发光元件是自发光显示装置,具有轻量薄型、广视角、低耗电、高对比等特性。
有机发光元件的发光原理是,从电极注入的空穴与电子在发光层通过再结合而经由激发态回复到基态,此时产生光。该发光元件具有薄型且能在低驱动电压下高亮度发光以及能通过选择发光材料而进行多色发光的特征,因此倍受关注。
该研究自从由柯达公司的C.W.Tang等揭示有机薄膜元件能以高亮度发光以来,对于其应用,已有许多研究。有机薄膜发光元件被采用在手机主显示屏等中,其实用化取得切实进展。但是,还存在很多技术课题,其中,元件的高效率化和低耗电是一个很大的课题。
根据有机发光层产生的光所发射的方向,有机发光元件可以分为底发射有机发光元件和顶发射有机发光元件。在底发射有机发光元件中,光射向基板侧,在有机发光层的上部形成反射电极,在有机发光层的下部形成透明电极。这种情况下,当有机发光元件为有源矩阵元件时,由于薄膜晶体管的部 分不透光,导致发光面积减小。另一方面,在顶发射有机元件中,透明电极形成在有机发光层的上部,反射电极形成在有机发光层的下部,所以光射向与基板侧相反的方向,由此,光所透过的面积增加,亮度提高。
现有技术中,为了提高顶发射有机发光元件的发光效率,所采用的方法为在发光层的光透过的上部半透明金属电极的上方形成有机覆盖层,以此调节光学干涉距离,抑制外光反射和由表面等离子体能量移动引起的消光等(可参见专利文献1~6)。
例如,专利文献2记载,在顶发射有机发光元件的上部半透明金属电极上形成折射率在1.7以上、膜厚
Figure PCTCN2019071782-appb-000001
的有机覆盖层,使红色发光和绿色发光有机发光元件的发光效率提高了约1.5倍。所用的有机覆盖层的材料是胺衍生物、喹啉醇络合物等。
专利文献4记载,能隙小于3.2eV的材料会影响蓝色波长,不适合用于有机覆盖层,使用的有机覆盖层材料是具有特定化学结构的胺衍生物等。
专利文献5记载,要实现低CIEy值的蓝色发光元件,有机覆盖层材料在波长430nm-460nm的折射率变化量为Δn>0.08,使用的有机覆盖层材料是具有特定化学结构的蒽衍生物等。
专利文献6记载,使用噻吩、吡咯型等有机覆盖层材料后,可得到发光取出效率大幅度提高而且具有优越色纯度的有机发光元件。
专利文献
专利文献1:WO2001/039554
专利文献2:JP特开2006-156390
专利文献3:JP特开2007-103303
专利文献4:JP特开2006-302878
专利文献5:WO2011/043083
专利文献6:CN104744450A
发明内容
如上所述,在现有技术中,使用具有高折射率的特定结构的胺衍生物或使用符合特定参数要求的材料作为有机覆盖层材料来改善光取出效率和色纯度,但是尚未解决兼顾发光效率和色纯度的问题,特别是在制备蓝光发光元件的情况下。
本发明提供一种用于提高有机发光元件的光取出效率以及改善色纯度的芳香胺化合物、含有该芳香胺化合物的有机发光元件材料、有机发光元件覆盖层材料以及有机发光元件。
本发明提供的芳香胺化合物因为具有噻吩结构、呋喃结构或吡咯结构,从而具有优越的薄膜稳定性和高折射率,能够解决兼顾提高光取出效率与改善色纯度的问题。
在本发明中,芳香胺化合物的结构具体地如下通式1所示。
Figure PCTCN2019071782-appb-000002
其中,X 1、X 2选自硫原子、氧原子或N-R,其中,所述R分别选自氢、氘、可被取代的烷基、可被取代的环烷基、可被取代的杂环基、可被取代的链烯基、可被取代的环烯基、可被取代的炔基、可被取代的烷氧基、可被取代的烷硫基、可被取代的芳基醚基、可被取代的芳基硫醚基、可被取代的芳基、 可被取代的杂芳基、可被取代的羰基、可被取代的羧基、可被取代的氧羰基、可被取代的氨基甲酰基、可被取代的烷氨基或可被取代的硅烷基中的一种或多种;
L 1、L 2可以相同或不同,分别选自亚芳基、亚杂芳基或直接成键中的一种;
Ar 1选自亚芳基;
Ar 2、Ar 3可以为相同或不同的杂芳基;
其中,R 1、R 2可以相同或不同,分别选自氢、氘、卤素、可被取代的烷基、可被取代的环烷基、可被取代的杂环基、可被取代的链烯基、可被取代的环烯基、可被取代的炔基、可被取代的烷氧基、可被取代的烷硫基、可被取代的芳基醚基、可被取代的芳基硫醚基、可被取代的芳基、可被取代的杂芳基、可被取代的氰基、可被取代的羰基、可被取代的羧基、可被取代的氧羰基、可被取代的氨基甲酰基、可被取代的烷氨基或可被取代的硅烷基中的一种或多种,也可以是与相邻的取代基键合,形成环。
基于所述化合物的热稳定性及对光取出效率的影响,所述通式1中,优选R 1、R 2为可被取代的芳基或杂芳基的一种或多种。
基于引入杂原子,能提高化合物的折射率。优选所述X 1、X 2选自硫原子;L 1、L 2选自亚芳基;R 1、R 2为芳基。
基于所述材料的可合成性,所述通式1中,优选烷基为C1-C20的烷基,环烷基为C3-C20的环烷基,杂环基为C2-C20的杂环基,链烯基为C2-C20的链烯基,环烯基为C3-C20的环烯基,炔基为C2-C20的炔基,烷氧基为C1-C20的烷氧基,烷硫基为C1-C20的烷硫基,芳基醚基为C6-C40的芳基醚基,芳基硫醚基为C6-C60的芳基硫醚基,芳基为C6-C60的芳基,杂芳基为C4-C60的芳香族杂环基。
基于降低所述材料的结晶性,优选所述Ar 1为非稠环的亚芳基。
基于提高所述材料的光学性能,优选所述Ar 2、Ar 3为直接与氮相连的杂芳基,即氮原子与杂芳基之间没有其他非杂芳基的基团,这些非杂芳基的基团包括但不限于亚芳基。
本发明还提供一种有机发光元件材料,该材料含有上述所述的芳香胺化合物。本发明的有机发光元件包含:基板,第一电极,含有一种以上有机层膜的发光层,第二电极,及覆盖层;该有机发光元件含有上述所述的有机发光元件材料。
本发明另外还提供一种有机发光元件覆盖层材料,该材料含有上述所述的芳香胺化合物。
本发明最后还提供一种有机发光元件,其包含基板、第一电极、包括发光层在内的一层以上有机层膜、及第二电极元件,所述发光元件还具有覆盖层;该覆盖层含有上述有机发光元件覆盖层材料。
可认为本发明的机理如下(但不以任何目的束缚本发明):本发明提供的芳香胺化合物因为具有噻吩结构、呋喃结构或吡咯结构,从而具有优越的薄膜稳定性和高折射率,能够解决兼顾提高光取出效率与改善色纯度的问题。覆盖层材料中使用了通式1所示的化合物,其具有噻吩结构、呋喃结构或吡咯结构,所以具有高的玻璃化转变温度和空间位阻效应,从而具有优越的薄膜稳定性。而且噻吩结构、呋喃结构或吡咯结构可以提高化合物的吸光系数以及得到更高的衰减系数,而吸光系数和衰减系数(k)越高,折射率越高,因此在紫外可见光范围内的薄膜能得到更高的折射率,另外,杂芳基具有提高极化率的性能,能进一步提高折射率。
