WO2015079621A1 - 熱処理方法 - Google Patents
熱処理方法 Download PDFInfo
- Publication number
- WO2015079621A1 WO2015079621A1 PCT/JP2014/005417 JP2014005417W WO2015079621A1 WO 2015079621 A1 WO2015079621 A1 WO 2015079621A1 JP 2014005417 W JP2014005417 W JP 2014005417W WO 2015079621 A1 WO2015079621 A1 WO 2015079621A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat treatment
- support member
- conditions
- condition
- temperature
- Prior art date
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 108
- 238000000034 method Methods 0.000 title claims abstract description 21
- 235000012431 wafers Nutrition 0.000 claims abstract description 40
- 239000012298 atmosphere Substances 0.000 claims abstract description 25
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 20
- 239000001301 oxygen Substances 0.000 claims abstract description 20
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 20
- 239000004065 semiconductor Substances 0.000 claims abstract description 9
- 229910052756 noble gas Inorganic materials 0.000 claims abstract description 6
- 239000007789 gas Substances 0.000 claims description 21
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 10
- 229910052786 argon Inorganic materials 0.000 claims description 5
- 239000013078 crystal Substances 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- 239000012300 argon atmosphere Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/324—Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67098—Apparatus for thermal treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67098—Apparatus for thermal treatment
- H01L21/67109—Apparatus for thermal treatment mainly by convection
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67242—Apparatus for monitoring, sorting or marking
- H01L21/67248—Temperature monitoring
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/673—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
- H01L21/67303—Vertical boat type carrier whereby the substrates are horizontally supported, e.g. comprising rod-shaped elements
- H01L21/67306—Vertical boat type carrier whereby the substrates are horizontally supported, e.g. comprising rod-shaped elements characterized by a material, a roughness, a coating or the like
Definitions
- the present invention relates to a heat treatment method for a semiconductor wafer, and more particularly, to a heat treatment method for a silicon single crystal wafer.
- the heat treatment technology is used in various semiconductor processes and is a basic and important technology.
- a silicon single crystal wafer used as a semiconductor substrate is subjected to heat treatment for the purpose of modifying crystal quality, diffusing impurities, or forming a film structure on a surface layer portion.
- a heat treatment apparatus for performing heat treatment a batch type apparatus that simultaneously processes a plurality of wafers at predetermined intervals is widely used.
- a type in which a wafer is arranged in a vertical direction while being supported horizontally is called a vertical furnace.
- a type that is arranged in the horizontal direction in an upright angle is called a horizontal furnace.
- a support member for supporting a wafer in the heat treatment furnace is also called a boat, and quartz (quartz boat) or a SiC boat (SiC boat) in which a surface of a SiC material is CVD-SiC coated is generally used.
- quartz quartz boat
- SiC boat SiC boat
- a support member made of SiC having high heat resistance is widely used.
- the silicon single crystal wafer placed on such a support member is heat-treated, for example, in an argon or oxygen atmosphere. During this heat treatment, it is known that defects called slip dislocations are generated from the contact portion with the support member (see Cited Documents 1 and 2).
- Slip dislocations start from mechanical damage that occurs when a silicon single crystal wafer comes into contact with a support member.
- the stress is caused by stress caused by the weight of the wafer, thermal deformation, and high-temperature thermal energy. It is a defect formed by shifting the silicon crystal structure from several millimeters to several centimeters.
- the present invention has been made in view of the above-described problems, and an object thereof is to provide a heat treatment method capable of suppressing the occurrence of slip dislocation.
- a plurality of semiconductor wafers are respectively placed horizontally on a support member coated with SiC, and heat treatment is performed in a vertical heat treatment furnace.
- the support member and the heat treatment condition are switched so that the support member is continuously used for a certain period of time for the heat treatment of either the first condition or the second condition, and is then continuously used for the heat treatment of the other condition for a certain period of time.
- the heat treatment under the first condition is a heat treatment under an atmosphere containing noble gas and no oxygen at a temperature of 1000 ° C. or higher
- the heat treatment under the second condition is:
- a heat treatment method characterized by heat treatment in an atmosphere containing oxygen and no rare gas at a temperature of 1000 ° C. or higher.
