WO2015079929A1 - 健康プログラム分析システム及びプラットフォームサービス提供方法 - Google Patents
健康プログラム分析システム及びプラットフォームサービス提供方法 Download PDFInfo
- Publication number
- WO2015079929A1 WO2015079929A1 PCT/JP2014/080136 JP2014080136W WO2015079929A1 WO 2015079929 A1 WO2015079929 A1 WO 2015079929A1 JP 2014080136 W JP2014080136 W JP 2014080136W WO 2015079929 A1 WO2015079929 A1 WO 2015079929A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- program
- information
- health
- participation
- health program
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/30—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H20/00—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
- G16H20/30—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to physical therapies or activities, e.g. physiotherapy, acupressure or exercising
Definitions
- the present invention is suitable for the subject from a plurality of programs provided to improve the lifestyle habits such as eating habits and exercise habits for the purpose of health management, health promotion, disease prevention and treatment, etc.
- the present invention relates to a health program analysis system that supports program selection and a platform service providing method using the system.
- companies and insurers may offer health promotion programs to improve the health of target persons (employees and insured persons).
- health promotion programs There are two types of health promotion programs: a high-risk approach that provides subjects with a high risk of certain diseases and a population approach that provides subjects with a wide range of subjects.
- the high risk approach type can be expected to reduce the risk of specific diseases, but the burden on participants (duration, frequency of records and interventions, implementation details, etc.) is large, while the population approach type is specific. In many cases, the burden on participants is small even though the effect on reducing disease risk is not high.
- Patent Document 1 discloses a method for determining a program to be provided from a plurality of programs according to a disease risk calculated from medical examination data of a subject.
- the present invention has been made in view of the above problems, and an object of the present invention is to provide a system capable of selecting a program that can continue to participate without feeling a burden.
- a health program analysis system for analyzing a health program using a health information database storing health program information that is information about the health program and participant program participation result information, the program participation Based on the participation result information input unit that receives the input of the result information, and the received program participation result information and the health program information stored in the health information database, the health indicated by the participation result information and the health program information are related.
- a divergence degree calculation unit that calculates a divergence degree of the program, and a health program output unit that outputs recommended health program information related to the health program recommended to the participant based on the calculated divergence degree, Provide a health program analysis system.
- the target person by presenting a program whose contents are close to the target person's action results from a plurality of programs, that is, the target person is easy to tackle, there is a risk that the target person feels a burden and drops after participation. Can be reduced.
- the present embodiment is based on the premise that there are a plurality of health promotion programs (hereinafter referred to as programs) in which target persons (company employees, insured persons of medical insurers, etc.) can participate.
- programs a plurality of health promotion programs
- target persons company employees, insured persons of medical insurers, etc.
- a case will be described in which a participating program is determined using the health program analysis system (hereinafter, this system).
- the users of this system do not necessarily have to be the target person, but are used by others (corporate general affairs officers, medical insurers, health care workers, etc.) to recommend or determine the program that the target person should participate in. Also good.
- FIG. 1 is a block diagram showing the configuration of this system.
- This system includes a user terminal device 100 and a server 300.
- the user terminal device 100 and the server 300 are connected via the network 200.
- the user terminal device 100 is a computer including a processor 310, a memory 320, a communication interface 340, a storage device 330, and a user interface.
- the user terminal device 100 may be a mobile terminal such as a mobile phone on which an application program (for example, a Web browser) operates.
- the server 300 is a computer including a processor 310, a memory 320, a storage device 330, and a communication interface 340.
- the memory 320 includes an input / output processing unit P1, an improvement target item determining unit P2, a target improvement amount calculating unit P3, an action result calculating unit P4, and a divergence degree calculating unit P5.
- Each of these processing units P1 to P5 is stored in a storage device 330 constituted by a hard disk drive or the like as a program constituting this system, and is expanded in the memory 320 when executed.
- the processor 310 executes the program expanded in the memory 320.
- the storage device 330 stores medical examination information D1, disease reference value D2, program information D3, program effect D4, and program participation record D5.
- FIG. 2 is an explanatory diagram showing the configuration of the medical examination information D1.
- the medical examination information D1 includes a medical examination information ID 201 for identifying medical examination information, a personal ID 202 for identifying an individual, a medical examination reception date 203, and a test result 204 for each record.
- the test result 204 includes a plurality of test item results such as BMI 205, blood glucose level 206, neutral fat 207, systolic blood pressure 208, and diastolic blood pressure 209.
- BMI 204 indicates a body mass index calculated from height and weight.
- FIG. 3 is an explanatory diagram showing the configuration of the disease reference value D2.
- the disease reference value D2 a value serving as a reference for a test item related to a disease such as a lifestyle-related disease is recorded.
- the disease reference value D2 includes an examination item 301 and a reference value 302 for each record.
- the reference value 302 is set in advance based on guidelines indicated by academic societies such as the Obesity Society, Diabetes Society, Arteriosclerosis Society, and Hypertension Society.
- the reference value 302 may include a plurality of values for distinguishing the preliminary group, boundary region, severity, etc. of each disease.
- FIG. 4 is an explanatory diagram showing the configuration of the program information D3.
- Information indicating how the program is executed is recorded in the program information D3.
- the program information D3 includes a program ID 401 for identifying a program, a program name 402, and a program content 403 for each record.
- the example of FIG. 4 shows that the program content 403 includes a duration 404, a recording frequency 405, a meal restriction amount 406, an exercise amount 407, and the like.
- a related program ID 408 that is a program related to each program such as a program that is medically recommended to be executed after each program is stored.
- Program content 403 is preset by the program provider.
- FIG. 5 is an explanatory diagram showing the configuration of the program effect D4.
- the program effect D4 includes a program ID 501 (same as the above-described program ID 401) for identifying a program and an inspection value improvement amount 502 for each record.
- the test value improvement amount 502 is the BMI improvement amount 503, the blood glucose level improvement amount 504, the neutral fat improvement amount 505, the systolic blood pressure improvement amount 506, the diastolic blood pressure improvement amount 507, and the like. It is composed of.
- the inspection value improvement amount 502 may be set in advance based on the past results of program participants, and may be updated as the number of program participants increases.
- FIG. 6 is an explanatory diagram showing the configuration of the program participation record D5.
- the program participation record D5 includes, for each record, a personal ID 601 for identifying an individual (same as the above-mentioned personal ID 202), a program ID 602 for identifying a program (same as the above-mentioned program ID 401 and program ID 501), and the start date of the program 603 and results 604.
- the record 604 includes a duration 605, a recording frequency 606, a meal restriction 607, and an exercise amount 608. Items constituting the record 604 are the same as the items constituting the program content 403 of the program information D3.
- FIG. 7 (A) and FIG. 7 (B) are flowcharts showing an outline of processing by this system. First, the case of FIG. 7A will be described.
- Step 701 for accepting a request from the user is executed.
- the input / output processing unit P1 displays a screen (not shown) for designating a target person on the user terminal device 100.
- the personal ID 202 described above is used as information for designating the target person.
- Step 705 for calculating the action performance of the target person is executed.
- the action result calculation unit P4 extracts the target person's result 604 from the program participation result D5 based on the personal ID 202 specified in step 701, and calculates the average value of the items 605 to 608 for each item. Calculated as action results.
- step 706 for determining whether or not step 705 has been executed for all action results is executed. If there is an unprocessed action record, step 705 is executed again.
- step 707 for calculating the degree of divergence between the target person and the program is executed using the action results of the target person.
- the deviation calculating section P5 calculates the degree of deviation D i for the subject program i represented by the following equation (1) as an example.
- P i (Y m ) is a value indicating the program content m of the program i managed by the program information D 3
- U (Y m ) is the action result of the item m of the subject calculated in Step 705. Is shown.
- the degree of divergence D i indicates the distance between the target person and each program i in a multidimensional space having a dimension number m.
- Equation 1 is an example of a method for calculating the degree of divergence.
- weighting based on the specific information of the participant is given as one of the calculation methods. For example, weighting can also be performed based on the presence or absence of past participation experience in program i and the results of past participation (such as success / failure of weight loss when participating in weight loss program).
- step 708 for determining whether or not step 707 has been executed for all programs is executed. If there is an unprocessed program, step 707 is executed again.
- step 709 for outputting the processing result is executed.
- the input / output processing unit P 1 displays a recommended program list screen on the user terminal device 100 based on the divergence calculated in step 707.
- FIG. 9A is a screen image showing an example of a recommended program list screen displayed on the user terminal device 100 in step 709.
- a program recommended from step 707 is displayed on the screen.
- a graph is displayed to visually represent the recommended program.
- the graph is represented by one-dimensional coordinates in which the subject's action results and program contents are mapped on the horizontal axis, and the subject is the origin.
- the horizontal axis can also display a divergence degree D i that is a comprehensive judgment that considers all items, and P i (Y m ) ⁇ U ( Y m ) can also be displayed. The closer to the origin in the horizontal axis direction, the closer to the target person's action results, that is, the easier the program is.
- the degree of program divergence was calculated using the actual performance. Furthermore, the Example for providing an appropriate program for an individual is shown.
- FIG. 7B shows a processing flow in the present embodiment.
- step 701 for accepting a request from the user is executed.
- the input / output processing unit P1 displays a screen (not shown) for designating a target person on the user terminal device 100.
- the personal ID 202 described above is used as information for designating the target person.
- step 702 for determining an improvement target item of the target person is executed.
- the improvement target item determination unit P2 extracts the medical checkup result 204 of the subject from the medical checkup information D1 based on the personal ID 202 specified in step 701, and sets it as the test item 301 of the disease reference value D2.
- Each item of the corresponding medical examination result 204 is compared with the reference value 302, and an inspection item exceeding the reference value 302 is determined as an improvement target item.
- Step 703 for calculating the target improvement amount of the improvement target item is executed.
- the target improvement amount calculation unit P3 compares the reference value 302 of the disease reference value D2 with the health check result 204 of the subject for the improvement target item determined in step 702, and determines the target improvement amount. decide.
- FIG. 8 is a conceptual diagram of a method for determining the target improvement amount in step 703.
- the horizontal axis represents the health check result of the subject as the input value
- the vertical axis represents the target improvement amount as the output value.
- a reference value 302 is indicated on the horizontal axis.
- Case A, Case B, and Case C all indicate that the target improvement amount is 0 when the health check result is less than the reference value, and no improvement is necessary.
- the target improvement amount increases as the health check result increases in case A, and the target improvement amount becomes constant when the health check result exceeds a predetermined range in case B.
- the target improvement amount is determined in stages according to the range of the medical examination result.
- FIG. 8 shows an example of a method for determining the target improvement amount.
- the target improvement amount may be determined by another method based on a calculation formula using statistical information or the like.
- Step 704 for determining whether or not Step 703 has been executed for all items to be improved is executed. If there is an improvement target item for which the target improvement amount has not been calculated, step 703 is executed again.
- Step 705 for calculating the action performance of the target person is executed.
- the action result calculation unit P4 extracts the target person's result 604 from the program participation result D5 based on the personal ID 202 specified in step 701, and calculates the average value of the items 605 to 608 for each item. Calculated as action results.
- step 706 for determining whether or not step 705 has been executed for all action results is executed. If there is an unprocessed action record, step 705 is executed again.
- step 707 is executed to calculate the degree of divergence between the target person and the program using the target person's target improvement amount and action results, and the test value improvement amount and program content for each program.
- the deviation calculating section P5 calculates the degree of deviation D i to subject the program i represented by the following equation (2) as an example.
- U (X n ) is the target improvement amount for the improvement target item n of the subject calculated in Step 703
- P i (X n ) is the inspection item n of the program i managed by the program effect D4.
- the test value improvement amount for P i , P i (Y m ) is a value indicating the program content m of the program i managed by the program information D 3
- U (Y m ) is the action result of the item m of the subject calculated in Step 705. Is shown.
- the divergence degree D i indicates the distance between the target person and each program i in a multi-dimensional space having a dimension number n + m as shown in FIG.
- the program is a program that the target person should participate in by comprehensively judging the relationship (that is, the program's ease of approach).
- Equation 2 is an example of a method for calculating the degree of divergence.
- weighting based on the specific information of the participants is given as one of the calculation methods. For example, weighting can also be performed based on the presence or absence of past participation experience in program i and the results of past participation (such as success / failure of weight loss when participating in weight loss program).