因此,在覆盖层材料中使用具有高折射率的芳香胺化合物,从而得到大 幅度提高发光取出效率而且具有优越色纯度的有机发光元件。
上述烷基优选为C1-C20的烷基;进一步优选为甲基、乙基、正丙基、异丙基、正丁基、仲丁基或叔丁基等饱和脂肪族烃基中的一种或多种。上述烷基可以具有取代基也可以没有取代基。
上述环烷基优选为C3-C20的环烷基;进一步优选为环丙基、环己基、降冰片基、或金刚烷基等饱和脂环式烃基中的一种或多种。上述环烷基可以具有取代基也可以没有取代基。
上述杂环基优选为C2-C20的杂环基;进一步优选为吡喃环、哌啶环、或环状酰胺等环内具有碳以外的原子的脂肪族环中的一种或多种。上述杂环基可以具有取代基也可以没有取代基。
上述链烯基优选为C2-C20的链烯基;进一步优选为乙烯基、烯丙基、或丁二烯基等包含双键的不饱和脂肪族烃基中的一种或多种。上述链烯基可以具有取代基也可以没有取代基。
上述环烯基优选为C3-C20的环烯基;进一步优选为环戊烯基、环戊二烯基、或环己烯基等包含双键的不饱和脂环式烃基中的一种或多种。上述环烯基可以具有取代基也可以没有取代基。
上述炔基优选为C2-C20的炔基;进一步优选为乙炔基等包含三键的不饱和脂肪族烃基。上述炔基可以具有取代基也可以没有取代基。
上述烷氧基优选为C1-C20的烷氧基;进一步优选为甲氧基、乙氧基、或丙氧基等介由醚键键合脂肪族烃基的官能团中的一种或多种。该脂肪族烃基可以具有取代基也可以没有取代基。
上述烷硫基是烷氧基的氧原子被置换为硫原子的基团。优选为C1-C20的烷硫基;烷硫基的烷基可以具有取代基也可以没有取代基。
上述芳基醚基优选为C6-C40的芳基醚基;进一步优选为苯氧基等介由醚键键合芳香族烃基的官能团。芳基醚基可以具有取代基也可以没有取代基。
上述芳基硫醚基是芳基醚基的醚键的氧原子被置换为硫原子的基团。优选为C6-C60的芳基硫醚基。芳基硫醚基中的芳香族烃基可以具有取代基也可以没有取代基。
上述芳基优选为C6-C60的芳基;进一步优选为苯基、萘基、联苯基、菲基、苯三联苯基或芘基等芳香族烃基中的一种或多种。芳基可以具有取代基也可以没有取代基。
上述杂芳基优选为C4-C60的芳香族杂环基;进一步优选为呋喃基、噻吩基、吡咯、苯并呋喃基、苯并噻吩基、二苯并呋喃基、二苯并噻吩基、吡啶基或喹啉基等中的一种或多种。芳香族杂环基可以具有取代基也可以没有取代基。
上述羰基、羧基、氧羰基、氨基甲酰基、烷氨基可以具有取代基也可以没有取代基。对于烷氨基取代基的碳数没有特别限制,通常为2以上60以下的范围。
上述硅烷基表示为例如三甲基硅烷基、三乙基硅烷基、二甲基叔丁基硅烷基、或三苯基硅烷基等具有与硅原子键合的键的官能团,硅烷基可以具有取代基也可以没有取代基。对于硅烷基的碳数没有特别限制,通常为1以上40以下的范围。
上述取代基选自于氘、卤素、C1-C15的烷基、C3-C15的环烷基、C3-C15的杂环基、C2-C15的链烯基、C4-C15的环烯基、C2-C15的炔基、C1-C55的烷氧基、C1-C55的烷巯基、C6-C55的芳基醚基、C6-C55的芳基硫醚基、C6-C55的芳基、C4-C55的芳香族杂环基、羰基、羧基、氧羰基、氨基甲酰基、C1-C55 的烷氨基或C3-C15的硅原子数为1-5的硅烷基中的一种或多种。
所述芳香胺化合物,没有特别限定,优选列举如下的例子。
Figure PCTCN2019071782-appb-000003
Figure PCTCN2019071782-appb-000004
Figure PCTCN2019071782-appb-000005
上通式1所示的芳香胺化合物的合成可以使用公知的方法进行。例如,使用镍或钯的Buchwald-Hartwig反应、使用铜的Ullman反应,但并不限于这些方法。上述反应,考虑到反应条件温和、各种官能团的选择性优越等特点,优选Buchwald-Hartwig反应。另外,Ar 2、Ar 3为不同取代基时,按胺和卤化物的理论混合比,分阶段合成。具体合成如下式2所示,
Figure PCTCN2019071782-appb-000006
上述式2中,Hal表示氯原子、溴原子、碘原子等卤素或三氟甲磺酸基等拟卤素。
本发明中的通式1的芳香胺化合物,可以单独使用也可以跟其他材料混合使用在有机发光元件中。
下面具体说明本发明的有机发光元件的实施方式。本发明的有机发光元件是含有芳香胺化合物的有机发光元件,该有机发光元件依次具有基板、第一电极、包括发光层在内的一层以上的有机层膜、使前述发光层发出的光透过的第二电极和光取出效率改善层(即覆盖层),发光层通过电能而发光。
在本发明的发光元件中,所用的基板优选为钠玻璃或无碱玻璃等玻璃基板。对于玻璃基板的厚度,只要是足以保持机械强度的厚度即可,因此,0.5mm以上就足够。对于玻璃的材质,由于从玻璃中溶出的离子越少越好,因此,优选无碱玻璃。另外,市场上销售的涂有SiO 2等防护涂层的也可以使用。此外,如果第一电极稳定地发挥功能,则基板不必一定为玻璃,例如,也可以在塑料基板上形成阳极。
第一电极中使用的材料优选为具有高折射率特性的金、银、铝等金属或APC系合金之类的金属合金。这些金属或金属合金也可以是多层层叠。此外,可在金属、金属合金或它们的层积体的上面和/或下面层叠氧化锡、氧化铟、氧化锡铟(ITO)、氧化锌铟(IZO)等透明导电性金属氧化物。
第二电极中使用的材料优选为可形成能使光透过的半透明或透明膜的材料。例如,银、镁、铝、钙或这些金属的合金,氧化锡、氧化铟、氧化锡铟(ITO)、氧化锌铟(IZO)等透明导电性金属氧化物。这些金属、合金、或金属氧化物也可以是多层层叠。
上述电极的形成方法可以是电阻加热蒸镀、电子束蒸镀、溅射、离子喷镀、或胶涂布法等,没有特别限制。此外,第一电极与第二电极根据所使用的材料的功函数,其中一方相对于有机膜层起阳极作用,另一方起阴极作用。
有机层除了可以仅由发光层构成以外,还可以是由1)空穴传输层/发光层,2)发光层/电子传输层,3)空穴传输层/发光层/电子传输层,4) 空穴注入层/空穴传输层/发光层/电子传输层,5)空穴注入层/空穴传输层/发光层/电子传输层/电子注入层等层叠而成的结构。此外,上述各层可以分别是单层或多层中的任一种。采用1)~5)的结构时,阳极侧电极与空穴输入层或空穴传输层接合,阴极侧电极则与电子输入层或电子传输层接合。
