JP5945257B2 - 炭素材料の製造方法 - Google Patents

炭素材料の製造方法 Download PDF

Info

Publication number
JP5945257B2
JP5945257B2 JP2013188208A JP2013188208A JP5945257B2 JP 5945257 B2 JP5945257 B2 JP 5945257B2 JP 2013188208 A JP2013188208 A JP 2013188208A JP 2013188208 A JP2013188208 A JP 2013188208A JP 5945257 B2 JP5945257 B2 JP 5945257B2
Authority
JP
Japan
Prior art keywords
ashless coal
coal
oxidation
oxidized
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013188208A
Other languages
English (en)
Other versions
JP2015054792A (ja
Inventor
濱口 眞基
眞基 濱口
祥平 和田
祥平 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2013188208A priority Critical patent/JP5945257B2/ja
Priority to PCT/JP2014/073806 priority patent/WO2015037583A1/ja
Priority to CN201480049361.3A priority patent/CN105531225B/zh
Priority to US14/913,914 priority patent/US9751764B2/en
Priority to CA2920605A priority patent/CA2920605C/en
Priority to RU2016113367A priority patent/RU2628606C1/ru
Publication of JP2015054792A publication Critical patent/JP2015054792A/ja
Application granted granted Critical
Publication of JP5945257B2 publication Critical patent/JP5945257B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/25Diamond
    • C01B32/26Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

