WO2015076231A1 - 多官能ウレタン(メタ)アクリレートおよびその硬化性樹脂組成物 - Google Patents

多官能ウレタン(メタ)アクリレートおよびその硬化性樹脂組成物 Download PDF

Info

Publication number
WO2015076231A1
WO2015076231A1 PCT/JP2014/080421 JP2014080421W WO2015076231A1 WO 2015076231 A1 WO2015076231 A1 WO 2015076231A1 JP 2014080421 W JP2014080421 W JP 2014080421W WO 2015076231 A1 WO2015076231 A1 WO 2015076231A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
resin composition
curable resin
acrylate
mass
Prior art date
Application number
PCT/JP2014/080421
Other languages
English (en)
French (fr)
Inventor
掛谷 文彰
松本 隆宏
克之 村井
哲治 諸岩
前田 保博
Original Assignee
三菱瓦斯化学株式会社
日本ユピカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社, 日本ユピカ株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to KR1020167016270A priority Critical patent/KR20160089423A/ko
Priority to JP2015549142A priority patent/JP6438410B2/ja
Priority to CN201480063244.2A priority patent/CN105814106B/zh
Priority to US15/037,137 priority patent/US9969839B2/en
Priority to EP14863590.7A priority patent/EP3072914B1/en
Publication of WO2015076231A1 publication Critical patent/WO2015076231A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/671Unsaturated compounds having only one group containing active hydrogen
    • C08G18/672Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen
    • C08G18/673Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen containing two or more acrylate or alkylacrylate ester groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3215Polyhydroxy compounds containing aromatic groups or benzoquinone groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/758Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing two or more cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • C09D175/16Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds

Definitions

  • the present invention is a novel polyfunctional urethane (meth) acrylate, particularly a curable polyfunctional urethane (meth) acrylate oligomer that is cured by active energy rays, a curable resin composition, a cured product thereof, or a resin molded body.
  • the present invention relates to a cured coating and a protective coating on a plastic substrate.
  • Optical film is generally used as a protective film for optical parts. To prevent scratches on the surface due to handling during production, and to prevent scratches caused by user use when used on the outermost surface. Therefore, a hard coat layer is provided on one side or both sides.
  • Examples of scratches caused by user use include scratches where a metal key is rubbed against the surface of a display when a mobile phone such as a smartphone with a display on the front and a metal key are put together in a pocket. It is done. In order to prevent such scratches, the hard coat layer has recently been required to have particularly high scratch resistance and pencil hardness.
  • an organic-inorganic hybrid type cured resin composition has been developed for the recent high demands on the scratch resistance and hardness of resin films, but this has a serious problem.
  • an inorganic material such as silica in order to increase the hardness, features such as processability inherent in the resin are impaired.
  • the coating film hardened using an inorganic material such as silica has properties close to that of glass, and can be said to be a natural consequence of using a cured product against the background of a conventional organic-inorganic hybrid.
  • the object of the present invention is to achieve both the inherent processability of the resin and the required performance of recent high hardness coating films.
  • the present inventors have found that the above problem can be solved by the oligomer described in Formula 1 below and a curable resin composition using the oligomer.
  • the present invention is as follows.
  • I. Polyfunctional urethane (meth) acrylate oligomer represented by Formula 1 (In Formula 1, X represents a (meth) acryloyloxy group, A1 and A3 are at least one deisocyanate residue of an alicyclic diisocyanate which is a deisocyanate residue of norbornane diisocyanate, and A2 is metaxylylene. The dehydrated acid residue of glycol, n, m and l are natural numbers).
  • II. The polyfunctional urethane (meth) acrylate oligomer according to I above, having a polystyrene-reduced number average molecular weight of 900 to 30,000.
  • V A cured product obtained by irradiating the curable resin composition described in III or IV with active energy rays.
  • the curable resin composition described in III or IV is applied to a resin substrate so as to have a thickness of 5 to 200 ⁇ m, irradiated with active energy rays, and the substrate surface is irradiated with the above-described V or VI. It is a resin molded body formed by forming a cured product.
  • FIG. 7 It is a cross section of the film which formed the hardened
  • FIG. 7 It is a cross section of the film which formed the hardened
  • the polyfunctional (meth) urethane oligomer of the present invention can be represented by Formula 1.
  • X in Formula 1 represents (In Formula 1, X represents a (meth) acryloyloxy group. If 1 in Formula 1 is a natural number, there is no particular limitation, but 3 or more is desirable. If it is less than this, curing shrinkage tends to occur, which is not desirable.
  • the upper limit is not particularly limited, but when l is extremely large, the viscosity increases. Therefore, it is preferably less than 50, more preferably less than 30, more preferably less than 10.
  • the polystyrene-equivalent number average molecular weight is less than 30,000, desirably less than 10,000, more desirably less than 5,000, and most desirably less than 3,000. It is desirable.
  • the molecular weight of the polyfunctional (meth) urethane oligomer of the present invention is 900 or more, desirably 920 or more, more desirably 950 or more, as the number average molecular weight in terms of polystyrene.
  • the oligomer of the present invention is preferably a mixture of oligomers having a value of 1 in terms of hardness and suppression of curing shrinkage.
  • the viscosity of the polyfunctional (meth) urethane oligomer of the present invention is 5 Pa ⁇ sec to 50 Pa ⁇ sec, preferably 10 Pa ⁇ sec to 35 Pa ⁇ sec, more preferably 19 Pa ⁇ sec in a state diluted in a 90% by mass MEK solution. sec to 25 Pa ⁇ sec.
  • n and m in Formula 1 are not particularly limited as long as they are natural numbers, n and m are preferably 3 or less, more preferably 2 or less. If the value is larger than this, curing shrinkage may increase.
  • A1 and A3 represent deisocyanate groups of alicyclic diisocyanate. At least one of these is a deisocyanate residue of an alicyclic diisocyanate that is a deisocyanate residue of norbornane diisocyanate.
  • Examples of the deisocyanate of the alicyclic isocyanate to be used in combination include dediisocyanate residues such as isophorone diisocyanate, cyclohexane diisocyanate, tetramethylene xylylene diisocyanate, and dicyclohexylmethane diisocyanate hydrogenated xylylene diisocyanate.
  • deisocyanate residue of the alicyclic diisocyanate it is particularly desirable that both A1 and A3 are deisocyanate residues (Chemical Formula 4) of norbornane diisocyanate (Chemical Formula 3).
  • A2 in Formula 1 is a dehydrated acid residue (Chemical Formula 6) of metaxylylene glycol (Chemical Formula 5).
  • the dehydrated acid residues of aliphatic diols and paraxylylene glycol are undesirably low in hardness. Further, in the case of a dehydrated acid residue of orthoxylylene, curing shrinkage becomes remarkable, which is not desirable.
  • the polyfunctional urethane (meth) acrylate oligomer of the present invention can be synthesized by the following method. That is, the following raw materials, a polyfunctional urethane (meth) acrylate monomer represented by Formula 2 having one hydroxyl group, (In formula 2, n represents a natural number, and X represents a (meth) acryloyloxy group, that is, CH 2 ⁇ CR—COO— (Formula 8).) (Wherein R is hydrogen or a methyl group)
  • a polymerization catalyst is added to the alicyclic diisocyanate and metaxylylene glycol and synthesized by a polycondensation reaction.
  • n and m are 3 or less, More preferably, it is 2 or less.
  • the curable resin composition using the polyfunctional urethane (meth) acrylate oligomer of the present invention contains 40% by mass or more of the polyfunctional (meth) urethane acrylate represented by the above (formula 1).
  • the content is desirably 60% by mass or more, and more desirably 80% by mass or more.
  • a (meth) acrylate monomer may be blended as necessary for the purpose of adjusting the viscosity.
  • the monomer to be blended include monofunctional monomers [2-ethylhexyl (meth) acrylate, isodecyl (meth) acrylate, isooctyl (meth) acrylate, benzyl (meth) acrylate, cyclopentanyl (meth) acrylate, cyclohexyl (meth)].
  • a solvent may be added to the curable resin composition of the present invention.
  • the solvent include highly volatile organic solvents such as ketones such as methyl ethyl ketone and methyl isobutyl ketone, glycol ethers such as methoxypropanol propylene glycol monomethyl ether, and 10 to 50% by mass, preferably 15 to 30%. % By mass.
  • the resin composition of the present invention may contain an antioxidant, an ultraviolet absorber, a light stabilizer, a leveling agent, a pigment, an inorganic filler, an organic filler, an organic solvent, and the like.
  • cured material of this invention is obtained by apply
  • the substrate include a plastic film made of polypropylene resin, polycarbonate resin, polyethylene resin, polyethylene terephthalate resin, polyethylene naphthalate resin, polymethyl methacrylate resin, polystyrene resin, and the like, and the shape is not limited.
  • the thickness is usually about 10 to 500 ⁇ m, preferably 20 to 200 ⁇ m.
  • the coating method is not particularly limited.
  • gravure coating method, reverse coating method, die coating method, lip coating method, blade coating method, roll coating method, roll coating method, knife coating method, curtain coating method, slot orifice method, spray Examples thereof include a coating method and an inkjet method.
  • examples of the energy ray supply source include a high-pressure mercury lamp and a metal halide lamp, and the irradiation energy is usually about 100 to 2,000 mJ / cm 2 .
  • the supply source and irradiation method are not particularly limited, and the irradiation energy is usually about 10 to 200 kGy. .
  • the active energy ray used for obtaining the cured product is an electron beam, it is not necessary, but when it is cured by ultraviolet rays, it is necessary to add a photopolymerization initiator to the curable resin composition.
  • a photoinitiator it does not specifically limit and can use a well-known thing.
  • the amount of the photopolymerization initiator used is not particularly limited, but is usually about 1 to 10 parts by weight, preferably 1 to 7 parts by weight, more preferably 3 to 100 parts by weight with respect to 100 parts by weight with respect to the curable resin composition. 5 parts by mass is preferable.
  • the thickness of the coating film obtained by applying the curable resin composition to a substrate and cured by irradiation with active energy rays is not particularly limited, but is preferably 5 to 200 ⁇ m, more preferably 10 to 100 ⁇ m, and most preferably. 40-100 ⁇ m. If it is thinner than this range, sufficient hardness will not be exhibited. On the other hand, if it is thicker than this, poor curing tends to occur, which is not desirable.
  • This curable resin composition was applied to the surface of a polycarbonate film having a thickness of 200 ⁇ m by a bar coater and dried at 50 ° C. for 1 minute.
  • the polycarbonate film coated with this curable resin composition was irradiated with ultraviolet rays using a high-pressure mercury lamp at an integrated light quantity of 500 mJ / cm 2 to form a cured product on the polycarbonate film surface. That is, a hard coat film was obtained.
  • the obtained hard coat film is cut into a 10 cm square, and the four corners are attached to a glass plate with a cellophane tape, and the surface pencil hardness is based on the provisions of JIS K 5600-5-4 (1999 edition). Measurements were made using a scratch tester. The surface pencil hardness was 8H. The thickness of the cured product was 40 ⁇ m by cross-sectional observation. In addition, as shown in FIG. 1, the defect
  • Steel wool (wire diameter: about 0.012 mm), which is ultrafine count # 0000, was brought into contact with the cured product surface on a polycarbonate film placed horizontally at a load of 100 gf / cm 2 , and was subjected to 15 reciprocating wears. The amount of change in haze value (cloudiness) before and after abrasion was determined. There were no scratches before and after the abrasion, and there was no change in the haze value.
  • a cured product was formed on the polycarbonate film surface in the same manner as in Example 1 except that 20 parts by mass of methyl ethyl ketone mixed with the hexafunctional urethane acrylate oligomer in Example 1 was changed to 50 parts by mass.
  • the thickness of the cured product, the cross-sectional state, the surface pencil hardness, and the amount of change in haze value (haze) before and after abrasion with # 0000 steel wool were measured.
  • the thickness was 20 ⁇ m, and there was no defect due to cracking of the cured product in the cross section.
  • the surface pencil hardness was 2H. There was no change in haze value.
  • Example 2 The procedure was the same as Example 1 except that 100 parts by mass of norbornane diisocyanate in Example 1 was changed to 92.8 parts by mass of isophorone diisocyanate.
  • the thickness was 40 ⁇ m, and there was no defect due to cracking of the cured product in the cross section.
  • the surface pencil hardness was 4H, but scratches were generated after wear of stee wool and the haze value increased by 1%.
  • Example 2 The same procedure as in Example 2 was conducted, except that 100 parts by mass of norbornane diisocyanate in Example 2 was changed to 92.8 parts by mass of isophorone diisocyanate.
  • the thickness was 10 ⁇ m, and there was no defect due to cracking of the cured product in the cross section.
  • the surface pencil hardness was B. Scratches occurred after the wear of steel wool, and the haze value increased by 1%.
  • Example 1 Except for changing 100 parts by weight of norbornane diisocyanate in Example 1 to 109.6 parts by weight of metaxylene diisocyanate, a hexafunctional urethane acrylate oligomer was obtained in the same manner as in Example 1, but it was a solid insoluble in methyl ethyl ketone. The preparation of the curable resin composition and the formation and evaluation of the cured product were abandoned.
  • Example 2 The procedure was the same as Example 1 except that 33.5 parts by mass of metaxylylene glycol in Example 1 was changed to 33.5 parts by mass of paraxylene glycol.
  • the thickness was 40 ⁇ m, and there was no defect due to cracking of the cured product in the cross section.
  • the surface pencil hardness was 2H. There was no change in haze value.
  • Example 2 The procedure was the same as Example 1 except that 33.5 parts by mass of metaxylylene glycol in Example 1 was changed to 33.5 parts by mass of orthoxylene glycol. Immediately after the cured product was formed on the polycarbonate film, a crack was generated, and the evaluation such as pencil hardness was abandoned.
  • Example 3 The same manner as in Example 1 except that 33.5 parts by mass of metaxylylene glycol in Example 1 was not added. Immediately after the cured product was formed on the polycarbonate film, a crack was generated, and the evaluation such as pencil hardness was abandoned.
  • a reactor equipped with a stirrer, a cooling tube, a dropping funnel and a nitrogen introduction tube was charged with 480 parts by mass of methyl isobutyl ketone, and the temperature was raised to 110 ° C. while stirring, and then glycidyl methacrylate 130
  • a mixed solution consisting of 15 parts by weight of methyl methacrylate, 304 parts by weight of methyl methacrylate and 15 parts by weight of t-butylperoxy-2-ethylhexanoate (“Perbutyl O” manufactured by Nippon Emulsifier Co., Ltd.) was dropped from the dropping funnel over 3 hours. Thereafter, it was kept at 110 ° C. for 15 hours.
  • Example 2 Using this composition, a cured product was formed on the polycarbonate film surface in the same manner as in Example 1. The thickness was 40 ⁇ m. As shown in FIG. 2, cracks occurred when the film formed with the cured product layer of Comparative Example 7 was cut, and defects in the cured product layer associated with the cracks were observed. The surface pencil hardness was HB. There was no change in haze value.
  • the pencil hardness and haze value change after the steel wool test were measured in the same manner as in Example 1.
  • polycarbonate itself is a material that is very easily damaged. Reflecting this, the surface pencil hardness was 2B, and the haze value was increased by 40% after the steel wool test.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Paints Or Removers (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)