- Such a heat treatment method can suppress the shape change of the surface of the support member on which the semiconductor wafer is placed, and can suppress slip dislocation at low cost.
- the rare gas is preferably argon gas.
- the said fixed period which continues the heat processing of 1st and 2nd conditions is 200 hours or more and 400 hours or less, respectively. In this way, slip dislocation can be reliably suppressed at low cost.
- the support member has a first condition (1000 ° C. or higher, atmosphere containing noble gas and no oxygen) or a second condition (1000 ° C. or more, atmosphere containing oxygen and no rare gas). Since the heat treatment is performed by switching the support member and the heat treatment condition so that the heat treatment is performed for a certain period of time and then continuously used for the high temperature heat treatment of the other condition for a certain period of time. The shape change of the surface of the supporting member to be placed can be suppressed, and slip dislocation can be suppressed at low cost.
- a vertical heat treatment furnace as shown in FIG. 1 can be used.
- the vertical heat treatment furnace 10 has a reaction chamber 11, and a support member 13 (wafer boat) is disposed inside the reaction chamber 11.
- a heater 12 is provided around the reaction chamber 11.
- a plurality of semiconductor wafers W can be horizontally mounted on the support member 13. For example, it is possible to form a groove in the horizontal direction on the side surface of the support column constituting the support member 13 and to use the lower surface of the groove as a wafer support surface.
- the wafer support surface can be, for example, a semicircular support surface formed on a columnar column or a rectangular support surface formed on a prismatic column.
- the support member 13 has at least the wafer support surface coated with SiC having high heat resistance, and can prevent metal contamination of the wafer during heat treatment. SiC is, for example, coated by CVD.
- the support member 13 is detachably provided in the vertical heat treatment furnace 10. Therefore, the support member 13 can be disposed in the vertical heat treatment furnace 10 with the wafer W placed thereon, or can be removed from the vertical heat treatment furnace 10.
- the heat treatment conditions in the heat treatment method of the present invention include a first condition and a second condition, and the combination of these conditions and the support member 13 to be used is determined. Specifically, the support member 13 is continuously used for a certain period of time in the high-temperature heat treatment of either the first or the second condition, and then continuously used for a certain period of time in the high-temperature heat treatment of the other condition, Switch between support member and heat treatment conditions.
- the support member and the heat treatment condition can be switched by changing the heat treatment condition while continuously using the same support member in the same vertical heat treatment furnace 10.
- slip dislocation can be suppressed by performing the heat treatment by switching the support member and the heat treatment conditions.
- the heat treatment under the first condition is a heat treatment in an atmosphere containing noble gas and no oxygen at a temperature of 1000 ° C. or higher.
- the heat treatment under the second condition is a heat treatment in an atmosphere containing oxygen and no rare gas at a temperature of 1000 ° C. or higher.
- a typical example of the atmosphere under the first condition is an argon atmosphere (Ar gas 100%).
- a typical example of the atmosphere under the second condition is an oxygen atmosphere (O 2 gas 100%).
- the fixed period which continues the heat processing of 1st conditions and 2nd conditions respectively is not specifically limited, For example, it is preferable to set it as 200 hours or more and 400 hours or less. If this period is 200 hours or more, an increase in cost due to an increase in the replacement frequency of the support member 13 can be suppressed. If this period is 400 hours or less, slip dislocation can be more reliably suppressed. Alternatively, the amount of slip dislocation of the wafer after the heat treatment is measured, and the period until this amount exceeds a preset threshold value may be set as the above-mentioned fixed period.
- the occurrence of slip dislocation is greatly affected by the surface state of the support member that contacts the wafer.
- the surface of the support member to which the CVD-SiC coating is applied is rough, when the wafer is placed on the support member, it is supported as a point contact by a minute raised portion. Therefore, it is considered that the internal stress due to the weight of the wafer is locally increased and slip dislocation is likely to occur.
- the phenomenon that the occurrence of slip dislocation increases with continued use of the support member for a long period is considered to be due to the change in the roughness of the surface of the support member.
