WO2021036683A1 - 芳香胺化合物、覆盖层材料及发光元件 - Google Patents

芳香胺化合物、覆盖层材料及发光元件 Download PDF

Info

Publication number
WO2021036683A1
WO2021036683A1 PCT/CN2020/106307 CN2020106307W WO2021036683A1 WO 2021036683 A1 WO2021036683 A1 WO 2021036683A1 CN 2020106307 W CN2020106307 W CN 2020106307W WO 2021036683 A1 WO2021036683 A1 WO 2021036683A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
group
bis
emitting element
amine compound
Prior art date
Application number
PCT/CN2020/106307
Other languages
English (en)
French (fr)
Other versions
WO2021036683A8 (zh
Inventor
孙枋竹
金佳科
张劲源
Original Assignee
东丽先端材料研究开发(中国)有限公司
东丽株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东丽先端材料研究开发(中国)有限公司, 东丽株式会社 filed Critical 东丽先端材料研究开发(中国)有限公司
Priority to CN202080006228.5A priority Critical patent/CN113260605A/zh
Priority to KR1020227004680A priority patent/KR20220052920A/ko
Priority to JP2021574793A priority patent/JP2022545320A/ja
Publication of WO2021036683A1 publication Critical patent/WO2021036683A1/zh
Publication of WO2021036683A8 publication Critical patent/WO2021036683A8/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/54Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to two or three six-membered aromatic rings
    • C07C211/56Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to two or three six-membered aromatic rings the carbon skeleton being further substituted by halogen atoms or by nitro or nitroso groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/72Nitrogen atoms
    • C07D213/74Amino or imino radicals substituted by hydrocarbon or substituted hydrocarbon radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings
    • C07D407/12Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/12Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom

Definitions

  • the present invention relates to an organic light-emitting element, particularly an organic light-emitting element whose light extraction efficiency is greatly improved after using an aromatic amine compound containing a trifluoromethyl group.
  • the present invention also relates to a light-emitting element material used for the above-mentioned organic light-emitting element.
  • the organic light-emitting element is a self-luminous display device that has the characteristics of lightness and thinness, wide viewing angle, low power consumption, and high contrast.
  • the principle of light emission of an organic light-emitting element is to generate light when holes and electrons injected from an electrode are recombined in the light-emitting layer to return to a ground state via an excited state.
  • This light-emitting element has the characteristics of being thin and capable of emitting light with high brightness under a low driving voltage, and capable of multi-color light emission by selecting a light-emitting material, and therefore has attracted much attention.
  • organic light-emitting elements can be classified into bottom-emitting organic light-emitting elements and top-emitting organic light-emitting elements.
  • a bottom-emitting organic light-emitting element light is directed to the substrate side, a reflective electrode is formed on the upper portion of the organic light-emitting layer, and a transparent electrode is formed on the lower portion of the organic light-emitting layer.
  • the organic light emitting element is an active matrix element, since the portion where the thin film transistor is formed does not transmit light, the light emitting area is reduced.
  • the transparent electrode is formed on the upper part of the organic light-emitting layer, and the reflective electrode is formed on the lower part of the organic light-emitting layer. The area increases and the brightness increases.
  • the method used is to form an organic covering layer on the upper translucent metal electrode that allows the light of the light-emitting layer to pass through, so as to adjust the optical interference distance and suppress the reflection of external light from the surface. Extinction caused by the movement of plasma energy, etc.
  • aromatic compounds that do not contain trifluoromethyl are used as materials for the low refractive index layer, but their refractive index is generally high, and the refractive index difference with common high refractive index materials is difficult to reach 0.3 or more.
  • long-chain alkanes and inorganic fluorides are usually selected in the prior art.
  • long-chain alkanes are easily decomposed at high temperatures and it is difficult to use the vapor deposition method; inorganic fluorides have the problem of high vapor deposition temperature.
  • boron coordination compounds as low-refractive layer materials, but the decomposition temperature of boron coordination compounds is low, and it is difficult to control the temperature during the evaporation process, and some boron coordination compounds are directly sublimated.
  • Type compounds, using general vapor deposition methods are likely to cause hole plugging, and special vapor deposition techniques are required to avoid this problem, which increases the difficulty of the vapor deposition process. Therefore, the above-mentioned boron coordination compounds have many inconveniences in their use as low refractive index materials.
  • the prior art uses long-chain alkanes with specific structures, inorganic fluorides, carbazole derivatives, benzimidazole derivatives, triazole derivatives, boron coordination compounds, etc. as low refractive index materials.
  • There are big defects in the vapor deposition characteristics such as heat resistance and porosity, so it is not suitable for use.
  • aromatic amine compounds containing trifluoromethyl groups are suitable for low refractive index materials.
  • the aromatic amine compound containing trifluoromethyl group has good transparency when used in the second covering layer, the luminous efficiency can be improved and a high color purity device can be obtained.
  • an aromatic amine compound which comprises the structure shown in the following general formula 1:
  • Ar 1 , Ar 2 , and Ar 3 respectively represent substituted or unsubstituted groups composed of aromatic groups and/or heteroaryl groups;
  • At least one of the Ar 1 , Ar 2 , and Ar 3 is connected to at least one trifluoromethyl group; the substituents of the Ar 1 , Ar 2 , and Ar 3 are selected from hydrogen, deuterium, alkyl that may be substituted, and Substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted alkenyl, optionally substituted cycloalkenyl, optionally substituted alkynyl, optionally substituted alkoxy, optionally substituted Alkylthio, aryl ether that may be substituted, aryl thioether that may be substituted, aryl that may be substituted, heteroaryl that may be substituted, carbonyl that may be substituted, carboxyl that may be substituted, One or more of the oxycarbonyl group which may be substituted, the carbamoyl group which may be substituted, the silyl group which may be substituted, the alkylamino group which may be substituted or the arylamin
  • At least one of the substituents of Ar 1 , Ar 2 , and Ar 3 be substituted by an arylamine group.
  • the aromatic amine compound is as shown in the following general formula 2.
  • Ar 4 and Ar 5 respectively represent substituted or unsubstituted groups consisting of aromatic groups and/or heteroaryl groups; the substituents of Ar 4 and Ar 5 are selected from hydrogen, deuterium, and optionally substituted alkane.
  • the aromatic amine compound is as shown in the following general formula 3.
  • n 3 and n 4 are integers from 0 to 5, respectively, and n 1 , n 2 , n 3 , and n 4 cannot be 0 at the same time.
  • aromatic amine compound is as follows: Shown
  • n 5 is an integer of 0-5, where n 1 , n 2 , n 3 , n 4 and n 5 cannot be 0 at the same time.
  • the aromatic amine compound is as shown in the following general formula 5
  • n 6 and n 7 are integers from 0 to 5, wherein n 1 , n 2 , n 3 , n 4, n 6, and n 7 cannot be 0 at the same time.
  • the Ar 2 in the general formula 5 is selected from aromatic groups or heteroaryl groups that are not condensed rings or spiro rings.
  • the fused ring here refers to a substituted or unsubstituted fused ring; a spiro ring refers to a substituted or unsubstituted spiro ring.
  • Ar 1 and Ar 4 are heteroaryl groups directly connected to nitrogen.
  • Ar 2 in the general formula 2 is selected from aromatic groups or heteroaryl groups that are not condensed rings or spiro rings.
  • the fused ring here refers to a substituted or unsubstituted fused ring; a spiro ring refers to a substituted or unsubstituted spiro ring.
  • the above-mentioned alkyl group is preferably a C1-C20 alkyl group; more preferably a saturated aliphatic hydrocarbon group such as trifluoromethyl, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl or tert-butyl One or more of.
  • the above-mentioned alkyl group may or may not have a substituent.
  • the above-mentioned cycloalkyl group is preferably a C3-C20 cycloalkyl group; more preferably, it is one or more of saturated alicyclic hydrocarbon groups such as cyclopropyl, cyclohexyl, norbornyl, or adamantyl.
  • the aforementioned cycloalkyl group may or may not have a substituent.
  • the heterocyclic group is preferably a C2-C20 heterocyclic group; more preferably, it is one or more of aliphatic rings having atoms other than carbon in the ring, such as a pyran ring, a piperidine ring, or a cyclic amide.
  • the aforementioned heterocyclic group may or may not have a substituent.
  • the alkenyl group is preferably a C2-C20 alkenyl group; more preferably, it is one or more of unsaturated aliphatic hydrocarbon groups containing double bonds such as vinyl, allyl, or butadienyl.
  • the above-mentioned alkenyl group may or may not have a substituent.
  • the above-mentioned cycloalkenyl group is preferably a C3-C20 cycloalkenyl group; more preferably, it is one or more of unsaturated alicyclic hydrocarbon groups containing double bonds, such as cyclopentenyl, cyclopentadienyl, or cyclohexenyl.
  • the above-mentioned cycloalkenyl group may or may not have a substituent.
  • the alkynyl group is preferably a C2-C20 alkynyl group; more preferably an unsaturated aliphatic hydrocarbon group containing a triple bond such as an ethynyl group.
  • the aforementioned alkynyl group may or may not have a substituent.
  • the alkoxy group is preferably a C1-C20 alkoxy group; more preferably, it is one or more of functional groups in which an aliphatic hydrocarbon group is bonded via an ether bond, such as a methoxy group, an ethoxy group, or a propoxy group.
  • the aliphatic hydrocarbon group may or may not have a substituent.
  • the above-mentioned alkylthio group is a group in which the oxygen atom of the alkoxy group is replaced with a sulfur atom.
  • it is a C1-C20 alkylthio group; the alkyl group of the alkylthio group may or may not have a substituent.
  • the aryl ether group is preferably a C6-C40 aryl ether group; more preferably, an aromatic functional group such as a phenoxy group is bonded via an ether bond.
  • the aryl ether group may or may not have a substituent.
  • the above-mentioned aryl sulfide group is a group in which the oxygen atom of the ether bond of the aryl ether group is replaced with a sulfur atom.
  • it is a C6-C60 aryl sulfide group.
  • the aromatic functional group in the aryl sulfide group may or may not have a substituent.
  • the above-mentioned aryl group is preferably a C6-C60 aryl group; more preferably one or more of aromatic functional groups such as perfluorophenyl, phenyl, naphthyl, biphenyl, phenanthryl, terphenyl or pyrenyl .
  • the aryl group may or may not have a substituent.
  • the above-mentioned heteroaryl group is preferably a C4-C60 aromatic heterocyclic group; more preferably, furyl, thienyl, pyrrole, benzofuranyl, benzothienyl, dibenzofuranyl, dibenzothienyl, pyridine One or more of quinolinyl or quinolinyl.
  • the aromatic heterocyclic group may or may not have a substituent.
  • the aforementioned carbonyl group, carboxyl group, oxycarbonyl group, carbamoyl group, and alkylamino group may or may not have a substituent.
  • the carbon number of the alkylamino group substituent is not particularly limited, but it is usually in the range of 2 or more and 60 or less.
  • the above-mentioned silyl group means, for example, a functional group having a bond to a silicon atom such as a trimethylsilyl group, a triethylsilyl group, a dimethyl tert-butylsilyl group, a triphenylsilyl group, and the like.
  • the silyl group may have a substituent. There may be no substituents.
  • the carbon number of the silyl group is not particularly limited, but it is usually in the range of 1 or more and 40 or less.
  • the arylamino group is preferably a C6-C40 arylamino group; more preferably, it is an aromatic functional group bonded via an amine bond, such as a benzene nitrogen group, a pyridine nitrogen group, and a pyridine benzene nitrogen group.
  • the arylamino group may or may not have a substituent.
  • the substituents are independently selected from deuterium, halogen, C1-C6 alkyl, C3-C6 cycloalkyl, C3-C6 heterocyclic group, C2-C6 alkenyl, C4 -One or more of C6 cycloalkenyl, C2-C6 alkynyl, C1-C6 alkoxy or C1-C6 alkylthio.
  • the above-mentioned aromatic amine compound with trifluoromethyl group provided by the present invention has superior film stability and refractive index, and can solve the problem of improving luminous efficiency and improving color purity.
  • the aromatic amine compound having a trifluoromethyl group is not particularly limited, and specific examples include the following.
  • the synthesis of the above-mentioned trifluoromethyl group-containing aromatic amine compound can be carried out using a known method.
  • a known method for example, the Buchwald-Hartwig reaction using nickel or palladium, the Ullman reaction using copper, etc. are not limited to these methods.
  • the present invention also provides an organic light-emitting element material, which contains the aromatic amine compound described in any one of the above. Since the organic light-emitting element obtained by the present invention uses the above-mentioned aromatic amine compound, it has excellent film stability and refractive index, and therefore can solve the problem of both improving luminous efficiency and improving color purity.
  • the present invention also provides an organic light-emitting element comprising a substrate, a first electrode, a light-emitting layer containing more than one organic layer film, a second electrode, and one or more covering layers; the organic light-emitting element contains the above-mentioned The organic light-emitting device materials.
  • the present invention also provides an organic light-emitting element covering layer material, the organic light-emitting element covering layer material containing the aromatic amine compound described in any one of the above.
  • the present invention also provides an organic light-emitting element, which includes a substrate, a first electrode, a light-emitting layer containing more than one organic layer film, and a second electrode.
  • the light-emitting element further has a covering layer; the covering layer is on the second electrode.
  • the covering layer includes a first covering layer and a second covering layer; the covering layer contains the above-mentioned organic light emitting element covering layer material.
  • the refractive index of the light-emitting layer part of the organic electroluminescence element is usually 1.7
  • the semi-mirror surface between the first covering layer and the air can better communicate with the lower part.
  • the reflective anode forms a resonant cavity, so the refractive index of the first covering layer is selected to be 1.8 or more.
  • the refractive index of the second covering layer is 1.5-1.7. Since it is necessary to form another resonant cavity on the first covering layer, the refractive index of the first covering layer and the second covering layer need to be greatly different.
  • the difference is 0.3, a semi-mirror surface can be formed, so it is further preferred that the first covering layer
  • the difference between the refractive index and the refractive index of the second coating layer is 0.3 or more.
  • the first covering layer is formed of at least one of the following inorganic compounds and organic compounds, wherein the inorganic compound is one or more of SiOx, SiNy, Zns, ZnSe, ZrO, or TiO 2; , Y is an integer of 1-4.
  • the organic compound is one or more of aromatic amine derivatives, carbazole derivatives, benzimidazole derivatives or triazole derivatives. Since the inorganic compound requires a higher temperature in the evaporation process than the organic compound, it is preferable that the first covering layer material is an organic compound.
  • the second covering layer of the present invention can be located between the first electrode and the second electrode, between the second electrode and the first covering layer, or on the second electrode.
  • the first covering layer is arranged on the second electrode, it can effectively protect the second electrode and the organic light-emitting layer from outside moisture, oxygen, and pollutants, thereby preventing the life span of the organic light-emitting element from being reduced.
  • Top-emission light-emitting elements have the advantage of enlarging the light-emitting surface compared to bottom-emission light-emitting elements, and the use of a cover layer can improve the light extraction efficiency as a whole.
  • the second covering layer of the present invention can achieve high luminous efficiency by containing the above-mentioned aromatic amine compound containing a trifluoromethyl group.
  • the aromatic amine compound containing a trifluoromethyl group has a low refractive index because of the fluorine element.
  • various underlayers such as glass or metal have stable refractive index and attenuation coefficient. When the bottom layer of the material with low film-forming properties of the vapor-deposited film changes, the refractive index and the attenuation coefficient often also change greatly.
  • the thickness of the laminate is 40 nm to 80 nm.
  • the laminate thickness is 50 nm to 70 nm.
  • the method of forming the coating layer is not particularly limited. Examples include resistance heating vapor deposition, electron beam vapor deposition, sputtering, molecular lamination, coating, inkjet, doctor blade, or laser transfer, and there is no particular limitation. .
  • the substrate used is preferably a glass substrate such as soda glass or alkali-free glass.
  • the thickness of the glass substrate may be sufficient to maintain mechanical strength, and therefore, 0.5 mm or more is sufficient.
  • the material of the glass the less ions eluted from the glass, the better. Therefore, alkali-free glass is preferred.
  • those on the market that are coated with protective coatings such as SiO 2 can also be used.
  • the substrate does not have to be glass.
  • an anode may be formed on a plastic substrate.
  • the material used for the first electrode is preferably a metal such as gold, silver, and aluminum, or a metal alloy such as an APC-based alloy, which has high refractive index characteristics. These metals or metal alloys may be stacked in multiple layers.
  • transparent conductive metal oxides such as tin oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO) may be laminated on the upper and/or lower surfaces of metals, metal alloys, or their laminates.
  • the material used for the second electrode is preferably a material that can form a translucent or transparent film that can transmit light.
  • a material that can form a translucent or transparent film that can transmit light For example, silver, magnesium, aluminum, calcium, or alloys of these metals, transparent conductive metal oxides such as tin oxide, indium oxide, indium tin oxide (ITO), or indium zinc oxide (IZO). These metals, alloys or metal oxides may also be stacked in multiple layers.
  • the formation method of the above-mentioned electrode may be resistance heating vapor deposition, electron beam vapor deposition, sputtering, ion spraying, glue coating, etc., and is not particularly limited.
  • one of the first electrode and the second electrode functions as an anode with respect to the organic film layer, and the other functions as a cathode.
  • the organic layer can also be composed of 1) hole transport layer/light emitting layer, 2) light emitting layer/electron transport layer, 3) hole transport layer/light emitting layer/electron transport layer, 4) Hole injection layer/hole transport layer/light emitting layer/electron transport layer, 5) a structure formed by stacking hole injection layer/hole transport layer/light emitting layer/electron transport layer/electron injection layer.
  • each of the above-mentioned layers may be either a single layer or multiple layers, respectively.
  • the anode side electrode is joined to the hole input layer or the hole transport layer
  • the cathode side electrode is joined to the electron input layer or the electron transport layer.
  • the hole transport layer can be formed by a method of laminating or mixing one or two or more of hole transport materials, or a method of using a mixture of hole transport materials and a polymer binder.
  • the hole transport material needs to efficiently transport holes from the positive electrode between electrodes to which an electric field is applied. Therefore, it is desired that the hole injection efficiency is high and the injected holes can be transported efficiently. Therefore, the hole transport material is required to have an appropriate ion potential and a high hole mobility, and furthermore, have excellent stability, and it is not easy to generate impurities that can become traps during manufacture and use. There are no particular limitations on the substance that satisfies such conditions.
  • it may be 4,4'-bis(N-(3-methylphenyl)-N-phenylamino)biphenyl (TPD), 4,4' -Bis(N-(1-naphthyl)-N-phenylamino)biphenyl (NPD), 4,4'-bis(N,N-bis(4-biphenyl)amino)biphenyl ( TBDB), two (N,N-diphenyl-4-phenylamino)-N,N-diphenyl-4,4'-diamino-1,1'-biphenyl (TPD232), etc.
  • TPD 4,4'-bis(N-(3-methylphenyl)-N-phenylamino)biphenyl
  • NPD 4,4' -Bis(N-(1-naphthyl)-N-phenylamino)biphenyl
  • TBDB 4,4'-bis(N,N-bis(
  • m-MTDATA 4,
  • polystyrene resin it is also preferable to have the above monomers on the side chain Polycarbonate or styrene derivatives, polythiophene, polyaniline, polyfluorene, polyvinyl carbazole and polysilane.
  • inorganic compounds such as P-type Si and P-type SiC can also be used.
  • a hole injection layer may be provided between the anode and the hole transport layer.
  • the organic light-emitting element can achieve a low driving voltage and improve the endurance life.
  • a material having a lower ion potential than the material of the hole transport layer for the hole injection layer may be a benzidine derivative such as the above-mentioned TPD232, a star-shaped triarylamine material group, and a phthalocyanine derivative or the like may also be used.
  • the hole injection layer is composed of an acceptor compound alone, or the acceptor compound is doped with another hole transport layer for use.
  • acceptor compounds include metal chlorides such as iron(III) chloride, aluminum chloride, gallium chloride, indium chloride, and antimony chloride, and metal oxides such as molybdenum oxide, vanadium oxide, tungsten oxide, and ruthenium oxide. , Tris (4-bromophenyl) ammonium hexachloroantimonate (TBPAH) and other charge transfer ligands.
  • TPAH Tris (4-bromophenyl) ammonium hexachloroantimonate
  • it may be an organic compound having a nitro group, a cyano group, a halogen, or a trifluoromethyl group in the molecule, a quinone compound, an acid anhydride compound, fullerene, or the like.
  • the light-emitting layer can be any one of a single layer or a multi-layer, and can be respectively formed of light-emitting materials (host material, dopant material), which can be a mixture of host material and dopant material, or only
  • the main body material can be used in either case. That is, in each light-emitting layer of the light-emitting element of the present invention, only the host material or only the dopant material may emit light, or the host material and the dopant material may emit light together. From the viewpoint of efficiently using electric energy and obtaining high-color purity light emission, it is preferable that the light-emitting layer is made of a mixture of a host material and a dopant material.
  • the host material and the dopant material may each be one type or a combination of multiple types, in either case.
  • the dopant material may be added to the entire host material or part of it, in either case.
  • the doping material may be laminated or dispersed, in either case.
  • the dopant material can control the color of light. When the amount of the dopant material is too large, concentration extinction will occur. Therefore, the amount of the dopant material is preferably 20% by weight or less, and more preferably 10% by weight or less relative to the host material.
  • the doping method may be a method of co-evaporation with the host material, or a method of simultaneous evaporation after mixing with the host material in advance.
  • condensed ring derivatives such as anthracene and pyrene, which are known as luminous bodies, metal chelate hydroxyquinoline compounds such as tris(8-hydroxyquinoline) aluminum, and dibenzofuran derivatives can be used.
  • Compounds, carbazole derivatives, indolocarbazole derivatives, polyphenylene vinylene derivatives, polyparaphenylene derivatives, and polythiophene derivatives in the polymer are not particularly limited.
  • the host material contained in the luminescent material is not particularly limited. Anthracene, phenanthrene, pyrene, triphenylene, tetracene, perylene, benzo[9,10]phenanthrene, fluoranthene, fluorene, indene, etc. can be used.
  • Ring compounds or their derivatives N,N'-dinaphthyl-N,N'-diphenyl-4,4'-diphenyl-1,1'-diamine and other aromatic amine derivatives, three (8-Hydroxyquinoline) metal chelating hydroxyquinoline compounds such as aluminum, pyrrolopyrrole derivatives, dibenzofuran derivatives, carbazole derivatives, indolocarbazole derivatives, triazine derivatives,
  • polyphenylene vinylene derivatives, polyparaphenylene derivatives, polyfluorene derivatives, polyvinylcarbazole derivatives, polythiophene derivatives, and the like can be used, and they are not particularly limited.
  • the doping material is not particularly limited, and examples thereof include naphthalene, anthracene, phenanthrene, pyrene, triphenylene, perylene, benzo[9,10]phenanthrene, fluoranthene, fluorene, indene, and other compounds having fused aromatic rings or the like Derivatives (e.g.
  • the light-emitting layer may also be doped with phosphorescent light-emitting materials.
  • Phosphorescent light-emitting materials are materials that can also phosphorescently emit light at room temperature.
  • a phosphorescent luminescent material is used as a dopant, it needs to be able to phosphorescence emission basically at room temperature, but it is not particularly limited.
  • It is preferably an organic material containing at least one metal selected from the group consisting of indium, ruthenium, rhodium, palladium, platinum, osmium, and rhenium Metal complex compounds. From the viewpoint of having high phosphorescence luminous efficiency at room temperature, an organometallic complex having indium or platinum is more preferable.
  • indole derivatives As host materials used in combination with phosphorescent dopants, indole derivatives, carbazole derivatives, indolocarbazole derivatives, nitrogen-containing aromatic compound derivatives having pyridine, pyrimidine, and triazine skeletons, and many Arylbenzene derivatives, spirofluorene derivatives, trimeric indene, benzo[9,10]phenanthrene and other aromatic hydrocarbon compound derivatives, dibenzofuran derivatives, dibenzothiophene and other compounds containing oxygen elements, hydroxyl Organometallic complexes such as quinoline beryllium complexes can be used well, but basically, as long as the triplet energy is larger than the dopant used, and electrons and holes can be smoothly injected or transported from the respective transport layers, then It is not particularly limited.
  • triplet light-emitting dopants may be contained, or two or more types of host materials may be contained. In addition, it may contain more than one triplet light-emitting dopant and more than one fluorescent light-emitting dopant.
  • the electron transport layer is a layer in which electrons are injected from the cathode and then the electrons are transported.
  • the electron transport layer preferably has high electron injection efficiency and can efficiently transport injected electrons. Therefore, the electron transport layer is preferably composed of a substance that has high electron affinity and electron mobility, is excellent in stability, and does not easily generate impurities that can become traps during production and use.
  • the electron transport layer mainly plays a role of effectively preventing holes from the anode from being combined and flowing to the cathode side, even if the electron transport ability is not so high, the electron transport layer can effectively prevent the holes from flowing to the cathode side.
  • the structure and the effect of improving the luminous efficiency are also equivalent to the case of being composed of a material with high electron transport ability. Therefore, in the electron transport layer in the present invention, a hole blocking layer that can efficiently block hole migration is included as an equivalent.
  • the electron transport material used in the electron transport layer is not particularly limited. Examples include fused aromatic ring derivatives such as naphthalene and anthracene, and styryl-based aromatics represented by 4,4'-bis(diphenylvinyl)biphenyl. Cyclic derivatives, quinone derivatives such as anthraquinone and diphenoquinone, phosphine oxide derivatives, hydroxyquinoline complexes such as tris(8-hydroxyquinoline) aluminum, benzohydroxyquinoline complexes, hydroxyazole complexes Compounds, azomethine complexes, tropolone metal complexes, or flavonol metal complexes.
  • fused aromatic ring derivatives such as naphthalene and anthracene
  • styryl-based aromatics represented by 4,4'-bis(diphenylvinyl)biphenyl.
  • Cyclic derivatives quinone derivatives such as anthraquinone and di
  • heteroaromatic ring structure composed of an element selected from carbon, hydrogen, nitrogen, oxygen, silicon, and phosphorus, and contains electron-withdrawing nitrogen.
  • the heteroaromatic ring containing electron withdrawing nitrogen has high electrophilicity.
  • the electron transport material with electron-attracting nitrogen easily accepts electrons from the cathode with high electrophilicity, and thus can reduce the driving voltage of the light-emitting element.
  • the luminous efficiency is improved.
  • heteroaromatic rings containing electron-withdrawing nitrogen examples include pyridine ring, pyrazine ring, pyrimidine ring, quinoline ring, quinoxaline ring, naphthyridine ring, pyrimidopyrimidine ring, benzoquinoline ring, and phenanthrene ring.
  • examples of compounds having these heteroaromatic ring structures include benzimidazole derivatives, benzoxazole derivatives, benzothiazole derivatives, oxadiazole derivatives, thiadiazole derivatives, and triazole derivatives.
  • the above-mentioned fused aromatic ring skeleton is preferably an anthracene skeleton, a pyrene skeleton, or a phenanthroline skeleton.
  • the above electron transport materials may be used alone, or two or more of the above electron transport materials may be mixed for use, or one or more other electron transport materials may be mixed for use in the above electron transport materials.
  • a donor compound can also be added.
  • the donor compound refers to a compound that improves the electron injection energy barrier to facilitate the injection of electrons from the cathode or the electron injection layer to the electron transport layer, thereby improving the electrical conductivity of the electron transport layer.
  • the donor compound of the present invention include: alkali metals, inorganic salts containing alkali metals, complexes of alkali metals and organic substances, alkaline earth metals, inorganic salts containing alkaline earth metals, or complexes of alkaline earth metals and organic substances.
  • alkali metals or alkaline earth metals include alkali metals such as lithium, sodium, or cesium, or alkaline earth metals such as magnesium and calcium, which have a low work function and are highly effective in improving electron transport capability.
  • an electron injection layer may be provided between the cathode and the electron transport layer.
  • the electron injection layer is inserted for the purpose of assisting the injection of electrons from the cathode to the electron transport layer.
  • a compound containing a heteroaromatic ring structure containing electron withdrawing nitrogen can be used, or a layer containing the above-mentioned donor compound can be used.
  • an insulator or a semiconductor inorganic substance can also be used. The use of these materials can effectively prevent the light-emitting element from being short-circuited, and can improve the electron injection properties, which is preferable.
  • At least one metal compound selected from alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides, and alkaline earth metal halides.
  • complexes of organic substances and metals can also be used satisfactorily.
  • the formation methods of the above-mentioned layers constituting the light-emitting element include resistance heating vapor deposition, electron beam vapor deposition, sputtering, molecular lamination method, or coating method, etc., and are not particularly limited. However, generally, it is considered from the perspective of device characteristics , Preferably resistance heating vapor deposition or electron beam vapor deposition.
  • the thickness of the organic layer varies depending on the resistance value of the light-emitting material and is not limited, but is preferably 1 to 1000 nm.
  • the film thicknesses of the light-emitting layer, the electron transport layer, and the hole transport layer are each preferably 1 nm or more and 200 nm or less, and more preferably 5 nm or more and 100 nm or less.
  • the light-emitting element of the present invention has a function of converting electric energy into light.
  • electrical energy direct current is mainly used, but pulse current or alternating current may also be used.
  • pulse current or alternating current may also be used.
  • the current value and the voltage value are no special restrictions on the current value and the voltage value, but when considering the power consumption and life of the component, it should be selected in a way that can obtain the maximum brightness with the lowest possible energy.
  • the light-emitting element of the present invention can be suitably used as a flat-panel display that performs display in, for example, a matrix and/or field method.
  • the matrix method means that the pixels used for display are arranged in a two-dimensional manner such as a grid or mosaic, and characters or images are displayed through a collection of pixels.
  • the shape and size of the pixel depends on the purpose. For example, in the display of images and characters on computers, monitors, and televisions, quadrilateral pixels with a side length of 300 ⁇ m or less are generally used. In addition, in the case of a large-scale display such as a display panel, pixels with a side length of the order of mm are used. In the case of monochrome display, it is sufficient to arrange pixels of the same color, but in the case of color display, red, green, and blue pixels are arranged and displayed. In this case, triangle type and stripe type are typical.
  • the driving method of the matrix may be any one of a line-by-line driving method and an active matrix.
  • the structure of the line-by-line drive is simple, there are cases where the active matrix is excellent when considering the operating characteristics. Therefore, it needs to be used flexibly according to the application.
  • the field method in the present invention refers to a method in which a pattern is formed and an area determined by the arrangement of the pattern is illuminated to display predetermined information. Examples include: digital clocks, thermometers, time and temperature display, working status display of audio equipment, induction cooker, etc., and panel display of automobiles. Moreover, the matrix display and the field display can coexist in the same panel.
  • the light-emitting element of the present invention is preferably used as a portable flat-panel display, and can provide a display with lower power consumption and higher luminous efficiency than existing displays.
  • the aromatic amine compound containing trifluoromethyl group provided by the present invention has a low refractive index and can realize high luminous efficiency and high color purity. Furthermore, because of the excellent film-forming properties of vapor-deposited thin films, various underlayers such as glass or metal have stable refractive index and attenuation coefficient.
  • the present invention is illustrated by the following examples, but the present invention is not limited to the trifluoromethyl-containing aromatic amine compounds and synthesis methods exemplified in these examples.
  • Toluene, xylene, methanol, 3-aminopyridine, etc. were purchased from Sinopharm; 4,4'-dibromobiphenyl, 3,5-bis(trifluoromethyl)phenylboronic acid, etc. were purchased from Zhengzhou Haikuo Optoelectronics Co., Ltd. ; Various palladium catalysts were purchased from Aldrich Company.
  • the 1 H-NMR spectrum was measured using a JEOL (400MHz) nuclear magnetic resonance instrument; the HPLC spectrum was measured using a Shimadzu LC-20AD high performance liquid instrument.
  • NPD (N,N'-diphenyl-N,N'-bis(1-naphthyl)-1,1'-biphenyl-4,4'-diamine)
  • ZJF 4,4'-bis(N-(4-pyridyl)-phenyl)amino-2,5-biphenylthiophene
  • the reactor Under a nitrogen atmosphere, the reactor was charged with 3.42g (20.1mmol) of N-(3-pyridine)-phenylamine, 3.84g (20.1mmol) of 4-chlorobromobenzene, and 0.19mg of bis(dibenzylideneacetone)palladium ( 0.34mmol), 2-Dicyclohexylphosphorus-2',4',6'-triisopropylbiphenyl 0.32mg (0.68mmol), 3.87g (40.32mmol) of sodium tert-butoxide, 100ml of xylene, heated to reflux The reaction was stirred for 4h. Cooled to room temperature, rotary steamed, washed with 100 ml of water 3 times, filtered, and dried to obtain 5.1 g of 4-(N-(3-pyridine)-phenylamino)chlorobenzene.
  • N-((3,5-bis(3,5-bis(trifluoromethyl)phenyl)phenyl)-phenyl)amine 5.99g (10.1mmol)
  • 2.12g (22.04mmol) of sodium tert-butoxide 50ml of xylene, heated under reflux and stirred for reaction for 4h.
  • the reactor Under a nitrogen atmosphere, the reactor was charged with 14.19g (55mmol) of 3,5-bis(trifluoromethyl)phenylboronic acid, 6.76g (25mmol) of 3,5-dibromochlorobenzene, 15.20g (110mmol) of potassium carbonate, and double (Triphenylphosphine) palladium dichloride 0.70g (1mmol), 125ml DME and 55ml water, stirred and refluxed for 6h.
  • N-((3,5-bis(3,5-bis(trifluoromethyl)phenyl)phenyl)-(3-pyridyl))amine 6.00g (10.1mmol) into the reactor , 4,4'-dibromobiphenyl 1.43g (4.59mol), bis(dibenzylideneacetone) palladium 0.052mg (0.09mmol), 2-dicyclohexylphosphorus-2',4',6'-tri 0.087mg (0.18mmol) of isopropyl link, 2.12g (22.04mmol) of sodium tert-butoxide, 50ml of xylene, heated under reflux and stirred for reaction for 4h.
  • the reactor Under a nitrogen atmosphere, the reactor was charged with 13.75g (55mmol) of 3,5-bis(trifluoromethyl)aniline, 6.76g (25mmol) of 3,5-dibromochlorobenzene, 15.20g (110mmol) of potassium carbonate, and bis( 0.70g (1mmol) of triphenylphosphine)palladium dichloride, 125ml of DME and 55ml of water, stirred and refluxed for 6h.
  • N-((3,5-bis(3,5-bis(trifluoromethyl)phenyl)phenyl)-2-(5-phenylthienyl))amine 6.87g( 10.1mmol), p-dibromobenzene 1.07g (4.59mol), bis(dibenzylideneacetone) palladium 0.052mg (0.09mmol), 2-dicyclohexylphosphorus-2',4',6'-triisopropyl Base 0.087mg (0.18mmol), 2.12g (22.04mmol) of sodium tert-butoxide, 50ml of xylene, heated under reflux and stirred for reaction for 4h.
  • the reactor Under a nitrogen atmosphere, the reactor was charged with 6.19g (24mmol) of 3,5-bis(trifluoromethyl)phenylboronic acid, 6.75g (25mmol) of 3,5-dibromochlorobenzene, 3.4g (25mmol) of potassium carbonate, and (Triphenylphosphine) 0.70g (1mmol) of palladium dichloride, 60ml of DME and 25ml of water, react at 60°C for 3h.
  • N-(5-(3,5-bis(trifluoromethyl)phenyl)-3-(4-phenylcarbonylbenzene)phenyl)-(3-pyridyl))amine to the reactor 5.68g (10.1mmol), p-dibromobenzene 1.07g (4.59mol), bis(dibenzylideneacetone) palladium 0.052mg (0.09mmol), 2-dicyclohexylphosphorus-2',4',6'- 0.087mg (0.18mmol) of triisopropyl link, 2.12g (22.04mmol) of sodium tert-butoxide, 50ml of xylene, heated under reflux and stirred for reaction for 4h.
  • the reactor Under a nitrogen atmosphere, the reactor was charged with 6.19g (24mmol) of 3,5-bis(trifluoromethyl)phenylboronic acid, 6.75g (25mmol) of 3,5-dibromochlorobenzene, 3.4g (25mmol) of potassium carbonate, and (Triphenylphosphine) 0.70g (1mmol) of palladium dichloride, 60ml of DME and 25ml of water, react at 60°C for 3h.
  • the reactor Under a nitrogen atmosphere, the reactor was charged with 6.19g (24mmol) of 3,5-bis(trifluoromethyl)phenylboronic acid, 6.75g (25mmol) of 3,5-dibromochlorobenzene, 3.4g (25mmol) of potassium carbonate, double (Triphenylphosphine) 0.70g (1mmol) of palladium dichloride, 60ml of DME and 25ml of water, react at 60°C for 3h.
  • the reactor Under a nitrogen atmosphere, the reactor was charged with 6.19g (24mmol) of 3,5-bis(trifluoromethyl)phenylboronic acid, 6.75g (25mmol) of 3,5-dibromochlorobenzene, 3.4g (25mmol) of potassium carbonate, double (Triphenylphosphine) palladium dichloride 0.70g (1mmol), 60ml DME and 25ml water, react at 60°C for 3h.
  • the reactor Under a nitrogen atmosphere, the reactor was charged with 9.21g (23.0mmol) of 5-(3,5-bis(trifluoromethyl)phenyl)-3-bromochlorobenzene and 8.28g ( 23.0mmol), 3.4g (25mmol) of potassium carbonate, 0.70g (1mmol) of bis(triphenylphosphine) palladium dichloride, 60ml of DME and 25ml of water, and react under reflux for 3h.
  • N-(5-(3,5-bis(trifluoromethyl)phenyl)-3-9,9'-spirobifluorenyl)-(3-pyridyl))amine to the reactor 7.04g (10.1mmol), p-dibromobenzene 1.07g (4.59mol), bis(dibenzylideneacetone) palladium 0.052mg (0.09mmol), 2-dicyclohexylphosphorus-2',4',6'- 0.087mg (0.18mmol) of triisopropyl link, 2.12g (22.04mmol) of sodium tert-butoxide, 50ml of xylene, heated under reflux and stirred for reaction for 4h.
  • the reactor was charged with 7.10g (16.1mmol) of bis(bis(trifluoromethyl)phenyl)amine, 4.13g (16.1mmol) of 4-bromo-2-trifluoromethylchlorobenzene, and bis(two Benzalacetone) palladium 0.18mg (0.33mmol), 2-dicyclohexylphosphorus-2',4',6'-triisopropylbiphenyl 0.31mg (0.66mmol), sodium tert-butoxide 3.70g (38.64 mmol), 100 ml of xylene, heating under reflux and stirring for 4 hours.
  • the reactor was charged with 6.00g (16.1mmol) of bis(bis(trifluoromethyl)phenyl)amine, 4.13g (16.1mmol) of 4-bromo-2-trifluoromethylchlorobenzene, and bis(bis(trifluoromethyl)phenyl)amine.
  • Benzalacetone palladium 0.18mg (0.33mmol), 2-dicyclohexylphosphorus-2',4',6'-triisopropylbiphenyl 0.31mg (0.66mmol), sodium tert-butoxide 3.70g (38.64 mmol), 100 ml of xylene, heating under reflux and stirring for 4 hours.
  • the alkali-free glass substrate (Asahi Glass Co., Ltd., AN100) undergoes a 20-minute UV ozone cleaning treatment, and then is placed in a vacuum evaporation device and exhausted until the vacuum in the device is higher than 1 ⁇ 10 -3 Pa. Under the conditions, the compound [15] was vapor-deposited to prepare a film of about 50 nm by resistance heating vapor deposition method. The vapor deposition rate is 0.1 nm/s.
  • the measurement of the refractive index and attenuation coefficient of the film sample prepared above was performed at Toray Research Center Inc., and the instrument used was ellipsometric spectroscopy (J.A. Woollam M-2000).
  • the refractive index of compound [15] at 460 nm is 1.67.
  • the refractive index at 460nm of TBDB measured by the same method is 2.06.
  • the alkali-free glass was ultrasonically washed in isopropanol for 15 minutes, it was subjected to UV ozone washing treatment in the atmosphere for 30 minutes.
  • UV ozone washing treatment in the atmosphere for 30 minutes.
  • 100nm silver (Ag) and 10nm ITO are successively formed into a film to form a reflective anode.
  • the hole injection layer NPD and F4-TCNQ (weight ratio 97:3), 50nm
  • the hole transport layer NPD, 80nm
  • blue light-emitting layer BH and BD (weight ratio 97: 3 , 20nm)
  • electron transport layer Alq 3, 35nm
  • electron injection layer LiF, 1nm
  • a compound [15] with a film thickness of 10 nm-a second covering layer and a compound with a film thickness of 50 nm [TBDB]-the first covering layer were sequentially vapor-deposited.
  • the sealing plate made of alkali-free glass is sealed with an epoxy resin adhesive to form a light-emitting element.
  • the above-mentioned light-emitting element was subjected to a direct current of 10 mA/cm 2 in the atmosphere at room temperature, and the light emitted from the sealing plate was tested for brightness and color purity with a spectroradiometer (CS1000, Konica Minolta Co., Ltd.).
  • the refractive index of the compound [16] was measured, and the organic light-emitting device was evaluated. The evaluation results are shown in Table 1.
  • the refractive index of the compound [40] was measured, and the organic light-emitting device was evaluated. The evaluation results are shown in Table 1.
  • the refractive index of the compound [49] was measured, and the organic light-emitting device was evaluated. The evaluation results are shown in Table 1.
  • the refractive index of the compound [50] was measured, and the organic light-emitting device was evaluated. The evaluation results are shown in Table 1.
  • the refractive index of the compound [67] was measured, and the organic light-emitting device was evaluated. The evaluation results are shown in Table 1.
  • the refractive index of the compound [70] was measured, and the organic light-emitting device was evaluated. The evaluation results are shown in Table 1.
  • the refractive index of the compound [71] was measured, and the organic light-emitting device was evaluated. The evaluation results are shown in Table 1.
  • the refractive index of the compound [91] was measured, and the organic light-emitting device was evaluated. The evaluation results are shown in Table 1.
  • the refractive index of the compound [93] was measured, and the organic light-emitting device was evaluated. The evaluation results are shown in Table 1.
  • the refractive index of the compound [94] was measured, and the organic light-emitting device was evaluated. The evaluation results are shown in Table 1.
  • the refractive index of the compound [94] was measured, and the organic light-emitting device was evaluated. The evaluation results are shown in Table 1.
  • the refractive index of the compound [94] was measured, and the organic light-emitting device was evaluated. The evaluation results are shown in Table 1.
  • the refractive index of the compound [94] was measured, and the organic light-emitting device was evaluated. The evaluation results are shown in Table 1.
  • the organic light-emitting element was evaluated. The evaluation results are shown in Table 1.
  • the organic light-emitting element was evaluated. The evaluation results are shown in Table 1.
  • the organic light-emitting element was evaluated. The evaluation results are shown in Table 1.
  • the organic light-emitting element was evaluated. The evaluation results are shown in Table 1.
  • the organic light-emitting element was evaluated. The evaluation results are shown in Table 1.
  • the second covering layer is TBDB, and there is no first covering layer, the rest is the same as the embodiment 1.
  • the organic light-emitting element was evaluated. The evaluation results are shown in Table 1.
  • the refractive index of the compound NPD was measured, and the organic light-emitting element was evaluated. The evaluation results are shown in Table 1.
  • the refractive index of the compound Alq 3 was measured, and the organic light-emitting element was evaluated. The evaluation results are shown in Table 1.
  • the refractive index of the compound DZ1 was measured, and the organic light-emitting element was evaluated. The evaluation results are shown in Table 1.
  • the refractive index of the compound DZ1 was measured, and the organic light-emitting element was evaluated. The evaluation results are shown in Table 1.
  • the refractive index of the compound CZX was measured, and the organic light-emitting element was evaluated. The evaluation results are shown in Table 1.
  • Example 1 Compound [15] 1.67 TBDB 2.06 3.4cd/A 0.135, 0.048
  • Example 2 Compound ⁇ 16 ⁇ 1.66 TBDB 2.06 3.7cd/A 0.140,0.053
  • Example 3 Compound ⁇ 40 ⁇ 1.65 TBDB 2.06 4.1cd/A 0.138,0.050
  • Example 4 Compound [49] 1.59 TBDB 2.06 4.2cd/A 0.141,0.051
  • Example 5 Compound ⁇ 50 ⁇ 1.58 TBDB 2.06 5.4cd/A 0.137, 0.049
  • Example 6 Compound ⁇ 67 ⁇ 1.61 TBDB 2.06 5.1cd/A 0.138,0.051
  • Example 7 Compound [70] 1.70 TBDB 2.06 4.0cd/A 0.141, 0.048
  • Example 8 Compound ⁇ 71 ⁇ 1.62 TBDB 2.06 5.0cd/A 0.141, 0.048
  • Example 9 Compound [91] 1.59 TBDB 2.06 5.1cd/
  • n1(460) is the refractive index of the second covering layer with a wavelength of 460nm.
  • n2(460) is the refractive index of the first cladding layer with a wavelength of 460nm.
  • Comparative Example 1 is a commonly used technology. Compared with Comparative Example 1, the light-emitting elements of Examples 1 to 16 can all maintain high color purity while improving luminous efficiency. Among them, by comparing Example 2 and Example 3, it can be seen that the amine-substituted compound [40] has better thermal stability, and the amine-substituted compound [40] has higher luminous efficiency when the refractive index is similar. By comparing Example 4 with Example 5, it can be seen that Example 5 with heteroatoms has a similar structure to Example 4 without heteroatoms. When the refractive index is similar, the luminous efficiency of Example 5 with heteroatoms is higher. high.
  • Example 9 By comparing Example 9, Example 10, and Example 7, it can be seen that when the number of trifluoromethyl groups is the same, the refractive index of the compound of Example 9 and Example 10 with fused ring or spiro ring introduced is higher and emits light. The efficiency has declined.
  • Example 13 uses two materials with a refractive index less than 1.7, and Comparative Examples 2 and 3 use two materials with a refractive index greater than 1.8, and the luminous efficiency is not improved compared with commonly used technologies. Comparing the three examples of Comparative Example 6, Example 14, and Example 12, it can be known that the more trifluoromethyl groups, the lower the refractive index, and the greater the improvement in overall optical performance.
  • Example 19 only one layer of covering layer material with a refractive index of less than 1.7 was used, and the luminous efficiency was not improved compared with commonly used techniques.
  • Comparative Example 4 uses the boron coordination compound DZ1. Compared with Comparative Example 1, the luminous efficiency is significantly improved while maintaining high color purity. Compared with Example 5, the luminous efficiency similar to that of Example 5 can be achieved. However, due to the Hole plugging is prone to occur during compound evaporation, and its device performance is unstable. Comparative Example 5 is the second experiment conducted with exactly the same material as Comparative Example 4 under exactly the same conditions, and its luminous efficiency is weaker than that of Comparative Example 4.
  • Comparative example 6 uses the compound CZX that does not contain trifluoromethyl group.
  • the refractive index of this compound is 1.83, which is not much different from the light-emitting layer, and the refractive index difference with the first covering layer material is less than 0.3, resulting in significantly lower luminous efficiency. For commonly used techniques.