- step 708 for determining whether or not step 707 has been executed for all programs is executed. If there is an unprocessed program, step 707 is executed again.
- step 709 for outputting the processing result is executed.
- the input / output processing unit P1 displays a recommended program list screen as shown in FIG. 9B on the user terminal device 100.
- FIG. 9B is a screen image showing an example of a recommended program list screen displayed on the user terminal device 100 in step 709.
- the inspection items and inspection values to be improved by the subject from step 702, the target value of the subject from step 703, and the program recommended from step 707 are displayed.
- a graph is displayed to visually represent the recommended program.
- the graph is expressed in two-dimensional coordinates with the target person as the origin, with the target improvement amount of the target person and the improvement effect of the program on the vertical axis, the action results of the target person and the contents of the program on the horizontal axis.
- the vertical axis can be displayed by switching the inspection item of interest.
- the horizontal axis can also display ⁇ (P i (Y m ) ⁇ U (Y m )), which is a comprehensive judgment that considers all items, and the difference between the program content m and the action results for each item m It is also possible to display P i (Y m ) -U (Y m ).
- the display range may be limited by a predetermined threshold. The closer to the origin in the vertical axis direction, the closer to the target improvement amount of the target person, the closer to the origin, the closer to the origin in the horizontal axis direction, the closer to the target person's action results, It shows that the program is easy to work on.
- the target person can bear the burden by presenting a program that has an effect of improving the test value corresponding to the disease risk that the target person should improve and whose content is close to the target person's behavioral performance. You can reduce the risk of dropping out after participating.
- step 705 the action result calculation unit calculates the action result.
- the target person has no action record yet. A processing example in such a case will be described with reference to FIG.
- step 705-1 When generating a personal ID, input of basic personal information such as age, gender, height, and weight to the storage device 330 is received (step 705-1). Since this personal basic information is associated with the personal ID, it is also included in the program participation record D5.
- the program participation record for each individual ID other than the target person is statistically processed for each individual basic information and stored in the storage device (step 705-2).
- the statistically processed program participation record possessed by the personal ID similar to the individual basic information of the subject is regarded as the program participation record of the subject (step 705-3), and step 705 is executed.
- the statistical processing of the program participation results does not necessarily have to be performed after inputting the basic personal information of the target person, and may be performed in advance.
- step 705 the action results are weighted and calculated in consideration of the degree of increase in the rate of change.
- the motivation to work on the program can be improved by presenting a recommended program in advance.
- a program determined by calculating the degree of deviation by temporarily adding the inspection value improvement amount when the recommended program is executed to the inspection value may be presented.
- FIG. 11 is used to describe an example of a platform that matches a program provider and a target person to select a program, which is another embodiment of the present invention.
- FIG. 11 shows a service system including information processing and the flow of funds among the program provider system 1110, the platform system 1111 and the program target person system 1112.
- the program provider system 1110 provides program information D3 to the platform system 1111 (step 1101).
- the program information D3 is stored in the storage device 330 included in the platform system 1111.
- a request from the program subject is accepted (step 1102). This process corresponds to 701 in FIG. Thereafter, steps 702 to 709 shown in FIG. 7 are executed, and a recommended program is presented to the program target person system 1112 (step 1103).
- the platform system 1111 receives an input selected by the program target person system 1112 from the presented programs (step 1104).
- the matching cost between the program provider and the program target person is reduced, the program provider can easily find a customer, and the program target person can easily select a program suitable for himself / herself. .
- the consideration for receiving the program is paid to the platform system 1111 from the program target person system 1112 (step 1105).
- This step 1105 is performed after the program ends, and the payment timing does not necessarily have to be immediately after the input for selecting the program.
- the program provider system 1110 providing the program selected by the program target person receives a program provision payment from the platform system 1111 (step 1106).
- the program provider can easily find customers, and the program target person can easily select a program suitable for the program provider.
Landscapes
- Health & Medical Sciences (AREA)
- Public Health (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Primary Health Care (AREA)
- General Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Data Mining & Analysis (AREA)
- Pathology (AREA)
- Databases & Information Systems (AREA)
- Biomedical Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- Physical Education & Sports Medicine (AREA)
- Medical Treatment And Welfare Office Work (AREA)
Abstract
負担を感じずに参加し続けられるプログラムを選択できるシステムを提供する。 健康プログラムに関する情報である健康プログラム情報と参加者のプログラム参加実績情報とを格納する健康情報データベースを用いて健康プログラムを分析する健康プログラム分析システムであって、プログラム参加実績情報の入力を受け付ける参加実績情報入力部と、受け付けたプログラム参加実績情報と健康情報データベースに格納される健康プログラム情報とに基づいて、参加実績情報が示す参加者と健康プログラム情報が関連する健康プログラムの乖離度を算出する乖離度算出部と、算出された乖離度に基づいて参加者に推奨する健康プログラムに関連する推奨健康プログラム情報を出力する健康プログラム出力部と、を有することを特徴とする健康プログラム分析システム。
Description
本発明は、健康管理や健康増進、あるいは疾病の予防や治療等の目的により、対象者の食習慣や運動習慣などの生活習慣を改善するために提供される複数のプログラムから対象者に適したプログラムの選択を支援する健康プログラム分析システム及び同システムを用いたプラットフォームサービス提供方法に関する。
企業や保険者は対象者(従業員や被保険者)の健康増進のために健康増進プログラムを提供する場合がある。健康増進プログラムには、特定の疾病リスクが高い対象者に提供するハイリスクアプローチ型と、幅広い対象者に提供するポピュレーションアプローチ型がある。一般的には、ハイリスクアプローチ型は特定の疾病リスク低減に対する効果が期待できるが参加者の負担(継続期間、記録や介入の頻度、実施内容など)が大きいが、一方ポピュレーションアプローチ型は特定の疾病リスク低減に対する効果が高くはなくても参加者の負担が小さい場合が多い。複数のプログラムが存在する場合、医師などが疾病リスクの高い対象者にハイリスクアプローチ型プログラムへの参加を呼びかける場合もあれば、対象者自身がポピュレーションアプリケーション型プログラムを選択する場合もある。特許文献1では、対象者の健診データから算出した疾病リスクに応じて複数のプログラムの中から提供するプログラムを決定する手法が示されている。
しかしながら、疾病リスクに応じて決定したプログラムを提供しても、対象者がプログラム内容に負担を感じるなどして実際に参加するとは限らない。また、参加しても途中でプログラムをやめてしまう場合もある。さらに、記録をつけることを負担に感じるか、運動が好きかなど、負担と感じる要因は個人により異なるが、これらをもとに提供するプログラムを決定する手法は提供されていない。
本発明は、上記課題に鑑みてなされたものであり、負担を感じずに参加し続けられるプログラムを選択できるシステムを提供することを目的とする。
上記課題を解決するために、健康プログラムに関する情報である健康プログラム情報と参加者のプログラム参加実績情報とを格納する健康情報データベースを用いて健康プログラムを分析する健康プログラム分析システムであって、プログラム参加実績情報の入力を受け付ける参加実績情報入力部と、受け付けたプログラム参加実績情報と健康情報データベースに格納される健康プログラム情報とに基づいて、参加実績情報が示す参加者と健康プログラム情報が関連する健康プログラムの乖離度を算出する乖離度算出部と、算出された乖離度に基づいて参加者に推奨する健康プログラムに関連する推奨健康プログラム情報を出力する健康プログラム出力部と、を有することを特徴とする健康プログラム分析システムを提供する。
本発明によれば、複数のプログラムの中から、内容が対象者の行動実績に近い、すなわち対象者が取り組み易いプログラムを提示することで、対象者が負担を感じて参加後に脱落する危険性を低減することができる。
以下、本発明の一実施形態を図面に基づいて説明する。なお、本発明の実施形態は、後述する実施例に限定されるものではなく、その技術思想の範囲において、種々の変形が可能である。
本実施形態では、対象者(企業の従業員や医療保険者の被保険者など)が参加可能な複数の健康増進プログラム(以下、プログラム)が存在することを前提とし、本発明の実施の形態の健康プログラム分析システム(以下、本システム)を利用して参加するプログラムを決定する場合について説明する。本システムのユーザは必ずしも対象者本人である必要はなく、対象者が参加すべきプログラムを推奨または決定するために他者(企業総務担当者、医療保険者、医療従事者など)が利用してもよい。
図1は、本システムの構成を示すブロック図である。
本システムは、ユーザ端末装置100、及びサーバ300を備える。ユーザ端末装置100とサーバ300は、ネットワーク200を介して接続されている。
図1において、ユーザ端末装置100は、プロセッサ310、メモリ320、通信インターフェース340、記憶装置330及びユーザインターフェースを備える計算機である。なお、ユーザ端末装置100は、アプリケーションプログラム(例えば、Webブラウザ)が動作する携帯電話等の携帯端末であってもよい。
サーバ300は、プロセッサ310、メモリ320、記憶装置330及び通信インターフェース340を備える計算機である。メモリ320には、入出力処理部P1、改善対象項目決定部P2、目標改善量算出部P3、行動実績算出部P4、乖離度算出部P5を備える。これらの各処理部P1~P5は、本システムを構成するプログラムとしてハードディスクドライブなどで構成された記憶装置330に格納されており、実行する際にメモリ320に展開される。プロセッサ310は、メモリ320に展開されたプログラムを実行する。
記憶装置330には、健診情報D1、疾病基準値D2、プログラム情報D3、プログラム効果D4、プログラム参加実績D5が格納される。
図2は、健診情報D1の構成を示す説明図である。健診情報D1には、個人が受診した健診(定期健診や人間ドックなど)の結果が記録される。健診情報D1は、1レコード毎に、健診情報を識別する健診情報ID201、個人を識別する個人ID202、健診の受診日203、検査結果204で構成される。図2の例では、検査結果204が、BMI205、血糖値206、中性脂肪207、収縮期血圧208、拡張期血圧209など複数の検査項目の結果で構成されることを示している。なお、BMI204は、身長と体重から算出される体格指数(Body Mass Index)を指す。
図3は、疾病基準値D2の構成を示す説明図である。疾病基準値D2には、生活習慣病などの疾病に関連がある検査項目の基準となる値が記録される。疾病基準値D2は、1レコード毎に、検査項目301、基準値302で構成される。基準値302は、肥満学会、糖尿病学会、動脈硬化学会、高血圧学会などの学会が示すガイドラインに基づいて予め設定される。基準値302は、各疾病の予備群や境界領域、重症度などを区別する複数の値が含まれていても良い。
図4は、プログラム情報D3の構成を示す説明図である。プログラム情報D3には、プログラムがどのように実施されるかを示す情報が記録される。プログラム情報D3は、1レコード毎に、プログラムを識別するプログラムID401、プログラム名称402、プログラム内容403で構成される。図4の例では、プログラム内容403が、継続期間404、記録頻度405、食事制限量406、運動実施量407などで構成されることを示している。また、各プログラムを行った後に行うことが医学的に推奨されるプログラムなど、各プログラムに関連するプログラムである関連プログラムID408も格納されている。
プログラム内容403は、プログラム提供者によって予め設定される。
図5は、プログラム効果D4の構成を示す説明図である。プログラム効果D4には、プログラムによって改善される検査値の改善量が記録される。プログラム効果D4は、1レコード毎に、プログラムを識別するプログラムID501(前述のプログラムID401と同じ)、検査値改善量502で構成される。図5の例では、検査値改善量502が、BMIの改善量503、血糖値の改善量504、中性脂肪の改善量505、収縮期血圧の改善量506、拡張期血圧の改善量507などで構成されることを示している。検査値改善量502は、過去のプログラム参加者の実績をもとに予め設定し、プログラム参加者の増加により値を更新してもよい。
図6は、プログラム参加実績D5の構成を示す説明図である。プログラム参加実績D5には、過去のプログラム参加者のプログラム実施内容が記録される。プログラム参加実績D5は、1レコード毎に、個人を識別する個人ID601(前述の個人ID202と同じもの)、プログラムを識別するプログラムID602(前述のプログラムID401及びプログラムID501と同じもの)、プログラムの開始日603、実績604で構成される。図6の例では、実績604が、継続期間605、記録頻度606、食事制限量607、運動実施量608で構成されることを示している。実績604を構成する項目は、プログラム情報D3のプログラム内容403を構成する項目と同じである。
図7(A)と図7(B)は、本システムによる処理の概要を示すフローチャートである。まず、図7(A)の場合を説明する。
ユーザからの要求を受け付けるステップ701が実行される。ステップ701においては、入出力処理部P1が、ユーザ端末装置100に対象者を指定する画面(図省略)を表示する。対象者を指定する情報としては、前述の個人ID202を用いる。
次に、対象者の行動実績を算出するステップ705を実行する。ステップ705においては、行動実績算出部P4が、ステップ701で指定された個人ID202に基づいて、プログラム参加実績D5から対象者の実績604を抽出し、各項目605~608の平均値を各項目の行動実績として算出する。
次に、全ての行動実績についてステップ705が実行されたか否かを判定するステップ706が実行される。未処理の行動実績がある場合は、再度ステップ705を実行する。
次に、対象者の行動実績を用いて、対象者とプログラムの乖離度を算出するステップ707が実行される。ステップ707においては、乖離度算出部P5が、例として次の(数1)で示される対象者とプログラムiに対する乖離度Diを算出する。
すなわち、乖離度Diは、次元数mの多次元空間上における対象者と個々のプログラムiとの距離を示している。乖離度が小さいほど、対象者の行動実績に対応するプログラムの内容との関係(すなわち、プログラムの取り組み易さ)を総合的に判定し、対象者が参加すべきプログラムであることを意味する。(数1)は乖離度の計算方法の一例であり、他にも特定軸の要素に参加者の特定情報に基づいた重み付けを行うなども、計算方法の一つとして挙げられる。例えば、プログラムiへの過去の参加経験の有無や、過去に参加した結果(減量プログラム参加時の減量成功/失敗など)に基づいて重み付けを行うこともできる。
次に、全てのプログラムについてステップ707が実行されたか否かを判定するステップ708が実行される。未処理のプログラムがある場合は、再度ステップ707を実行する。
次に、処理結果を出力するステップ709が実行される。ステップ709においては、ステップ707で算出した乖離度をもとに、入出力処理部P1がユーザ端末装置100に推奨プログラム一覧画面を表示する。
図9(A)は、ステップ709において、ユーザ端末装置100上に表示される推奨プログラム一覧画面の一例を示す画面イメージである。
図9(A)において、画面上には、ステップ707より推奨されるプログラムが表示される。また、推奨されるプログラムを視覚的に表現するため、グラフを表示する。グラフは、横軸に対象者の行動実績及びプログラムの内容をマッピングし、対象者を原点とする1次元座標で表現される。横軸は、全ての項目を考慮した総合判定である乖離度Diを表示することもでき、各項目m毎のプログラム内容mと行動実績との差であるPi(Ym)-U(Ym)を表示することもできる。横軸方向で原点に近いほど、対象者の行動実績に近い内容のプログラム、すなわち、取り組み易いプログラムであることを示している。
このようにして、取り組み易さを総合的に評価して個人毎に適するプログラムを提示することが可能となる。これにより、複数のプログラムの中から、内容が対象者の行動実績に近いプログラムを提示することによって、対象者が負担を感じて参加後に脱落する危険性を低減することができる。
上の例では、行動実績を用いてプログラムの乖離度を算出していた。さらに個々人に適切なプログラムを提供するための実施例を示す。
図7(B)は、本実施例での処理フローを示している。
まず、ユーザからの要求を受け付けるステップ701が実行される。ステップ701においては、入出力処理部P1が、ユーザ端末装置100に対象者を指定する画面(図省略)を表示する。対象者を指定する情報としては、前述の個人ID202を用いる。
次に、対象者の改善対象項目を決定するステップ702が実行される。ステップ702においては、改善対象項目決定部P2が、ステップ701で指定された個人ID202に基づいて、健診情報D1から対象者の健診結果204を抽出し、疾病基準値D2の検査項目301に対応する健診結果204の各項目を基準値302と各々比較し、基準値302を超えた検査項目を改善対象項目として決定する。
次に、改善対象項目の目標改善量を算出するステップ703が実行される。ステップ703においては、目標改善量算出部P3が、ステップ702で決定した改善対象項目に対して、疾病基準値D2の基準値302と対象者の健診結果204とを比較し、目標改善量を決定する。
図8は、ステップ703における目標改善量を決定する方法の概念図である。図8に記載されているケースA、ケースB、ケースCはいずれも、横軸は入力値となる対象者の健診結果であり、縦軸は出力値となる目標改善量である。また、横軸上には、基準値302がで示されている。ケースA、ケースB、ケースCはいずれも、健診結果が基準値未満の場合は目標改善量は0であり、改善の必要がないことを示している。健診結果が基準値以上の場合、ケースAは健診結果が大きくなるにつれて目標改善量が大きくなり、ケースBは健診結果が所定の範囲を超えると目標改善量が一定になり、ケースBは健診結果の範囲に応じて目標改善量が段階的に決定される。図8は目標改善量を決定する方法の一例であり、例えば統計情報等を用いた計算式に基づく別の方法で目標改善量を決定してもよい。
次に、全ての改善対象項目についてステップ703が実行されたか否かを判定するステップ704が実行される。目標改善量が算出されていない改善対象項目がある場合は、再度ステップ703を実行する。
次に、対象者の行動実績を算出するステップ705を実行する。ステップ705においては、行動実績算出部P4が、ステップ701で指定された個人ID202に基づいて、プログラム参加実績D5から対象者の実績604を抽出し、各項目605~608の平均値を各項目の行動実績として算出する。
次に、全ての行動実績についてステップ705が実行されたか否かを判定するステップ706が実行される。未処理の行動実績がある場合は、再度ステップ705を実行する。
次に、対象者の目標改善量と行動実績、及び、プログラム毎の検査値改善量とプログラム内容を用いて、対象者とプログラムの乖離度を算出するステップ707が実行される。ステップ707においては、乖離度算出部P5が、例として次の(数2)で示される対象者とプログラムiに対し乖離度Diを算出する。
すなわち、乖離度Diは、図10に示すように次元数n+mの多次元空間上における対象者と個々のプログラムiとの距離を示している。乖離度が小さいほど、対象者の目標改善量に対応するプログラムの検査値改善量との関係(すなわち、プログラムによる検査値改善効果)、及び、対象者の行動実績に対応するプログラムの内容との関係(すなわち、プログラムの取り組み易さ)を総合的に判定し、対象者が参加すべきプログラムであることを意味する。(数2)は乖離度の計算方法の一例であり、他にも特定軸の要素に参加者の特定情報に基づいた重み付けを行うなども、計算方法の一つとして挙げられる。例えば、プログラムiへの過去の参加経験の有無や、過去に参加した結果(減量プログラム参加時の減量成功/失敗など)に基づいて重み付けを行うこともできる。
次に、全てのプログラムについてステップ707が実行されたか否かを判定するステップ708が実行される。未処理のプログラムがある場合は、再度ステップ707を実行する。
次に、処理結果を出力するステップ709が実行される。ステップ709においては、ステップ707で算出した乖離度をもとに、入出力処理部P1がユーザ端末装置100に図9(B)に示すような推奨プログラム一覧画面を表示する。
図9(B)は、ステップ709において、ユーザ端末装置100上に表示される推奨プログラム一覧画面の一例を示す画面イメージである。
図9(B)において、画面上には、ステップ702より対象者が改善すべき検査項目と検査値、ステップ703より対象者の目標値、ステップ707より推奨されるプログラムが表示される。また、推奨されるプログラムを視覚的に表現するため、グラフを表示する。グラフは、縦軸に対象者の目標改善量及びプログラムの改善効果、横軸に対象者の行動実績及びプログラムの内容をマッピングし、対象者を原点とする2次元座標で表現される。縦軸は、着目する検査項目を切替えて表示することができる。横軸は、全ての項目を考慮した総合判定であるΣ(Pi(Ym)-U(Ym))を表示することもでき、各項目m毎のプログラム内容mと行動実績との差であるPi(Ym)-U(Ym)を表示することもできる。縦軸の負の方向(対象者の目標>プログラムの改善効果)の場合、予め定められた閾値で表示範囲を限定してもよい。縦軸方向で原点に近いほど、対象者の目標改善量に近い改善効果をもつプログラムであることを示し、横軸方向で原点に近いほど、対象者の行動実績に近い内容のプログラム、すなわち、取り組み易いプログラムであることを示している。
ステップ701~709の処理により、効果と取り組み易さを総合的に評価して個人毎に適するプログラムを提示することが可能となる。これにより、複数のプログラムの中から、対象者が改善すべき疾病リスクに対応する検査値改善効果があり、且つ、内容が対象者の行動実績に近いプログラムを提示することによって、対象者が負担を感じて参加後に脱落する危険性を低減することができる。
実施例1、2では、ステップ705において、行動実績算出部が行動実績を算出する。しかし、対象者が有する行動実績がまだ存在しない場合がある。このような場合の処理例を図12を用いて述べる。
個人IDを生成する際に、年齢や性別、身長、体重などの個人基本情報を記憶装置330に入力を受け付ける(ステップ705-1)。この個人基本情報は、個人IDに関連付けられているので、プログラム参加実績D5にも含まれるようになる。
対象者以外の個人ID毎のプログラム参加実績を、個人基本情報別に統計処理し、記憶装置に格納する(ステップ705-2)。対象者の個人基本情報と類似する個人IDが有する統計処理されたプログラム参加実績を、対象者のプログラム参加実績とみなし(ステップ705-3)、ステップ705を実行する。
この処理によって、初めて本システムを用いるような、対象者が有する行動実績がまだ存在しない場合であっても、取り組み易さを総合的に評価して個人毎に適するプログラムを提示することが可能となる。これにより、複数のプログラムの中から、内容が対象者の行動実績に近いプログラムを提示することによって、対象者が負担を感じて参加後に脱落する危険性を低減することができる。
ここで、プログラム参加実績の統計処理は、必ずしも対象者の個人基本情報の入力後に行われる必要は無く、事前に行われていても良い。
本発明のシステムの利用効率を高めるためには、対象者に適したプログラムを提示し、対象者がプログラムを選択し、選択されたプログラムが実行され、といったサイクルを効率化していくと良い。以下では、そのための構成例を述べる。
モチベーションマネジメントの観点から考えた場合、自身の行動実績が向上していくことを認められると、より高い行動実績をもってプログラムに取り組もうとすることがある。
プログラム参加実績D5において、一つの個人IDに関連付けられている各プログラムの実績の変化率が、現在に近づくにつれて向上している場合を考える。このとき、ステップ705において、変化率の上昇度を加味して行動実績を重み付けして算出する。
このようにして、対象者の直近の行動実績をより高く評価することで、成長度が考慮されたプログラムを提示し、対象者がプログラムを選択し、選択されたプログラムが実行され、といったサイクルを効率化できる。
また、対象者が選択したプログラムに取り組んだ場合に、推奨されるプログラムを予め提示することで、プログラムに取り組む動機を向上させることが出来る。
これは、ステップ709で各推奨プログラムを出力する際に、推奨プログラムIDに関連付けられている関連プログラムIDが示すプログラム内容を出力することで行われる。また、推奨プログラムを実行した際の検査値改善量を、検査値に仮に加えて乖離度を算出して決定されるプログラムを提示してもよい。
このようにして、対象者が選択したプログラムに取り組んだ場合に、推奨されるプログラムを予め提示することで、プログラムに取り組む動機を向上させることが出来る。
図11を用いて、本発明の別の実施例である、プログラムの提供者とプログラムを選択する対象者をマッチングするプラットフォームの例について述べる。これまで、各種プログラムを開発している提供者は、必ずしも開発したプログラムに適したユーザーを見つけることは簡単ではなかった。同時に、プログラムを実施しようとするユーザーは、必ずしも自らに適したプログラムを容易に選択することができていなかった。本実施例は、このような2者間をマッチングするプラットフォームの例である。
図11では、プログラム提供者システム1110、プラットフォームシステム1111、プログラム対象者システム1112の間での情報処理や資金の流れを含むサービスシステムが示されている。まず、プログラム提供者システム1110は、プラットフォームシステム1111にプログラム情報D3を提供する(ステップ1101)。プログラム情報D3は、プラットフォームシステム1111が有する記憶装置330に格納される。
次に、プログラム対象者からの要求を受け付ける(ステップ1102)。ここの処理は、図7の701に対応する。その後、図7に示す702~709が実行され、プログラム対象者システム1112への推奨プログラムの提示が行われる(ステップ1103)。プラットフォームシステム1111は、提示されたプログラムの中からプログラム対象者システム1112が選択する入力を受け付ける(ステップ1104)。
このようにして、プログラム提供者とプログラム対象者のマッチングコストは低減され、プログラム提供者は顧客開拓が容易になり、プログラム対象者は自らに適したプログラムを簡単に選択することが出来るようになる。
さらに、プログラムのマッチングだけでなく、資金の流れをプラットフォームシステムが介する例を示す。
プログラム対象者システム1112から、プログラムを受ける対価がプラットフォームシステム1111に支払われる(ステップ1105)。このステップ1105は、プログラムが終了した後に行われるなど、支払いタイミングは必ずしもプログラムを選択する入力直後でなくても良い。プログラム対象者が選択したプログラムを提供しているプログラム提供者システム1110は、プラットフォームシステム1111からプログラム提供支払いを受ける(ステップ1106)。
このようにして、プログラム提供者によるプログラム対象者からの資金回収コストは低減される。プログラム提供者は顧客開拓が容易になり、プログラム対象者は自らに適したプログラムを簡単に選択することが出来るようになる。
100 ユーザ端末装置
200 ネットワーク
300 サーバ
310 プロセッサ
320 メモリ
330 記憶装置
340 通信インターフェイス
P1 入出力処理部
P2 改善対象項目決定部
P3 目標改善量算出部
P4 行動実績算出部
P5 乖離度算出部
D1 健診情報
D2 疾病基準値
D3 プログラム情報
D4 プログラム効果
D5 プログラム参加実績
200 ネットワーク
300 サーバ
310 プロセッサ
320 メモリ
330 記憶装置
340 通信インターフェイス
P1 入出力処理部
P2 改善対象項目決定部
P3 目標改善量算出部
P4 行動実績算出部
P5 乖離度算出部
D1 健診情報
D2 疾病基準値
D3 プログラム情報
D4 プログラム効果
D5 プログラム参加実績
Claims (8)
- 健康プログラムに関する情報である健康プログラム情報と参加者のプログラム参加実績情報とを格納する健康情報データベースを用いて健康プログラムを分析する健康プログラム分析システムであって、
前記プログラム参加実績情報の入力を受け付ける参加実績情報入力部と、
前記受け付けたプログラム参加実績情報と前記健康情報データベースに格納される前記健康プログラム情報とに基づいて、前記参加実績情報が示す参加者と前記健康プログラム情報が関連する健康プログラムの乖離度を算出する乖離度算出部と、
前記算出された乖離度に基づいて前記参加者に推奨する健康プログラムに関連する推奨健康プログラム情報を出力する健康プログラム出力部と、
を有することを特徴とする健康プログラム分析システム。 - 請求項1に記載の健康プログラム分析システムであって、
前記健康情報データベースは、疾病基準値情報と、改善情報を含むプログラム効果情報と、をさらに格納し、
第一の健診情報の入力を受け付ける健診情報入力部と、
前記第一の健診情報と前記疾病基準値情報に基づいて第一の目標改善情報を算出する目標改善算出部と、をさらに有し、
前記乖離度算出部は、前記目標改善情報と前記プログラム参加実績情報と前記健康プログラム情報とに基づいて前記乖離度を算出することを特徴とする健康プログラム分析システム。 - 請求項1に記載の健康プログラム分析システムであって、
前記健康情報データベースは、過去の参加者のプログラム参加実績の統計情報をさらに格納し、
前記参加実績情報入力部は、前記入力を受け付けたプログラム参加実績情報が予め定められた基準を満たさない場合は、前記統計情報に基づいて前記プログラム参加実績情報を補完することを特徴とする健康プログラム分析システム。 - 請求項1に記載の健康プログラム分析システムであって、
前記乖離度算出部は、前記プログラム参加実績情報の時系列変化から参加実績改善度を算出し、前記参加実績改善度に基づいて、前記乖離度に重み付けを行い算出することを特徴とする健康プログラム分析システム。 - 請求項1に記載の健康プログラム分析システムであって、
前記プログラム情報は関連プログラム情報を含み、前記プログラム参加実績情報は過去に参加したプログラム情報を含み、
前記乖離度算出部は、前記過去のプログラム情報が関連付けられている関連プログラムについての乖離度に重み付けを行い算出することを特徴とする健康プログラム分析システム。 - 請求項2に記載の健康プログラム分析システムであって、
前記目標改善算出部は、前記算出された目標改善情報を前記健診情報に加えて第二の健診情報として、前記第二の健診情報と前記疾病基準値情報に基づいて第二の目標改善情報を算出し、
前記乖離度算出部は、前記第二の目標改善情報と前記プログラム参加実績情報と前記健康プログラム情報とに基づいて第二の乖離度を算出し、
前記健康プログラム出力部は、前記第二の乖離度に基づいて前記参加者に推奨する健康プログラムに関連する第二の推奨健康プログラム情報を出力することを特徴とする健康プログラム分析システム。 - 健康プログラムを提供するプログラム提供システムと、前記健康プログラムを選択するプログラム対象者システムと、前記プログラム提供システムと前記プログラム対象者システムをマッチングするプラットフォームであるプラットフォームシステムと、を用いたラットフォームサービス提供方法であって、
前記プログラム提供システムによって、前記プラットフォームシステムが有する健康情報データベースに健康プログラム情報が提供されるプログラム提供工程と、
前記プログラム対象者システムによって、前記プラットフォームシステムに前記プログラム参加実績情報が入力される参加実績情報入力工程と、
前記プラットフォームシステムによって、前記入力されたプログラム参加実績情報と前記健康情報データベースに格納される前記健康プログラム情報とに基づいて、前記参加実績情報が示す参加者と前記健康プログラム情報が関連する健康プログラムの乖離度を算出する乖離度算出工程と、
前記プラットフォームシステムによって、前記算出された乖離度に基づいて前記参加者に推奨する健康プログラムに関連する健康プログラム情報を前記プログラム対象者システムに出力する健康プログラム出力工程と、
前記プログラム対象者システムによって、前記出力された健康プログラム情報から健康プログラムを選択する入力が前記プラットフォームシステムに送信される健康プログラム選択工程と、を有することを特徴とするプラットフォームサービス提供方法。 - 請求項7に記載のプラットフォームサービス提供方法であって、
前記プログラム対象者システムによって、前記健康プログラム選択工程において選択された健康プログラムに関する購入金情報を前記プラットフォームシステムに送信する購入金情報送信工程と、
前記プラットフォームシステムによって、前記送信された購入金情報に基づいて前記プログラム提供者システムへのプログラム提供金情報を算出し、前記プログラム提供金情報を前記プログラム提供者システムに送信するプログラム提供金送信工程と、
をさらに有することを特徴とするプラットフォームサービス提供方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-243465 | 2013-11-26 | ||
JP2013243465A JP6192510B2 (ja) | 2013-11-26 | 2013-11-26 | 健康プログラム分析システム及びプラットフォームサービス提供方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015079929A1 true WO2015079929A1 (ja) | 2015-06-04 |
Family
ID=53198875
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/080136 WO2015079929A1 (ja) | 2013-11-26 | 2014-11-14 | 健康プログラム分析システム及びプラットフォームサービス提供方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6192510B2 (ja) |
WO (1) | WO2015079929A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6577882B2 (ja) * | 2016-02-12 | 2019-09-18 | Kddi株式会社 | 検査結果管理装置、検査結果管理方法及び検査結果管理用プログラム |
CN111971756A (zh) | 2018-03-26 | 2020-11-20 | 日本电气方案创新株式会社 | 健康援助系统、信息提供表格输出设备、方法和程序 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003216739A (ja) * | 2002-01-25 | 2003-07-31 | Itoki Co Ltd | 健康管理システム、及び健康管理方法 |
JP2009237893A (ja) * | 2008-03-27 | 2009-10-15 | Hitachi Ltd | 保健指導支援システム |
JP2010257346A (ja) * | 2009-04-27 | 2010-11-11 | Hitachi Ltd | 保健指導支援システム |
JP2013143004A (ja) * | 2012-01-11 | 2013-07-22 | Nippon Telegr & Teleph Corp <Ntt> | 運動管理装置、運動管理方法及びプログラム |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009244964A (ja) * | 2008-03-28 | 2009-10-22 | Technical Brains Co Ltd | トータルフィットネス評価システムとトータルフィットネス評価プログラム及びトータルフィットネス評価データの提供方法 |
JP2013215346A (ja) * | 2012-04-06 | 2013-10-24 | Terumo Corp | 運動量測定装置、運動量測定システム及び運動量測定方法 |
-
2013
- 2013-11-26 JP JP2013243465A patent/JP6192510B2/ja active Active
-
2014
- 2014-11-14 WO PCT/JP2014/080136 patent/WO2015079929A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003216739A (ja) * | 2002-01-25 | 2003-07-31 | Itoki Co Ltd | 健康管理システム、及び健康管理方法 |
JP2009237893A (ja) * | 2008-03-27 | 2009-10-15 | Hitachi Ltd | 保健指導支援システム |
JP2010257346A (ja) * | 2009-04-27 | 2010-11-11 | Hitachi Ltd | 保健指導支援システム |
JP2013143004A (ja) * | 2012-01-11 | 2013-07-22 | Nippon Telegr & Teleph Corp <Ntt> | 運動管理装置、運動管理方法及びプログラム |
Also Published As
Publication number | Publication date |
---|---|
JP6192510B2 (ja) | 2017-09-06 |
JP2015103039A (ja) | 2015-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11929180B2 (en) | Systems and methods for implementing personalized health and wellness programs | |
US9817946B2 (en) | Graphic representations of health-related status | |
AU2006252260B2 (en) | Home diagnostic system | |
US10067627B2 (en) | Health forecaster | |
US20100179833A1 (en) | Automated coaching | |
JP5727706B2 (ja) | 生活習慣改善支援システム、生活習慣改善支援方法及びプログラム | |
JP2012128670A (ja) | 保健事業支援システム、保険事業支援装置、及び保険事業支援プログラム | |
KR102342770B1 (ko) | 질병 예측치의 분포를 이용한 건강관리 상담 시스템 | |
WO2020044824A1 (ja) | 介入内容推定装置、方法およびプログラム | |
JP2017091586A (ja) | 健康管理サーバおよび健康管理サーバ制御方法並びに健康管理プログラム | |
SA518391541B1 (ar) | أجهزة، طرق، ووسط كمبيوتر لتوفير تغذية عكسية حيوية في الزمن الفعلي لتصور ثلاثي الأبعاد | |
WO2017022013A1 (ja) | 健康管理サーバおよび健康管理サーバ制御方法並びに健康管理プログラム | |
JP6192510B2 (ja) | 健康プログラム分析システム及びプラットフォームサービス提供方法 | |
WO2019107118A1 (ja) | 健康管理支援装置、方法およびプログラム | |
JP5615142B2 (ja) | 指導文作成支援システム及び方法 | |
JP2002063279A (ja) | 健康管理のためのシステム及び方法並びに健康管理用プログラムを記憶した記憶媒体 | |
JP7407146B2 (ja) | 介入システム、介入方法、および、介入プログラム | |
JP7399336B1 (ja) | 健康に関するデータを分析するためのシステム、方法、及びプログラム | |
JP2019012493A (ja) | 保険設計支援システム及び保険設計支援方法 | |
JP7340138B1 (ja) | 与信判定システム、与信判定プログラム及び与信判定方法 | |
CA3073272A1 (en) | Processing data records and searching data structures that are stored in hardware memory and that are at least partly generated from the processed data records in generating an adaptive user interface | |
Giabbanelli et al. | Supporting a participant-centric management of obesity via a self-improving health game | |
US20240257986A1 (en) | Systems and methods for implementing personalized health and wellness programs | |
JP2020115400A (ja) | 健康情報提供システム | |
JP2020091818A (ja) | 健康情報提供システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14865496 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14865496 Country of ref document: EP Kind code of ref document: A1 |