JP5530292B2 - 製鉄用コークスの製造方法 - Google Patents

製鉄用コークスの製造方法 Download PDF

Info

Publication number
JP5530292B2
JP5530292B2 JP2010169685A JP2010169685A JP5530292B2 JP 5530292 B2 JP5530292 B2 JP 5530292B2 JP 2010169685 A JP2010169685 A JP 2010169685A JP 2010169685 A JP2010169685 A JP 2010169685A JP 5530292 B2 JP5530292 B2 JP 5530292B2
Authority
JP
Japan
Prior art keywords
solvent
coal
component
coke
insoluble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010169685A
Other languages
English (en)
Other versions
JP2012031235A (ja
Inventor
貴洋 宍戸
憲幸 奥山
康爾 堺
眞基 濱口
信行 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Kobe Steel Ltd
Nippon Steel Corp
Nippon Steel Nisshin Co Ltd
Original Assignee
JFE Steel Corp
Kobe Steel Ltd
Nippon Steel Corp
Nippon Steel Nisshin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, Kobe Steel Ltd, Nippon Steel Corp, Nippon Steel Nisshin Co Ltd filed Critical JFE Steel Corp
Priority to JP2010169685A priority Critical patent/JP5530292B2/ja
Publication of JP2012031235A publication Critical patent/JP2012031235A/ja
Application granted granted Critical
Publication of JP5530292B2 publication Critical patent/JP5530292B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Coke Industry (AREA)