- a high-purity gas is supplied into a furnace or a mixture of a plurality of types.
- typical gas species used for heat treatment of semiconductor wafers oxygen, nitrogen, hydrogen, argon and the like are used.
- the shape change of the surface of the support member caused by long-term use has been considered as a common phenomenon regardless of these gas types.
- an increase in the occurrence of slip dislocation is observed in each support member.
- the tip portion of the agglomerates sharpens, so that the contact area per point is reduced and the friction is reduced.
- the stress concentration in the vertical direction due to the weight of the wafer at each contact point increases, and slip dislocation increases due to this stress.
- the deterioration mechanism of slip dislocation is different under two atmospheres, a rare gas atmosphere and an oxygen atmosphere, and each has opposite characteristics.
- the shape change of the agglomerates on the surface of the support member can be switched between the rounded shape and the sharp shape, so that it is restored to the surface state. An effect can be produced. Therefore, the occurrence of slip dislocation based on the shape change of the agglomerates can be effectively reduced.
- slip dislocation can be suppressed only by switching the supporting member to be used and the heat treatment condition, so that the cost can be reduced and productivity can be improved as compared with the case where the supporting member is replaced with a new one. Furthermore, if this switching is repeated a plurality of times, the usage time of the support member increases and the cost can be further reduced.
- the silicon single crystal wafer was subjected to high temperature heat treatment.
- Two vertical heat treatment furnaces as shown in FIG. 1 were used, and the heat treatment under the first condition and the heat treatment under the second condition were performed in each vertical heat treatment furnace.
- the support members provided in the two vertical heat treatment furnaces were of the same specification made of 4-point support type SiC coated with CVD-SiC.
- the high-temperature heat treatment of the first condition was performed under an argon atmosphere, a maximum temperature of 1200 ° C., a maximum temperature holding time of 1 hour, and a step of raising and lowering the temperature before and after the maximum temperature holding time.
- the high temperature heat treatment of the second condition was performed under the conditions including an oxygen atmosphere, a maximum temperature of 1050 ° C., a maximum temperature holding time of 1 hour, and a step of raising and lowering the temperature before and after the maximum temperature holding time.
- FIG. 2 shows the relationship between the slip amount of the wafer subjected to the high temperature heat treatment under the first condition and the number of processing batches.
- FIG. 3 shows the relationship between the slip amount of the wafer subjected to the high temperature heat treatment under the second condition and the number of processing batches. 2 and 3, the number of treatment batches on the horizontal axis is shown corresponding to 10 heat treatments per batch, and some slip dislocations are increased by omitting some of the initial use data of the support member. Only data from a short time before the start is shown.
- the present invention is not limited to the above embodiment.
- the above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Abstract
Description
熱処理を実施するための熱処理装置として、複数のウェーハを所定の間隔をあけて同時処理するバッチ式のものが広く用いられている。特に、ウェーハを水平に支持した状態で縦方向に配置するタイプを縦型炉と呼ぶ。また、垂直に近い角度に立てた状態で横方向に配置するタイプを横型炉と呼ぶ。
特に、高温熱処理では、熱に対する耐久性が高いSiC製の支持部材が広く使用されている。支持部材の形状にはさまざまなものがあるが、縦型炉用の支持部材として一般的なものは、3本、または、4本の垂直な支柱を2枚の板状部材(天板と底板)で連結し、支柱の一部に溝を水平方向に形成したものである。ウェーハはその溝の水平面上に載置されて支持される。
このようにすれば、スリップ転位を低コストで確実に抑制できる。
このようにすれば、1つの支持部材の使用時間を増加することでコストを更に低減できる。
本発明の熱処理方法では、図1に示すような縦型熱処理炉を用いることができる。
図1に示すように、縦型熱処理炉10は反応室11を有し、反応室11の内部には支持部材13(ウェーハボート)が配置されている。反応室11の周囲にはヒータ12が設けられている。
本発明の熱処理方法における熱処理条件には、第1の条件と第2の条件があり、これら条件と使用する支持部材13の組み合わせが決定される。具体的には、支持部材13を、第1または第2の条件のいずれかの高温熱処理に一定期間継続して用いた後、もう一方の条件の高温熱処理に一定期間継続して用いるように、支持部材と熱処理条件を切り替える。
このように、支持部材と熱処理条件を切り替えて熱処理を行うことにより、以下に詳述するように、スリップ転位を抑制できる。
第1の条件及び第2の条件の熱処理温度が1000℃未満では、スリップ転位の発生が抑制されてしまうため、本発明の効果が十分に得られなくなる。一方、1350℃以下の温度とすることで、スリップ転位が大幅に増加することを確実に防ぐことができるので好ましい。
或いは、熱処理後のウェーハのスリップ転位の量を測定し、この量が予め設定した閾値を超えるまでの期間を上記一定期間としても良い。
スリップ転位の発生には、ウェーハと接触する支持部材の表面状態が大きく影響する。特に、CVD-SiCコートを施した支持部材の表面は粗いため、支持部材にウェーハを載置すると、微小な隆起状部で点接触として支持される。そのため、ウェーハの自重による内部応力が局部的に大きくなり、スリップ転位が発生しやすいと考えられる。
一般的な熱処理においては、炉内に高純度のガスを一種類、または複数種類混合して供給する。半導体ウェーハの熱処理に用いられる代表的なガス種として、酸素、窒素、水素、アルゴン等が用いられる。これまで、長期間使用することによって生じる支持部材表面の形状変化は、これらガス種によらず共通の現象と考えられていた。実際に、アルゴン雰囲気、及び酸素雰囲気で熱処理した場合のいずれにおいても、それぞれの支持部材でスリップ転位の発生の増加が見られる。
元々、CVD-SiCコートされた支持部材の表面には、サイズが1~5μm程度の粒塊が存在し、それぞれの粒塊は先鋭的な形状をしている。このような支持部材表面がアルゴンなどの希ガス(不活性ガス)雰囲気下で熱処理を長期間受けると、先鋭的な粒塊の先端部分に丸みを生じる。一方、酸素雰囲気下で熱処理を長期間受けると、その先端部分がより先鋭的な形状に変化する。このように、アルゴン雰囲気と酸素雰囲気で生じる先端形状の変化はそれぞれ逆の傾向を示す。
希ガス雰囲気下で熱処理を長期間実施した場合、上記のように、支持部材表面にある粒塊の先端部分が丸みを帯びることにより、この先端部分とウェーハとの接触面積が増加する。これにより、ウェーハと支持部材が互いに対して横方向にずれる際の摩擦が大きくなる。実際に、熱処理中のウェーハは熱膨張により支持部材に対して横方向にずれている。このとき摩擦が小さければ、両者は滑らかにずれることになるが、摩擦が大きければ、ずれが開始するまでの横方向の応力が増加し、この応力によってスリップ転位が増加すると考えられる。
このように、スリップ転位の悪化メカニズムは希ガス雰囲気と酸素雰囲気の2つの雰囲気下で異なっており、それぞれは逆の特徴を持っている。
本発明の熱処理方法に従って、シリコン単結晶ウェーハの高温熱処理を行った。図1に示すような縦型熱処理炉を2つ用い、それぞれの縦型熱処理炉で第1の条件の熱処理、及び第2の条件の熱処理を行った。2つの縦型熱処理炉に設けられている支持部材は、CVD-SiCコートされた4点支持型のSiC製の同一仕様のものとした。
第1の条件の高温熱処理は、アルゴン雰囲気、最高温度が1200℃、最高温度の保持時間が1時間、最高温度の保持時間前後に昇降温のステップを含める条件で実施した。第2の条件の高温熱処理は、酸素雰囲気、最高温度が1050℃、最高温度の保持時間が1時間、最高温度の保持時間前後に昇降温のステップを含める条件で実施した。
図2に第1の条件の高温熱処理を施したウェーハのスリップ量と処理バッチ数の関係を示す。図3に第2の条件の高温熱処理を施したウェーハのスリップ量と処理バッチ数の関係を示す。なお、図2、3の横軸の処理バッチ数は、1バッチ当たり10回の熱処理に相当するようにして示し、また、支持部材の使用初期のデータを一部省略してスリップ転位が増加し始める少し前からのデータのみを示している。
このように、本発明の熱処理方法に従って、支持部材と熱処理条件を切り替えて熱処理することにより、スリップ転位を低減できることが確認できた。
なお、従来のように、切り替えを行わず、支持部材を使用し続けた場合、スリップ量はさらに増加し続けることが予測される。
Claims (4)
- 複数の半導体ウェーハを、SiCでコートされた支持部材上にそれぞれ水平に載置し、縦型熱処理炉内で熱処理を行う熱処理方法において、
前記支持部材を、第1または第2の条件のいずれかの熱処理に一定期間継続して用いた後、もう一方の条件の熱処理に一定期間継続して用いるように、前記支持部材と熱処理条件を切り替えて熱処理をするものであり、
前記第1の条件の熱処理は、1000℃以上の温度で、希ガスを含みかつ酸素を含まない雰囲気下での熱処理であり、前記第2の条件の熱処理は、1000℃以上の温度で、酸素を含みかつ希ガスを含まない雰囲気下での熱処理であることを特徴とする熱処理方法。 - 前記希ガスをアルゴンガスとすることを特徴とする請求項1に記載の熱処理方法。
- 前記第1及び第2の条件の熱処理をそれぞれ継続する前記一定期間を、200時間以上、400時間以下とすることを特徴とする請求項1または請求項2に記載の熱処理方法。
- 前記支持部材と熱処理条件の切り替えを複数回繰り返すことを特徴とする請求項1から請求項3のいずれか1項に記載の熱処理方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201480052178.9A CN105580119B (zh) | 2013-11-26 | 2014-10-27 | 热处理方法 |
SG11201602010VA SG11201602010VA (en) | 2013-11-26 | 2014-10-27 | Heat treatment method |
KR1020167009150A KR102105367B1 (ko) | 2013-11-26 | 2014-10-27 | 열처리방법 |
EP14865182.1A EP3035373B1 (en) | 2013-11-26 | 2014-10-27 | Heat treatment method |
US15/022,846 US9922842B2 (en) | 2013-11-26 | 2014-10-27 | Heat treatment method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-244374 | 2013-11-26 | ||
JP2013244374A JP6086056B2 (ja) | 2013-11-26 | 2013-11-26 | 熱処理方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015079621A1 true WO2015079621A1 (ja) | 2015-06-04 |
Family
ID=53198599
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/005417 WO2015079621A1 (ja) | 2013-11-26 | 2014-10-27 | 熱処理方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US9922842B2 (ja) |
EP (1) | EP3035373B1 (ja) |
JP (1) | JP6086056B2 (ja) |
KR (1) | KR102105367B1 (ja) |
CN (1) | CN105580119B (ja) |
SG (1) | SG11201602010VA (ja) |
TW (1) | TWI588904B (ja) |
WO (1) | WO2015079621A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7251458B2 (ja) * | 2019-12-05 | 2023-04-04 | 株式会社Sumco | シリコンウェーハの製造方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1092757A (ja) * | 1996-09-10 | 1998-04-10 | Tokyo Electron Ltd | 被処理体の支持構造 |
JP2002274983A (ja) * | 2001-03-12 | 2002-09-25 | Tokai Konetsu Kogyo Co Ltd | SiC膜を被覆した半導体製造装置用部材およびその製造方法 |
JP2002324830A (ja) * | 2001-02-20 | 2002-11-08 | Mitsubishi Electric Corp | 基板熱処理用保持具、基板熱処理装置、半導体装置の製造方法、基板熱処理用保持具の製造方法及び基板熱処理用保持具の構造決定方法 |
JP2004241545A (ja) | 2003-02-05 | 2004-08-26 | Shin Etsu Handotai Co Ltd | 縦型熱処理用ボート及び半導体ウエーハの熱処理方法 |
JP2005101161A (ja) | 2003-09-24 | 2005-04-14 | Hitachi Kokusai Electric Inc | 熱処理用支持具、熱処理装置、熱処理方法、基板の製造方法及び半導体装置の製造方法 |
JP2008277781A (ja) * | 2007-03-30 | 2008-11-13 | Covalent Materials Corp | 縦型ウエハボート |
WO2009128225A1 (ja) * | 2008-04-17 | 2009-10-22 | 信越半導体株式会社 | 縦型熱処理用ボートおよびそれを用いたシリコンウエーハの熱処理方法 |
JP2010283153A (ja) * | 2009-06-04 | 2010-12-16 | Hitachi Kokusai Electric Inc | 半導体装置の製造方法、熱処理装置、及び熱処理用部材 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0884769A1 (en) | 1996-02-29 | 1998-12-16 | Tokyo Electron Limited | Heat-treating boat for semiconductor wafer |
JPH10233368A (ja) * | 1997-02-20 | 1998-09-02 | Toshiba Ceramics Co Ltd | 縦型ウエハボート |
JP4363401B2 (ja) * | 2003-03-26 | 2009-11-11 | 信越半導体株式会社 | 熱処理用ウェーハ支持具及び熱処理装置 |
US7888685B2 (en) | 2004-07-27 | 2011-02-15 | Memc Electronic Materials, Inc. | High purity silicon carbide structures |
US7601227B2 (en) * | 2005-08-05 | 2009-10-13 | Sumco Corporation | High purification method of jig for semiconductor heat treatment |
KR101332206B1 (ko) * | 2005-12-02 | 2013-11-25 | 롬 앤드 하스 일렉트로닉 머트어리얼즈, 엘.엘.씨. | 반도체 처리 방법 |
JP4290187B2 (ja) * | 2006-09-27 | 2009-07-01 | コバレントマテリアル株式会社 | 半導体ウェーハ熱処理用ボートの表面清浄化方法 |
KR100818842B1 (ko) | 2006-12-27 | 2008-04-01 | 주식회사 실트론 | 웨이퍼의 열처리시 슬립을 방지할 수 있는 웨이퍼 지지 핀및 웨이퍼의 열처리 방법 |
JP5211543B2 (ja) * | 2007-05-01 | 2013-06-12 | 信越半導体株式会社 | ウエーハ支持治具およびこれを備えた縦型熱処理用ボートならびにウエーハ支持治具の製造方法 |
JP5439305B2 (ja) | 2010-07-14 | 2014-03-12 | 信越半導体株式会社 | シリコン基板の製造方法及びシリコン基板 |
US20130023108A1 (en) * | 2011-07-22 | 2013-01-24 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing soi substrate |
TWI523107B (zh) | 2011-09-27 | 2016-02-21 | 環球晶圓日本股份有限公司 | 矽晶圓之熱處理方法 |
JP5997552B2 (ja) | 2011-09-27 | 2016-09-28 | グローバルウェーハズ・ジャパン株式会社 | シリコンウェーハの熱処理方法 |
-
2013
- 2013-11-26 JP JP2013244374A patent/JP6086056B2/ja active Active
-
2014
- 2014-10-27 KR KR1020167009150A patent/KR102105367B1/ko active IP Right Grant
- 2014-10-27 EP EP14865182.1A patent/EP3035373B1/en active Active
- 2014-10-27 SG SG11201602010VA patent/SG11201602010VA/en unknown
- 2014-10-27 US US15/022,846 patent/US9922842B2/en active Active
- 2014-10-27 WO PCT/JP2014/005417 patent/WO2015079621A1/ja active Application Filing
- 2014-10-27 CN CN201480052178.9A patent/CN105580119B/zh active Active
- 2014-11-05 TW TW103138382A patent/TWI588904B/zh active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1092757A (ja) * | 1996-09-10 | 1998-04-10 | Tokyo Electron Ltd | 被処理体の支持構造 |
JP2002324830A (ja) * | 2001-02-20 | 2002-11-08 | Mitsubishi Electric Corp | 基板熱処理用保持具、基板熱処理装置、半導体装置の製造方法、基板熱処理用保持具の製造方法及び基板熱処理用保持具の構造決定方法 |
JP2002274983A (ja) * | 2001-03-12 | 2002-09-25 | Tokai Konetsu Kogyo Co Ltd | SiC膜を被覆した半導体製造装置用部材およびその製造方法 |
JP2004241545A (ja) | 2003-02-05 | 2004-08-26 | Shin Etsu Handotai Co Ltd | 縦型熱処理用ボート及び半導体ウエーハの熱処理方法 |
JP2005101161A (ja) | 2003-09-24 | 2005-04-14 | Hitachi Kokusai Electric Inc | 熱処理用支持具、熱処理装置、熱処理方法、基板の製造方法及び半導体装置の製造方法 |
JP2008277781A (ja) * | 2007-03-30 | 2008-11-13 | Covalent Materials Corp | 縦型ウエハボート |
WO2009128225A1 (ja) * | 2008-04-17 | 2009-10-22 | 信越半導体株式会社 | 縦型熱処理用ボートおよびそれを用いたシリコンウエーハの熱処理方法 |
JP2010283153A (ja) * | 2009-06-04 | 2010-12-16 | Hitachi Kokusai Electric Inc | 半導体装置の製造方法、熱処理装置、及び熱処理用部材 |
Also Published As
Publication number | Publication date |
---|---|
KR102105367B1 (ko) | 2020-04-28 |
EP3035373A4 (en) | 2017-04-12 |
US9922842B2 (en) | 2018-03-20 |
KR20160089342A (ko) | 2016-07-27 |
US20160233107A1 (en) | 2016-08-11 |
TWI588904B (zh) | 2017-06-21 |
JP2015103717A (ja) | 2015-06-04 |
EP3035373B1 (en) | 2018-06-06 |
EP3035373A1 (en) | 2016-06-22 |
JP6086056B2 (ja) | 2017-03-01 |
SG11201602010VA (en) | 2016-04-28 |
CN105580119B (zh) | 2018-02-06 |
CN105580119A (zh) | 2016-05-11 |
TW201526112A (zh) | 2015-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20090127746A1 (en) | Heat treatment jig and heat treatment method for silicon wafer | |
TWI471970B (zh) | A wafer-supporting jig and a method for manufacturing a crystal tube for a vertical type heat treatment and a wafer support | |
KR100908415B1 (ko) | 어닐 웨이퍼의 제조방법 및 어닐 웨이퍼 | |
JP4998246B2 (ja) | 半導体基板支持治具及びその製造方法。 | |
JP6086056B2 (ja) | 熱処理方法 | |
WO2005124848A1 (ja) | 熱処理用治具及び半導体ウエーハの熱処理方法 | |
JP2006128316A (ja) | 熱処理用縦型ボートおよび熱処理方法 | |
JP6290585B2 (ja) | バッチ式基板処理装置 | |
JP5350623B2 (ja) | シリコンウエハの熱処理方法 | |
JP2001358086A (ja) | ウェーハの熱処理方法とその装置 | |
JP2010040806A (ja) | シリコンウェーハの熱処理方法 | |
JP2005166823A (ja) | 半導体基板熱処理装置、半導体基板熱処理用ウェハボート、及び半導体基板の熱処理方法 | |
JP2005328008A (ja) | 半導体ウェーハの熱処理用縦型ボート及び熱処理方法 | |
JP2005109149A (ja) | 半導体ウエハの製造方法 | |
JP4488249B2 (ja) | タンタル酸リチウム結晶の製造方法 | |
JP5626188B2 (ja) | 半導体ウェーハの熱処理方法 | |
JP5072185B2 (ja) | 熱処理ボートの評価方法 | |
JP6298403B2 (ja) | シリコンウェーハ熱処理用支持治具 | |
JP2013069985A (ja) | 半導体装置の製造方法 | |
JP2005019748A (ja) | ウエーハの熱処理用治具及び熱処理方法 | |
JP2010258074A (ja) | ウェーハ加熱方法及びエピタキシャルウェーハ製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480052178.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14865182 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014865182 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15022846 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20167009150 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |