WO2015083594A1 - コークスの製造方法、およびコークス - Google Patents

コークスの製造方法、およびコークス Download PDF

Info

Publication number
WO2015083594A1
WO2015083594A1 PCT/JP2014/081285 JP2014081285W WO2015083594A1 WO 2015083594 A1 WO2015083594 A1 WO 2015083594A1 JP 2014081285 W JP2014081285 W JP 2014081285W WO 2015083594 A1 WO2015083594 A1 WO 2015083594A1
Authority
WO
WIPO (PCT)
Prior art keywords
ashless coal
coke
coal
oxidized
mass
Prior art date
Application number
PCT/JP2014/081285
Other languages
English (en)
French (fr)
Inventor
濱口 眞基
祥平 和田
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to US15/033,769 priority Critical patent/US20160257887A1/en
Priority to CA2928325A priority patent/CA2928325C/en
Priority to RU2016121157A priority patent/RU2633584C1/ru
Priority to CN201480063943.7A priority patent/CN105765034B/zh
Publication of WO2015083594A1 publication Critical patent/WO2015083594A1/ja
Priority to US16/029,956 priority patent/US20180320083A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/04Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B47/00Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion
    • C10B47/02Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion with stationary charge
    • C10B47/10Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion with stationary charge in coke ovens of the chamber type
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B47/00Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion
    • C10B47/28Other processes
    • C10B47/30Other processes in rotary ovens or retorts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/04Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of powdered coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/08Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form in the form of briquettes, lumps and the like
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/08Non-mechanical pretreatment of the charge, e.g. desulfurization
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/04Raw material of mineral origin to be used; Pretreatment thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/02Treating solid fuels to improve their combustion by chemical means
    • C10L9/06Treating solid fuels to improve their combustion by chemical means by oxidation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/08Treating solid fuels to improve their combustion by heat treatments, e.g. calcining
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/02Combustion or pyrolysis
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/06Heat exchange, direct or indirect
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/24Mixing, stirring of fuel components