Description

本発明は、高炉等の製鉄に用いられる高強度コークスの製造方法に関するものである。
従来からコークス用原料には、高品位の粘結炭が主に使用されており、特に強度の高い製鉄用コークスの製造には、粘結性の高い強粘結炭を主体とした原料が使用されている。しかしながら強粘結炭のような良質原料炭は資源量が少ないこと、また近年の石炭需要の増加に伴って価格が高騰しているため、原料コストの増大が問題になっている。そのため低品位な非微粘結炭の配合比率を増加させて原料コストの低減を図りながら、高強度コークスを製造するための技術が検討されている。しかしながら、粘結性の低い非微粘結炭を多く配合すると、コークスの強度が低下してしまい、高炉用コークスとして使用できないという問題がある。
そこで特許文献1では、非微粘結炭に事前処理を施すことによって、高強度コークスを製造する方法が提案されている。具体的には非微粘結炭を含む原料炭の粒度を制御すると共に、水分を調整したブリケットとすることによって、微粘結炭の配合率を増加させても、高い強度を有するコークスの製造方法が開示されている。しかしながら事前処理を行うために必要な設備の導入には巨額の投資が必要である。
また特許文献2では、非微粘結炭に対しバインダー成分(粘結材)を添加することで、非微粘結炭を改質し、粘結性を向上させる方法が提案されている。もっとも非微粘結炭の改質に使用する粘結材として石油由来の材料を用いているため硫黄分が高く、乾留後もコークス中に硫黄分が残存するため、粘結材の添加は極少量に限定され、十分な改質効果を得ることができない。また製造には高温の過熱水蒸気を使用した高温処理が必要なため、製造コストも高くなり、強粘結炭並みの価格となってしまう。
また石炭中に含まれる灰分は、燃焼炉におけるファウリング、スラッギング、また溶鉱炉内でのスラグ閉塞などのトラブル原因となり、石炭の更なる高効率利用を阻んでいる。
そこで本発明者らは、非微粘結炭から灰分を除去し、コークス用原料として利用する技術として、石炭と溶剤とを混合してスラリー化し、石炭に含まれる溶剤可溶成分を抽出した後、重力沈降装置(沈降槽)などの固液分離装置を用いて抽出分(液体を主体とする溶剤可溶成分)と抽出残分(灰分などの無機分や溶剤不溶な有機成分などの溶剤不溶成分)に固液分離し、その後、抽出分から溶剤を除去して得られたハイパーコール(灰分濃度が0.1質量%以下の無灰炭)をコークス用原料として用いることを提案している(特許文献3、非特許文献1)。
また本発明者らは、上記ハイパーコールに、重力沈降装置の下部側から排出された抽出残分の一部を混合したものをバインダーとして原料炭に添加することによって、コークスの強度を向上させる技術を提案している(特許文献4)。具体的には、固液分離後の抽出分に、別途、重力沈降装置の下部側から抜き出した抽出残分の一部を混合した後、溶剤を除去して得られた溶剤抽出炭をバインダーとして、コークス原料に添加することによって、コークスの軟化溶融特性を調整し、結果的にコークスの強度を向上させる技術を開示している。
特開平10−183136号公報 特開2007−9016号公報 特開2005−120185号公報 特開2007−161955号公報
宍戸貴洋 他、「ハイパーコール利用のコークス製造技術」、神戸製鋼技報、2010年4月、p.62〜66
上記非特許文献1(図6)に開示した製造方法によって得られるコークスは高い強度を有しているが、更に高い強度を有する製鉄用コークスが求められている。
本発明はこのような事情に鑑み、なされたものであって、その目的は、高い強度を有する製鉄用コークスの製造方法を提供することにある。
上記課題を達成し得た本発明は、原料炭と石炭抽出物を含む混合物を成形した後に乾留して製鉄用コークスを製造する方法であって、前記石炭抽出物は、溶剤で石炭から可溶成分を抽出し、溶剤可溶成分と溶剤不溶成分の混合物スラリーを得る抽出工程と、前記混合物スラリーを重力沈降装置に導入し、前記溶剤不溶成分中の浮揚成分(A)の少なくとも一部を前記溶剤可溶成分と共に、前記重力沈降装置の上部側から抜き出す抜き出し工程と、前記溶剤不溶成分中の浮揚成分(A)および前記溶剤可溶成分から溶剤を除去する溶剤除去工程と、を順次行なうことによって得られるものであることに要旨を有する。
本発明では、前記重力沈降装置において、前記溶剤不溶成分中の浮揚成分(A)が5質量%以上40質量%以下であることも好ましい実施態様である。
また前記石炭抽出物中の溶剤不溶成分が10〜50質量%であることも好ましい実施態様である。
更に前記石炭抽出物中の溶剤不溶成分の平均粒径が20μm以下であることも好ましい実施態様である。
また更に前記石炭抽出物と前記原料炭の混合比率が1:99〜30:70であることも好ましい実施態様である。
本発明の製造方法によれば、高い強度を有する製鉄用コークスを製造することができる。特に本発明の製造方法で使用する石炭抽出物は、一般炭から溶剤を用いて製造することができるため、安価に供給することが可能であり、コークス用原料炭として資源拡大が図れるだけでなく、原料コストの低減を図ることができる。
図1は、本発明に係る製鉄用コークスの製造工程を示すフローチャートである。 図2は、高強度コークスで用いる溶剤抽出炭の製造工程を示すプロセスの概略フロー図である。 図3は、石炭抽出物(HPC−0〜HPC−7)の膨張率を示すグラフである。 図4は、石炭抽出物(HPC−4)とアンダーフロー溶剤不溶成分に含まれる溶剤不溶成分の粒度分布を示すグラフである。 図5は、HPC−0とHPC−4のSEM写真である。 図6は、強粘結炭(Coal−A)に対する石炭抽出物の配合率と、圧壊強度への影響を示すグラフである。 図7は、強粘結炭(Coal−B)に対する石炭抽出物の配合率と、圧壊強度への影響を示すグラフである。 図8は、強粘結炭(Coal−A)に対する石炭抽出物の配合率と、圧壊強度への影響を示すグラフである。
本発明者らは、溶剤を用いて石炭から溶剤可溶成分を抽出し、灰分濃度を0.1質量%以下に脱灰した溶剤抽出脱灰炭(ハイパーコール、HPC)をコークス原料に使用する技術を種々提案している(例えば特許文献3、4、非特許文献1など)。この技術によれば軟化溶融性を示さない一般炭や非微粘結炭を原料として製造しても、低温から高い軟化溶融性を有する溶剤抽出脱灰炭(ハイパーコール)を製造することができる。これはハイパーコールの分子同士の拘束力が比較的弱いため、従来よりも低温で分子の自由度が増し、高い軟化溶融性を発現するものと考えられている。
しかし、ハイパーコールは比較的低温で軟化溶融し、また膨張性も高いことから、コークス用バインダーとして利用することが可能だが、ハイパーコールを過剰に配合したコークスは、内部に粗大な気孔が多量に形成され易く、そのためコークスの圧壊強度は低下する傾向がある。
そこで、本発明者らはハイパーコールを配合したコークスの強度向上技術として、沈降槽などの重力沈降装置の下部側から排出された溶剤抽出不溶成分(アンダーフロー溶剤抽出不溶成分と呼ぶ場合がある。)の一部をハイパーコールに混合した混合物(改質石炭)をバインダーとして使用する方法を開示している(上記特許文献4)。この技術によれば、混合物中に含まれる上記アンダーフロー溶剤抽出不溶成分(抽出残分)の含有率を適宜変更することによって、配合炭の軟化開始温度などの軟化溶融特性を制御することができ、その含有率が高くなる程、配合炭の軟化開始温度が上昇することが開示されている。また、アンダーフロー溶剤不溶成分の一部をバインダー原料として使用すると、ハイパーコールの特性である軟化溶融性や膨張性が抑制されるため、ハイパーコールのみを配合したコークスに比べて気孔が少なく、上記気孔に起因する強度低下の抑制が期待される。
しかしながら、本発明者らが更なる高強度化の要請に応じるべく、検討を重ねた結果、上記特許文献4のように重力沈降装置下部側から抜き出した溶剤抽出不溶成分の一部を、ハイパーコールに混合した改質石炭を用いた場合、粗大な非溶剤抽出物などに起因して、圧壊強度の向上効果は十分でないことが判明した。
すなわち、重力沈降装置によって溶剤可溶成分と溶剤不溶成分を分離した場合、溶剤不溶成分には、灰分などの無機分や溶剤に未溶解な有機成分などの残渣が多く含まれており、また軟化溶融性や膨張性が低い。特に重力沈降装置下部側から排出されるアンダーフロー溶剤不溶成分には、後記する実施例に示すように粗大な残渣が多く含まれており、また溶剤不溶成分には原料炭同士を接着させるような効果も殆どないことから、上記アンダーフロー溶剤不溶成分を含むコークスは、原料炭同士の接着性や接続性が悪く、該溶剤不溶成分を基点とした亀裂等が生じ易いという問題があることが分かった。
そこで本発明者らは、コークス強度の更なる向上について研究を重ねた結果、固液分離後に得られる溶剤不溶成分のうち、特に沈降し難い粒径の微細な溶剤不溶成分が、軟化溶融性と膨張率の制御に有効に作用するのみならず、アンダーフロー溶剤不溶成分を用いた場合に見られる溶剤不溶成分を基点とした亀裂等の問題を低減できるため、圧壊強度の向上にも有効であることを見出した。
そして、このような亀裂低減にも寄与する沈降し難い粒径の微細な溶剤不溶成分を、溶剤可溶成分と共に重力沈降装置から抜き出せば、圧壊強度の向上にとりわけ有効な改質炭を簡便に得られるとの観点から、本発明の製造方法に到達した。
本明細書では、重力沈降装置の上部側から抜き出される沈降し難い粒径の微細な溶剤不溶成分を、説明の便宜上、溶剤不溶成分中の浮揚成分(A)と呼び;溶剤可溶成分と溶剤不溶成分を固液分離し、重力沈降装置の下部側から排出される粒径の粗い溶剤不溶成分(浮揚成分以外の溶剤不溶成分(B))と、区別することにする。
また重力沈降装置の上部側とは、溶剤不溶成分(B)を抜き出す位置よりも上側という意味であり、具体的な重力沈降装置からの抜き出し箇所は特に限定されず、例えば装置の上面や側面であってもよい。
重力沈降装置において、溶剤不溶成分中の浮揚成分(A)は5質量%以上、40質量%以下であることがよい。重力沈降装置内における溶剤不溶成分に含まれる浮揚成分(A)が少なすぎると、コークスの流動性や膨張性が高くなりすぎることがある。また浮揚成分(A)が多すぎると流動性や膨張性が低くなりすぎることがある。したがって、重力沈降槽内の溶剤不溶成分中の浮揚成分(A)は、好ましくは5質量%以上、より好ましく10質量%以上であって、好ましくは40質量%以下、より好ましく35質量%以下であることが望ましい。なお、浮揚成分(A)量を調節するには、原料炭と溶剤の配合量を適宜調節すればよい。
浮揚成分(A)から溶剤を除去した後の溶剤不溶成分(上記灰分等の残渣)の平均粒度は、おおむね、20μm以下であるのに対し、浮揚成分以外の溶剤不溶成分(B)、すなわちアンダーフロー溶剤不溶成分から溶剤を除去した後の溶剤不溶成分(上記残渣)の平均粒度は、おおむね、50μm以上である。また、両者は灰分も相違しており、浮揚成分(A)中の灰分は、製造条件にもよるが例えば、10%以下であるのに対し、浮揚成分以外の溶剤不溶成分(B)中の灰分は、例えば、20%以上である。
以下、本発明の製造方法の実施形態について、図面を参照しながら説明する。図1は、本発明に係る製鉄用コークスの製造工程を示すフローチャートである。また図2は、高強度コークスに用いる溶剤抽出炭の製造工程を示すプロセスの概略フロー図である。
図1に示すように、本発明の高強度コークスの製造方法は、溶剤抽出工程(S1)と、固液分離工程(S2)と、溶剤除去工程(S3)と、混合工程(S4)と、乾留工程(S5)と、を有する。以下、各工程について説明する。
<溶剤抽出工程(S1)>
抽出工程は、石炭(原料石炭)と溶剤を接触させて、原料石炭から可溶成分を溶剤中に抽出し、溶剤可溶成分と溶剤不溶成分の混合物スラリーを得る工程である。
図2では、石炭供給槽から供給される原料石炭と溶剤供給槽から供給される溶剤とをスラリー調製槽で混合してスラリー化し、抽出槽にて、原料石炭に含まれている可溶成分を抽出している(抽出工程)。
石炭に含まれる可溶成分の抽出に用いる溶剤としては、極性溶剤や芳香族溶剤を使用できる。極性溶剤としては、例えば、N-メチルピロリドンやピリジン等が用いられる。芳香族溶剤としては、一般的には、ベンゼン、トルエン、キシレン等の1環芳香族化合物や、ナフタレン、メチルナフタレン、ジメチルナフタレン、トリメチルナフタレン、テトラヒドロナフタレン(テトラリン;登録商標)等の2環芳香族化合物、アントラセン等の3環以上の芳香族化合物等が用いられる。また、2環芳香族化合物には、その他脂肪族側鎖をもつナフタレン類、また、これにビフェニルや長鎖脂肪族側鎖をもつアルキルベンゼンが含まれる。
本発明では、上記極性溶剤や芳香族溶剤のなかでも、水素非供与性の溶剤を用いることが好ましい。水素非供与性溶剤としては、主に石炭の乾留生成物から精製した2環芳香族化合物を主とする石炭誘導体を挙げることができる。この水素非供与性溶剤は、加熱状態でも安定であり、石炭との親和性に優れているため、溶剤に抽出される可溶成分の割合が高く、また、蒸留等の方法で容易に回収可能な溶剤である。回収した溶剤は、経済性の向上を図るため、循環使用できる。水素非供与性溶剤としては、例えば、ナフタレン、メチルナフタレン、タール軽油などが挙げられ、これらから選択される1種を主成分とする溶剤や、2種以上を含む溶剤を用いることができる。
また可溶成分の抽出に用いる溶剤は、沸点が180〜330℃(特に、200〜250℃)のものが好ましい。沸点が低過ぎると、抽出工程での可溶成分の抽出率が低下する。また、抽出工程や、後述する固液分離工程での必要圧力が高くなる。更に、溶剤を回収するときに揮発による損失が大きくなり、溶剤の回収率が低下する。一方、沸点が高過ぎると、後述する固液分離工程で分離される抽出液からの溶剤の除去や、可溶成分を抽出した後の石炭に付着している溶剤を除去することが困難となり、溶剤の回収率が低下する。
可溶成分の抽出に用いる原料石炭の種類は特に限定されないが、主に一般炭、或いは軟化溶融性をほとんど持たない非微粘炭などの安価な石炭を使用することにより、経済性の向上を図ることができる。もちろん非微粘炭に限定されず、微粘結炭、準微粘結炭、強粘結炭などを使用しても良い。
前記抽出工程では、石炭から可溶成分を抽出し易くするために、原料石炭を、例えば、直径5mm程度以下(好ましくは3mm以下)に粉砕しておくことが好ましい。
また、前記抽出工程では、原料石炭から可溶成分を抽出するときの抽出率を高めるために原料石炭と溶剤とをスラリー状に混合することが好ましい。この混合物を攪拌しつつ加熱すれば、原料石炭に含まれる溶剤に可溶な可溶成分が溶剤中に抽出される。
抽出温度は、例えば、300〜420℃程度(特に、330〜400℃程度)に設定することが好ましい。抽出温度が低過ぎると、石炭に含まれる易ガス化成分を除去できない上に、石炭を構成する成分の分子間結合力を弱めることが不十分となって、石炭に含まれる可溶成分の抽出率が低くなる。一方、抽出温度が高過ぎると、石炭が熱分解して生成したラジカルの再結合が起こるため、石炭から可溶成分を抽出するときの抽出率が低くなる。
抽出時間は、例えば、10〜120分程度(特に、30〜60分程度)とすればよい。抽出時間が長過ぎると、抽出した可溶成分の熱分解反応が進行し、ラジカル重合反応が進むため可溶成分の抽出率が低下する。
抽出工程は、例えば、不活性ガス(例えば、窒素)の存在の下で行なえばよい。なお、抽出工程では、溶剤が沸騰しないように加圧する必要があり、圧力は、通常、0.8〜2.5MPa程度(特に、1〜2MPa)の範囲に調整すればよい。
<固液分離工程S2>
固液分離工程は、上記溶剤抽出工程(S1)で得られた溶剤可溶成分と溶剤不溶成分の混合物スラリーを重力沈降装置に導入して、溶剤不溶成分中の浮揚成分(A)の少なくとも一部を溶剤可溶成分と共に重力沈降装置の上部側から抜き出す抜き出し工程である。
