WO2015068265A1 - 電磁誘導機器 - Google Patents

電磁誘導機器 Download PDF

Info

Publication number
WO2015068265A1
WO2015068265A1 PCT/JP2013/080261 JP2013080261W WO2015068265A1 WO 2015068265 A1 WO2015068265 A1 WO 2015068265A1 JP 2013080261 W JP2013080261 W JP 2013080261W WO 2015068265 A1 WO2015068265 A1 WO 2015068265A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic induction
metal member
induction device
secondary winding
primary winding
Prior art date
Application number
PCT/JP2013/080261
Other languages
English (en)
French (fr)
Inventor
勇太 瓜生
善行 出口
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2015546228A priority Critical patent/JP6195627B2/ja
Priority to PCT/JP2013/080261 priority patent/WO2015068265A1/ja
Priority to CN201380080789.XA priority patent/CN105706196B/zh
Priority to EP13897002.5A priority patent/EP3067903B1/en
Publication of WO2015068265A1 publication Critical patent/WO2015068265A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F37/00Fixed inductances not covered by group H01F17/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/30Fastening or clamping coils, windings, or parts thereof together; Fastening or mounting coils or windings on core, casing, or other support
    • H01F27/303Clamping coils, windings or parts thereof together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • H01F2027/2814Printed windings with only part of the coil or of the winding in the printed circuit board, e.g. the remaining coil or winding sections can be made of wires or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2823Wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2847Sheets; Strips

Definitions

  • the present invention relates to an electromagnetic induction device incorporated in, for example, a power converter.
  • Power converters such as DCDC converters and chargers installed in electric and hybrid vehicles are equipped with electromagnetic induction devices such as transformers, reactors, and choke coils as passive components that perform voltage step-up and step-down operations. It is used for energy storage, emission element, or DC current smoothing.
  • electromagnetic induction device a structure that can be miniaturized or efficiently dissipate heat generated during energization is very important.
  • the primary winding and the secondary winding are configured in a laminated structure, and the secondary winding is separated from the insulating member, and at least two locations in the axial direction of the bobbin surrounding the core What realized the miniaturization by winding in divided is known (for example, refer to patent documents 1).
  • the reactor body As a reactor with excellent heat dissipation, the reactor body is stored in an aluminum case, and the reactor body is sealed with a filling resin having a thermal conductivity of 0.7 to 4.0 [W / m / K]. It is known that heat generated from the coil can be efficiently dissipated to the case and the cooler, and further, heat generated from the core can be efficiently dissipated by adopting a bobbinless structure. (For example, refer to Patent Document 2).
  • Patent Document 1 the primary winding and the secondary winding are stacked and wound to increase the degree of coupling between the windings. Although it is possible to reduce the size by winding it in two or more locations in the axial direction, since the winding is wound in a multi-layer structure, the inner winding near the core is located outside the winding. There was a problem that heat dissipation deteriorates by adding the thermal resistance of the insulator between the windings.
  • An object of the present invention is to provide an electromagnetic induction device that is low in cost, small in size, can efficiently dissipate heat from a coil body, and can reduce thermal resistance.
  • the purpose is that.
  • the electromagnetic induction device is: A core constituting a closed magnetic circuit; A printed wiring board supporting the core and having a plurality of wiring patterns; A metal member that circulates around the core and has both ends connected to the wiring pattern, A plurality of coil portions made of the wiring pattern and the metal member are electrically connected to each other and overlapped to constitute a coil body.
  • a coil body composed of a wiring pattern of a printed wiring board and a coil portion composed of a metal member having both ends connected to the wiring pattern is electrically connected to each other to form a coil body. Therefore, for example, by attaching a cooling means to the printed wiring board, the coil body can efficiently dissipate heat, and the thermal resistance can be reduced. Moreover, since a metal member is spaced apart and connected to the wiring pattern of a printed wiring board for every metal member, the heat dissipation of each metal member is also high.
  • FIG. 1 It is a perspective view which shows the reactor in Embodiment 1 of this invention. It is a top view which shows the wiring pattern of the printed wiring board of FIG. It is a perspective view which shows the trans
  • FIG. 1 is a perspective view showing a reactor according to Embodiment 1 of the present invention
  • FIG. 2 is a top view showing a wiring pattern 8 on a metal base printed wiring board 6 of FIG.
  • This reactor which is an electromagnetic induction device, is installed so as to surround a core 3 that is a PQ core that is an outer iron type and includes a first core portion 1 and a second core portion 2, and a middle leg portion of the core 3.
  • Metal having a plurality of C-shaped plate-like metal members 4 formed, insulating members 5 that insulate the plate-like metal members 4 from each other and the plate-like metal members 4 and the core 3, and a plurality of wiring patterns 8 on the upper surface
  • a base printed wiring board 6 This reactor is fixed to the cooler by installing and fixing the metal base printed wiring board 6 on a cooler (not shown) as a cooling means.
  • the plate-like metal member 4 is a tough pitch copper material having a specified electric resistance value.
  • the wiring pattern 8 of the metal-based printed wiring board 6 is a conductor having a prescribed electric resistance value, and is coated with an insulating resist except for a rectangular component land 7. Each wiring pattern 8 is electrically connected via a connection portion (not shown). Both end surfaces of each plate-like metal member 4 are in contact with each component land 7 and soldered to form a coil portion composed of the plate-like metal member 4 and the wiring pattern 8.
  • Each of the coil portions is electrically connected to each other, and a coil body is configured by overlapping a predetermined number of middle leg portions of the core 3.
  • the width is such that when a predetermined voltage is applied to the transformer, insulation can be secured against the voltage drop of the coil portion for one turn.
  • the bottom surface of the core 3 is installed on the metal base printed wiring board 6.
  • the insulating member 5 includes a half donut portion that is a half of a donut-like plate interposed between adjacent plate-like metal members 4, a cylindrical cylindrical portion that surrounds the middle leg portion of the core 3, and the plate-like metal member 4.
  • the outer diameter side portion interposed between the outer diameter side and the inner wall of the core 3.
  • the metal base printed wiring board 6 on which the coil body is arranged is mounted on the cooler. Therefore, the coil body can efficiently dissipate heat, and heat generated by the temperature rise of the coil body. An increase in resistance can be suppressed. Moreover, since the heat radiation area can be reduced by reducing the heat radiation area, the core 3, the plate-like metal member 4, the metal base printed wiring board 6 and the like constituting the reactor are reduced in size and weight. , And the associated cost reduction. It is possible to reduce the size and cost of the cooler that cools the reactor.
  • the plate-like metal member 4 is a plate-like member, it is possible to stabilize the dimensional accuracy, so that variation in leakage inductance can be suppressed and loss variation in the coil body can be suppressed.
  • the number of coil portions stacked, the plate width of the plate-like metal member 4 that is a component of the coil body, the distance between the coil body and the core 3, and the first core portion 1 and the second core portion 2 By adjusting the gap between them, the inductance can be easily adjusted.
  • the respective plate-like metal members 4 are arranged apart from each other, and one plate-like metal member 4 is provided. Since heat can be radiated every time, it is possible to reduce thermal resistance and improve heat dissipation.
  • Patent Document 2 unlike the reactor described in Japanese Patent Application Laid-Open No. 2009-94328 (Patent Document 2) described above, it is not necessary to store the reactor body in a metal case and fill the heat radiation resin to secure a heat radiation path. Miniaturization, weight reduction, and cost reduction are possible. Further, since the plate-like metal member 4 is connected to the component land 7 every round, it becomes possible to stabilize the dimensional accuracy between the coil portions which are the constituent elements of the coil body, and the thermal resistance, inductance, and coil body loss. Variation in isoelectric characteristics can be reduced.
  • the plate-like metal member 4 by using a tough pitch copper material for the plate-like metal member 4, electrical conductivity close to that of pure copper can be obtained, and a low electrical resistance can be realized as a coil body. At the same time, since it is a non-magnetic metal, The accompanying eddy current generation and eddy current loss can be reduced. Moreover, since the loss amount is suppressed and the thermal conductivity is close to that of pure copper, the heat generated from the plate-like metal member 4 can be efficiently radiated through the metal base printed wiring board 6 and the cooler. It becomes possible. In addition, the size and weight can be reduced.
  • a copper-based material is used, but the present invention can also be applied to an aluminum-based material.
  • the heat dissipation and conductivity are inferior to those of the copper-based material, but since it is a non-magnetic metal, the generation of eddy currents can be suppressed.
  • specific gravity is extremely small compared with a metal, especially when the number of turns of a coil body increases, it is possible to realize significant weight reduction.
  • the unit price of the material is significantly lower than that of the copper-based material, the cost can be reduced.
  • heat loss (iron loss) generated in the core 3 can be radiated to the cooler through the metal base printed wiring board 6.
  • an insulating member 5 such as a resin plate or an insulating sheet between the plate-like metal member 4 and between the plate-like metal member 4 and the adjacent core 3, between each adjacent plate-like metal member 4, Insulation between the coil body and the core 3 is ensured, and the performance as a reactor can be stabilized.
  • the insulation member 5 may not be interposed.
  • the plate-like metal member 4 is used as a component of the coil body.
  • a round wire or a rectangular wire may be used instead of the plate-like metal member 4.
  • the metal base printed wiring board 6 which is a component of the coil body has been described, but a ceramic base printed wiring board may be used instead of the metal base printed wiring board 6.
  • a ceramic base printed wiring board by using a ceramic base printed wiring board, heat dissipation can also be improved, ensuring high insulation.
  • downsizing and weight reduction associated therewith can be realized.
  • the core 3 has been described in the case of a PQ type core that is an outer iron type, but other outer iron type cores such as EI, EE, EER, and ER types, and an inner iron such as a U type.
  • the present invention can also be applied to a formula core.
  • FIG. 3 is a perspective view showing a transformer according to Embodiment 2 of the present invention
  • FIG. 4 is a top view showing wiring patterns 17 and 19 on the metal base printed wiring board 15 of FIG.
  • This transformer which is an electromagnetic induction device, is installed so as to surround a core 11, which is a U-shaped core, composed of a first core portion 9 and a second core portion 10, and one magnetic leg of the core 11.
  • an insulating member 14 that insulates between the plate-like metal members 12 and 13 and the core 11, and a metal base printed wiring provided with a primary winding wiring pattern 17 and a secondary winding wiring pattern 19 on the upper surface.
  • a plate 15 This transformer is fixed to the cooler by installing and fixing the metal base printed wiring board 15 on a cooler (not shown).
  • the plate metal member 12 for primary winding is a tough pitch copper material having a specified electric resistance value.
  • the wiring pattern 17 for the primary winding of the metal base printed wiring board 15 has a prescribed electric resistance value and is coated with an insulating resist except for the rectangular primary winding component land 16. Note that the primary winding wiring pattern 17 is electrically connected via a connection portion (not shown). Both end surfaces of each primary winding plate-like metal member 12 are connected to each primary winding component land 16 by being soldered to each other and connected to the primary winding plate-like metal member 12.
  • a primary winding portion, which is a coil portion, composed of the primary winding wiring pattern 17 is formed. Each primary winding portion is electrically connected to each other, and a primary winding 20 that is a coil body is configured by stacking a predetermined number of one leg of the core 11.
  • the plate metal member 13 for secondary winding is a tough pitch copper material having a specified electric resistance value.
  • the wiring pattern 19 for the secondary winding of the metal-based printed wiring board 15 has a prescribed electric resistance value and is coated with an insulating resist except for the secondary winding component land 18 such as a rectangular shape. .
  • the secondary winding wiring pattern 19 is electrically connected via a connection portion (not shown). Both end surfaces of each secondary winding plate-like metal member 13 are connected to each secondary winding component land 18 by soldering, and are connected to each other.
  • a secondary winding portion, which is a coil portion, composed of the secondary winding wiring pattern 19 is formed.
  • the secondary winding portions are electrically connected to each other, and the secondary winding 21 that is a coil body is configured by overlapping one leg of the core 11 by a predetermined number of turns.
  • the primary winding of the primary winding wiring pattern 17 is arranged in order to alternately arrange the primary winding plate-like metal members 12 and the secondary winding plate-like metal members 13. As shown in FIG. 4, the line component land 16 and the secondary winding component land 18 of the secondary winding wiring pattern 19 are shifted by a distance of d1 along the axial direction. Further, in order to secure an insulation distance between the adjacent primary winding wiring pattern 17 and the secondary winding wiring pattern 19, as shown in FIG. .
  • the metal base printed wiring board 15 on which the primary winding 20 and the secondary winding 21 are arranged is mounted on the cooler.
  • Heat radiation of the wire 21 can be performed efficiently, and an increase in thermal resistance due to a temperature rise in the primary winding 20 and the secondary winding 21 can be suppressed. Further, since the heat radiation area is improved, the heat radiation area of the entire transformer can be reduced. Therefore, the core 11, the primary winding plate metal member 12, and the secondary winding plate metal constituting the transformer.
  • the member 13, the metal base printed wiring board 15 and the like can be reduced in size and weight, and the cost can be reduced accordingly.
  • the plate metal member 12 for the primary winding and the plate metal member 13 for the secondary winding are plate members, it is possible to stabilize the dimensional accuracy and suppress the variation of the leakage inductance, Loss variation of the primary winding 20 and the secondary winding 21 can be suppressed.
  • the primary winding plate metal member 12 and the secondary winding plate metal member 13 are connected to the component lands 16 and 18 on the metal base printed wiring board 15 one by one, thereby making the primary winding. Since the plate-like metal member 12 for wires and the plate-like metal member 13 for secondary winding can be dissipated one by one, the thermal resistance can be reduced and the heat dissipation can be improved. In addition, the primary winding plate metal member 12 and the secondary winding plate metal member 13 are connected to the component lands 16 and 18 every round so that the primary winding 20 and the secondary winding 21 are connected. It is possible to stabilize the dimensional accuracy of the gap between the two, and to reduce variations in electrical characteristics such as thermal resistance and excitation, leakage inductance, and loss.
  • the plate-like metal member 12 for the primary winding and the plate-like metal member 13 for the secondary winding are made of a tough pitch copper material, whereby a conductivity close to that of pure copper is obtained, and the primary winding 20 and the secondary winding. 21 can realize low electrical resistance, and at the same time, since it is a non-magnetic metal, generation of eddy currents accompanying leakage magnetic flux generated from the transformer and eddy current loss can be reduced. Moreover, since the loss amount is suppressed and the thermal conductivity is close to that of pure copper, the heat generated from the plate metal member 12 for the primary winding and the plate metal member 13 for the secondary winding is efficiently used. In particular, it is possible to dissipate heat through the metal base printed wiring board 15 and the cooler. In addition, the size and weight can be reduced.
  • an insulating member 14 such as a resin plate or an insulating sheet is provided between the two plate-like metal members 12 and 13, between the two plate-like metal members 12 and 13 and the core 11 adjacent to both the plate-like metal members 12 and 13, an insulating member 14 such as a resin plate or an insulating sheet is provided.
  • insulation between the primary winding 20 and the secondary winding 21, between the two plate-like metal members 12 and 13, and between the primary winding 20, the secondary winding 21 and the core 11 is achieved. It can be ensured and the performance as a transformer can be stabilized. Also, the assemblability can be improved. It is also possible to secure insulation by resin-molding the two plate-like metal members 12 and 13 which are constituent elements of the primary winding 20 and the secondary winding 21.
  • the primary windings 20 and 2 are provided by providing a distance that can be insulated between the primary winding wiring pattern 17 and the secondary winding wiring pattern 19 with respect to a predetermined voltage applied to the transformer. The insulation between the secondary windings 21 is ensured, and the performance as a transformer can be stabilized.
  • a copper-based material is used for both plate-like metal members 12 and 13, but it can be applied to an aluminum-based material as in the first embodiment.
  • the metal-based printed wiring board 15 is used as the printed wiring board that is a constituent element of the primary winding 20 and the secondary winding 21.
  • ceramic is used. It may be a base printed wiring board.
  • the step-up transformer is described as having a higher number of turns of the secondary winding 21 than the primary winding 20, but a step-down transformer having a higher number of turns of the primary winding than the secondary winding.
  • the present invention can also be applied to a transformer.
  • the U-type core in which the core 11 is an inner iron type has been described.
  • the present invention can be applied to an outer iron type core such as an EI, EE, EER, or ER type.
  • FIG. 5A is a diagram schematically showing an example of the arrangement of the primary winding portion 20a and the secondary winding portion 21a of the transformer
  • FIG. 5B is a primary winding portion 20a of the transformer according to Embodiment 3 of the present invention. It is the figure which showed typically arrangement
  • the transformation ratio of the transformer is large, there are cases where the numbers of the primary winding portion 20a and the secondary winding portion 21a are greatly different.
  • the secondary winding portion 21a is continuous.
  • the three adjacent to each other occurs, which increases the leakage inductance of the transformer and increases the loss of the transformer. For this, as shown in FIG.
  • up to two secondary windings 21a are arranged adjacent to each other to suppress an increase in the leakage inductance of the transformer, to further increase the degree of coupling, and to suppress loss. can do.
  • Other configurations are the same as those of the transformer of the second embodiment.
  • a reactor and a transformer have been described as electromagnetic induction devices.
  • a choke coil may be used.
  • the cooling means for cooling the electromagnetic induction device the cooler in which the refrigerant circulates has been described, but a heat sink may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Coils Of Transformers For General Uses (AREA)
  • General Induction Heating (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

 この発明に係る電磁誘導機器は、プリント配線板の配線パターンと、両端部が配線パターンに接続した金属部材とからなるコイル部が互いに電気的に接続され重ねられてコイル体が構成されているので、例えばプリント配線板に冷却手段を取付けることで、コイル体の放熱が効率的に行え、熱抵抗の低減が可能である。

Description

電磁誘導機器
 この発明は、例えば電力変換装置に組み込まれる電磁誘導機器に関するものである。
 電気自動車・ハイブリッド車に搭載されるDCDCコンバータ、充電器を始めとする電力変換装置では、電圧の昇圧動作や降圧動作を行う受動部品としてトランス、リアクトル、チョークコイル等の電磁誘導機器を搭載しており、エネルギーの蓄積、放出素子、または直流電流の平滑化等で使用される。
 このような電磁誘導機器に関しては小型化、若しくは通電時に発生する熱を効率的に放熱できる構造が非常に重要である。
 小型化に優れたトランスとして、1次巻線と2次巻線とが積層構造にて構成されており、2次巻線が絶縁部材を隔てて、コアを囲むボビンの軸方向に少なくとも2箇所に分けて巻回されることで小型化を実現したものが知られている(例えば、特許文献1参照)。
 また、放熱性に優れたリアクトルとして、リアクトル本体をアルミケース内に格納し、熱伝導率が0.7~4.0[W/m/K]である充填樹脂にてリアクトル本体を封止することで、コイルから発生した熱を効率的にケース、冷却器に放熱することができ、さらにボビンレス構造とすることで、コアから発生した熱も効率的に放熱することが可能なものが知られている(例えば、特許文献2参照)。
特開2010-183751号公報 特開2009-94328号公報
 しかしながら、上記特許文献1のものは、1次巻線と2次巻線とを積層させて巻回することで、巻線間の結合度を増加させることができ、2次巻線をボビンの軸方向に2箇所以上分けて巻回することで小型化は可能であるが、巻線を多層構造にて巻回していることから、コア付近の内側巻線に関しては、当該巻線より外側の巻線と巻線間の絶縁体の熱抵抗が加算されることで放熱性が悪化してしまうという問題点があった。
 また、上記特許文献2のものは、リアクトル本体を金属ケースに収納し、放熱樹脂にて充填させるとなると、コストアップ、大型化が余儀なくされるという問題点があった。
 この発明は、かかる問題点を解決することを課題とするものであって、低コスト、小型で、コイル体の放熱が効率的に行え、熱抵抗の低減が可能である電磁誘導機器を提供することを目的としている。
 この発明に係る電磁誘導機器は、
 閉磁路を構成するコアと、
 このコアを支持し複数の配線パターンを有するプリント配線板と、
 前記コアを周回し、両端部が前記配線パターンに接続された金属部材と、を備え、
 前記配線パターン及び前記金属部材からなる複数のコイル部が互いに電気的に接続され重ねられてコイル体が構成されている。
 この発明に係る電磁誘導機器によれば、プリント配線板の配線パターンと、両端部が配線パターンに接続した金属部材とからなるコイル部が互いに電気的に接続され重ねられてコイル体が構成されているので、例えばプリント配線板に冷却手段を取付けることで、コイル体の放熱が効率的に行え、熱抵抗の低減が可能である。
 また、金属部材は、金属部材毎にプリント配線板の配線パターンに離間して接続されるので、各金属部材の放熱性も高い。
この発明の実施の形態1におけるリアクトルを示す斜視図である。 図1のプリント配線板の配線パターンを示す上面図である。 この発明の実施の形態2におけるトランスを示す斜視図である。 図3のプリント配線板の配線パターンを示す上面図である。 トランスの1次巻線部、2次巻線部の配置を模式的に示した一例を示す図である。 この発明の実施の形態3におけるトランスの1次巻線部、2次巻線部の配置を模式的に示した図である。
 以下、この発明の各実施の形態について説明するが、各図において同一、または相当部材、部位については、同一符号を付して説明する。
 実施の形態1.
 図1はこの発明の実施の形態1におけるリアクトルを示す斜視図、図2は図1の金属ベースプリント配線板6上の配線パターン8を示す上面図である。なお、図1においては、金属ベースプリント配線板6上に搭載された複数の電子部品は省略されている。
 電磁誘導機器であるこのリアクトルは、第1のコア部1及び第2のコア部2からなる、外鉄式であるPQコアであるコア3と、このコア3の中脚部を囲むように設置されたC形状の複数の板状金属部材4と、板状金属部材4同士及び板状金属部材4とコア3とを絶縁する絶縁部材5と、上面に複数の配線パターン8が設けられた金属ベースプリント配線板6と、を備えている。
 このリアクトルは、金属ベースプリント配線板6を冷却手段である冷却器(図示せず)上に設置し、固定することで、冷却器に固定される。
 板状金属部材4は、規定電気抵抗値を有するタフピッチ銅材である。
 金属ベースプリント配線板6の配線パターン8は、規定の電気抵抗値を有する導体であり、矩形状等の部品ランド7を除いて絶縁レジストで被膜されている。なお、各配線パターン8は、図示されていない接続部を介して電気的に接続されている。
 各板状金属部材4の両端面は、それぞれ各部品ランド7に当接して半田付けされることで接続され、板状金属部材4と配線パターン8とからなるコイル部を構成している。この各コイル部は、互いに電気的に接続されてコア3の中脚部を規定数重ねることでコイル体が構成される。
 図2の最下位部及び最上位部である、部品ランド7と、隣接したランド7間を繋ぐ配線パターン8の渡し部との間の距離、及び隣接した部品ランド7間の距離は、絶縁レジストが介在できる幅であって、かつトランスに所定の電圧が印加された際、1ターン分のコイル部の電圧降下に対して絶縁が確保できる幅で構成している。
 コア3は、底面が金属ベースプリント配線板6の上に設置されている。
 絶縁部材5は、隣接した板状金属部材4間に介在したドーナツ状の板を半分にした半ドーナツ部と、コア3の中脚部を囲った円筒形状の円筒部と、板状金属部材4の外径側とコア3の内壁とに介在した外径側部とから構成されている。
 このように構成されたリアクトルでは、コイル体が配置された金属ベースプリント配線板6が冷却器上に取り付けられていることから、コイル体の放熱が効率的に行え、コイル体の温度上昇による熱抵抗の増大を抑制することができる。
 また、放熱性が向上することで、リアクトル全体の放熱面積を小さくさせることができるため、リアクトルを構成する、コア3、板状金属部材4、金属ベースプリント配線板6等の小型化、軽量化、及びそれに伴う低コスト化も可能となる。
 なお、リアクトルを冷却する冷却器の小型化、低コスト化も可能になる。
 また、板状金属部材4が板状部材であることから、寸法精度を安定させることが可能となるので、漏れインダクタンスのバラツキを抑制でき、コイル体の損失バラツキを抑制することができる。
 また、コイル部の積層数、コイル体の構成要素である板状金属部材4の板幅、コイル体とコア3との間の距離、及び第1のコア部1と第2のコア部2との間のギャップを調整することで、インダクタンスの調整が容易になる。
 また、板状金属部材4を1枚毎に金属ベースプリント配線板6の部品ランド7に接続することで、各板状金属部材4は互いに離間して配置され、板状金属部材4は1枚毎に放熱させることができることから熱抵抗の低減、放熱性の向上が可能となる。
 さらに、先に説明した特開2009-94328公報(特許文献2)に記載したリアクトルのように、リアクトル本体を金属ケースに収納し、放熱樹脂を充填させて放熱経路を確保させる必要がないので、小型化、軽量化及び低コスト化が可能となる。
 また、板状金属部材4が1周毎に部品ランド7に接続されることで、コイル体の構成要素であるコイル部間の寸法精度の安定化が可能となり、熱抵抗及びインダクタンス、コイル体損失等電気特性のバラツキを低減させることができる。
 また、板状金属部材4をタフピッチ銅材とすることで、純銅に近い導電率が得られコイル体として低い電気抵抗が実現できると同時に、非磁性金属であることからリアクトルから発生した漏れ磁束に伴う渦電流の発生、及び渦電流損失を低減させることができる。
 また、損失量を抑制させると共に、純銅に近い熱伝導率を有していることから、板状金属部材4から発生した熱を効率的に金属ベースプリント配線板6、冷却器を通して放熱させることが可能となる。また、それに伴う小型化、軽量化が実現できる。
 なお、この実施の形態では銅系材料を使用したが、アルミ系材料にも適応可能である。 コイル体に使用する板状金属部材4をアルミ系材料にすることで、銅系よりも放熱性、導電率では劣るものの、非磁性体金属であることから渦電流の発生を抑制でき、他の金属に比べ比重が極めて小さいことから、コイル体のターン数が多くなる場合は特に、大幅な軽量化を実現させることが可能である。
 また、材料単価が銅系材料に比べ大幅に安いため、低コスト化も可能である。
 また、コア3の底面を金属ベースプリント配線板6に当接して設置させることで、コア3で生じる損失熱(鉄損)を金属ベースプリント配線板6を通して冷却器に放熱させることができる。
 また、板状金属部材4間、板状金属部材4と隣接するコア3との間に、樹脂プレート、絶縁シート等の絶縁部材5を介在させることで、隣接した各板状金属部材4間、コイル体とコア3との間の絶縁性が確保され、リアクトルとしての性能を安定化させることが可能となる。
 また、板状金属部材4間、板状金属部材4と隣接するコア3との間に絶縁距離が確保される場合には、絶縁部材5を介在させなくてもよい。
 なお、この実施の形態では、コイル体の構成要素として板状金属部材4を用いたが、板状金属部材4の代わりに丸線、平角線を用いてもよい。
 また、この実施の形態では、コイル体の構成要素である金属ベースプリント配線板6を用いて説明したが、金属ベースプリント配線板6の代わりに、セラミックベースプリント配線板を用いてもよい。この際、セラミックベースプリント配線板とすることで、高い絶縁性が確保されつつ、放熱性も向上させることができる。また、それに伴う小型化、軽量化も実現できる。
 また、この実施の形態では、コア3は、外鉄式であるPQ型コアの場合で説明したが、EI、EE、EER、ER型等その他の外鉄式コア、及びU型等の内鉄式コアにおいてもこの発明は適応可能である。
 実施の形態2.
 図3はこの発明の実施の形態2におけるトランスを示す斜視図、図4は図3の金属ベースプリント配線板15上の配線パターン17,19を示す上面図である。なお、図3においては、金属ベースプリント配線板15上に搭載された複数の電子部品は省略されている。
 電磁誘導機器であるこのトランスは、第1のコア部9及び第2のコア部10からなる、U形状コアであるコア11と、このコア11の片方の磁脚を囲むように設置された、C形の1次巻線用板状金属部材12及び2次巻線用板状金属部材13と、1次巻線用板状金属部材12と2次巻線用板状金属部材13との間、及び板状金属部材12,13とコア11との間を絶縁する絶縁部材14と、上面に1次巻線用配線パターン17、2次巻線用配線パターン19が設けられた金属ベースプリント配線板15と、を備えている。
 このトランスは、金属ベースプリント配線板15を冷却器(図示せず)上に設置し、固定することで、冷却器に固定される。
 1次巻線用板状金属部材12は、規定電気抵抗値を有するタフピッチ銅材である。
 金属ベースプリント配線板15の1次巻線用配線パターン17は、規定の電気抵抗値を有しており、矩形状の1次巻線用部品ランド16を除いて絶縁レジストで被膜されている。なお、1次巻線用配線パターン17は、図示されていない接続部を介して電気的に接続されている。
 各1次巻線用板状金属部材12の両端面は、それぞれ各1次巻線用部品ランド16に当接して半田付けされることで接続され、1次巻線用板状金属部材12と1次巻線用配線パターン17とからなる、コイル部である1次巻線部を構成している。
 この各1次巻線部は、互いに電気的に接続されてコア11の片脚を規定数重ねることでコイル体である1次巻線20が構成される。
 2次巻線用板状金属部材13は、規定電気抵抗値を有するタフピッチ銅材である。
 金属ベースプリント配線板15の2次巻線用配線パターン19は、規定の電気抵抗値を有しており、矩形状等の2次巻線用部品ランド18を除いて絶縁レジストで被膜されている。なお、2次巻線用配線パターン19は、図示されていない接続部を介して電気的に接続されている。
 各2次巻線用板状金属部材13の両端面は、それぞれ各2次巻線用部品ランド18に当接して半田付けされることで接続され、2次巻線用板状金属部材13と2次巻線用配線パターン19とからなる、コイル部である2次巻線部を構成している。
 この各2次巻線部は、互いに電気的に接続されてコア11の片脚を規定ターン数重ねることでコイル体である2次巻線21が構成される。
 なお、この実施の形態では、1次巻線用板状金属部材12と2次巻線用板状金属部材13とを交互に配置するために、1次巻線用配線パターン17の1次巻線用部品ランド16と2次巻線用配線パターン19の2次巻線用部品ランド18とは、図4に示すように軸線方向に沿ってd1の距離だけずれている。
 また、隣接した、1次巻線用配線パターン17と2次巻線用配線パターン19との間の絶縁距離を確保するために図4に示すように、所定の距離d2離れて設けられている。
 このように構成されたトランスでは、1次巻線20、2次巻線21が配置された金属ベースプリント配線板15が冷却器上に取り付けられているので、1次巻線20、2次巻線21の放熱が効率的に行え、1次巻線20、2次巻線21の温度上昇による熱抵抗の増大を抑制することができる。
 また、放熱性が向上することで、トランス全体の放熱面積を小さくさせることができるため、トランスを構成する、コア11、1次巻線用板状金属部材12、2次巻線用板状金属部材13、金属ベースプリント配線板15等の小型化、軽量化、及びそれに伴う低コスト化も可能となる。
 また、1次巻線用板状金属部材12、2次巻線用板状金属部材13は、板状部材であるので、寸法精度を安定させることが可能となり、漏れインダクタンスのバラツキが抑制でき、1次巻線20、2次巻線21の損失バラツキを抑制させることができる。
 また、1次巻線用板状金属部材12、及び板状金属部材13を交互に配置することで結合度の高いトランスが実現でき、漏れインダクタンスの抑制が可能となる。
 また、コイル部の積層数、1次巻線用板状金属部材12及び2次巻線用板状金属部材13の板幅、1次巻線20及び2次巻線21とコア11との間の距離、及び第1のコア部1と第2のコア部2との間のギャップを調整することで、励磁インダクタンスと漏れインダクタンスの調整が容易になる。
 また、1次巻線用板状金属部材12及び2次巻線用板状金属部材13を1枚毎に金属ベースプリント配線板15上の部品ランド16、18に接続することで、1次巻線用板状金属部材12、2次巻線用板状金属部材13を1枚毎に放熱させることができることから熱抵抗の低減、放熱性の向上が可能となる。
 また、1次巻線用板状金属部材12、2次巻線用板状金属部材13が1周毎に部品ランド16、18に接続されることで1次巻線20と2次巻線21との間隔の寸法精度の安定化が可能となり、熱抵抗及び励磁、漏れインダクタンス、及び損失等電気特性のバラツキを低減させることができる。
 また、1次巻線用板状金属部材12、2次巻線用板状金属部材13はタフピッチ銅材とすることで、純銅に近い導電率が得られ1次巻線20、2次巻線21として低い電気抵抗が実現できると同時に、非磁性金属であることからトランスから発生した漏れ磁束に伴う渦電流の発生、及び渦電流損失を低減させることができる。
 また、損失量を抑制させると共に、純銅に近い熱伝導率を有していることから、1次巻線用板状金属部材12、2次巻線用板状金属部材13から発生した熱を効率的に金属ベースプリント配線板15、冷却器を通して放熱させることが可能となる。また、それに伴う小型化、軽量化が実現できる。
 また、両板状金属部材12,13同士、両板状金属部材12,13と両板状金属部材12,13に隣接するコア11との間に、樹脂プレート、絶縁シート等の絶縁部材14を介在させることで、1次巻線20及び2次巻線21間、両板状金属部材12,13間、及び1次巻線20、2次巻線21とコア11との間の絶縁性が確保でき、トランスとしての性能を安定化させることが可能となる。
 また、組立性も向上させることができる。
 なお、1次巻線20、2次巻線21の構成要素である両板状金属部材12,13を樹脂モールドして絶縁性を確保することも可能である。
 また、トランスに印加される所定電圧に対して、1次巻線用配線パターン17と2次巻線用配線パターン19との間で絶縁可能な距離を設けることで、1次巻線20と2次巻線21との間の絶縁性が確保され、トランスとしての性能を安定化させることができる。
 なお、この実施の形態では、両板状金属部材12,13に銅系材料を使用したが、実施の形態1と同ようにアルミ系材料にも適応可能である。
 また、この実施の形態では、1次巻線20、2次巻線21の構成要素であるプリント配線板として金属ベースプリント配線板15を用いて説明したが、実施の形態2と同ようにセラミックベースプリント配線板であってもよい。
 また、この実施の形態では、1次巻線20に対して2次巻線21のターン数が多い昇圧トランスとして説明したが、2次巻線に対して1次巻線のターン数が多い降圧トランスに関してもこの発明は適応可能である。
 また、この実施の形態では、コア11は内鉄式であるU型コアについて説明したが、EI、EE、EER、ER型等の外鉄式コアにおいてもこの発明は適応可能である。
 実施の形態3.
 図5Aはトランスの1次巻線部20a、2次巻線部21aの配置を模式的に示した一例を示す図、図5Bはこの発明の実施の形態3におけるトランスの1次巻線部20a、2次巻線部21aの配置を模式的に示した図である。
 トランスの変圧比が大きい場合には、1次巻線部20a及び2次巻線部21aのそれぞれの数が大きく異なる場合が生じ、例えば図5Aに示すように、2次巻線部21aが連続して3個隣接することが生じ、この結果トランスの漏れインダクタンスが増加し、トランスの損失が大きくなってしまう。
 これに対しては、図5Bに示すように、2次巻線部21aは2個まで隣接して配置することで、トランスの漏れインダクタンスの増加を抑え、さらに結合度が高く、かつ損失を抑制することができる。
 他の構成は、実施の形態2のトランスと同じである。
 なお、上記各実施の形態では、電磁誘導機器として、リアクトル、トランスについて説明したが、チョークコイルであってもよい。
 また、電磁誘導機器を冷却する冷却手段の例として、内部に冷媒が流通する冷却器について説明したが、ヒートシンクであってもよい。
 1 第1のコア部、2 第2のコア部、3,11 コア、4 板状金属部材(金属部材)、5,14 絶縁部材、6,15 金属ベースプリント配線板、7 部品ランド、8 配線パターン、9 第1のコア部、10 第2のコア部、12 1次巻線用板状金属部材(金属部材)、13 2次巻線用板状金属部材(金属部材)、16 1次巻線用部品ランド、17 1次巻線用配線パターン、18 2次巻線用部品ランド、19 2次巻線用配線パターン(配線パターン)、20 1次巻線(コイル体)、20a 1次巻線部(コイル部)、21 2次巻線(コイル体)、21a 2次巻線部(コイル部)。

Claims (21)

  1.  閉磁路を構成するコアと、
     このコアを支持し複数の配線パターンを有するプリント配線板と、
     前記コアを周回し、両端部が前記配線パターンに接続された金属部材と、を備え
     前記配線パターン及び前記金属部材からなる複数のコイル部が互いに電気的に接続され重ねられてコイル体が構成されている電磁誘導機器。
  2.  前記金属部材は、板状金属部材である請求項1に記載の電磁誘導機器。
  3.  隣接した前記板状金属部材間、前記板状金属部材と前記コアとの間には、絶縁部材が介在している請求項2に記載の電磁誘導機器。
  4.  前記金属部材は、丸線である請求項1に記載の電磁誘導機器。
  5.  前記金属部材は、平角線である請求項1に記載の電磁誘導機器。
  6.  前記金属部材は、前記コアを一周回している請求項1~5の何れか1項に記載の電磁誘導機器。
  7.  前記金属部材は、前記プリント配線板と半田付けにより接続されている請求項1~6の何れか1項に記載の電磁誘導機器。
  8.  前記金属部材は、銅で構成されている請求項1~7の何れか1項に記載の電磁誘導機器。
  9.  前記金属部材は、アルミニウムで構成されている請求項1~7の何れか1項に記載の電磁誘導機器。
  10.  前記プリント配線板は、金属ベースプリント配線板である請求項1~9の何れか1項に記載の電磁誘導機器。
  11.  前記プリント配線板は、セラミックベースプリント配線板である請求項1~9の何れか1項に記載の電磁誘導機器。
  12.  前記コアは、前記プリント配線板に面接触している請求項1~11の何れか1項に記載の電磁誘導機器。
  13.  前記電磁誘導機器は、トランスであり、前記コイル体は、前記コイル部である1次巻線部から構成された1次巻線、及び前記コイル部である2次巻線部から構成された2次巻線である請求項1~12の何れか1項に記載の電磁誘導機器。
  14.  前記1次巻線部と、前記2次巻線部とは交互に重ねられている請求項13に記載の電磁誘導機器。
  15.  前記1次巻線部、前記2次巻線部は、何れも最大2個まで隣接して配置されている請求項13に記載の電磁誘導機器。
  16.  前記1次巻線部の構成要素である1次巻線用金属部材が接続される前記配線パターンの1次巻線用部品ランドと、この1次巻線用部品ランドと隣接した、前記2次巻線部の構成要素である2次巻線用金属部材が接続される前記配線パターンの2次巻線用部品ランドとは、絶縁距離を有して離間している請求項13~15の何れか1項に記載の電磁誘導機器。
  17.  前記1次巻線用金属部材と前記2次巻線用金属部材との間、前記1次巻線用金属部材、前記2次巻線用金属部材と前記コアとの間には、絶縁部材が介在している請求項16に記載の電磁誘導機器。
  18.  前記絶縁部材は、樹脂プレートである請求項17に記載の電磁誘導機器。
  19.  前記絶縁部材は、樹脂シートである請求項17に記載の電磁誘導機器。
  20.  前記1次巻線用金属部材及び前記2次巻線用金属部材は、樹脂モールドされている請求項17に記載の電磁誘導機器。
  21.  前記プリント配線には、前記電磁誘導機器を冷却する冷却手段が取付けられる請求項1~20の何れか1項に記載の電磁誘導機器。
PCT/JP2013/080261 2013-11-08 2013-11-08 電磁誘導機器 WO2015068265A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015546228A JP6195627B2 (ja) 2013-11-08 2013-11-08 電磁誘導機器
PCT/JP2013/080261 WO2015068265A1 (ja) 2013-11-08 2013-11-08 電磁誘導機器
CN201380080789.XA CN105706196B (zh) 2013-11-08 2013-11-08 电磁感应设备
EP13897002.5A EP3067903B1 (en) 2013-11-08 2013-11-08 Electromagnetic induction apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/080261 WO2015068265A1 (ja) 2013-11-08 2013-11-08 電磁誘導機器

Publications (1)

Publication Number Publication Date
WO2015068265A1 true WO2015068265A1 (ja) 2015-05-14

Family

ID=53041066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/080261 WO2015068265A1 (ja) 2013-11-08 2013-11-08 電磁誘導機器

Country Status (4)

Country Link
EP (1) EP3067903B1 (ja)
JP (1) JP6195627B2 (ja)
CN (1) CN105706196B (ja)
WO (1) WO2015068265A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016219612A (ja) * 2015-05-21 2016-12-22 三菱電機株式会社 電磁誘導機器
CN106373708A (zh) * 2015-07-21 2017-02-01 三星电子株式会社 电磁感应装置及具有电磁感应装置的供电设备和显示设备
WO2018135357A1 (ja) * 2017-01-17 2018-07-26 株式会社オートネットワーク技術研究所 多段コイルおよび回路構成体
TWI687945B (zh) * 2018-05-31 2020-03-11 振華電腦有限公司 具有改良繞組結構的變壓器
CN113889324A (zh) * 2020-07-03 2022-01-04 三菱电机株式会社 绝缘变压器及使用该绝缘变压器的功率转换装置
US11417455B2 (en) 2016-09-21 2022-08-16 Autonetworks Technologies, Ltd. Reactor and magnetic core for reactor
JP7437193B2 (ja) 2020-03-06 2024-02-22 株式会社トーキン リアクトル

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6593834B1 (ja) * 2018-06-28 2019-10-23 三菱電機株式会社 コモンモードチョークコイル
WO2020003565A1 (ja) 2018-06-28 2020-01-02 三菱電機株式会社 コモンモードチョークコイル
US11756718B2 (en) * 2018-12-30 2023-09-12 Texas Instruments Incorporated Galvanic isolation of integrated closed magnetic path transformer with BT laminate
JP6906874B2 (ja) * 2019-11-27 2021-07-21 三菱電機株式会社 電力変換装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5016485B1 (ja) * 1970-09-28 1975-06-13
JPH06290972A (ja) * 1993-03-31 1994-10-18 Mitsubishi Electric Corp 金属プリント基板上で製作するリアクトル及びそのリアクトルを使用したインバータ装置
JP2002367830A (ja) * 2001-06-04 2002-12-20 Denso Corp インダクタンス素子及びその製造方法
JP2005223129A (ja) * 2004-02-05 2005-08-18 Rohm Co Ltd コイル装置
JP2009094328A (ja) 2007-10-10 2009-04-30 Toyota Motor Corp リアクトル
JP2010183751A (ja) 2009-02-06 2010-08-19 Hitachi Automotive Systems Ltd 電源トランス、及びそれを用いた電力変換装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06260350A (ja) * 1993-03-03 1994-09-16 Seiko Epson Corp チョークコイル
AU720276B2 (en) * 1996-09-16 2000-05-25 Pdl Electronics Limited Improvements relating to inductive assemblies in electronic circuits
DK1071103T3 (da) * 1999-07-23 2009-01-19 Power One Italy Spa Fremgangsmåde til produktion af viklinger til induktive komponenter og tilsvarende komponenter tilvejebragt herved
US20030080847A1 (en) * 2001-10-27 2003-05-01 Radzelovage James G. Low voltage, high current power transformer
US7009486B1 (en) * 2003-09-18 2006-03-07 Keithley Instruments, Inc. Low noise power transformer
JP2006278841A (ja) * 2005-03-30 2006-10-12 Matsushita Electric Ind Co Ltd コイル部品
JP4674545B2 (ja) * 2005-12-28 2011-04-20 パナソニック電工株式会社 電磁誘導部品および電源装置
US7352270B1 (en) * 2006-10-27 2008-04-01 Itt Manufacturing Enterprises, Inc. Printed circuit board with magnetic assembly
US8217748B2 (en) * 2007-11-23 2012-07-10 Alpha & Omega Semiconductor Inc. Compact inductive power electronics package
TW200929277A (en) * 2007-12-19 2009-07-01 Delta Electronics Inc Composite inductor
CN101510461B (zh) * 2008-11-18 2010-12-29 徐建 以印制电路板为底边的垂直式电磁转换线圈

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5016485B1 (ja) * 1970-09-28 1975-06-13
JPH06290972A (ja) * 1993-03-31 1994-10-18 Mitsubishi Electric Corp 金属プリント基板上で製作するリアクトル及びそのリアクトルを使用したインバータ装置
JP2002367830A (ja) * 2001-06-04 2002-12-20 Denso Corp インダクタンス素子及びその製造方法
JP2005223129A (ja) * 2004-02-05 2005-08-18 Rohm Co Ltd コイル装置
JP2009094328A (ja) 2007-10-10 2009-04-30 Toyota Motor Corp リアクトル
JP2010183751A (ja) 2009-02-06 2010-08-19 Hitachi Automotive Systems Ltd 電源トランス、及びそれを用いた電力変換装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016219612A (ja) * 2015-05-21 2016-12-22 三菱電機株式会社 電磁誘導機器
CN106373708A (zh) * 2015-07-21 2017-02-01 三星电子株式会社 电磁感应装置及具有电磁感应装置的供电设备和显示设备
US11417455B2 (en) 2016-09-21 2022-08-16 Autonetworks Technologies, Ltd. Reactor and magnetic core for reactor
WO2018135357A1 (ja) * 2017-01-17 2018-07-26 株式会社オートネットワーク技術研究所 多段コイルおよび回路構成体
TWI687945B (zh) * 2018-05-31 2020-03-11 振華電腦有限公司 具有改良繞組結構的變壓器
JP7437193B2 (ja) 2020-03-06 2024-02-22 株式会社トーキン リアクトル
CN113889324A (zh) * 2020-07-03 2022-01-04 三菱电机株式会社 绝缘变压器及使用该绝缘变压器的功率转换装置
JP2022013055A (ja) * 2020-07-03 2022-01-18 三菱電機株式会社 絶縁トランス、及びそれを用いた電力変換装置
US11705816B2 (en) 2020-07-03 2023-07-18 Mitsubishi Electric Cornoration Isolation transformer, and power conversion device in which the isolation transformer is used
JP7337032B2 (ja) 2020-07-03 2023-09-01 三菱電機株式会社 電力変換装置

Also Published As

Publication number Publication date
JP6195627B2 (ja) 2017-09-13
EP3067903A1 (en) 2016-09-14
EP3067903B1 (en) 2021-04-28
EP3067903A4 (en) 2017-07-12
JPWO2015068265A1 (ja) 2017-03-09
CN105706196A (zh) 2016-06-22
CN105706196B (zh) 2018-04-10

Similar Documents

Publication Publication Date Title
JP6195627B2 (ja) 電磁誘導機器
US20090302986A1 (en) Minimal-length windings for reduction of copper power losses in magnetic elements
US7920039B2 (en) Thermally enhanced magnetic transformer
JP6333525B2 (ja) リニア電磁装置
US9633776B2 (en) Variable core electromagnetic device
JP6008160B1 (ja) ノイズフィルタ
JP6234537B1 (ja) 電力変換装置
US20140368059A1 (en) Transformer, electronic apparatus, and method for controlling transformer
JP6035952B2 (ja) 電源装置
WO2015186303A1 (ja) リアクトル
JP6150844B2 (ja) 電磁誘導機器
JP2011077328A (ja) トランス及びスイッチング電源装置
US20120229986A1 (en) Power conversion system using ferromagnetic enclosure with embedded winding to serve as magnetic component
JP2015198181A (ja) 巻線部品およびその放熱構造
JP2012079951A (ja) リアクトル装置
JP2010245456A (ja) リアクトル集合体
JP6393212B2 (ja) 電力変換装置
JP2018148058A (ja) 回路装置および電力変換装置
WO2012032307A1 (en) Planar transformer
US20230033439A1 (en) Electrotechnical device for an aircraft
CN210956373U (zh) 一种磁件
US20230008213A1 (en) Electrotechnical device for an aircraft, comprising low-frequency coil components
US20230170125A1 (en) Inductor
JP2014160785A (ja) 磁気デバイス
JP2019079838A (ja) トランス装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13897002

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015546228

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013897002

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013897002

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE