RU2206394C1 - Способ получения наноструктурированного углеродного материала - Google Patents
Способ получения наноструктурированного углеродного материала Download PDFInfo
- Publication number
- RU2206394C1 RU2206394C1 RU2002122934A RU2002122934A RU2206394C1 RU 2206394 C1 RU2206394 C1 RU 2206394C1 RU 2002122934 A RU2002122934 A RU 2002122934A RU 2002122934 A RU2002122934 A RU 2002122934A RU 2206394 C1 RU2206394 C1 RU 2206394C1
- Authority
- RU
- Russia
- Prior art keywords
- carbon
- specific surface
- carbon material
- carbonization
- cokes
- Prior art date
Links
- 239000003575 carbonaceous material Substances 0.000 title claims abstract description 13
- 238000000034 method Methods 0.000 title claims description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 16
- 239000000463 material Substances 0.000 claims abstract description 10
- 239000000571 coke Substances 0.000 claims abstract description 8
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims abstract description 7
- 238000002844 melting Methods 0.000 claims abstract description 5
- 230000008018 melting Effects 0.000 claims abstract description 5
- 230000001590 oxidative effect Effects 0.000 claims abstract description 5
- IOVCWXUNBOPUCH-UHFFFAOYSA-N Nitrous acid Chemical class ON=O IOVCWXUNBOPUCH-UHFFFAOYSA-N 0.000 claims abstract description 4
- 238000006277 sulfonation reaction Methods 0.000 claims abstract description 4
- 150000004707 phenolate Chemical class 0.000 claims abstract description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 11
- 238000003763 carbonization Methods 0.000 claims description 9
- 230000000737 periodic effect Effects 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 150000003839 salts Chemical class 0.000 claims description 5
- 239000002006 petroleum coke Substances 0.000 claims description 4
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 125000003118 aryl group Chemical group 0.000 claims description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims 2
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 claims 2
- 150000008044 alkali metal hydroxides Chemical class 0.000 claims 1
- 239000003318 humic coal Substances 0.000 claims 1
- 239000003864 humus Substances 0.000 abstract description 4
- 229910000000 metal hydroxide Inorganic materials 0.000 abstract description 3
- 150000004692 metal hydroxides Chemical class 0.000 abstract description 3
- 230000000694 effects Effects 0.000 abstract 1
- 230000002829 reductive effect Effects 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 229940032330 sulfuric acid Drugs 0.000 abstract 1
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 238000000197 pyrolysis Methods 0.000 description 7
- 238000001179 sorption measurement Methods 0.000 description 7
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 6
- 239000003245 coal Substances 0.000 description 5
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 230000007935 neutral effect Effects 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- -1 polyoxy Polymers 0.000 description 4
- 238000004438 BET method Methods 0.000 description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 239000003463 adsorbent Substances 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 229910021389 graphene Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 229910017604 nitric acid Inorganic materials 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 235000010288 sodium nitrite Nutrition 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001239 high-resolution electron microscopy Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 159000000032 aromatic acids Chemical class 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid group Chemical group C(C1=CC=CC=C1)(=O)O WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000004939 coking Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000002003 electron diffraction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 150000002826 nitrites Chemical class 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000002594 sorbent Substances 0.000 description 1
- 238000004441 surface measurement Methods 0.000 description 1
Images
Landscapes
- Carbon And Carbon Compounds (AREA)
Abstract
Изобретение относится к получению пористых углеродных материалов, в частности к получению активированных углеродных материалов, обладающих высокой удельной поверхностью и микро пористостью, и может найти применение в различных областях науки и техники. Наноструктурированный углеродный материал получают из гумусовых углей, либо их коксов, либо нефтяных коксов, которые подвергают окислительному сульфированию серной кислотой в присутствии соли азотистой кислоты. Сульфированное углеродное сырье подвергают плавлению в присутствии гидр оксида металла первой (Iа) группы Периодической системы, взятого в количестве, достаточном для образования соответствующих фенолятов, которые затем подвергаются карбонизации при 600-1000oС в восстановительной или инертной среде. Изобретение решает задачу получения из углеродсодержащего материала наноструктурированных углеродных материалов. 4 з.п.ф-лы, 3 ил.