Definitions

  • the present invention relates to a method for producing coke and coke. More specifically, the present invention relates to a method for producing coke suitable for a reducing material for nonferrous metal refining, and coke.
  • coke has been used as a reducing material in the refining of non-ferrous metals such as aluminum and titanium.
  • calcine coke obtained by heating petroleum raw coke is widely used because it is inexpensive.
  • Petroleum coke the raw material for calcine coke
  • the properties of calcine coke depend on crude oil.
  • impurities sulfur, nickel, vanadium, sodium, etc.
  • impurities are derived from crude oil as a raw material. Since such impurities become a source of contamination, for example, when used as refining coke, it is desired that impurities (especially the sulfur content, hereinafter the same) be as small as possible.
  • crude oil produced in recent years has a high impurity content, it has been difficult to provide coke with a low impurity content.
  • Patent Document 1 discloses a method for producing ashless coal used for fuel, coke raw materials, chemical raw materials, and the like.
  • ashless coal has the highest heat fluidity and has the property of melting at 200-300 ° C regardless of the quality of the raw coal.
  • Ashless charcoal has the property of expanding when heated to around 400 ° C. Therefore, when ashless coal is molded, heated at a high temperature and subjected to dry distillation treatment, the ashless coal is melted and the shape of the molded body cannot be maintained, and softening meltability has been a problem.
  • ashless coal foams and expands when heated at high temperatures, overflows from the distillation apparatus, adheres to the inner wall of the distillation apparatus, and cannot be discharged, or the resulting coke becomes a sponge-like porous body and has a bulk specific gravity. There was a problem of expansibility such as a significant decrease. Therefore, ashless coal has problems in softening meltability and expandability, and it has been difficult to use it as a coke raw material.
  • Patent Document 2 a modification technique for ashless coal. Specifically, a slurry heating step for heat-treating a slurry containing coal and an aromatic solvent, a liquid component in which the coal is dissolved in the slurry heat-treated in the slurry heating step, and a solid component composed of ash and insoluble coal.
  • a slurry heating step for heat-treating a slurry containing coal and an aromatic solvent, a liquid component in which the coal is dissolved in the slurry heat-treated in the slurry heating step, and a solid component composed of ash and insoluble coal.
  • Ashless coal heating step as a carbon raw material and the volatile content of the carbon raw material obtained in the ashless coal heating step is less than 35% by mass when measured by the method defined in JIS M 8812, and , A method for producing a carbon raw material having a gist of being 24 mass% or more is disclosed.
  • Patent Document 2 Although the technology of Patent Document 2 has an excellent effect in improving self-sintering properties, it takes time to modify ashless coal, so productivity is not always good, and modified ashless coal is relatively expensive. It was.
  • the present invention has been made paying attention to the above-described circumstances, and an object of the present invention is to provide a method for producing high-purity coke at a lower cost than before and a high-purity coke.
  • the method for producing the coke of the present invention that has achieved the above-described problem includes ashless coal, oxidized ashless coal obtained by oxidizing ashless coal, and petroleum raw coke, the ashless coal,
  • the total content of the ashless coal is 5 to 40 parts by mass and the total content of the ashless coal and the oxidized ashless coal is 100 parts by mass in total of the oxidized ashless coal and the petroleum raw coke.
  • the gist of the mixture is 30 to 70 parts by mass.
  • the mixture is molded and then subjected to dry distillation, the oxygen increase rate of the oxidized ashless coal is 2 to 10%, the oxidation treatment is air oxidation, and the oxidation treatment is performed at 150 ° C. As described above, it is a preferable embodiment to perform at a temperature lower than the ignition point.
  • the dry distillation is performed in a chamber furnace or a rotary kiln.
  • the present invention includes ashless coal, oxidized ashless coal obtained by oxidizing ashless coal, and petroleum raw coke, and the ashless coal, the oxidized ashless coal, and the petroleum raw coke, A mixture in which the content of the ashless coal is 5 to 40 parts by mass and the total content of the ashless coal and the oxidized ashless coal is 30 to 70 parts by mass with respect to 100 parts by mass in total.
  • the coke obtained in this way is also included.
  • high-purity coke can be produced at low cost using petroleum raw coke. Moreover, according to this invention, a high purity coke can be provided.
  • FIG. 1 is a flowchart for explaining an example of a manufacturing process of ashless coal.
  • FIG. 2 is a flowchart for explaining an example of a coke production process according to the present invention.
  • the inventors of the present invention have made extensive studies to provide high-quality coke at a low price by using petroleum raw coke as a carbon raw material. As a result, the following knowledge was obtained.
  • Ashless coal has very little impurity content, and mixing ashless coal with petroleum raw coke is useful for reducing the impurity content of coke.
  • ashless coal has a problem in softening meltability and expansibility.
  • Ashless coal means ash content of 5% by mass or less, preferably 3% by mass or less.
  • ashless coal those having a very low ash concentration of residual inorganic substances (silicic acid, alumina, iron oxide, lime, magnesia, alkali metal, etc.) when coal is ashed by heating at 815 ° C. are preferred.
  • the ash content concentration is more preferably 5000 ppm or less (mass basis), and still more preferably 2000 ppm or less.
  • ashless coal has no water and exhibits higher thermal fluidity than raw coal.
  • Ashless coal can be obtained by various known production methods, for example, by removing the solvent from the solvent extract of coal.
  • ashless coal can be manufactured through the following steps S1 to S3 (see FIG. 1), but the following ashless coal manufacturing steps (S1 to S3) can be changed as appropriate, and various processing steps can be performed as necessary. It may be added.
  • a coal crushing step for crushing raw coal during or before and after each step a removal step for removing unnecessary substances such as waste
  • Other steps such as a drying step of drying the obtained ashless coal may be included.
  • the slurry heating step (S1) is a process in which coal and an aromatic solvent are mixed to prepare a slurry, and heat treatment is performed to extract a coal component into the aromatic solvent.
  • the type of coal as a raw material (hereinafter also referred to as “raw coal”) is not particularly limited.
  • various known coals such as bituminous coal, subbituminous coal, lignite, and lignite can be used. From the viewpoint of economy, it is preferable to use inferior quality coals such as subbituminous coal, lignite and lignite rather than using high-grade coals such as expensive bituminous coal.
  • the aromatic solvent is not particularly limited as long as it has a property of dissolving coal.
  • the aromatic solvent include monocyclic aromatic compounds such as benzene, toluene and xylene, and bicyclic aromatic compounds such as naphthalene, methylnaphthalene, dimethylnaphthalene and trimethylnaphthalene.
  • the bicyclic aromatic compound includes other naphthalenes having an aliphatic side chain, and biphenyl and alkylbenzene having a long aliphatic side chain.
  • a bicyclic aromatic compound which is a non-hydrogen donating solvent is preferable.
  • the non-hydrogen-donating solvent is a coal derivative that is a solvent mainly composed of a bicyclic aromatic and purified mainly from a carbonization product of coal.
  • the reason why the non-hydrogen-donating solvent is preferable is that the non-hydrogen-donating solvent is stable even in a heated state and has excellent affinity with coal. This is because it is a solvent that can be easily recovered by a method such as distillation, and the recovered solvent can be recycled.
  • the boiling point of the aromatic solvent is too low, the required pressure in the heat extraction or in the separation step (S2) described later increases, and loss due to volatilization increases in the step of recovering the aromatic solvent.
  • the recovery rate of group solvents is reduced. Furthermore, the extraction rate in heat extraction is also reduced.
  • the boiling point of the aromatic solvent is preferably 180 to 330 ° C.
  • the coal concentration with respect to the aromatic solvent is not particularly limited. Although depending on the type of raw material coal, if the coal concentration relative to the aromatic solvent is low, the proportion of the coal component extracted into the aromatic solvent is less than the amount of the aromatic solvent, which is not economical. On the other hand, the higher the coal concentration, the better. However, if the coal concentration is too high, the viscosity of the slurry becomes high, and it becomes difficult to move the slurry and separate the liquid component and the solid component in the separation step (S2).
  • the coal concentration is preferably 10% by mass or more, more preferably 20% by mass or more, preferably 50% by mass or less, more preferably 35% by mass or less, based on dry coal.
  • the slurry heating temperature is preferably 350 ° C. or higher, more preferably 380 ° C. or higher, and preferably 420 ° C. or lower.
  • the heating time is not particularly limited, but if the extraction time is long, the thermal decomposition reaction proceeds too much, the radical polymerization reaction proceeds, and the extraction rate decreases.
  • it is the said heating temperature, Preferably it is 120 minutes or less, More preferably, it is 60 minutes or less, More preferably, it is 30 minutes or less, Preferably it is 10 minutes or more.
  • the lower limit of the temperature at the time of cooling is preferably 300 ° C. or higher. If it cools to less than 300 degreeC, the dissolving power of an aromatic solvent will fall, the reprecipitation of the coal component once extracted will occur, and the yield of ashless coal will fall.
  • Heat extraction is preferably performed in a non-oxidizing atmosphere. Specifically, it is preferably performed in the presence of an inert gas such as nitrogen. This is because contact with oxygen during heating extraction is dangerous because it may ignite, and the cost increases when hydrogen is used.
  • an inert gas such as nitrogen
  • the pressure in the heat extraction depends on the temperature at the time of heat extraction and the vapor pressure of the aromatic solvent used, but when the pressure is lower than the vapor pressure of the aromatic solvent, the aromatic solvent volatilizes and enters the liquid phase. It is not trapped and cannot be extracted. On the other hand, if the pressure is too high, the cost of the equipment and the operating cost increase, which is not economical.
  • a preferable pressure is approximately 1.0 to 2.0 MPa.
  • the separation step (S2) is a step of separating the slurry heat-treated in the slurry heating step (S1) into a liquid component and a solid component.
  • the liquid component is a solution containing a coal component extracted into an aromatic solvent.
  • the solid component is a slurry containing ash and insoluble coal insoluble in an aromatic solvent.
  • the method for separating the slurry into a liquid component and a solid component in the separation step (S2) is not particularly limited, and a known separation method such as a filtration method, a centrifugal separation method, or a gravity sedimentation method can be employed.
  • a gravity sedimentation method that allows continuous operation of a fluid and is suitable for a large amount of processing at a low cost.
  • a liquid component hereinafter also referred to as “supernatant liquid” that is a solution containing coal components extracted into an aromatic solvent
  • a solvent from the lower part of the gravity sedimentation tank, a solvent. It is possible to obtain a solid component (hereinafter also referred to as “solid content concentrate”) which is a slurry containing ash and coal insoluble in water.
  • the aromatic solvent is separated and recovered from the supernatant using a distillation method or the like, and ashless coal having an extremely low ash concentration can be obtained (ashless coal acquisition step (S3)).
  • the ashless coal acquisition step (S3) is a step of separating the aromatic solvent from the supernatant to acquire ashless coal having an extremely low ash concentration.
  • the method for separating the aromatic solvent from the supernatant is not particularly limited, and a general distillation method, evaporation method (spray drying method, etc.), etc. can be used.
  • the aromatic solvent separated and recovered can be used repeatedly.
  • Ash liquid can be obtained from the supernatant by separating and collecting the aromatic solvent.
  • the obtained ashless coal can be used not only as a raw material for the mixture of the present invention but also as a raw material for oxidized ashless coal.
  • by-product coal in which the ash is concentrated by separating the aromatic solvent from the solid content concentrate may be produced (by-product coal acquisition step).
  • the method for separating the aromatic solvent from the solid concentrate can use a general distillation method or evaporation method as in the ashless coal acquisition step (S3) for acquiring ashless coal from the liquid component. .
  • the oxidation step is a step for obtaining oxidized ashless coal by oxidizing ashless coal.
  • the ashless charcoal can be modified to improve softening meltability and expansibility.
  • the oxidation method of ashless coal is not particularly limited.
  • oxidation in an oxidizing atmosphere such as oxygen, ozone, nitrogen dioxide, and air is desirable, and air oxidation using oxygen in the air as an oxidizing agent is preferable.
  • the oxygen increase rate of oxidized ashless coal is not particularly limited, but if the oxygen increase rate is too low, the modification effect of ashless coal is not sufficient, and problems may occur due to softening and melting properties during dry distillation. is there. On the other hand, if the rate of increase in oxygen is too high, the yield is reduced, which is not economical. Therefore, the oxygen increase rate is 2% or more, preferably 3% or more, preferably 10% or less, more preferably 5% or less.
  • the oxygen increase rate of ashless coal when the oxygen increase rate of ashless coal is set, the ashless coal having an oxygen increase rate lower than the set value even if it is oxidized is not handled as the oxidized ashless coal of the present invention. Moreover, when using ashless coal whose oxygen increase rate is lower than a set value as a carbon raw material, it handles as ashless coal of this invention.
  • the oxygen increase rate is calculated by measuring the oxygen content of ashless coal before and after oxidation treatment based on JIS M 8813 (oxygen content calculation method) and calculating (oxygen content of oxidized ashless coal minus The oxygen content of ash coal).
  • the temperature maintained during oxidation (hereinafter referred to as oxidation temperature) may be appropriately adjusted so that a desired oxygen increase rate can be obtained. If the oxidation temperature is low, the ashless coal may be insufficiently oxidized, and the above-described reforming effect may not be sufficiently exhibited. Further, when the oxidation temperature is low, it takes time to achieve a desired oxygen increase rate, and the productivity deteriorates. On the other hand, if the oxidation temperature becomes too high, the oxidation rate becomes too fast, making it difficult to control the degree of oxidation of ashless coal.
  • the oxidation temperature is preferably 150 ° C. or higher, more preferably 200 ° C. or higher, preferably less than the ignition point of ashless coal, more preferably 350 ° C. or lower.
  • the oxidation time (retention time at a predetermined temperature) may be appropriately adjusted so that a predetermined oxygen increase rate is obtained. If the oxidation time is short, the ashless coal may become insufficiently oxidized. On the other hand, if the oxidation time is long, ashless coal is excessively oxidized, resulting in a decrease in yield and an increase in cost.
  • the preferred oxidation time in the above temperature range is 0.5 hours or more, more preferably 1 hour or more, preferably 6 hours or less, more preferably 3 hours or less. What is necessary is just to cool to room temperature after oxidation.
  • the particle size (equivalent circle diameter, hereinafter, the same particle size) of the ashless coal subjected to the oxidation treatment is not particularly limited. If the particle size of the ashless coal is too large, the inside of the ashless coal will not be sufficiently oxidized, and melting or the like may occur when dry distillation is performed. On the other hand, if the particle size of ashless coal is too small, the handleability deteriorates.
  • the average particle diameter of ashless coal is preferably 3 mm or less, more preferably 1 mm or less, preferably 0.2 mm or more, more preferably 0.3 mm or more.
  • the maximum particle size is also preferably 3 mm or less, more preferably 1 mm or less, and still more preferably 0.5 mm or less from the viewpoint of promoting oxidation.
  • the carbon raw material mixing step is a step of obtaining a mixture (hereinafter referred to as “mixed carbon raw material”) by mixing the ashless coal, the oxidized ashless coal, and petroleum raw coke.
  • Petroleum coke is a facility (coker) for producing light oil by heating distillation residue at high temperature (for example, 500 ° C or higher) in the oil refining process and producing it as a by-product along with light oil. It is.
  • various commercially available known petroleum raw cokes can be used as the petroleum raw coke.
  • a preferred petroleum raw coke has a volatile content of 5 to 20% by mass and a sulfur content of 2 to 5% by mass.
  • the mixing ratio of ashless coal in the mixed carbon raw material, and the ashless coal and oxidation-free It is necessary to appropriately control the mixing ratio of ash coal.
  • Ashless coal content 5-40 parts by mass If the mixing ratio of ashless coal is too small, the function as a binder is not sufficiently exhibited, and coke becomes powdery. On the other hand, if the mixing ratio of ashless coal is too large, softening and melting caused by ashless coal will be excessive, for example, coke will become a sponge-like porous body, the bulk specific gravity will be low, or the inner wall of the dry distillation apparatus Coke may not be discharged due to adhesion.
  • the content of ashless coal is 5 parts by mass or more, preferably 10 parts by mass or more, and 40 masses with respect to a total of 100 parts by mass of ashless coal, oxidized ashless coal, and petroleum raw coke. Part or less, preferably 25 parts by weight or less.
  • Total content of ashless and oxidized ashless coal 30 to 70 parts by mass
  • the total amount of ashless coal is 40 parts by mass or less, but by including oxidized ashless coal, the amount of petroleum raw coke used can be reduced, and the impurity content of further coke. Can be reduced. Since ashless coal and oxidized ashless coal are more expensive than petroleum raw coke, the unit price of coke increases when their total content increases. On the other hand, if the total content of ashless coal and oxidized ashless coal is too low, a sufficient impurity reduction effect cannot be obtained.
  • the total content of ashless coal and oxidized ashless coal is 30 parts by mass or more, preferably 35 parts by mass or more, with respect to 100 parts by mass in total of ashless coal, oxidized ashless coal, and petroleum raw coke.
  • it is 40 mass parts or more, 70 mass parts or less,
  • it is 65 mass parts or less, More preferably, it is 60 mass parts or less.
  • the content of oxidized ashless coal is not particularly limited, but if the content of oxidized ashless coal is too small, coke expands and becomes sponge-like or melts and becomes stuck in the apparatus.
  • the oxidized ashless coal is preferably 5 parts by mass or more, more preferably 10 parts by mass or more, and further preferably 30 parts by mass or more with respect to 100 parts by mass in total of ashless coal, oxidized ashless coal, and petroleum raw coke. It is.
  • the upper limit of oxidized ashless coal may be appropriately adjusted so as to be within the range of the total content of ashless and oxidized ashless coal (30 to 70 parts by mass), preferably 50 parts by mass or less, More preferably, it is 40 parts by mass or less.
  • the average particle size of the ashless coal is not particularly limited, but if the average particle size of the ashless coal is too large, the mixed state of the mixture may be uneven and the binder effect may not be sufficiently exhibited. On the other hand, if the average particle size is too small, the handleability may deteriorate.
  • the average particle size of ashless coal is preferably 10 mm or less, more preferably 0.5 mm or less, preferably 0.1 mm or more, more preferably 0.2 mm or more.
  • the maximum particle size of ashless coal is preferably 1.0 mm or less, more preferably 0.5 mm or less, because if the particle size is too large, the mixed state in the molded product may be uneven.
  • the average particle size of ashless coal smaller than the average particle size of oxidized ashless coal, because the gap between carbon raw materials is filled and the binder effect is further enhanced.
  • the mixture of the present invention only needs to contain ashless coal, oxidized ashless coal, and petroleum raw coke, and other materials (for example, known binders, additives such as coal pitch, etc.) as long as they do not adversely affect the present invention. ) May be contained, but when other materials are included in the mixture, the impurity content of coke may increase due to the materials. Therefore, the total of ashless coal, oxidized ashless coal, and petroleum raw coke in the mixture is preferably 90% by mass or more, and more preferably 100% by mass. 100% by mass means that the mixture is made of ashless coal, oxidized ashless coal, and petroleum raw coke, and the balance is impurities.
  • the mixing method of ashless coal, oxidized ashless coal, and petroleum raw coke is not particularly limited, and a known method for obtaining uniform mixing may be employed.
  • a mixer, a kneader, a single screw mixer, a twin screw Examples of such mixers are illustrated.
  • the forming step is a step of obtaining a formed body by forming the mixture obtained in the carbon raw material mixing step (C2) into a desired shape as necessary.
  • a bond between the carbon raw materials can be formed more firmly due to the binder effect of ashless coal, and coke pulverization and a decrease in bulk specific gravity can be suppressed.
  • the method for forming the mixture into a molded body is not particularly limited.
  • a double roll (double roll) type molding machine using a flat roll a double roll type molding machine having an almond type pocket
  • Any method such as a method using a uniaxial press, a roller type molding machine, an extrusion molding machine, or press molding using a mold can be adopted.
  • the mixture may be formed by cold forming at around room temperature, but hot forming by heating is preferred.
  • the mixture is pressure-molded at a high temperature, the ashless coal is plastically deformed to fill the voids between the oxidized ashless coal particles and petroleum raw coke, and a further compacted compact can be obtained. Therefore, coke having a higher bulk specific gravity can be obtained by dry distillation of the compacted compact.
  • the molding temperature becomes too high, the ashless coal may soften and expand, and bulk specific gravity may not be achieved.
  • the hot molding temperature (device temperature such as molds and rolls) is preferably 100 ° C. or higher, more preferably 200 ° C. or higher, preferably 450 ° C. or lower, more preferably 300 ° C. or lower.
  • the molding pressure is not particularly limited, and known conditions may be adopted. For example, the molding pressure is about 0.5 to 3 ton / cm 2 .
  • the dry distillation step is a step of obtaining coke by dry distillation of the mixture obtained in the carbon raw material mixing step (C2) or the molded body obtained in the molding step (C3).
  • the shape of the furnace used for dry distillation is not particularly limited, and batch distillation may be performed using a chamber furnace, or continuous distillation may be performed using a vertical shaft furnace. A horizontal rotary furnace such as a rotary kiln may be used.
  • the dry distillation temperature may be appropriately set and is not particularly limited, but is preferably 650 ° C. or higher, more preferably 700 ° C. or higher, preferably 1200 ° C. or lower, more preferably 1050 ° C. or lower. Temperature is fine.
  • the carbonization time at the carbonization temperature is not particularly limited, and may be a desired carbonization time depending on the apparatus configuration, etc., preferably 5 minutes or more, more preferably 10 minutes or more, preferably 24 hours or less, more preferably It may be 12 hours or less.
  • the dry distillation atmosphere may be a non-oxidizing gas atmosphere in order to prevent deterioration due to oxidation of coke.
  • Various known gases can be used as the non-oxidizing gas.
  • an inert gas such as nitrogen, helium, or argon, or a reducing gas such as hydrogen gas may be used.
  • Petroleum coke becomes calcine coke by calcining and ashless coal acts as a binder between oxidized ashless coal and calcine coke, and the oxidized ashless coal and calcine coke are firmly bonded. Therefore, the strength of coke is also improved.
  • the carbon raw materials are bonded to each other, and an indeterminate massive coke is obtained.
  • the mixture is molded, coke having substantially the same shape as the molded body before dry distillation is obtained. Since the coke of the present invention appropriately controls the blending ratio of ashless coal, the coke does not adhere to the dry distillation apparatus and cannot be discharged, and does not become powdery.
  • the coke thus obtained has higher purity and higher bulk specific gravity than conventionally known coke.
  • the mineral content as an impurity is preferably 1% by mass or less, more preferably 0.5% by mass or less.
  • the bulk specific gravity is preferably 0.53 g / cm 3 or more, more preferably 0.6 g / cm 3 or more, still more preferably 0.7 g / cm 3 or more, and most preferably 0.8 g / cm 3 or more.
  • the sulfur content is preferably 2% by mass or less.
  • the above mixture does not cause the above-mentioned problems due to softening and melting properties and expansibility during dry distillation, and thus the obtained coke has an excellent appearance and can be discharged from the dry distillation apparatus.
  • ashless coal, oxidized ashless coal obtained by oxidizing ashless coal, and petroleum raw coke a total of 100 masses of ashless coal, oxidized ashless coal, and petroleum raw coke Coke produced by dry distillation of a mixture having an ashless coal content of 5 to 40 parts by mass and a total content of ashless coal and oxidized ashless coal of 30 to 70 parts by mass is
  • This is a coke having improved high softness and high bulk density, which improves the softening meltability and expandability, which are problematic when using ash charcoal.
  • a slurry was prepared by mixing 4 kg (20 kg) of aromatic solvent (1-methylnaphthalene (manufactured by Nippon Steel Chemical Co., Ltd.)) with 5 kg of raw coal (bituminous coal). This slurry was pressurized with 1.2 MPa of nitrogen and heat-treated (heat extraction) in an autoclave with an internal volume of 30 liters at 370 ° C. for 1 hour.
  • Oxidation step: C1 A part of the ashless coal was pulverized so as to pass through a sieve having an opening of 0.5 mm.
  • the crushed ashless charcoal was heated to a predetermined temperature shown in Table 1 in an air atmosphere, and kept at the same temperature for a predetermined time for oxidation treatment (“oxidation conditions” in Table 1). After the oxidation treatment, the mixture was allowed to cool to room temperature to obtain oxidized ashless coal.
  • the oxygen concentration of ashless coal and oxidized ashless coal was measured based on JIS M 8813 before and after the oxidation treatment, and the oxygen increase rate of oxidized ashless coal was calculated. The results are shown in Table 1 (in Table 1, “Oxygen increase rate”).
  • Oil raw coke Commercial petroleum raw coke (volatile content: 9.5% by mass, sulfur content: 3.1% by mass) was pulverized so as to pass through a sieve having an opening of 10 mm.
  • the oxygen increase rate of oxidized ashless coal was less than 2% (1.50%), and it was handled as ashless coal. Therefore, no.
  • the blending ratio (“20”) of ashless coal that has not been oxidized is described in the A column in the table, and the oxygen increasing rate is 1 in the B column.
  • the blending ratio (“30”) of .5% ashless coal was described.
  • No. 1 is an example in which the blending ratio of ashless coal was low.
  • coke was pulverized by dry distillation treatment.
  • No. 6 is an example in which the blending ratio of ashless coal was high.
  • No. 7 is an example in which the blending ratio of ashless coal was low. In this example, since there was little ashless coal, when dry-distilling, it pulverized in the kiln.
  • No. 12 is an example in which the blending ratio of ashless coal was high.
  • ashless coal melted during dry distillation, and the molded body expanded and expanded, so that coke adhered to the inner wall of the kiln and could not be discharged.
  • No. 13 is an example in which the mixture was dry-distilled in a kiln without forming the mixture.
  • the mixture since sufficient pressure could not be applied to the mixture during dry distillation, oxidized ashless coal and petroleum coke could not be sufficiently combined, and the coke was powdery.
  • No. No. 14 is an example of dry distillation in a kiln as a powder without forming the mixture.
  • No. No. 16 is an example in which the oxygen increase rate was low because the oxidation time was short with respect to the oxidation temperature.
  • This example does not include oxidized ashless coal with an ashless coal oxygen increase rate of 2.0% or more, and ashless coal (ashless coal and oxidized ashless coal with an oxygen increase rate of less than 2.0%) ), The ashless coal expanded and expanded, and the bulk specific gravity decreased.
  • No. No. 22 is an example in which the blending ratio of petroleum raw coke is large.
  • the sulfur content after dry distillation was large and the purity of coke was low.
  • No. 25 (Reference Example) is an example in which the blending ratio of petroleum raw coke is small.
  • a coke having a low sulfur content and a high bulk specific gravity was obtained.
  • the blending ratio of the raw petroleum coke was small, the coke became an expensive coke.
  • the present invention can provide coke suitable for a reducing material for iron metal refining and the like at low cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Coke Industry (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

 本発明のコークスの製造方法は、無灰炭と、無灰炭を酸化処理して得られる酸化無灰炭と、石油生コークスとを含み、前記無灰炭、前記酸化無灰炭、および前記石油生コークスとの合計100質量部に対して、前記無灰炭の含有量が5~40質量部、且つ前記無灰炭と前記酸化無灰炭の合計含有量が30~70質量部である混合物を、乾留する。

Description

コークスの製造方法、およびコークス
 本発明はコークスの製造方法、およびコークスに関する。より詳しくは、本発明は非鉄金属精錬用還元材に好適なコークスの製造方法、およびコークスに関するものである。
 従来からアルミやチタンなどの非鉄金属の精錬における還元材としてコークスが用いられている。特に石油生コークスを加熱して得られるカルサインコークス(所謂、仮焼コークス)は安価であるため汎用されている。
 カルサインコークスの原料となる石油生コークスは、原油から石油を精製する過程で生じる副産物である。そのためカルサインコークスの性状は原油に依拠している。例えばカルサインコークスに含まれる不純物(硫黄、ニッケル、バナジウム、ナトリウムなど)は、その原料となる原油に由来する。こうした不純物は、汚染源となることから、例えば精錬用コークスとして使用する場合には、不純物(特に硫黄分、以下同じ)ができる限り少ないことが望まれている。しかしながら近年産出される原油は不純物含有量が多いため、不純物含有量が少ないコークスを提供することが難しかった。
 そこで、不純物含有量の少ない炭素原料として、実質的に灰分を含まない無灰炭をコークス原料として利用することが検討されている。例えば特許文献1には、燃料、コークス原料、化学原料等に用いられる無灰炭の製造方法が開示されている。
 もっとも無灰炭は熱流動性が高く、原料石炭の品位に関わらず200~300℃で溶融する性質を有する。また無灰炭は400℃前後に加熱すると膨張する性質を有する。そのため無灰炭を成形して高温加熱して乾留処理すると、無灰炭が溶融して成形体の形状を維持できず軟化溶融性が問題となっていた。また無灰炭は高温加熱によって発泡して膨張し、乾留装置から溢れたり、乾留装置内壁に付着して排出できなったり、あるいは得られたコークスがスポンジ状の多孔質体となってかさ比重が著しく低下するなど膨張性が問題となっていた。したがって無灰炭は軟化溶融性や膨張性に問題があるため、コークス原料として使用することは難しかった。
 このような問題に対して本発明者らは、無灰炭の改質技術を提案している(特許文献2)。具体的には、石炭と芳香族溶剤を含むスラリーを加熱処理するスラリー加熱工程と、前記スラリー加熱工程で加熱処理されたスラリーを、石炭が溶解した液体成分と、灰分と不溶石炭からなる固体成分に分離する分離工程と、前記液体成分から芳香族溶剤を除去して、無灰炭を取得する無灰炭取得工程と、前記無灰炭取得工程で取得された無灰炭を加熱処理して炭素原料とする無灰炭加熱工程とを含み、前記無灰炭加熱工程で得られた炭素原料の揮発分が、JIS M 8812に定められた方法により測定した際に、35質量%未満、かつ、24質量%以上であることに要旨を有する炭素原料の製造方法が開示されている。
 この技術によれば、スラリー加熱工程、分離工程、無灰炭取得工程、および、揮発分を所定範囲に調整する無灰炭加熱工程を含むことによって、低灰であって、優れた自己焼結性を有する炭素材料が製造できる。
日本国特開2001-26791号公報 日本国特開2009-144130号公報
 特許文献2の技術は、自己焼結性の改善に優れた効果を奏するが、無灰炭の改質に手間がかかるため、生産性が必ずしもよくなく、改質した無灰炭は比較的高価となっていた。
 本発明は上記のような事情に着目してなされたものであって、その目的は、高純度コークスを従来よりも安価に製造する方法、および高純度コークスを提供することである。
 上記課題を達成し得た本発明のコークスの製造方法は、無灰炭と、無灰炭を酸化処理して得られる酸化無灰炭と、石油生コークスとを含み、前記無灰炭、前記酸化無灰炭、および前記石油生コークスとの合計100質量部に対して、前記無灰炭の含有量が5~40質量部、且つ前記無灰炭と前記酸化無灰炭の合計含有量が30~70質量部である混合物を、乾留することに要旨を有する。
 本発明では、前記混合物を成形してから乾留すること、前記酸化無灰炭の酸素増加率は、2~10%であること、前記酸化処理は空気酸化であること、前記酸化処理は150℃以上、発火点未満の温度でおこなうことはいずれも好ましい実施態様である。
 また前記乾留は室炉でおこなうこと、ロータリーキルンでおこなうことも好ましい実施態様である。
 本発明には、無灰炭と、無灰炭を酸化処理して得られる酸化無灰炭と、石油生コークスとを含み、前記無灰炭、前記酸化無灰炭、および前記石油生コークスとの合計100質量部に対して、前記無灰炭の含有量が5~40質量部、且つ前記無灰炭と前記酸化無灰炭の合計含有量が30~70質量部である混合物を、乾留して得られるコークスも含む。
 本発明の製造方法によれば、高純度コークスを石油生コークスを使って安価に製造できる。また本発明によれば、高純度コークスを提供できる。
図1は、無灰炭の製造工程の一例を説明するフローチャートである。 図2は、本発明に係るコークスの製造工程の一例を説明するフローチャートである。
 本発明者らは石油生コークスを炭素原料に使用して高純度なコークスを安価に提供すべく、鋭意研究を重ねた。その結果、以下の知見を得た。
 無灰炭は不純物含有量が極めて少なく、無灰炭を石油生コークスに混合することは、コークスの不純物含有量の低減に有用である。ところが従来技術で指摘したように無灰炭は軟化溶融性や膨張性に問題がある。
 そこで本発明者らが検討した結果、無灰炭を酸化処理すれば、無灰炭の軟化溶融性と膨張性を改善できることがわかった。もっとも、酸化無灰炭は微粉状であり、粘結性が悪いため、酸化無灰炭と石油生コークスとの混合物では、乾留すると得られるコークスは粉状となり、乾留装置から散逸し易く、またコークスのかさ比重も低くなるという問題が生じた。このような問題を解決すべく鋭意検討した結果、無灰炭と、酸化無灰炭と、石油生コークスとを含む混合物とすることで、無灰炭が酸化無灰炭と石油生コークスとを結合するバインダーとして機能し、コークスの粉化等の問題を抑制できることがわかった。
 そして無灰炭、酸化無灰炭、および石油生コークスを後記する所定の含有量で含む混合物を使用することで、得られるコークスの溶融や膨張を抑制することが可能となり、高純度なコークスを安価に提供できることを見出した。
 以下、本発明に係るコークスの製造方法について、図1、図2に示すフローチャートに基づいて説明する。
 まず、本発明で使用する無灰炭について説明する。
 無灰炭とは、灰分が5質量%以下、好ましくは3質量%以下のもののことをいう。石炭を815℃で加熱して灰化したときの残留無機物(ケイ酸、アルミナ、酸化鉄、石灰、マグネシア、アルカリ金属など)の灰分の濃度が極めて少ないものが無灰炭としては好ましい。具体的には灰分濃度がより好ましくは5000ppm以下(質量基準)であり、さらに好ましくは2000ppm以下であるものがよい。また無灰炭は、水分は皆無であり、原料石炭よりも高い熱流動性を示す。
<無灰炭の製造工程>
 無灰炭は、各種公知の製造方法で得ることができ、例えば石炭の溶剤抽出物から溶剤を除去することによって得ることができる。例えば無灰炭は下記S1~S3の工程(図1参照)を経て製造できるが、下記無灰炭の製造工程(S1~S3)は適宜変更することができ、必要に応じて各種処理工程を付加してもよい。
 例えば無灰炭を製造するにあたり、前記各工程に悪影響を与えない範囲において、前記各工程の間あるいは前後に、原料石炭を粉砕する石炭粉砕工程や、ごみ等の不要物を除去する除去工程や、得られた無灰炭を乾燥させる乾燥工程等、他の工程を含めてもよい。
<スラリー加熱工程:S1>
 スラリー加熱工程(S1)は、石炭と芳香族溶剤とを混合してスラリーを調製し、加熱処理して石炭成分を芳香族溶剤に抽出する処理である。
 原料となる石炭(以下、「原料石炭」ともいう)の種類は特に限定されない。例えば、瀝青炭、亜瀝青炭、褐炭、亜炭など各種公知の石炭を使用できる。経済性の観点からは、高価な瀝青炭などの高品位炭を使用するよりも、亜瀝青炭、褐炭、亜炭などの劣質炭を使用することが好ましい。
 芳香族溶剤としては、石炭を溶解する性質を有するものであれば特に限定されない。芳香族溶剤としては、ベンゼン、トルエン、キシレン等の単環芳香族化合物や、ナフタレン、メチルナフタレン、ジメチルナフタレン、トリメチルナフタレン等の2環芳香族化合物等が例示される。また2環芳香族化合物には、その他脂肪族側鎖を有するナフタレン類、また、これにビフェニルや長鎖脂肪族側鎖を有するアルキルベンゼンが含まれる。本発明では非水素供与性溶剤である2環芳香族化合物が好ましい。
 非水素供与性溶剤とは、主に石炭の炭素化生成物から精製した、2環芳香族を主とする溶剤である石炭誘導体である。非水素供与性溶剤が好ましい理由は、非水素供与性溶剤が加熱状態でも安定しており、石炭との親和性に優れているため、溶剤に抽出される石炭成分の割合(以下、「抽出率」ともいう)が高く、また、蒸留等の方法で容易に回収可能な溶剤であり、更に回収した溶剤を循環使用できるからである。
 なお、芳香族溶剤の沸点が低すぎると、加熱抽出の際、または後述する分離工程(S2)での必要圧力が高くなり、また芳香族溶剤を回収する工程で揮発による損失が増大し、芳香族溶剤の回収率が低下する。さらに、加熱抽出での抽出率も低下する。一方、芳香族溶剤の沸点が高すぎると、分離工程(S2)での液体成分、または、固体成分からの芳香族溶剤の分離が困難となり、溶剤の回収率が低下する。芳香族溶剤の沸点は180~330℃のものが好ましい。
 芳香族溶剤に対する石炭濃度は、特に限定されない。原料石炭の種類にもよるが、芳香族溶剤に対する石炭濃度が低いと、芳香族溶剤の量に対し、芳香族溶剤に抽出する石炭成分の割合が少なくなり、経済的ではない。一方、石炭濃度は高いほど好ましいが、高くなりすぎると、スラリーの粘度が高くなり、スラリーの移動や分離工程(S2)での液体成分と固体成分との分離が困難となりやすい。石炭濃度は、乾燥炭基準で好ましくは10質量%以上、より好ましくは20質量%以上、好ましくは50質量%以下、より好ましくは35質量%以下である。
 スラリーの加熱処理(加熱抽出)温度が低すぎると、石炭を構成する分子間の結合を十分に弱めることができず、原料石炭として劣質炭を使用した場合、後述する無灰炭取得工程(S3)で取得される無灰炭の再固化温度を高めることができない。一方、加熱処理温度が高すぎると、石炭の熱分解反応が非常に活発になり、生成した熱分解ラジカルの再結合が起こるため、抽出率が低下する。スラリー加熱温度は、好ましくは350℃以上、より好ましくは380℃以上、好ましくは420℃以下である。
 加熱時間(抽出時間)は、特に限定されないが、抽出時間が長くなると熱分解反応が進行しすぎて、ラジカル重合反応が進み、抽出率が低下する。例えば上記加熱温度であれば、好ましくは120分以下、より好ましくは60分以下、更に好ましくは30分以下であって、好ましくは10分以上である。
 加熱抽出した後、熱分解反応を抑制するために370℃以下に冷却することが好ましい。また冷却する際の温度の下限は、300℃以上が好ましい。300℃未満まで冷却すると、芳香族溶剤の溶解力が低下して、一旦抽出された石炭成分の再析出が起き、無灰炭の収率が低下する。
 加熱抽出は、非酸化性雰囲気でおこなうことが好ましい。具体的には、窒素などの不活性ガスの存在下でおこなうことが好ましい。加熱抽出の際、酸素に接触すると、発火する恐れがあるため危険であり、また、水素を用いた場合には、コストが高くなるためである。
 加熱抽出での圧力は、加熱抽出の際の温度や用いる芳香族溶剤の蒸気圧にもよるが、圧力が芳香族溶剤の蒸気圧より低い場合には、芳香族溶剤が揮発して液相に閉じ込められず、抽出できない。一方、圧力が高すぎると、機器のコスト、運転コストが高くなり、経済的ではない。好ましい圧力は概ね1.0~2.0MPaである。
<分離工程:S2>
 分離工程(S2)は、スラリー加熱工程(S1)で加熱処理されたスラリーを、液体成分と固体成分とに分離する工程である。液体成分とは、芳香族溶剤に抽出された石炭成分を含む溶液である。固体成分とは、芳香族溶剤に不溶な灰分と不溶石炭を含むスラリーである。
 分離工程(S2)でスラリーを液体成分と固体成分とに分離する方法としては、特に限定されず、濾過法、遠心分離法、重力沈降法など公知の分離方法を採用できる。本発明では流体の連続操作が可能であり、低コストで大量の処理にも適している重力沈降法を用いることが好ましい。重力沈降法による場合、重力沈降槽の上部からは、芳香族溶剤に抽出された石炭成分を含む溶液である液体成分(以下、「上澄み液」ともいう)を、重力沈降槽の下部からは溶剤に不溶な灰分と石炭を含むスラリーである固体成分(以下、「固形分濃縮液」ともいう)を得ることができる。
 そして、以下に説明するように、この上澄み液から蒸留法等を用いて芳香族溶剤を分離・回収し、灰分濃度が極めて低い無灰炭を得ることができる(無灰炭取得工程(S3))。
<無灰炭取得工程:S3>
 無灰炭取得工程(S3)は、上澄み液から芳香族溶剤を分離して灰分濃度の極めて低い無灰炭を取得する工程である。
 上澄み液から芳香族溶剤を分離する方法は特に限定されず、一般的な蒸留法や蒸発法(スプレードライ法等)等を用いることができる。また分離して回収された芳香族溶剤は繰り返し使用することができる。芳香族溶剤の分離・回収により、上澄み液からは、無灰炭を得ることができる。得られた無灰炭は、本発明の混合物の原料として用いる他、酸化無灰炭の原料としても用いることができる。
<その他の工程>
 必要に応じて、固形分濃縮液から芳香族溶剤を分離して灰分が濃縮された副生炭を製造てもよい(副生炭取得工程)。固形分濃縮液から芳香族溶剤を分離する方法は、前記した液体成分から無灰炭を取得する無灰炭取得工程(S3)と同様に、一般的な蒸留法や蒸発法を用いることができる。
<コークスの製造工程>
 以下、本発明のコークスの製造方法を図2に基づいて説明する。コークスを製造するにあたり、各工程に悪影響を与えない範囲において、各工程の間あるいは前後に、例えば、各種原料などを粉砕する粉砕工程や、ごみ等の不要物を除去する除去工程や、得られたコークスに各種処理を施す工程等、他の工程を含めてもよい。
<酸化工程:C1>
 酸化工程は、無灰炭を酸化処理して酸化無灰炭を得る工程である。無灰炭を酸化処理することで、無灰炭が改質されて軟化溶融性や膨張性を改善できる。
 無灰炭の酸化方法は特に制限されず、例えば酸素、オゾン、二酸化窒素、空気など酸化性雰囲気による酸化が望ましく、好ましくは空気中の酸素を酸化剤とする空気酸化である。
 酸化無灰炭の酸素増加率は特に限定されないが、酸素増加率が低すぎると無灰炭の改質効果が十分でなく、乾留時に軟化溶融性や膨張性に起因して問題が生じることがある。一方、酸素増加率が高すぎると収率が低下して経済的でない。したがって酸素増加率は2%以上、好ましくは3%以上、好ましくは10%以下、より好ましくは5%以下である。
 なお、本発明では、無灰炭の酸素増加率を設定した場合、酸化処理されていても設定値よりも低い酸素増加率を有する無灰炭は、本発明の酸化無灰炭として取り扱わない。また酸素増加率が設定値よりも低い無灰炭を炭素原料として使用する場合は、本発明の無灰炭として取り扱う。
 本発明において酸素増加率とは、JIS M 8813(酸素含有率の算出方法)に基づいて酸化処理前後の無灰炭の酸素含有率を測定し、算出(酸化無灰炭の酸素含有率-無灰炭の酸素含有率)した値である。
 酸化時に保持する温度(以下、酸化温度)は、所望の酸素増加率が得られるように適宜調整すればよい。酸化温度が低いと無灰炭の酸化不足となり、上記改質効果が十分に発揮されないことがある。また酸化温度が低いと所望の酸素増加率の達成に時間がかかり、生産性が悪化する。一方、酸化温度が高くなりすぎると酸化速度が速くなりすぎて、無灰炭の酸化度を制御することが難しくなる。酸化温度は好ましくは150℃以上、より好ましくは200℃以上であって、好ましくは無灰炭の発火点未満、より好ましくは350℃以下である。
 酸化時間(所定の温度での保持時間)は、所定の酸素増加率が得られるように適宜調整すればよい。酸化時間が短いと無灰炭の酸化不足となることがある。一方、酸化時間が長いと無灰炭が過剰に酸化されてしまって、収率が低下してコスト増加要因となる。例えば上記温度範囲における好ましい酸化時間は0.5時間以上、より好ましくは1時間以上であって、好ましくは6時間以下、より好ましくは3時間以下である。酸化後は室温まで放冷すればよい。
 なお、酸化処理に供する無灰炭の粒径(円相当直径、以下、粒径について同じ)は特に限定されない。無灰炭の粒径が大きすぎると無灰炭内部が十分に酸化されず、乾留した際に溶融等が生じるおそれがある。一方、無灰炭の粒径が小さすぎると取扱い性が悪化する。無灰炭の平均粒径は好ましくは3mm以下、より好ましくは1mm以下であって、好ましくは0.2mm以上、より好ましくは0.3mm以上である。また最大粒径も酸化促進の観点から、好ましくは3mm以下、より好ましくは1mm以下、更に好ましくは0.5mm以下である。
<炭素原料混合工程:C2>
 炭素原料混合工程は、上記無灰炭と、上記酸化無灰炭と、石油生コークスを混合して混合物(以下、「混合炭素原料」という)を取得する工程である。
 石油生コークスとは、石油精製工程において、蒸溜残渣を高温(例えば500℃以上)で加熱し、熱分解させて軽質油を製造するための設備(コーカー)で、軽質油と共に副生する固体物質である。本発明において石油生コークスは、各種市販されている公知の石油生コークスを用いることができる。好ましい石油生コークスは揮発分が5~20質量%、硫黄分が2~5質量%である。
 本発明では、高純度のコークスを製造するために、無灰炭の性質(酸化の有無、酸化の程度)に応じて、混合炭素原料における無灰炭の混合割合、および無灰炭と酸化無灰炭の混合割合を適切に制御する必要がある。
(I)無灰炭の含有量:5~40質量部 
 無灰炭の混合割合が少なすぎるとバインダーとしての機能が十分に発揮されず、コークスが粉状となる。一方、無灰炭の混合割合が多すぎると、無灰炭に起因する軟化溶融や膨張が過剰になり、例えばコークスがスポンジ状の多孔質体になってかさ比重が低くなったり、乾留装置内壁に付着してコークスが排出できないことがある。
 本発明において無灰炭の含有量は、無灰炭、酸化無灰炭、および石油生コークスとの合計100質量部に対して5質量部以上、好ましくは10質量部以上であって、40質量部以下、好ましくは25質量部以下である。
(II)無灰炭と酸化無灰炭の合計含有量:30~70質量部 
 上記したように無灰炭の合計量は40質量部以下であるが、酸化無灰炭を含むことで、石油生コークスの使用量をより少なくすることができ、より一層のコークスの不純物含有量を低減できる。無灰炭と酸化無灰炭は石油生コークスよりも高価なため、これらの合計含有量が高くなると、コークスの単価が上昇する。一方、無灰炭と酸化無灰炭の合計含有量が低すぎると、十分な不純物低減効果が得られない。したがって無灰炭と酸化無灰炭の合計含有量は、無灰炭、酸化無灰炭、および石油生コークスの合計100質量部に対して、30質量部以上、好ましくは35質量部以上、より好ましくは40質量部以上であって、70質量部以下、好ましくは65質量部以下、より好ましくは60質量部以下である。
 酸化無灰炭の含有量は特に限定されないが、酸化無灰炭の含有量が少なすぎると、コークスが膨張してスポンジ状になったり、溶融して装置内で固着するなどの問題が生じるため、酸化無灰炭は、無灰炭、酸化無灰炭、および石油生コークスの合計100質量部に対して好ましくは5質量部以上、より好ましくは10質量部以上、更に好ましくは30質量部以上である。一方、酸化無灰炭の上限は上記無灰炭と酸化無灰炭の合計含有量(30~70質量部)の範囲内となるように適宜調整すればよいが、好ましくは50質量部以下、より好ましくは40質量部以下である。
 無灰炭の平均粒径は特に限定されないが、無灰炭の平均粒径が大きすぎると混合物の混合状態に不均一が生じてバインダー効果などが十分に発揮されないことがある。一方、平均粒径が小さすぎると取扱い性が悪化することがある。無灰炭の平均粒径は好ましくは10mm以下、より好ましくは0.5mm以下であって、好ましくは0.1mm以上、より好ましくは0.2mm以上である。また無灰炭の最大粒径は、大きくなりすぎると成形体中での混合状態に不均一が生じることがあるため、好ましくは1.0mm以下、より好ましくは0.5mm以下である。
 また酸化無灰炭の平均粒径よりも無灰炭の平均粒径を小さくすると、炭素原料間の隙間が充填されてバインダー効果がより一層高まるため望ましい。
 本発明の混合物は、無灰炭、酸化無灰炭、および石油生コークスを含んでいればよく、本発明に悪影響を与えない範囲で他の材料(例えば公知のバインダー、石炭ピッチなどの添加材)を含有していてもよいが、混合物中に他の材料を含む場合、該材料に起因してコークスの不純物含有量が増加する可能性がある。そのため、混合物中、無灰炭、酸化無灰炭、および石油生コークスの合計は、好ましくは90質量%以上であり、より好ましくは100質量%である。100質量%とは、混合物が無灰炭、酸化無灰炭、および石油生コークスからなり、残部が不純物であることをいう。
 無灰炭、酸化無灰炭、および石油生コークスの混合方法は、特に限定されず、均一な混合が得られる公知の方法を採用すればよく、ミキサー、ニーダー、単軸の混合機、二軸の混合機などが例示される。
<成形工程:C3>
 成形工程は、必要に応じて炭素原料混合工程(C2)で得られた混合物を所望の形状に成形して成形体を得る工程である。混合物を成形体にすることで、無灰炭によるバインダー効果によって各炭素原料間の結合をより強固に形成でき、コークスの粉化やかさ比重の低下を抑制できる。
 例えば混合物を室炉で乾留する場合、垂直方向に荷重がかかるため、各炭素原料間の距離が近くなり、無灰炭のバインダー効果によって各炭素原料が結合され、コークスが粉状になることが抑制でき、かさ比重も高めることができる。このような効果は成形体とすることで一層向上できる。
 一方、混合物をロータリーキルンなどのように垂直方向の荷重が十分にかからない横型炉を用いて乾留した場合、バインダー効果が十分に発揮されない。そのため各炭素原料間の結合が弱く、コークスが粉状になりやすく、コークスのかさ比重も低下する。そのため、混合物を乾留する前に所望の形状に成形しておくことが望ましい。
 混合物を成形体とするための方法は特に限定されるものではなく、例えば、平ロールによるダブルロール(双ロール)型成形機や、アーモンド型ポケットを有するダブルロール型成形機を用いる方法の他、単軸プレスやローラータイプの成形機、押し出し成形機を用いる方法、金型によるプレス成形等、いずれの方法も採用できる。これらのなかでも双ロール型ブリケットや、ロールコンパクションなどによってブリケット状やシート状の成形体にすることが望ましい。
 混合物の成形は、室温前後で行なう冷間成形でもよいが、加熱しておこなう熱間成形が好ましい。混合物を高温下で加圧成形すると、無灰炭が塑性変形して酸化無灰炭粒子や石油生コークスとの間の空隙を充填し、より一層緻密化した成形体を得ることができる。そのため該緻密化した成形体を乾留することで、よりかさ比重の高いコークスを得ることができる。一方、成形温度が高くなりすぎると無灰炭が軟化膨張してかさ比重化を達成できないことがある。熱間成形温度(金型やロールなどの装置温度)は好ましくは100℃以上、より好ましくは200℃以上であって、好ましくは450℃以下、より好ましくは300℃以下である。成形圧力は特に限定されず、公知の条件を採用すればよい。例えば成形圧力は0.5~3トン/cm程度である。
<乾留工程:C4>
 乾留工程は、上記炭素原料混合工程(C2)で得られた混合物、または上記成形工程(C3)で得られた成形体を乾留してコークスを取得する工程である。乾留するときに用いる炉の形状も特に限定されず、室炉を用いてバッチ式で乾留してもよいし、縦型シャフト炉を用いて連続式で乾留してもよい。またロータリーキルンなどのように横型回転炉を用いてもよい。
 乾留条件も公知の条件を採用でき、乾留温度は適宜設定すればよく、特に制限されないが、好ましくは650℃以上、より好ましくは700℃以上、好ましくは1200℃以下、より好ましくは1050℃以下の温度でよい。また乾留温度での乾留時間も特に制限されず、装置構成などに応じて所望の乾留時間とすればよく、好ましくは5分以上、より好ましくは10分以上、好ましくは24時間以下、より好ましくは12時間以下とすればよい。
 乾留雰囲気は、コークスの酸化による劣化を防止するため、非酸化性ガス雰囲気とすればよい。非酸化性ガスとしては各種公知のガスを用いることができ、例えば窒素、ヘリウム、アルゴンなどの不活性ガス、または水素ガスなどの還元性ガスとすればよい。
 乾留によって石油生コークスはカルサインコークス(仮焼コークス)となると共に、無灰炭が酸化無灰炭とカルサインコークスとのバインダーとして作用し、酸化無灰炭とカルサインコークスが強固に接着されるため、コークスの強度も向上する。
 混合物を乾留した場合は、各炭素原料同士が結合し、不定形の塊状コークスが得られる。また混合物を成形した場合は、乾留前の成形体とほぼ同じ形状を有するコークスが得られる。本発明のコークスは、無灰炭の配合割合を適切に制御しているため、乾留装置内に付着して排出不能になることがなく、また粉状になることもない。
 このようにして得られたコークスは従来公知のコークスよりも高純度であり、且つ高かさ比重である。具体的には不純物となる鉱物含有量が好ましくは1質量以下、より好ましくは0.5質量%以下である。また、かさ比重は好ましくは0.53g/cm以上、より好ましくは0.6g/cm以上、更に好ましくは0.7g/cm以上、最も好ましくは0.8g/cm以上である。硫黄分は好ましくは2質量%以下である。
 また上記混合物は乾留時に軟化溶融性や膨張性に起因する上記問題を生じることがなく、したがって得られたコークスは、外観が優れており、且つ乾留装置内から排出できる。
 上記の如く、無灰炭と、無灰炭を酸化処理して得られる酸化無灰炭と、石油生コークスとを含み、無灰炭、酸化無灰炭、および石油生コークスとの合計100質量部に対して、無灰炭の含有量が5~40質量部、且つ無灰炭と酸化無灰炭の合計含有量が30~70質量部である混合物を、乾留してなるコークスは、無灰炭を使用した場合に問題となる上記軟化溶融性や膨張性を改善し、高純度、且つ高嵩密度を有するコークスである。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。
(無灰炭の製造) 
(スラリー加熱工程:S1) 
 原料石炭(瀝青炭)5kgに対し、4倍量(20kg)の芳香族溶剤(1-メチルナフタレン(新日鉄化学社製))を混合してスラリーを調製した。このスラリーを1.2MPaの窒素で加圧して、内容積30リットルのオートクレーブ中370℃、1時間の条件で加熱処理(加熱抽出)した。
(分離工程:S2) 
 得られたスラリーを同一温度、圧力を維持した重力沈降槽内で上澄み液と固形分濃縮液とに分離した。 
(無灰炭取得工程:S3) 
 得られた上澄み液を更に濾過(目開き1μmのステンレスメッシュフィルター)して無灰炭溶液を得た。無灰炭溶液から蒸留法で芳香族溶剤を分離・回収して、無灰炭を製造した。得られた無灰炭を目開き3mmの篩を通過するように粉砕して無灰炭を得た。
(硫黄分の測定) 
 この無灰炭について、JIS M 8122に定められた方法で硫黄濃度を測定した。その結果、無灰炭の硫黄分は0.5質量%であった。
(コークスの製造) 
(酸化工程:C1) 
 無灰炭の一部を目開き0.5mmの篩を通過するように粉砕した。粉砕した無灰炭を大気雰囲気下、表1に記載の所定の温度まで加熱し、同温度で所定の時間保持して酸化処理(表1中、「酸化条件」)を行った。酸化処理後、室温まで放冷して酸化無灰炭を得た。
 なお、酸化処理の前後で無灰炭と酸化無灰炭の酸素濃度をJIS M 8813に基づいて測定し、酸化無灰炭の酸素増加率を算出した。結果を表1に示す(表1中、「酸素増加率」)。
(石油生コークス) 
 市販の石油生コークス(揮発分9.5質量%、硫黄分3.1質量%)を目開き10mmの篩を通過するように粉砕した。 
(炭素原料混合工程:C2) 
 無灰炭(表中「A」)と、酸化無灰炭(表中「B」)と、石油生コークス(表中「C」)とを表1に示す所定の割合(表1中、「原料配合割合」)で混合して混合物を得た。
 なお、No.16は、酸化処理された無灰炭の酸素増加率が2%未満(1.50%)であり、無灰炭として取り扱った。したがってNo.16の配合割合はA:B:C=50(酸化処理していない無灰炭20質量%+酸素増加率が1.5%の無灰炭30質量%):0:50であるが、No.16の配合割合の詳細を示すため、便宜上、表中のA欄に酸化処理していない無灰炭の配合割合(「20」)を記載し、B欄に酸化処理したが酸素増加率が1.5%の無灰炭の配合割合(「30」)を記載した。
(成形工程:C3) 
 一部の混合物(No.7~12、15;表中「成形有無」=あり)について、下記条件で成形体を製造した。 
成形方法:ロールコンパクション法 
ロール温度:100℃ 
ロール径:162mm 
ロール幅:60mm(綾目溝) 
ロール間幅:2mm 
ロール回転数:15rpm 
線圧:3トン/cm 
(乾留工程:C4) 
 混合物(No.1~6、13、14、16~25)、および成形体(No.7~12、15)を室炉(No.1~6、15~25)、またはキルン(No.7~14)で乾留処理を施した。
(室炉による乾留処理) 
 内容量1000mLの黒鉛坩堝に、混合物(No.1~6、16~25)、または成形体(No.15)を、かさ比重が0.85g/cmとなるように装填し、窒素雰囲気中3℃/分の速度で1000℃まで加熱し、該温度で5時間保持して乾留し、コークスを製造した。
(ロータリーキルンによる乾留処理) 
 混合物(No.13、14)、または成形体(No.7~12)を加熱したロータリーキルン(直径200mm、全長4000mm)内に挿入速度1kg/1で挿入した。ロータリーキルンの加熱温度は、入口温度が400℃、出口温度が1000℃となるように温度調整した。該温度にて窒素雰囲気中で60分間保持して乾留し、コークスを製造した。
(評価方法) 
 得られたコークスのかさ比重、硫黄分、外観、および装置内の付着の有無について調べた。 
(かさ比重)(表中、「乾留後かさ比重(g/cm)」)
 一辺が100mmの木製立方体容器内にコークスを充填し、充填したコークスの乾燥質量(W:g)からかさ比重を求めた。本実施例ではかさ比重が0.53g/cm以上であれば合格と評価した。
(硫黄分)(表中、「乾留後硫黄分(%)」)
 無灰炭と同様にしてコークスの硫黄濃度を測定した。本実施例ではコークスの硫黄分が2.0%以下であれば合格と評価した。 
(外観、装置内付着の有無)(表中、「コークス性状」) 
 コークスについてその外観を目視観察し、評価した。室炉で乾留処理した場合(No.1~6、15~25):コークスが塊状の場合は「良好(Excellent)」(表中、「PE」)とした。またコークスが塊状であるが、やや膨張した場合(かさ比重0.53以上0.7g/cm未満)は、「合格(Pass)」(表中、「P」)とした。コークスが粉状の場合は「不合格(Fail)」(表中、「F」)と評価した。またコークスが付着して排出できなかった場合(表中、「FA」)や膨張した場合(表中、「FB」)も「不合格(Fail)」と評価した。なお、評価はPE>P>(F、FA、FB)である。
 キルンで乾留処理した場合(No.7~14):コークスがフレーク状になっており、膨張、ヒビ割れや欠け、粉化が生じていない場合は、「合格(Pass)」(表中、「P」)とし、粉状、あるいは膨張、ヒビ割れや欠け、粉化が生じた場合は「不合格(Fail)」(表中、「F」)と評価した。またコークスが付着して排出できなかった場合も「不合格(Fail)」(表中、「FA」)と評価した。評価はP>(F、FA)である。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように本発明の所定の要件を満たすNo.2~5、8~11、15、17~21、23、24のコークスは、硫黄分が2.0%以下の高純度であり、且つかさ比重も高かった。また乾留処理時の膨張等が十分抑制されており、コークス性状も良好であった。なお、No.5は無灰炭の配合割合が高かったため、コークスがやや膨張した。No.17は酸素増加率が他の例よりも低かったため、酸化無灰炭の改質が他の例よりも劣り、コークスがやや膨張した。
 No.1は、無灰炭の配合割合が低かった例である。この例では、バインダーとして機能する無灰炭が少なかったため、乾留処理によってコークスが粉化した。
 No.6は、無灰炭の配合割合が高かった例である。この例では、無灰炭が多かったため、乾留処理した際に膨張が生じてコークスがスポンジ状(多孔質体)になると共に、かさ比重が著しく低下した。
 No.7は、無灰炭の配合割合が低かった例である。この例では無灰炭が少なかったため、乾留処理した際にキルン内で粉化した。
 No.12は、無灰炭の配合割合が高かった例である。この例は乾留時に無灰炭が溶融すると共に、成形体が発泡して膨張したため、コークスがキルン内壁に付着してしまって排出できなかった。
 No.13は、混合物を成形することなく、粉体のままキルン内で乾留した例である。この例では、乾留時に十分な圧力を混合物にかけられなかったため、酸化無灰炭や石油生コークスを十分に結合できず、コークスは粉状であった。
 No.14は、混合物を成形することなく、粉体のままキルン内で乾留した例である。この例では、No.13と同様に酸化無灰炭や石油生コークスを十分に結合できず、またNo.13よりも無灰炭の含有量を増やしたため、溶融・膨張した無灰炭に起因してコークスがキルン内壁に付着してしまって排出できなかった。
 No.16は、酸化温度に対して酸化時間が短かったため、酸素増加率が低かった例である。この例は無灰炭の酸素増加率が2.0%以上の酸化無灰炭を含まず、無灰炭(無灰炭と酸素増加率が2.0%未満の酸化処理された無灰炭の合計)が多すぎたため、乾留化処理した際に、無灰炭が発泡して膨張し、またかさ比重が低下した。
 No.22は、石油生コークスの配合割合が多い例である。この例では、乾留後の硫黄分が多く、コークスの純度が低かった。 
 No.25(参考例)は、石油生コークスの配合割合が少ない例である。この例では、硫黄分が少なく、かさ比重の高いコークスが得られたが、石油生コークスの配合割合が少なかったため、高価なコークスとなった。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2013年12月4日出願の日本特許出願(特願2013-251219)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明は、鉄金属精錬用還元材等に好適なコークスを安価に提供することができる。

Claims (8)

  1.  無灰炭と、 
     無灰炭を酸化処理して得られる酸化無灰炭と、 
     石油生コークスとを含み、 
     前記無灰炭、前記酸化無灰炭、および前記石油生コークスとの合計100質量部に対して、 
     前記無灰炭の含有量が5~40質量部、且つ 
     前記無灰炭と前記酸化無灰炭の合計含有量が30~70質量部である混合物を、乾留することを特徴とするコークスの製造方法。
  2.  前記混合物を成形してから乾留するものである請求項1に記載のコークスの製造方法。
  3.  前記酸化無灰炭の酸素増加率は、2~10%である請求項1または2に記載のコークスの製造方法。
  4.  前記酸化処理は空気酸化である請求項1に記載のコークスの製造方法。
  5.  前記酸化処理は150℃以上、発火点未満の温度でおこなうものである請求項1に記載のコークスの製造方法。
  6.  前記乾留は室炉でおこなうものである請求項1に記載のコークスの製造方法。
  7.  前記乾留はロータリーキルンでおこなうものである請求項2に記載のコークスの製造方法。
  8.  無灰炭と、 
     無灰炭を酸化処理して得られる酸化無灰炭と、 
     石油生コークスとを含み、
     前記無灰炭、前記酸化無灰炭、および前記石油生コークスとの合計100質量部に対して、 
     前記無灰炭の含有量が5~40質量部、且つ
     前記無灰炭と前記酸化無灰炭の合計含有量が30~70質量部である混合物を、乾留し
    てなることを特徴とするコークス。
PCT/JP2014/081285 2013-12-04 2014-11-26 コークスの製造方法、およびコークス WO2015083594A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/033,769 US20160257887A1 (en) 2013-12-04 2014-11-26 Method for producing coke, and coke
CA2928325A CA2928325C (en) 2013-12-04 2014-11-26 Method for producing coke, and coke
RU2016121157A RU2633584C1 (ru) 2013-12-04 2014-11-26 Способ получения кокса и кокс
CN201480063943.7A CN105765034B (zh) 2013-12-04 2014-11-26 焦炭的制造方法和焦炭
US16/029,956 US20180320083A1 (en) 2013-12-04 2018-07-09 Method for producing coke, and coke

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013251219A JP6014012B2 (ja) 2013-12-04 2013-12-04 コークスの製造方法、およびコークス
JP2013-251219 2013-12-04

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/033,769 A-371-Of-International US20160257887A1 (en) 2013-12-04 2014-11-26 Method for producing coke, and coke
US16/029,956 Continuation US20180320083A1 (en) 2013-12-04 2018-07-09 Method for producing coke, and coke

Publications (1)

Publication Number Publication Date
WO2015083594A1 true WO2015083594A1 (ja) 2015-06-11

Family

ID=53273357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081285 WO2015083594A1 (ja) 2013-12-04 2014-11-26 コークスの製造方法、およびコークス

Country Status (6)

Country Link
US (2) US20160257887A1 (ja)
JP (1) JP6014012B2 (ja)
CN (1) CN105765034B (ja)
CA (1) CA2928325C (ja)
RU (1) RU2633584C1 (ja)
WO (1) WO2015083594A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019017888A1 (en) * 2017-07-18 2019-01-24 Ekocoke, Llc ADAPTABLE COKE PRODUCTION

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009144130A (ja) * 2007-11-22 2009-07-02 Kobe Steel Ltd 炭素原料の製造方法、コークスの製造方法、およびコークス
WO2014175121A1 (ja) * 2013-04-26 2014-10-30 株式会社神戸製鋼所 無灰炭の製造方法および炭素材料の製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3933443A (en) * 1971-05-18 1976-01-20 Hugo Lohrmann Coking component
US3997422A (en) * 1975-06-20 1976-12-14 Gulf Oil Corporation Combination coal deashing and coking process
SU966109A1 (ru) * 1979-07-06 1982-10-15 Институт горючих ископаемых Способ термической обработки угл
US5423951A (en) * 1991-12-17 1995-06-13 Wienert; Fritz O. Process of continuously making coke of high density and strength
CN1153810A (zh) * 1996-10-25 1997-07-09 翼城县煤炭工业管理局 一种用无烟煤生产的铸造型焦及其制造方法
AUPS037402A0 (en) * 2002-02-07 2002-02-28 Commonwealth Scientific And Industrial Research Organisation A process for producing metallurgical coke
JP5241105B2 (ja) * 2007-01-16 2013-07-17 株式会社神戸製鋼所 コークスの製造方法、及び銑鉄の製造方法
EA017444B1 (ru) * 2007-12-12 2012-12-28 Оутотек Ойй Способ и установка для производства полукокса и горючего газа
RU2350643C1 (ru) * 2007-12-26 2009-03-27 Государственное образовательное учреждение высшего профессионального образования Московский государственный вечерний металлургический институт Способ получения кокса и устройство для его осуществления
JP5280072B2 (ja) * 2008-03-10 2013-09-04 株式会社神戸製鋼所 コークスの製造方法
JP4660608B2 (ja) * 2009-06-22 2011-03-30 株式会社神戸製鋼所 炭素材料の製造方法
CN101880541B (zh) * 2010-06-25 2013-11-06 神华集团有限责任公司 一种以蒙西地区1/3焦煤为主配煤生产一级冶金焦的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009144130A (ja) * 2007-11-22 2009-07-02 Kobe Steel Ltd 炭素原料の製造方法、コークスの製造方法、およびコークス
WO2014175121A1 (ja) * 2013-04-26 2014-10-30 株式会社神戸製鋼所 無灰炭の製造方法および炭素材料の製造方法

Also Published As

Publication number Publication date
CN105765034B (zh) 2017-09-22
US20160257887A1 (en) 2016-09-08
RU2633584C1 (ru) 2017-10-13
CA2928325C (en) 2018-01-02
CN105765034A (zh) 2016-07-13
US20180320083A1 (en) 2018-11-08
CA2928325A1 (en) 2015-06-11
JP6014012B2 (ja) 2016-10-25
JP2015108065A (ja) 2015-06-11

Similar Documents

Publication Publication Date Title
JP5280072B2 (ja) コークスの製造方法
JP5342794B2 (ja) 炭素材料の製造方法
WO2012118151A1 (ja) 炭素材料の製造方法
JP4660608B2 (ja) 炭素材料の製造方法
WO2004090175A1 (ja) 冶金用改質炭の製造方法、ならびに冶金用改質炭を用いた還元金属および酸化非鉄金属含有スラグの製造方法
WO2013129607A1 (ja) 成形配合炭およびその製造方法、ならびにコークスおよびその製造方法
JP5530292B2 (ja) 製鉄用コークスの製造方法
WO2015178386A1 (ja) 炭素材料の製造方法及び炭素材料
JP5128351B2 (ja) 炭素材料の製造方法
JP6014012B2 (ja) コークスの製造方法、およびコークス
JP5879222B2 (ja) 副生炭成形物の製造方法
JP5390977B2 (ja) 鉄鉱石含有コークス、及び該鉄鉱石含有コークスの製造方法
JP5559628B2 (ja) 製鉄用コークスの製造方法
JP6719342B2 (ja) 製鉄用コークスの製造方法及び銑鉄の製造方法
CA2920605C (en) Carbon material production method and carbon material
JP7134755B2 (ja) コークスの製造方法
JP5449685B2 (ja) 高反応性コークスの製造方法
JP5491795B2 (ja) 製鉄原料用塊状成形体の製造方法および鉄鉱石含有コークス
JP2013112808A (ja) 副生炭混合成形炭およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14868419

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2928325

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15033769

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016121157

Country of ref document: RU

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14868419

Country of ref document: EP

Kind code of ref document: A1