空穴传输层可通过将空穴传输材料的一种或二种以上层叠或混合的方法,或通过使用空穴传输材料和高分子粘合剂的混合物的方法来形成。空穴传输材料需要在施加了电场的电极之间高效率地传输来自正极的空穴,因此希望空穴注入效率高、能够高效率地传输注入的空穴。因此,要求空穴传输材料具有适当离子势,且空穴迁移率大,进而,稳定性优异,制造及使用时不容易产生会成为陷阱的杂质。对满足这样的条件的物质,没有特别限定,例如可以是4,4’-二(N-(3-甲基苯基)-N-苯基氨基)联苯(TPD)、4,4’-二(N-(1-萘基)-N-苯基氨基)联苯(NPD)、4,4’-二(N,N-二(4-联苯基)氨基)联苯(TBDB)、二(N,N-二苯基-4-苯基氨基)-N,N-二苯基-4,4’-二氨基-1,1’-联苯(TPD232)等联苯胺,4,4’,4”-三(3-甲基苯基(苯基)氨基)三苯胺(m-MTDATA)、4,4’,4”-三(1-萘基(苯基)氨基)三苯胺(1-TNATA)等称作星型三芳胺的材料组,具有咔唑骨架的材料,其中优选咔唑类多聚体,具体可列举二(N-芳基咔唑)或二(N-烷基咔唑)等二咔唑衍生物、三咔唑衍生物、四咔唑衍生物、三苯系化合物、吡唑啉衍生物、芪系化合物、肼系化合物、苯并呋喃衍生物、噻吩衍生物、噁二唑衍生物、酞菁衍生物、卟啉衍生物等杂环化合物、或富勒烯衍生物,在聚合物系中,还优选侧链上具有上述单体的聚碳酸酯或苯乙烯衍生物、聚噻吩、聚苯胺、聚芴、聚乙烯基咔唑和聚硅烷等。 此外,还可以使用P型Si、P型SiC等无机化合物。
可在阳极和空穴传输层之间设置空穴注入层。通过设置空穴注入层,可使有机发光元件实现低驱动电压,提高耐久寿命。空穴注入层通常优选使用比空穴传输层材料的离子势低的材料。具体地,例如可以是上述TPD232之类的联苯胺衍生物、星型三芳胺材料组,另外也可以使用酞菁衍生物等。此外,还优选空穴注入层由受体性化合物单独构成,或受体性化合物掺杂在别的空穴传输层中使用。受体性化合物可列举例如三氯化铁(III)、氯化铝、氯化镓、氯化铟、氯化锑等金属氯化物,氧化钼、氧化钒、氧化钨、氧化钌等金属氧化物,三(4-溴苯基)六氯锑酸铵(TBPAH)等电荷转移配位物。此外,还可以是分子内具有硝基、氰基、卤素或三氟甲基的有机化合物、醌系化合物、酸酐系化合物、富勒烯等。
本发明中,发光层可以是单层、多层中的任一种,可分别用发光材料(主体材料、掺杂材料)形成,其可以是主体材料和掺杂材料的混合物,也可以仅为主体材料,任一情况都可以。即,在本发明发光元件的各发光层中,可以是仅主体材料或仅掺杂材料发光,也可以是主体材料和掺杂材料一起发光。从高效率地利用电能、得到高色纯度的发光的角度考虑,优选发光层由主体材料和掺杂材料混合而成。另外,主体材料和掺杂材料分别可以为一种,也可以为多种的组合,任一情况都可以。掺杂材料可以添加在整个主体材料中,也可以添加在一部分中,任一情况都可以。掺杂材料可以是层叠的,也可以分散的,任一情况都可以。掺杂材料可以控制发光色。掺杂材料的量过多时会发生浓度消光现象,因此,其用量相对于主体材料,优选为20重量%以下,更优选为10重量%以下。掺杂方法可以是与主体材料共蒸镀的方法,也可以是预先与主体材料混合后同时蒸镀的方法。
作为发光材料,具体而言,可使用以往作为发光体而已知的蒽、芘等稠环衍生物,三(8-羟基喹啉)铝等金属螯合类羟基喹啉化合物、二苯并呋喃衍生物、咔唑衍生物、吲哚并咔唑衍生物,聚合物中的聚亚苯基亚乙烯基衍生物、聚对亚苯基衍生物、以及聚噻吩衍生物等,没有特别限定。
对发光材料中所含有的主体材料没有特别限定,可以使用蒽、菲、芘、苯并菲、并四苯、苝、苯并[9,10]菲、荧蒽、芴、茚等具有稠芳环的化合物或其衍生物、N,N’-二萘基-N,N’-二苯基-4,4’-二苯基-1,1’-二胺等芳香族胺衍生物、三(8-羟基喹啉)铝等金属螯合类羟基喹啉化合物、吡咯并吡咯衍生物、二苯并呋喃衍生物、咔唑衍生物、吲哚并咔唑衍生物、三嗪衍生物,在聚合物中,可以使用聚亚苯基亚乙烯基衍生物、聚对亚苯基衍生物、聚芴衍生物、聚乙烯基咔唑衍生物、聚噻吩衍生物等,没有特别限定。
此外,对掺杂材料没有特别限制,可列举萘、蒽、菲、芘、苯并菲、苝、苯并[9,10]菲、荧蒽、芴、茚等具有稠芳环的化合物或其衍生物(例如2-(苯并噻唑-2-基)-9,10-二苯基蒽等)、呋喃、吡咯、噻吩、噻咯、9-硅杂芴、9,9’-螺二硅杂芴、苯并噻吩、苯并呋喃、吲哚、二苯并噻吩、二苯并呋喃、咪唑并吡啶、菲咯啉、吡啶、吡嗪、萘啶、喹喔啉、吡咯并吡啶、噻吨等具有杂芳环的化合物或其衍生物、硼烷衍生物、二苯乙烯基苯衍生物、氨基苯乙烯基衍生物、吡咯甲川衍生物、二酮基吡咯并[3,4-c]吡咯衍生物、香豆素衍生物、咪唑、噻唑、噻二唑、咔唑、噁唑、噁二唑、三唑等唑衍生物、芳香族胺衍生物等。
另外,发光层中也可以掺杂磷光发光材料。磷光发光材料为室温下也可以磷光发光的材料。使用磷光发光材料作为掺杂剂时,需要基本上能够在室 温下磷光发光,但没有特别限定,优选含有选自铟、钌、铑、钯、铂、锇和铼中的至少一种金属的有机金属络合化合物。从室温下具有高的磷光发光效率的角度考虑,更优选具有铟或铂的有机金属络合物。作为与磷光发光性掺杂剂组合使用的主体材料,吲哚衍生物、咔唑衍生物、吲哚并咔唑衍生物,具有吡啶、嘧啶、三嗪骨架的含氮芳香族化合物衍生物,多芳基苯衍生物、螺芴衍生物、三聚茚、苯并[9,10]菲等芳香烃化合物衍生物,二苯并呋喃衍生物、二苯并噻吩等含有氧族元素的化合物,羟基喹啉铍络合物等有机金属络合物可良好地使用,但基本上只要比使用的掺杂剂的三重态能大、电子和空穴能从各自层输送层顺利地注入或传输,则没有特别限定。另外,可以含有2种以上三重态发光掺杂剂,也可以含有2种以上主体材料。此外,也可以含有一种以上的三重态发光掺杂剂和一种以上的萤光发光掺杂剂。
在本发明中,电子传输层为电子从阴极注入、再将电子传输的层。电子传输层宜具有高的电子注入效率,且能高效率地传输注入的电子。因此,电子传输层优选由电子亲和力和电子迁移率大且稳定性优异、制造及使用时不容易产生会成为陷阱的杂质的物质构成。但是,在考虑空穴和电子的传输均衡时,如果电子传输层主要发挥可以高效率地阻止来自阳极的空穴不再结合而流向阴极侧的作用,则即使由电子传输能力不那么高的材料构成,改善发光效率的效果也会与由电子传输能力高的材料构成的情况同等。因而,在本发明中的电子传输层中,可以高效率地阻止空穴迁移的空穴阻止层作为等同物也包含在内。
对电子传输层中使用的电子传输材料没有特别限定,可列举萘、蒽等稠芳环衍生物、以4,4’-二(二苯基乙烯基)联苯为代表的苯乙烯基系芳环衍生物、蒽醌、联苯醌等醌衍生物、氧化膦衍生物、三(8-羟基喹啉)铝等 羟基喹啉络合物、苯并羟基喹啉络合物、羟基唑络合物、偶氮甲碱络合物、环庚三烯酚酮金属络合物或黄酮醇金属络合物,从降低驱动电压、能够得到高效率发光的角度考虑,优选使用具有杂芳环结构的化合物,所述杂芳环结构由选自碳、氢、氮、氧、硅、磷中的元素构成并且含有吸电子性氮。
含有吸电子性氮的杂芳环具有高亲电子性。具有吸电子性氮的电子传输材料容易接受来自具有高亲电子性的阴极的电子,因而可以降低发光元件的驱动电压。此外,由于向发光层的电子供给增大、在发光层再结合的概率增加,因而发光效率提高。作为含有吸电子性氮的杂芳环,可以列举例如,吡啶环、吡嗪环、嘧啶环、喹啉环、喹喔啉环、萘啶环、嘧啶并嘧啶环、苯并喹啉环、菲咯啉环、咪唑环、噁唑环、噁二唑环、三唑环、噻唑环、噻二唑环、苯并噁唑环、苯并噻唑环、苯并咪唑环、或菲并咪唑环等。
另外,作为具有这些杂芳环结构的化合物,可以列举出例如苯并咪唑衍生物、苯并噁唑衍生物、苯并噻唑衍生物、噁二唑衍生物、噻二唑衍生物、三唑衍生物、吡嗪衍生物、菲咯啉衍生物、喹喔啉衍生物、喹啉衍生物、苯并喹啉衍生物,联吡啶、三联吡啶等低聚吡啶衍生物。上述衍生物具有稠芳环骨架时,玻璃转化温度提高,且电子迁移率增加,由此,降低发光元件的驱动电压的效果增大,因而优选。此外,从发光元件的耐久寿命提高、合成容易、原料容易购得的角度考虑,优选上述稠芳环骨架为蒽骨架、芘骨架或菲咯啉骨架。
上述电子传输材料可以单独使用,也可以将二种以上的上述电子传输材料混合使用,或将一种以上的其它电子传输材料混合到上述电子传输材料中使用。另外,也可以添加给体化合物。这里,给体化合物是指通过改善电子注入能障而使电子容易从阴极或电子注入层向电子传输层注入、进而改善电 子传输层的电传导性的化合物。作为本发明的给体化合物的优选例,可列举:碱金属、含有碱金属的无机盐、碱金属与有机物的络合物、碱土金属、含有碱土金属的无机盐、或碱土金属与有机物的络合物等。作为碱金属、或碱土金属的优选种类,可列举低功函数且改善电子传输能力的效果大的锂、钠、或铯之类的碱金属或镁、钙之类的碱土金属。
本发明中,也可在阴极和电子传输层之间设置电子注入层。通常,电子注入层是以帮助电子从阴极注入到电子传输层为目的而插入的,插入时,可以使用含有吸电子性氮的杂芳环结构的化合物,也可以使用含有上述给体化合物的层。另外,在电子注入层中,还可以使用绝缘体或半导体的无机物。使用这些材料,可以有效地防止发光元件短路,且可以提高电子注入性,因而优选。作为这些绝缘体,优选使用选自碱金属硫族化物、碱土金属硫族化物、碱金属卤化物及碱土金属卤化物中的至少一种金属化合物。另外,有机物与金属的络合物也可良好地使用。
作为构成发光元件的上述各层的形成方法,可列举电阻加热蒸镀、电子束蒸镀、溅射、分子层叠法、或涂层法等,没有特别限制,但是,通常,从元件特性的角度考虑,优选电阻加热蒸镀或电子束蒸镀。
有机层的厚度视发光物质的电阻值而异,不能限定,但优选为1~1000nm。发光层、电子传输层、空穴传输层的膜厚分别优选为1nm以上200nm以下,更优选为5nm以上100nm以下。
本发明的光取出效率覆盖层含有上述具有噻吩结构、呋喃结构或吡咯结构的化合物。为了使高发光效率极大化、实现色再现性,优选使噻吩结构、呋喃结构或吡咯结构的化合物以20nm~120nm的厚度层叠。更优选层叠厚度为40nm~80nm。另外,从可以使发光效率极大化的角度考虑,更优选光取出 效率覆盖层厚度为50nm~70nm。
对光取出效率覆盖层的形成方法没有特别限定,可列举电阻加热蒸镀、电子束蒸镀、溅射、分子层叠法、涂层法、喷墨法、刮板法、激光转印法等,没有特别限制。其中蒸镀法为最流行的形成方法。在此过程中容易结晶的物质会影响器件的整体性能。
本发明的发光元件具有可以将电能转换为光的功能。这里,作为电能,主要使用直流电流,也可以使用脉冲电流或交流电流。对电流值及电压值没有特别限制,但考虑到元件的耗电量和寿命时,应以能以尽可能低的能量得到最大亮度的方式来选择。
本发明的发光元件可良好地用作以例如矩阵及/或字段方式进行显示的平面显示器。
矩阵方式是指用于显示的像素以方格状或马赛克状等二维配置,通过像素的集合来显示文字或图像。像素的形状、尺寸视用途而定。例如,在计算机、监控器、电视的图像及文字显示中,通常使用边长在300μm以下的四边形的像素,另外,在显示面板那样的大型显示器的情况下,使用边长为mm等级的像素。在单色显示的情况下,只要排列同色的像素即可,但在彩色显示的情况下,将红、绿、蓝色像素排列进行显示。这种情况下,典型的有三角型和条纹型。而且,该矩阵的驱动方法可以是逐线驱动方法和有源矩阵中的任一种。逐线驱动虽然其构造简单,但在考虑操作特性时,有时会有有源矩阵优异的情况,因此,需要根据用途灵活使用。
本发明中的字段方式是指形成图案、使由该图案的配置所确定的区域发光、从而显示预先确定的信息的方式。可列举例如:数字钟、温度计中的时刻、温度显示,音响设备、电磁灶等的工作状态显示及汽车的面板显示等。 而且,所述矩阵显示和字段显示可以共存在同一个面板中。
本发明的发光元件优选用作照明光源,可以提供比现有的薄且轻、可进行面发光的光源。
具体实施方式
本发明的芳香胺化合物用以下实施例举例说明,但并不限于这些实施例举例的芳香胺化合物和合成方法。
甲苯、二甲苯、甲醇、3-氨基吡啶等购于国药公司;4,4’-二溴联苯、2-(4-溴苯基)-5-苯基噻吩等购于郑州海阔光电有限公司;各种钯催化剂等购于Aldrich公司。
1H-N-MR谱图使用JEOL(400MHz)核磁共振仪来测定;HPLC谱图使用岛津LC-20AD高效液相仪来测定。
制备例、实施例和比较例中,使用了下述物质:
化合物[1]:4,4”-双(N-(3-吡啶基)-(4-(2-(5-苯噻吩基))苯基)胺)基-直三联苯
化合物[4]:4,4”-双(N-(3-吡啶基)-2-(5-苯噻吩)胺)基-直三联苯
化合物[8]:4,4’-双(N-(3-吡啶基)-(4-(2-(5-苯噻吩基))苯基)胺)基-联苯
化合物[23]:4,4’-双(N-(3-吡啶基)-(4-(2-(5-苯呋喃基))苯基)胺)基-联苯
化合物[38]:4,4’-双(N-(3-吡啶基)-(4-(2-(5-苯N-苯吡咯))苯基)胺)基-联苯
化合物[43]:4,4’-双(N-(3-吡啶基)-(4-(2-(5-苯N-苯吡咯))N-苯吡咯基)胺)基-联苯
Com-2:N,N,N’,N’-四(4-联苯基)二氨基亚联苯
NPD:N,N’-二苯基-N,N’-二(1-萘基)-1,1’-联苯-4,4’-二胺(结构如下)
Figure PCTCN2019071782-appb-000007
F4-TCNQ:2,3,5,6-四氟-7,7’,8,8’-四氰二甲基对苯醌(结构如下)
Figure PCTCN2019071782-appb-000008
BH:9-(2-萘基)-10-(4-(1-萘基)苯基)蒽(结构如下)
Figure PCTCN2019071782-appb-000009
BD:E-7-(4-(二苯基氨基)苯乙烯基)-N,N-二苯基-9,9’-二甲基芴基-2-胺(结构如下)
Figure PCTCN2019071782-appb-000010
Alq 3:三(8-羟基喹啉)铝(结构如下)
Figure PCTCN2019071782-appb-000011
SPA:2,5-二(4-(N-(-3-联苯基)-(N-3-吡啶基)氨基苯基)噻吩(结构如下)
Figure PCTCN2019071782-appb-000012
制备例1
化合物[1]的合成
Figure PCTCN2019071782-appb-000013
氮气氛围下,反应器中加入3-氨基吡啶2.07g(22mmol)、2-(4-溴苯基)-5-苯基噻吩6.305g(20mmol)、叔丁醇钠4.61g(48mmol),双(二亚苄基丙酮)钯0.23g(4.0mmol),2-二环己基磷-2’,4’,6’-三异丙基联苯0.38g(8mmol)、甲苯50ml和二甲苯50ml,搅拌回流反应6h。冷却至室温,过滤,滤饼用100ml二甲苯淋洗,200ml水洗两次,过滤,滤饼用200ml甲醇搅洗两次,过滤,真空干燥,得到5.6g的[4-(5-苯基-噻吩-2-苯基]-3-吡啶基胺。
1HNMR(DMSO):δ8.52(s,1H),8.22(s,1H),8.12(s,1H),7.88(s,2H),7.48~7.41(m,3H),7.32~7.22(m,6H),6.54~6.51(m,2H)
Figure PCTCN2019071782-appb-000014
氮气氛围下,反应器中加入[4-(5-苯基-噻吩-2-苯基]-3-吡啶基胺5.25g(16mmol)4,4’-二溴三联苯、3.10g(8mmol)、双(二亚苄基丙酮)钯0.18mg(0.32mmol)、2-二环己基磷-2’,4’,6’-三异丙基联苯0.30mg(0.64mmol)、叔丁醇钠1.85g(19.2mmol)、甲苯60ml和二甲苯60ml,加热回流搅拌反应4h。冷却至室温,过滤,滤饼用200ml二甲苯淋洗,100ml水和100ml甲醇的混合液洗涤,200ml水洗涤,过滤,烘干,得到4.7g粗产品。粗产品在压力3×10 -3Pa,温度330℃下升华得到2.4g化合物[1](淡黄色固体)。
1HNMR(CDCl 3):δ8.55~8.51(s,2H),8.25~8.21(m,2H),7.66~7.63(s,4H),7.56~7.52(m,4H),7.50~7.46(m,4H),7.42~7.38(m,2H),7.34~7.30(m,4H),7.27~7.21(m,12H),6.54~6.50(m,8H).
HPLC(纯度=98.1%)
制备例2
化合物[8]的合成
Figure PCTCN2019071782-appb-000015
氮气氛围下,反应器中加入3-氨基吡啶2.07g(22mmol)、2-(4-溴苯基)-5-苯基噻吩6.305g(20mmol)、叔丁醇钠4.61g(48mmol),双(二亚苄基丙酮)钯0.23g(4.0mmol),2-二环己基磷-2’,4’,6’-三异丙基联苯0.38g(8mmol)、甲苯50ml和二甲苯50ml,搅拌回流反应6h。冷却至室温,过滤,滤饼用100ml二甲苯淋洗,200ml水洗两次,过滤,滤饼用200ml甲醇搅洗两次,过滤,真空干燥,得到5.6g的[4-(5-苯基-噻吩-2-苯基]-3-吡啶基胺。
1HNMR(DMSO):δ8.52(s,1H),8.22(s,1H),8.12(s,1H),7.88(s,2H),7.48~7.41(m,3H),7.32~7.22(m,6H),6.54~6.51(m,2H)
Figure PCTCN2019071782-appb-000016
氮气氛围下,反应器中加入[4-(5-苯基-噻吩-2-苯基]-3-吡啶基胺5.25g(16mmol)4,4’-二溴联苯、2.5g(8mmol)、双(二亚苄基丙酮)钯0.18mg(0.32mmol)、2-二环己基磷-2’,4’,6’-三异丙基联苯0.30mg(0.64mmol)、叔丁醇钠1.85g(19.2mmol)、甲苯60ml和二甲苯60ml,加热回流搅拌反应4h。冷却至室温,过滤,滤饼用200ml二甲苯淋洗,100ml水和100ml甲醇的混合液洗涤,200ml水洗涤,过滤,烘干,得到4.5g粗产品。粗产品在压力3×10-3Pa,温度310℃下升华得到2.2g化合物[12](淡黄色固体)。
1HNMR(CDCl 3):δ8.55~8.51(s,2H),8.25~8.21(m,2H),7.66~7.63(s,4H), 7.56~7.52(m,4H),7.50~7.46(m,4H),7.42~7.38(m,2H),7.34~7.30(m,4H),7.27~7.21(m,8H),6.54~6.50(m,8H).
HPLC(纯度=98.6%)
制备例3
化合物[4]的合成
Figure PCTCN2019071782-appb-000017
氮气氛围下,反应器中加入3-氨基吡啶2.07g(22mmol)、2-溴-5-苯基噻吩4.78g(20mmol)、叔丁醇钠4.61g(48mmol),双(二亚苄基丙酮)钯0.23g(4.0mmol),2-二环己基磷-2’,4’,6’-三异丙基联苯0.38g(8mmol)、甲苯50ml和二甲苯50ml,搅拌回流反应6h。冷却至室温,过滤,滤饼用100ml二甲苯淋洗,200ml水洗两次,过滤,滤饼用200ml甲醇搅洗两次,过滤,真空干燥,得到4.3g的[(5-苯基-噻吩]-3-吡啶基胺。
1HNMR(DMSO):δ8.52(s,1H),8.22(s,1H),8.12(s,1H),7.48~7.41(m,3H),7.32~7.22(m,4H),6.54~6.51(m,2H)
HPLC(纯度=98.1%)
Figure PCTCN2019071782-appb-000018
氮气氛围下,反应器中加入[(5-苯基-噻吩]-3-吡啶基胺4.03g(16mmol)4,4’-二溴三联苯、3.10g(8mmol)、双(二亚苄基丙酮)钯0.18mg(0.32mmol)、2-二环己基磷-2’,4’,6’-三异丙基联苯0.30mg(0.64mmol)、叔丁醇钠 1.85g(19.2mmol)、甲苯60ml和二甲苯60ml,加热回流搅拌反应4h。冷却至室温,过滤,滤饼用200ml二甲苯淋洗,100ml水和100ml甲醇的混合液洗涤,200ml水洗涤,过滤,烘干,得到3.6g粗产品。粗产品在压力3×10 -3Pa,温度300℃下升华得到1.8g化合物[4](淡黄色固体)。
1HNMR(CDCl 3):δ8.55~8.51(s,2H),8.25~8.21(m,2H),7.66~7.63(s,4H),7.56~7.52(m,4H),7.50~7.46(m,4H),7.42~7.38(m,2H),7.34~7.30(m,4H),7.27~7.21(m,8H),6.54~6.50(m,4H).
制备例4
化合物[23]的合成
除了2-(4-溴苯基)-5-苯基呋喃代替2-(4-溴苯基)-5-苯基噻吩以外,其余与制备例1相同。得到2.3g化合物[23](白色固体)。
1HNMR(CDCl 3):δ8.54~8.51(s,2H),8.25~8.21(m,2H),7.67~7.63(s,4H),7.56~7.52(m,4H),7.50~7.46(m,4H),7.43~7.38(m,2H),7.34~7.30(m,4H),7.27~7.21(m,12H),6.55~6.51(m,8H).
HPLC(纯度=98.5%)
制备例5
化合物[38]的合成
除了2-(4-溴苯基)-1,5-二苯基-吡咯代替2-(4-溴苯基)-5-苯基噻吩以外,其余与制备例1相同。得到2.6g化合物[38](白色固体)。
1HNMR(CDCl 3):δ8.55~8.52(s,2H),8.25~8.21(m,2H),7.67~7.63(s,4H),7.56~7.52(m,4H),7.50~7.46(m,4H),7.43~7.38(m,2H),7.35~7.29(m,12H),7.25~7.21(m,12H),6.53~6.50(m,8H).
HPLC(纯度=98.7%)
制备例6
化合物[43]的合成
除了4-[5-(4-溴苯)-2-噻吩基]-吡啶代替2-(4-溴苯基)-5-苯基噻吩以外,其余与制备例1相同。得到2.0g化合物[43](白色固体)。
1HNMR(CDCl 3):δ8.55~8.51(s,2H),8.25~8.21(m,2H),7.66~7.63(s,4H),7.56~7.52(m,4H),7.50~7.46(m,4H),7.42~7.38(m,2H),7.34~7.30(m,4H),7.27~7.21(m,10H),6.54~6.50(m,8H).
HPLC(纯度=98.3%)
实施例1
薄膜样品的制作方法
无碱玻璃基板(旭硝子株式会社,AN100)进行20分钟的UV臭氧洗涤处理,进而设置在真空蒸镀装置内,进行排气,直至装置内的真空度比1×10 -3Pa高的真空度条件下,通过电阻加热蒸镀法,把化合物[12]蒸镀制备约50nm的薄膜。蒸镀速度为0.1nm/s。
上述制备的薄膜样品折射率和衰减系数的测定是在东丽分析研究中心(Toray Research Center.Inc.),使用仪器是椭圆偏振光谱(J.A.Woollam社M-2000)。
【表1】
Figure PCTCN2019071782-appb-000019
实施例2~6及比较例1、2
实施例2
除了将化合物[8]变为化合物[1]以外,其余与实施例1相同。
对有机发光元件进行评价。评价结果见表2。
实施例3
除了将化合物[8]变为化合物[4]以外,其余与实施例1相同。
对有机发光元件进行评价。评价结果见表2。
实施例4
除了将化合物[8]变为化合物[23]以外,其余与实施例1相同。
对有机发光元件进行评价。评价结果见表2。
实施例5
除了将化合物[8]变为化合物[38]以外,其余与实施例1相同。
对有机发光元件进行评价。评价结果见表2。
实施例6
除了将化合物[8]变为化合物[43]以外,其余与实施例1相同。
对有机发光元件进行评价。评价结果见表2。
比较例1
除了将化合物[8]变为NPD以外,其余与实施例1相同。
比较例2
除了将化合物[8]变为SPA以外,其余与实施例1相同。
对有机发光元件进行评价。评价结果见表2。
【表2】
Figure PCTCN2019071782-appb-000020
如上述表2所示,实施例2至6的折射率均显著高于比较例1。进一步,测试了发光元件性能。
发光元件的评价方法
实施例7
无碱玻璃在异丙醇中15分钟超声波洗涤后,在大气中进行30分钟UV臭氧洗涤处理。利用真空蒸镀法,首先蒸镀铝100nm作成阳极,随后在阳极上空穴注入层(NPD和F4-TCNQ(重量比97∶3),50nm),空穴传输层(NPD,80nm),蓝色发光层(BH和BD(重量比97∶3,20nm),电子传输层(Alq 3,30nm),电子注入层(LiF,1nm)依次层叠蒸镀后,共蒸镀Mg和Ag(重量比10∶1,15nm)作成半透明阴极。
随后蒸镀化合物[8](60nm)作为覆盖层。
最后在干燥氮气氛围的手套箱里,用环氧树脂粘合剂把无碱玻璃制的封口板封发光元件。
上述发光元件在室温,大气中,加10mA/cm 2直流电流,从封口板的发光用分光放射辉度计(CS1000,柯尼卡美能达株式会社)测试了亮度和色纯度。使用上述测定值测定光度效率为7.3cd/A,色纯度为CIE(x,y)=(0.139,0.051)。使用化合物[8]作为覆盖层得到高发光效率,高色纯度的高性能发光元件。
对有机发光元件进行评价。评价结果见表3。
实施例8
除了覆盖层材料为化合物[1]以外,其余与实施例7相同。
对有机发光元件进行评价。评价结果见表3。
实施例9
除了覆盖层材料为化合物[4]以外,其余与实施例7相同。
对有机发光元件进行评价。评价结果见表3。
实施例10
除了覆盖层材料为化合物[23]以外,其余与实施例7相同。
对有机发光元件进行评价。评价结果见表3。
实施例11
除了覆盖层材料为化合物[38]以外,其余与实施例7相同。
对有机发光元件进行评价。评价结果见表3。
实施例12
除了覆盖层材料为化合物[43]以外,其余与实施例7相同。
对有机发光元件进行评价。评价结果见表3。
比较例3
除了覆盖层材料为NPD以外,其余与实施例7相同。
对有机发光元件进行评价。评价结果见表3。
比较例4
除了覆盖层材料为SPA以外,其余与实施例7相同。
对有机发光元件进行评价。评价结果见表3。
【表3】
  化合物 发光效率(cd/A) 色纯度CIE(x,y)
实施例7 [8] 7.3 0.139,0.051
实施例8 [1] 6.9 0.139,0.051
实施例9 [4] 6.6 0.138,0.049
实施例10 [23] 7.1 0.139,0.050
实施例11 [38] 7.0 0.139,0.051
实施例12 [43] 7.2 0.139,0.051
比较例3 NPD 4.5 0.139,0.048
比较例4 SPA 6.5 0.137,0.051
从上述表3所示,实施例7~实施例12的发光元件同时满足高发光效率和高色纯度。另一方面,比较例3~比较例4的发光元件与实施例的色纯度属同等程度,但发光效率比各实施例低。各实施例中的发光元件较之比较例3、4有更高的发光效率。
以上结果得出,本发明的芳香胺化合物适用于有机发光元件材料,得到同时满足高发光效率和高色纯度的发光元件,是更加优异的覆盖层材料。

Claims (10)

  1. 一种芳香胺化合物,其具有下通式1所示的结构:
    Figure PCTCN2019071782-appb-100001
    其中,X 1、X 2选自硫原子、氧原子或N-R,其中,所述R分别选自氢、氘、可被取代的烷基、可被取代的环烷基、可被取代的杂环基、可被取代的链烯基、可被取代的环烯基、可被取代的炔基、可被取代的烷氧基、可被取代的烷硫基、可被取代的芳基醚基、可被取代的芳基硫醚基、可被取代的芳基、可被取代的杂芳基、可被取代的羰基、可被取代的羧基、可被取代的氧羰基、可被取代的氨基甲酰基、可被取代的烷氨基或可被取代的硅烷基中的一种或多种;
    L 1、L 2可以相同或不同,分别选自亚芳基、亚杂芳基或直接成键中的一种;
    Ar 1选自亚芳基;
    Ar 2、Ar 3可以为相同或不同的杂芳基;
    其中,R 1、R 2可以相同或不同,分别选自氢、氘、卤素、可被取代的烷基、可被取代的环烷基、可被取代的杂环基、可被取代的链烯基、可被取代的环烯基、可被取代的炔基、可被取代的烷氧基、可被取代的烷硫基、可被取代的芳基醚基、可被取代的芳基硫醚基、可被取代的芳基、可被取代的杂芳基、可被取代的氰基、可被取代的羰基、可被取代的羧基、可被取代的氧羰基、可被取代的氨基甲酰基、可被取代的烷氨基或可被取代的硅烷基中的一种或 多种,也可以是与相邻的取代基键合,形成环。
  2. 根据权利要求1所述的芳香胺化合物,其特征在于:所述通式1中,R 1、R 2为芳基或杂芳基中的一种或多种。
  3. 根据权利要求1或2所述的芳香胺化合物,其特征在于:所述X 1、X 2选自硫原子;L 1、L 2选自亚芳基;R 1、R 2为芳基。
  4. 根据权利要求1-3中任一项所述的芳香胺化合物,其特征在于:所述Ar 1为非稠环的芳基。
  5. 根据权利要求1-4中任一项所述的芳香胺化合物,其特征在于:所述Ar 2、Ar 3为直接与氮相连的杂芳基。
  6. 根据权利要求1-5中任一项所述的芳香胺化合物,其特征在于:所述通式1中,烷基为C1-C20的烷基,环烷基为C3-C20的环烷基,杂环基为C2-C20的杂环基,链烯基为C2-C20的链烯基,环烯基为C3-C20的环烯基,炔基为C2-C20的炔基,烷氧基为C1-C20的烷氧基,烷硫基为C1-C20的烷硫基,芳基醚基为C6-C40的芳基醚基,芳基硫醚基为C6-C60的芳基硫醚基,芳基为C6-C60的芳基,杂芳基为C4-C60的芳香族杂环基。
  7. 一种有机发光元件材料,其特征在于:该材料含有权利要求1-6中任一项所述的芳香胺化合物。
  8. 一种有机发光元件,其特征在于:包含基板、第一电极、含有一种以上有机层膜的发光层、第二电极及覆盖层;该有机发光元件含有权利要求7所述的有机发光元件材料。
  9. 一种有机发光元件覆盖层材料,其特征在于:该材料含有权利要求1-6中任一项所述的芳香胺化合物。
  10. 一种有机发光元件,其特征在于:包含基板、第一电极、包括发光层在内 的一层以上有机层膜、第二电极及覆盖层;所述覆盖层含有权利要求9所述的有机发光元件覆盖层材料。
PCT/CN2019/071782 2018-01-31 2019-01-15 芳香胺化合物、覆盖层材料及发光元件 WO2019149062A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020207021786A KR20200115509A (ko) 2018-01-31 2019-01-15 방향족 아민 화합물, 캐핑층 재료 및 발광 소자
US16/961,513 US20210053954A1 (en) 2018-01-31 2019-01-15 Aromatic amine compound, covering layer material, and light-emitting element
JP2020536988A JP2021508729A (ja) 2018-01-31 2019-01-15 芳香族アミン化合物、キャッピング層材料及び発光素子
CN201980004447.7A CN111194315B (zh) 2018-01-31 2019-01-15 芳香胺化合物、覆盖层材料及发光元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810094263.1 2018-01-31
CN201810094263 2018-01-31

Publications (1)

Publication Number Publication Date
WO2019149062A1 true WO2019149062A1 (zh) 2019-08-08

Family

ID=67477926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/071782 WO2019149062A1 (zh) 2018-01-31 2019-01-15 芳香胺化合物、覆盖层材料及发光元件

Country Status (6)

Country Link
US (1) US20210053954A1 (zh)
JP (1) JP2021508729A (zh)
KR (1) KR20200115509A (zh)
CN (1) CN111194315B (zh)
TW (1) TW201936894A (zh)
WO (1) WO2019149062A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111808055A (zh) * 2020-07-23 2020-10-23 吉林奥来德光电材料股份有限公司 一种以芳胺结构为中心骨架的有机电致发光材料及其制备方法和应用
CN112920177A (zh) * 2019-12-06 2021-06-08 东丽先端材料研究开发(中国)有限公司 芳香单胺化合物、覆盖层材料及发光元件

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114141963B (zh) * 2020-09-04 2023-09-29 江苏三月科技股份有限公司 包含不对称性三芳胺的有机电致发光器件及其应用
CN116982405A (zh) * 2021-03-12 2023-10-31 保土谷化学工业株式会社 有机电致发光元件及其电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002003833A (ja) * 2000-06-23 2002-01-09 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子用発光材料およびそれを使用した有機エレクトロルミネッセンス素子
JP2008133225A (ja) * 2006-11-29 2008-06-12 Toyo Ink Mfg Co Ltd インドール誘導体およびその用途
CN101282931A (zh) * 2005-10-07 2008-10-08 东洋油墨制造株式会社 含咔唑的胺化合物及其用途
CN101321728A (zh) * 2005-12-02 2008-12-10 东洋油墨制造株式会社 具有咔唑基的二氨基亚芳基化合物及其用途
CN101531599A (zh) * 2007-11-19 2009-09-16 葛来西雅帝史派有限公司 绿色电致发光化合物及使用其的有机电致发光装置
KR20110057078A (ko) * 2009-11-23 2011-05-31 에스에프씨 주식회사 헤테로아릴아민 화합물 및 이를 포함하는 유기전계발광소자
CN108101896A (zh) * 2017-12-26 2018-06-01 南京高光半导体材料有限公司 一种有机电致发光化合物、有机电致发光器件及其应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4174989B2 (ja) 1999-11-22 2008-11-05 ソニー株式会社 表示装置
KR100700013B1 (ko) 2004-11-26 2007-03-26 삼성에스디아이 주식회사 유기전계발광소자 및 그의 제조 방법
JP5258166B2 (ja) 2005-03-24 2013-08-07 エルジー ディスプレイ カンパニー リミテッド 発光素子、その発光素子を備えた発光装置及びその製造方法
JP4817789B2 (ja) 2005-10-07 2011-11-16 東芝モバイルディスプレイ株式会社 有機el表示装置
KR20090040896A (ko) * 2006-08-23 2009-04-27 이데미쓰 고산 가부시키가이샤 방향족 아민 유도체 및 이들을 이용한 유기 전기발광 소자
EP2487991A4 (en) 2009-10-09 2013-04-03 Idemitsu Kosan Co ORGANIC ELECTROLUMINESCENT ELEMENT
CN104744450A (zh) 2013-12-26 2015-07-01 东丽先端材料研究开发(中国)有限公司 芳香胺化合物、发光元件材料及发光元件

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002003833A (ja) * 2000-06-23 2002-01-09 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子用発光材料およびそれを使用した有機エレクトロルミネッセンス素子
CN101282931A (zh) * 2005-10-07 2008-10-08 东洋油墨制造株式会社 含咔唑的胺化合物及其用途
CN101321728A (zh) * 2005-12-02 2008-12-10 东洋油墨制造株式会社 具有咔唑基的二氨基亚芳基化合物及其用途
JP2008133225A (ja) * 2006-11-29 2008-06-12 Toyo Ink Mfg Co Ltd インドール誘導体およびその用途
CN101531599A (zh) * 2007-11-19 2009-09-16 葛来西雅帝史派有限公司 绿色电致发光化合物及使用其的有机电致发光装置
KR20110057078A (ko) * 2009-11-23 2011-05-31 에스에프씨 주식회사 헤테로아릴아민 화합물 및 이를 포함하는 유기전계발광소자
CN108101896A (zh) * 2017-12-26 2018-06-01 南京高光半导体材料有限公司 一种有机电致发光化合物、有机电致发光器件及其应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112920177A (zh) * 2019-12-06 2021-06-08 东丽先端材料研究开发(中国)有限公司 芳香单胺化合物、覆盖层材料及发光元件
CN111808055A (zh) * 2020-07-23 2020-10-23 吉林奥来德光电材料股份有限公司 一种以芳胺结构为中心骨架的有机电致发光材料及其制备方法和应用

Also Published As

Publication number Publication date
US20210053954A1 (en) 2021-02-25
TW201936894A (zh) 2019-09-16
CN111194315A (zh) 2020-05-22
CN111194315B (zh) 2023-07-14
KR20200115509A (ko) 2020-10-07
JP2021508729A (ja) 2021-03-11

Similar Documents

Publication Publication Date Title
KR102255037B1 (ko) 유기 발광 소자
TWI631111B (zh) 芳香胺化合物、發光元件材料及發光元件
TW201311671A (zh) 芳香族胺衍生物及使用其之有機電致發光元件
TWI739046B (zh) 有機發光元件
WO2019149062A1 (zh) 芳香胺化合物、覆盖层材料及发光元件
TW201332972A (zh) 發光元件材料及發光元件
TWI558705B (zh) 發光元件材料及發光元件
WO2021036683A1 (zh) 芳香胺化合物、覆盖层材料及发光元件
JP2013183047A (ja) 発光素子材料および発光素子
WO2014124600A1 (zh) 有机发光元件
CN112920177A (zh) 芳香单胺化合物、覆盖层材料及发光元件
CN115246813A (zh) 高折射率有机化合物、覆盖层材料及发光元件
CN116041276A (zh) 有机化合物、发光元件及发光元件材料
CN117677216A (zh) 一种有机电致发光器件
CN117202690A (zh) 一种有机电致发光器件
KR20190064202A (ko) 유기 화합물과 이를 포함하는 유기발광다이오드 및 유기발광 표시장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19748120

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020536988

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19748120

Country of ref document: EP

Kind code of ref document: A1