Abstract

本发明提供一种芳香胺化合物以及有机发光元件,所述有机发光元件包含基板、第一电极、含有一种以上有机层膜的发光层、第二电极,所述发光元件还具有覆盖层;所述覆盖层在第二电极上,所述覆盖层包括第一覆盖层和第二覆盖层;所述覆盖层含有所述芳香胺化合物。由本发明提供的有机发光元件可实现高发光效率及色纯度,本发明的有机发光元件可用于有机EL显示器、液晶显示器的背光源、照明、计器类等的光源、标示板、标识灯等。

Description

芳香胺化合物、覆盖层材料及发光元件 技术领域
本发明涉及一种有机发光元件,特别是应用了含有三氟甲基的芳香胺化合物后光取出效率得到大幅改善的有机发光元件,本发明还涉及用于上述有机发光元件的发光元件材料。
背景技术
有机发光元件是一种自发光的显示装置,具有轻薄、广视角、低耗电、高对比等特点。
有机发光元件的发光原理是,在从电极注入的空穴与电子在发光层通过再结合而经由激发态回复到基态时产生光。该发光元件具有薄型且能在低驱动电压下高亮度发光以及能通过选择发光材料而进行多色发光的特征,因此倍受关注。
关于该研究,自从由柯达公司的C.W.Tang等揭示有机薄膜元件能以高亮度发光以来,对于其应用,已有许多研究。有机薄膜发光元件被采用在手机主显示屏等中,其实用化取得切实进展。但是,还存在很多技术课题,其中,元件的高效率化和低耗电是一个很大的课题。
根据有机发光层产生的光所发射的方向,有机发光元件可以分为底发射有机发光元件和顶发射有机发光元件。在底发射有机发光元件中,光射向基板侧,在有机发光层的上部形成有反射电极,在有机发光层的下部形成有透明电极。这种情况下,当有机发光元件为有源矩阵元件时,由于形成有薄膜 晶体管的部分不透光,所以,发光面积减小。另一方面,在顶发射有机元件中,透明电极形成在有机发光层的上部,反射电极形成在有机发光层的下部,所以光射向与基板侧相反的方向,由此,光所透过的面积增加,亮度提高。
为了提高顶发射有机发光元件的发光效率,所采用的方法有在使发光层的光透过的上部半透明金属电极上形成有机覆盖层,以此调节光学干涉距离,抑制外光反射和由表面等离子体能量移动引起的消光等。
然而用于覆盖层的有机化合物的折射率提高非常困难,所以为了在不增加过多材料的前提下进一步提高有机发光元件的发光效率,双覆盖层结构被提出并出现了一些研究成果。这种技术通过在高折射率材料和发光层之间插入低折射率材料,从而形成第二个共振腔。以最简单的有机发光元件结构的变化进一步提高发光效率。
现有技术中会使用不含有三氟甲基的芳香性化合物作为低折射率层材料,但是其折射率普遍偏高,与常见的高折射率材料的折射率差难以达到0.3以上。
作为低折射层材料,现有技术中通常会选择长链烷烃和无机氟化物等,但是长链烷烃在高温容易分解,使用蒸镀方式有困难;无机氟化物则有蒸镀温度高的问题。
现有技术中还提出过咔唑衍生物,苯并咪唑衍生物,三唑衍生物等作为低折射层材料的方案,但是上述化合物衰减系数高,所以折射率高达1.7以上,其衰减系数和吸光系数有下式(A)的所示的关系。(式中,α:吸光系数、k:衰减系数、ω:光频率、c:光速)
Figure PCTCN2020106307-appb-000001
(A)
如式(A)显示衰减系数和吸光系数成正比,因此,吸光系数高的材料,其衰减系数也高。所以以上均不适合用于低折射率材料。
另外也有一些现有技术中提到硼配位化合物作为低折射层材料的方案,但是硼配位化合物的分解温度低,在蒸镀过程中难以控制温度,并且一部分硼配位化合物由于为直接升华型化合物,使用一般蒸镀方法容易造成堵孔,需要特殊的蒸镀手法以避免该问题,增加了蒸镀工艺的困难。因此上述硼配位化合物作为低折射率材料在使用上有诸多不便。
综上所述,现有技术中使用了特定结构的长链烷烃,无机氟化物,咔唑衍生物,苯并咪唑衍生物,三唑衍生物,硼配位化合物等作为低折射率材料,然而在耐热性,堵孔性等蒸镀特性上有很大的缺陷,不适合于使用。
发明内容
为了解决上述兼顾发光效率和色纯度的问题,在以上结果的基础上进行了深入研究后,本发明者发现,含有三氟甲基的芳香胺化合物适用于低折射率材料。此外还发现,由于含有三氟甲基的芳香胺化合物用于第二覆盖层时具有良好的透明性,能使发光效率提高及得到高色纯度元件。
因此本发明提供一种芳香胺化合物,其包含以下通式1所示的结构:
Figure PCTCN2020106307-appb-000002
其中,Ar 1、Ar 2、Ar 3分别表示取代或未被取代的由芳香基和/或杂芳基组成 的基团;
所述Ar 1、Ar 2、Ar 3中的至少一个与至少一个三氟甲基相连;所述Ar 1、Ar 2、Ar 3的取代基选自氢、氘、可被取代的烷基、可被取代的环烷基、可被取代的杂环基、可被取代的链烯基、可被取代的环烯基、可被取代的炔基、可被取代的烷氧基、可被取代的烷硫基、可被取代的芳基醚基、可被取代的芳基硫醚基、可被取代的芳基、可被取代的杂芳基、可被取代的羰基、可被取代的羧基、可被取代的氧羰基、可被取代的胺基甲酰基、可被取代的硅烷基、可被取代的烷胺基或可被取代的芳基胺基中的一种或多种。
由于增加胺结构可以提高化合物的热稳定性,故优选Ar 1、Ar 2、Ar 3的取代基中至少有一个被芳基胺基取代。
由于双胺结构在综合升华性能,热稳定性和化学稳定性的综合能力上更优秀,故优选所述芳香胺化合物如下述通式2所示,
Figure PCTCN2020106307-appb-000003
其中,Ar 4、Ar 5分别表示取代或未被取代的由芳香基和/或杂芳基组成的基团;所述Ar 4、Ar 5的取代基选自氢、氘、可被取代的烷基、可被取代的环烷基、可被取代的杂环基、可被取代的链烯基、可被取代的环烯基、可被取代的炔基、可被取代的烷氧基、可被取代的烷硫基、可被取代的芳基醚基、可被取代的芳基硫醚基、可被取代的芳基、可被取代的杂芳基、可被取代的羰基、可被取代的羧基、可被取代的氧羰基、可被取代的胺基甲酰基、可被取代的硅烷基、可被取代的烷胺基或可被取代的芳基胺基中的一种或多种; n 1、n 2分别地为0-5的整数,其中n 1或n 2不同时为0。
由于双胺结构的两侧增加三氟甲基在降低折射率,降低升华温度提高工艺稳定性和化学稳定性的综合能力上更优秀,故优选所述芳香胺化合物如下述通式3所示
Figure PCTCN2020106307-appb-000004
n 3、n 4分别地为0-5的整数,n 1、n 2、n 3、n 4不能同时为0。
由于在双胺中间的各个苯环上各自增加三氟甲基能在降低折射率,降低合成工艺难度和提高化学稳定性的综合能力上更优秀,故优选所述芳香胺化合物如下述通式4所示
Figure PCTCN2020106307-appb-000005
n 5为0-5的整数,其中n 1、n 2、n 3、n 4、n 5不能同时为0。
由于在双胺中间的苯环为二联苯时蒸镀稳定性和光学性能达到最佳的平衡,故优选所述芳香胺化合物如下述通式5所示
Figure PCTCN2020106307-appb-000006
n 6、n 7为0-5的整数,其中n 1、n 2、n 3、n 4、n 6、n 7不能同时为0。
由于稠环和螺环会提高折射率,不适合用于低折射率材料中,故优选所述通式5中所述Ar 2选自不是稠环或者螺环的芳香基或杂芳基。这里的稠环指取代或未被取代的稠环;螺环指取代或未被取代的螺环。
由于分子两端的三氟甲基数量越多,折射率越低,当两端的四个三氟甲基总数大于4时,有最佳的光学效果,故优选所述通式5中所述n 1+n 2+n 3+n 4>4。
由于导入杂芳基可以提高光的取出效率,故优选所述通式2中,Ar 1、Ar 4为直接与氮相连的杂芳基。
由于稠环和螺环会提高折射率,不适合用于低折射率材料中,故优选所述故优选所述通式2中Ar 2选自不是稠环或者螺环的芳香基或杂芳基。这里的稠环指取代或未被取代的稠环;螺环指取代或未被取代的螺环。
由于分子两端的三氟甲基数量越多,折射率越低,当两端的两个三氟甲基总数大于2时,有最佳的光学效果,故优选所述通式2中所述n 1+n 2>2。
上述烷基优选为C1-C20的烷基;进一步优选为三氟甲基、甲基、乙基、正丙基、异丙基、正丁基、仲丁基或叔丁基等饱和脂肪族烃基中的一种或多种。上述烷基可以具有取代基也可以没有取代基。
上述环烷基优选为C3-C20的环烷基;进一步优选为环丙基、环已基、 降冰片基、或金刚烷基等饱和脂环式烃基中的一种或多种。上述环烷基可以具有取代基也可以没有取代基。
上述杂环基优选为C2-C20的杂环基;进一步优选为吡喃环、哌啶环、或环状酰胺等环内具有碳以外的原子的脂肪族环中的一种或多种。上述杂环基可以具有取代基也可以没有取代基。
上述链烯基优选为C2-C20的链烯基;进一步优选为乙烯基、烯丙基、或丁二烯基等包含双键的不饱和脂肪族烃基中的一种或多种。上述链烯基可以具有取代基也可以没有取代基。
上述环烯基优选为C3-C20的环烯基;进一步优选为环戊烯基、环戊二烯基、或环己烯基等包含双键的不饱和脂环式烃基中的一种或多种。上述环烯基可以具有取代基也可以没有取代基。
上述炔基优选为C2-C20的炔基;进一步优选为乙炔基等包含三键的不饱和脂肪族烃基。上述炔基可以具有取代基也可以没有取代基。
上述烷氧基优选为C1-C20的烷氧基;进一步优选为甲氧基、乙氧基、或丙氧基等介由醚键键合脂肪族烃基的官能团中的一种或多种。该脂肪族烃基可以具有取代基也可以没有取代基。
上述烷硫基是烷氧基的氧原子被置换为硫原子的基团。优选为C1-C20的烷硫基;烷硫基的烷基可以具有取代基也可以没有取代基。
上述芳基醚基优选为C6-C40的芳基醚基;进一步优选为苯氧基等介由醚键键合芳香族官能团。芳基醚基可以具有取代基也可以没有取代基。
上述芳基硫醚基是芳基醚基的醚键的氧原子被置换为硫原子的基团。优选为C6-C60的芳基硫醚基。芳基硫醚基中的芳香族官能团可以具有取代基 也可以没有取代基。
上述芳基优选为C6-C60的芳基;进一步优选为全氟苯基、苯基、萘基、联苯基、菲基、三联苯基或芘基等芳香族官能团中的一种或多种。芳基可以具有取代基也可以没有取代基。
上述杂芳基优选为C4-C60的芳香族杂环基;进一步优选为呋喃基、噻吩基、吡咯、苯并呋喃基、苯并噻吩基、二苯并呋喃基、二苯并噻吩基、吡啶基或喹啉基等中的一种或多种。芳香族杂环基可以具有取代基也可以没有取代基。
上述羰基、羧基、氧羰基、胺基甲酰基、烷胺基可以具有取代基也可以没有取代基。对于烷胺基取代基的碳数没有特别限制,通常为2以上60以下的范围。
上述硅烷基表示为例如三甲基硅烷基、三乙基硅烷基、二甲基叔丁基硅烷基、三苯基硅烷基等具有与硅原子键合的键的官能团,硅烷基可以具有取代基也可以没有取代基。对于硅烷基的碳数没有特别限制,通常为1以上40以下的范围。
上述芳基胺基优选为C6-C40的芳基胺基;进一步优选为苯氮基,吡啶氮基,吡啶苯氮基等介由胺键键合的芳香族官能团。芳基胺基可以具有取代基也可以没有取代基。所述被取代的情况下,取代基分别独立选自氘、卤素、C1-C6的烷基、C3-C6的环烷基、C3-C6的杂环基、C2-C6的链烯基、C4-C6的环烯基、C2-C6的炔基、C1-C6的烷氧基或C1-C6的烷硫基的一种或多种。
本发明提供的具有三氟甲基的上述芳香胺化合物,由于具有优越的薄膜稳定性和折射率,能够解决兼顾提高发光效率与改善色纯度的问题。
所述具有三氟甲基的芳香胺化合物,没有特别限定,具体可列举如下的例子。
Figure PCTCN2020106307-appb-000007
Figure PCTCN2020106307-appb-000008
Figure PCTCN2020106307-appb-000009
Figure PCTCN2020106307-appb-000010
Figure PCTCN2020106307-appb-000011
Figure PCTCN2020106307-appb-000012
Figure PCTCN2020106307-appb-000013
Figure PCTCN2020106307-appb-000014
Figure PCTCN2020106307-appb-000015
Figure PCTCN2020106307-appb-000016
上述含有三氟甲基的芳香胺化合物的合成可以使用已知的方法进行。例如使用镍或钯的Buchwald-Hartwig反应、使用铜的Ullman反应等,但并不限定于这些方法。
本发明还提供了一种有机发光元件材料,所述有机发光元件材料含有上述任一项所述的芳香胺化合物。本发明得到的有机发光元件由于使用了上述的芳香胺化合物,其具有优越的薄膜稳定性和折射率,因此能够解决兼顾提高发光效率与改善色纯度的问题。
本发明还提供了一种有机发光元件,其包含包含基板、第一电极、含有一种以上有机层膜的发光层、第二电极及一层以上的覆盖层;所述有机发光元件含有上述所述的有机发光元件材料。
本发明还提供了一种有机发光元件覆盖层材料,所述有机发光元件覆盖层材料含有上述中任一项所述的芳香胺化合物。
本发明还提供一种有机发光元件,其包含基板、第一电极、含有一种以上有机层膜的发光层及第二电极,所述发光元件还具有覆盖层;所述覆盖层在第二电极上,所述覆盖层包括第一覆盖层和第二覆盖层;所述覆盖层含有上述所述的有机发光元件覆盖层材料。
由于有机电致发光元件的发光层部分的折射率通常为1.7,折射率超过发光层0.1以上的材料作为第一覆盖层时,第一覆盖层与空气之间的半镜面可以更好地与下方反射阳极形成共振腔,故选所述第一覆盖层的折射率是1.8以上。所述第二覆盖层的折射率是1.5-1.7。由于需要在第一覆盖层上形成另一个共振腔需要第一覆盖层与第二覆盖层的折射率有较大差异,差在0.3时可以形成半镜面,故进一步优选所述第一覆盖层的折射率和所述第二覆盖层 的折射率之差是0.3以上。
所述第一覆盖层由下述无机化合物和有机化合物中的至少一种形成,其中所述无机化合物是SiOx、SiNy、Zns、ZnSe、ZrO或TiO 2中的一种或多种;所述x、y为1~4的整数。所述有机化合物是芳胺衍生物、咔唑衍生物、苯并咪唑衍生物或三唑衍生物中的一种或多种。因为无机化合物相比于有机化合物在蒸镀工艺中需要更高的温度,因此优选第一覆盖层材料为有机化合物。
本发明的第二覆盖层既可以位于第一电极和第二电极之间,也可以位于第二电极和第一覆盖层之间,还可以位于第二电极之上。
由于在第二电极上配置有第一覆盖层,其能够有效地保护第二电极和有机发光层避免受到外面的湿气、氧气和污染物的影响,从而能够防止有机发光元件的寿命下降。顶发射发光元件比底发射发光元件具有扩大发光面的优点,搭配使用覆盖层可以整体上提高光取出效率。
本发明的第二覆盖层通过含有上述具有含有三氟甲基的芳香胺化合物,能够实现高发光效率。含有三氟甲基的芳香胺化合物因为具有氟元素从而具有低的折射率。更进一步,因为具有优异的蒸镀薄膜的成膜性能,不论玻璃或金属等各种各样的底层都具有稳定的折射率和消衰系数。蒸镀薄膜的成膜性能低的材料的底层变化的时候,折射率和消衰系数往往也会发生较大的变化。为了使高发光效率极大化、有高的色纯度,优选使含有三氟甲基的芳香胺化合物以20nm~120nm的厚度层叠。更优选层叠厚度为40nm~80nm。另外,从可以使发光效率极大化的角度考虑,更优选层叠厚度为50nm~70nm。
对覆盖层的形成方法没有特别限定,可列举电阻加热蒸镀、电子束蒸镀、溅射、分子层叠法、涂层法、喷墨法、刮板法或激光转印法等,没有特别限 制。
下面具体说明本发明的有机发光元件的实施方式。
在本发明的发光元件中,所用的基板优选为钠玻璃或无碱玻璃等玻璃基板。对于玻璃基板的厚度,只要是足以保持机械强度的厚度即可,因此,0.5mm以上就足够。对于玻璃的材质,由于从玻璃中溶出的离子越少越好,因此,优选无碱玻璃。另外,市场上销售的涂有SiO 2等防护涂层的也可以使用。此外,如果第一电极稳定地发挥功能,则基板不必一定为玻璃,例如,也可以在塑料基板上形成阳极。
第一电极中使用的材料优选为具有高折射率特性的金、银、铝等金属或APC系合金之类的金属合金。这些金属或金属合金也可以是多层层叠。此外,可在金属、金属合金或它们的层积体的上面和/或下面层叠氧化锡、氧化铟、氧化锡铟(ITO)、氧化锌铟(IZO)等透明导电性金属氧化物。
第二电极中使用的材料优选为可形成能使光透过的半透明或透明膜的材料。例如,银、镁、铝、钙或这些金属的合金,氧化锡、氧化铟、氧化锡铟(ITO)或氧化锌铟(IZO)等透明导电性金属氧化物。这些金属、合金或金属氧化物也可以是多层层叠。
上述电极的形成方法可以是电阻加热蒸镀、电子束蒸镀、溅射、离子喷镀或胶涂布法等,没有特别限制。此外,第一电极与第二电极根据所使用的材料的功函数,其中一方相对于有机膜层起阳极作用,另一方起阴极作用。
有机层除了可以仅由发光层构成以外,还可以是由1)空穴传输层/发光层,2)发光层/电子传输层,3)空穴传输层/发光层/电子传输层,4)空穴注入层/空穴传输层/发光层/电子传输层,5)空穴注入层/空穴传输 层/发光层/电子传输层/电子注入层等层叠而成的结构。此外,上述各层可以分别是单层或多层中的任一种。采用1)~5)的结构时,阳极侧电极与空穴输入层或空穴传输层接合,阴极侧电极则与电子输入层或电子传输层接合。
空穴传输层可通过将空穴传输材料的一种或二种以上层叠或混合的方法,或通过使用空穴传输材料和高分子粘合剂的混合物的方法来形成。空穴传输材料需要在施加了电场的电极之间高效率地传输来自正极的空穴,因此希望空穴注入效率高、能够高效率地传输注入的空穴。因此,要求空穴传输材料具有适当离子势,且空穴迁移率大,进而,稳定性优异,制造及使用时不容易产生会成为陷阱的杂质。对满足这样的条件的物质,没有特别限定,例如可以是4,4’-二(N-(3-甲基苯基)-N-苯基胺基)联苯(TPD)、4,4’-二(N-(1-萘基)-N-苯基胺基)联苯(NPD)、4,4’-二(N,N-二(4-联苯基)胺基)联苯(TBDB)、二(N,N-二苯基-4-苯基胺基)-N,N-二苯基-4,4’-二胺基-1,1’-联苯(TPD232)等联苯胺,4,4’,4”-三(3-甲基苯基(苯基)胺基)三苯胺(m-MTDATA)、4,4’,4”-三(1-萘基(苯基)胺基)三苯胺(1-TNATA)等称作星型三芳胺的材料组,具有咔唑骨架的材料,其中优选咔唑类多聚体,具体可列举二(N-芳基咔唑)或二(N-烷基咔唑)等二咔唑衍生物、三咔唑衍生物、四咔唑衍生物、三苯系化合物、吡唑啉衍生物、芪系化合物、肼系化合物、苯并呋喃衍生物、噻吩衍生物、噁二唑衍生物、酞菁衍生物、卟啉衍生物等杂环化合物、或富勒烯衍生物,在聚合物系中,还优选侧链上具有上述单体的聚碳酸酯或苯乙烯衍生物、聚噻吩、聚苯胺、聚芴、聚乙烯基咔唑和聚硅烷等。此外,还可以使用P型Si、P型SiC 等无机化合物。
可在阳极和空穴传输层之间设置空穴注入层。通过设置空穴注入层,可使有机发光元件实现低驱动电压,提高耐久寿命。空穴注入层通常优选使用比空穴传输层材料的离子势低的材料。具体地,例如可以是上述TPD232之类的联苯胺衍生物、星型三芳胺材料组,另外也可以使用酞菁衍生物等。此外,还优选空穴注入层由受体性化合物单独构成,或受体性化合物掺杂在别的空穴传输层中使用。受体性化合物可列举例如三氯化铁(III)、氯化铝、氯化镓、氯化铟、氯化锑等金属氯化物,氧化钼、氧化钒、氧化钨、氧化钌等金属氧化物,三(4-溴苯基)六氯锑酸铵(TBPAH)等电荷转移配位物。此外,还可以是分子内具有硝基、氰基、卤素或三氟甲基的有机化合物、醌系化合物、酸酐系化合物或富勒烯等。
本发明中,发光层可以是单层、多层中的任一种,可分别用发光材料(主体材料、掺杂材料)形成,其可以是主体材料和掺杂材料的混合物,也可以仅为主体材料,任一情况都可以。即,在本发明发光元件的各发光层中,可以是仅主体材料或仅掺杂材料发光,也可以是主体材料和掺杂材料一起发光。从高效率地利用电能、得到高色纯度的发光的角度考虑,优选发光层由主体材料和掺杂材料混合而成。另外,主体材料和掺杂材料分别可以为一种,也可以为多种的组合,任一情况都可以。掺杂材料可以添加在整个主体材料中,也可以添加在一部分中,任一情况都可以。掺杂材料可以是层叠的,也可以分散的,任一情况都可以。掺杂材料可以控制发光色。掺杂材料的量过多时会发生浓度消光现象,因此,其用量相对于主体材料,优选为20重量%以下,更优选为10重量%以下。掺杂方法可以是与主体材料共蒸镀的方法,也可以 是预先与主体材料混合后同时蒸镀的方法。
作为发光材料,具体而言,可使用以往作为发光体而已知的蒽、芘等稠环衍生物,三(8-羟基喹啉)铝等金属螯合类羟基喹啉化合物、二苯并呋喃衍生物、咔唑衍生物、吲哚并咔唑衍生物,聚合物中的聚亚苯基亚乙烯基衍生物、聚对亚苯基衍生物、以及聚噻吩衍生物等,没有特别限定。
对发光材料中所含有的主体材料没有特别限定,可以使用蒽、菲、芘、苯并菲、并四苯、苝、苯并[9,10]菲、荧蒽、芴、茚等具有稠芳环的化合物或其衍生物、N,N’-二萘基-N,N’-二苯基-4,4’-二苯基-1,1’-二胺等芳香族胺衍生物、三(8-羟基喹啉)铝等金属螯合类羟基喹啉化合物、吡咯并吡咯衍生物、二苯并呋喃衍生物、咔唑衍生物、吲哚并咔唑衍生物、三嗪衍生物,在聚合物中,可以使用聚亚苯基亚乙烯基衍生物、聚对亚苯基衍生物、聚芴衍生物、聚乙烯基咔唑衍生物、聚噻吩衍生物等,没有特别限定。