Abstract

 本発明は、基材の表面に、硬化性樹脂組成物による硬化物層を設ける樹脂フィルムにおいて、樹脂の加工性等と近年の高硬度化塗膜に対する要求性能とを両立することを目的とする。 上記課題は、樹脂基材に塗布して硬化させることにより硬化物層を形成可能な硬化性樹脂組成物であって、所定の多官能ウレタン(メタ)アクリレートオリゴマーを含む硬化性樹脂組成物により、解決された。

Description

多官能ウレタン(メタ)アクリレートおよびその硬化性樹脂組成物
 本発明は、新規な多官能ウレタン(メタ)アクリレート、特に、活性エネルギー線などにより硬化する硬化性の多官能ウレタン(メタ)アクリレートオリゴマー、硬化性樹脂組成物、その硬化物または樹脂成形体としての硬化被膜、およびプラスチック基材の保護コーティングに関する。
 光学フィルムは、一般に光学部品の保護フィルムとして使用されているが、生産時の取扱いにより表面に傷が付くことを防止するため、また、最表面に使用された場合のユーザー使用による傷を防止するため、ハードコート層を片面または両面に設けることが行なわれている。
 ユーザー使用による傷として、例えば、前面にディスプレイがあるスマートフォンのような携帯電話等と金属製のカギをポケットに一緒に入れた場合、金属製のカギがディスプレイの表面にこすれて付く傷等が挙げられる。このような傷付き防止を目的にハードコート層には、近年、特に高い耐擦傷性・鉛筆硬度が求められている。
 このような状況を背景に、特許文献1から4等にあるような、コロイダルシリカや乾燥シリカ微粒子に代表される無機フィラーを用いた有機無機ハイブリット系の硬化性樹脂組成物が開発されている。特に特許文献5にある通り、有機物では近年の高硬度化塗膜に対応できないとされてきた。
特開2013-108009号公報 特開2011-012145号公報 特開2009-286972号公報 特開2008-150484号公報 特開2000-191710号公報
 前記の通り、樹脂フィルムにおいて、耐擦傷性や硬度に対する近年の高い要求に対しては、有機無機ハイブリッド型の硬化樹脂組成物が開発されているが、これには重大な問題がある。つまり硬度を高くするためにシリカなどの無機物を用いることで、樹脂本来の持つ加工性などの特長が損なわれるということである。
 例えば、フィルムを所定サイズに切断しようとする場合、切断面に細かなクラックが発生する。これは、シリカなど無機物を用いて高硬度化した塗膜は、ガラスに特性が近付くためであり、従来の有機無機ハイブリッドを背景とする硬化物を用いることによる当然の帰結といえる。
 本発明は、樹脂本来の加工性等と近年の高硬度化塗膜に対する要求性能とを両立することを目的としている。
 本発明者らは鋭意検討の末、下記の式1に記載のオリゴマー、およびそれを用いた硬化性樹脂組成物により、前記課題を解決できることを見出した。本発明は、具体的には以下の通りである。
I.式1で表わされる多官能ウレタン(メタ)アクリレートオリゴマー
Figure JPOXMLDOC01-appb-C000002
(式1中、Xは(メタ)アクリロイルオキシ基を表わし、A1,A3は少なくといずれか一つがノルボルナンジイソシアネートの脱イソシアネート残基である脂環式ジイソシアネートの脱イソシアネート残基、A2はメタキシリレングリコールの脱水酸残基、n,m,lは自然数)である。
II.ポリスチレン換算数平均分子量が900~30,000である、上記Iに記載の多官能ウレタン(メタ)アクリレートオリゴマーである。
III.上記IまたはIIに記載の前記多官能ウレタン(メタ)アクリレートオリゴマーを40質量%以上含有する硬化性樹脂組成物である。
IV.上記IIIに記載の前記硬化性樹脂組成物100質量部に対し、光重合開始剤を1~10質量部添加されてなる硬化性樹脂組成物である。
V.上記IIIまたはIVに記載の前記硬化性樹脂組成物に活性エネルギー線を照射してなる硬化物である。
VI.前記活性エネルギー線が紫外線である上記Vに記載の硬化物である。
VII.上記IIIまたはIVに記載の前記硬化性樹脂組成物を樹脂基材に厚さ5~200μmになるよう塗布して、活性エネルギー線を照射して基材表面に、上記VまたはVIに記載の前記硬化物を形成してなる樹脂成形体である。
実施例1における硬化物を形成したフィルムの断面である。 比較例7における硬化物を形成したフィルムの断面である。
 本発明の多官能(メタ)ウレタンオリゴマーは、式1で表わすことができる。
Figure JPOXMLDOC01-appb-C000003
 式1中のXは、(式1中、Xは(メタ)アクリロイルオキシ基を表わす。
 式1中のlは自然数であれば、特に制約はないが、3以上が望ましい。これより少ないと硬化収縮が起こりやすくなるので望ましくない。上限に特に制約はないが、lが極端に大きくなると、粘度が増大するため、望ましくは50未満、さらに望ましくは30未満、より望ましくは10未満である。また分子量も同様に上限は特にないが、同様の理由でポリスチレン換算数平均分子量として30,000未満、望ましくは10,000未満、より望ましくは5,000未満、最も望ましくは3,000未満とすることが望ましい。
 また、本発明の多官能(メタ)ウレタンオリゴマーの分子量は、ポリスチレン換算数平均分子量として900以上、望ましくは920以上、より望ましくは950以上である。
 尚、本発明のオリゴマーは複数のlの値を有するオリゴマーの混合物とする方が、硬度と硬化収縮抑制の面で望ましい。
 また、本発明の多官能(メタ)ウレタンオリゴマーの粘度は、90質量%のMEK溶液に希釈した状態において5Pa・sec~50Pa・sec、望ましくは10Pa・sec~35Pa・sec、より望ましくは19Pa・sec~25Pa・secである。
 式1中のn、mは自然数であれば、特に制約はないが、望ましくはn、mは3以下、より望ましくは2以下である。これよりも大きい値であると硬化収縮が大きくなる可能性がある。
 A1,A3は、脂環式ジイソシアネートの脱イソシアネート基を示す。これらのうちすくなとも一つは、ノルボルナンジイソシアネートの脱イソシアネート残基である脂環式ジイソシアネートの脱イソシアネート残基である。併用する脂環式イソシアネートの脱イソシアネートとしては、イソホロンジイソシアネート、シクロヘキサンジイソシアネート、テトラメチレンキシリレンジイソシアネート、ジシクロヘキシルメタンジイソシアネート水添キシリレンジイソシアネート等の脱ジイソアネート残基などが挙げられる。脂環式ジイソシアネートの脱イソシアネート残基としては、特に、A1,A3いずれもが、ノルボルナンジイソシアネート(化3)の脱イソシアネート残基(化4)であることが望ましい。
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
 式1中のA2は、メタキシリレングリコール(化5)の脱水酸残基(化6)である。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
 脂肪族ジオールおよびパラキシリレングリコールの脱水酸残基は、硬度が低くなり、望ましくない。また、オルソキシリレンの脱水酸残基の場合は、硬化収縮が著しくなり、望ましくない。
 本発明の多官能ウレタン(メタ)アクリレートオリゴマーは以下の手法で合成できる。
 すなわち、以下の原料、1つの水酸基を有する式2であらわられる多官能ウレタン(メタ)アクリレートモノマー、
Figure JPOXMLDOC01-appb-C000008
 (式2中のnは自然数、Xは(メタ)アクリロイルオキシ基、すなわちCH=CR-COO-(化8)を表わす。) 
Figure JPOXMLDOC01-appb-C000009
(式中、Rは水素またはメチル基である)
および前記脂環式ジイソシアネートとメタキシリレングリコールに、重合触媒を配合して重縮合反応により合成される。なお、nの値については、式1について記載した通りであり、特に制約はないが、望ましくはn、mは3以下、より望ましくは2以下である。
 本発明の多官能ウレタン(メタ)アクリレートオリゴマーを用いた硬化性樹脂組成物は、上記(式1)で表わされる、多官能(メタ)ウレタンアクレートを40質量%以上含有するものである。望ましくは、60質量%以上、さらに望ましくは80質量%以上含有するものである。
 本発明の硬化性樹脂組成物には、粘度調整等を目的に必要に応じて(メタ)アクレートモノマーを配合してもよい。
 配合するモノマーとしては例えば、単官能性モノマー〔2-エチルヘキシル(メタ)アクリレート、イソデシル(メタ)アクリレート、イソオクチル(メタ)アクリレート、ベンジル(メタ)アクリレート、シクロペンタニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、イソボニル(メタ)アクリレート等〕、2官能モノマー〔1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、アリル(メタ)アクリレート、エピクロルヒドリン変性1,6-ヘキサンジオールアクリレート、トリグリセロールジアクリレート等〕、3官能以上の(メタ)アクリレート〔トリメチロールプロパントリ(メタ)アクリレート、エチレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、エピクロルヒドリン変性トリメチロールプロパントリ(メタ)アクリレート、トリビニルベンゼン、トリビニルシクロヘキサン、ジトリメチロールプロパンテトラ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート等〕などが挙げられ、これらは1種を単独で、または2種以上を組み合わせることができる。
 硬化性樹脂組成物における(メタ)アクレートモノマーの配合量は、5~60質量%、望ましくは10~50質量%である。
 また、本発明の硬化性樹脂組成物には、多官能ウレタン(メタ)アクリレートオリゴマー、および、必要に応じて加えられる(メタ)アクレートモノマーの他に、溶媒を加えてもよい。溶媒としては、例えば、メチルエチルケトン、メチルイソブチルケトン等のケトン類、メトキシプロパノールプロピレングリコールモノメチルエーテル等のグリコールエーテル類等の揮発性の高い有機溶剤が用いられ、10~50質量%、望ましくは15~30質量%である。
 なお、本発明の樹脂組成物には、その他、酸化防止剤、紫外線吸収剤、光安定剤、レベリング剤、顔料、無機フィラー、有機フィラー、有機溶剤等を含有させることができる。
 本発明の硬化物は、基材に前記硬化性樹脂組成物を塗布し、活性エネルギー線(紫外線、電子線等)を照射し塗膜を硬化させることで得られる。
 基材としては、例えば、ポリプロピレン樹脂、ポリカーボネート樹脂、ポリエチレン樹脂、ポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ポリメタクリル酸メチル樹脂、ポリスチレン樹脂等からなるプラスチックフィルムが挙げられ、その形状は限定されない。また、基材がフィルム状である場合、その厚みは通常、10~500μm程度、好ましくは20~200μmである。
 塗布方法は特に限定されず、例えば、グラビアコート方式、リバースコート方式、ダイコート方式、リップコート方式、ブレードコート方式、ロールコート方式、ロールコート方式、ナイフコート方式、カーテンコート方式、スロットオリフィス方式、スプレーコート方式、インクジェット方式等が挙げられる。
 活性エネルギー線が紫外線の場合は、エネルギー線の供給源としては、例えば高圧水銀灯やメタルハライドランプ等が挙げられ、その照射エネルギーは、通常100~2,000mJ/cm程度である。
 また、活性エネルギー線が電子線の場合は、供給源や照射方法(スキャン式電子線照射法、カーテン式電子線照射法等)は特に限定されず、その照射エネルギーは通常10~200kGy程度である。
 前記硬化物を得る際に用いる活性エネルギー線が電子線である場合は不要であるが、紫外線により硬化させる場合には硬化性樹脂組成物に光重合開始剤を配合する必要がある。
 光重合開始剤としては、特に限定されず公知のものを用いることができる。具体的には、例えば、1-ヒドロキシ-シクロヘキシル-フェニルケトン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-シクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、4-メチルベンゾフェノン等が挙げられる。これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 光重合開始剤の使用量は特に限定されないが、通常、前記硬化性樹脂組成物に対して100質量部に対し、1~10質量部程度、好ましくは1~7質量部、さらに好ましくは3~5質量部とすることが好ましい。
 前記硬化性樹脂組成物を基材に塗布し、例えば、活性エネルギー線照射により硬化した塗膜の厚さは、特に限定されないが、望ましくは5~200μm、さらに望ましくは10~100μm、最も望ましくは40~100μmである。
 この範囲より薄いと十分な硬度が発現しない。またこれより厚いと硬化不良が発生しやすくなり望ましくない。
 以下に、具体的に実施例および比較例を挙げて本発明を説明するが、本発明はこれらの実施例に限定されるものではない。
 尚、例中の部、%は特に記載のない限り、それぞれ質量部、質量%を意味する。
攪拌機、温度計、冷却器、滴下ロート及び乾燥空気導入管を備えた5つ口フラスコに、予め乾燥空気を流入させて系内を乾燥させた後、ノルボルネンジイソシアネート100質量部、ペンタエリスリトールトリアクリレート56%とペンタエリスリトールテトラアクリレート44%からなる混合物271.2質量部、メタキシリレングリコール33.5質量部、溶剤として2-ブタノン101.2質量部を投入し、60℃に加温した。その後、重合触媒ジブチル錫ジラウレートを0.08質量部、重合禁止剤ジブチルヒドロキシトルエンを0.16質量部投入し、発熱後の温度が80~90℃になるよう冷却した。反応物中のイソシアネート残基が消費されたことを赤外線吸収スペクトルで確認し、六官能ウレタンアクリレートオリゴマーの2-ブタノン溶液506.1質量部(固形分濃度80%)を得た。得られた溶液の一部を乾固し、固形分をクロロホルムを用いて10mg/mlに希釈し、液体クロマトグラフ装置(島津製作所製LC-20AD)にGPCカラム(Jordi Gel DVB 500Å)を接続しGPC測定を行ったところ、ポリスチレン換算数平均分子量は2747であった。
 この六官能ウレタンアクリレートオリゴマー100質量部に対してメチルエチルケトン20質量部、光重合開始剤1-ヒドロキシーシクロヘキシルーフェニルケトン(BASF社製I-184)を4質量部を混合し、活性エネルギー線として紫外線を用いる硬化性組成物を得た。
<塗布および硬化>
 この硬化性樹脂組成物をバーコータにより、厚さ200μmのポリカーボネートフィルム表面に塗布し、50℃で1分間、乾燥した。この硬化性樹脂組成物を塗布したポリカーボネートフィルムに高圧水銀ランプを用いて積算光量500mJ/cmにて紫外線照射し、ポリカーボネートフィルム表面に硬化物を形成した。つまりハードコートフィルムを得た。
 得られたハードコートフィルムを10cm角に切り、4隅をセロハンテープでガラス板に貼り付け、その表面鉛筆硬度を、JIS K 5600-5-4(1999年版)の規定に基づき、塗膜用鉛筆引掻き試験機を用いて測定した。表面鉛筆硬度は8Hであった。
 断面観察により、硬化物の厚みは40μmであった。尚、図1に示す通り、実施例1の硬化物層を形成したフィルムにおいて、割れによる欠損は認められなかった。
 超極細の番手#0000であるスチールウール(線径が約0.012mm)を荷重100gf/cmにて、水平に置かれたポリカーボネートフィルム上の硬化物面に接触させ、15回往復摩耗した後、摩耗前後でのヘイズ値(曇度)の変化量を求めた。摩耗前後での傷の発生はなくヘイズ値変化はなかった。
 実施例1における、六官能ウレタンアクリレートオリゴマーと混合するメチルエチルケトン20質量部を50質量部に変えた他は実施例1と同様にして、ポリカーボネートフィルム表面に硬化物を形成した。
 実施例1と同様にして、硬化物の厚み、断面状態、表面鉛筆硬度、#0000のスチールウールによる摩耗前後のヘイズ値(曇度)変化量を測定した。
 厚みは20μm、断面において硬化物の割れによる欠損はなかった。表面鉛筆硬度は2Hであった。ヘイズ値の変化はなかった。
比較例1
 実施例1におけるノルボルナンジイソシアネート100質量部をイソホロンジイソシアネート92.8質量部に変えた他は、実施例1と同様にした。
 厚みは40μm、断面において硬化物の割れによる欠損はなかった。表面鉛筆硬度は4Hであったが、スチーウール摩耗後に傷が発生し、ヘイズ値は1%増加した。
比較例2
 実施例2におけるノルボルナンジイソシアネート100質量部をイソホロンジイソシアネート92.8質量部に変えた他は、実施例2と同様にした。
 厚みは10μm、断面において硬化物の割れによる欠損はなかった。ただし表面鉛筆硬度はBであった。スチーウール摩耗後に傷が発生し、ヘイズ値は1%増加した。
比較例3
 実施例1におけるノルボルナンジイソシアネート100質量部をメタキシレンジイソシアネート109.6質量部に変えた他は、実施例1と同様にして、六官能ウレタンアクリレートオリゴマーを得たが、メチルエチルケトンに不溶な固体であり、硬化性樹脂組成物の調合および硬化物形成・評価を断念した。
比較例4
 実施例1におけるメタキシリレングリコール33.5質量部をパラキシレングリコール33.5質量部に変えた他は、実施例1と同様にした。
 厚みは40μm、断面において硬化物の割れによる欠損はなかった。表面鉛筆硬度は2Hであった。ヘイズ値の変化はなかった。
比較例5
 実施例1におけるメタキシリレングリコール33.5質量部をオルソキシレングリコール33.5質量部に変えた他は、実施例1と同様にした。
 ポリカーボネートフィルム上に硬化物を形成直後、クラックが発生し、鉛筆硬度などの評価を断念した。
比較例6
 実施例1におけるメタキシリレングリコール33.5質量部を投入しなかった他は実施例1と同様にした。ポリカーボネートフィルム上に硬化物を形成直後、クラックが発生し、鉛筆硬度などの評価を断念した。
比較例7
 撹拌装置、冷却管、滴下ロートおよび窒素導入管を備えた反応装置に、メチルイソブチルケトン480質量部を仕込み、撹拌しながら系内温度が110℃になるまで昇温し、次いで、グリシジルメタアクリレート130質量部、メチルメタアクリレート304質量部およびt-ブチルパーオキシ-2-エチルヘキサノエート(日本乳化剤株式会社製「パーブチルO」)15質量部からなる混合液を3時間かけて滴下ロートより滴下した後、110℃で15時間保持した。次いで、90℃まで降温した後、メトキノン0.1質量部およびアクリル酸66質量部を仕込んだ後、トリフェニルホスフィン5質量部を添加後、さらに100℃まで昇温して8時間保持し、アクリル重合体(X-2)のメチルイソブチルケトン溶液1000質量部(不揮発分50.0質量%)を得た。
 このアクリル重合体のメチルイソブチルケトン溶液20質量部(20質量部中アクリル重合体(X-2)は10.0質量部)にジペンタエリスリトールヘキサアクリレート(d-1)45質量部、一次平均粒子径が12nmであり粒子表面に(メタ)アクリロイル基を有するシリカ微粒子である日本アエロジル株式会社製「アエロジルR7200」45質量部、メチルイソブチルケトン80質量部およびプロピレングリコールモノメチルエーテル10質量部を配合し、不揮発分50%のスラリーとしたものをホモジナイザーにより混合分散し、有機無機ハイブリッドである硬化性樹脂組成物を得た。
 この組成物を用いて、実施例1と同様にポリカーボネートフィルム表面に硬化物を形成した。
 厚みは40μmであった。図2に示すとおり、比較例7の硬化物層を形成したフィルムの切断時にはクラックが発生し、クラックに伴う硬化物層の欠損が認められた。表面鉛筆硬度はHBであった。ヘイズ値の変化はなかった。
参考例
 これまでの実施例、比較例に用いた基材である200μm厚のポリカーボネートフィルムについて、実施例1と同様に、鉛筆硬度、スチールウール試験後のヘイズ値変化を測定した。ポリカーボネート自体は既に述べた通り、非常傷つきやすい素材である。
 これを反映し、表面鉛筆硬度は2B、ヘイズ値はスチールウール試験後40%増加した。
 これら実施例、比較例および参考例の結果を表1にまとめた。
Figure JPOXMLDOC01-appb-T000010
 実施例1、2と比較例1、2、3および参考例との比較により、ノルネンジイソシアネート脱イソシアネート残基を含むオリゴマーが、鉛筆硬度および耐擦傷性を向上する効果が大きいことが分かる。
 実施例1と比較例4、5、6および参考例との比較により、メタキシリレングリコール脱水酸基が、鉛筆硬度および硬化時のクラック防止性の向上に有用であることがわかる。
 さらに、実施例1と比較例7および参考例との比較により、従来の有機無機ハイブリッド型の硬化性樹脂組成物よりも本発明の硬化性樹脂組成物の方が鉛筆硬度および切断時のクラック防止性等の改善効果を示すことが分かる。 

Claims (7)

  1.  式1で表わされる多官能ウレタン(メタ)アクリレートオリゴマー
    Figure JPOXMLDOC01-appb-C000001
    (式1中、Xは(メタ)アクリロイルオキシ基を表わす。A1,A3は少なくともいずれか一つがノルボルナンジイソシアネートの脱イソシアネート残基である脂環式ジイソシアネートの脱イソシアネート残基、A2はメタキシリレングリコールの脱水酸残基、n,m,lは自然数)。
  2.  ポリスチレン換算数平均分子量が900~30,000である、請求項1記載の多官能ウレタン(メタ)アクリレートオリゴマー。
  3.  請求項1または2に記載の前記多官能ウレタン(メタ)アクリレートオリゴマーを40質量%以上含有する硬化性樹脂組成物。
  4.  請求項3記載の前記硬化性樹脂組成物100質量部に対し、光重合開始剤を1~10質量部添加されてなる硬化性樹脂組成物。
  5.  請求項3または請求項4記載の硬化性樹脂組成物に活性エネルギー線を照射してなる硬化物。
  6.  前記活性エネルギー線が紫外線である請求項5記載の硬化物。
  7.  請求項3または4記載の硬化性樹脂組成物を樹脂基材に厚さ5~200μmになるよう塗布して、活性エネルギー線を照射して基材表面に、請求項5または6記載の硬化物を形成してなる樹脂成形体。 
PCT/JP2014/080421 2013-11-22 2014-11-18 多官能ウレタン(メタ)アクリレートおよびその硬化性樹脂組成物 WO2015076231A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020167016270A KR20160089423A (ko) 2013-11-22 2014-11-18 다작용 유레테인 (메트)아크릴레이트 및 그의 경화성 수지 조성물
JP2015549142A JP6438410B2 (ja) 2013-11-22 2014-11-18 多官能ウレタン(メタ)アクリレートおよびその硬化性樹脂組成物
CN201480063244.2A CN105814106B (zh) 2013-11-22 2014-11-18 多官能团(甲基)丙烯酸氨基甲酸酯及其固化性树脂组合物
US15/037,137 US9969839B2 (en) 2013-11-22 2014-11-18 Polyfunctional urethane (meth)acrylate and curable resin composition thereof
EP14863590.7A EP3072914B1 (en) 2013-11-22 2014-11-18 Polyfunctional urethane (meth)acrylate and curable resin composition containing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013242180 2013-11-22
JP2013-242180 2013-11-22

Publications (1)

Publication Number Publication Date
WO2015076231A1 true WO2015076231A1 (ja) 2015-05-28

Family

ID=53179493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080421 WO2015076231A1 (ja) 2013-11-22 2014-11-18 多官能ウレタン(メタ)アクリレートおよびその硬化性樹脂組成物

Country Status (7)

Country Link
US (1) US9969839B2 (ja)
EP (1) EP3072914B1 (ja)
JP (1) JP6438410B2 (ja)
KR (1) KR20160089423A (ja)
CN (1) CN105814106B (ja)
TW (1) TWI659048B (ja)
WO (1) WO2015076231A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58147415A (ja) * 1982-02-26 1983-09-02 Toyo Tire & Rubber Co Ltd 耐熱性ポリウレタンエラストマ−
JP2000191710A (ja) 1998-12-28 2000-07-11 Arakawa Chem Ind Co Ltd 活性エネルギ―線硬化性樹脂組成物
JP2001002742A (ja) * 1999-06-21 2001-01-09 Hitachi Chem Co Ltd 光硬化性樹脂組成物及び塗料
JP2002226559A (ja) * 2001-02-06 2002-08-14 Akio Negishi pH変色性ポリマーとその製造法
JP2004010655A (ja) * 2002-06-04 2004-01-15 Mitsubishi Gas Chem Co Inc 2液硬化型ポリウレタン樹脂組成物およびガスバリア性ラミネート用接着剤
JP2006291148A (ja) * 2005-04-14 2006-10-26 Nippon Synthetic Chem Ind Co Ltd:The ウレタン(メタ)アクリレート系化合物及びそれを用いた活性エネルギー線硬化型樹脂組成物、並びにコーティング剤
JP2008150484A (ja) 2006-12-18 2008-07-03 Momentive Performance Materials Japan Kk ハードコート用組成物
WO2009014162A1 (ja) * 2007-07-24 2009-01-29 Mitsubishi Gas Chemical Company, Inc. ポリウレタン樹脂組成物
JP2009286972A (ja) 2008-05-30 2009-12-10 Arakawa Chem Ind Co Ltd 活性エネルギー線硬化型樹脂組成物、活性エネルギー線硬化型ハードコート剤、これらを用いた硬化被膜および硬化被膜を有する物品
JP2011012145A (ja) 2009-07-01 2011-01-20 Momentive Performance Materials Inc 非帯電性ハードコート用樹脂組成物
JP2011042712A (ja) * 2009-08-19 2011-03-03 Hitachi Chem Co Ltd 硬化性樹脂組成物、ledパッケージ、及びその製造方法
JP2013108009A (ja) 2011-11-22 2013-06-06 Dic Corp 活性エネルギー線硬化型樹脂組成物、活性エネルギー線硬化型樹脂組成物の製造方法、塗料、塗膜、及びフィルム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58140737A (ja) * 1982-02-15 1983-08-20 Toyobo Co Ltd 感光性樹脂組成物
KR100926714B1 (ko) * 2002-05-10 2009-11-17 디아이씨 가부시끼가이샤 광섬유 피복용 수지 조성물 및 그것을 이용한 피복된광섬유 및 광섬유 유닛
EP1369443B1 (en) * 2002-06-04 2007-04-04 Mitsubishi Gas Chemical Company, Inc. Gas-barrier polyurethane resin, and adhesive for laminate, film and paint containing the same
US7862953B2 (en) * 2005-12-27 2011-01-04 Canon Kabushiki Kaisha Compound, solid polymer electrolyte membrane, electrolyte membrane-electrode assembly, and solid polymer fuel cell

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58147415A (ja) * 1982-02-26 1983-09-02 Toyo Tire & Rubber Co Ltd 耐熱性ポリウレタンエラストマ−
JP2000191710A (ja) 1998-12-28 2000-07-11 Arakawa Chem Ind Co Ltd 活性エネルギ―線硬化性樹脂組成物
JP2001002742A (ja) * 1999-06-21 2001-01-09 Hitachi Chem Co Ltd 光硬化性樹脂組成物及び塗料
JP2002226559A (ja) * 2001-02-06 2002-08-14 Akio Negishi pH変色性ポリマーとその製造法
JP2004010655A (ja) * 2002-06-04 2004-01-15 Mitsubishi Gas Chem Co Inc 2液硬化型ポリウレタン樹脂組成物およびガスバリア性ラミネート用接着剤
JP2006291148A (ja) * 2005-04-14 2006-10-26 Nippon Synthetic Chem Ind Co Ltd:The ウレタン(メタ)アクリレート系化合物及びそれを用いた活性エネルギー線硬化型樹脂組成物、並びにコーティング剤
JP2008150484A (ja) 2006-12-18 2008-07-03 Momentive Performance Materials Japan Kk ハードコート用組成物
WO2009014162A1 (ja) * 2007-07-24 2009-01-29 Mitsubishi Gas Chemical Company, Inc. ポリウレタン樹脂組成物
JP2009286972A (ja) 2008-05-30 2009-12-10 Arakawa Chem Ind Co Ltd 活性エネルギー線硬化型樹脂組成物、活性エネルギー線硬化型ハードコート剤、これらを用いた硬化被膜および硬化被膜を有する物品
JP2011012145A (ja) 2009-07-01 2011-01-20 Momentive Performance Materials Inc 非帯電性ハードコート用樹脂組成物
JP2011042712A (ja) * 2009-08-19 2011-03-03 Hitachi Chem Co Ltd 硬化性樹脂組成物、ledパッケージ、及びその製造方法
JP2013108009A (ja) 2011-11-22 2013-06-06 Dic Corp 活性エネルギー線硬化型樹脂組成物、活性エネルギー線硬化型樹脂組成物の製造方法、塗料、塗膜、及びフィルム

Also Published As

Publication number Publication date
EP3072914A1 (en) 2016-09-28
CN105814106B (zh) 2018-10-09
JPWO2015076231A1 (ja) 2017-03-16
JP6438410B2 (ja) 2018-12-12
EP3072914B1 (en) 2018-05-16
US20160297920A1 (en) 2016-10-13
TWI659048B (zh) 2019-05-11
EP3072914A4 (en) 2017-08-02
CN105814106A (zh) 2016-07-27
TW201527338A (zh) 2015-07-16
US9969839B2 (en) 2018-05-15
KR20160089423A (ko) 2016-07-27

Similar Documents

Publication Publication Date Title
KR101418409B1 (ko) 하드코팅 조성물
KR101578914B1 (ko) 플라스틱 필름
KR102329391B1 (ko) 광경화성 수지 조성물, 이 조성물로 형성되는 경화 피막 및 피막을 갖는 기재와, 경화 피막 및 피막을 갖는 기재의 제조방법
TWI608935B (zh) 塑膠膜疊層板
TWI655252B (zh) 紫外線硬化性塗佈組成物、硬塗薄膜及該硬塗薄膜之製造方法
JP2011137155A (ja) ハードコーティング組成物およびこれを含む積層体
KR20130074830A (ko) 안티블로킹 하드코팅액 조성물 및 안티블로킹용 하드코팅층
JP2008038092A (ja) 帯電防止性樹脂組成物、帯電防止層、及び積層材
JP5245666B2 (ja) 表面保護用シート
TWI510530B (zh) 製備塑膠膜的方法
WO2018056370A1 (ja) 耐擦傷性ハードコート材
JP5572982B2 (ja) 活性エネルギー線硬化型コーティングニス組成物およびその印刷物
JP6481302B2 (ja) 硬化性樹脂組成物、硬化物及び積層体
JP6438410B2 (ja) 多官能ウレタン(メタ)アクリレートおよびその硬化性樹脂組成物
JP6472684B2 (ja) 活性エネルギー線硬化性組成物及びその硬化物
JP7218998B2 (ja) 硬化性樹脂組成物、硬化物及び積層体
JP7265226B2 (ja) フレキシブルハードコート用硬化性組成物
JP6561726B2 (ja) ハードコートフィルム
WO2022190937A1 (ja) ハードコート用硬化性組成物
JP2023173047A (ja) 活性エネルギー線硬化性ハードコート剤、ハードコート層、光学部材および電子機器
JP2023159921A (ja) 反射防止ハードコートフィルム
JP2021042288A (ja) ハードコート樹脂及びハードコートフィルム
JP2020075976A (ja) 光硬化性組成物
KR20160083149A (ko) 디스플레이용 반사방지 필름

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14863590

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015549142

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15037137

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014863590

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014863590

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167016270

Country of ref document: KR

Kind code of ref document: A