Description
Изобретение относится к получению пористых углеродных материалов, в частности к получению активированных углеродных материалов, обладающих высокой удельной поверхностью и микропористостью, и может найти применение в различных областях науки и техники.
Известны способы получения пористых углеродных материалов путем коксования (пиролиза) твердых органических материалов, в том числе гумусовых углей, твердых нефтяных остатков, а также их коксов, с последующей активацией их водяным паром или углекислым газом [В.Б. Фенелонов, Пористый углерод. Новосибирск, 1995, 513 стр.]. В процессе пиролиза углеродистого сырья происходит удаление водорода, метана, гетероциклических и легких углеводородных соединений с образованием углеродного материала, удельную поверхность и адсорбционные свойства которого регулируют с помощью активации водяным паром или углекислым газом.
Основным недостатком известных процессов является невозможность получения наноструктурированного углеродного материала (углеродного адсорбента) с высокой удельной поверхностью (3000-4000 м2/г, расчет по изотермам адсорбции азота при 77 К методом БЭТ) и объемом микропор 1,0-1,2 см3/г.
Наиболее близким к предлагаемому техническому решению является способ получения активированных углеродных материалов путем окисления углеродсодержащего материала (углей или их коксов) азотной кислотой. В результате предполагается образование ароматических кислот, в том числе монокарбоновых (бензойная), поликарбоновых (терефталевой, изофталевой, тримелитовой) многоатомных карбоновых (нафтойной) и многоатомных поликарбоновых кислот (коксовой) [патент США 3624004, С 01 В 31/08, С 01 В 31/10; патент США 4082694, B 01 J 21/18, C 01 B 31/08, C 01 B 31/12]. Образовавшуюся смесь кислот смешивают в растворителе с гидроксидом металла первой (Iа) или второй (IIа) группы Периодической системы и подвергают пиролизу в инертной среде. Перед пиролизом вначале удаляют растворитель путем испарения при медленном повышении температуры. Температура пиролиза 450-1000oС, оптимальная - 700-800oС. Пиролизованный продукт отмывают от солей металлов первой (Iа) или второй группы (IIа), сушат на воздухе, а затем подвергают контролируемому окислительному активированию диоксидом углерода. В результате получают адсорбенты с удельной поверхностью выше 2000 м2/г. Недостатком прототипа является использование в нем разбавленной азотной кислоты, что приводит к образованию большого количества окислов азота, вредных для окружающей среды.
Изобретение решает задачу получения наноструктурированных углеродных материалов (углеродных адсорбентов) с высокой удельной поверхностью и микропористостью путем пиролиза солей ароматических полиоксисоединений (фенолятов щелочных металлов), содержащих металлы первой (Iа) группы Периодической системы, полученных из гумусовых углей, либо их коксов, либо из нефтяных коксов.
Поставленная задача решается путем окислительного сульфирования углеродистого сырья, такого как гумусовые угли или его коксы, а также нефтяные коксы. Углеродистое сырье размалывают до размеров 0,1-0,2 мм и смешивают с концентрированной серной кислотой (плотность кислоты 1,83-1,84 г/см3 ) в соотношении 1:10-20, но лучше 1:15, при интенсивном перемешивании и охлаждении. В образовавшуюся смесь вносят соль азотистой кислоты в виде нитритов в количестве 20-40 моль/кг, предпочтительно 30 моль/кг, после чего смесь нагревают до прекращения выделения оксидов азота. Следует отметить, что при использовании азотной кислоты, как указано в прототипе, или ее солей наноструктурированный углеродный материал не образуется. После этого реакционную смесь разбавляют водой, кипятят с целью проведения гидролиза образовавшихся ароматических сульфокислот. Затем смесь фильтруют и промывают водой до нейтральной среды. Полученный осадок смешивают с гидроксидом металла первой (Iа) группы Периодической таблицы в соотношении 50-100 моль/кг, лучше 80 моль/кг. Полученную смесь вначале упаривают, потом подвергают плавлению с целью окончательного разложения ароматических сульфокислот и получения фенолятов металлов первой (Iа) группы Периодической системы.
Полученный плав подвергают карбонизации (пиролизу) при температуре 600-1000oС, предпочтительно при температуре 700-800oС, в инертной или восстановительной среде, образованной газами карбонизации. Продукт карбонизации промывают водой до нейтральной среды, что обеспечивает полное удаление солей металлов первой (Iа) Периодической системы. Промытый осадок сушат при температуре 105-115oС до постоянного веса. Полученный продукт представляет наноструктурированный углеродный материал, обладающий высокой удельной поверхностью (3000-4000 м2/г) и уникальными адсорбционными свойствами.
Расчет показывает [В.Б. Фенелонов, стр. 453], что подобной поверхностью могут обладать только графитоподобные монослойные частицы (графены) с нанометровыми размерами, что подтверждается на фиг.1, 2 фотографиями высокого разрешения (увеличение 3116000 х), показывающими клеткоподобную структуру отдельных ячеек, сформированную из двух - четырех графитоподобных плоскостей (графенов). На фиг.3 видна дифракция электронов в наноструктурированном углеродном материале, которая имеет кольцевые рефлексы от гексагонального углерода. В то же время рефлексы d002, соответствующие межплоскостному расстоянию между параллельно ориентированными графенами, отсутствуют, либо сильно уширены, что еще раз подтверждает сильную разупорядоченность углеродных слоев.
Измерения удельной поверхности проводили на установке ASAP-2400 (Micromeritics) по адсорбции азота при 77 К после предварительной тренировки образцов проводят при 300oС и остаточном давлении менее 0,001 мм рт. ст. до прекращения газовыделения без контакта с атмосферой после тренировки. Далее проводили измерения изотерм адсорбции азота в диапазоне относительных давлений от 0,005 до 0,995 и их стандартную обработку с расчетом суммарной поверхности методом БЭТ, объема микропор (с размером до 2 нм) и поверхности мезопор, остающейся после заполнения микропор (см. С. Грегг, К. С. В. Синг, Адсорбция, удельная поверхность, пористость. Мир, М., 1984).
Для проведения исследований методом электронной микроскопии высокого разрешения (HREM) использовали просвечивающий электронный микроскоп JEM-2010 с разрешением по решетке 0,14 нм и ускоряющем напряжении 200 кВ.
Сущность изобретения иллюстрируется следующими примерами.
Пример 1.
5,454 г нефтяного кокса, размолотого до 0,1-0,2 мм, смешивают с 90 мл концентрированной серной кислоты (плотность кислоты 1,83-1,84 г/см3) при перемешивании и охлаждении льдом. В образовавшуюся смесь постепенно при перемешивании добавляют 13,520 г нитрита натрия или 35,92 моль/кг. Смесь постепенно нагревают до полного прекращения пенообразования и выделения оксидов азота, после чего разбавляют водой и упаривают до 1/3 от первоначального объема. После остывания осадок отфильтровывают, промывают водой до нейтральной среды.
Полученный продукт смешивают с 23,342 г гидроксида натрия или 106,9 моль/кг и после упаривания воды смесь подвергают плавлению до прекращения газовыделения. Полученный плав подвергают карбонизации в муфельной печи. Для этого плав помещают в тигель с крышкой и ставят в муфельную печь при температуре 500oС и нагревают со скоростью 7,5-7,7oС/мин до 700oС и после пятиминутной выдержки тигель вынимают и охлаждают на воздухе до комнатной температуры. После чего карбонизат промывают водой, потом кислой водой, потом водой до нейтральной среды. Полученный продукт сушат в сушильном шкафу при температуре 105-115oС до постоянного веса. Выход наноструктурированного углеродного материала составляет 20 мас.%. Удельную поверхность (SУД) оценивают по адсорбции азота методом БЭТ, и она составляет 3150 м /г, объем микропор 1,1 см3/г.
Пример 2.
Отличается от примера 1 тем, что при карбонизации тигель с плавом ставят в нагретую муфельную печь при температуре 700 ± 50oС на десять минут, после чего охлаждают на воздухе до комнатной температуры. Выход 30 мас.%, SУД=3100 м2/г, объем микропор 1,0 см3/г.
Пример 3.
Отличается от примера 2 тем, что вместо гидроксида натрия берут гидроксид калия. Выход 35 мас.%, SУД=3200 м2/г, объем микропор 1,0 см3/г.
Пример 4.
Отличается от примеров 1, 2 тем, что карбонизацию плава проводят в трубчатой печи при температуре 700±50oС при продувке инертного газа (гелия) до прекращения газовыделения из взятой навески плава. Карбонизованный продукт охлаждают до комнатной температуры в инертной среде. Выход 48,6 мас.%, SУД= 3500 м2/г, объем микропор 1,2 см3/г.
Пример 5.
5,560 г гумусового угля марки Д смешивают с 60 мл концентрированной серной кислоты, куда добавляют 8,095 г нитрита натрия или 21,1 моль/кг. После проведения всех операций, как в примере 1, окисленный уголь сушат до постоянной массы и обрабатывают плавиковой кислотой для удаления неорганической части. Далее, как в примере 1, смешивают с 26,002 г гидроксида натрия или 123 моль/кг и, как в примере 2, подвергают плавлению и карбонизуют. Выход 22 мас.%, SУД=3450 м2/г, объем микропор 1,2 см3/г.
Пример 6.
5,547 г гумусового угля марки Ж смешивают с 65 мл концентрированной серной кислоты, куда добавляют 8,384 г нитрита натрия или 21,9 моль/кг. После проведения всех операций, как в примере 1, окисленный уголь обрабатывают плавиковой кислотой, как в примере 4, для удаления золы. Далее 2,017 г окисленного и обеззоленного угля марки Ж смешивают с 7,550 г гидроксида натрия, что соответствует 93,6 моль/кг, и подвергают плавлению с последующей карбонизацией, как в примере 2. Выход 28,9 мас.%, SУД= 4150 м /г, объем микропор 1,2 см3/г.
Как видно из приведенных примеров, предлагаемый способ позволяет получать из углеродсодержащего материала путем окислительного сульфирования, последующего плавления и карбонизации наноструктурированный углеродный материал, обладающий высокой удельной поверхностью и микропористостью. Материал, полученный по предлагаемому способу, может найти широкое применение в качестве сорбента, а также носителя для различных катализаторов.
Claims (5)
1. Способ получения наноструктурированного углеродного материала с высокой удельной поверхностью и микропористостью, заключающийся в окислительном сульфировании исходного углеродсодержащего материала концентрированной серной кислотой в присутствии соли азотистой кислоты с последующим смешением полученного продукта с гидроксилом металла первой (Iа) группы Периодической системы и плавлением, после чего осуществляют карбонизацию полученного плава, карбонизат отмывают от неорганических компонентов и сушат.
2. Способ по п.1, в котором исходный углеродсодержащий материал представляет собой гумусовые угли, и/или его коксы, и/или нефтяные коксы.
3. Способ по пп.1 и 2, в котором соль азотистой кислоты берут в количестве, достаточном для введения как минимум двух сульфогрупп в каждое ароматическое ядро сульфируемого материала.
4. Способ по пп.1-3, в котором гидроксид щелочного металла первой (Iа) группы Периодической системы берут в количестве, достаточном для полной замены сульфогрупп на гидроксильные группы и образования соответствующих фенолятов.
5. Способ по пп.1-4, в котором карбонизацию проводят при 600-1000oС в восстановительной или инертной среде.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2002122934A RU2206394C1 (ru) | 2002-08-26 | 2002-08-26 | Способ получения наноструктурированного углеродного материала |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2002122934A RU2206394C1 (ru) | 2002-08-26 | 2002-08-26 | Способ получения наноструктурированного углеродного материала |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2206394C1 true RU2206394C1 (ru) | 2003-06-20 |
Family
ID=29212240
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2002122934A RU2206394C1 (ru) | 2002-08-26 | 2002-08-26 | Способ получения наноструктурированного углеродного материала |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2206394C1 (ru) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2359904C1 (ru) * | 2008-04-28 | 2009-06-27 | Институт химии и химической технологии СО РАН (ИХХТ СО РАН) | Способ получения пористого углеродного материала из бурого угля |
RU2429194C2 (ru) * | 2009-08-28 | 2011-09-20 | Учреждение Российской академии наук Институт углехимии и химического материаловедения Сибирского отделения РАН (ИУХМ СО РАН) | Способ получения пенографита |
CN103641568A (zh) * | 2013-12-11 | 2014-03-19 | 青岛奥盖克化工股份有限公司 | 一种磺化产品废硫酸的综合处理方法 |
RU2558590C1 (ru) * | 2014-03-31 | 2015-08-10 | Общество С Ограниченной Ответственностью "Промышленные Инновационные Технологии Национальной Коксохимической Ассоциации" (Ооо "Проминтех Нка") | Способ получения углеродного сорбента из углеродсодержащего материала |
RU2583026C2 (ru) * | 2014-02-11 | 2016-04-27 | Федеральное государственное бюджетное учреждение науки Институт углехимии и химического материаловедения Сибирского отделения Российской академии наук | Способ получения мезопористого углеродного материала |
RU2628606C1 (ru) * | 2013-09-11 | 2017-08-21 | Кабусики Кайся Кобе Сейко Се (Кобе Стил, Лтд.) | Способ производства углеродного материала и углеродный материал |
RU2658036C1 (ru) * | 2017-05-11 | 2018-06-19 | Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук | Способ получения наноструктурированного углерода |
RU2818442C1 (ru) * | 2023-11-21 | 2024-05-02 | Федеральное государственное бюджетное учреждение науки "Федеральный исследовательский центр "Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук" (ИК СО РАН, Институт катализа СО РАН) | Способ получения микропористого углеродного материала с клеткоподобной структурой |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6225256B1 (en) * | 1997-06-04 | 2001-05-01 | New Mexico State University Technology Transfer Corporation | Activated carbon feedstock |
-
2002
- 2002-08-26 RU RU2002122934A patent/RU2206394C1/ru not_active IP Right Cessation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6225256B1 (en) * | 1997-06-04 | 2001-05-01 | New Mexico State University Technology Transfer Corporation | Activated carbon feedstock |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2359904C1 (ru) * | 2008-04-28 | 2009-06-27 | Институт химии и химической технологии СО РАН (ИХХТ СО РАН) | Способ получения пористого углеродного материала из бурого угля |
RU2429194C2 (ru) * | 2009-08-28 | 2011-09-20 | Учреждение Российской академии наук Институт углехимии и химического материаловедения Сибирского отделения РАН (ИУХМ СО РАН) | Способ получения пенографита |
RU2628606C1 (ru) * | 2013-09-11 | 2017-08-21 | Кабусики Кайся Кобе Сейко Се (Кобе Стил, Лтд.) | Способ производства углеродного материала и углеродный материал |
CN103641568A (zh) * | 2013-12-11 | 2014-03-19 | 青岛奥盖克化工股份有限公司 | 一种磺化产品废硫酸的综合处理方法 |
CN103641568B (zh) * | 2013-12-11 | 2015-04-15 | 青岛奥盖克化工股份有限公司 | 一种磺化产品废硫酸的综合处理方法 |
RU2583026C2 (ru) * | 2014-02-11 | 2016-04-27 | Федеральное государственное бюджетное учреждение науки Институт углехимии и химического материаловедения Сибирского отделения Российской академии наук | Способ получения мезопористого углеродного материала |
RU2558590C1 (ru) * | 2014-03-31 | 2015-08-10 | Общество С Ограниченной Ответственностью "Промышленные Инновационные Технологии Национальной Коксохимической Ассоциации" (Ооо "Проминтех Нка") | Способ получения углеродного сорбента из углеродсодержащего материала |
RU2658036C1 (ru) * | 2017-05-11 | 2018-06-19 | Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук | Способ получения наноструктурированного углерода |
RU2818442C1 (ru) * | 2023-11-21 | 2024-05-02 | Федеральное государственное бюджетное учреждение науки "Федеральный исследовательский центр "Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук" (ИК СО РАН, Институт катализа СО РАН) | Способ получения микропористого углеродного материала с клеткоподобной структурой |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Effect of carbonization methods on the properties of tea waste biochars and their application in tetracycline removal from aqueous solutions | |
Tian et al. | Surface-microporous graphene for CO2 adsorption | |
Nazir et al. | Valorization of shrimp shell biowaste for environmental remediation: Efficient contender for CO2 adsorption and separation | |
KR102649587B1 (ko) | 그래핀 재료의 무 화학물질 제조 | |
Zhang et al. | Synthesis, characterization, and environmental implications of graphene-coated biochar | |
Zou et al. | Structure and adsorption properties of sewage sludge-derived carbon with removal of inorganic impurities and high porosity | |
US5614460A (en) | Microporous carbons for fuel gas storage | |
Burket et al. | Overcoming the barrier to graphitization in a polymer-derived nanoporous carbon | |
RU2206394C1 (ru) | Способ получения наноструктурированного углеродного материала | |
CN110171826A (zh) | 基于煤内在灰分催化活化的煤基活性焦孔结构配组调控方法 | |
WO2023192819A1 (en) | Ultrafast synthesis of holey and wrinkled graphene | |
CA2229542A1 (en) | Composite microporous carbons for fuel gas storage | |
Fan et al. | Synthesis of sewage sludge biochar in molten salt environment for advanced wastewater treatment: Performance enhancement, carbon footprint and environmental impact reduction | |
Zhang et al. | A novel mesoporous carbon nanospheres-based adsorbent material with desirable performances for dyes removal | |
Yang et al. | An excellent adsorption performance of acesulfame and saccharin from water on porous carbon derived from zinc-based MOFs: The role of surface chemistry and hierarchical pore structure | |
JPH0881210A (ja) | 高比表面積炭素材料およびその製造方法 | |
Eletskii et al. | Texture and adsorptive properties of microporous amorphous carbon materials prepared by the chemical activation of carbonized high-ash biomass | |
Pawlicka et al. | Determination of surface oxygen functional groups of active carbons according to the Boehm's titration method | |
EP0564024A1 (en) | Process for producing activated charcoal | |
CA1071177A (en) | Active carbon process and composition | |
Choi et al. | Development of ultra-high surface area polyaniline-based activated carbon for the removal of volatile organic compounds from industrial effluents | |
US3833514A (en) | Process for the production of activated carbon | |
RU2307704C1 (ru) | Наноструктурированный микропористый углеродный материал | |
RU2446098C1 (ru) | Углеродный материал | |
Hu et al. | A novel purification method of activated carbon-supported carbon nanotubes using a mixture of Ca (OH) 2 and KOH as the ablation agent |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20150827 |