固液分離工程における溶剤可溶成分は、主に石炭から抽出された溶剤に可溶な成分と、抽出に用いた溶剤で構成されている。また溶剤不溶成分は、主に灰分などの無機分と、溶剤に不溶な有機分で構成されており、抽出に用いた溶剤も含まれている。また灰分とは、溶剤不溶成分を815℃で灰化したときの残留無機物(ケイ酸、アルミナ、酸化鉄、石灰、マグネシア、アルカリ金属など)をいう。
そして本発明では溶剤不溶成分のうち、重力沈降装置下部側から抜き出される溶剤不溶成分をアンダーフロー溶剤不溶成分という。また溶剤不溶成分のうち、特に沈降し難い粒径の微細な溶剤不溶成分(アンダーフロー溶剤不溶成分よりも沈降に時間を要するもの)を浮揚成分という。
本発明では固液分離方法として、重力沈降法によることが望ましく、重力沈降法によれば、抽出処理後の流体(スラリー)の連続操作が可能であり、低コストで大量の処理にも適しているため好ましい。また重力沈降法を具体化する装置として、公知の沈降槽などの重力沈降装置を用いればよい。
上記混合物スラリーを固液分離すると、微細な溶剤不溶成分は沈降速度が遅いことから、重力沈降装置下部側に沈降せずに浮揚しているため、浮揚成分に含まれる灰分や不溶有機分などの平均粒径はアンダーフロー溶剤不溶成分よりも小さくなる。したがってこのような浮揚成分を溶剤可溶成分と共に抜き出すことによって、得られる石炭抽出物にもこうした微細な溶剤不溶成分が多く含まれる。
本発明の製法によれば、浮揚成分の少なくとも一部は溶剤可溶成分と混合された状態で重力沈降装置から抜き出されるが、このように溶剤可溶成分と共に浮揚成分を抜き出すと、別途、特別な処理をしなくても、後記溶剤除去後の石炭抽出物は、溶剤可溶成分に含まれている可溶成分と浮揚成分に含まれている溶剤不溶成分が均一に分散された状態とすることができる(図5)。このように溶剤不溶成分が均一に分散されていると、コークスの亀裂などの原因となる不溶成分の偏在による接着不足や、流動性や膨張性の高い成分の偏在による粗大気孔の形成を防ぐことができると共に、圧壊強度向上にも有効である。
なお、固液分離工程における溶剤の温度と固液分離時の圧力は、上記抽出工程で設定した温度および圧力と同じ範囲に設定することが好ましい。原料石炭から溶出した溶質の再析出を防ぐためである。
本発明では石炭抽出物に含まれる溶剤不溶成分が10質量%以上、50質量%以下であることが望ましい。石炭抽出物に含まれる溶剤不溶成分が少なくなると、上記したように軟化溶融性や膨張率を十分に低減することができなくなり、その結果、石炭抽出物を入れ過ぎた場合か、良質原料に対して配合した場合、コークスの強度が低下する。石炭抽出物に含まれる溶剤不溶成分は好ましくは20質量%以上である。一方、石炭抽出物に含まれる溶剤不溶成分の上限は、溶剤不溶成分が多くなると軟化溶融性や全膨張率が大きく低下するため、このような石炭抽出物を原料炭と混合すると粘結性が低下してしまい、脆弱なコークスとなる。したがって石炭抽出物に含まれる溶剤不溶成分は好ましくは40質量%以下、より好ましく35質量%以下とすることがよい。
本発明では浮揚成分に含まれる溶剤を除去した後の溶剤不溶成分の平均粒径(50%平均粒径)は20μm以下、より好ましく15μm以下、更に好ましくは10μm以下であることが望ましい。なお、平均粒径は、レーザー回折法によって測定した値である。
本発明においては石炭抽出物に含まれる溶剤不溶成分の平均粒径は小さいほどよいが、その理由は上記したように粗大な溶剤不溶成分は原料炭同士の接着や接続を阻害するため、コークスに亀裂等が生じやすくなって圧壊強度が十分に向上しないからである。また石炭抽出物に微細な溶剤不溶成分が含まれていると、上記したように粗大な灰分に起因する亀裂等の問題を低減し、圧壊強度の向上や軟化溶融性と膨張率の制御に有効だからである。
また石炭抽出物は、ギーセラー流動度logMF=1.0〜4.78、全膨張率0.1〜200%、ビトリニット平均反射率Ro=0.9〜1.0であることが望ましい。
ギーセラー流動度logMF(1.0〜4.78)、ビトリニット平均反射率Ro(0.9〜1.0)、全膨張率(0.1〜200%)としたのは、これら指標を最適化することがコークスの高強度化に有効だからである。
上記石炭抽出物に含まれる溶剤不溶成分量や、溶剤不溶成分の平均粒径、ギーセラー流動度、ビトリニット平均反射率を調整するには、溶剤可溶成分と共に抜き出される不溶成分量を調整すればよい。例えば浮揚成分の少なくとも一部を溶剤可溶成分と共に重力沈降装置上部側から抜き出すには、重力沈降装置の上部側からの抜き出し量と下部側から抜き出す量との比(抜き出し比)を制御すればよい。重力沈降装置下部側から抜き出すアンダーフロー溶剤不溶成分量を減少させると、重力沈降装置内に滞留する溶剤不溶成分が増加するため、重力沈降装置上部側から溶剤可溶成分と共に抜き出す浮揚成分量も増加させることができる。また抜き出すアンダーフロー溶剤不溶成分量を増加させると、重力沈降装置内に滞留する溶剤不溶成分量が減少するため、溶剤可溶成分と共に抜き出す浮揚成分量が減少する。
もっとも、アンダーフロー溶剤不溶成分の抜き出し割合が多すぎると上部側から抜き出す抽出残部量が少なくなり、所望量の溶剤不溶成分を溶剤抽出炭に含めることが難しくなる。また沈降抽出残部の抜き出し割合が少なすぎると上部側から抜き出す浮揚抽出残部に粗大な溶剤不溶成分が多く含まれるようになる。具体的な抜き出し比の調節条件は、浮揚成分や石炭抽出物中の溶剤不溶成分量、要求される石炭抽出物のギーセラー流動度やビトリニット平均反射率、全膨張率や重力沈降装置のサイズ等に応じて重力沈降装置の抜き出し管の開口時間や開口面積などを制御することが望ましい。例えば固液分離装置上部側から抜き出される溶剤可溶成分と浮揚成分の上部側抜き出し量(A)と、下部側から抜き出されるアンダーフロー溶剤不溶成分の下部側抜き出し量(B)との比(抜き出し比)は、80:20〜99:1であることが望ましく、85:15〜90:10とすることが好ましい。
図2では、上記抽出工程によって溶剤抽出が終了した混合物スラリーは重力沈降装置(沈降槽)へ供給される。重力沈降装置では溶剤可溶成分と溶剤不溶成分とに分離される。また重力沈降装置の上部側から抜き出された溶剤可溶成分と浮揚成分は、抽出炭溶液受器へ排出され、重力沈降装置の下部側から抜き出されたアンダーフロー溶剤不溶成分は、非抽出炭濃縮液受器へ排出される。
<溶剤除去工程S3>
溶剤除去工程は、上記固液分離工程(S2)で抜き出した浮揚成分と溶剤可溶成分との混合物から溶剤を除去する工程である。溶剤を除去することにより、溶剤不溶成分が含まれる石炭抽出物が得られる。
溶剤を分離する方法としては、一般的な蒸留法や蒸発法(スプレードライ法等)を用いることができる。なお、本発明では、分離して回収した溶剤を抽出工程で用いる溶剤の一部として再利用することもできる。
なお、アンダーフロー溶剤不溶成分についても同様に蒸留法等を用いて溶剤を回収することができる。
<混合工程S4>
混合工程は、溶剤を除去して得られる石炭抽出物と、原料炭とを含む混合物とする工程である。
石炭抽出物と原料炭との混合方法は、特に限定されず、均一な混合が得られる公知の方法を採用すればよい。また石炭抽出物と原料炭とを混合する手段についても、特に限定されるものではなく、例えば、ミキサー、ニーダー、単軸の混合機、二軸の混合機などを用いることができる。
上記石炭抽出物と混合する原料炭として使用できる石炭の種類は特に限定されず、強粘結炭、準粘結炭、微粘結炭のいずれも使用でき、適宜、組み合わせて用いれば良い。
なお、本発明において強粘結炭とは、平均最大反射率(Ro)が1.1超〜1.5、ギーセラー流動度(logMF)が0.5〜3.5の石炭、準強粘結炭とは、Roが0.7〜1.1超、logMFが2.5超〜3.5の石炭、微粘結炭とは、Roが0.7〜1.1以下、logMFが0.5〜2.5以下の石炭をいう。
強粘結炭、準強粘結炭、及び微粘結炭は、複数種組み合わせて用いることもでき、要求されるコークスの特性に応じて適宜組み合わせればよい。
一般的に強粘結炭は粘結性が高く、強粘結炭の配合量を増加させると、得られるコークスの強度が向上する。また準強粘結炭は強粘結炭に次ぐ粘性を持ち、また高流動性、高膨張性という特性を有するため、これら石炭を適宜組み合わせることで、配合炭の性状を制御することができる。また微粘結炭は安価であるが溶融性、膨張性が乏しいため、微粘結炭の配合量を増加させると、得られるコークスの強度が低下する。
本発明では高炉投入時の落下に対する強度や、充填時の強度、そして高炉内でのスペーサとしての十分な強度を兼備したコークスを得るために、(強粘結炭と準強粘結炭):微粘結炭の割合を100:0〜50:50とすることが好ましく、より好ましくは100:0〜70:30とすることが望ましい。
また強度向上効果など上記石炭抽出物の効果を高めるには、石炭抽出物の混合比率を増加させることが望ましいが、石炭抽出物の混合比率が多くなりすぎるとコークスに粗大な気孔が多く形成され、強度低下の原因となる。本発明では石炭抽出物と前記原料炭の混合比率が1:99〜30:70(好ましくは5:95〜15:85)であることが望ましい。
石炭抽出物と原料炭の混合においては、上記割合の原料炭中の強粘結炭(特にビトリニット平均反射率Ro=0.7〜1.5、ギーセラー流動度logMF=0.5〜2.5の強粘結炭)の一部を上記石炭抽出物と置換すると、高価な強粘結炭の使用量を低減させつつ、該強粘結炭を用いた場合と同等以上の強度を得ることができる。
原料炭の粒径は、その70質量%以上(より好ましくは80質量%以上、更に好ましくは90質量%以上)が3mm以下であることが好ましい。粒径3mmを超える石炭が30質量%を超えて存在すると、得られるコークスの強度が低下することがある。なお、本発明において「粒径」とは、ふるい分け法によって求められる値であって、具体的には、粒度試験法(JIS M8801)によって求められる値である。
また石炭抽出物の粒径については特に限定されないが、石炭抽出物の粒径が大きい場合、コークスに亀裂が生じる原因となることがある。したがって石炭抽出物の粒径は、原料石炭の粒径が上記範囲にある場合、1mm以下(より好ましくは0.5mm以下)であることが好ましい。石炭抽出物の粒径の下限については特に限定されない。
なお、石炭抽出物の粒径は上記製造方法における条件を変更することによっても調節することができるが、上記工程で得られた石炭抽出物を篩い分けしたり、あるいは別途、粉砕する工程を設けて、石炭抽出物の粒径を制御することができる。
混合物の製造にあたっては、公知の添加剤を必要に応じて含有させてもよい。また本発明では上記混合物を所望の形状に成形して塊状体にしてもよい。塊状体の具体的な形状は特に限定されず、円柱状、球状など所望の形状とすればよい。
塊状体を成形するための方法は特に限定されるものではなく、例えば、平ロールによるダブルロール(双ロール)型成形機や、アーモンド型ポケットを有するダブルロール型成形機を用いる方法の他、単軸プレスやローラータイプの成形機、押し出し成形機を用いる方法等、いずれの方法も採用できる。
塊状体の成形は、室温前後で行なう冷間成形でもよいし、加熱して行う熱間成形でもよい。熱間成形は、室温を超えて400℃程度以下で行うのがよい。成形温度が400℃を超えると石炭が熱分解し、タールが発生して石炭成分を失うことになる。好ましくは250〜350℃程度で熱間成形するのがよい。成形圧力は特に限定されず、公知の条件を採用すればよい。
例えば、ダブルロール型の成型機を用いて、200〜400℃(より好ましく250〜350℃)下で加熱加圧成形すればよい。
上記塊状体(成形物)を成形した場合の大きさは、原料鉄鉱石や石炭の種類、製造条件、或いは高炉での運用条件によって異なるが、おおむね10〜30mm前後である。
<乾留工程S5>
乾留工程は、上記混合工程(S4)で得られた混合物を乾留する工程である。乾留することによって石炭部分がコークス化され、高強度コークスを製造できる。
乾留工程は、既存のコークス炉を用いて行うことができる。乾留するときに用いる炉の形状も特に限定されず、室炉を用いてバッチ式で乾留してもよいし、縦型シャフト炉を用いて連続式で乾留してもよい。
乾留条件も公知の条件を採用でき、乾留温度は、650〜1100℃程度(特に、700〜1050℃程度)、乾留時間は、5分間〜24時間程度(特に、10分間〜12時間程度)とすればよい。乾留雰囲気は、石炭の酸化による劣化を防止するため、非酸化性ガス雰囲気とすればよい。
このようにして得られた製鉄用コークスは、従来のコークスに比べて高い強度を有する。
以上の通り、本発明に係る製鉄用コークスの製造方法について説明したが、各工程に悪影響を与えない範囲において、各工程の間あるいは前後に新たな工程を設けてもよい。例えば、原料石炭を粉砕する石炭粉砕工程、加熱処理によって軟化溶融性を調整する工程、ごみ等の不要物を除去する除去工程及び得られた非溶剤抽出物を乾燥させる乾燥工程等を行ってもよい。
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
<溶剤抽出炭と非溶剤抽出炭の製造>
原料石炭として一般炭であるCoal−A(5kg)、溶剤としてメチルナフタレン(20kg)を用いて、スラリーを調製した。このスラリーを1.2MPaの窒素で加圧して、内容積30L(リットル)のオートクレーブ中、300〜420℃に制御し、1時間の条件で加熱処理した(抽出工程)。次いで、このスラリーを同一温度、圧力に維持された重力沈降槽へ移し、溶剤可溶成分と溶剤不溶成分とに分離した(固液分離工程)。重力沈降槽下部側から溶剤不溶成分(アンダーフロー溶剤不溶成分)を抜き出すと共に、重力沈降槽上部側からは溶剤可溶成分と溶剤不溶成分(浮揚成分)の一部を抜き出した。この際の抜き出し比(重力沈降槽上部側:下部側)は85:15〜90:10の範囲で制御した。
具体的には溶剤を除去して得られる石炭抽出物に含まれる灰分の濃度が0%程度(HPC−0)、2%程度(HPC−2)、3%程度(HPC−3)、4%程度(HPC−4)、7%程度(HPC−7)、9%程度(HPC−9)となるように、重力沈降槽下部側から抜き出す沈降抽出残部の抜き出し量を制御し、石炭抽出物に含まれる溶剤不溶成分量を表1に示すように調節した。
重力沈降槽上部側から抜き出した溶剤可溶成分と浮揚成分は、蒸留によって溶剤を分離・除去して(溶剤除去工程)、石炭抽出物を得た。また重力沈降槽下部側から抜き出したアンダーフロー溶剤不溶成分も同様に溶剤を除去して、石炭非抽出物を得た(No.8)。
なお、従来技術である特許文献4を模擬して、重力沈降槽下部側から抜き出したアンダーフロー溶剤不溶成分を、浮揚成分を含まない溶剤可溶成分(HPC−0)に添加した後、溶剤を除去して石炭抽出物(モデルHPC−7:No.9)を作製した。なお、No.9(モデルHPC−7)では、石炭抽出物に含まれる溶剤不溶成分が、No.6(HPC−7)と同程度になるように調節して石炭抽出物を作製した。各石炭抽出物の成分(揮発分、灰分)、非溶剤抽出炭濃度、軟化溶融性、膨張率、灰分分散性、平均粒度分布について調べた。
(揮発分及び灰分)
揮発分(質量%)及び灰分(質量%)は工業分析(JIS M8812)に基づいて測定した。
(軟化溶融性)
軟化溶融性(logMF)は、JIS M8801(流動性試験方法)に規定されたギーセラープラストメータ方法によって流動性を測定した(ギーセラー流動度)。
(全膨張率)
全膨張率(%)は、JIS M8801(膨張性試験方法)に基づき、溶剤抽出炭(または原料石炭)と、原料炭Aを100:0〜40:60の割合で混合したものをディラトメーターで測定し、各混合割合をプロットした直線から溶剤抽出炭の100%換算値を用いて、溶剤抽出炭中の灰分(質量%)と全膨張率との関係を調べた。
(反射率)
ビトリニット平均反射率(Ro:%)は、JIS M8816に基づいて測定した。
(溶剤不溶成分の分散性)
灰分分散性は、石炭抽出物と、原料石炭を夫々電子顕微鏡(SEM)で観察(倍率200倍と1000倍)して、溶剤不溶成分の分散性について調べた。なお、不溶成分のうち有機分については検出できなかったため、灰分について分散性を調べた。
(溶剤不溶成分の平均粒度)
石炭非抽出物(No.9)と各石炭抽出物(No.2〜7)に含まれる溶剤不溶成分の平均粒度分布は、レーザー回折法(島津製作所:SALD−2000J)によって測定した。
結果を表1(成分、反射率、不活性分、軟化溶融性、全膨張率)、図3(全膨張率)、図4(粒度分布)、図5(分散性)に示す。
表1より、固液分離工程において、溶剤可溶成分と共に浮揚成分を抜き出さなかったNo.2(HPC−0)は、灰分などの溶剤不溶成分を殆ど含まないハイパーコールであった。一方、No.3〜7(HPC−2〜9)では、溶剤可溶成分と共に抜き出す浮揚成分が多くなるに従って石炭抽出物に含まれる灰分量は増加するが、揮発分は減少した。
特に石炭抽出物に含まれる溶剤不溶成分が増加するに伴って、軟化溶融性が低下することがわかった。なお、浮揚成分濃度が0.45〜22.5の範囲では、logMF値に変化が見られないが、これはギーセラー流動度計の測定限界値を超える程、流動性が高いので評価できなかった。またHPC−7では非溶剤抽出炭濃度が30.8%に達しており、軟化溶融性が3.32にまで低下した。
また膨張率は表1、図3より、石炭抽出物中の灰分濃度の増加に伴い、膨張率が低下することがわかる。
また各石炭抽出物における灰分の分散性を調べるために電子顕微鏡(SEM)による観察を行った結果、ハイパーコールであるNo.2(HPC−0)には、灰分が観察されなかった(図5)。一方、No.3〜7では、石炭抽出物に粒径の小さい灰分(白色粒状物)が一様に分散していることが確認できた(一例としてNo.5を図5に示す)。この結果、固液分離工程において、重力沈降槽上部側から溶剤可溶成分と共に浮揚成分部を抜き出すことによって、得られる石炭抽出物に含まれる溶剤不溶成分を分散状態とできることがわかる。
溶剤不溶成分の平均粒度分布について調べた結果、石炭非抽出物(No.8)に含まれる溶剤不溶成分の50%平均粒径は約50μmであった。一方、各石炭抽出物(No.2〜7)に含まれる溶剤不溶成分の50%平均粒径は約20μmであった。この結果から、重力沈降槽上部側から抜き出される浮揚成分に含まれる溶剤不溶成分は、重力沈降槽下部側から抜き出した溶剤不溶成分に含まれる溶剤不溶成分よりも、微細であることがわかる(一例としてNo.1とNo.5を図4に示す)。
続いて、上記石炭抽出物を用いて製鉄用コークスを製造し、得られたコークスの圧壊強度について調べた。
<コークスの製造>
(混合工程)
表2に示す成分の原料炭(強粘結炭Aまたは強粘結炭B)と、石炭抽出物を常温でよく混合(混合比は図6等に示すように変化させている)し、石英試験管(直径18mm×高さ140mm)に充填した。具体的には原料炭と石炭抽出物の混合物を充填密度0.8g/m、水分1%以下となるように調整(真空乾燥80℃で12時間)して円筒状に成形した(混合工程)。なお成形体の炭材として、原料炭には、粒径が1mm以下のものが100質量%以上となるように粉砕したものを用いた。また石炭抽出物の粒径は、粒径が0.15mm以下のものが100%となるように粉砕したものを用いた。
(乾留工程)
上記混合工程に引き続き、石英試験管の上部に約50g(石英製の棒)の荷重を乗せた状態で、窒素流通下(1L/min)で、3℃/分の昇温速度で室温から1000℃まで昇温した後、1000℃に制御した炉内で約30分間保持して円筒状のコークスを製造した。
<圧壊試験>
得られた円筒状コークスを10mm幅に切断した試験片を複数(4個)作製し、圧壊試験を4回行って、その平均値を圧壊強度とした。結果を図6〜8に示す。
図6は原料炭として強粘結炭Aと石炭抽出物(No.2、4、6、7)を用いた例であるが、本発明の要件を満足するNo.6(HPC−7)と強粘結炭Aを原料炭とした場合、高い圧壊強度を示し、本発明の石炭抽出物を混合することで、原料炭である強粘結炭の有する良好な特性(軟化溶融性と全膨張率)をより優れた性状に調整されたためであると考えられる。
一方、No.2(ハイパーコール)と強粘結炭Aを原料炭とした場合、圧壊強度は向上しなかった。またNo.4(HPC−3)は、No.6と同様、重力沈降槽上部側から抽出分と共に抜き出した浮揚抽出残部を含む例であるが、圧壊強度向上効果が十分に得られなかった。これは、No.2とNo.4の軟化溶融性や全膨張率が高すぎるため、このような石炭抽出物を混合することで、原料炭(強粘結炭)の特性が悪化し、コークス内部に粗大な気孔や連結した気孔が多く形成された結果、脆弱なコークスとなったと考えられる。
またNo.7(HPC−9)と強粘結炭Aを原料炭とした場合も圧壊強度は向上しなかった。これは、No.7の軟化溶融性や全膨張率が低すぎるため、このような石炭抽出物を混合することで、原料炭(強粘結炭)の粘結性が低下してしまい、脆弱なコークスとなったと考えられる。
図7は原料炭として膨張率の高い強粘結炭Bと石炭抽出物(No.2、6)を用いた例であるが、本発明の要件を満足するNo.6(HPC−7)と強粘結炭Bを原料炭とした場合、圧壊強度が向上したが、No.2(ハイパーコール)と強粘結炭Bを原料炭とした場合、灰分濃度が低いため、圧壊強度向上効果が得られなかった。
図8は原料炭として強粘結炭AとNo.6またはNo.9を用いた例であるが、アンダーフロー溶剤不溶成分を含有するNo.9(モデルHPC−7)を用いた場合、溶剤不溶成分の平均粒径が大きいため、No.6(HPC―7)を用いた場合と比べて圧壊強度の向上効果が低かった。
以上の圧壊試験の結果から次のことが分かる。
まず、強粘結炭Aのみでコークスを作製した場合の圧壊強度は5.5MPa、強粘結炭Bのみでコークスを作製した場合の圧壊強度は4MPaである(図5、図6)が、このような原料炭と、溶剤不溶成分濃度の異なる溶剤抽出炭を混合してコークスを作製した場合、まず、溶剤不溶成分を殆ど含まないハイパーコールであるNo.2(HPC−0)は、圧壊強度が著しく低くなった。これはハイパーコールの軟化溶融性や膨張率が高いため、No.2と強粘結炭A、または強粘結炭Bと混合してコークスを作製したとしても、コークス内部に粗大な気孔が多く存在するため、圧壊強度が著しく低くなったと考えられる。
また溶剤不溶成分の平均粒径が大きいアンダーフロー溶剤不溶成分をNo.2(HPC−0)に混合したNo.9(モデルHPC−7)は、強粘結炭Aのみのコークスと比べて圧壊強度は向上しているものの、石炭抽出物に含まれる溶剤不溶成分(No.6は浮揚成分、No.9はアンダーフロー溶剤不溶成分)が同じNo.6(HPC−7)と比べて圧壊強度向上効果が劣っていた。これはNo.6、9共に溶剤不溶成分の量が最適なため、軟化溶融性や膨張率が低減された結果、コークスの圧壊強度が向上したものと考えられるが、No.9(モデルHPC−7)の溶剤不溶成分の平均粒径が大きいため、該溶剤不溶成分の影響によって原料炭同士の接着性・接続性が悪化し、該悪化部分を基点とした亀裂等によって圧壊強度が十分に高まらなかったと考えられる。
また溶剤不溶成分の含有量が少ないNo.4(HPC−3)は、圧壊強度が低下しているが、これは微細な溶剤不溶成分を含んでいるものの溶剤不溶成分の含有量が少ないため軟化溶融性や膨張率を十分に低減できず、その結果、圧壊強度を高めることができなかったと考えられる。
一方、本発明の要件を満足するNo.6(HPC−7)は、強粘結炭A、強粘結炭Bのいずれと混合しても、圧壊強度を向上することができた。これは溶剤不溶成分が十分に含まれているために軟化溶融性や膨張率を十分に低減できたと共に、微細な溶剤不溶成分を含んでいるため、圧壊強度も一段と高めることができたと考えられる。

Claims (4)

  1. 原料炭と石炭抽出物を含む混合物を成形した後に乾留して製鉄用コークスを製造する方法であって、
    前記石炭抽出物は、
    溶剤で石炭から可溶成分を抽出し、溶剤可溶成分と溶剤不溶成分の混合物スラリーを得る抽出工程と、
    前記混合物スラリーを重力沈降装置に導入し、前記溶剤不溶成分中の浮揚成分(A)の少なくとも一部を前記溶剤可溶成分と共に、前記重力沈降装置の上部側から抜き出す抜き出し工程と、
    前記溶剤不溶成分中の浮揚成分(A)および前記溶剤可溶成分から溶剤を除去する溶剤除去工程と、
    を順次行なうことによって得られるものであって、前記石炭抽出物中の溶剤不溶成分が30.8〜40.2質量%であることを特徴とする製鉄用コークスの製造方法。
  2. 前記重力沈降装置において、前記溶剤不溶成分中の浮揚成分(A)が5質量%以上40質量%以下である請求項1に記載の製鉄用コークスの製造方法。
  3. 前記石炭抽出物中の溶剤不溶成分の平均粒径が20μm以下である請求項1または2に記載の製鉄用コークスの製造方法。
  4. 前記石炭抽出物と前記原料炭の混合比率が1:99〜30:70である請求項1〜のいずれかに記載の製鉄用コークスの製造方法。
JP2010169685A 2010-07-28 2010-07-28 製鉄用コークスの製造方法 Active JP5530292B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010169685A JP5530292B2 (ja) 2010-07-28 2010-07-28 製鉄用コークスの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010169685A JP5530292B2 (ja) 2010-07-28 2010-07-28 製鉄用コークスの製造方法

Publications (2)

Publication Number Publication Date
JP2012031235A JP2012031235A (ja) 2012-02-16
JP5530292B2 true JP5530292B2 (ja) 2014-06-25

Family

ID=45845035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010169685A Active JP5530292B2 (ja) 2010-07-28 2010-07-28 製鉄用コークスの製造方法

Country Status (1)

Country Link
JP (1) JP5530292B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4997352B1 (ja) * 2012-02-29 2012-08-08 新日鉄エンジニアリング株式会社 コークスの製造方法及びそれにより得られたコークス
JP2013181062A (ja) * 2012-02-29 2013-09-12 Kobe Steel Ltd 成形配合炭およびその製造方法、ならびにコークスおよびその製造方法
JP6607366B2 (ja) * 2013-05-08 2019-11-20 国立研究開発法人産業技術総合研究所 非・微粘結炭からの高強度・高反応性コークス製造方法
JP6086129B2 (ja) * 2014-05-15 2017-03-01 Jfeスチール株式会社 コークスの製造方法
JP6227482B2 (ja) * 2014-05-28 2017-11-08 株式会社神戸製鋼所 高炉用コークスの製造方法及び高炉用コークス
JP2018070772A (ja) * 2016-10-28 2018-05-10 株式会社神戸製鋼所 成形コークスの製造方法及び成形コークスの製造装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4045229B2 (ja) * 2003-10-15 2008-02-13 株式会社神戸製鋼所 無灰炭の製造方法
JP2006070182A (ja) * 2004-09-02 2006-03-16 Kobe Steel Ltd コークス原料石炭の製造方法
JP4109686B2 (ja) * 2005-07-19 2008-07-02 株式会社神戸製鋼所 コークスの製造方法、及び、銑鉄の製造方法
JP5241105B2 (ja) * 2007-01-16 2013-07-17 株式会社神戸製鋼所 コークスの製造方法、及び銑鉄の製造方法
JP5247193B2 (ja) * 2008-03-17 2013-07-24 株式会社神戸製鋼所 コークスの製造方法、及び、銑鉄の製造方法

Also Published As

Publication number Publication date
JP2012031235A (ja) 2012-02-16

Similar Documents

Publication Publication Date Title
JP5334433B2 (ja) 無灰炭の製造方法
JP5530292B2 (ja) 製鉄用コークスの製造方法
JP5280072B2 (ja) コークスの製造方法
JP5342794B2 (ja) 炭素材料の製造方法
WO2012118151A1 (ja) 炭素材料の製造方法
JP5241105B2 (ja) コークスの製造方法、及び銑鉄の製造方法
AU2013226908B2 (en) Coal blend briquette and process for producing same, and coke and process for producing same
JP6607366B2 (ja) 非・微粘結炭からの高強度・高反応性コークス製造方法
US20170096340A1 (en) Method for producing carbon material, and carbon material
JP5466106B2 (ja) 鉄鉱石含有コークスの製造方法
JP5128351B2 (ja) 炭素材料の製造方法
JP5336971B2 (ja) 鉄鉱石含有コークスの製造方法
WO2014175121A1 (ja) 無灰炭の製造方法および炭素材料の製造方法
JP5390977B2 (ja) 鉄鉱石含有コークス、及び該鉄鉱石含有コークスの製造方法
JP5559628B2 (ja) 製鉄用コークスの製造方法
JP5803860B2 (ja) バイオマスの改質方法、バイオマス及び褐炭の改質方法、コークス及び焼結鉱の製造方法並びに高炉の操業方法
JP6014012B2 (ja) コークスの製造方法、およびコークス
JP6719342B2 (ja) 製鉄用コークスの製造方法及び銑鉄の製造方法
JP5438423B2 (ja) 鉄鉱石含有コークスの製造方法
TWI510610B (zh) The coke is the main raw material
JP5491795B2 (ja) 製鉄原料用塊状成形体の製造方法および鉄鉱石含有コークス

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140418

R150 Certificate of patent or registration of utility model

Ref document number: 5530292

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250