本発明は炭素材料の製造方法に関し、詳細には構造部材、電気・電子材料、金属還元材などとして使用される高純度、且つ高密度を有する炭素材料の製造方法、および炭素材料に関するものである。
高密度炭素材料は、耐熱性や化学的安定性に優れ、しかも電気伝導性があるため、構造部材や電気・電子材料として広く利用されている。また、炭素は高温で多くの金属酸化物を還元する作用を示すので、チタンなどの精錬における金属還元剤としても使用される。
高密度炭素材料の製造方法としては、コークスなどのように炭素含有率が高く、溶融することなく炭素化する骨材成分と、コールタールピッチなどのように熱可塑性があり、骨材同士を結合し、しかも炭素化するバインダー成分を混合、成形し、高温で加熱(炭素化)処理して炭素化する方法が知られている。この方法はバインダー成分の残存炭率が低いという問題があるため、一回の炭素化処理では空隙が存在し、炭素材料の密度が小さかった。そのため、炭素化処理後の炭素材料にバインダー成分を含浸させて再度炭素化処理することがおこなわれており、こうした工程を何度も繰り返しながら緻密化しなければならなかった。そのため、高密度炭素材料の製造工程が煩雑となり、また製造期間も長くなるため、生産性が悪く、高密度炭素材料は高価となっていた。
そこでバインダーを使用せずに高密度炭素材料を製造する方法として、自己焼結性を有する炭素原料を用いた高密度炭素材料が提案されている。自己焼結性とは、バインダー成分を添加しなくても、成形が可能で、それを加熱処理することによって、その形状を保ったまま炭素化するような性質である。
自己焼結性を有する炭素原料の代表的な例として、メソカーボンマイクロビーズが知られている。
近年、各種用途における品質向上の観点から、炭素材料には炭素以外の不純物(いわゆる灰分)が少ないことが求められているが、従来の炭素原料は不純物含有量が多いため、高純度炭素材料を提供することが難しかった。
不純物含有量の少ない炭素原料として、実質的に灰分を含まない無灰炭を利用することが検討されている(例えば特許文献1)。もっとも無灰炭は熱流動性が高く、原料石炭の品位に関わらず200〜300℃で溶融する性質を有する。また400℃前後に加熱すると膨張する性質を有する。そのため無灰炭で成形した成形体を炭素化すると、高温加熱によって激しく発泡して膨張するため、炭素材料にはヒビ割れや欠けが生じたり、粉体化して成形体の形状を保持することができなかったり、また多孔質化して炭素材料の密度が低くなるという問題があった。
このような問題に対して本発明者らは無灰炭の改質技術を提案している(特許文献2)。この技術では無灰炭を加熱して揮発分を所定の範囲に調整することで自己焼結性を高め、炭素化処理しても膨張することなく、またヒビ割れや欠け、粉化がなく、成形時の形状を保持した高純度炭素材料の提供を可能としている。
特開2001−26791号公報 特開2009−144130号公報
上記特許文献2に記載された技術によって無灰炭を自己焼結性を有する炭素原料として使用することが可能となり、炭素材料の高純度化を達成できたが、密度については改善余地があった。すなわち、揮発分を低減させた無灰炭を使用した場合、炭素化(高温加熱)した際に水分等が蒸散して生じる炭化収縮に対する変形性が低く、そのため炭素材料には空隙が形成され、密度が低いという問題があった。
本発明は上記のような事情に着目してなされたものであって、その目的は、高純度かつ、高密度を有する炭素材料を製造する方法、および高純度、且つ高密度を有する炭素材料を提供することである。
上記課題を解決し得た本発明に係る炭素材料の製造方法は、無灰炭を酸化する酸化工程と、前記酸化工程で得られた酸化無灰炭と、酸化しない無灰炭とを混合して成形する成形工程と、前記成形工程で得られた成形体を炭素化する炭素化工程と、を含み、前記酸化工程で得られた前記酸化無灰炭の酸素増加率は、2.0〜10.0%であり、且つ前記成形工程での酸化無灰炭の混合割合は、酸化無灰炭と酸化しない無灰炭の合計100質量部に対して、60〜95質量部であることに要旨を有する。
本発明では、前記酸化が空気酸化であることや、前記酸化が150℃以上、発火点未満の温度でおこなわれることも好ましい実施態様である。
また本発明には、酸化された無灰炭(酸化無灰炭)と、酸化しない無灰炭とを混合して成形した成形体を炭素化した炭素材料であって、前記酸化無灰炭の酸素増加率は、2.0〜10.0%であり、且つ前記成形体での前記酸化無灰炭の割合は、前記酸化無灰炭と、前記酸化しない無灰炭の合計100質量部に対して、60〜95質量部であることに要旨を有する炭素材料も含まれる。
本発明の製造方法によれば、高純度かつ、高密度を有する炭素材料を安価に製造できる。特に無灰炭に酸化処理を施して得られる酸化無灰炭を所定の条件で配合した炭素原料を用いることで、高純度かつ、高密度を有する炭素材料を提供できる。
図1は、無灰炭の製造工程の一例を説明するフローチャートである。 図2は、本発明に係る炭素材料の製造工程の一例を説明するフローチャートである。
本発明者らは無灰炭を炭素原料に使用して高純度かつ高密度な炭素材料を提供すべく鋭意研究を重ねた。まず、高純度化という観点からは無灰炭を炭素原料とすることが望ましいが、上記したように無灰炭は軟化溶融性や膨張性が高いため、無灰炭だけでは高純度で高密度な炭素材料を製造することはできない。また上記特許文献2のように無灰炭の揮発分を調整した場合、軟化溶融性や膨張性は改善されるものの、炭素化処理時に空隙ができてしまい十分な高密度化を達成できないという問題が生じる。
そこで本発明者らは無灰炭の軟化溶融性と膨張性を低減しつつ、炭素化処理時の空隙を抑制し、炭素材料の高密度化を達成できる炭素原料について検討した。
その結果、無灰炭に酸化処理を施して得られる酸化無灰炭を主成分(骨材成分)とし、更にバインダー成分として酸化処理していない無灰炭(酸化しない無灰炭)を配合した混合炭素原料を用いることが有効であることを見出した。すなわち、無灰炭を酸化することで軟化溶融性と膨張性を改善できることがわかった。もっとも酸化無灰炭は自己焼結性に劣るため、酸化無灰炭のみで形成した成形体は非常に脆く、炭素化するとヒビ割れが進展して一部が崩壊して粉化してしまうという問題があった。
そこで酸化無灰炭粒子同士の結合を向上させるためのバインダーとなる添加材について検討した。従来からバインダーとして用いられていたピッチなどの添加材を配合した場合は、上記ヒビ割れや粉化といった問題は改善されるものの、炭化収縮率が酸化無灰炭よりも高く、また残存炭素率が低いため、炭素材料には空隙が残存し、またバインダー成分由来の灰分が混入して純度が低下するという問題があった。
本発明者らが更に添加材について検討した結果、酸化しない無灰炭、すなわち、酸化処理等の改質処理が施されていない製造ままの無灰炭(以下、「無改質無灰炭」ということがある)をバインダー成分として配合した場合、無改質無灰炭が軟化溶融して酸化無灰炭粒子を結合するバインダーとして機能し、上記ヒビ割れや粉化といった問題が改善され、成形体の形状を保持できることがわかった。特に無改質無灰炭の炭化収縮率は酸化無灰炭とほぼ同じであるため、炭化収縮による空隙の形成が抑制されて高密度化できる。
以上の知見に基づき、炭素原料として酸化無灰炭を主成分とし、無改質無灰炭をバインダー成分として配合した混合原料炭を用いることで、高純度で高密度な炭素材料を提供できることを見出し、本発明に至った。
以下、本発明に係る炭素材料の製造方法について、図1、図2に示す工程図に基づいて説明する。
まず、本発明の炭素材料の原料となる炭素原料について説明する。本発明では炭素原料として、無灰炭に酸化処理を施して得られる酸化無灰炭と、酸化しない無灰炭(無改質無灰炭)を配合した混合炭素原料を用いる。無灰炭とは石炭を815℃で加熱して灰化したときの残留無機物(ケイ酸、アルミナ、酸化鉄、石灰、マグネシア、アルカリ金属など)の灰分の濃度が極めて少ないものをいう。具体的には灰分濃度が5000ppm以下(質量基準)であり、好ましくは2000ppm以下であるものを無灰炭という。また無灰炭は、水分は皆無であり、原料石炭よりも高い熱流動性を示す。
本発明ではこのような性質を有する既存の無灰炭を使用でき、その製造方法も特に限定されず、各種公知の製造方法を採用できる。例えば無灰炭は下記S1〜S3の工程(図1参照)を経て製造できるが、下記無灰炭の製造工程(S1〜S3)は適宜変更することができ、必要に応じて各種処理工程を付加してもよい。
例えば無灰炭を製造するにあたり、前記各工程に悪影響を与えない範囲において、前記各工程の間あるいは前後に、例えば、原料石炭を粉砕する石炭粉砕工程や、ごみ等の不要物を除去する除去工程や、得られた無灰炭を乾燥させる乾燥工程等、他の工程を含めてもよい。
<スラリー加熱工程:S1>
スラリー加熱工程(S1)は、石炭と芳香族溶剤とを混合してスラリーを調製し、加熱処理して石炭成分を芳香族溶剤に抽出する処理である。
原料となる石炭(以下、「原料石炭」ともいう)の種類は特に限定されない。経済性の観点からは、瀝青炭等の高品位炭を使用するよりも、軟化溶融性をほとんど持たない非微粘炭や、一般炭、低品位炭である褐炭、亜炭、亜瀝青炭等の劣質炭を使用することが好ましい。
芳香族溶剤としては、石炭を溶解する性質を有するものであれば特に限定されない。このような性質を有する芳香族溶剤としては、ベンゼン、トルエン、キシレン等の単環芳香族化合物や、ナフタレン、メチルナフタレン、ジメチルナフタレン、トリメチルナフタレン等の2環芳香族化合物等が例示される。また2環芳香族化合物には、その他脂肪族側鎖を有するナフタレン類、また、これにビフェニルや長鎖脂肪族側鎖を有するアルキルベンゼンが含まれる。本発明では非水素供与性溶剤である2環芳香族化合物が好ましい。
非水素供与性溶剤とは、主に石炭の炭素化生成物から精製した、2環芳香族を主とする溶剤である石炭誘導体である。非水素供与性溶剤が好ましい理由は、非水素供与性溶剤が加熱状態でも安定しており、石炭との親和性に優れているため、溶剤に抽出される石炭成分の割合(以下、「抽出率」ともいう)が高く、また、蒸留等の方法で容易に回収可能な溶剤であり、更に回収した溶剤を循環使用できるからである。
なお、芳香族溶剤の沸点が低すぎると、加熱抽出の際、または後述する分離工程(S2)での必要圧力が高くなり、また芳香族溶剤を回収する工程で揮発による損失が増大し、芳香族溶剤の回収率が低下する。さらに、加熱抽出での抽出率も低下する。一方、芳香族溶剤の沸点が高すぎると、分離工程(S2)での液体成分、または、固体成分からの芳香族溶剤の分離が困難となり、溶剤の回収率が低下する。芳香族溶剤の沸点は180〜330℃のものが好ましい。
芳香族溶剤に対する石炭濃度は、特に限定されない。原料石炭の種類にもよるが、芳香族溶剤に対する石炭濃度が低いと、芳香族溶剤の量に対し、芳香族溶剤に抽出する石炭成分の割合が少なくなり、経済的ではない。一方、石炭濃度は高いほど好ましいが、高くなりすぎると、スラリーの粘度が高くなり、スラリーの移動や分離工程(S2)での液体成分と固体成分との分離が困難となりやすい。石炭濃度は、乾燥炭基準で10〜50質量%の範囲が好ましく、20〜35質量%の範囲がより好ましい。
スラリーの加熱処理(加熱抽出)温度が低すぎると、石炭を構成する分子間の結合を十分に弱めることができず、原料石炭として劣質炭を使用した場合、後述する無灰炭取得工程(S3)で取得される無灰炭の再固化温度を高めることができない。一方、加熱処理温度が高すぎると、石炭の熱分解反応が非常に活発になり、生成した熱分解ラジカルの再結合が起こるため、抽出率が低下する。スラリー加熱温度は、好ましくは350℃以上、より好ましくは380℃以上、好ましくは420℃以下である。
加熱時間(抽出時間)は、特に限定されないが、抽出時間が長くなると熱分解反応が進行しすぎて、ラジカル重合反応が進み、抽出率が低下する。例えば上記加熱温度であれば、好ましくは120分以下、より好ましくは60分以下、更に好ましくは30分以下であって、好ましくは0分超、好ましくは10分以上である。
加熱抽出した後、熱分解反応を抑制するために370℃以下に冷却することが好ましい。また冷却する際の温度の下限は、300℃以上が好ましい。300℃未満まで冷却すると、芳香族溶剤の溶解力が低下して、一旦抽出された石炭成分の再析出が起き、無灰炭の収率が低下する。
加熱抽出は、非酸化性雰囲気でおこなうことが好ましい。具体的には、窒素などの不活性ガスの存在下でおこなうことが好ましい。加熱抽出の際、酸素に接触すると、発火する恐れがあるため危険であり、また、水素を用いた場合には、コストが高くなるためである。
加熱抽出での圧力は、加熱抽出の際の温度や用いる芳香族溶剤の蒸気圧にもよるが、圧力が芳香族溶剤の蒸気圧より低い場合には、芳香族溶剤が揮発して液相に閉じ込められず、抽出できない。一方、圧力が高すぎると、機器のコスト、運転コストが高くなり、経済的ではない。好ましい圧力は概ね1.0〜2.0MPaである。
<分離工程(S2)>
分離工程(S2)は、スラリー加熱工程(S1)で加熱処理されたスラリーを、液体成分と固体成分とに分離する工程である。液体成分とは、芳香族溶剤に抽出された石炭成分を含む溶液である。固体成分とは、芳香族溶剤に不溶な灰分と不溶石炭を含むスラリーである。
分離工程(S2)でスラリーを液体成分と固体成分とに分離する方法としては、特に限定されず、濾過法、遠心分離法、重力沈降法など公知の分離方法を採用できる。本発明では流体の連続操作が可能であり、低コストで大量の処理にも適している重力沈降法を用いることが好ましい。重力沈降法による場合、重力沈降槽の上部からは、芳香族溶剤に抽出された石炭成分を含む溶液である液体成分(以下、「上澄み液」ともいう)を、重力沈降槽の下部からは溶剤に不溶な灰分と石炭を含むスラリーである固体成分(以下、「固形分濃縮液」ともいう)を得ることができる。
そして、以下に説明するように、この上澄み液および固形分濃縮液から蒸留法等を用いて芳香族溶剤を分離・回収し、上澄み液からは灰分濃度が極めて低い無灰炭を得ることができる(無灰炭取得工程(S3))。
<無灰炭取得工程(S3)>
無灰炭取得工程(S3)は、上澄み液から芳香族溶剤を分離して灰分濃度の極めて低い無灰炭を取得する工程である。
上澄み液から芳香族溶剤を分離する方法は特に限定されず、一般的な蒸留法や蒸発法(スプレードライ法等)等を用いることができる。また分離して回収された芳香族溶剤は繰り返し使用することができる。芳香族溶剤の分離・回収により、上澄み液からは、無灰炭を得ることができる。
<その他の工程>
必要に応じて、固形分濃縮液から芳香族溶剤を分離して灰分が濃縮された副生炭を製造してもよい(副生炭取得工程)。固形分濃縮液から芳香族溶剤を分離する方法は、前記した液体成分から無灰炭を取得する無灰炭取得工程(S3)と同様に、一般的な蒸留法や蒸発法を用いることができる。
以下、本発明の炭素材料の製造方法を図2に基づいて説明する。炭素材料を製造するにあたり、各工程に悪影響を与えない範囲において、各工程の間あるいは前後に、例えば、各種原料などを粉砕する粉砕工程や、ごみ等の不要物を除去する除去工程や、得られた炭素材料に各種処理を施す工程等、他の工程を含めてもよい。
<酸化工程:C1>
酸化工程(C1)は、無灰炭を酸化する工程であって、酸化無灰炭が得られる。なお、後記するように本発明では無改質無灰炭と、酸化工程で得られた酸化無灰炭とを混合して炭素原料(以下、「混合炭素原料」ということがある)としている。そのため、準備した無灰炭の一部を酸化工程(C1)で酸化して酸化無灰炭を製造し、残りの無改質無灰炭を使用して酸化無灰炭と混合してもよい。
無灰炭を酸化処理することで、後記する溶融や膨張を抑制でき、炭素材料の高密度化に寄与する。このような効果を得るためには、JIS M 8813(酸素含有率の算出方法)に基づいて酸化処理前後の無灰炭の酸素含有率を測定し、酸化無灰炭の酸素増加率(酸化無灰炭の酸素含有率−酸化前の無灰炭の酸素含有率)を2.0%以上、10.0%以下の範囲内にする必要がある。
酸化無灰炭の酸素増加率が2.0%を下回ると無灰炭が十分に改質されていないため、炭素化時に溶融や膨張が生じ、形状が変形したり、炭素材料が多孔質体となり、密度が低くなる。一方、酸化無灰炭の酸素増加率が10.0%を超えると炭素化した際の炭化収縮率が低下して酸化無灰炭と無改質無灰炭との炭化収縮率差が生じて、空隙が形成されて所望の高密度を達成できない。酸化無灰炭の酸素増加率は好ましくは4.0%以上、より好ましくは6.0%以上であって、好ましくは9.0%以下、より好ましくは8.5%以下である。
無灰炭の酸化方法は特に制限されず、無灰炭の酸素増加率が所定の範囲となるように酸化すればよい。酸化方法として例えば酸素、オゾン、二酸化窒素、空気など酸化性雰囲気による酸化、好ましくは空気中の酸素を酸化剤とする空気酸化である。またコストの観点からは大気雰囲気による酸化がより好ましい。
酸化温度(酸化時に保持する温度)は、所望の酸素増加率が得られるように適宜調整すればよい。酸化温度が低いと無灰炭の酸化不足となり、上記改質効果が十分に発揮されないことがある。また酸化温度が低いと所望の酸素増加率の達成に要する時間が長くなり、生産性が悪化する。一方、酸化温度が高くなりすぎると酸化速度が速くなりすぎて、無灰炭の酸化度を制御することが難しくなる。酸化温度は好ましくは150℃以上、より好ましくは200℃以上であって、好ましくは無灰炭の発火点未満、より好ましくは350℃以下である。
酸化時間(所定の温度での保持時間)は、所望の酸素増加率が得られるように適宜調整すればよい。酸化時間が短いと無灰炭の酸化不足となることがある。一方、酸化時間が長いと無灰炭が過剰に酸化されてしまって、上記したように空隙が生じて密度が低下する原因となることがある。例えば上記温度範囲における好ましい酸化時間は0.5時間以上、より好ましくは1時間以上であって、好ましくは6時間以下、より好ましくは3時間以下である。酸化後は室温まで放冷すればよい。
なお、酸化する無灰炭の粒径(円相当直径、以下、粒径について同じ)は特に限定されない。無灰炭の粒径が大きすぎると無灰炭内部が十分に酸化されず、炭素化した際に溶融等が生じるおそれがある。一方、無灰炭の粒径が小さすぎると取扱い性が悪化する。無灰炭の平均粒径は好ましくは3mm以下、より好ましくは1mm以下であって、好ましくは0.2mm以上、より好ましくは0.3mm以上である。また最大粒径も酸化促進の観点から、好ましくは3mm以下、より好ましくは1mm以下、更に好ましくは0.5mm以下である。
次に上記酸化工程で得られた無灰炭と、無改質無灰炭(すなわち、酸化しない無灰炭)とを混合し、所望の形状に成形して成形体を得る。以下では、無灰炭の混合(炭素原料混合工程:C2)と、成形(成形工程:C3)を夫々分けて説明するが、連続する一つの工程とみなしておこなうこともできる。
<炭素原料混合工程:C2>
炭素原料混合工程は、酸化工程(C1)で得られた酸化無灰炭と、無改質無灰炭とを混合して炭素原料(混合炭素原料)を取得する工程である。上記したように酸化無灰炭と無改質無灰炭とを配合することで、炭素化時の溶融や膨張が抑制されると共に炭素材料に空隙が形成されることを抑制できるため、炭素材料の高密度化に寄与する。
このような効果を得るためは混合炭素原料における酸化無灰炭の割合を、酸化無灰炭と無改質無灰炭の合計100質量部に対して、60〜95質量部とする必要がある。酸化無灰炭の混合割合が高くなって無改質無灰炭の割合が低くなると、無改質無灰炭のバインダー効果が十分に発揮されないため、脆くなり、炭素化した際にヒビ割れ等が進展して一部が崩れて粉化してしまい形状保持性に劣る。一方、無改質無灰炭の混合比率が高くなって酸化無灰炭の混合割合が低くなると、炭素化した際に無改質無灰炭の膨張によって、所望の形状の炭素材料が得られなくなる。酸化無灰炭の混合割合は好ましくは80〜90質量部である。
なお、酸化無灰炭と混合する無改質無灰炭の平均粒径は特に限定されないが、平均粒径が大きすぎると成形体中での混合状態に不均一が生じて効果が十分に発揮されないことがある。一方、平均粒径が小さすぎると取扱い性が悪化することがある。無改質無灰炭の平均粒径は好ましくは1.0mm以下、より好ましくは0.5mm以下であって、好ましくは0.1mm以上、より好ましくは0.2mm以上である。また無改質無灰炭の最大粒径は、大きくなりすぎると成形体中での混合状態に不均一が生じることがあるため、好ましくは1.0mm以下、より好ましくは0.5mm以下である。
また酸化無灰炭の平均粒径よりも無改質無灰炭の平均粒径を小さくすると、本発明の上記効果がより向上するため望ましい。
酸化無灰炭と無改質無灰炭との混合方法は、特に限定されず、均一な混合が得られる公知の方法を採用すればよく、例えばミキサー、ニーダー、単軸の混合機、二軸の混合機などを用いることができる。
<成形工程:C3>
成形工程は、炭素原料混合工程(C2)で得られた混合炭素原料を所望の形状に成形して成形体を得る工程である。成形体とするための方法は特に限定されるものではなく、例えば、平ロールによるダブルロール(双ロール)型成形機や、アーモンド型ポケットを有するダブルロール型成形機を用いる方法の他、単軸プレスやローラータイプの成形機、押し出し成形機を用いる方法、金型によるプレス成形等、いずれの方法も採用できる。
混合炭素原料の成形は、室温前後で行なう冷間成形でもよいが、加熱しておこなう熱間成形が好ましい。酸化無灰炭と無改質無灰炭との混合炭素原料を用いて高温下で加圧成形すると、無改質炭が塑性変形して酸化無灰炭粒子間の空隙を充填し、より一層緻密化した成形体を得ることができる。そのため該緻密化した成形体を炭素化することで、より密度の高い炭素材料を得ることができる。一方、成形温度が高くなりすぎると無改質無灰炭が軟化膨張して高密度化を達成できないことがある。熱間成形温度(金型温度)は好ましくは100℃以上、より好ましくは200℃以上であって、好ましくは450℃以下、より好ましくは300℃以下である。成形圧力は特に限定されず、公知の条件を採用すればよい。例えば成形圧力は0.5〜3トン/cm程度である。
<炭素化工程:C4>
炭素化工程は、成形工程で得られた成形体を炭素化して炭素材料を取得する工程である。
成形体の炭素化は、非酸化性雰囲気下で加熱することによって行なう。具体的には、成形体を電気炉など任意の加熱装置へ装入し、内部を非酸化性ガスで置換した後、該装置内へ非酸化性ガスを吹き込みながら加熱する。加熱によって無改質無灰炭は軟化・溶融・再固化され、酸化無灰炭と共に炭化される。
加熱条件は製品の要求特性により適宜設定すればよく、特に制限されないが、好ましくは500℃以上、より好ましくは700℃以上の温度で0.5〜10時間程度加熱することによって行なう。加熱温度までの昇温速度は特に限定されず、通常は0.01℃〜1℃/分程度の速度で昇温すればよい。加熱温度の上限は特に限定されず、設備などに応じて適宜決定すればよく、例えば好ましくは3000℃以下、より好ましくは2600℃以下でもよい。
炭素化雰囲気は、石炭の酸化による劣化を防止するため、非酸化性ガス雰囲気とすることが望ましい。非酸化性ガスの種類は、炭素材料の酸化を抑えた状態で炭素化を進めるため、酸化性ガスを含まない限り格別の制限はないが、不活性ガスが好ましく、より好ましくは窒素ガスである。
このようにして得られた炭素材料は従来公知の炭素材料よりも高純度、且つ高密度である。具体的には灰分含有率が好ましくは5000ppm以下、より好ましくは3000ppm以下の高純度であり、密度は好ましくは1.50g/ml以上、より好ましくは1.60g/ml以上、更に好ましくは1.70g/ml以上の高密度である。また本発明の炭素材料にはヒビや割れがなく、また膨張、変形、粉化することなく炭素化する前の成形体の形状を保持している。
上記所定の酸素増加率(2.0〜10.0%の範囲内)に酸化された酸化無灰炭と、酸化しない無灰炭とを上記所定の比率(酸化無灰炭と酸化しない無灰炭の合計100質量部に対して、酸化無灰炭60〜95質量部)で混合・成形された成形体を炭素化した本発明の炭素材料は、従来の炭素材料と比べて高純度、且つ高密度である。
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
(無灰炭の製造)
(スラリー加熱工程:S1)
原料石炭(瀝青炭)5kgに対し、4倍量(20kg)の芳香族溶剤(1−メチルナフタレン(新日鉄化学社製))を混合してスラリーを調製した。このスラリーを1.2MPaの窒素で加圧して、内容積30リットルのオートクレーブ中370℃、1時間の条件で加熱処理(加熱抽出)した。
(分離工程:S2)
得られたスラリーを同一温度、圧力を維持した重力沈降槽内で上澄み液と固形分濃縮液とに分離した。
(無灰炭取得工程:S3)
得られた上澄み液を更に濾過(目開き1μmのステンレスメッシュフィルター)して無灰炭溶液を得た。無灰炭溶液から蒸留法で芳香族溶剤を分離・回収して、無灰炭(炭素原料A1)を製造した。
(灰分濃度の測定)
この無灰炭(炭素原料A1)について、JIS M 8812に定められた方法で灰分濃度を測定した。その結果、無灰炭の灰分濃度は0.07質量%(700ppm)であった。
(炭素材料の製造)
無灰炭(炭素原料A1)を用いて試料No.1〜11の炭素材料を製造した。
(酸化工程:C1)
上記製造した無灰炭(炭素原料A1)の一部を目開き0.5mmの篩を通過するように粉砕した。粉砕した無灰炭を大気雰囲気下、表1に記載の所定の温度まで加熱し、同温度で所定の時間保持して無灰炭の酸化処理(表1中、「酸化条件」)を行った。酸化処理後、室温まで放冷して酸化無灰炭(炭素原料B)を製造した。なお、酸化処理の前後で無灰炭(室温)の酸素濃度をJIS M 8813に基づいて測定し、酸化無灰炭の酸素増加率を算出した。結果を表1に示す(表1中、「酸素増加率」)。
(炭素原料混合工程:C2)
上記無灰炭(炭素原料A1)を目開き0.5mmの篩を通過するように粉砕した無灰炭(炭素原料A2)と、上記酸化無灰炭(炭素原料B)とを表1に示す所定の割合(表1中、「酸化無灰炭配合割合」)で混合して混合炭素原料(炭素原料C)を得た。なお、試料No.6は粉砕した無灰炭(炭素原料A2)のみを用いて他の試料と同様にして成形体を製造し、炭素化して炭素材料を製造した。
(成形工程:C3)
上記混合炭素原料を表1に記載の温度(表1中、「成形温度」)に保持した金型(直径30mmの円筒形キャビティ)に5gを充填し、3トン/cmの圧力でプレス成形(保持時間1分)し、厚さ7.1mmの成形体を製造した。
(炭素化工程:C4)
得られた成形体を、窒素雰囲気中0.5℃/分の速度で1000℃まで加熱し、該温度で5時間保持して炭素化し、炭素材料(試料No.1〜11)を製造した。
(評価方法)
(炭素材料の外観観察)
上記製造した各炭素材料について、その外観を目視観察し、評価した。具体的には、炭素材料に膨張、ヒビ割れや欠け、粉化が生じていないか観察した。また炭素材料の形状が、成形体の形状を保っているかを確認した。
(成形体、および炭素材料の密度)
成形体、および炭素材料の見掛け比重(密度)を測定した。その結果を表1に示す。本実施例では高密度化について従来例(試料No.6)よりも高ければ合格(可)と判断し、好ましくは炭素材料の密度が1.50g/ml以上の場合を良好(○)、更に好ましくは1.60g/ml以上である場合を優良(◎)と判断した。
Figure 0005945257
表1に示すように本発明の所定の要件を満たす試料No.1、2、4、9〜11は、炭素材料の外観にヒビ割れや欠け、粉化がなく、また成形体の形状を保っていた。得られた炭素材料は、灰分濃度が5000ppm以下の高純度であり、且つ従来例よりも高密度であった。なお、試料No.9よりも成形温度を高くした試料No.1、2、4、10、11は、より高密度(1.60g/ml以上)であった。
試料No.3は、酸化無灰炭の配合割合が高かった例である。この例は成形体の密度も低く、炭素化した際にヒビ割れが進展すると共に、一部が崩れて粉化してしまい成形体の形状を保持できなかった。なお、試料No.3は炭素材料の形状が崩壊していたため、密度の測定をおこなわなかった。
試料No.5は、無改質無灰炭の配合割合が高かった例である。この例では、成形体を炭素化時に、成形体が発泡して膨張し、形状が変形してしまった。また炭素材料は多孔質となり、密度が低かった。
試料No.6は、酸化無灰炭を配合しなかった例である(無改質無灰炭のみの例)。この例では、成形体を炭素化時に、成形体が激しく発泡して膨張し、形状が変形してしまった。また炭素材料は多孔質となり、密度が低かった。
試料No.7は、酸化温度に対して酸化時間が短かったため、酸素増加率が低かった例である。この例では成形体を炭素化した際に、成形体が発泡して膨張し、形状が変形してしまった。また炭素材料は多孔質となり、密度が低かった。
試料No.8は、酸素増加率が高かった例である。この例では炭素化時の炭化収縮によって空隙が生じ、炭素材料は多孔質となり、密度が低かった。

Claims (3)

  1. 無灰炭を酸化する酸化工程と、
    前記酸化工程で得られた酸化無灰炭と、酸化処理ていない無灰炭とを混合して成形する成形工程と、
    前記成形工程で得られた成形体を炭素化する炭素化工程と、を含み、
    前記酸化工程で得られた前記酸化無灰炭の酸素増加率は、2.0〜10.0%であり、
    且つ
    前記成形工程での酸化無灰炭の混合割合は、酸化無灰炭と酸化処理ていない無灰炭の合計100質量部に対して、60〜95質量部であることを特徴とする炭素材料の製造方法。
  2. 前記酸化が空気酸化である請求項1に記載の炭素材料の製造方法。
  3. 前記酸化が150℃以上、発火点未満の温度でおこなわれるものである請求項1または2に記載の炭素材料の製造方法。
JP2013188208A 2013-09-11 2013-09-11 炭素材料の製造方法 Active JP5945257B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2013188208A JP5945257B2 (ja) 2013-09-11 2013-09-11 炭素材料の製造方法
PCT/JP2014/073806 WO2015037583A1 (ja) 2013-09-11 2014-09-09 炭素材料の製造方法、および炭素材料
CN201480049361.3A CN105531225B (zh) 2013-09-11 2014-09-09 碳材料的制造方法和碳材料
US14/913,914 US9751764B2 (en) 2013-09-11 2014-09-09 Carbon material production method and carbon material
CA2920605A CA2920605C (en) 2013-09-11 2014-09-09 Carbon material production method and carbon material
RU2016113367A RU2628606C1 (ru) 2013-09-11 2014-09-09 Способ производства углеродного материала и углеродный материал

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013188208A JP5945257B2 (ja) 2013-09-11 2013-09-11 炭素材料の製造方法

Publications (2)

Publication Number Publication Date
JP2015054792A JP2015054792A (ja) 2015-03-23
JP5945257B2 true JP5945257B2 (ja) 2016-07-05

Family

ID=52665686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013188208A Active JP5945257B2 (ja) 2013-09-11 2013-09-11 炭素材料の製造方法

Country Status (6)

Country Link
US (1) US9751764B2 (ja)
JP (1) JP5945257B2 (ja)
CN (1) CN105531225B (ja)
CA (1) CA2920605C (ja)
RU (1) RU2628606C1 (ja)
WO (1) WO2015037583A1 (ja)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2749408A1 (de) * 1977-11-04 1979-05-10 Eschweiler Bergwerksverein Verfahren zur herstellung von formkoks
US4259083A (en) * 1979-03-22 1981-03-31 Alberta Research Council Production of metallurgical coke from oxidized caking coal
JP3198305B2 (ja) * 1999-07-13 2001-08-13 東北大学長 無灰炭の製造方法
RU2206394C1 (ru) * 2002-08-26 2003-06-20 Институт угля и углехимии СО РАН Способ получения наноструктурированного углеродного материала
JP5241105B2 (ja) * 2007-01-16 2013-07-17 株式会社神戸製鋼所 コークスの製造方法、及び銑鉄の製造方法
JP5128351B2 (ja) * 2007-10-23 2013-01-23 株式会社神戸製鋼所 炭素材料の製造方法
JP5342794B2 (ja) * 2007-11-22 2013-11-13 株式会社神戸製鋼所 炭素材料の製造方法
JP5280072B2 (ja) * 2008-03-10 2013-09-04 株式会社神戸製鋼所 コークスの製造方法
JP5438277B2 (ja) * 2008-03-11 2014-03-12 株式会社神戸製鋼所 コークスの製造方法、および銑鉄の製造方法
JP2011157606A (ja) * 2010-02-02 2011-08-18 Kobe Steel Ltd 炭素陽極の製造方法
JP2012184125A (ja) * 2011-03-03 2012-09-27 Kobe Steel Ltd 炭素材料の製造方法
JP2013181062A (ja) * 2012-02-29 2013-09-12 Kobe Steel Ltd 成形配合炭およびその製造方法、ならびにコークスおよびその製造方法

Also Published As

Publication number Publication date
WO2015037583A1 (ja) 2015-03-19
US20160200576A1 (en) 2016-07-14
JP2015054792A (ja) 2015-03-23
US9751764B2 (en) 2017-09-05
CN105531225A (zh) 2016-04-27
RU2628606C1 (ru) 2017-08-21
CA2920605A1 (en) 2015-03-19
CN105531225B (zh) 2017-07-07
CA2920605C (en) 2019-03-26

Similar Documents

Publication Publication Date Title
JP5342794B2 (ja) 炭素材料の製造方法
WO2012118151A1 (ja) 炭素材料の製造方法
JP6273166B2 (ja) 炭素材料の製造方法
JP2009215505A (ja) 無灰炭の製造方法
JP5128351B2 (ja) 炭素材料の製造方法
JP2016179923A (ja) 炭素材料の製造方法及び炭素材料
JP2012031235A (ja) 製鉄用コークスの製造方法
WO2017199966A1 (ja) 炭素繊維の製造方法、炭素繊維及び電気二重層キャパシタ用電極
JP5945257B2 (ja) 炭素材料の製造方法
WO2018123371A1 (ja) 黒鉛の製造方法
JP6193191B2 (ja) 炭素材料の製造方法
JP6014012B2 (ja) コークスの製造方法、およびコークス
JP6174004B2 (ja) 炭素材料の製造方法
JP7276771B2 (ja) 多孔質炭素の製造方法及び多孔質炭素成型体の製造方法
JPH0151441B2 (ja)
JPH0158125B2 (ja)
JP6719342B2 (ja) 製鉄用コークスの製造方法及び銑鉄の製造方法
JPH04283293A (ja) 等方性高密度炭素材用コークスの製造方法
JP5491795B2 (ja) 製鉄原料用塊状成形体の製造方法および鉄鉱石含有コークス
JP5719283B2 (ja) 副生炭成形物の製造方法
JPS58172212A (ja) 等方性高密度炭素材の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160527

R150 Certificate of patent or registration of utility model

Ref document number: 5945257

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150