此外,对掺杂材料没有特别限制,可列举萘、蒽、菲、芘、苯并菲、苝、苯并[9,10]菲、荧蒽、芴、茚等具有稠芳环的化合物或其衍生物(例如2-(苯并噻唑-2-基)-9,10-二苯基蒽等)、呋喃、吡咯、噻吩、噻咯、9-硅杂芴、9,9’-螺二硅杂芴、苯并噻吩、苯并呋喃、吲哚、二苯并噻吩、二苯并呋喃、咪唑并吡啶、菲咯啉、吡啶、吡嗪、萘啶、喹喔啉、吡咯并吡啶、噻吨等具有杂芳环的化合物或其衍生物、硼烷衍生物、二苯乙烯基苯衍生物、胺基苯乙烯基衍生物、吡咯甲川衍生物、二酮基吡咯并[3,4-c]吡咯衍生物、香豆素衍生物、咪唑、噻唑、噻二唑、咔唑、噁唑、噁二唑、三唑等唑衍生物、芳香族胺衍生物等。
另外,发光层中也可以掺杂磷光发光材料。磷光发光材料为室温下也可 以磷光发光的材料。使用磷光发光材料作为掺杂剂时,需要基本上能够在室温下磷光发光,但没有特别限定,优选含有选自铟、钌、铑、钯、铂、锇和铼中的至少一种金属的有机金属络合化合物。从室温下具有高的磷光发光效率的角度考虑,更优选具有铟或铂的有机金属络合物。作为与磷光发光性掺杂剂组合使用的主体材料,吲哚衍生物、咔唑衍生物、吲哚并咔唑衍生物,具有吡啶、嘧啶、三嗪骨架的含氮芳香族化合物衍生物,多芳基苯衍生物、螺芴衍生物、三聚茚、苯并[9,10]菲等芳香烃化合物衍生物,二苯并呋喃衍生物、二苯并噻吩等含有氧族元素的化合物,羟基喹啉铍络合物等有机金属络合物可良好地使用,但基本上只要比使用的掺杂剂的三重态能大、电子和空穴能从各自层输送层顺利地注入或传输,则没有特别限定。另外,可以含有2种以上三重态发光掺杂剂,也可以含有2种以上主体材料。此外,也可以含有一种以上的三重态发光掺杂剂和一种以上的萤光发光掺杂剂。
在本发明中,电子传输层为电子从阴极注入、再将电子传输的层。电子传输层宜具有高的电子注入效率,且能高效率地传输注入的电子。因此,电子传输层优选由电子亲和力和电子迁移率大且稳定性优异、制造及使用时不容易产生会成为陷阱的杂质的物质构成。但是,在考虑空穴和电子的传输均衡时,如果电子传输层主要发挥可以高效率地阻止来自阳极的空穴不再结合而流向阴极侧的作用,则即使由电子传输能力不那么高的材料构成,改善发光效率的效果也会与由电子传输能力高的材料构成的情况同等。因而,在本发明中的电子传输层中,可以高效率地阻止空穴迁移的空穴阻止层作为等同物也包含在内。
对电子传输层中使用的电子传输材料没有特别限定,可列举萘、蒽等稠 芳环衍生物、以4,4’-二(二苯基乙烯基)联苯为代表的苯乙烯基系芳环衍生物、蒽醌、联苯醌等醌衍生物、氧化膦衍生物、三(8-羟基喹啉)铝等羟基喹啉络合物、苯并羟基喹啉络合物、羟基唑络合物、偶氮甲碱络合物、环庚三烯酚酮金属络合物或黄酮醇金属络合物,从降低驱动电压、能够得到高效率发光的角度考虑,优选使用具有杂芳环结构的化合物,所述杂芳环结构由选自碳、氢、氮、氧、硅、磷中的元素构成并且含有吸电子性氮。
含有吸电子性氮的杂芳环具有高亲电子性。具有吸电子性氮的电子传输材料容易接受来自具有高亲电子性的阴极的电子,因而可以降低发光元件的驱动电压。此外,由于向发光层的电子供给增大、在发光层再结合的概率增加,因而发光效率提高。作为含有吸电子性氮的杂芳环,可以列举例如,吡啶环、吡嗪环、嘧啶环、喹啉环、喹喔啉环、萘啶环、嘧啶并嘧啶环、苯并喹啉环、菲咯啉环、咪唑环、噁唑环、噁二唑环、三唑环、噻唑环、噻二唑环、苯并噁唑环、苯并噻唑环、苯并咪唑环、或菲并咪唑环等。
另外,作为具有这些杂芳环结构的化合物,可以列举出例如苯并咪唑衍生物、苯并噁唑衍生物、苯并噻唑衍生物、噁二唑衍生物、噻二唑衍生物、三唑衍生物、吡嗪衍生物、菲咯啉衍生物、喹喔啉衍生物、喹啉衍生物、苯并喹啉衍生物,联吡啶、三联吡啶等低聚吡啶衍生物。上述衍生物具有稠芳环骨架时,玻璃转化温度提高,且电子迁移率增加,由此,降低发光元件的驱动电压的效果增大,因而优选。此外,从发光元件的耐久寿命提高、合成容易、原料容易购得的角度考虑,优选上述稠芳环骨架为蒽骨架、芘骨架或菲咯啉骨架。
上述电子传输材料可以单独使用,也可以将二种以上的上述电子传输材 料混合使用,或将一种以上的其它电子传输材料混合到上述电子传输材料中使用。另外,也可以添加给体化合物。这里,给体化合物是指通过改善电子注入能障而使电子容易从阴极或电子注入层向电子传输层注入、进而改善电子传输层的电传导性的化合物。作为本发明的给体化合物的优选例,可列举:碱金属、含有碱金属的无机盐、碱金属与有机物的络合物、碱土金属、含有碱土金属的无机盐、或碱土金属与有机物的络合物等。作为碱金属、或碱土金属的优选种类,可列举低功函数且改善电子传输能力的效果大的锂、钠、或铯之类的碱金属或镁、钙之类的碱土金属。
本发明中,也可在阴极和电子传输层之间设置电子注入层。通常,电子注入层是以帮助电子从阴极注入到电子传输层为目的而插入的,插入时,可以使用含有吸电子性氮的杂芳环结构的化合物,也可以使用含有上述给体化合物的层。另外,在电子注入层中,还可以使用绝缘体或半导体的无机物。使用这些材料,可以有效地防止发光元件短路,且可以提高电子注入性,因而优选。作为这些绝缘体,优选使用选自碱金属硫族化物、碱土金属硫族化物、碱金属卤化物及碱土金属卤化物中的至少一种金属化合物。另外,有机物与金属的络合物也可良好地使用。
作为构成发光元件的上述各层的形成方法,可列举电阻加热蒸镀、电子束蒸镀、溅射、分子层叠法或涂层法等,没有特别限制,但是,通常,从元件特性的角度考虑,优选电阻加热蒸镀或电子束蒸镀。
有机层的厚度视发光物质的电阻值而异,不被限定,但优选为1~1000nm。发光层、电子传输层、空穴传输层的膜厚分别优选为1nm以上200nm以下,更优选为5nm以上100nm以下。
本发明的发光元件具有可以将电能转换为光的功能。这里,作为电能,主要使用直流电流,也可以使用脉冲电流或交流电流。对电流值及电压值没有特别限制,但考虑到元件的耗电量和寿命时,应以能以尽可能低的能量得到最大亮度的方式来选择。
本发明的发光元件可良好地用作以例如矩阵及/或字段方式进行显示的平面显示器。
矩阵方式是指用于显示的像素以方格状或马赛克状等二维配置,通过像素的集合来显示文字或图像。像素的形状、尺寸视用途而定。例如,在计算机、监控器、电视的图像及文字显示中,通常使用边长在300μm以下的四边形的像素,另外,在显示面板那样的大型显示器的情况下,使用边长为mm等级的像素。在单色显示的情况下,只要排列同色的像素即可,但在彩色显示的情况下,将红、绿、蓝色像素排列进行显示。这种情况下,典型的有三角型和条纹型。而且,该矩阵的驱动方法可以是逐线驱动方法和有源矩阵中的任一种。逐线驱动虽然其构造简单,但在考虑操作特性时,有时会有有源矩阵优异的情况,因此,需要根据用途灵活使用。
本发明中的字段方式是指形成图案、使由该图案的配置所确定的区域发光、从而显示预先确定的信息的方式。可列举例如:数字钟、温度计中的时刻、温度显示,音响设备、电磁灶等的工作状态显示及汽车的面板显示等。而且,所述矩阵显示和字段显示可以共存在同一个面板中。
本发明的发光元件优选用作携带型平面显示器,可以提供比现有显示器更低电消耗,更高发光效率的显示器。
本发明提供的含有三氟甲基的芳香胺化合物,具有低的折射率,能够实 现高发光效率,高色纯度。更进一步,因为具有优异的蒸镀薄膜的成膜性能,不论玻璃或金属等各种各样的底层都具有稳定的折射率和消衰系数。
具体实施方式
通过以下实施例对本发明进行举例说明,但本发明并不限于这些实施例中例举的含有三氟甲基的芳香胺化合物和合成方法。
如无特别说明,实施例和比较例中使用的材料和方法都按照本领域技术人员通常所知的那样来获得或使用。
甲苯、二甲苯、甲醇、3-胺基吡啶等购于国药公司;4,4’-二溴联苯、3,5-二(三氟甲基)苯硼酸等购于郑州海阔光电有限公司;各种钯催化剂等购于Aldrich公司。
1H-NMR谱图使用JEOL(400MHz)核磁共振仪来测定;HPLC谱图使用岛津LC-20AD高效液相仪来测定。
实施例和比较例中合成和/或使用了下述化合物:
化合物[15]:4-三氟甲基苯基-双-(4,4’-联苯)-胺
化合物[16]:4-三氟甲基苯基-双-(4-(3-吡啶)苯基)-胺
化合物[40]:3,5-二(三氟甲基)苯基-双-(N-3-吡啶基-苯基)胺基-胺
化合物[49]:4,4’-双(N-苯基-(3,5-二(3,5-二(三氟甲基)苯基)基苯基))胺基-联苯
化合物[50]:4,4’-双(N-(3-吡啶基)-(3,5-二(3,5-二(三氟甲基)苯基)基苯基))胺基-联苯
化合物[67]:4,4’-双(N-(3-吡啶基)-(3,5-二(3,5-二(三氟甲基)苯基)基苯基))胺基-联(2-吡啶)
化合物[70]:1,4-双(N-(3-(2-5-苯噻吩))-(3,5-二(3,5-二(三氟甲基)苯基)基苯基))胺基-苯
化合物[71]:1,4-双(N-(3-吡啶基)-(5-(3,5-二(三氟甲基)苯基)-3-(4-苯羰基苯基)苯基))胺基-苯
化合物[91]:1,4-双(N-(3-吡啶基)-(3-(3,5-二(三氟甲基)苯基)-5-(3,5-二金刚烷基苯基)苯基))胺基-苯
化合物[93]:1,4-双(N-(3-吡啶基)-(3-(3,5-二(三氟甲基)苯基)-芘基))胺基-苯
化合物[94]:1,4-双(N-(3-吡啶基)-(3-(3,5-二(三氟甲基)苯基)-9,9'-螺二芴基))胺基-苯
化合物[99]:4,4’-双(N-双(3,5-二(三氟甲基))苯基)胺基-2,2’-双三氟甲基联苯
化合物[102]:双(4-双(N-双(3,5-二(三氟甲基))苯基)胺基-苯基)-2,4-双三氟甲基-苯
化合物[105]:4,4’-双(N-(3,5-二(三氟甲基)苯基)-(4-三氟甲基苯基))胺基-2,2’-双三氟甲基联苯
化合物[113]:4,4’-双(N-(3-吡啶基)-(3,5-二(对三氟甲基苯基)基苯基))胺基-联苯
化合物[114]:4,4’-双(N-(3-吡啶基)-(3-(3,5-二三氟甲基苯基)-5-(对三氟甲基)苯基))胺基-联苯
实施例和比较例中还使用了下述化合物:
BF3.Et2O:三氟化硼乙醚络合物
DIEA:N,N-二异丙基乙胺
NPD:(N,N'-二苯基-N,N'-二(1-萘基)-1,1'-联苯-4,4'-二胺)
Figure PCTCN2020106307-appb-000017
F4-TCNQ(2,3,5,6-四氟-7,7',8,8'-四氰二甲基对苯醌)
Figure PCTCN2020106307-appb-000018
BH:(9-(2-萘基)-10-(4-(1-萘基)苯基)蒽)
Figure PCTCN2020106307-appb-000019
BD:(E-7-(4-(二苯基胺基)苯乙烯基)-N,N-二苯基-9,9’-二甲基芴基-2-胺)
Figure PCTCN2020106307-appb-000020
Alq 3:(三(8-羟基喹啉)铝)
Figure PCTCN2020106307-appb-000021
TBDB:(N,N,N',N'-4(4-联苯基)联苯二氨)
Figure PCTCN2020106307-appb-000022
DZ1:[[[2,2'-[1,2-乙二[(三价氮基)次甲基]]双[4,6-双(叔丁基)苯酚]](2-)]]四氟二硼
Figure PCTCN2020106307-appb-000023
CZX:4,4’-双(N-(3-吡啶基)-(3,5-二苯基苯基))胺基-联苯
Figure PCTCN2020106307-appb-000024
ZJF:4,4’-双(N-(4-吡啶基)-苯基)胺基-2,5-双联苯噻吩
Figure PCTCN2020106307-appb-000025
LXY:双(N-苯基咔唑)代-2,5-二苯基噻吩
Figure PCTCN2020106307-appb-000026
关于本说明书中记载的化合物,在本说明书中同时记载了其化学式命名和结构式的情况下,化合物的结构以结构式为准。
制备例1
Figure PCTCN2020106307-appb-000027
氮气氛围下,反应器中加入4-溴联苯4.66g(20.2mmol)、4-三氟甲基苯胺1.48g(9.18mol)、双(二亚苄基丙酮)钯0.104mg(0.18mmol)、2-二环己基磷-2',4',6'-三异丙基联0.174mg(0.36mmol)、叔丁醇钠4.14g(44.08mmol)、二甲苯100ml,加热回流搅拌反应4h。冷却至室温,旋蒸,100ml水洗3次,过滤,烘干,得到3.2g粗产品。粗产品在压力3×10 -3Pa、温度220℃下升华得到2.5g化合物[15](白色)。
1HNMR(CDCl 3):δ7.50-7.30(m,8H),7.23-7.20(m,8H),6.50(d,4H),6.40(d,2H)
HPLC(纯度=99.1%)
制备例2
Figure PCTCN2020106307-appb-000028
氮气氛围下,反应器中加入4-(3-吡啶)溴苯4.73g(20.2mmol)、4-三氟甲基苯胺1.48g(9.18mol)、双(二亚苄基丙酮)钯0.104mg(0.18mmol)、2-二环己基磷-2',4',6'-三异丙基联0.174mg(0.36mmol)、叔丁醇钠4.14g(44.08mmol)、二甲苯100ml,加热回流搅拌反应4h。冷却至室温,旋蒸,100ml水洗3次,过滤,烘干,得到4.5g粗产品。粗产品在压力3×10 -3Pa、温度220℃下升华得到3.9g化合物[16](白色)。
1HNMR(CDCl 3):δ8.80(s,2H),8.60(d,2H),8.00(d,2H),7.44(dd,2H),7.20(m,6H),6.50(d,4H),6.40(d,2H)
HPLC(纯度=99.3%)
制备例3
Figure PCTCN2020106307-appb-000029
氮气氛围下,反应器中加入N-(3-吡啶)-苯基胺3.42g(20.1mmol)、4-氯溴苯3.84g(20.1mmol)、双(二亚苄基丙酮)钯0.19mg(0.34mmol)、2-二环己基磷-2',4',6'-三异丙基联苯0.32mg(0.68mmol)、叔丁醇钠3.87g(40.32mmol)、二甲苯100ml,加热回流搅拌反应4h。冷却至室温,旋蒸,100ml水洗3次,过滤,烘干,得到5.1g的4-(N-(3-吡啶)-苯基胺基)氯苯。
1HNMR(CDCl 3):δ8.51(s,1H),8.25(d,1H),7.40(dd,1H),7.00(m,4H),6.61(m,1H),6.45-6.40(m,4H)
HPLC(纯度=99.2%)
Figure PCTCN2020106307-appb-000030
氮气氛围下,反应器中加入4-(N-(3-吡啶)-苯基胺基)氯苯 2.82g(10.1mmol)、3,5-二(三氟甲基)苯胺1.05g(4.59mol)、双(二亚苄基丙酮)钯0.052mg(0.09mmol)、2-二环己基磷-2',4',6'-三异丙基联0.087mg(0.18mmol)、叔丁醇钠2.12g(22.04mmol)、二甲苯50ml,加热回流搅拌反应4h。冷却至室温,旋蒸,100ml水洗3次,过滤,烘干,得到3.1g粗产品。粗产品在压力3×10 -3Pa、温度230℃下升华得到2.3g化合物[40](白色)。
1HNMR(CDCl 3):δ8.53(s,2H),8.25(d,2H),7.40(dd,2H),7.25(d,2H),7.00(m,5H),6.63(m,4H),6.45(d,4H),6.21(m,8H)
HPLC(纯度=99.5%)
制备例4
化合物[49]的合成
Figure PCTCN2020106307-appb-000031
氮气氛围下,反应器中加入3,5-二(三氟甲基)苯硼酸14.19g(55mmol)、3,5-二溴氯苯6.76g(25mmol)、碳酸钾15.20g(110mmol)、双(三苯基膦)二氯化钯0.70g(1mmol)、DME 125ml和水55ml,搅拌回流反应6h。冷却至室温,旋蒸,300ml水洗三次,300ml甲醇洗三次,过滤,滤饼用200ml甲醇淋洗一次,过滤,真空干燥,得到27.65g的3,5-二(3,5-二(三氟甲基)苯)基氯苯。
1HNMR(DMSO):δ7.68(s,4H),7.61(s,2H),7.60(s,1H),7.48(s,2H)
HPLC(纯度=98.7%)
Figure PCTCN2020106307-appb-000032
氮气氛围下,反应器中加入3,5-二(3,5-二(三氟甲基)苯)基氯苯9.00g(16.8mmol)、苯基吡啶1.87g(20.1mmol)、双(二亚苄基丙酮)钯0.19mg(0.34mmol)、2-二环己基磷-2',4',6'-三异丙基联苯0.32mg(0.68mmol)、叔丁醇钠3.87g(40.32mmol)、二甲苯100ml,加热回流搅拌反应4h。冷却至室温,旋蒸,100ml水洗3次,过滤,烘干,得到5.1g的N-((3,5-二(3,5-二(三氟甲基)苯)基苯基)-苯基)胺。
1HNMR(CDCl 3):δ7.67(s,4H),7.61(s,2H),7.02-7.00(m,3H),6.63(m,3H),6.46(d,2H),5.23(s,1H)
HPLC(纯度=99.3%)
Figure PCTCN2020106307-appb-000033
氮气氛围下,反应器中加入N-((3,5-二(3,5-二(三氟甲基)苯)基苯基)-苯基)胺5.99g(10.1mmol)、4,4’-二溴联苯1.43g(4.59mol)、双(二亚 苄基丙酮)钯0.052mg(0.09mmol)、2-二环己基磷-2',4',6'-三异丙基联0.087mg(0.18mmol)、叔丁醇钠2.12g(22.04mmol)、二甲苯50ml,加热回流搅拌反应4h。冷却至室温,旋蒸,100ml水洗3次,过滤,烘干,得到5.2g粗产品。粗产品在压力3×10 -3Pa、温度280℃下升华得到3.5g化合物[49](白色)。
1HNMR(CDCl 3):δ7.67(s,8H),7.60(s,4H),7.23(d,4H),7.02-7.00(m,6H),6.63(m,6H),6.52-6.46(m,8H)
HPLC(纯度=99.5%)
制备例5
化合物[50]的合成
Figure PCTCN2020106307-appb-000034
氮气氛围下,反应器中加入3,5-二(三氟甲基)苯硼酸14.19g(55mmol)、3,5-二溴氯苯6.76g(25mmol)、碳酸钾15.20g(110mmol),双(三苯基膦)二氯化钯0.70g(1mmol),DME 125ml和水55ml,搅拌回流反应6h。冷却至室温,旋蒸,300ml水洗三次,300ml甲醇洗三次,过滤,滤饼用200ml甲醇淋洗一次,过滤,真空干燥,得到13.25g的3,5-二(3,5-二(三氟甲基)苯)基氯苯。
1HNMR(DMSO):δ7.68(s,4H),7.61(s,2H),7.60(s,1H),7.48(s,2H)
HPLC(纯度=98.7%)
Figure PCTCN2020106307-appb-000035
氮气氛围下,反应器中加入3,5-二(3,5-二(三氟甲基)苯)基氯苯9.00g(16.8mmol)、3-胺基吡啶1.90g(20.1mmol)、双(二亚苄基丙酮)钯0.19mg(0.34mmol)、2-二环己基磷-2',4',6'-三异丙基联苯0.32mg(0.68mmol)、叔丁醇钠3.87g(40.32mmol)、二甲苯100ml,加热回流搅拌反应4h。冷却至室温,旋蒸,100ml水洗3次,过滤,烘干,得到5.3g的N-((3,5-二(3,5-二(三氟甲基)苯)基苯基)-(3-吡啶基))胺。
1HNMR(CDCl 3):δ8.55(s,1H),8.25(d,1H),7.67(s,4H),7.61(s,2H),7.50~7.23(m,2H),7.03(s,1H),6.65(s,2H),5.23(s,1H)
HPLC(纯度=99.5%)
Figure PCTCN2020106307-appb-000036
氮气氛围下,反应器中加入N-((3,5-二(3,5-二(三氟甲基)苯)基苯基)-(3-吡啶基))胺6.00g(10.1mmol)、4,4’-二溴联苯1.43g(4.59mol)、双(二亚苄基丙酮)钯0.052mg(0.09mmol)、2-二环己基磷-2',4',6'-三异丙基联0.087mg(0.18mmol)、叔丁醇钠2.12g(22.04mmol)、二甲苯50ml,加热回流搅 拌反应4h。冷却至室温,旋蒸,100ml水洗3次,过滤,烘干,得到5.1g粗产品。粗产品在压力3×10 -3Pa、温度280℃下升华得到2.7g化合物[50](白色)。
1HNMR(CDCl 3):δ8.54(s,2H),8.25(d,2H),7.66(s,8H),7.60(s,4H),7.40(s,2H),7.38~7.23(m,6H),7.03(s,2H),6.64(s,4H),6.50(d,4H)
HPLC(纯度=99.7%)
制备例6
化合物[67]的合成
Figure PCTCN2020106307-appb-000037
氮气氛围下,反应器中加入3,5-二(三氟甲基)苯硼酸14.19g(55mmol)、3,5-二溴氯苯6.76g(25mmol)、碳酸钾15.20g(110mmol)、双(三苯基膦)二氯化钯0.70g(1mmol)、DME 125ml和水55ml,搅拌回流反应6h。冷却至室温,旋蒸,300ml水洗三次,300ml甲醇洗三次,过滤,滤饼用200ml甲醇淋洗一次,过滤,真空干燥,得到27.65g的3,5-二(3,5-二(三氟甲基)苯)基氯苯。
1HNMR(DMSO):δ7.68(s,4H),7.61(s,2H),7.60(s,1H),7.48(s,2H)HPLC(纯度=99.8%)
Figure PCTCN2020106307-appb-000038
氮气氛围下,反应器中加入3,5-二(3,5-二(三氟甲基)苯)基氯苯9.00g(16.8mmol)、3-胺基吡啶1.90g(20.1mmol)、双(二亚苄基丙酮)钯0.19mg(0.34mmol)、2-二环己基磷-2',4',6'-三异丙基联苯0.32mg(0.68mmol)、叔丁醇钠3.87g(40.32mmol)、二甲苯100ml,加热回流搅拌反应4h。冷却至室温,旋蒸,100ml水洗3次,过滤,烘干,得到5.3g的N-((3,5-二(3,5-二(三氟甲基)苯)基苯基)-(3-吡啶基))胺。
1HNMR(CDCl 3):δ8.55(s,1H),8.25(d,1H),7.67(s,4H),7.61(s,2H),7.50~7.23(m,2H),7.03(s,1H),6.65(s,2H),5.23(s,1H)
HPLC(纯度=99.5%)
Figure PCTCN2020106307-appb-000039
氮气氛围下,反应器中加入N-((3,5-二(3,5-二(三氟甲基)苯)基苯基)-(3-吡啶基))胺6.00g(10.1mmol)、4,4’-二溴联(3-吡啶)1.43g(4.59mol)、双(二亚苄基丙酮)钯0.052mg(0.09mmol)、2-二环己基磷-2',4',6'-三异丙基联0.087mg(0.18mmol)、叔丁醇钠2.12g(22.04mmol)、二甲苯50ml,加热回流搅 拌反应4h。冷却至室温,旋蒸,100ml水洗3次,过滤,烘干,得到4.3g粗产品。粗产品在压力3×10 -3Pa,温度290℃下升华得到2.4g化合物[67](淡黄色)。
1HNMR(CDCl 3):δ8.54(s,2H),8.25(d,2H),7.66(s,8H),7.60(s,4H),7.40(s,2H),7.38~7.23(m,6H),7.03(s,2H),6.64(s,4H),6.50(d,4H)
HPLC(纯度=99.1%)
制备例7
化合物[70]的合成
Figure PCTCN2020106307-appb-000040
氮气氛围下,反应器中加入3,5-二(三氟甲基)苯胺13.75g(55mmol)、3,5-二溴氯苯6.76g(25mmol)、碳酸钾15.20g(110mmol)、双(三苯基膦)二氯化钯0.70g(1mmol)、DME 125ml和水55ml,搅拌回流反应6h。冷却至室温,旋蒸,300ml水洗三次,300ml甲醇洗三次,过滤,滤饼用200ml甲醇淋洗一次,过滤,真空干燥,得到27.45g的3,5-二(3,5-二(三氟甲基)苯)基苯胺。
1HNMR(DMSO):δ7.67(s,4H),7.60(s,2H),7.07(s,1H),6.62(s,2H),5.2(s,1H)
HPLC(纯度=99.1%)
Figure PCTCN2020106307-appb-000041
氮气氛围下,反应器中加入3,5-二(3,5-二(三氟甲基)苯)基苯胺8.68g(16.8mmol)、5-苯基-2溴噻吩4.82g(20.1mmol)、双(二亚苄基丙酮)钯0.19mg(0.34mmol)、2-二环己基磷-2',4',6'-三异丙基联苯0.32mg(0.68mmol)、叔丁醇钠3.87g(40.32mmol)、二甲苯100ml,加热回流搅拌反应4h。冷却至室温,旋蒸,100ml水洗3次,过滤,烘干,得到10.23g的N-((3,5-二(3,5-二(三氟甲基)苯)基苯基)-2-(5-苯噻吩基))胺。
1HNMR(CDCl 3):δ7.67(s,4H),7.61(s,2H),7.50~7.21(m,5H),7.05(s,1H),6.65(s,2H),6.60(d,1H),6.31(d,1H),5.21(s,1H)
HPLC(纯度=99.5%)
Figure PCTCN2020106307-appb-000042
氮气氛围下,反应器中加入N-((3,5-二(3,5-二(三氟甲基)苯)基 苯基)-2-(5-苯噻吩基))胺6.87g(10.1mmol)、对二溴苯1.07g(4.59mol)、双(二亚苄基丙酮)钯0.052mg(0.09mmol)、2-二环己基磷-2',4',6'-三异丙基联0.087mg(0.18mmol)、叔丁醇钠2.12g(22.04mmol)、二甲苯50ml,加热回流搅拌反应4h。冷却至室温,旋蒸,100ml水洗3次,过滤,烘干,得到5.3g粗产品。粗产品在压力3×10 -3Pa、温度370℃下升华得到4.1g化合物[70](淡黄色)。
1HNMR(CDCl 3):δ7.67(s,8H),7.60(s,4H),7.50~7.21(m,10H),7.06(s,2H),6.65(s,4H),6.60(d,2H),6.31(d,2H),6.20(d,4H)
HPLC(纯度=99.2%)
制备例8
化合物[71]的合成
Figure PCTCN2020106307-appb-000043
氮气氛围下,反应器中加入3,5-二(三氟甲基)苯硼酸6.19g(24mmol)、3,5-二溴氯苯6.75g(25mmol)、碳酸钾3.4g(25mmol)、双(三苯基膦)二氯化钯0.70g(1mmol)、DME 60ml和水25ml,60℃反应3h。冷却至室温,旋蒸,300ml水洗三次,300ml甲醇洗三次,过滤,滤饼用200ml甲醇淋洗一次,过滤,真空干燥,过柱子(石油醚:甲苯=1:1)得到9.21g的5-(3,5-二(三氟甲基)苯基)-3-溴氯苯。
1HNMR(DMSO):δ7.67(s,2H),7.61-7.40(m,4H)
HPLC(纯度=99.2%)
Figure PCTCN2020106307-appb-000044
氮气氛围下,反应器中加入5-(3,5-二(三氟甲基)苯基)-3-溴氯苯9.21g(23.0mmol)、4-苯羰基苯硼酸5.20g(23.0mmol)、碳酸钾3.4g(25mmol)、双(三苯基膦)二氯化钯0.70g(1mmol)、DME 60ml和水25ml,回流反应3h。冷却至室温,旋蒸,300ml水洗三次,300ml甲醇洗三次,过滤,滤饼用200ml甲醇淋洗一次,过滤,真空干燥,得到9.32g的5-(3,5-二(三氟甲基)苯基)-3-(4-苯羰基苯)氯苯。
1HNMR(CDCl 3):δ7.76-7.58(m,10H),7.46-7.34(m,5H)
HPLC(纯度=99.1%)
Figure PCTCN2020106307-appb-000045
氮气氛围下,反应器中加入5-(3,5-二(三氟甲基)苯基)-3-(4-苯羰基苯)氯苯8.45g(16.8mmol)、3-胺基吡啶1.90g(20.1mmol)、双(二亚苄基丙酮)钯0.19mg(0.34mmol)、2-二环己基磷-2',4',6'-三异丙基联苯0.32mg(0.68mmol)、叔丁醇钠3.87g(40.32mmol)、二甲苯100ml,加热回流搅拌反应4h。冷却至室温,旋蒸,100ml水洗3次,过滤,烘干,得到8.41g的N-(5-(3,5-二(三氟甲基)苯基)-3-(4-苯羰基苯)苯基)-(3-吡啶基))胺。
1HNMR(CDCl 3):δ8.51(s,1H),8.22(d,1H),7.77-7.70(m,4H),7.65-7.57(m,5H),7.45-7.36(m,4H),7.25(d,1H),7.05(s,1H),6.65(s,2H),5.11(s,1H)
HPLC(纯度=99.5%)
Figure PCTCN2020106307-appb-000046
氮气氛围下,反应器中加入N-(5-(3,5-二(三氟甲基)苯基)-3-(4-苯羰基苯)苯基)-(3-吡啶基))胺5.68g(10.1mmol)、对二溴苯1.07g(4.59mol)、双(二亚苄基丙酮)钯0.052mg(0.09mmol)、2-二环己基磷-2',4',6'-三异丙基联0.087mg(0.18mmol)、叔丁醇钠2.12g(22.04mmol)、二甲苯50ml,加热回流搅拌反应4h。冷却至室温,旋蒸,100ml水洗3次,过滤,烘干,得到4.34g粗产品。粗产品在压力3×10 -3Pa、温度350℃下升华得到3.7g化合物[71](淡 黄色)。
1HNMR(CDCl 3):δ8.52(s,2H),8.23(d,2H),7.77-7.71(m,8H),7.66-7.57(m,10H),7.45-7.35(m,8H),7.25(d,2H),7.05(s,2H),6.63(s,4H),6.20(d,4H)
HPLC(纯度=98.9%)
制备例9
化合物[91]的合成
Figure PCTCN2020106307-appb-000047
氮气氛围下,反应器中加入3,5-二(三氟甲基)苯硼酸6.19g(24mmol)、3,5-二溴氯苯6.75g(25mmol)、碳酸钾3.4g(25mmol)、双(三苯基膦)二氯化钯0.70g(1mmol)、DME 60ml和水25ml,60℃反应3h。冷却至室温,旋蒸,300ml水洗三次,300ml甲醇洗三次,过滤,滤饼用200ml甲醇淋洗一次,过滤,真空干燥,过柱子(石油醚:甲苯=1:1)得到9.21g的5-(3,5-二(三氟甲基)苯基)-3-溴氯苯。
1HNMR(DMSO):δ7.67(s,2H),7.61-7.40(m,4H)
HPLC(纯度=99.2%)
Figure PCTCN2020106307-appb-000048
氮气氛围下,反应器中加入5-(3,5-二(三氟甲基)苯基)-3-溴氯苯9.21g(23.0mmol)、3,5-二金刚烷基苯硼酸8.97g(23.0mmol)、碳酸钾3.4g(25mmol),双(三苯基膦)二氯化钯0.70g(1mmol)、DME 60ml和水25ml,回流反应3h。冷却至室温,旋蒸,300ml水洗三次,300ml甲醇洗三次,过滤,滤饼用200ml甲醇淋洗一次,过滤,真空干燥,得到12.41g的5-(3,5-二(三氟甲基)苯基)-3-(3,5-二金刚烷基)氯苯。
1HNMR(CDCl 3):δ7.67(s,2H),7.60(s,2H),7.45(s,2H),7.30(s,3H),1.81(m,4H),1.56(m,8H),1.43(m,4H),1.41(m,6H),1.18(m,8H)
HPLC(纯度=98.7%)
Figure PCTCN2020106307-appb-000049
氮气氛围下,反应器中加入5-(3,5-二(三氟甲基)苯基)-3-(3,5-二金刚烷基)氯苯11.22g(16.8mmol)、3-胺基吡啶1.90g(20.1mmol)、双(二亚苄 基丙酮)钯0.19mg(0.34mmol)、2-二环己基磷-2',4',6'-三异丙基联苯0.32mg(0.68mmol)、叔丁醇钠3.87g(40.32mmol)、二甲苯100ml,加热回流搅拌反应4h。冷却至室温,旋蒸,100ml水洗3次,过滤,烘干,得到11.21g的N-(5-(3,5-二(三氟甲基)苯基)-3-(3,5-二金刚烷基)苯基)-(3-吡啶基))胺。
1HNMR(CDCl 3):δ8.52(s,1H),8.23(d,1H),7.67(s,2H),7.60(s,1H),7.40(s,1H),7.30(m,4H),7.06(s,1H),6.64(s,2H),5.21(s,1H),1.81(m,4H),1.56(m,8H),1.43(m,4H),1.41(m,6H),1.18(m,8H)
HPLC(纯度=99.1%)
Figure PCTCN2020106307-appb-000050
氮气氛围下,反应器中加入N-(5-(3,5-二(三氟甲基)苯基)-3-(3,5-二金刚烷基)苯基)-(3-吡啶基))胺7.33g(10.1mmol)、对二溴苯1.07g(4.59mol)、双(二亚苄基丙酮)钯0.052mg(0.09mmol)、2-二环己基磷-2',4',6'-三异丙基联0.087mg(0.18mmol)、叔丁醇钠2.12g(22.04mmol)、二甲苯50ml,加热回流搅拌反应8h。冷却至室温,旋蒸,100ml水洗3次,过滤,烘干,得到10.45g粗产品。粗产品在压力3×10 -3Pa、温度390℃下升华得到7.3g化合物[91](淡黄色)。
δ8.52(s,2H),8.23(d,2H),7.67(s,4H),7.60(s,2H),7.40(s,2H),7.30(m, 8H),7.06(s,2H),6.64(s,4H),6.20(d,4H),1.81(m,8H),1.56(m,16H),1.43(m,8H),1.41(m,12H),1.18(m,16H)
HPLC(纯度=99.2%)
制备例10
化合物[93]的合成
Figure PCTCN2020106307-appb-000051
氮气氛围下,反应器中加入3,5-二(三氟甲基)苯硼酸6.19g(24mmol)、3,5-二溴氯苯6.75g(25mmol)、碳酸钾3.4g(25mmol),双(三苯基膦)二氯化钯0.70g(1mmol)、DME 60ml和水25ml,60℃反应3h。冷却至室温,旋蒸,300ml水洗三次,300ml甲醇洗三次,过滤,滤饼用200ml甲醇淋洗一次,过滤,真空干燥,过柱子(石油醚:甲苯=1:1)得到9.21g的5-(3,5-二(三氟甲基)苯基)-3-溴氯苯。
1HNMR(DMSO):δ7.67(s,2H),7.61-7.40(m,4H)
HPLC(纯度=99.2%)
Figure PCTCN2020106307-appb-000052
氮气氛围下,反应器中加入5-(3,5-二(三氟甲基)苯基)-3-溴氯苯9.21g(23.0mmol)、芘硼酸5.66g(23.0mmol)、碳酸钾3.4g(25mmol)、双(三苯基膦)二氯化钯0.70g(1mmol)、DME 60ml和水25ml,回流反应3h。冷却至室温,旋蒸,300ml水洗三次,300ml甲醇洗三次,过滤,滤饼用200ml甲醇淋洗一次,过滤,真空干燥,得到10.12g的5-(3,5-二(三氟甲基)苯基)-3-芘基氯苯。
1HNMR(CDCl 3):δ8.22(s,2H),8.00(d,2H),7.80(m,1H),7.71-7.67(m,6H),7.60-7.58(m,2H),7.45(s,2H)
HPLC(纯度=99.3%)
Figure PCTCN2020106307-appb-000053
氮气氛围下,反应器中加入5-(3,5-二(三氟甲基)苯基)-3-芘基氯苯 8.80g(16.8mmol)、3-胺基吡啶1.90g(20.1mmol)、双(二亚苄基丙酮)钯0.19mg(0.34mmol)、2-二环己基磷-2',4',6'-三异丙基联苯0.32mg(0.68mmol)、叔丁醇钠3.87g(40.32mmol)、二甲苯100ml,加热回流搅拌反应4h。冷却至室温,旋蒸,100ml水洗3次,过滤,烘干,得到8.41g的N-(5-(3,5-二(三氟甲基)苯基)-3-芘基)-(3-吡啶基))胺。
1HNMR(CDCl 3):δ8.53(s,1H),8.21(m,3H),8.00(d,2H),7.81(m,1H),7.71-7.67(m,6H),7.60(s,1H),7.41(m,1H),7.25(d,1H),7.06(s,1H),6.64(s,2H),5.21(s,H)
HPLC(纯度=99.5%)
Figure PCTCN2020106307-appb-000054
氮气氛围下,反应器中加入N-(5-(3,5-二(三氟甲基)苯基)-3-芘基)-(3-吡啶基))胺5.88g(10.1mmol)、对二溴苯1.07g(4.59mol)、双(二亚苄基丙酮)钯0.052mg(0.09mmol)、2-二环己基磷-2',4',6'-三异丙基联0.087mg(0.18mmol)、叔丁醇钠2.12g(22.04mmol)、二甲苯50ml,加热回流搅拌反应4h。冷却至室温,旋蒸,100ml水洗3次,过滤,烘干,得到4.12g粗产品。粗产品在压力3×10 -3Pa、温度370℃下升华得到3.4g化合物[93](黄色)。
1HNMR(CDCl 3):δ8.53(s,1H),8.21(m,3H),8.00(d,2H),7.82(m,1H),7.71-7.67(m,6H),7.60(s,1H),7.40(m,1H),7.25(d,1H),7.06(s,1H),6.64(s,2H),6.21(d,4H)
HPLC(纯度=99.1%)
制备例11
化合物[94]的合成
Figure PCTCN2020106307-appb-000055
氮气氛围下,反应器中加入3,5-二(三氟甲基)苯硼酸6.19g(24mmol)、3,5-二溴氯苯6.75g(25mmol)、碳酸钾3.4g(25mmol),双(三苯基膦)二氯化钯0.70g(1mmol),DME 60ml和水25ml,60℃反应3h。冷却至室温,旋蒸,300ml水洗三次,300ml甲醇洗三次,过滤,滤饼用200ml甲醇淋洗一次,过滤,真空干燥,过柱子(石油醚:甲苯=1:1)得到9.21g的5-(3,5-二(三氟甲基)苯基)-3-溴氯苯。
1HNMR(DMSO):δ7.67(s,2H),7.61-7.40(m,4H)
HPLC(纯度=99.2%)
Figure PCTCN2020106307-appb-000056
氮气氛围下,反应器中加入5-(3,5-二(三氟甲基)苯基)-3-溴氯苯9.21g(23.0mmol)、9,9'-螺二芴硼酸8.28g(23.0mmol)、碳酸钾3.4g(25mmol)、双(三苯基膦)二氯化钯0.70g(1mmol)、DME 60ml和水25ml,回流反应3h。冷却至室温,旋蒸,300ml水洗三次,300ml甲醇洗三次,过滤,滤饼用200ml甲醇淋洗一次,过滤,真空干燥,得到11.21g的5-(3,5-二(三氟甲基)苯基)-3-9,9'-螺二芴氯苯。
1HNMR(CDCl 3):δ7.90-7.72(m,5H),7.67-7.45(m,8H),7.38-7.28(m,4H),7.19-7.16(m,4H)
HPLC(纯度=99.2%)
Figure PCTCN2020106307-appb-000057
氮气氛围下,反应器中加入5-(3,5-二(三氟甲基)苯基)-3-9,9'-螺二 芴氯苯10.72g(16.8mmol)、3-胺基吡啶1.90g(20.1mmol)、双(二亚苄基丙酮)钯0.19mg(0.34mmol)、2-二环己基磷-2',4',6'-三异丙基联苯0.32mg(0.68mmol)、叔丁醇钠3.87g(40.32mmol)、二甲苯100ml,加热回流搅拌反应4h。冷却至室温,旋蒸,100ml水洗3次,过滤,烘干,得到9.38g的N-(5-(3,5-二(三氟甲基)苯基)-3-9,9'-螺二芴基)-(3-吡啶基))胺。
1HNMR(CDCl 3):δ8.53(s,1H),8.23(d,1H),7.90-7.72(m,5H),7.67-7.45(m,5H),7.38-7.28(m,6H),7.19-7.16(m,4H),7.06(s,1H),6.64(s,2H),5.12(s,1H)
HPLC(纯度=99.7%)
Figure PCTCN2020106307-appb-000058
氮气氛围下,反应器中加入N-(5-(3,5-二(三氟甲基)苯基)-3-9,9'-螺二芴基)-(3-吡啶基))胺7.04g(10.1mmol)、对二溴苯1.07g(4.59mol)、双(二亚苄基丙酮)钯0.052mg(0.09mmol)、2-二环己基磷-2',4',6'-三异丙基联0.087mg(0.18mmol)、叔丁醇钠2.12g(22.04mmol)、二甲苯50ml,加热回流搅拌反应4h。冷却至室温,旋蒸,100ml水洗3次,过滤,烘干,得到5.29g粗产品。粗产品在压力3×10 -3Pa、温度380℃下升华得到2.3g化合物[94](黄 色)。
1HNMR(CDCl 3):δ8.53(s,1H),8.23(d,1H),7.90-7.72(m,5H),7.67-7.45(m,5H),7.38-7.28(m,6H),7.19-7.16(m,4H),7.06(s,1H),6.64(s,2H),6.20(d,4H)
HPLC(纯度=99.5%)
制备例12
Figure PCTCN2020106307-appb-000059
氮气氛围下,反应器中加入3,5-二(三氟甲基)苯胺3.85g(16.8mmol)、3,5-二(三氟甲基)溴苯4.88g(16.8mmol)、双(二亚苄基丙酮)钯0.19mg(0.34mmol)、2-二环己基磷-2',4',6'-三异丙基联苯0.32mg(0.68mmol)、叔丁醇钠3.87g(40.32mmol)、二甲苯100ml,加热回流搅拌反应4h。冷却至室温,旋蒸,100ml水洗3次,100ml甲醇洗3次,烘干,得到7.1g的双(双(三氟甲基)苯基)胺。
1HNMR(CDCl 3):δ7.02(s,2H),6.40(s,4H),4.00(s,1H)
HPLC(纯度=99.9%)
Figure PCTCN2020106307-appb-000060
氮气氛围下,反应器中加入双(双(三氟甲基)苯基)胺7.10g(16.1mmol)、4-溴-2-三氟甲基氯苯4.13g(16.1mmol)、双(二亚苄基丙酮)钯 0.18mg(0.33mmol)、2-二环己基磷-2',4',6'-三异丙基联苯0.31mg(0.66mmol)、叔丁醇钠3.70g(38.64mmol)、二甲苯100ml,加热回流搅拌反应4h。冷却至室温,旋蒸,100ml水洗3次,100ml甲醇洗3次,烘干,得到9.2g的4-双(双(三氟甲基)苯基)胺基-2-三氟甲基氯苯。
1HNMR(CDCl 3):δ7.01(s,2H),6.95(s,1H),6.65(s,4H),6.55(s,1H),6.40(s,1H)
HPLC(纯度=99.1%)
Figure PCTCN2020106307-appb-000061
氮气氛围下,反应器中加入4-双(双(三氟甲基)苯基)胺基-2-三氟甲基氯苯4.6g(7.4mmol)、双联频哪醇硼酸酯1.89g(7.4mmol)、双(二亚苄基丙酮)钯0.09mg(0.16mmol)、2-二环己基磷-2',4',6'-三异丙基联苯0.15mg(0.31mmol)、醋酸钾1.90g(19.31mmol)、二甲苯100ml,加热回流搅拌反应4h。冷却至室温,旋蒸,100ml水洗3次,100ml甲醇洗3次,烘干,得到5.0g的4-双(双(三氟甲基)苯基)胺基-2-三氟甲基苯基频哪醇酯。
1HNMR(CDCl 3):δ7.01(s,2H),6.91(s,1H),6.72(s,1H),6.64(s,4H),6.54(s,1H),1.26(s,12H)
HPLC(纯度=99.5%)
Figure PCTCN2020106307-appb-000062
氮气氛围下,反应器中加入4-双(双(三氟甲基)苯基)胺基-2-三氟甲基氯苯4.35g(7.0mmol)、4-双(双(三氟甲基)苯基)胺基-2-三氟甲基苯基频哪醇酯5.00g(7.0mmol)、碳酸钾1.33g(9.8mmol)、双(三苯基膦)二氯化钯0.49g(0.7mmol)、DME 24ml和水10ml,60℃反应3h。冷却至室温,旋蒸,100ml水洗三次,100ml甲醇洗三次,过滤,滤饼用20ml甲醇淋洗一次,过滤,真空干燥,过柱子(石油醚:二氯甲烷=1:1)得到8.12g的化合物[99](微红色)。
1HNMR(DMSO):δ7.12(s,2H),7.00(s,4H),6.72(s,2H),6.65(s,8H),6.55(s,2H)
HPLC(纯度=99.9%)
制备例13
Figure PCTCN2020106307-appb-000063
氮气氛围下,反应器中加入3,5-二(三氟甲基)苯胺3.85g(16.8mmol)、3,5-二(三氟甲基)溴苯4.88g(16.8mmol)、双(二亚苄基丙酮)钯 0.19mg(0.34mmol)、2-二环己基磷-2',4',6'-三异丙基联苯0.32mg(0.68mmol)、叔丁醇钠3.87g(40.32mmol)、二甲苯100ml,加热回流搅拌反应4h。冷却至室温,旋蒸,100ml水洗3次,100ml甲醇洗3次,烘干,得到7.1g的双(双(三氟甲基)苯基)胺。
1HNMR(CDCl 3):δ7.02(s,2H),6.40(s,4H),4.00(s,1H)
HPLC(纯度=99.9%)
Figure PCTCN2020106307-appb-000064
氮气氛围下,反应器中加入双(双(三氟甲基)苯基)胺7.10g(16.1mmol)、4-溴氯苯3.04g(16.1mmol)、双(二亚苄基丙酮)钯0.18mg(0.33mmol)、2-二环己基磷-2',4',6'-三异丙基联苯0.31mg(0.66mmol)、叔丁醇钠3.70g(38.64mmol)、二甲苯100ml,加热回流搅拌反应4h。冷却至室温,旋蒸,100ml水洗3次,100ml甲醇洗3次,烘干,得到8.81g的4-双(双(三氟甲基)苯基)胺基-氯苯。
1HNMR(CDCl 3):δ7.01(s,4H),6.65(s,4H),6.40(s,2H)
HPLC(纯度=99.1%)
Figure PCTCN2020106307-appb-000065
氮气氛围下,反应器中加入4-双(双(三氟甲基)苯基)胺基-2-三氟甲基氯苯8.15g(14.8mmol)、双联频哪醇硼酸酯3.78g(14.8mmol)、双(二亚苄基丙酮)钯0.18mg(0.32mmol)、2-二环己基磷-2',4',6'-三异丙基联苯0.3mg(0.62mmol)、醋酸钾3.80g(38.62mmol)、二甲苯100ml,加热回流搅拌反应4h。冷却至室温,旋蒸,100ml水洗3次,100ml甲醇洗3次,烘干,得到9.13g的4-双(双(三氟甲基)苯基)胺基-苯基频哪醇酯。
1HNMR(CDCl 3):δ7.01(s,4H),6.64(s,4H),6.54(s,2H),1.26(s,12H)
HPLC(纯度=99.5%)
Figure PCTCN2020106307-appb-000066
氮气氛围下,反应器中加入4-双(双(三氟甲基)苯基)胺基-2-三氟甲基苯基频哪醇酯9.02g(14.0mmol)、2,5-双三氟甲基-1,4-二溴苯2.60(7.0mmol)碳酸钾1.33g(9.8mmol)、双(三苯基膦)二氯化钯0.49g(0.7mmol)、DME 24ml和水10ml,60℃反应3h。冷却至室温,旋蒸,100ml水洗三次,100ml甲醇洗三次,过滤,滤饼用20ml甲醇淋洗一次,过滤,真空干燥,过柱子(石油醚:二氯甲烷=1:1)得到12.31g的化合物[102](白色)。
1HNMR(DMSO):δ7.63(s,2H),7.23(d,4H),7.00(s,4H),6.65(s,8H),6.52(d,4H)
HPLC(纯度=99.7%)
制备例14
Figure PCTCN2020106307-appb-000067
氮气氛围下,反应器中加入3,5-二(三氟甲基)苯胺3.85g(16.8mmol)、4-三氟甲基溴苯3.76g(16.8mmol)、双(二亚苄基丙酮)钯0.19mg(0.34mmol)、2-二环己基磷-2',4',6'-三异丙基联苯0.32mg(0.68mmol)、叔丁醇钠3.87g(40.32mmol)、二甲苯100ml,加热回流搅拌反应4h。冷却至室温,旋蒸,100ml水洗3次,100ml甲醇洗3次,烘干,得到6.21g的N-(3,5-二(三氟甲基)苯基)-(4-三氟甲基苯基)胺。
1HNMR(CDCl 3):δ7.21(s,2H),7.02(s,1H),6.64(s,2H),6.38(s,2H),4.00(s,1H)
HPLC(纯度=99.1%)
Figure PCTCN2020106307-appb-000068
氮气氛围下,反应器中加入双(双(三氟甲基)苯基)胺6.00g(16.1mmol)、4-溴-2-三氟甲基氯苯4.13g(16.1mmol)、双(二亚苄基丙酮)钯0.18mg(0.33mmol)、2-二环己基磷-2',4',6'-三异丙基联苯0.31mg(0.66mmol)、叔丁醇钠3.70g(38.64mmol)、二甲苯100ml,加热回流搅拌反应4h。冷却至室温,旋蒸,100ml水洗3次,100ml甲醇洗3次,烘干,得到8.24g的4- ((N-(3,5-二(三氟甲基)苯基)-(4-三氟甲基苯基))胺基-2-三氟甲基氯苯。
1HNMR(CDCl 3):δ7.21(s,2H),7.01(s,1H),6.95(s,1H),6.65(s,2H),6.55(s,1H),6.40(s,3H)
HPLC(纯度=99.0%)
Figure PCTCN2020106307-appb-000069
氮气氛围下,反应器中加入4-双(双(三氟甲基)苯基)胺基-2-三氟甲基氯苯4.11g(7.4mmol)、双联频哪醇硼酸酯1.89g(7.4mmol)、双(二亚苄基丙酮)钯0.09mg(0.16mmol)、2-二环己基磷-2',4',6'-三异丙基联苯0.15mg(0.31mmol)、醋酸钾1.90g(19.31mmol)、二甲苯100ml,加热回流搅拌反应4h。冷却至室温,旋蒸,100ml水洗3次,100ml甲醇洗3次,烘干,得到4.50g的4-((N-(3,5-二(三氟甲基)苯基)-(4-三氟甲基苯基))胺基-2-三氟甲基苯基频哪醇酯。
1HNMR(CDCl 3):δ7.21(s,2H),7.01(s,1H),6.91(s,1H),6.72(s,1H),6.64(s,2H),6.54(s,1H),6.38(s,2H),1.26(s,12H)
HPLC(纯度=98.8%)
Figure PCTCN2020106307-appb-000070
氮气氛围下,反应器中加入4-双(双(三氟甲基)苯基)胺基-2-三氟甲基氯苯3.85g(7.0mmol)、4-双(双(三氟甲基)苯基)胺基-2-三氟甲基苯基频哪醇酯4.50g(7.0mmol)、碳酸钾1.33g(9.8mmol),双(三苯基膦)二氯化钯0.49g(0.7mmol)、DME 24ml和水10ml,60℃反应3h。冷却至室温,旋蒸,100ml水洗三次,100ml甲醇洗三次,过滤,滤饼用20ml甲醇淋洗一次,过滤,真空干燥,过柱子(石油醚:二氯甲烷=1:1)得到7.01g的化合物[105](白色)。
1HNMR(DMSO):δ7.21(s,4H),7.12(s,2H),7.00(s,2H),6.72(s,2H),6.65(s,4H),6.55(s,2H),6.38(s,4H)
HPLC(纯度=99.9%)
实施例1
①折射率测定
无碱玻璃基板(旭硝子株式会社,AN100)进行20分钟的UV臭氧洗涤处理,进而设置在真空蒸镀装置内,进行排气,直至装置内的真空度比1×10 -3Pa高的真空度条件下,通过电阻加热蒸镀法,把化合物[15]蒸镀制备约50nm的薄膜。蒸镀速度为0.1nm/s。
上述制备的薄膜样品折射率和衰减系数的测定是在东丽分析研究中心(Toray Research Center.Inc.)进行的,使用的仪器是椭圆偏振光谱(J.A.Woollam社M-2000)。
化合物[15]的460nm处的折射率为1.67。
用同样手法测得TBDB的460nm处的折射率为2.06。
②有机发光元件制作及评价
无碱玻璃在异丙醇中超声波洗涤15分钟后,在大气中进行30分钟UV臭氧洗涤处理。利用测射法在无碱玻璃上,用100nm的银(Ag),10nm的ITO依次成膜形成反射阳极。反射阳极经过10分钟UV臭氧洗涤处理后,利用真空蒸镀法,在阳极上依次层叠蒸镀空穴注入层(NPD和F4-TCNQ(重量比97:3),50nm),空穴传输层(NPD,80nm),蓝色发光层(BH和BD(重量比97:3,20nm),电子传输层(Alq 3,35nm),电子注入层(LiF,1nm)后,共蒸镀Mg和Ag(重量比10:1,15nm)作成半透明阴极。之后,半透明阴极上,依次蒸镀膜厚10nm的化合物[15]-第二覆盖层和膜厚50nm的化合物[TBDB]-第一覆盖层。最后在干燥氮气氛围的手套箱里,用环氧树脂粘合剂把无碱玻璃制的封口板封装,制成发光元件。
上述发光元件在室温,大气中,加10mA/cm 2直流电流,从封口板的发光用分光放射辉度计(CS1000,柯尼卡美能达株式会社)测试了亮度和色纯度。测定值为:发光效率3.4cd/A,色纯度为CIE(x,y)=(0.135,0.048)。
实施例2
除了第二覆盖层为化合物[16]以外,其余与实施例1相同。
对化合物[16]的折射率进行测定,并对有机发光元件进行评价。评价结 果见表1。
实施例3
除了第二覆盖层为化合物[40]以外,其余与实施例1相同。
对化合物[40]的折射率进行测定,并对有机发光元件进行评价。评价结果见表1。
实施例4
除了第二覆盖层为化合物[49]以外,其余与实施例1相同。
对化合物[49]的折射率进行测定,并对有机发光元件进行评价。评价结果见表1。
实施例5
除了第二覆盖层为化合物[50]以外,其余与实施例1相同。
对化合物[50]的折射率进行测定,并对有机发光元件进行评价。评价结果见表1。
实施例6
除了第二覆盖层为化合物[67]以外,其余与实施例1相同。
对化合物[67]的折射率进行测定,并对有机发光元件进行评价。评价结果见表1。
实施例7
除了第二覆盖层为化合物[70]以外,其余与实施例1相同。
对化合物[70]的折射率进行测定,并对有机发光元件进行评价。评价结果见表1。
实施例8
除了第二覆盖层为化合物[71]以外,其余与实施例1相同。
对化合物[71]的折射率进行测定,并对有机发光元件进行评价。评价结果见表1。
实施例9
除了第二覆盖层为化合物[91]以外,其余与实施例1相同。
对化合物[91]的折射率进行测定,并对有机发光元件进行评价。评价结果见表1。
实施例10
除了第二覆盖层为化合物[93]以外,其余与实施例1相同。
对化合物[93]的折射率进行测定,并对有机发光元件进行评价。评价结果见表1。
实施例11
除了第二覆盖层为化合物[94]以外,其余与实施例1相同。
对化合物[94]的折射率进行测定,并对有机发光元件进行评价。评价结果见表1。
实施例12
除了第二覆盖层为化合物[99]以外,其余与实施例1相同。
对化合物[94]的折射率进行测定,并对有机发光元件进行评价。评价结果见表1。
实施例13
除了第二覆盖层为化合物[102]以外,其余与实施例1相同。
对化合物[94]的折射率进行测定,并对有机发光元件进行评价。评价结 果见表1。
实施例14
除了第二覆盖层为化合物[105]以外,其余与实施例1相同。
对化合物[94]的折射率进行测定,并对有机发光元件进行评价。评价结果见表1。
实施例15
除了第二覆盖层为化合物[99],第一覆盖层为化合物ZJF以外,其余与实施例1相同。
对有机发光元件进行评价。评价结果见表1。
实施例16
除了第二覆盖层为化合物[99],第一覆盖层为化合物LXY以外,其余与实施例1相同。
对有机发光元件进行评价。评价结果见表1。
实施例17
除了第二覆盖层为化合物TBDB,第一覆盖层为化合物[99]以外,其余与实施例1相同。
对有机发光元件进行评价。评价结果见表1。
实施例18
除了第二覆盖层为化合物[50],第一覆盖层为化合物[91]以外,其余与实施例1相同。
对有机发光元件进行评价。评价结果见表1。
实施例19
除了第二覆盖层为化合物[50],没有第一覆盖层以外,其余与实施例1相同。
对有机发光元件进行评价。评价结果见表1。
比较例1
除了第二覆盖层为TBDB,没有第一覆盖层以外,其余与实施例1相同。
对有机发光元件进行评价。评价结果见表1。
比较例2
除了第二覆盖层为TBDB,第一覆盖层为NPD以外,其余与实施例1相同。
对化合物NPD的折射率进行测定,并对有机发光元件进行评价。评价结果见表1。
比较例3
除了第二覆盖层为TBDB,第一覆盖层为Alq 3以外,其余与实施例1相同。
对化合物Alq 3的折射率进行测定,并对有机发光元件进行评价。评价结果见表1。
比较例4
除了第二覆盖层为DZ1以外,其余与实施例1相同。
对化合物DZ1的折射率进行测定,并对有机发光元件进行评价。评价结果见表1。
比较例5
除了第二覆盖层为DZ1以外,其余与实施例1相同。
对化合物DZ1的折射率进行测定,并对有机发光元件进行评价。评价结果见表1。
比较例6
除了第二覆盖层为CZX,第一覆盖层为TBDB外,其余与实施例1相同。
对化合物CZX的折射率进行测定,并对有机发光元件进行评价。评价结果见表1。
表1:发光元件性能(实施例及比较例)
  第二覆盖层 n1(460) 第一覆盖层 n2(460) 发光效率 色纯度CIE(x,y)
实施例1 化合物【15】 1.67 TBDB 2.06 3.4cd/A 0.135,0.048
实施例2 化合物【16】 1.66 TBDB 2.06 3.7cd/A 0.140,0.053
实施例3 化合物【40】 1.65 TBDB 2.06 4.1cd/A 0.138,0.050
实施例4 化合物【49】 1.59 TBDB 2.06 4.2cd/A 0.141,0.051
实施例5 化合物【50】 1.58 TBDB 2.06 5.4cd/A 0.137,0.049
实施例6 化合物【67】 1.61 TBDB 2.06 5.1cd/A 0.138,0.051
实施例7 化合物【70】 1.70 TBDB 2.06 4.0cd/A 0.141,0.048
实施例8 化合物【71】 1.62 TBDB 2.06 5.0cd/A 0.141,0.048
实施例9 化合物【91】 1.59 TBDB 2.06 5.1cd/A 0.140,0.049
实施例10 化合物【93】 1.67 TBDB 2.06 3.4cd/A 0.144,0.050
实施例11 化合物【94】 1.65 TBDB 2.06 3.6cd/A 0.143,0.047
实施例12 化合物【99】 1.53 TBDB 2.06 5.9cd/A 0.138,0.050
实施例13 化合物【102】 1.51 TBDB 2.06 6.0cd/A 0.138,0.051
实施例14 化合物【105】 1.65 TBDB 2.06 6.5cd/A 0.139,0.048
实施例15 化合物【99】 1.53 ZJF 2.22 6.3cd/A 0.138,0.048
实施例16 化合物【99】 1.53 LXY 2.18 4.9cd/A 0.137,0.047
实施例17 TBDB 2.06 化合物【99】 1.51 4.5cd/A 0.140,0.050
实施例18 化合物【50】 1.58 化合物【91】 1.59 2.9cd/A 0.137,0.052
实施例19 化合物【50】 1.58 --- 2.3cd/A 0.141,0.044
比较例1 TBDB 2.06 --- 3.0cd/A 0.141,0.046
比较例2 TBDB 2.06 NPD 1.92 3.2cd/A 0.138,0.052
比较例3 TBDB 2.06 Alq3 1.82 3.1cd/A 0.138,0.052
比较例4 DZ1 1.56 TBDB 2.06 5.3cd/A 0.138,0.050
比较例5 DZ1 1.56 TBDB 2.06 4.9cd/A 0.138,0.050
比较例6 CZX 1.83 TBDB 2.06 2.9cd/A 0.143,0.044
表中n1(460)为第二覆盖层折射率为波长460nm的折射率。n2(460)为第一覆盖层折射率为波长460nm的折射率。
从上述表1所示,比较例1为现在常用的技术,相较于比较例1而言,实施例1~实施例16的发光元件均能在保持高色纯度的同时发光效率有所提高。其中,通过对实施例2和实施例3比较可知,胺取代的化合物[40]的热稳定性更好,在折射率相近的情况下胺取代的化合物[40]有更高的发光效率。通过对实施例4与实施例5比较可知,有杂原子的实施例5与没有杂原子的结构相近的实施例4相比,折射率相近的情况下,有杂原子实施例5的发光效率更高。通过对实施例9、实施例10、实施例7比较可知,在三氟甲基数量相同的情况下,导入稠环或者螺环的实施例9、实施例10的化合物的折射率更高,发光效率有所下降。实施例13使用了两种折射率小于1.7的材料,比较例2、3使用了两种折射率大于1.8的材料,发光效率都没有较常用技术有所改进。比较例6、实施例14、实施例12三个例子相比,可以知道三氟甲基越多,折射率越低,整体光学性能提升更大。实施例19仅使用一层折射率小于1.7的覆盖层材料,发光效率没有较常用技术有所改进。比较例4使用了硼配位化合物DZ1,与比较例1相比在保持高色纯度的同时发光效率有显著提高,与实施例5相比可以达到与实施例5相似的发光效率,但是由于该化合物蒸镀时容易发生堵孔现象,其器件表现不稳定。比较例5是和比较例4完全一样的材料用完全一样的条件进行的第二次实验,其发光效率相较于比较例4有所减弱。这是由于堵孔后蒸镀的第二覆盖层的膜厚控制不稳定,共振腔发挥不出性能导致的。从品质保证的角度和工业生产的角度堵孔性能会增加不良率,提高生产成本。比较例6使用了不含有三氟甲基的化合物CZX,该化合物的折射率为1.83,与发光层的差距不大,与第一覆盖层材料的折射率差小于0.3,导致其发光效率明显低于常用技术。
本说明书中提到的所有专利文献、非专利文献均通过引用的方式并入本文。本说明书中提到的“多种”包含大于一种的所有情况,即,“一种或多种”包括一种、两种、三种、……等等。本说明书中针对某数值范围分别记载上限和下限时,或者以上限和下限组合的方式记载某数值范围时,其中记载的各上限和各下限可任意组合为新的数值范围,这与直接明确记载组合而成的数值范围的记载形式应被视为是相同的。在不偏离本发明主旨的情况下,本领域技术人员可对本发明进行改变和改良,这些也包括在本发明的范围内。

Claims (18)

  1. 一种芳香胺化合物,其特征在于:其包含以下通式1所示的结构:
    Figure PCTCN2020106307-appb-100001
    其中,Ar 1、Ar 2、Ar 3分别表示取代或未被取代的由芳香基和/或杂芳基组成的基团;所述Ar 1、Ar 2、Ar 3中的至少一个与至少一个三氟甲基相连;所述Ar 1、Ar 2、Ar 3的取代基选自氢、氘、可被取代的烷基、可被取代的环烷基、可被取代的杂环基、可被取代的链烯基、可被取代的环烯基、可被取代的炔基、可被取代的烷氧基、可被取代的烷硫基、可被取代的芳基醚基、可被取代的芳基硫醚基、可被取代的芳基、可被取代的杂芳基、可被取代的羰基、可被取代的羧基、可被取代的氧羰基、可被取代的胺基甲酰基、可被取代的硅烷基、可被取代的烷胺基或可被取代的芳基胺基中的一种或多种。
  2. 根据权利要求1所述的芳香胺化合物,其特征在于:所述通式1中,Ar 1、Ar 2、Ar 3的取代基中至少有一个被芳基胺基取代。
  3. 根据权利要求1所述的芳香胺化合物,其特征在于:所述芳香胺化合物如下述通式2所示,
    Figure PCTCN2020106307-appb-100002
    其中,Ar 4、Ar 5分别表示取代或未被取代的由芳香基和/或杂芳基组成的基团; 所述Ar 4、Ar 5的取代基选自氢、氘、可被取代的烷基、可被取代的环烷基、可被取代的杂环基、可被取代的链烯基、可被取代的环烯基、可被取代的炔基、可被取代的烷氧基、可被取代的烷硫基、可被取代的芳基醚基、可被取代的芳基硫醚基、可被取代的芳基、可被取代的杂芳基、可被取代的羰基、可被取代的羧基、可被取代的氧羰基、可被取代的胺基甲酰基、可被取代的硅烷基、可被取代的烷胺基或可被取代的芳基胺基中的一种或多种;n 1、n 2分别地为0-5的整数,其中n 1或n 2不能同时为0。
  4. 根据权利要求3所述的芳香胺化合物,其特征在于:所述芳香胺化合物如下述通式3所示,
    Figure PCTCN2020106307-appb-100003
    n 3、n 4分别地为0-5的整数,n 1、n 2、n 3、n 4不能同时为0。
  5. 根据权利要求4所述的芳香胺化合物,其特征在于:所述芳香胺化合物如下述通式4所示,
    Figure PCTCN2020106307-appb-100004
    n 5为0-5的整数,其中n 1、n 2、n 3、n 4、n 5不能同时为0。
  6. 根据权利要求5所述的芳香胺化合物,其特征在于:所述芳香胺化合物如下述通式5所示,
    Figure PCTCN2020106307-appb-100005
    n 6、n 7为0-5的整数,其中n 1、n 2、n 3、n 4、n 6、n 7不能同时为0。
  7. 根据权利要求4所述的芳香胺化合物,其特征在于:所述Ar 2选自不是稠环或者螺环的芳香基或杂芳基。
  8. 根据权利要求4所述的芳香胺化合物,其特征在于:n 1+n 2+n 3+n 4>4。
  9. 根据权利要求3所述的芳香胺化合物,其特征在于:所述通式2中,Ar 1、Ar 4为直接与氮相连的杂芳基。
  10. 根据权利要求3所述的芳香胺化合物,其特征在于:所述Ar 2选自不是稠环或者螺环的芳香基或杂芳基。
  11. 根据权利要求3所述的芳香胺化合物,其特征在于:n 1+n 2>2。
  12. 一种有机发光元件材料,其特征在于:所述有机发光元件材料含有权利要求1-11中任一项所述的芳香胺化合物。
  13. 一种有机发光元件,其特征在于:包含基板、第一电极、含有一种以上有机层膜的发光层、第二电极及一层以上的覆盖层;所述有机发光元件含有权利要求12所述的有机发光元件材料。
  14. 一种有机发光元件覆盖层材料,其特征在于:所述有机发光元件覆盖层材料含有权利要求1-11中任一项所述的芳香胺化合物。
  15. 一种有机发光元件,包含基板、第一电极、含有一种以上有机层膜的发光层、及第二电极,其特征在于:所述发光元件还具有覆盖层;所述覆盖层在第二电极上,所述覆盖层包括第一覆盖层和第二覆盖层,所述第一覆盖层或第二覆盖层含有权利要求14所述的有机发光元件覆盖层材料。
  16. 根据权利要求15所述的有机发光元件,其特征在于:所述第一覆盖层的折射率是1.8以上;所述第二覆盖层的折射率是1.7以下。
  17. 根据权利要求15所述的有机发光元件,其特征在于:所述第一覆盖层的折射率是1.8以上;所述第二覆盖层的折射率是1.5-1.7。
  18. 根据权利要求16所述的有机发光元件,其特征在于:所述第一覆盖层和所述第二覆盖层的折射率之差是0.3以上。
PCT/CN2020/106307 2019-08-27 2020-07-31 芳香胺化合物、覆盖层材料及发光元件 WO2021036683A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080006228.5A CN113260605A (zh) 2019-08-27 2020-07-31 芳香胺化合物、覆盖层材料及发光元件
KR1020227004680A KR20220052920A (ko) 2019-08-27 2020-07-31 방향족 아민 화합물, 캐핑층 재료 및 발광 소자
JP2021574793A JP2022545320A (ja) 2019-08-27 2020-07-31 芳香族アミン化合物、キャッピング層材料及び発光素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910796199.6 2019-08-27
CN201910796199 2019-08-27

Publications (2)

Publication Number Publication Date
WO2021036683A1 true WO2021036683A1 (zh) 2021-03-04
WO2021036683A8 WO2021036683A8 (zh) 2021-06-24

Family

ID=74685334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/106307 WO2021036683A1 (zh) 2019-08-27 2020-07-31 芳香胺化合物、覆盖层材料及发光元件

Country Status (5)

Country Link
JP (1) JP2022545320A (zh)
KR (1) KR20220052920A (zh)
CN (1) CN113260605A (zh)
TW (1) TW202110787A (zh)
WO (1) WO2021036683A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102412986B1 (ko) * 2021-07-05 2022-06-27 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
CN115141106A (zh) * 2022-06-30 2022-10-04 山东钥熠材料科技有限公司 化合物、有机材料和有机光电器件
CN117209422A (zh) * 2023-11-07 2023-12-12 烟台丰蓬液晶材料有限公司 一种含氟邻位取代三芳胺类化合物及有机电致发光器件
US11856841B2 (en) 2021-07-05 2023-12-26 Duk San Neolux Co., Ltd. Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
CN117586131A (zh) * 2023-11-30 2024-02-23 浙江华显光电科技有限公司 一种低折射率有机化合物、具有该化合物的oled和有机发光装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005044791A (ja) * 2003-07-08 2005-02-17 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、照明装置および表示装置
CN101282931A (zh) * 2005-10-07 2008-10-08 东洋油墨制造株式会社 含咔唑的胺化合物及其用途
CN109037483A (zh) * 2018-08-07 2018-12-18 长春海谱润斯科技有限公司 一种有机电致发光器件
CN109232492A (zh) * 2018-10-18 2019-01-18 长春海谱润斯科技有限公司 一种芳香胺衍生物及其有机电致发光器件
CN109400560A (zh) * 2018-10-18 2019-03-01 长春海谱润斯科技有限公司 一种芳香胺化合物及其有机电致发光器件
CN109988119A (zh) * 2017-12-29 2019-07-09 株式会社乐普拓 芳基胺衍生物及包含其的有机电致发光器件

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102413966B1 (ko) * 2017-11-23 2022-06-29 도레이 카부시키가이샤 유기 발광 소자

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005044791A (ja) * 2003-07-08 2005-02-17 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、照明装置および表示装置
CN101282931A (zh) * 2005-10-07 2008-10-08 东洋油墨制造株式会社 含咔唑的胺化合物及其用途
CN109988119A (zh) * 2017-12-29 2019-07-09 株式会社乐普拓 芳基胺衍生物及包含其的有机电致发光器件
CN109037483A (zh) * 2018-08-07 2018-12-18 长春海谱润斯科技有限公司 一种有机电致发光器件
CN109232492A (zh) * 2018-10-18 2019-01-18 长春海谱润斯科技有限公司 一种芳香胺衍生物及其有机电致发光器件
CN109400560A (zh) * 2018-10-18 2019-03-01 长春海谱润斯科技有限公司 一种芳香胺化合物及其有机电致发光器件

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102412986B1 (ko) * 2021-07-05 2022-06-27 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
US11856841B2 (en) 2021-07-05 2023-12-26 Duk San Neolux Co., Ltd. Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
US11877508B2 (en) 2021-07-05 2024-01-16 Duk San Neolux Co., Ltd. Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
CN115141106A (zh) * 2022-06-30 2022-10-04 山东钥熠材料科技有限公司 化合物、有机材料和有机光电器件
CN115141106B (zh) * 2022-06-30 2024-03-22 山东钥熠材料科技有限公司 化合物、有机材料和有机光电器件
CN117209422A (zh) * 2023-11-07 2023-12-12 烟台丰蓬液晶材料有限公司 一种含氟邻位取代三芳胺类化合物及有机电致发光器件
CN117586131A (zh) * 2023-11-30 2024-02-23 浙江华显光电科技有限公司 一种低折射率有机化合物、具有该化合物的oled和有机发光装置

Also Published As

Publication number Publication date
CN113260605A (zh) 2021-08-13
TW202110787A (zh) 2021-03-16
KR20220052920A (ko) 2022-04-28
WO2021036683A8 (zh) 2021-06-24
JP2022545320A (ja) 2022-10-27

Similar Documents

Publication Publication Date Title
JP7120015B2 (ja) 発光素子
JP6680209B2 (ja) 有機発光素子
JP6361138B2 (ja) 発光素子
TWI631111B (zh) 芳香胺化合物、發光元件材料及發光元件
WO2021036683A1 (zh) 芳香胺化合物、覆盖层材料及发光元件
JP6183211B2 (ja) 発光素子材料および発光素子
TWI766086B (zh) 化合物、使用其的發光元件、顯示裝置及照明裝置
TWI739046B (zh) 有機發光元件
WO2012090806A1 (ja) 発光素子材料および発光素子
WO2012124622A1 (ja) 発光素子材料および発光素子
CN111194315B (zh) 芳香胺化合物、覆盖层材料及发光元件
CN112920177A (zh) 芳香单胺化合物、覆盖层材料及发光元件
CN115246813A (zh) 高折射率有机化合物、覆盖层材料及发光元件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20859048

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021574793

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20859048

Country of ref document: EP

Kind code of ref document: A1