WO2015064630A1 - 液晶表示素子 - Google Patents

液晶表示素子 Download PDF

Info

Publication number
WO2015064630A1
WO2015064630A1 PCT/JP2014/078739 JP2014078739W WO2015064630A1 WO 2015064630 A1 WO2015064630 A1 WO 2015064630A1 JP 2014078739 W JP2014078739 W JP 2014078739W WO 2015064630 A1 WO2015064630 A1 WO 2015064630A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
liquid crystal
carbon atoms
mass
substrate
Prior art date
Application number
PCT/JP2014/078739
Other languages
English (en)
French (fr)
Inventor
小川 真治
芳典 岩下
長谷部 浩史
高島 正直
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to CN201480060122.8A priority Critical patent/CN105683831B/zh
Priority to JP2015545262A priority patent/JP6056983B2/ja
Priority to US15/033,529 priority patent/US10437107B2/en
Publication of WO2015064630A1 publication Critical patent/WO2015064630A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/062Non-steroidal liquid crystal compounds containing one non-condensed benzene ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • C09K19/3833Polymers with mesogenic groups in the side chain
    • C09K19/3842Polyvinyl derivatives
    • C09K19/3852Poly(meth)acrylate derivatives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/42Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40
    • C09K19/44Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40 containing compounds with benzene rings directly linked
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/60Pleochroic dyes
    • C09K19/601Azoic
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133784Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by rubbing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0448Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the end chain group being a polymerizable end group, e.g. -Sp-P or acrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • C09K2019/121Compounds containing phenylene-1,4-diyl (-Ph-)
    • C09K2019/122Ph-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • C09K2019/121Compounds containing phenylene-1,4-diyl (-Ph-)
    • C09K2019/123Ph-Ph-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3004Cy-Cy
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3009Cy-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/301Cy-Cy-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3016Cy-Ph-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3027Compounds comprising 1,4-cyclohexylene and 2,3-difluoro-1,4-phenylene
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133742Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for homeotropic alignment
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13394Gaskets; Spacers; Sealing of cells spacers regularly patterned on the cell subtrate, e.g. walls, pillars
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13398Spacer materials; Spacer properties
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134372Electrodes characterised by their geometrical arrangement for fringe field switching [FFS] where the common electrode is not patterned
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13712Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering the liquid crystal having negative dielectric anisotropy
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/121Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode common or background
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/123Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode pixel

Definitions

  • the present invention relates to a liquid crystal display device using a nematic crystal composition having a negative dielectric anisotropy and having a photo-alignment film.
  • active matrix liquid crystal display elements are on the market for mobile terminals, liquid crystal televisions, projectors, computers, and the like.
  • TFT thin film transistor
  • MIM metal insulator metal
  • the liquid crystal compound or liquid crystal composition used in this method has a high voltage holding ratio. Is being viewed.
  • an ECB Electro Mechanical Controlled Birefringence
  • a new liquid crystal compound or liquid crystal composition is still proposed.
  • a fringe field switching mode liquid crystal display device (Fringe Field Switching mode Liquid Display; FFS mode liquid crystal display device), which is a type of IPS mode liquid crystal display device with high quality and excellent visual characteristics.
  • FFS mode liquid crystal display device is a type of IPS mode liquid crystal display device with high quality and excellent visual characteristics.
  • the FFS mode is a method introduced to improve the low aperture ratio and transmittance of the IPS mode, and the liquid crystal composition used has a positive dielectric anisotropy because it is easy to reduce the voltage. Materials using p-type liquid crystal compositions are widely used.
  • liquid crystal element manufacturers are actively developing such as adopting an array using IGZO.
  • a method called a rubbing method is often used as a liquid crystal molecule alignment method.
  • the surface of the alignment film is rubbed (rubbed) in a certain direction by rotating a roller wrapped with a cloth such as nylon while pressing it with a certain pressure on a thin film coated and baked with an alignment film material such as polyimide.
  • an alignment film material such as polyimide.
  • a photo-alignment film that imparts anisotropy to the alignment film using linearly polarized ultraviolet rays can be imparted in a non-contact manner, and therefore has been developed as a method for solving the problems of the rubbing method described above.
  • the use of a photo-alignment film has also been sought for electric field type display elements (see Patent Document 3).
  • any of the electrode structure, orientation direction, electric field direction, and required optical characteristics are taken. Is also very different.
  • the FFS mode liquid crystal display element has a characteristic in the structure of the electrodes, there is no knowledge about problems that are difficult to predict the effects from the conventional techniques, such as image sticking and dropping marks.
  • the IPS mode and the FFS mode are common in the large classification of the transverse electric field type, but the electrode structure, the orientation direction, and the electric field direction are different. Therefore, even if the liquid crystal composition used for VA is simply diverted, it is difficult to construct a high-performance liquid crystal display element as required today, and an optimized n-type using a photo-alignment film There is a need to provide liquid crystal compositions.
  • Patent Document 3 discloses that a photo-alignment film is used so that the acute angle ⁇ formed between the major axis direction of the liquid crystal molecules and the direction in which the scanning signal line extends (x direction) becomes 75 to 85 degrees when no electric field is applied.
  • an electric field so-called lateral electric field
  • the major axis direction of the liquid crystal molecules of the liquid crystal layer is aligned along the lines of electric force. Therefore, it can be understood that the invention of Patent Document 3 is an IPS mode using a p-type liquid crystal composition since the lines of electric force and the major axis direction of the liquid crystal molecules coincide.
  • the IPS mode using a p-type liquid crystal composition as shown in Patent Document 3 has problems of low aperture ratio and transmittance. Further, when a p-type material as shown in Patent Document 3 is used, even if the reduction in light transmittance can be improved by coloring the alignment film, which is a problem of the document, the liquid crystal molecules close to the pixel electrode are There is a new problem of transmittance reduction that the transmittance deteriorates because the major axis of the liquid crystal molecules tilts along the electric field at the edge.
  • the alignment film as a photo-alignment film, it is possible to reduce a decrease in the alignment with respect to liquid crystal molecules due to rubbing unevenness and to provide a liquid crystal display element having excellent transmittance characteristics.
  • a thin film transistor and a transparent electrode layer are formed on the substrate, and an alignment film is formed thereon.
  • a rubbing method which is a contact method
  • random scratches are formed on the alignment film surface by rubbing.
  • deeper scratches due to the steps due to the thin film transistor and the transparent electrode layer pattern and the diameter (tens of ⁇ m) of the fiber of the buffing cloth of the rubbing roller Easy to be formed along the step. Since the liquid crystal molecules cannot be aligned in a certain direction when the electric field is turned off at the portion where the scratch is formed, light leakage occurs in the liquid crystal panel during black display. As a result, it becomes difficult to obtain a contrast of a certain value or more.
  • a one-pixel size is 0.23 mm in a calculation example in a 40-inch panel.
  • a resolution mode called 8K which will be put to practical use later, in a calculation example in a 40-inch panel, the size of one pixel becomes as fine as 0.11 mm. That is, since the size of one pixel approaches the diameter of the buff cloth fiber of the rubbing roller, when the electric field is turned off in units of pixels or in units of intermittent pixel rows due to scratches formed when the alignment treatment is performed by the rubbing method. There are places where the liquid crystal molecules cannot be aligned in a certain direction, which may cause a significant decrease in contrast and a large number of display defects due to a large amount of light leakage during black display.
  • the object of the present invention is to solve the above-mentioned problems, and to determine dielectric anisotropy ( ⁇ ), viscosity ( ⁇ ), nematic phase-isotropic liquid transition temperature (T NI ), and nematic phase stability at low temperatures.
  • dielectric anisotropy
  • viscosity
  • T NI nematic phase-isotropic liquid transition temperature
  • nematic phase stability at low temperatures.
  • Liquid crystal display using an n-type liquid crystal composition which is excellent in various characteristics as a liquid crystal display element such as rotational viscosity ( ⁇ 1 ) and can realize excellent display characteristics when used in a liquid crystal display element provided with a photo-alignment film It is to provide an element.
  • Another problem of the present invention is that non-contact alignment treatment is performed by the photo-alignment method so that scratches are not generated on the alignment film surface, thereby realizing high contrast and clear black display without light leakage. be able to.
  • the inventors of the present application have intensively studied in order to solve the above-mentioned problems, and as a result of studying various liquid crystal compositions and optical alignment films suitable for liquid crystal display elements, the present invention has been completed.
  • the present invention comprises a first substrate and a second substrate disposed opposite to each other, A liquid crystal layer containing a liquid crystal composition filled between the first substrate and the second substrate; On the first substrate, a common electrode including a transparent conductive material, a plurality of gate bus lines and data bus lines arranged in a matrix, and a thin film transistor provided at an intersection of the gate bus lines and the data bus lines A pixel electrode including a transparent conductive material and driven by the thin film transistor to form an electric field with the common electrode, and an electrode layer for each pixel, A photo-alignment film layer formed between the liquid crystal layer and the first substrate and the second substrate, and
  • the liquid crystal composition has a negative dielectric anisotropy, a nematic phase-isotropic liquid transition temperature of 60 ° C. or higher, and an absolute value of dielectric anisotropy of 2 or higher;
  • R 1 and R 2 are each independently an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or 2 to 2 carbon atoms
  • 8 represents an alkenyloxy group
  • A represents a 1,4-phenylene group or a trans-1,4-cyclohexylene group
  • k represents 1 or 2
  • two A's are the same.
  • the liquid crystal display element of the present invention uses a photo-alignment film, the liquid crystal display element is excellent in high-speed response, has few display defects, and has excellent display characteristics.
  • the liquid crystal display element of the present invention is useful for display elements such as liquid crystal TVs and monitors. Since the liquid crystal display element of the present invention uses a photo-alignment film, a liquid crystal display element having excellent transmittance characteristics can be provided.
  • FIG. 3 is a cross-sectional view of the liquid crystal display element shown in FIG. 1 cut along the line III-III in FIG.
  • FIG. 3 is a diagram schematically showing the alignment direction of liquid crystal induced by an alignment film 4. It is the top view to which the other example of the area
  • FIG. 3 is a cross-sectional view of another example in which the liquid crystal display element shown in FIG.
  • FIG. 7 is a diagram schematically showing a configuration of a vertical electric field type liquid crystal display element.
  • FIG. 8 is an enlarged plan view of a region surrounded by the II line of the electrode layer 3 including the thin film transistor formed on the substrate in FIG.
  • FIG. 9 is a cross-sectional view of the liquid crystal display element shown in FIG. 1 taken along the line III-III in FIG.
  • the present invention has found an n-type liquid crystal composition optimum for a liquid crystal display device having a photo-alignment film.
  • the first of the present invention the first substrate and the second substrate disposed opposite to each other, A liquid crystal layer containing a liquid crystal composition filled between the first substrate and the second substrate;
  • On the first substrate a common electrode including a transparent conductive material, a plurality of gate bus lines and data bus lines arranged in a matrix, and a thin film transistor provided at an intersection of the gate bus lines and the data bus lines
  • the liquid crystal composition has a negative dielectric anisotropy, a nematic phase-isotropic liquid transition temperature of 60 ° C. or higher, and an absolute value of dielectric anisotropy of 2 or higher;
  • R 1 and R 2 are each independently an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or 2 to 2 carbon atoms
  • 8 represents an alkenyloxy group
  • A represents a 1,4-phenylene group or a trans-1,4-cyclohexylene group
  • k represents 1 or 2
  • two A's are the same.
  • an alignment film as a photo-alignment film, it is possible to provide a liquid crystal display element having excellent transmittance characteristics and capable of reducing a decrease in alignment with liquid crystal molecules due to uneven rubbing. Therefore, by performing non-contact alignment treatment by the photo-alignment method, scratches are not generated on the surface of the alignment film, so that high contrast and clear black display can be realized with no light leakage. Further, since light leakage can be reduced even in a VA liquid crystal display element having a large viewing angle dependence, the problem of viewing angle dependence can be reduced by using a photo-alignment film.
  • a pair of substrates, an electrode layer, a liquid crystal layer, and a photo-alignment film layer are essential components.
  • each component will be described in detail.
  • the liquid crystal composition of the present invention is preferably applied to a horizontal electric field type liquid crystal display element such as IPS or FFS mode or a vertical electric field type liquid crystal display element such as VA mode.
  • the liquid crystal layer according to the present invention is a layer containing a liquid crystal composition, and the average thickness of the liquid crystal layer is preferably 2 to 10 ⁇ m, more preferably 2.5 to 6.0 ⁇ m.
  • the liquid crystal composition in the present invention contains the compound represented by the general formula (I) as an essential component. 1 type, or 2 or more types of compounds represented by general formula (I) are contained as a 1st component. Moreover, as will be described later, the liquid crystal composition in the present invention may further contain at least one compound selected from the group consisting of general formula (II) and general formula (IV).
  • R 1 and R 2 are each independently an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or Represents an alkenyloxy group having 2 to 8 carbon atoms
  • A represents a 1,4-phenylene group or a trans-1,4-cyclohexylene group
  • k represents 1 or 2
  • A may be the same or different.
  • the total content of the compound represented by the general formula (I) is preferably 5% by mass, more preferably 10% by mass, still more preferably 15% by mass, as the lower limit of the total content of the composition.
  • % By weight is particularly preferred, 25% by weight is most preferred, the upper limit is preferably 65% by weight, more preferably 55% by weight, still more preferably 50% by weight, particularly preferably 47% by weight, and most preferably 45% by weight. .
  • Specific examples of the compound represented by the general formula (I) include compounds represented by a group of compounds represented by the following general formulas (Ia) to (Ie).
  • R 11 to R 15 and R 21 to R 25 are each independently an alkyl group having 1 to 8 carbon atoms, or 2 to 8 carbon atoms.
  • the compound selected from the group of compounds represented by general formula (Ia) to general formula (Ie) preferably contains 1 to 10 types, particularly preferably 1 to 8 types, 1 to 5 types are particularly preferably contained, and 2 or more types of compounds are also preferably contained.
  • R 11 to R 15 and R 21 to R 25 each independently represents an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, or an alkoxy group having 2 to 8 carbon atoms. Preferably, it represents an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkoxy group having 2 to 5 carbon atoms, and the alkenyl group is described below.
  • R 11 and R 21 , R 12 and R 22 , R 13 and R 23 , R 14 and R 24 , R 15 and R 25 may be the same or different, but preferably represent different substituents. .
  • R 5 represents a hydrogen atom or a methyl group
  • R 6 represents an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms. It is preferable to contain at least one compound selected from the group of compounds represented by:
  • the compound represented by the general formula (III) according to the present invention is preferably a compound described below.
  • the content of the compound represented by the general formula (III) in the liquid crystal composition is preferably 5% by mass as the lower limit. 15% by mass is more preferable, 20% by mass is further preferable, 23% by mass is particularly preferable, 25% by mass is most preferable, and the upper limit is preferably 70% by mass, more preferably 60% by mass, and even more preferably 55% by mass. Preferably, 52 mass% is particularly preferable, and 50 mass% is most preferable. More specifically, when emphasizing the response speed, the lower limit is preferably 20% by mass, more preferably 30% by mass, still more preferably 35% by mass, particularly preferably 38% by mass, and most preferably 35% by mass.
  • the upper limit is preferably 70% by mass, more preferably 60% by mass, even more preferably 55% by mass, particularly preferably 52% by mass, and most preferably 50% by mass.
  • the value is preferably 5% by mass, more preferably 15% by mass, still more preferably 20% by mass, particularly preferably 23% by mass, most preferably 25% by mass, and the upper limit is preferably 60% by mass, 50% by mass. Is more preferable, 45% by mass is further preferable, 42% by mass is particularly preferable, and 40% by mass is most preferable.
  • the ratio of the compound represented by the general formula (III) is such that the content of the compound represented by the general formula (III) is the lower limit of the total content of the compound represented by the general formula (I) in the liquid crystal composition.
  • the value is preferably 60% by weight, more preferably 70% by weight, further preferably 75% by weight, particularly preferably 78% by weight, most preferably 80% by weight, and the upper limit is preferably 90% by weight, 95% by weight. Is more preferable, 97% by mass is further preferable, 99% by mass is particularly preferable, and 100% by mass is preferable.
  • the compounds represented by d1), formula (Id-2), formula (Id), and formula (Ie2) are preferred.
  • the liquid crystal composition in the present invention may further contain a compound represented by the general formula (II).
  • One or more compounds represented by the general formula (II) may be contained as the second component.
  • the liquid crystal composition in the present invention comprises a compound represented by the general formula (II) and It may further include at least one compound selected from the group consisting of compounds represented by general formula (IV).
  • R 3 represents an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or an alkenyl having 2 to 8 carbon atoms.
  • R 4 represents an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 4 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or an alkenyloxy group having 3 to 8 carbon atoms.
  • B represents a 1,4-phenylene group or a trans-1,4-cyclohexylene group
  • m represents 0, 1 or 2 and when m is 2, two Bs may be the same or different.
  • the lower limit value is preferably 10% by mass, more preferably 20% by mass, further preferably 25% by mass, 28% by mass is particularly preferable, 30% by mass is most preferable, and the upper limit is preferably 85% by mass, more preferably 75% by mass, still more preferably 70% by mass, particularly preferably 67% by mass, and most preferably 65% by mass. preferable.
  • the compounds represented by the general formula (II) are represented by the following general formulas (IIa) to (IIc).
  • R 31 to R 33 and R 41 to R 43 represent the same meaning as R 3 and R 4 in the general formula (II)
  • the compounds represented by the general formula (IIa) are specifically the following formulas (IIa-1) to (IIa-8)
  • the compounds represented by formula (IIa-1) to (IIa-4) are more preferred, and the compounds represented by formula (IIa-1) and formula (IIa-3) are preferred. Further preferred.
  • the lower limit is preferably 2% by mass, more preferably 3% by mass
  • the upper limit is preferably 45% by mass, more preferably 35% by mass, and 30% by mass. Is more preferable, 27% by mass is particularly preferable, and 25% by mass is most preferable.
  • the content of the compound represented by IIa-1) to formula (IIa-4) is preferably 50% by mass or more in the compound represented by the general formula (IIa), and 70% by mass or more. Is more preferable, and it is still more preferable that it is 80 mass% or more.
  • the compounds represented by the formula (IIa-1), the formula (IIa-2) and the formula (IIa-3) should be used in combination.
  • the content of the compound represented by the formula (IIa-1), the formula (IIa-2) and the formula (IIa-3) is 50% by mass or more in the compound represented by the general formula (IIa). It is preferably 70% by mass or more, more preferably 80% by mass or more, particularly preferably 85% by mass or more, and most preferably 90% by mass or more.
  • the content of the compound represented by 1) and the formula (IIa-3) is preferably 50% by mass or more in the compound represented by the general formula (IIa), and more preferably 70% by mass or more. Preferably, it is more preferably 80% by mass or more, particularly preferably 85% by mass or more, and most preferably 90% by mass or more.
  • the compounds represented by the general formula (IIb) are specifically the following formulas (IIb-1) to (IIb-6)
  • the compounds represented by formula (IIb-1) to (IIb-4) are more preferred, and the compounds represented by formula (IIb-1) to formula (IIb-3) are preferred. More preferred are compounds represented by formula (IIb-1) and formula (IIb-3).
  • -1) to the content of the compound represented by formula (IIb-4) is preferably 50% by mass or more, more preferably 70% by mass or more in the compound represented by (IIb). 80% by mass or more, more preferably 85% by mass or more, and most preferably 90% by mass or more.
  • the content of the compound represented by the formula (IIb-3) is preferably 50% by mass or more, more preferably 70% by mass or more in the compound represented by the general formula (IIb). 80% by mass or more, more preferably 85% by mass or more, and most preferably 90% by mass or more.
  • the content of the compound represented by 1) and the formula (IIb-3) is preferably 50% by mass or more in the compound represented by the general formula (IIb), and more preferably 70% by mass or more.
  • it is more preferably 80% by mass or more, particularly preferably 85% by mass or more, and most preferably 90% by mass or more.
  • the compounds represented by the general formula (IIc) are specifically the following formulas (IIc-1) to (IIc-4)
  • the compounds represented by the formula (IIc) are preferably 50% by mass or more in the compound represented by the general formula (IIc), and preferably 70% by mass or more. More preferably, it is more preferably 80% by mass or more, particularly preferably 85% by mass or more, and most preferably 90% by mass or more.
  • the liquid crystal composition in the present invention may further contain a compound represented by the general formula (IV).
  • a compound represented by the general formula (IV) As the third component, one or more compounds represented by the general formula (IV) may be contained. More preferably, the liquid crystal composition in the present invention comprises a compound represented by the general formula (II) and It may further include at least one compound selected from the group consisting of compounds represented by general formula (IV). However, the compound represented by general formula (IV) excludes the compound represented by general formula (II).
  • R 7 and R 8 are each independently an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or 2 to 8 carbon atoms.
  • one or more hydrogen atoms in the alkyl group, alkenyl group, alkoxy group or alkenyloxy group may be substituted with a fluorine atom
  • the methylene group in the oxy group may be substituted with an oxygen atom as long as the oxygen atoms are not continuously bonded, and may be substituted with a carbonyl group unless the carbonyl group is bonded continuously
  • a 1 and A 2 each independently represents a 1,4-cyclohexylene group, a 1,4-phenylene group or a tetrahydropyran-2,5-diyl group, and A 1 and / or A 2 is 1,4 When representing a
  • the lower limit is preferably 2% by mass, more preferably 3% by mass, further preferably 4% by mass, and particularly preferably 5% by mass.
  • the upper limit is preferably 45% by mass, more preferably 35% by mass, still more preferably 30% by mass, particularly preferably 27% by mass, and most preferably 25% by mass.
  • R 7 and R 8 are preferably an alkyl group or an alkenyl group when the ring structure to be bonded is cyclohexane or tetrahydropyran, and an alkyl group, an alkoxy group or an alkenyl group when it is benzene. It is preferably a group.
  • R 7 and R 8 are each an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, or the number of carbon atoms when the ring structure to be bonded is benzene.
  • It preferably represents an alkoxy group having 1 to 8 carbon atoms or an alkenyloxy group having 2 to 8 carbon atoms, preferably represents an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms. More preferably, it represents an alkyl group having 3 to 5 carbon atoms or an alkoxy group having 2 to 4 carbon atoms, more preferably an alkyl group having 3 or 5 carbon atoms or an alkoxy group having 2 or 4 carbon atoms, More preferably, it represents an alkoxy group having 2 or 4 carbon atoms, and is preferably a straight chain.
  • an alkenyl group is preferred when importance is placed on improving the response speed of the liquid crystal display element, and an alkyl group is preferred when importance is placed on reliability such as voltage holding ratio.
  • the alkenyl group the following formulas (i) to (iv)
  • a 1 and A 2 are each independently preferably a 1,4-cyclohexylene group, a 1,4-phenylene group or a tetrahydropyran-2,5-diyl group.
  • Z 1 and Z 2 are each preferably a single bond when importance is placed on the reduction of viscosity, and —OCH 2 —, —OCF 2 —, —CH when importance is placed on increasing the absolute value of ⁇ . 2 O— or —CF 2 O— is preferable, and the oxygen atom is preferably arranged so as to be linked to the 2,3-difluorobenzene-1,4-diyl group.
  • n 1 + n 2 is preferably 2 or less, preferably 1 when importance is attached to the reduction of viscosity, and preferably 2 when importance is attached to T ni or an increase in ⁇ n.
  • R 7a1 and R 7a2 , R 8a1 and R 8a2 are each independently an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, or an alkoxy group having 1 to 8 carbon atoms.
  • an alkenyloxy group having 2 to 8 carbon atoms wherein one or more hydrogen atoms in the alkyl group, alkenyl group, alkoxy group or alkenyloxy group may be substituted with a fluorine atom
  • the methylene group in the alkenyl group, alkoxy group or alkenyloxy group may be substituted with an oxygen atom unless the oxygen atom is continuously bonded, and may be substituted with a carbonyl group unless the carbonyl group is bonded continuously.
  • n a2 represents 0 or 1
  • a 1a2 represents a 1,4-cyclohexylene group, a 1,4-phenylene group or a tetrahydropyran-2,5-diyl group, and is represented by the general formulas (IVa1) and (IVa2)
  • One or more hydrogen atoms in the 1,4-phenylene group therein may be substituted with fluorine atoms.
  • It is preferably selected from the group of compounds represented by:
  • the compounds represented by the general formula (IVa1) are specifically the following formulas (IVa1-1) to (IVa1-8)
  • -1) to the content of the compound represented by the formula (IVa1-4) is preferably 50% by mass or more, and preferably 70% by mass or more in the compound represented by the general formula (IVa1). More preferably, it is more preferably 80% by mass or more, particularly preferably 85% by mass or more, and most preferably 90% by mass or more.
  • the content of the compound represented by 1) to formula (IVa1-3) is preferably 50% by mass or more, more preferably 70% by mass or more in the compound represented by general formula (IVa1). Preferably, it is more preferably 80% by mass or more, particularly preferably 85% by mass or more, and most preferably 90% by mass or more.
  • the content of the compound represented by 1) and the formula (IVa1-3) is preferably 50% by mass or more in the compound represented by the general formula (IVa1), and more preferably 70% by mass or more. Preferably, it is more preferably 80% by mass or more, particularly preferably 85% by mass or more, and most preferably 90% by mass or more.
  • the compounds represented by the general formula (IVa2) are specifically the following general formulas (IVa2-1) to (IVa2-9)
  • R 7 has the same meaning as R 7 in the general formula (IV)
  • R 8 is the same meaning as R 8 in the general formula (IV).
  • the compound represented by these is preferable.
  • the compound represented by the general formula (IVa2) it is preferable to use the compound represented by the formula (IVa2-1), but the content of the compound represented by the formula (IVa2-1) Is preferably 50% by mass or more in the compound represented by the general formula (IVa2), more preferably 70% by mass or more, still more preferably 80% by mass or more, and 85% by mass or more. It is particularly preferable that it is 90% by mass or more.
  • R 7 and R 8 in formula (IVa2) are each independently an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or the number of carbon atoms Represents an alkenyloxy group having 2 to 8 carbon atoms, preferably an alkyl group having 1 to 8 carbon atoms or an alkenyl group having 2 to 8 carbon atoms, preferably an alkyl group having 2 to 5 carbon atoms or 2 carbon atoms.
  • an alkenyl group having 5 to 5 carbon atoms still more preferably an alkyl group having 2 to 5 carbon atoms, more preferably a straight chain, and when both R 7 and R 8 are alkyl groups, The number of carbon atoms is preferably different.
  • compound R 8 represents a compound or R 7 butyl R 7 represents R 8 is an ethyl group represents a propyl group represents an ethyl group are preferred.
  • the 1,4-cyclohexyl group in the present application is preferably a trans-1,4-cyclohexyl group.
  • the liquid crystal composition in the invention contains a compound represented by the general formula (I) and the general formula (II), the compound represented by the general formula (IV) (however, represented by the general formula (II)) Except for the compound to be prepared).
  • the total content of the compounds represented by formula (I), formula (II) and general formula (IV) contained in the liquid crystal composition is preferably 80 to 100% by mass, more preferably 85 to 100% by mass. 90 to 100% by mass is more preferable, 95 to 100% by mass is particularly preferable, and 97 to 100% by mass is most preferable.
  • the total content of the compounds represented by the general formula (I) and the general formula (II) contained in the present liquid crystal composition is preferably 55% by mass, more preferably 65% by mass, and 70% by mass as the lower limit. More preferably, 73% by mass is particularly preferable, 75% by mass is most preferable, and the upper limit is preferably 85% by mass, more preferably 90% by mass, still more preferably 92% by mass, particularly preferably 94% by mass, and 95% by mass. % Is most preferred.
  • the liquid crystal composition in the invention contains a compound represented by the general formula (I) and the general formula (IV), the compound represented by the general formula (II) (however, represented by the general formula (IV)) Except for the compound to be prepared).
  • the total content of the compounds represented by formula (I), formula (II) and general formula (IV) contained in the liquid crystal composition is preferably 80 to 100% by mass, more preferably 85 to 100% by mass. 90 to 100% by mass is more preferable, 95 to 100% by mass is particularly preferable, and 97 to 100% by mass is most preferable.
  • the total content of the compounds represented by the general formula (I) and the general formula (IV) contained in the liquid crystal composition of the present application is preferably 55% by mass, more preferably 65% by mass, and 70% by mass as the lower limit. Is more preferably 73% by mass, most preferably 75% by mass, and the upper limit is preferably 85% by mass, more preferably 90% by mass, still more preferably 92% by mass, particularly preferably 94% by mass, and 95% by mass. Mass% is most preferred.
  • the liquid crystal composition of the present invention preferably does not contain a compound having a structure in which oxygen atoms such as a peracid (—CO—OO—) structure are bonded in the molecule.
  • the content of the compound having a carbonyl group is preferably 5% by mass or less with respect to the total mass of the composition, and 3% by mass or less. More preferably, it is more preferable to set it as 1 mass% or less, and it is most preferable not to contain substantially.
  • the content of a compound in which all the ring structures in the molecule are 6-membered rings is 80% relative to the total mass of the composition. It is preferably at least mass%, more preferably at least 90 mass%, even more preferably at least 95 mass%, and the liquid crystal is composed only of a compound having substantially all 6-membered ring structures in the molecule. Most preferably it constitutes a composition.
  • the content of the compound having a cyclohexenylene group as a ring structure is determined based on the total mass of the composition.
  • the content is preferably 10% by mass or less, more preferably 5% by mass or less, and still more preferably substantially not contained.
  • the content of the compound having —CH ⁇ CH— as a linking group is 10% relative to the total mass of the composition. It is preferable to set it as mass% or less, It is more preferable to set it as 5 mass% or less, It is still more preferable not to contain substantially.
  • a hydrogen atom to reduce the content of the compound having the optionally substituted 2-methyl-1,4-diyl group halogen in the molecule is preferably 10% by mass or less with respect to the total mass of the composition, and is 5% by mass or less. It is more preferable that it is not substantially contained.
  • the alkenyl group when the compound contained in the composition of the present invention has an alkenyl group as a side chain, when the alkenyl group is bonded to cyclohexane, the alkenyl group preferably has 2 to 5 carbon atoms. When the alkenyl group is bonded to benzene, the alkenyl group preferably has 4 to 5 carbon atoms, and the unsaturated bond of the alkenyl group and benzene are preferably not directly bonded.
  • the content of the compound having an alkenyl group as a side chain and a 2,3-difluorobenzene-1,4-diyl group it is preferable to make content of the said compound into 10 mass% or less with respect to the total mass of the said composition, it is more preferable to set it as 5 mass% or less, and it is still more preferable not to contain substantially.
  • the value of the dielectric anisotropy ⁇ of the liquid crystal composition in the present invention has a negative dielectric anisotropy, and the absolute value of the dielectric anisotropy is 2 or more.
  • the value of the dielectric anisotropy ⁇ is preferably ⁇ 2.0 to ⁇ 6.0 at 25 ° C., more preferably ⁇ 2.5 to ⁇ 5.0, and ⁇ 2.5 to -4.0 is particularly preferable. More specifically, it is preferably -2.5 to -3.4 when the response speed is important, and -3 when the drive voltage is important. It is preferable that it is from .4 to -4.0.
  • the compound represented by the general formula (I) is referred to as a nonpolar component, and the compounds represented by the general formula (II) and the general formula (IV) are referred to as polar components.
  • liquid crystal composition according to the present invention include a compound represented by the general formula (I), a compound represented by the general formula (II) and / or a compound represented by the general formula (IV). And including.
  • the value of the refractive index anisotropy ⁇ n of the liquid crystal composition in the present invention is preferably 0.08 to 0.13 at 25 ° C., more preferably 0.09 to 0.12. More specifically, it is preferably 0.10 to 0.12 when corresponding to a thin cell gap, and preferably 0.08 to 0.10 when corresponding to a thick cell gap.
  • the rotational viscosity ( ⁇ 1 ) of the liquid crystal composition in the present invention is preferably 150 or less, more preferably 130 or less, and particularly preferably 120 or less.
  • Z as a function of rotational viscosity and refractive index anisotropy shows a specific value.
  • ⁇ 1 represents rotational viscosity
  • ⁇ n represents refractive index anisotropy.
  • Z is preferably 13000 or less, more preferably 12000 or less, and particularly preferably 11000 or less.
  • the nematic phase-isotropic liquid phase transition temperature (T ni ) of the liquid crystal composition in the present invention is 60 ° C. or higher, preferably 75 ° C. or higher, more preferably 80 ° C. or higher, and still more preferably 90 ° C. It is above °C.
  • the liquid crystal composition of the present invention needs to have a specific resistance of 10 12 ( ⁇ ⁇ m) or more, preferably 10 13 ( ⁇ ⁇ m), and more preferably 10 14 ( ⁇ ⁇ m) or more.
  • the liquid crystal composition of the present invention may contain a normal nematic liquid crystal, a smectic liquid crystal, a cholesteric liquid crystal, an antioxidant, an ultraviolet absorber, etc. in addition to the above-mentioned compounds.
  • chemical stability it is preferable not to have a chlorine atom in the molecule.
  • stability to light such as ultraviolet rays of the liquid crystal composition is required, conjugation represented by a naphthalene ring or the like. It is desirable that the molecule does not have a condensed ring having a long length and an absorption peak in the ultraviolet region.
  • the alignment layer according to the present invention is preferably a photo-alignment film containing a photoresponsive polymer whose chemical structure changes in response to light.
  • photo-alignment films for example, photoisomerization by light irradiation of an azo group (for example, azobenzene compound), a Schiff base, and a compound having an unsaturated bond site such as a carbon-carbon double bond.
  • an azo group for example, azobenzene compound
  • a Schiff base for example, a compound having an unsaturated bond site
  • Those utilizing photodimerization such as cinnamic acid derivatives, those utilizing photo-cleavage (photolysis) of ⁇ bond of coumarin, chalcone, or the polymer itself (for example, photodegradable polyimide) It is done.
  • the photoresponsive polymer is at least one selected from the group consisting of a photoresponsive decomposition polymer, a photoresponsive dimerization polymer, and a photoresponsive isomerization polymer.
  • the photoresponsive decomposition polymer is particularly preferable.
  • photoresponsive decomposable polymer those utilizing photocleavage (photolysis) of ⁇ bond of the polymer itself are preferable. More specifically, in any case, those having polysiloxane, polyimide, and polyamic acid derivative structures as the main chain are preferred, and polyimide and polyamic acid derivative structures are more preferred.
  • the polyamic acid derivative is preferably an alkyl ester having 1 to 5 carbon atoms or an alkyl ammonium salt having 1 to 18 carbon atoms.
  • the photoresponsive decomposition type polymer according to the present invention contains at least one polymer selected from the group consisting of polyamic acid and polyimide obtained by reacting tetracarboxylic dianhydride with a diamine compound. Is preferred.
  • Examples of the tetracarboxylic dianhydride used as a raw material for polyimide and polyamic acid derivatives include the following.
  • Z 1 , Z 2 , Z 3 , and Z 4 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a chlorine atom, a fluorine atom, —NR 2 , —SR, —OH.
  • T represents a single bond, —CH 2 —, —O—, —S—, —C (CH 3 ) 2 —, —C (CF 3 ) 2 —, —CO—, —SO—).
  • formula (TCA-1), formula (TCA-2), formula (TCA-3), formula (TCA-4), formula (TCA-5), formula (TCA-8) and Formula (TCA-10) is preferred, and formula (TCA-1) and formula (TCA-8) are particularly preferred.
  • diamine compound used as a raw material for polyimide and polyamic acid derivatives include the following.
  • the formula (DA-1), the formula (DA-25), the formula (DA-31), the formula (DA-32), and the formula (DA-49) are preferable, and the formula (DA-1) Formula (DA-25) and Formula (DA-49) are particularly preferable.
  • At least one of a tetracarboxylic acid anhydride or a diamine compound includes the following formula (TCA-38) and formula (DA-50): It preferably contains at least one selected from the group consisting of formula (DA-56).
  • the diamine compounds may be represented by the following formulas (DA-50) to (DA-56):
  • the photo-alignment film according to the present invention when a type utilizing photodimerization is adopted, at least one of hydrogen atoms in the diamine compound represented by the formulas (DA-1) to (DA-49) is used. It preferably has the following formula (V), and more preferably contains at least one selected from the group consisting of formula (DA-50) to formula (DA-53).
  • broken lines represent bonds to the atoms to which the hydrogen atoms of (DA-1) to (DA-49) were bonded, and G 1 , G 2 , G 3 , G 4 , and G 5 are independent of each other.
  • an alkylene group having 2 to 12 carbon atoms one —CH 2 — group or two or more non-adjacent —CH 2 groups are —O—, —CO—, —COO—, —OCO— , —NR—, —NRCO—, —CONR—, —NRCOO—, —OCONR—, —NRCONR—, —CH ⁇ CH—, —CC—, —OCOO——, where R is a hydrogen atom.
  • n 5 , n 6 , n 7 , n 8 each represents 0 or 1
  • E 1 , E 2 , E 3 , E 4 , E 5 are each independently trans-1,4-cyclohexylene, trans-1, 4-dioxane-2,5-diyl, 1,4-naphthylene, 2,6-naphthylene, pyridine-2,5-diyl group, pyrimidine-2,5-diyl group, 2,5-thiophenylene group, 2, Represents a 5-furylene group or a 1,4-phenylene group, which may be unsubstituted or one or more hydrogen atoms may be replaced by fluorine, chlorine, methyl or methoxy groups, and Z is hydrogen Atom, fluorine atom, alkyl group having 1 to 12 carbon atoms (one —CH 2 — group or two or more non-adjacent —CH 2 — groups are —O—, —CO—
  • diamine compounds include the following formulas (DA-60) to (DA-63).
  • tetracarboxylic acid anhydride is represented by the formula (TCA-1), formula (TCA-2), formula (TCA- 3), formula (TCA-4), formula (TCA-5), formula (TCA-33) (in the formula (TCA-33), T is particularly preferably —CO—) and TCA-34 (formula ( In TCA-34), T is preferably —CO—, and is more preferably formula (TCA-1), formula (TCA-2), formula (TCA-3), formula (TCA-4) and formula (TCA- 5) is particularly preferred.
  • the diamine compound is represented by the formula (DA-1), the formula (DA-25), the formula (DA-49) from the viewpoint that a good liquid crystal orientation can be expressed. Is particularly preferred.
  • tetracarboxylic anhydrides and diamine compounds listed above can be used singly or in combination of two or more depending on the required properties.
  • the mixing ratio of the above-mentioned tetracarboxylic dianhydride and the above-mentioned diamine compound is as follows.
  • the proportion of the anhydride acid anhydride group is preferably 0.2 to 2 equivalents, more preferably 0.3 to 1.2 equivalents.
  • the polyamic acid synthesis reaction by the condensation of the tetracarboxylic acid anhydride and the diamine compound is performed in an organic solvent.
  • the reaction temperature is preferably ⁇ 20 ° C. to 150 ° C., more preferably 0 to 100 ° C.
  • the reaction time is preferably 0.1 to 24 hours, more preferably 0.5 to 12 hours.
  • organic solvent examples include alcohols, ketones, esters, ethers, aprotic polar solvents, phenols and derivatives thereof, halogenated hydrocarbon solvents, hydrocarbon solvents, and the like.
  • the alcohol for example, methyl alcohol, ethyl alcohol, isopropyl alcohol, cyclohexanol, ethylene glycol, propylene glycol, 1,4-butanediol, triethylene glycol, ethylene glycol monomethyl ether and the like are preferable.
  • ketone examples include acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.
  • ester examples include ethyl lactate, butyl lactate, methyl acetate, ethyl acetate, butyl acetate, methyl methoxypropionate, ethyl ethoxypropionate, diethyl oxalate, and diethyl malonate.
  • ether examples include diethyl ether, ethylene glycol methyl ether, ethylene glycol ethyl ether, ethylene glycol-n-propyl ether, ethylene glycol-i-propyl ether, ethylene glycol-n-butyl ether, ethylene glycol dimethyl ether, ethylene glycol ethyl ether acetate.
  • aprotic polar solvent examples include, for example, N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethyl sulfoxide, ⁇ -butyrolactone, tetramethylurea and hexamethylphosphoryl Amides and the like are preferred.
  • Examples of the phenol and derivatives thereof include m-cresol, xylenol, and halogenated phenol.
  • Examples of the halogenated hydrocarbon solvent include dichloromethane, 1,2-dichloroethane, 1,4-dichlorobutane, trichloroethane, and chlorobenzene. , O-dichlorobenzene and the like.
  • hydrocarbon solvent examples include hexane, heptane, octane, benzene, toluene, xylene, isoamyl propionate, isoamyl isobutyrate, and diisopentyl ether.
  • the total amount of tetracarboxylic dianhydride and diamine compound with respect to the organic solvent is preferably 0.1 to 50% by weight based on the total amount of the reaction solution.
  • reaction solution containing a polyamic acid is obtained.
  • the obtained reaction solution may be used for the preparation of the alignment film as it is, or may be used for the preparation of the alignment film after isolating the polyamic acid contained in the reaction solution. May be used for the preparation of the alignment film.
  • the reaction solution may be subjected to a dehydration ring closure reaction as it is, and the polyamic acid contained in the reaction solution is isolated and then subjected to dehydration ring closure. It may be subjected to a reaction, or may be subjected to a dehydration ring closure reaction after purifying the isolated polyamic acid. Isolation and purification of the polyamic acid can be performed according to known methods.
  • a method of imidizing the polyamic acid obtained by the above reaction to obtain a polyimide it can be obtained by dehydrating and ring-closing the polyamic acid to imidize. Specifically, it is carried out by a method of heating a polyamic acid or a method of dissolving a polyamic acid in an organic solvent, adding a dehydrating agent and a dehydrating ring-closing catalyst to the solution, and heating as necessary.
  • Examples of the organic solvent used in the dehydration ring closure reaction include the organic solvents exemplified as those used for the synthesis of polyamic acid, and are omitted here.
  • the polyimide as the alignment film according to the present invention may be a completely imidized product obtained by dehydrating and cyclizing all of the amic acid structure of the precursor polyamic acid, and only a part of the amic acid structure may be dehydrated. It may be a partially imidized product that is ring-closed and has an amic acid structure and an imide ring structure.
  • the imidation ratio of the polyimide according to the present invention is preferably 30% or more, more preferably 40 to 99%, and still more preferably 45 to 98%.
  • the said imidation rate represents the ratio which the number of the imide ring structure accounts with respect to the sum total of the number of the amic acid structures of polyimide, and the number of imide ring structures in percentage.
  • a part of the imide ring may be an isoimide ring.
  • the method for measuring the imidization ratio of polyimide is determined by determining a proton derived from a structure that does not change before and after imidation as a reference proton, and the peak integrated value of this proton is around 9.5 to 10.0 ppm. It is calculated using the proton peak integrated value derived from the NH group of the amic acid that appears.
  • the temperature when polyamic acid is thermally imidized in a solution is preferably 100 ° C. to 400 ° C., more preferably 120 ° C. to 250 ° C.
  • a method is preferably performed while removing water generated by the imidization reaction from the system.
  • a basic catalyst and an acid anhydride are added to the polyamic acid solution obtained above, preferably ⁇ 20 to 250 ° C., more preferably 0 to It is obtained by stirring at 180 ° C.
  • the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times of the amic acid group
  • the amount of the acid anhydride is 1 to 50 mol times of the amic acid group, preferably Is 3 to 30 mole times.
  • Examples of the basic catalyst include pyridine, collidine, lutidine, triethylamine, trimethylamine, tributylamine, and trioctylamine.
  • Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like.
  • the imidation rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
  • the reaction solution when recovering the produced polyamic acid or polyimide from the reaction solution of polyamic acid or polyimide, the reaction solution may be poured into a poor solvent and precipitated.
  • the poor solvent used for precipitation include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, and water.
  • the polymer precipitated in a poor solvent and collected by filtration can be dried by normal temperature or reduced pressure at room temperature or by heating.
  • the solution preferably has a solution viscosity of 10 to 800 mPa ⁇ s, and preferably has a solution viscosity of 15 to 500 mPa ⁇ s. More preferably.
  • the solution viscosity (mPa ⁇ s) of these polymers is 10% by weight of a polymer solution prepared using a good solvent for the polymer (eg, ⁇ -butyrolactone, N-methyl-2-pyrrolidone, etc.). Is a value measured at 25 ° C. using an E-type viscometer.
  • Sp is a single bond, — (CH 2 ) u — (wherein u represents 1 to 20), —OCH 2 —, —CH 2 O—, —COO— , —OCO—, —CH ⁇ CH—, —CF ⁇ CF—, —CF 2 O—, —OCF 2 —, —CF 2 CF 2 —, and —C ⁇ C—.
  • At least one of the non-adjacent CH 2 groups independently represents —O—, —CO—, —CO—O—, —O—CO—, — Si (CH 3 ) 2 —O—Si (CH 3 ) 2 —, —NR—, —NR—CO—, —CO—NR—, —NR—CO—O—, —O—CO—NR—, — NR—CO—NR—, —CH ⁇ CH—, —C ⁇ C— or —O—CO—O— (wherein R is independently hydrogen or an alkyl group having 1 to 5 carbon atoms) Can be substituted with A 1 and A 2 are each independently (A) trans-1,4-cyclohexylene group (in this group, one methylene group or two or more methylene groups not adjacent to each other are replaced by —O—, —NH— or —S—) May be) (B) a 1,4-phenylene group (one or more of —CH ⁇ present
  • R a is independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a phenyl group, a halogen atom.
  • any hydrogen atom in each structure may be substituted by a fluorine atom, a chlorine atom, a methyl group, a phenyl group, a methoxy group,
  • the broken line represents a bond to Sp
  • R 1 is a tetravalent ring structure
  • R 2 is a trivalent organic group
  • R 3 is a hydrogen atom
  • a hydroxyl group Represents an alkyl group having 1 to 15 carbon atoms and an alkoxy group having 1 to 15 carbon atoms.
  • y and w represent the molar fraction of the copolymer, 0 ⁇ y ⁇ 1 and 0 ⁇ w ⁇ 1, n represents 4 to 100,000, and the monomer units of M b and M d are each independently One type or two or more types of different units may be used. ) It is preferable that it is a photoresponsive dimerization type
  • a photoresponsive dimerization polymer in which Z 2 is a single bond is preferable.
  • M 1 and M 2 are each independently of each other acrylate, methacrylate, 2-chloroacrylate, 2-phenyl acrylate, acrylamide, methacryl which may be N-substituted with a lower alkyl group.
  • M 3 is acrylate, methacrylate, 2-chloroacrylate, 2-phenylacrylate, acrylamide, methacrylamide, 2-chloroacrylamide, 2-phenylacrylamide, vinyl ether, vinyl ester, acrylic which may be N-substituted with lower alkyl.
  • C- n 1 , n 2 and n 3 are mole fractions of comonomer where 0 ⁇ n 1 ⁇ 1, 0 ⁇ n 2 ⁇ 1 and 0 ⁇ n 3 ⁇ 0.5) It is preferable that it is a photoresponsive dimerization type
  • FIG. 1 is a diagram schematically showing a configuration of a liquid crystal display element.
  • the liquid crystal display element 10 according to the present invention has a liquid crystal composition sandwiched between a first transparent insulating substrate 2 and a second transparent insulating substrate 7 that are arranged to face each other.
  • the first transparent insulating substrate 2 has an electrode layer 3 formed on the surface on the liquid crystal layer 5 side.
  • the liquid crystal molecules in the liquid crystal composition are aligned so as to be substantially parallel to the substrates 2 and 7 when no voltage is applied.
  • the second substrate 7 and the first substrate 2 may be sandwiched between a pair of polarizing plates 1 and 8.
  • a color filter 6 is provided between the second substrate 7 and the alignment film 4.
  • the liquid crystal display element according to the present invention may be a so-called color filter on array (COA), or may be provided with a color filter between an electrode layer including a thin film transistor and a liquid crystal layer, or the thin film transistor.
  • COA color filter on array
  • a color filter may be provided between the electrode layer containing and the second substrate.
  • the liquid crystal display element 10 includes a first polarizing plate 1, a first substrate 2, an electrode layer 3 including a thin film transistor, an alignment film 4, a liquid crystal layer 5 including a liquid crystal composition,
  • the alignment film 4, the color filter 6, the second substrate 7, and the second polarizing plate 8 are sequentially stacked.
  • the first substrate 2 and the second substrate 7 can be made of a transparent material having flexibility such as glass or plastic, and one of them can be an opaque material such as silicon.
  • the two substrates 2 and 7 are bonded together by a sealing material and a sealing material such as an epoxy thermosetting composition disposed in the peripheral region, and in order to maintain the distance between the substrates, for example, Spacer columns made of resin formed by granular spacers such as glass particles, plastic particles, alumina particles, or a photolithography method may be arranged.
  • FIG. 2 is an enlarged plan view of a region surrounded by the II line of the electrode layer 3 formed on the substrate 2 in FIG.
  • FIG. 3 is a cross-sectional view of the liquid crystal display element shown in FIG. 1 cut along the line III-III in FIG.
  • the electrode layer 3 including thin film transistors formed on the surface of the first substrate 2 includes a plurality of gate bus lines 26 for supplying scanning signals and a plurality of gate bus lines 26 for supplying display signals.
  • Data bus lines 25 are arranged in a matrix so as to cross each other. In FIG. 2, only a pair of gate bus lines 25 and a pair of data bus lines 24 are shown.
  • a unit pixel of the liquid crystal display device is formed by a region surrounded by the plurality of gate bus lines 26 and the plurality of data bus lines 25, and a pixel electrode 21 and a common electrode 22 are formed in the unit pixel. .
  • a thin film transistor including a source electrode 27, a drain electrode 24, and a gate electrode 28 is provided in the vicinity of an intersection where the gate bus line 26 and the data bus line 25 intersect each other.
  • the thin film transistor is connected to the pixel electrode 21 as a switch element that supplies a display signal to the pixel electrode 21.
  • a common line 29 is provided in parallel with the gate bus line 26.
  • the common line 29 is connected to the common electrode 22 in order to supply a common signal to the common electrode 22.
  • a preferred embodiment of the structure of the thin film transistor is provided, for example, as shown in FIG. 3 so as to cover the gate electrode 11 formed on the surface of the substrate 2 and the gate electrode 11 and cover the substantially entire surface of the substrate 2.
  • a protective film provided to cover a part of the surface of the gate insulating layer 12, the semiconductor layer 13 formed on the surface of the gate insulating layer 12 so as to face the gate electrode 11, and the semiconductor layer 17.
  • a drain electrode 16 provided so as to cover one side end of the protective layer 14 and the semiconductor layer 13 and to be in contact with the gate insulating layer 12 formed on the surface of the substrate 2, and the protection
  • a source electrode 17 which covers the film 14 and the other side end of the semiconductor layer 13 and is in contact with the gate insulating layer 12 formed on the surface of the substrate 2;
  • Has an insulating protective layer 18 provided to cover the electrode 16 and the source electrode 17, a.
  • An anodic oxide film (not shown) may be formed on the surface of the gate electrode 11 for reasons such as eliminating a step with the gate electrode.
  • Amorphous silicon, polycrystalline polysilicon, or the like can be used for the semiconductor layer 13, but when a transparent semiconductor film such as ZnO, IGZO (In—Ga—Zn—O), ITO, or the like is used, it results from light absorption. It is also preferable from the viewpoint of suppressing the adverse effect of the optical carrier and increasing the aperture ratio of the element.
  • an ohmic contact layer 15 may be provided between the semiconductor layer 13 and the drain electrode 16 or the source electrode 17 for the purpose of reducing the width and height of the Schottky barrier.
  • a material in which an impurity such as phosphorus such as n-type amorphous silicon or n-type polycrystalline polysilicon is added at a high concentration can be used.
  • the gate bus line 26, the data bus line 25, and the common line 29 are preferably metal films, more preferably Al, Cu, Au, Ag, Cr, Ta, Ti, Mo, W, Ni, or an alloy thereof, Al or Cu
  • the case of using the alloy wiring is particularly preferable.
  • the insulating protective layer 18 is a layer having an insulating function, and is formed of silicon nitride, silicon dioxide, silicon oxynitride film, or the like.
  • the common electrode 22 is a flat electrode formed on almost the entire surface of the gate insulating layer 12, while the pixel electrode 21 is an insulating protective layer 18 covering the common electrode 22. It is a comb-shaped electrode formed on the top. That is, the common electrode 22 is disposed at a position closer to the first substrate 2 than the pixel electrode 21, and these electrodes are disposed so as to overlap each other via the insulating protective layer 18.
  • the pixel electrode 21 and the common electrode 22 are formed of a transparent conductive material such as ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), IZTO (Indium Zinc Tin Oxide), and the like. Since the pixel electrode 21 and the common electrode 22 are formed of a transparent conductive material, the area opened by the unit pixel area increases, and the aperture ratio and transmittance increase.
  • the pixel electrode 21 and the common electrode 22 have an interelectrode distance (also referred to as a minimum separation distance): R between the pixel electrode 21 and the common electrode 22 in order to form a fringe electric field between the electrodes.
  • the distance between the first substrate 2 and the second substrate 7 is smaller than G.
  • the distance between electrodes: R represents the distance in the horizontal direction on the substrate between the electrodes.
  • the FFS type liquid crystal display element can use a horizontal electric field formed in a direction perpendicular to a line forming the comb shape of the pixel electrode 21 and a parabolic electric field.
  • the electrode width of the comb-shaped portion of the pixel electrode 21: l and the width of the gap of the comb-shaped portion of the pixel electrode 21: m are such that all the liquid crystal molecules in the liquid crystal layer 5 can be driven by the generated electric field. It is preferable to form.
  • the minimum separation distance R between the pixel electrode and the common electrode can be adjusted as the (average) film thickness of the gate insulating film 12.
  • the liquid crystal display element according to the present invention is preferably a vertical electric field type or lateral electric field type liquid crystal display element, and more preferably an FFS type or VA type liquid crystal display element utilizing a fringe electric field. If the adjacent shortest separation distance R between the common electrode 22 and the pixel electrode 21 is shorter than the shortest separation distance G between the alignment layers 4 (inter-substrate distance), a fringe electric field is formed between the common electrode and the pixel electrode, The horizontal and vertical alignment of the liquid crystal molecules can be used efficiently.
  • the FFS mode liquid crystal display element as in the preferred embodiment of the present invention, when a voltage is applied to the liquid crystal molecules arranged so that the long axis direction is parallel to the alignment direction of the alignment layer, it is common with the pixel electrode 21.
  • An equipotential line of a parabolic electric field is formed between the electrode 22 and the upper part of the pixel electrode 21 and the common electrode 22, and the liquid crystal molecules in the liquid crystal layer 5 pass through the liquid crystal layer 5 along the formed electric field. Rotate.
  • the liquid crystal composition according to the present invention uses liquid crystal molecules having negative dielectric anisotropy, the major axis direction of the liquid crystal molecules rotates so as to be perpendicular to the generated electric field direction.
  • the liquid crystal molecules located near the pixel electrode 21 are easily affected by the fringe electric field, the liquid crystal molecules having negative dielectric anisotropy are oriented in the major axis direction because the polarization direction is on the minor axis of the molecule.
  • the liquid crystal layer 5 does not rotate in a direction perpendicular to the layer 4, and the major axis direction of all the liquid crystal molecules in the liquid crystal layer 5 can be maintained parallel to the alignment film 4. Therefore, excellent transmittance characteristics can be obtained as compared with an FFS mode liquid crystal display element using liquid crystal molecules having positive dielectric anisotropy.
  • the color filter 6 preferably forms a black matrix (not shown) in a portion corresponding to the thin film transistor and the storage capacitor 23 from the viewpoint of preventing light leakage.
  • a pair of alignment films 4 that directly contact the liquid crystal composition constituting the liquid crystal layer 5 and induce homogeneous alignment are provided.
  • FIG. 4 is a diagram schematically showing the alignment direction of the liquid crystal induced by the alignment film 4.
  • a liquid crystal composition having negative dielectric anisotropy is used. Therefore, when the direction perpendicular to the line forming the comb shape of the pixel electrode 21 (the direction in which the horizontal electric field is formed) is the x-axis, the angle ⁇ formed by the x-axis and the major axis direction of the liquid crystal molecules 30.
  • the orientation is preferably approximately 0 to 45 °. In the example shown in FIG.
  • the alignment film as a photo-alignment film, it is possible to provide a FFS liquid crystal display element that can reduce a decrease in alignment regulating force on liquid crystal molecules due to uneven rubbing and has excellent transmittance characteristics.
  • the polarizing plate 1 and the polarizing plate 8 can be adjusted so that the viewing angle and the contrast are good by adjusting the polarizing axis of each polarizing plate, and the transmission axes thereof operate in the normally black mode.
  • any one of the polarizing plate 1 and the polarizing plate 8 is preferably arranged so as to have a transmission axis parallel to the alignment direction of the liquid crystal molecules 30.
  • a retardation film for widening the viewing angle can also be used.
  • the common electrode is formed on substantially the entire surface of the first substrate, and is disposed closer to the first substrate than the pixel electrode. That is, a preferred embodiment of the liquid crystal display element according to the present invention is filled between the first substrate and the second substrate that are disposed opposite to each other, and between the first substrate and the second substrate.
  • the inter-electrode distance R is smaller than the distance G between the first substrate and the second substrate, the common electrode is formed on substantially the entire surface of the first substrate, and is closer to the first substrate than the pixel electrode.
  • FIGS. 1 to 4 which are one mode of the present invention show a mode in which the through electrodes are formed on almost the entire surface of the first substrate and are arranged closer to the first substrate than the pixel
  • the FFS type liquid crystal display element described with reference to FIGS. 1 to 4 is an example, and can be implemented in various other forms without departing from the technical idea of the present invention.
  • FIG. 5 is another embodiment of the plan view in which the region surrounded by the II line of the electrode layer 3 formed on the substrate 2 in FIG. 1 is enlarged.
  • the pixel electrode 21 may have a slit.
  • the slit pattern may be formed to have an inclination angle with respect to the gate bus line 26 or the data bus line 25.
  • the pixel electrode 21 shown in FIG. 5 has a shape in which a substantially rectangular flat plate electrode is cut out by a notch portion having a substantially rectangular frame shape.
  • a comb-like common electrode 22 is formed on one surface of the back surface of the pixel electrode 21 via an insulating layer 18 (not shown).
  • the shortest separation distance R between the adjacent common electrode and the pixel electrode is shorter than the shortest separation distance G between the alignment layers.
  • the surface of the pixel electrode is preferably covered with a protective insulating film and an alignment film layer.
  • a storage capacitor (not shown) for storing a display signal supplied via the data wiring 24 may be provided in an area surrounded by the plurality of gate bus lines 25 and the plurality of data bus lines 24. .
  • the shape of the notch is not particularly limited, and is not limited to the substantially rectangular shape shown in FIG. 5, and a notch having a known shape such as an ellipse, a circle, a rectangle, a rhombus, a triangle, or a parallelogram. Can be used.
  • FIG. 6 is another embodiment different from FIG. 3, and is another example of a cross-sectional view of the liquid crystal display element shown in FIG. 1 cut along the line III-III in FIG.
  • the liquid crystal layer 5 containing the liquid crystal composition is filled in this space.
  • the gate insulating film 12, the common electrode 22, the insulating film 18, the pixel electrode 21, and the alignment layer 4 are stacked in this order on part of the surface of the first substrate 2. Further, as shown in FIG.
  • the pixel electrode 21 has a shape in which the center and both ends of the flat plate are cut out by a triangular cutout, and the remaining region is cut out by a rectangular cutout.
  • the common electrode 22 has a structure in which a comb-like common electrode is disposed on the first substrate side from the pixel electrode substantially in parallel with the substantially elliptical cutout portion of the pixel electrode 21.
  • FIG. 6 shows an example in which the common electrode 22 is formed on the gate insulating film 12.
  • the common electrode 22 is formed on the first substrate 2
  • the pixel electrode 21 may be provided via the gate insulating film 12.
  • the electrode width of the pixel electrode 21: l, the electrode width of the common electrode 22: n, and the interelectrode distance: R are appropriately adjusted to such a width that all liquid crystal molecules in the liquid crystal layer 5 can be driven by the generated electric field. It is preferable.
  • the FFS mode liquid crystal display element according to the present invention uses a specific liquid crystal composition and a specific photo-alignment film, it is possible to achieve both high-speed response and suppression of display defects.
  • FIG. 7 is a diagram schematically showing a configuration of a vertical electric field type liquid crystal display element. Moreover, in FIG. 7, for convenience of explanation, each component is illustrated separately.
  • FIG. 8 is an enlarged plan view of a region surrounded by the II line of the electrode layer 3 (or also referred to as the thin film transistor layer 3) including the thin film transistor formed on the substrate in FIG.
  • FIG. 9 is a cross-sectional view of the liquid crystal display element shown in FIG. 1 taken along the line III-III in FIG.
  • FIGS. 1 a vertical electric field type liquid crystal display device according to the present invention will be described with reference to FIGS.
  • the configuration of the liquid crystal display element 10 according to the present invention includes a first substrate 80 provided with a transparent electrode (layer) 60 (also referred to as a common electrode 60) made of a transparent conductive material, as shown in FIG.
  • the liquid crystal composition of the present invention is used as the liquid crystal composition.
  • the second substrate 20 and the first substrate 80 may be sandwiched between a pair of polarizing plates 10 and 90. Further, in FIG. 7, a color filter 70 is provided between the first substrate 8 and the common electrode 6. Furthermore, a pair of photo-alignment films 40 are formed on the surfaces of the transparent electrodes (layers) 60 and 140 so as to be adjacent to the liquid crystal layer 50 according to the present invention and to directly contact the liquid crystal composition constituting the liquid crystal layer 50 Also good.
  • the liquid crystal display element 10 includes a second polarizing plate 10, a second substrate 20, an electrode layer (also referred to as a thin film transistor layer) 30 including a thin film transistor, a photo-alignment film 40, and a liquid crystal composition.
  • a layer 50 containing an object, a photo-alignment film 40, a common electrode 60, a color filter 70, a first substrate 80, and a first polarizing plate 90 are sequentially stacked.
  • the electrode layer 30 including the thin film transistor formed on the surface of the second substrate 20 includes a gate wiring 250 for supplying a scanning signal and data for supplying a display signal.
  • Pixel electrodes 210 are formed in a matrix in a region that intersects with the wirings 240 and is surrounded by the plurality of gate wirings 250 and the plurality of data wirings 240.
  • a switching element that supplies a display signal to the pixel electrode 210 a thin film transistor including a source electrode 260, a drain electrode 230, and a gate electrode 270 in the vicinity of the intersection where the gate wiring 250 and the data wiring 240 intersect with each other, It is connected to the pixel electrode 210.
  • a storage capacitor 220 for storing a display signal supplied through the data wiring 240 is provided in a region surrounded by the plurality of gate wirings 250 and the plurality of data wirings 240.
  • the thin film transistor can be preferably used for a liquid crystal display element having an inverted staggered type, and the gate wiring 250 and the data wiring 240 are preferably metal films, and an aluminum wiring is used. Is particularly preferred. Further, the gate wiring 250 and the data wiring 240 overlap with each other through a gate insulating film.
  • the color filter 70 is preferably formed with a black matrix (not shown) in a portion corresponding to the thin film transistor and the storage capacitor 22 from the viewpoint of preventing light leakage.
  • a preferred embodiment of the structure of the thin film transistor of the liquid crystal display element according to the present invention is as described above.
  • the generation of dripping marks is greatly influenced by the injected liquid crystal material, but the influence is unavoidable depending on the configuration of the liquid crystal display element.
  • the polymer chemical structure used for the photo-alignment film 40 and a specific chemical structure has an effect on the occurrence of dripping marks.
  • the FFS mode liquid crystal display element for example, a vacuum injection method or a drop injection (ODF: One Drop Fill) method or the like.
  • ODF Drop injection
  • a dripping mark is defined as a phenomenon in which a mark in which a liquid crystal composition is dripped appears white when displaying black.
  • the occurrence of dripping marks is greatly affected by the liquid crystal material to be injected, but the influence is unavoidable depending on the configuration of the display element.
  • the thin film transistor formed in the display element, the pixel electrode 21 having a comb shape or a slit, and the like are liquid crystal only in the thin alignment film 4 or the thin alignment film 4 and the thin insulating protective layer 18. Since there is no member that separates the composition, there is a high possibility that the ionic substance cannot be completely blocked, and the occurrence of dripping marks due to the interaction between the metal material constituting the electrode and the liquid crystal composition could not be avoided.
  • the liquid crystal composition of the present invention in combination with the photo-alignment film in the FFS type liquid crystal display element, the occurrence of dripping marks can be effectively suppressed.
  • the liquid crystal display element in the manufacturing process of the liquid crystal display element by the ODF method, it is necessary to drop an optimal liquid crystal injection amount according to the size of the liquid crystal display element.
  • the liquid crystal display element can be kept at a high yield because liquid crystal can be stably dropped over a long period of time with little influence on abrupt pressure change or impact in the apparatus.
  • small liquid crystal display elements that are frequently used in smartphones that have been popular recently are difficult to control the deviation from the optimal value within a certain range because the optimal liquid crystal injection amount is small.
  • a stable discharge amount of a liquid crystal material can be realized even in a small liquid crystal display element.
  • the liquid crystal display element of the present invention is preferably produced, for example, by the following steps (1) to (3).
  • the photo-alignment film precursor solution according to the present invention it is preferable to form a coating film on the substrate by applying the photo-alignment film precursor solution according to the present invention on the substrate and then heating the coated surface ( Step (1)). More specifically, for example, the photo-alignment film precursor of the present invention is formed on the conductive film forming surface of the substrate provided with the transparent conductive film patterned in a comb-teeth shape and on one surface of the counter substrate provided with no conductive film. Each of the body solutions is applied, and each coated surface is heated to form a coating film.
  • the photo-alignment film precursor solution according to the present invention is preferably a solution containing the above-described photoresponsive polymer.
  • the photoresponsive polymer contains at least one polymer selected from the group consisting of polyamic acid and polyimide obtained by reacting tetracarboxylic dianhydride with a diamine compound and the organic solvent. Is more preferable.
  • the photo-alignment film precursor solution of the present invention is preferably applied by an offset printing method, a spin coating method, a roll coater method, or an inkjet printing method.
  • the substrate for example, a glass such as float glass or soda glass; a transparent substrate made of a plastic such as polyethylene terephthalate, polybutylene terephthalate, polyethersulfone, polycarbonate, or poly (alicyclic olefin) can be used.
  • a NESA film made of tin oxide (SnO 2 ), an ITO film made of indium oxide-tin oxide (In 2 O 3 —SnO 2 ), or the like is used. Also good.
  • a method of forming a pattern by photo-etching after forming a transparent conductive film without a pattern, or a mask having a desired pattern when forming a transparent conductive film is used. It can be employed in methods.
  • the substrate surface is a known method such as a functional silane compound or a functional titanium compound. The surface treatment may be performed in advance.
  • pre-baking may be performed as necessary.
  • the pre-baking temperature is preferably 30 to 200 ° C.
  • the prebake time is preferably 0.25 to 10 minutes.
  • the firing temperature at this time is preferably 80 to 300 ° C.
  • the firing time is preferably 5 to 200 minutes.
  • the film thickness thus formed is preferably 0.001 to 1 ⁇ m.
  • the film contained in the photo-alignment film precursor solution of the present invention is a polyamic acid or an imidized polymer having an imide ring structure and an amic acid structure
  • the film is further heated after the coating is formed. It is good also as a more imidized coating film by making a dehydration ring-closing reaction proceed.
  • step (2) it is preferable to irradiate a coating film containing polyamic acid or polyimide formed on the substrate (step (2)). Moreover, you may perform the said process (2) after the below-mentioned process (3).
  • the light applied to the coating film ultraviolet rays or visible rays containing light having a wavelength of 150 to 800 nm can be used, and ultraviolet rays containing light having a wavelength of 300 to 400 nm are preferable.
  • a light source for the irradiation light a low-pressure mercury lamp, a high-pressure mercury lamp, a deuterium lamp, a metal halide lamp, an argon resonance lamp, a xenon lamp, an excimer laser, or the like can be used.
  • the ultraviolet rays in the preferable wavelength region can be obtained by means of using a light source in combination with, for example, a filter or a diffraction grating.
  • the amount of light irradiation is preferably 1,000 J / m 2 or more and 100,000 J / m 2 or less.
  • a pair of substrates on which a photo-alignment film or a coating film is formed face each other with a gap (cell gap) therebetween, and the liquid crystal composition according to the present invention is placed in the gap. It is preferable to fill (step (3)).
  • a method for filling the liquid crystal composition (1) vacuum injection method (for a pair of substrates on which a photo-alignment film or a coating film is formed, a gap is formed so that the alignment directions of the two substrates are orthogonal to each other. (Cell gap) are placed facing each other, the periphery of the two substrates are bonded together using a sealant, liquid crystal is injected and filled into the cell gap defined by the substrate surface and the sealant, and the injection hole is sealed. And a method of forming a liquid crystal cell by stopping) or (2) ODF method.
  • the method of introducing the liquid crystal composition by the vacuum injection method although no drop mark is generated, there is a problem in manufacturing time, cost, etc. as the substrate size increases. However, in this invention, it can be used conveniently by the display element manufactured using the ODF method from the combination of a photo-alignment film and a liquid-crystal composition.
  • the electrode layer 3 surface covered with the photo-alignment film
  • a TFT is formed on the surface of the same substrate (first substrate in FIG. 3)
  • the measured characteristics are as follows.
  • T NI Nematic phase-isotropic liquid phase transition temperature (° C) ⁇ n: refractive index anisotropy at 25 ° C. ⁇ : dielectric anisotropy at 25 ° C. ⁇ : viscosity at 20 ° C. (mPa ⁇ s) ⁇ 1 : rotational viscosity at 25 ° C. (mPa ⁇ s) VHR: Voltage holding ratio (%) at 60 ° C. under conditions of frequency 60 Hz and applied voltage 1 V Burn-in: The burn-in evaluation of the liquid crystal display element is based on the following four-level evaluation of the afterimage level of the fixed pattern when the predetermined fixed pattern is displayed in the display area for 1000 hours and then the entire screen is uniformly displayed. went.
  • the process suitability is that the liquid crystal is dropped by 50 pL at a time using a constant volume metering pump 100000 times in the ODF process, and the following “0 to 100 times, 101 to 200 times, 201 to 300 times, ..., 99901 to 100,000 times ”, the change in the amount of liquid crystal dropped 100 times each was evaluated in the following four stages.
  • Example 1 (Liquid Crystal Composition 1) A liquid crystal composition (liquid crystal composition 1) having the following composition was prepared and measured for physical properties. The results are shown in the following table.
  • liquid crystal composition of the present invention FFS mode and VA mode liquid crystal display elements having a cell thickness of 3.0 ⁇ m, which are common for TV, were prepared, and the alignment film was prepared by the following method.
  • Photo-alignment film 1 After dissolving 1.0 mol% of p-phenylenediamine in N-methyl-2-pyrrolidone, 1 mol% of cyclobutanetetracarboxylic dianhydride was added thereto and reacted at 20 ° C. for 12 hours to obtain standard polystyrene. A polyamic acid varnish having a converted weight average molecular weight of about 100,000 and a weight average molecular weight / number average molecular weight (Mv / Mn) of about 1.6 was obtained.
  • the first thin film laminate and the second thin film laminate It was printed on and heated at 210 ° C. for 30 minutes to form a photolytic insulating film (polyimide film).
  • the photodecomposition type polyimide film was subjected to an alignment treatment for irradiating light (ultraviolet rays) from a polarized UV lamp having a bright line in a wavelength range of 240 nm to 400 nm, for example.
  • This alignment treatment is performed, for example, by irradiating ultraviolet light from a high-pressure mercury lamp with linear irradiation with a polarization ratio of about 20: 1 using a pile polarizer laminated with a quartz substrate and with an irradiation energy of about 4 J / cm 2. It was.
  • Photo-alignment film 2 Synthesis of polyamic acid A
  • 4′-diaminodiphenyl ether 1.0 mol%, dissolved in N-methyl-2-pyrrolidone, 1 mol% of cyclobutanetetracarboxylic dianhydride was added thereto and reacted at 20 ° C. for 12 hours.
  • the polyamic acid A solution and the polyamic acid B solution are mixed so that the mass ratio of the solid content is 1: 1, and further diluted with a mixed solvent having a mass ratio of N-methyl-2-pyrrolidone and 2-butoxyethanol of 1: 1. As a result, a polyamic acid solution was obtained.
  • Photo-alignment film 3 (Preparation of solution for photo-alignment film) To 3.24 g of 1,4-phenylenediamine, 32.40 g of N-methyl-2-pyrrolidone was added and dissolved by stirring while feeding nitrogen. While stirring this diamine solution, 7.81 g of cyclobutanetetracarboxylic dianhydride was added, and 78.03 g of N-methyl-2-pyrrolidone was added, and the mixture was stirred at 30 ° C. for 18 hours under a nitrogen atmosphere to be reacted. It was.
  • the reaction solution was filtered, and the reaction solution was washed with 100 mL of 10% hydrochloric acid, then washed with 100 mL of saturated brine three times, and dried over anhydrous magnesium sulfate.
  • Purification was performed using a 30 g alumina / 300 g silica gel column and an ethyl acetate / dichloromethane mixed solvent. The solid from which the solvent had been distilled off was recrystallized using methanol to obtain 16.4 g of the target monomer (I-1-1) as a white solid. Purity 99.5% (HPLC).
  • the precipitated solid was collected, dissolved in THF, and then vacuum dried to obtain polymer (PA-1). It was.
  • the obtained polymer (PA-1) had a weight average molecular weight (Mw) of 383,000 and a molecular weight distribution (Mw / Mn) of 2.75.
  • the molecular weight of the polymer was adjusted by adjusting the heating and reflux time in the nitrogen atmosphere and measuring the weight average molecular weight (Mw).
  • Mw and Mn were measured by GPC (gel permeation chromatography) under the following measurement conditions.
  • Tosoh GPC equipment HLC-8220GPC is used as the measuring device, analysis column is TSKgelXGMHXL ⁇ 2, TSKgel G2000XL ⁇ 1, TSKgel G1000XL ⁇ 1 in series, and differential refractive index is used for the detector.
  • polystyrene standard sample STANDARDARSM-105 molecular weight range 1,300 to 3,800,000 manufactured by Showa Denko was used.
  • the obtained polymer was dissolved in THF so as to have a concentration of 1 ⁇ g / mL, and the mobile phase was measured with THF, the liquid feed rate was 1 mL / min, the column temperature was 40 ° C., and the sample injection amount was 300 ⁇ L.
  • the glass transition temperature was measured with a differential scanning calorimeter (DSC).
  • DSC differential scanning calorimeter
  • a DSC apparatus DSC6220 manufactured by Seiko Instruments Inc. was used as a measuring apparatus.
  • a polymer sample of about 4 mg was sealed in an aluminum pan and heated from ⁇ 20 ° C. to 180 ° C. at a rate of 10 ° C./min, a baseline shift accompanying a glass transition was observed.
  • the transition start point was read from the intersection of the tangent lines, and used as the glass transition temperature (Tg).
  • linearly polarized light (illuminance: 10 mW / cm 2 ) of ultraviolet light (wavelength 313 nm) was formed using a polarized light irradiation device equipped with an ultrahigh pressure mercury lamp, a wavelength cut filter, a band pass filter, and a polarizing filter.
  • a photo-alignment film was obtained by irradiating the film from the vertical direction for 10 seconds (irradiation light quantity: 100 mJ / cm 2 ).
  • a baking process and a washing process were unnecessary.
  • the dry thickness of the resin film was 0.1 ⁇ m.
  • composition for photo-alignment film (1) 2 parts of the compound represented by the formula (a) were dissolved in 98 parts of N-methyl-2-pyrrolidone (NMP) (solution A).
  • NMP N-methyl-2-pyrrolidone
  • ⁇ Rubbing type alignment film> (Rubbing type alignment film) (Formation of rubbing type polyimide liquid crystal alignment film) (Preparation of alignment film solution) 59.72 g of N-methyl-2-pyrrolidone was added to 5.98 g of 4,4′-diaminodiphenylamine, and dissolved by stirring while feeding nitrogen. While stirring this diamine solution, 6.54 g of pyromellitic dianhydride was added, and 65.30 g of N-methyl-2-pyrrolidone was further added, and the mixture was stirred and reacted at 30 ° C. for 18 hours in a nitrogen atmosphere. Further, 71.06 g of a mixed solvent having a mass ratio of N-methyl-2-pyrrolidone and 2-butoxyethanol of 1: 1 was added at room temperature, and the mixture was diluted and stirred to obtain a polyamic acid solution.
  • a mixed solvent having a mass ratio of N-methyl-2-pyrrolidone and 2-butoxyethanol of 1: 1
  • An alignment treatment was performed by rotating a roller wrapped with a buff cloth in a direction opposite to the substrate transport direction and rubbing the surface of the alignment film formed on the substrate in one direction.
  • the number of rotations of the roller was 600 rpm
  • the conveyance speed of the substrate was 5 mm / second
  • the indentation depth of the buff cloth against the substrate surface was 0.3 mm.
  • the polyimide film was washed with pure water and dried in order to remove the alignment film debris scraped by rubbing and the fiber pieces of the buff cloth.
  • the alignment film As a photo-alignment film, it is possible to reduce a decrease in alignment with respect to liquid crystal molecules due to uneven rubbing and to provide a liquid crystal display element having excellent transmittance characteristics. Since the liquid crystal alignment was evaluated by various photo-alignment films, the evaluation method will be described below.
  • a thin film transistor and a transparent electrode layer are formed on the first substrate, and an alignment film is formed thereon.
  • a rubbing method which is a contact method
  • random scratches are formed on the alignment film surface by rubbing.
  • deeper scratches due to the steps due to the thin film transistor and the transparent electrode layer pattern and the diameter (tens of ⁇ m) of the fiber of the buffing cloth of the rubbing roller Easy to be formed along the step. Since the liquid crystal molecules cannot be aligned in a certain direction when the electric field is turned off at the portion where the scratch is formed, light leakage occurs in the liquid crystal panel during black display. As a result, it becomes difficult to obtain a contrast of a certain value or more.
  • a one-pixel size is 0.23 mm in a calculation example in a 40-inch panel.
  • a resolution mode called 8K which will be put to practical use later, in a calculation example in a 40-inch panel, the size of one pixel becomes as fine as 0.11 mm. That is, since the size of one pixel approaches the diameter of the buff cloth fiber of the rubbing roller, when the electric field is turned off in units of pixels or in units of intermittent pixel rows due to scratches formed when the alignment treatment is performed by the rubbing method. There are places where the liquid crystal molecules cannot be aligned in a certain direction, which may cause a significant decrease in contrast and a large number of display defects due to a large amount of light leakage during black display.
  • An alignment film solution was formed on the transparent electrode (comb in the FFS mode) formed on the first substrate by a spin coating method to form an alignment film having a dry thickness of 0.1 ⁇ m.
  • An alignment film was similarly formed on the second substrate.
  • a common electrode is provided on a glass substrate, and a photo-alignment film is formed on the common electrode.
  • VA mode and FFS mode liquid crystal cells were respectively produced by a dropping method. More specifically, the first substrate and the second substrate on which the alignment films are respectively formed, the liquid crystal alignment films face each other, and the direction in which the linearly polarized light is irradiated or rubbed is the antiparallel direction (180 °). And an ultraviolet curable sealant mixed with spacer resin beads (diameter 4 ⁇ m) is applied to the periphery of the surface of the first substrate on which the alignment film is formed, and then the alignment film of the first substrate is applied.
  • liquid crystal compositions 1 to 9 An appropriate amount of the following liquid crystal compositions (liquid crystal compositions 1 to 9) was dropped onto the surface on which the film was formed using a dispenser. Next, in a vacuum apparatus, this was bonded to the surface of the second substrate on which the alignment film was formed, so that the liquid crystal was arranged with a uniform thickness in the gap between the two substrates. Then, the liquid crystal cell was produced by irradiating an ultraviolet-ray and hardening a sealing compound. The liquid crystal cell was heated to a temperature just above the clearing point and then cooled to room temperature to stabilize the alignment state of the liquid crystal. The liquid crystal cell thus produced was used as an evaluation element, and display quality was evaluated by static contrast.
  • Static contrast evaluation method Static contrast (CRS) was measured by the following method.
  • Polarizer-analyzer of optical measuring device (RETS-100, manufactured by Otsuka Electronics Co., Ltd.) equipped with white light source, spectroscope, polarizer (incident side polarizing plate), analyzer (exit side polarizing plate), detector
  • the optical film to be measured was placed.
  • the rotation angle between the polarizer and the analyzer is 0 degree (the polarization direction of the polarizer and the analyzer is the parallel position [parallel Nicol])
  • the transmitted light is transmitted by the detector while rotating the optical film.
  • the amount of transmitted light (on-time light amount) at the rotational position of the optical film (the polarization direction of the polarizer and the molecular long axis direction of the polymerizable liquid crystal are parallel) where the detected light amount becomes the largest is Yon. It was. In addition, with the position of the polarizer and the optical film fixed, the rotation angle of the analyzer with respect to the polarizer is 90 degrees (the polarization direction of the polarizer and the analyzer is the orthogonal position [cross Nicol]). The amount of light (light amount when off) was set to Yoff. Contrast CRS was calculated
  • the liquid crystal composition was injected by a dropping method, and image sticking, dropping marks, process compatibility, and solubility at low temperatures were evaluated.
  • the liquid crystal composition 1 has a T NI practical 75.6 ° C. as for TV liquid crystal composition has an absolute value larger [Delta] [epsilon], it is found to have a low ⁇ and optimal [Delta] n.
  • an FFS mode liquid crystal display element was produced and evaluated for burn-in, dripping marks, process suitability, and solubility at low temperatures by the above-described methods, and extremely excellent evaluation results were shown.
  • Example 2 Liquid Crystal Composition 2
  • a liquid crystal composition (liquid crystal composition 2) having the following composition designed to have a T NI equivalent to the liquid crystal composition 1, an equivalent ⁇ n value, and an equivalent ⁇ value was prepared, and the physical property values thereof were It was measured. The results are shown in the following table.
  • an FFS mode liquid crystal display element was prepared in the same manner as in Example 1, and the results of evaluation of image sticking, dripping marks, process compatibility, and solubility at low temperatures are shown in the same table.
  • the liquid crystal composition 2 has a practical liquid crystal phase temperature range as a liquid crystal composition for TV, has an absolute value of a large dielectric anisotropy, has a low viscosity, and an optimal ⁇ n. .
  • an FFS mode liquid crystal display element similar to that in Example 1 was prepared and evaluated for burn-in, dripping marks, process suitability, and solubility at low temperatures by the above-described methods. Results are shown.
  • Example 3 Liquid Crystal Composition 3
  • an FFS mode liquid crystal display element was produced in the same manner as in Example 1, and the results of image sticking, dripping marks, process suitability, and solubility at low temperatures are shown in the same table.
  • the liquid crystal composition 3 has a functional T NI as TV liquid crystal composition has an absolute value larger [Delta] [epsilon], it is found to have a low ⁇ and optimal [Delta] n.
  • a liquid crystal display element of the same FFS mode as in Example 1 was prepared, and the image sticking, dripping marks, process suitability, and solubility at low temperature were evaluated by the above-described method. Results are shown.
  • Example 15 to 17 Using the liquid crystal compositions 1 to 3, a vertical alignment liquid crystal display element (VA mode liquid crystal display element) having a cell thickness of 3.5 ⁇ m, which is common for TV, was produced.
  • VA mode liquid crystal display element VA mode liquid crystal display element
  • the transmittance, contrast ratio, and response speed were compared for the FFS mode liquid crystal display devices fabricated in Examples 1 to 3 and the VA mode liquid crystal display devices fabricated in Examples 1 to 3, respectively.
  • the results are shown in Table 4 below.
  • the transmittances of the liquid crystal display elements of Examples 1 to 3 and Examples 15 to 17 are values when the transmittance of the element before injection of the liquid crystal composition in each mode is 100%.
  • the FFS mode display elements fabricated using the liquid crystal compositions 1 to 3 were each made of VA fabricated using the same liquid crystal composition. Compared to the mode liquid crystal display elements (Examples 15 to 17 all using the same photo-alignment film 1), excellent characteristics were exhibited in all of the maximum transmittance, contrast ratio, and response speed. On the other hand, it was confirmed that the viewing angle dependence of the VA type was reduced.
  • liquid crystal display element In an FFS mode liquid crystal display element in which liquid crystal molecules are aligned parallel to the substrate and a fringe electric field is generated, the liquid crystal molecules are aligned in a direction perpendicular to the substrate and an electric field is generated in the VA mode.
  • Basic characteristics of liquid crystals different from those of liquid crystal display elements are required. Since the liquid crystal compositions 1 to 3 contain the general formula (I), the transmittance, which is a major feature of the FFS mode, is achieved without impairing the basic characteristics of the liquid crystal display element. On the other hand, due to these differences in the FFS mode, it is difficult to predict effects such as image sticking and dripping marks from conventional knowledge. In the liquid crystal display element of the present invention, these characteristics are also excellent.
  • Table 5 below shows the transmittance, contrast ratio, and response speed for Examples (Example 1B, Examples 21 to 29) and Comparative Examples (Comparative Example 1B, Comparative Example 2B) in which the type of the photo-alignment film is changed. A comparison was made. The results are shown in Table 5 below.
  • Comparative Examples 1B and 2B liquid crystal cells were prepared and evaluated in the same manner except that the alignment films of Example 1B and Example 21 were replaced with rubbing alignment films.
  • the liquid crystal display elements (examples) produced by forming the photo-alignment film are the FFS mode and VA mode liquid crystal display elements (comparative examples) produced by forming the rubbing alignment film using the same liquid crystal composition. ), The contrast was excellent.
  • Example 4 (Liquid Crystal Composition 4) A liquid crystal composition (liquid crystal composition 4) having the following composition designed to have a T NI equivalent to the compositions 1 to 3, an equivalent ⁇ n value, and an equivalent ⁇ value was prepared, and its physical property values was measured. The results are shown in the following table.
  • Composition 4 has a functional T NI as TV liquid crystal composition has an absolute value larger [Delta] [epsilon], it is found to have a low ⁇ and optimal [Delta] n.
  • an FFS mode liquid crystal display device was produced using the liquid crystal composition 4, excellent display characteristics equivalent to those of Examples 1 to 3 were exhibited.
  • Example 5 Liquid Crystal Composition 5
  • the liquid crystal composition 5 has a functional T NI as TV liquid crystal composition has an absolute value larger [Delta] [epsilon], it is found to have a low ⁇ and optimal [Delta] n.
  • an FFS mode liquid crystal display device was produced using the liquid crystal composition 5, excellent display characteristics equivalent to those of Examples 1 to 3 were exhibited.
  • Example 6 Liquid Crystal Composition 6) A liquid crystal composition (liquid crystal composition 6) having the following composition designed to have a T NI equivalent to the liquid crystal compositions 1 to 5, an equivalent ⁇ n value, and an equivalent ⁇ value was prepared, and its physical properties The value was measured. The results are shown in the following table.
  • the liquid crystal composition 6 has a functional T NI as TV liquid crystal composition has an absolute value larger [Delta] [epsilon], it is found to have a low ⁇ and optimal [Delta] n.
  • an FFS mode liquid crystal display device was produced using the liquid crystal composition 6, excellent display characteristics equivalent to those of Examples 1 to 3 were exhibited.
  • Example 7 Liquid Crystal Composition 7)
  • a liquid crystal composition (liquid crystal composition 7) having the following composition which is designed to have a value of ⁇ n equivalent to that of liquid crystal compositions 1 to 6 and a higher value of T NI and ⁇ is prepared. Physical property values were measured. The results are shown in the following table.
  • the liquid crystal composition 7 has a functional T NI as TV liquid crystal composition has an absolute value larger [Delta] [epsilon], it is found to have a low ⁇ and optimal [Delta] n.
  • the same FFS mode liquid crystal display element as in Example 1 was prepared, and the image sticking, dripping marks, process suitability, and solubility at low temperature were evaluated by the above-described method. Results are shown.
  • Example 8 Liquid Crystal Composition 8
  • the liquid crystal composition 8 has a practical NI as a liquid crystal composition for TV, has a large absolute value of ⁇ , a low ⁇ , and an optimal ⁇ n.
  • the same FFS mode liquid crystal display element as in Example 1 was prepared, and the image sticking, dripping marks, process suitability, and solubility at low temperature were evaluated by the above-described method. Results are shown.
  • Example 9 (Liquid Crystal Composition 9) A liquid crystal composition (liquid crystal composition 9) having the following composition designed to have a T NI equivalent to the liquid crystal compositions 7 and 8, an equivalent ⁇ n value, and an equivalent ⁇ value was prepared. The value was measured. The results are shown in the following table.
  • the liquid crystal composition 9 has a functional T NI as TV liquid crystal composition has an absolute value larger [Delta] [epsilon], it is found to have a low ⁇ and optimal [Delta] n.
  • an FFS mode liquid crystal display element similar to that of Example 1 was prepared, and the image sticking, dripping marks, process suitability, and solubility at low temperatures were evaluated by the above-described method. Results are shown.
  • Example 18 to 20 VA mode liquid crystal display elements similar to those in Examples 15 to 17 were produced using the liquid crystal compositions 7 to 9 (using the photo-alignment film 1).
  • FFS mode display elements fabricated using liquid crystal compositions 7-9 are VA mode liquid crystal display elements fabricated using the same liquid crystal composition (Comparative Examples 4-6), respectively. Compared with the above, excellent characteristics were exhibited in all of the maximum transmittance, contrast ratio, and response speed.
  • Example 10 Liquid Crystal Composition 10
  • a liquid crystal composition (liquid crystal composition 10) having the following composition designed to have T NI equivalent to liquid crystal compositions 7 to 9, equivalent ⁇ n value and equivalent ⁇ value was prepared, and its physical properties The value was measured. The results are shown in the following table.
  • the liquid crystal composition 10 has a functional T NI as TV liquid crystal composition has an absolute value larger [Delta] [epsilon], it is found to have a low ⁇ and optimal [Delta] n.
  • An FFS mode liquid crystal display device was prepared using the liquid crystal composition 10 and evaluated for burn-in, dripping marks, process suitability, and solubility at low temperatures by the above-described methods, and an excellent evaluation result was shown.
  • Example 11 Liquid Crystal Composition 11
  • T NI equivalent to the liquid crystal compositions 7 to 10
  • an equivalent ⁇ n value was prepared, and its physical properties were measured. The results are shown in the following table.
  • the liquid crystal composition 11 has a functional T NI as TV liquid crystal composition has an absolute value larger [Delta] [epsilon], it is found to have a low ⁇ and optimal [Delta] n.
  • An FFS mode liquid crystal display device was produced using the liquid crystal composition 11 and evaluated for image sticking, dripping marks, process suitability, and solubility at low temperatures by the above-described method, and an excellent evaluation result was shown.
  • Example 12 Liquid Crystal Composition 12
  • a liquid crystal composition (liquid crystal composition 12) having the following composition designed to have a T NI equivalent to the liquid crystal compositions 7 to 11, an equivalent ⁇ n value, and an equivalent ⁇ value was prepared, and its physical properties The value was measured. The results are shown in the following table.
  • the liquid crystal composition 12 has a functional T NI as TV liquid crystal composition has an absolute value larger [Delta] [epsilon], it is found to have a low ⁇ and optimal [Delta] n.
  • an FFS mode liquid crystal display element was produced and evaluated for burn-in, dripping marks, process suitability, and solubility at low temperatures by the above-described methods, and excellent evaluation results were shown.
  • Example 13 Liquid Crystal Composition 13
  • a liquid crystal composition (liquid crystal composition 13) having the following composition designed to have T NI equivalent to liquid crystal compositions 7 to 12, equivalent ⁇ n value, and equivalent ⁇ value was prepared, and its physical properties The value was measured. The results are shown in the following table.
  • the liquid crystal composition 13 has a functional T NI as TV liquid crystal composition has an absolute value larger [Delta] [epsilon], it is found to have a low ⁇ and optimal [Delta] n.
  • an FFS mode liquid crystal display element similar to that in Example 1 was prepared, and the image sticking, dripping marks, process suitability, and solubility at low temperatures were evaluated by the above-described method. Results are shown.
  • Example 14 Liquid Crystal Composition 14
  • a liquid crystal composition (liquid crystal composition 14) having the following composition designed to have a T NI equivalent to the liquid crystal compositions 7 to 13, an equivalent ⁇ n value, and an equivalent ⁇ value was prepared, and its physical properties The value was measured. The results are shown in the following table.
  • the liquid crystal composition 14 has a functional T NI as TV liquid crystal composition has an absolute value larger [Delta] [epsilon], it is found to have a low ⁇ and optimal [Delta] n.
  • an FFS mode liquid crystal display element similar to that in Example 1 was prepared, and the image sticking, dripping marks, process suitability, and solubility at low temperatures were evaluated by the above-described method. Results are shown.

Abstract

 本発明が解決しようとする課題は、誘電率異方性、粘度、ネマチック相上限温度、低温でのネマチック相安定性、γ1等の液晶表示素子としての諸特性及び表示素子の焼き付き特性を悪化させること無く、光配向膜を備えた液晶表示素子に用いることにより優れた表示特性を実現可能な、誘電率異方性が負の液晶組成物を用いた液晶表示素子を提供する。 「解決手段」 下記一般式(I) で表される化合物群から選ばれる少なくとも1種類の化合物を含有する液晶組成物を用いた液晶表示素子を提供する。

Description

液晶表示素子
 本願発明は、誘電率異方性が負のネマチック晶組成物を用い、光配向膜を備えた液晶表示装置に関する。
 表示品質が優れていることから、アクティブマトリクス方式液晶表示素子が、携帯端末、液晶テレビ、プロジェクタ、コンピューター等の市場に出されている。アクティブマトリクス方式は、画素毎にTFT(薄膜トランジスタ)あるいはMIM(メタル・インシュレータ・メタル)等が使われており、この方式に用いられる液晶化合物あるいは液晶組成物は、高電圧保持率であることが重要視されている。また、更に広い視角特性を得るためにVA(Vertical Alignment:垂直配向)モード、IPS(In Plane Switching)モード、OCB(Optically Compensated Bend, Optically Compensated Birefringence)モードと組み合わせた液晶表示素子や、より明るい表示を得るためにECB(Electrically Controlled Birefringence)モードの反射型の液晶表示素子が提案されている。この様な液晶表示素子に対応するために、現在も新しい液晶化合物あるいは液晶組成物の提案がなされている。
 現在スマートフォン用の液晶ディスプレイとしては、高品位であり、視覚特性に優れるIPSモードの液晶表示素子の一種であるフリンジフィールドスイッチングモード液晶表示装置(Fringe Field Switching mode Liquid Crystal Display;FFSモード液晶表示装置)が広く用いられている(特許文献1、特許文献2参照)。FFSモードは、IPSモードの低い開口率及び透過率を改善するため導入された方式であり、用いられている液晶組成物としては、低電圧化がし易いことから誘電率異方性が正のp型液晶組成物を用いた材料が広く用いられている。また、FFSモードの用途の大部分が携帯端末であるため、さらなる省電力化の要求は強く液晶素子メーカはIGZOを用いたアレイの採用等盛んな開発が続いている。
 また、液晶分子の配向方法としては、ラビング法と呼ばれる方法が多く用いられている。この方法は、ポリイミド等の配向膜材料を塗布、焼成した薄膜に対して、ナイロンなどの布を巻いたローラーを一定圧力で押し込みながら回転させることによって、配向膜表面を一定方向に擦る(ラビングする)ことにより液晶分子に配向規制力を付与するものである。この方法の厳密な配向機構は現在でも明確では無く、配向膜の表面を擦ることにより、筋状の表示ムラが発生する点、配向膜材料の一部が脱落して液晶層に混入する点およびアレイ基板においては発生した静電気によりTFTが破壊する点等の課題があり、ラビングによらない配向付与方法が検討されてきた。特に、直線偏光の紫外線を用いて配向膜に異方性を持たせる光配向膜は、非接触で配向を付与できることから前述のラビング法の問題を解決する方法として開発が進められており、横電界型の表示素子においても光配向膜の使用が模索されてきた(特許文献3参照)。
特開平11-202356号公報 特開2003-233083号公報 特開2013-109366号公報
 上述したVAモードなどの垂直電界型と、IPSモードやFFSモードなどの水平電界型とを比較すると、電極構造、配向の方向、電界の向き、必要とされる光学特性のいずれの点を取っても大きく異なる。特に、FFSモードの液晶表示素子は、電極の構造に特徴を有しているため、焼き付きや滴下痕といった、従来の技術から効果の予測のつけにくい課題については、全く知見が無い状態である。また、IPSモードとFFSモードでは、横電界型という大きな分類では共通するが、電極構造、配向の方向および電界の向きが異なる。従って、単純にVA用に使用される液晶組成物を転用しても、今日求められるような高性能な液晶表示素子を構成することは困難であり、光配向膜を用いた最適化したn型液晶組成物の提供が求められている。
 また、n型材料を用いた横電界型の液晶表示素子では、短冊状の電極の長手方向と垂直に液晶分子を配列する必要があり、当該電極の長手方向と垂直にラビングすると、電極の凹凸に起因してどうしてもラビングムラが大きくなり、液晶分子に対する配向規制力が著しく低下するという問題が生じることが確認された。また、ラビングムラが原因と考えられる滴下痕の問題も生じている。
 さらに、上記特許文献3には、電界無印加時において、液晶分子の長軸方向と走査信号線の延びる方向(x方向)とのなす鋭角αが75度~85度になるよう光配向膜により前記液晶分子が配向されており、画素電極と共通電極との間に電位差を与えると、液晶層に基板平面(xy平面)に対して平行な成分を主とする電界(いわゆる横電界)が印加されため、前記液晶層の液晶分子の長軸方向が電気力線に沿って配列することが記載されている。したがって、特許文献3の発明は、電気力線と液晶分子の長軸方向とが一致することからp型液晶組成物を用いたIPSモードであることは把握できる。
 しかしながら、特許文献3に示すようなp型液晶組成物を使用したIPSモードは、低い開口率及び透過率の問題が生じる。さらに、上記特許文献3に示すようなp型材料を用いた場合は、仮に当該文献の課題である配向膜の着色により光透過率の低減を改善できたとしても、画素電極に近い液晶分子は縁の電界に沿って液晶分子の長軸が傾くため透過率が悪化するという新たな透過率の低減の問題点が生じる。
 しかし、配向膜を光配向膜にすることにより、ラビングムラによる液晶分子に対する配向性の低下を軽減でき、かつ優れた透過率特性の液晶表示素子を提供することができる。
 また、基板上には薄膜トランジスタと透明電極層が形成され、その上に配向膜が形成される。接触方式であるラビング法を用いて配向処理を行うと、ラビングによって配向膜表面にランダムな擦り傷が形成される。特に薄膜トランジスタや透明電極層パターンが形成された第1基板においては、薄膜トランジスタや透明電極層パターンによる段差と、ラビングローラーのバフ布の繊維の直径(数十μm)とに起因した、より深い擦り傷が、段差に沿って形成されやすい。この擦り傷が形成された箇所には、電界オフ時に液晶分子が一定方向に並ぶことができないために、黒表示時に液晶パネルに光ヌケが生じる。その結果、一定の値以上のコントラストが得られ難くなる。
 さらに、近年実用化された4Kと呼ばれる解像度モードでは、40インチパネルにおける計算例で、1ピクセル寸法が 0.23mmとなる。また、追って実用化される8Kと呼ばれる解像度モードでは、40インチパネルにおける計算例で、1ピクセル寸法が 0.11mmにも微細になる。すなわち、1ピクセル寸法が、ラビングローラーのバフ布の繊維の直径に近づくことから、ラビング法によって配向処理された時に形成される擦り傷により、ピクセル単位、または断続的なピクセル列単位で、電界オフ時に液晶分子が一定方向に並ぶことができない箇所が発生し、黒表示時の多量の光ヌケによる大幅なコントラストの低下や、多数の表示欠損を引き起こすおそれがある。
 そこで本発明の課題は、上記問題点を解決し、誘電率異方性(Δε)、粘度(η)、ネマチック相-等方性液体の転移温度(TNI)、低温でのネマチック相安定性、回転粘度(γ)等の液晶表示素子としての諸特性に優れ、光配向膜を備えた液晶表示素子に用いることにより優れた表示特性を実現可能なn型液晶組成物を用いた液晶表示素子を提供することにある。
 本発明の別の課題は、光配向法によって非接触で配向処理を行うことにより、配向膜表面に擦り傷が発生しないことから、光ヌケのない、高いコントラストと、くっきりとした黒表示を実現することができる。
 本願発明者らは、上記課題を解決するために鋭意検討し、液晶表示素子に最適な種々の液晶組成物および光配向膜の構成を検討した結果、本願発明の完成に至った。
 本願発明は、対向に配置された第一の基板および第二の基板と、
 前記第一の基板と前記第二の基板との間に充填された液晶組成物を含有する液晶層と、
 前記第一の基板上に、透明導電性材料を含む共通電極、マトリクス状に配置される複数個のゲートバスライン及びデータバスライン、前記ゲートバスラインとデータバスラインとの交差部に設けられる薄膜トランジスタおよび透明導電性材料を含み、かつ前記薄膜トランジスタにより駆動され前記共通電極との間で電界を形成する画素電極と、を画素毎に有する電極層と、
 前記液晶層と前記第一の基板および前記第二の基板との間にそれぞれ形成された光配向膜層と、を有し、
 前記液晶組成物が、負の誘電率異方性を有し、ネマチック相-等方性液体の転移温度が60℃以上であり、誘電率異方性の絶対値が2以上であり、
 下記一般式(I)
Figure JPOXMLDOC01-appb-C000007
(式中、R及びRはそれぞれ独立して、炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表し、Aは1,4-フェニレン基又はトランス-1,4-シクロヘキシレン基を表し、kは1又は2を表すが、kが2の場合二つのAは同一であっても異なっていてもよい。)で表される化合物群から選ばれる少なくとも1種類の化合物を含有する液晶表示素子を提供する。
 本発明の液晶表示素子は、光配向膜を使用しているため、高速応答性に優れ、表示不良の発生が少ない特徴を有し、優れた表示特性を有する。本発明の液晶表示素子は、液晶TV、モニター等の表示素子に有用である。本発明の液晶表示素子は、光配向膜を使用しているため、優れた透過率特性の液晶表示素子を提供することができる。
本発明の液晶表示素子の構成の一例を模式的に示す図である。 図1における基板2上に形成された電極層3のII線で囲まれた領域を拡大した平面図である。 図2におけるIII-III線方向に図1に示す液晶表示素子を切断した断面図である。 配向膜4により誘起された液晶の配向方向を模式的に示す図である。 図1における基板2上に形成された電極層3のII線で囲まれた領域の他の例を拡大した平面図である。 図2におけるIII-III線方向に図1に示す液晶表示素子を切断した他の例の断面図である。 図7は、垂直電界方式の液晶表示素子の構成を模式的に示す図である。 図8は、当該図1における基板上に形成された薄膜トランジスタを含む電極層3のII線で囲まれた領域を拡大した平面図である。 図9は、図8におけるIII-III線方向に図1に示す液晶表示素子を切断した断面図である。
 前述の通り、本願発明は、光配向膜を備えた液晶表示素子に最適なn型液晶組成物を見出したものである。本発明の第一は、対向に配置された第一の基板および第二の基板と、
 前記第一の基板と前記第二の基板との間に充填された液晶組成物を含有する液晶層と、
 前記第一の基板上に、透明導電性材料を含む共通電極、マトリクス状に配置される複数個のゲートバスライン及びデータバスライン、前記ゲートバスラインとデータバスラインとの交差部に設けられる薄膜トランジスタおよび透明導電性材料を含み、かつ前記薄膜トランジスタにより駆動され前記共通電極との間で電界を形成する画素電極と、を画素毎に有する電極層と、
 前記液晶層と前記第一の基板および前記第二の基板との間にそれぞれ形成された光配向膜層と、を有し、
 前記液晶組成物が、負の誘電率異方性を有し、ネマチック相-等方性液体の転移温度が60℃以上であり、誘電率異方性の絶対値が2以上であり、
 下記一般式(I)
Figure JPOXMLDOC01-appb-C000008
(式中、R及びRはそれぞれ独立して、炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表し、Aは1,4-フェニレン基又はトランス-1,4-シクロヘキシレン基を表し、kは1又は2を表すが、kが2の場合二つのAは同一であっても異なっていてもよい。)で表される化合物群から選ばれる少なくとも1種類の化合物を含有する液晶表示素子である。
 本発明において、配向膜を光配向膜にすることにより、ラビングムラによる液晶分子に対する配向性の低下を軽減でき、かつ優れた透過率特性の液晶表示素子を提供することができる。そこで光配向法によって非接触で配向処理を行うことにより、配向膜表面に擦り傷が発生しないことから、光ヌケのない、高いコントラストと、くっきりとした黒表示を実現することができる。また、視野角依存の大きいVA方式の液晶表示素子においても光ヌケが低減できるため、光配向膜を使用することで視野角依存の問題を低減することができる。
 本発明に係る液晶表示素子の構成要素としては、一対の基板、電極層、液晶層および光配向膜層を必須成分とする。以下、各構成要素について詳説する。
 (液晶層)
 本発明における液晶組成物の実施の態様について以下説明する。本発明の液晶組成物は、IPSやFFSモードなどの横電界型の液晶表示素子またはVAモードなどの垂直電界型の液晶表示素子に適用されることが好ましい。また、本発明に係る液晶層は、液晶組成物を含む層であり、当該液晶層の平均厚みは2~10μmであることが好ましく、2.5~6.0μmであることがより好ましい。
 本発明における液晶組成物は、上述したように、一般式(I)で表される化合物を必須として含む。第一成分として一般式(I)で表される化合物を1種または2種以上含有する。また、後述するように、本発明における液晶組成物は、一般式(II)および一般式(IV)からなる群から選択される少なくとも1種の化合物をさらに含有してもよい。
Figure JPOXMLDOC01-appb-C000009
(上記一般式(I)中、R及びRはそれぞれ独立して、炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表し、Aは1,4-フェニレン基又はトランス-1,4-シクロヘキシレン基を表し、kは1又は2を表すが、kが2の場合二つのAは同一であっても異なっていてもよい。)
 一般式(I)で表される化合物の合計含有量は、組成物全体の含有量の内、下限値としては5質量%が好ましく、10質量%がより好ましく、15質量%が更に好ましく、20質量%が特に好ましく、25質量%が最も好ましく、上限値としては65質量%が好ましく、55質量%がより好ましく、50質量%が更に好ましく、47質量%が特に好ましく、45質量%が最も好ましい。
 一般式(I)で表される化合物としては、具体的には、例えば下記一般式(I-a)から一般式(I-e)で表される化合物群で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000010
(上記一般式(I-a)~(I-e)中、R11~R15及びR21~R25は、それぞれ独立して炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表す。)
 一般式(I-a)~一般式(I-e)で表される化合物群から選ばれる化合物は、1種~10種含有することが好ましく、1種~8種含有することが特に好ましく、1種~5種含有することが特に好ましく、2種以上の化合物を含有することも好ましい。
 上記R11~R15及びR21~R25は、それぞれ独立して、炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基又は炭素原子数2~8のアルコキシ基を表すことが好ましく、炭素原子数1~5のアルキル基、炭素原子数2~5のアルケニル基又は炭素原子数2~5のアルコキシ基を表すことがより好ましく、アルケニル基を表す場合は次に記載する式(i)~式(iv)
Figure JPOXMLDOC01-appb-C000011
(式中、環構造へは右端で結合するものとする。)
で表される構造が好ましい。
 又、R11及びR21、R12及びR22、R13及びR23、R14及びR24、R15及びR25は同一でも異なっていても良いが、異なった置換基を表すことが好ましい。
 これらの点から、例えば、一般式(I)で表される化合物として、下記一般式(III)
Figure JPOXMLDOC01-appb-C000012
(式中、Rは水素原子又はメチル基を表し、Rは炭素原子数1~5のアルキル基、炭素原子数2~5のアルケニル基、炭素原子数1~4のアルコキシ基を表す。)で表される化合物群から選ばれる少なくとも1種類の化合物を含有することが好ましい。
 本発明に係る一般式(III)で表される化合物は、より具体的には次に記載する化合物が好ましい。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
 本発明に係る一般式(III)で表される化合物を含有する場合は、一般式(III)で表される化合物の液晶組成物中の含有率として、下限値としては5質量%が好ましく、15質量%がより好ましく、20質量%が更に好ましく、23質量%が特に好ましく、25質量%が最も好ましく、上限値としては70質量%が好ましく、60質量%がより好ましく、55質量%が更に好ましく、52質量%が特に好ましく、50質量%が最も好ましい。より具体的には、応答速度を重視する場合には下限値としては20質量%が好ましく、30質量%がより好ましく、35質量%が更に好ましく、38質量%が特に好ましく、35質量%が最も好ましく、上限値としては70質量%が好ましく、60質量%がより好ましく、55質量%が更に好ましく、52質量%が特に好ましく、50質量%が最も好ましく、より駆動電圧を重視する場合には下限値としては5質量%が好ましく、15質量%がより好ましく、20質量%が更に好ましく、23質量%が特に好ましく、25質量%が最も好ましく、上限値としては60質量%が好ましく、50質量%がより好ましく、45質量%が更に好ましく、42質量%が特に好ましく、40質量%が最も好ましい。一般式(III)で表される化合物の割合は、液晶組成物における一般式(I)で表される化合物の合計含有量の内、一般式(III)で表される化合物の含有量が下限値としては60質量%が好ましく、70質量%がより好ましく、75質量%が更に好ましく、78質量%が特に好ましく、80質量%が最も好ましく、上限値としては90質量%が好ましく、95質量%がより好ましく、97質量%が更に好ましく、99質量%が特に好ましく、100質量%が好ましい。
 また、一般式(III)で表される化合物以外の一般式(I-a)から一般式(I-e)で表される化合物としては、より具体的には次に記載する化合物が好ましい。
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
これらの中でも、式(III-a2)、式(III-b2)、式(I-a1)~式(I-a6)、式(I-b2)、式(I-b6)、式(I-d1)、式(I-d2)、式(I-d)、及び式(I-e2)で表される化合物が好ましい。
 本発明における液晶組成物は、一般式(II)で表される化合物をさらに含んでもよい。第二成分として一般式(II)で表される化合物を1種または2種以上含有してもよく、より好ましくは、本発明における液晶組成物は、一般式(II)で表される化合物および一般式(IV)で表される化合物からなる群から選択される少なくとも1種の化合物をさらに含んでもよい。
Figure JPOXMLDOC01-appb-C000022
(上記一般式(II)中、Rは炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表し、Rは炭素原子数1~8のアルキル基、炭素原子数4~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数3~8のアルケニルオキシ基を表し、Bは1,4-フェニレン基又はトランス-1,4-シクロヘキシレン基を表し、mは0、1又は2を表すが、mが2の場合二つのBは同一であっても異なっていてもよい。)
 前記一般式(II)で表される化合物で表される化合物の液晶組成物中の含有率として、下限値としては10質量%が好ましく、20質量%がより好ましく、25質量%が更に好ましく、28質量%が特に好ましく、30質量%が最も好ましく、上限値としては85質量%が好ましく、75質量%がより好ましく、70質量%が更に好ましく、67質量%が特に好ましく、65質量%が最も好ましい。
 一般式(II)で表される化合物は次に記載する一般式(IIa)~一般式(IIc)
Figure JPOXMLDOC01-appb-C000023
(式中、R31~R33及びR41~R43は一般式(II)におけるR及びRと同じ意味を表す)で表される化合物群の中から少なくとも1種以上選ばれることが好ましいが、2種以上選ばれることがより好ましい。
 一般式(IIa)で表される化合物は具体的には次に記載する式(IIa-1)~式(IIa-8)
Figure JPOXMLDOC01-appb-C000024
で表される化合物が好ましいが、式(IIa-1)~式(IIa-4)で表される化合物がより好ましく、式(IIa-1)及び式(IIa-3)で表される化合物が更に好ましい。
 前記一般式(IIa)で表される化合物は、下限値としては2質量%が好ましく、3質量%がより好ましく、上限値としては45質量%が好ましく、35質量%がより好ましく、30質量%が更に好ましく、27質量%が特に好ましく、25質量%が最も好ましい。
 前記一般式(IIa)で表される化合物を4種以上使用する場合には、式(IIa-1)~式(IIa-4)で表される化合物を組み合わせて使用することが好ましく、式(IIa-1)~式(IIa-4)で表される化合物の含有量が、一般式(IIa)で表される化合物中の50質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることが更に好ましい。
 一般式(IIa)で表される化合物を3種使用する場合には、式(IIa-1)、式(IIa-2)及び式(IIa-3)で表される化合物を組み合わせて使用することが好ましく、式(IIa-1)、式(IIa-2)及び式(IIa-3)で表される化合物の含有量が、一般式(IIa)で表される化合物中の50質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることが更に好ましく、85質量%以上であることが特に好ましく、90質量%以上であることが最も好ましい。
 一般式(IIa)で表される化合物を2種使用する場合には、式(IIa-1)及び式(IIa-3)で表される化合物を組み合わせて使用することが好ましく、式(IIa-1)及び式(IIa-3)で表される化合物の含有量が、一般式(IIa)で表される化合物中の50質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることが更に好ましく、85質量%以上であることが特に好ましく、90質量%以上であることが最も好ましい。
 前記一般式(IIb)で表される化合物は具体的には次に記載する式(IIb-1)~式(IIb-6)
Figure JPOXMLDOC01-appb-C000025
で表される化合物が好ましいが、式(IIb-1)~式(IIb-4)で表される化合物がより好ましく、式(IIb-1)~式(IIb-3)で表される化合物が更に好ましく、式(IIb-1)及び式(IIb-3)で表される化合物が特に好ましい。
 一般式(IIb)で表される化合物を4種以上使用する場合には、式(IIb-1)~式(IIb-4)で表される化合物を組み合わせて使用することが好ましく、式(IIb-1)~式(IIb-4)で表される化合物の含有量が、(IIb)で表される化合物中の50質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることが更に好ましく、85質量%以上であることが特に好ましく、90質量%以上であることが最も好ましい。
 一般式(IIb)で表される化合物を3種使用する場合には、(IIb-1)~式(IIb-3)で表される化合物を組み合わせて使用することが好ましく、式(IIb-1)~式(IIb-3)で表される化合物の含有量が、一般式(IIb)で表される化合物中の50質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることが更に好ましく、85質量%以上であることが特に好ましく、90質量%以上であることが最も好ましい。
 一般式(IIb)で表される化合物を2種使用する場合には、式(IIb-1)及び式(IIb-3)で表される化合物を組み合わせて使用することが好ましく、式(IIb-1)及び式(IIb-3)で表される化合物の含有量が、一般式(IIb)で表される化合物中の50質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることが更に好ましく、85質量%以上であることが特に好ましく、90質量%以上であることが最も好ましい。
 一般式(IIc)で表される化合物は具体的には次に記載する式(IIc-1)~(IIc-4)
Figure JPOXMLDOC01-appb-C000026
で表される化合物が好ましいが、式(IIc-1)又は式(IIc-2)で表される化合物が好ましい。
 一般式(IIc)で表される化合物を2種以上使用する場合には、式(IIc-1)及び式(IIc-2)で表される化合物を組み合わせて使用することが好ましく、式(IIc-1)及び式(IIc-2)で表される化合物の含有量が、一般式(IIc)で表される化合物中の50質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることが更に好ましく、85質量%以上であることが特に好ましく、90質量%以上であることが最も好ましい。
 本発明における液晶組成物は、一般式(IV)で表される化合物をさらに含んでもよい。第三成分として一般式(IV)で表される化合物を1種または2種以上含有してもよく、より好ましくは、本発明における液晶組成物は、一般式(II)で表される化合物および一般式(IV)で表される化合物からなる群から選択される少なくとも1種の化合物をさらに含んでもよい。ただし、一般式(IV)で表される化合物は、一般式(II)で表される化合物を除くものとする。
Figure JPOXMLDOC01-appb-C000027
(式中R及びRはそれぞれ独立して、炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表し、該アルキル基、アルケニル基、アルコキシ基又はアルケニルオキシ基中の1つ以上の水素原子はフッ素原子で置換されていてもよく、該アルキル基、アルケニル基、アルコキシ基又はアルケニルオキシ基中のメチレン基は酸素原子が連続して結合しない限り酸素原子で置換されていてもよく、カルボニル基が連続して結合しない限りカルボニル基で置換されていてもよく、
及びAはそれぞれ独立して、1,4-シクロヘキシレン基、1,4-フェニレン基又はテトラヒドロピラン-2,5-ジイル基を表すが、A又は/及びAが1,4-フェニレン基を表す場合、該1,4-フェニレン基中の1つ以上の水素原子はフッ素原子に置換されていてもよく、
及びZはそれぞれ独立して単結合、-OCH-、-OCF-、-CHO-、又はCFO-を表し、n及びnはそれぞれ独立して、0、1、2又は3を表すが、n+nは1~3であり、A、A、Z及び/又はZが複数存在する場合にはそれらは同一であっても異なっていてもよいが、nが1又は2でありnが0でありAの少なくとも1つが1,4-シクロへキシレン基でありすべてのZが単結合である化合物を除く。)
 一般式(IV)で表される化合物の液晶組成物中の含有率として、下限値としては2質量%が好ましく、3質量%がより好ましく、4質量%が更に好ましく、5質量%が特に好ましく、上限値としては45質量%が好ましく、35質量%がより好ましく、30質量%が更に好ましく、27質量%が特に好ましく、25質量%が最も好ましい。
 一般式(IV)において、R及びRは、結合する環構造がシクロヘキサン又はテトラヒドロピランである時はアルキル基又はアルケニル基であることが好ましく、ベンゼンである時はアルキル基、アルコキシ基又はアルケニル基であることが好ましい。シクロヘキサン又はテトラヒドロピランである時は、炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基を表すことが好ましく、炭素原子数1~8のアルキル基を表すことがより好ましく、炭素原子数3~5のアルキル基を表すことがより好ましく、炭素原子数3又は5のアルキル基を表すことが更に好ましく、直鎖であることが好ましい。また、一般式(IV)において、R及びRは、結合する環構造がベンゼンである時は、炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表すことが好ましく、炭素原子数1~8のアルキル基又は炭素原子数1~8のアルコキシ基を表すことが好ましく、炭素原子数3~5のアルキル基又は炭素原子数2~4のアルコキシ基を表すことがより好ましく、炭素原子数3又は5のアルキル基又は炭素原子数2又は4のアルコキシ基を表すことがより好ましく、炭素原子数2又は4のアルコキシ基を表すことが更に好ましく、直鎖であることが好ましい。
 本発明において、液晶表示素子の応答速度の改善を重視する場合はアルケニル基が好ましく、電圧保持率等の信頼性を重視する場合にはアルキル基が好ましい。アルケニル基としては次に記載する式(i) ~式(iv)
Figure JPOXMLDOC01-appb-C000028
(式中、環構造へは右端で結合するものとする。)
で表される構造が好ましい。
 A及びAはそれぞれ独立して、1,4-シクロヘキシレン基、1,4-フェニレン基又はテトラヒドロピラン-2,5-ジイル基が好ましい。
 Z及びZはそれぞれ独立して粘度の低減を重視する場合には単結合が好ましく、Δεの絶対値を大きくすることを重視する場合には-OCH-、-OCF-、-CHO-、又は-CFO-が好ましく、酸素原子が2,3-ジフルオロベンゼン-1,4-ジイル基に連結するように配置されることが好ましい。
 n+nは2以下が好ましく、粘度の低減を重視する場合には1が好ましく、Tniを重視する場合やΔnの増大を重視する場合には2が好ましい。
 一般式(IV)で表される化合物は次に記載する一般式(IVa1)及び(IVa2)
Figure JPOXMLDOC01-appb-C000029
(式中、R7a1及びR7a2、R8a1及びR8a2はそれぞれ独立して、炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表し、該アルキル基、アルケニル基、アルコキシ基又はアルケニルオキシ基中の1つ以上の水素原子はフッ素原子で置換されていてもよく、該アルキル基、アルケニル基、アルコキシ基又はアルケニルオキシ基中のメチレン基は酸素原子が連続して結合しない限り酸素原子で置換されていてもよく、カルボニル基が連続して結合しない限りカルボニル基で置換されていてもよく、
a2は0又は1を表し、A1a2は1,4-シクロヘキシレン基、1,4-フェニレン基又はテトラヒドロピラン-2,5-ジイル基を表し、一般式(IVa1)及び一般式(IVa2)中の1,4-フェニレン基中の1つ以上の水素原子はフッ素原子に置換されていてもよい。)
で表される化合物群の中から選ばれることが好ましい。
 一般式(IVa1)で表される化合物は具体的には次に記載する式(IVa1-1)~式(IVa1-8)
Figure JPOXMLDOC01-appb-C000030
で表される化合物が好ましいが、式(IVa1-1)~式(IVa1-4)で表される化合物がより好ましく、式(IVa1-1)及び式(IVa1-3)で表される化合物が更に好ましく、式(IVa1-1)で表される化合物が特に好ましい。
 一般式(IVa1)で表される化合物を4種以上使用する場合には、式(IVa1-1)~式(IVa1-4)で表される化合物を組み合わせて使用することが好ましく、式(IVa1-1)~式(IVa1-4)で表される化合物の含有量が、一般式(IVa1)で表される化合物中の50質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることが更に好ましく、85質量%以上であることが特に好ましく、90質量%以上であることが最も好ましい。
 一般式(IVa1)で表される化合物を3種使用する場合には、式(IVa1-1)~式(IVa1-3)で表される化合物を組み合わせて使用することが好ましく、式(IVa1-1)~式(IVa1-3)で表される化合物の含有量が、一般式(IVa1)で表される化合物中の50質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることが更に好ましく、85質量%以上であることが特に好ましく、90質量%以上であることが最も好ましい。
 一般式(IVa1)で表される化合物を2種使用する場合には、式(IVa1-1)及び式(IVa1-3)で表される化合物を組み合わせて使用することが好ましく、式(IVa1-1)及び式(IVa1-3)で表される化合物の含有量が、一般式(IVa1)で表される化合物中の50質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることが更に好ましく、85質量%以上であることが特に好ましく、90質量%以上であることが最も好ましい。
 一般式(IVa2)で表される化合物は具体的には次に記載する一般式(IVa2-1)~一般式(IVa2-9)
Figure JPOXMLDOC01-appb-C000031
(式中、Rは一般式(IV)におけるRと同じ意味を表し、Rは一般式(IV)におけるRと同じ意味を表す。)
で表される化合物が好ましい。
 一般式(IVa2)で表される化合物を使用する場合には、式(IVa2-1)で表される化合物を使用することが好ましいが、式(IVa2-1)で表される化合物の含有量が、一般式(IVa2)で表される化合物中の50質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることが更に好ましく、85質量%以上であることが特に好ましく、90質量%以上であることが最も好ましい。
 一般式(IVa2)におけるR及びRはそれぞれ独立して、炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表すが、炭素原子数1~8のアルキル基又は炭素原子数2~8のアルケニル基を表すことが好ましく、炭素原子数2~5のアルキル基又は炭素原子数2~5のアルケニル基を表すことがより好ましく、炭素原子数2~5のアルキル基を表すことが更に好ましく、直鎖であることが好ましく、R及びRが共にアルキル基である場合には、それぞれの炭素原子数は異なっている方が好ましい。
 更に詳述すると、Rがプロピル基を表しRがエチル基を表す化合物又はRがブチル基を表しRがエチル基を表す化合物が好ましい。
 本願における1,4-シクロヘキシル基はトランス-1,4-シクロヘキシル基であることが好ましい。
 本発明における液晶組成物は、一般式(I)及び一般式(II)で表される化合物を含む場合は、更に一般式(IV)で表される化合物(ただし、一般式(II)で表される化合物を除く)を含有することができる。液晶組成物中に含有する式(I)、式(II)、及び一般式(IV)で表される化合物の合計含有量は、80~100質量%が好ましく、85~100質量%がより好ましく、90~100質量%が更に好ましく、95~100質量%が特に好ましく、97~100質量%が最も好ましい。
 本願液晶組成物中に含有する一般式(I)及び一般式(II)で表される化合物の合計含有量は下限値としては55質量%が好ましく、65質量%がより好ましく、70質量%が更に好ましく、73質量%が特に好ましく、75質量%が最も好ましく、上限値としては85質量%が好ましく、90質量%がより好ましく、92質量%が更に好ましく、94質量%が特に好ましく、95質量%が最も好ましい。
 本発明における液晶組成物は、一般式(I)及び一般式(IV)で表される化合物を含む場合は、更に一般式(II)で表される化合物(ただし、一般式(IV)で表される化合物を除く)を含有することができる。液晶組成物中に含有する式(I)、式(II)、及び一般式(IV)で表される化合物の合計含有量は、80~100質量%が好ましく、85~100質量%がより好ましく、90~100質量%が更に好ましく、95~100質量%が特に好ましく、97~100質量%が最も好ましい。
 本願の液晶組成物中に含有する一般式(I)及び一般式(IV)で表される化合物の合計含有量は下限値としては55質量%が好ましく、65質量%がより好ましく、70質量%が更に好ましく、73質量%が特に好ましく、75質量%が最も好ましく、上限値としては85質量%が好ましく、90質量%がより好ましく、92質量%が更に好ましく、94質量%が特に好ましく、95質量%が最も好ましい。
 本願発明の液晶組成物は、分子内に過酸(-CO-OO-)構造等の酸素原子同士が結合した構造を持つ化合物を含有しないことが好ましい。
 液晶組成物の信頼性及び長期安定性を重視する場合にはカルボニル基を有する化合物の含有量を前記組成物の総質量に対して5質量%以下とすることが好ましく、3質量%以下とすることがより好ましく、1質量%以下とすることが更に好ましく、実質的に含有しないことが最も好ましい。
 分子内の環構造がすべて6員環である化合物の含有量を多くすることが好ましく、分子内の環構造がすべて6員環である化合物の含有量を前記組成物の総質量に対して80質量%以上とすることが好ましく、90質量%以上とすることがより好ましく、95質量%以上とすることが更に好ましく、実質的に分子内の環構造がすべて6員環である化合物のみで液晶組成物を構成することが最も好ましい。
 液晶組成物の酸化による劣化を抑えるためには、環構造としてシクロヘキセニレン基を有する化合物の含有量を少なくすることが好ましく、シクロヘキセニレン基を有する化合物の含有量を前記組成物の総質量に対して10質量%以下とすることが好ましく、5質量%以下とすることがより好ましく、実質的に含有しないことが更に好ましい。
 液晶組成物の酸化による劣化を抑えるためには、連結基として-CH=CH-を有する化合物の含有量を少なくすることが好ましく、当該化合物の含有量を前記組成物の総質量に対して10質量%以下とすることが好ましく、5質量%以下とすることがより好ましく、実質的に含有しないことが更に好ましい。
 粘度の改善及びTNIの改善を重視する場合には、水素原子がハロゲンに置換されていてもよい2-メチルベンゼン-1,4-ジイル基を分子内に持つ化合物の含有量を少なくすることが好ましく、前記2-メチルベンゼン-1,4-ジイル基を分子内に持つ化合物の含有量を前記組成物の総質量に対して10質量%以下とすることが好ましく、5質量%以下とすることがより好ましく、実質的に含有しないことが更に好ましい。
 本発明の組成物に含有される化合物が、側鎖としてアルケニル基を有する場合、前記アルケニル基がシクロヘキサンに結合している場合には当該アルケニル基の炭素原子数は2~5であることが好ましく、前記アルケニル基がベンゼンに結合している場合には当該アルケニル基の炭素原子数は4~5であることが好ましく、前記アルケニル基の不飽和結合とベンゼンは直接結合していないことが好ましい。また、液晶組成物の安定性を重視する場合には、側鎖としてアルケニル基を有しかつ2,3-ジフルオロベンゼン-1,4-ジイル基を有する化合物の含有量を少なくすることが好ましく、当該化合物の含有量を前記組成物の総質量に対して10質量%以下とすることが好ましく、5質量%以下とすることがより好ましく、実質的に含有しないことが更に好ましい。
 本発明における液晶組成物の誘電率異方性Δεの値は負の誘電率異方性を有し、誘電率異方性の絶対値は2以上である。誘電率異方性Δεの値は、25℃において、-2.0から-6.0であることが好ましく、-2.5から-5.0であることがより好ましく、-2.5から-4.0であることが特に好ましいが、更に詳述すると、応答速度を重視する場合には-2.5~-3.4であることが好ましく、駆動電圧を重視する場合には-3.4~-4.0であることが好ましい。
 また、本発明に係る液晶組成物において、上記一般式(I)で表される化合物をノンポーラ成分、上記一般式(II)および一般式(IV)で表される化合物をポーラ成分と称する。
 また、本発明に係る液晶組成物の好適な例は、一般式(I)で表される化合物と、一般式(II)で表される化合物および/または一般式(IV)で表される化合物と、を含む。
 本発明における液晶組成物の屈折率異方性Δnの値は、25℃において、0.08から0.13であることが好ましいが、0.09から0.12であることがより好ましい。更に詳述すると、薄いセルギャップに対応する場合は0.10から0.12であることが好ましく、厚いセルギャップに対応する場合は0.08から0.10であることが好ましい。
 本発明における液晶組成物の回転粘度(γ)は150以下が好ましく、130以下がより好ましく、120以下が特に好ましい。
 本発明における液晶組成物では、回転粘度と屈折率異方性の関数であるZが特定の値を示すことが好ましい。
Figure JPOXMLDOC01-appb-M000032
(式中、γは回転粘度を表し、Δnは屈折率異方性を表す。)
Zは、13000以下が好ましく、12000以下がより好ましく、11000以下が特に好ましい。
 本発明における液晶組成物のネマチック相-等方性液体相転移温度(Tni)は、60℃以上であり、好ましくは75℃以上であり、より好ましくは80℃以上であり、さらに好ましくは90℃以上である。
 本発明の液晶組成物は、1012(Ω・m)以上の比抵抗を有することが必要であり、1013(Ω・m)が好ましく、1014(Ω・m)以上がより好ましい。
 本発明の液晶組成物は、上述の化合物以外に、用途に応じて、通常のネマチック液晶、スメクチック液晶、コレステリック液晶、酸化防止剤、紫外線吸収剤などを含有しても良いが、液晶組成物の化学的な安定性が求められる場合には塩素原子をその分子内に有さないことが好ましく、液晶組成物の紫外線などの光に対する安定性が求められる場合にはナフタレン環などに代表される共役長が長く紫外領域に吸収ピークが存在する縮合環等をその分子内に有さないことが望ましい。
 (配向層)
 本発明に係る配向層は、光に応答してその化学構造が変化する光応答性高分子を含む光配向膜であることが好ましい。
 これにより、n型材料を用いた液晶表示素子では、短冊状の電極の長手方向と垂直に液晶分子を配列する必要があり、当該電極の長手方向と垂直にラビングすると、電極の凹凸に起因してどうしてもラビングムラが大きくなり、液晶分子に対する配向規制力が著しく低下するという問題を解決することができる。
 一般に光配向膜には種々の方式があり、例えば、アゾ基(例えば、アゾベンゼン化合物)、シッフ塩基、及び炭素-炭素2重結合などの不飽和結合部位を有する化合物等の光照射により光異性化を利用するもの、桂皮酸誘導体等の光二量化を利用するもの、クマリン、カルコン、またはポリマー自体のσ結合の光開裂(光分解)を利用する(例えば、光分解性ポリイミド等)もの等が挙げられる。
 より詳細には、当該光応答性高分子は、光応答性分解型高分子、光応答性二量化型高分子および光応答性異性化型高分子からなる群から選択される少なくとも一つであることが好ましく、光応答性分解型高分子であることが特に好ましい。
 本発明に係る光応答性分解型高分子としては、ポリマー自体のσ結合の光開裂(光分解)を利用するもの等が好ましい。より詳細には、いずれにしても、主鎖としてポリシロキサン、ポリイミド、及びポリアミック酸誘導体構造を有するものが好ましく、ポリイミド、ポリアミック酸誘導体構造がより好ましい。ポリアミック酸誘導体としては、炭素原子数1から5のアルキルエステルや、炭素原子数1から18のアルキルアンモニウム塩とするのが好ましい。
 本発明に係る光応答性分解型高分子は、テトラカルボン酸二無水物と、ジアミン化合物とを反応させて得られるポリアミック酸及びポリイミドよりなる群から選択される少なくとも一種の重合体を含有することが好ましい。
 ポリイミド、ポリアミック酸誘導体の原料となる前記テトラカルボン酸二無水物としては、以下のものが挙げられる。
Figure JPOXMLDOC01-appb-C000033
(上記式中、Z、Z、Z、Zはそれぞれ独立して、水素原子、炭素原子数1~5のアルキル基、塩素原子、フッ素原子、-NR、-SR、-OH、-CHCOOR、-CHCHCOOR、-COR、-NO、-CNを表すが、Z、Z、Z、Zのうち少なくとも一つは、水素原子もしくはメチル基でなく、Rは炭素原子数1~5のアルキル基を表し、Tは単結合、-CH-、-O-、-S-、-C(CH-、-C(CF-、-CO-、-SO-を表す)
Figure JPOXMLDOC01-appb-C000034
(上記式中Tは単結合、-CH-、-O-、-S-、-C(CH-、-C(CF-、-CO-、-SO-を表す)
 以上のような化合物の中でも、式(TCA-1)、式(TCA-2)、式(TCA-3)、式(TCA-4)、式(TCA-5)、式(TCA-8)および式(TCA-10)が好ましく、式(TCA-1)、式(TCA-8)が特に好ましい。
 ポリイミド、ポリアミック酸誘導体の原料となる前記ジアミン化合物としては、以下のものが挙げられる。
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
このような化合物の中でも、式(DA-1)、式(DA-25)、式(DA-31)、式(DA-32)、式(DA-49)が好ましく、式(DA-1)、式(DA-25)、式(DA-49)が特に好ましい。
 また、本発明に係る光配向膜において光異性化を利用するタイプを採用する場合、テトラカルボン酸無水物またはジアミン化合物の少なくとも一方に、以下の式(TCA-38)および式(DA-50)~式(DA-56)からなる群から選択される少なくとも一つを含むことが好ましい。
 例えば、前記テトラカルボン酸無水物としての例示である前記式(TCA-1)~前記式(TCA-37)の化合物に加えて(もしくは代えて)、以下の式(TCA-38):
Figure JPOXMLDOC01-appb-C000038
で表される化合物を用いることが好ましい。または、式(DA-1)~式(DA-49)の化合物に加えて(もしくは代えて)ジアミン化合物としては、以下の式(DA-50)~式(DA-56):
Figure JPOXMLDOC01-appb-C000039
で表される化合物を用いることが好ましい。
 また、本発明に係る光配向膜において、光二量化を利用するタイプを採用する場合、前記式(DA-1)~(DA-49)で表されるジアミン化合物中の水素原子の少なくとも一つに、以下の式(V)を有することが好ましく、式(DA-50)~式(DA-53)からなる群から選択される少なくとも一つを含むことがより好ましい。
 すなわち、前記式(DA-1)~(DA-49)の化合物に加えて(もしくは代えて)ジアミン化合物として、(DA-1)~(DA-49)の化合物中の水素原子を、一般式(V):
Figure JPOXMLDOC01-appb-C000040
(式中、破線は(DA-1)~(DA-49)の水素原子が結合していた原子への結合を表し、G、G、G、G、Gはそれぞれ独立的に、単結合、炭素原子数2~12のアルキレン基(1つの-CH-基又は2つ以上の非隣接の-CH2-基は-O-、-CO-、-COO-、-OCO-、-NR-、-NRCO-、-CONR-、-NRCOO-、-OCONR-、-NRCONR-、-CH=CH-、-CC-、-OCOO-で置換されていても良い。Rは水素原子又は炭素原子数1~20のアルキル基を表す)、-OCH-、-CHO-、-COO-、-OCO-、-CH=CH-、-CF=CF-、-CFO-、-OCF-、-CFCF-、-CC-、-CH=CHCOO-、-OCOCH=CH-を表す。ただし、G、G、G、G、Gのいずれか一つ以上は-CH=CHCOO-、-OCOCH=CH-を表す。
、n、n、nは0または1を表し、E、E、E、E、Eはそれぞれ独立してトランス-1,4-シクロヘキシレン、トランス-1,4-ジオキサン-2,5-ジイル、1,4-ナフチレン、2,6-ナフチレン、ピリジン-2,5-ジイル基、ピリミジン-2,5-ジイル基、2,5-チオフェニレン基、2,5-フラニレン基又は1,4-フェニレン基を表し、これらは無置換であるか又は一個以上の水素原子がフッ素原子、塩素原子、メチル基又はメトキシ基によって置換されていても良く、Zは水素原子、フッ素原子、炭素原子数1~12のアルキル基(1つの-CH-基又は2つ以上の非隣接の-CH-基は-O-、-CO-、-COO-、-OCO-、-NR-、-NRCO-、-CONR-、-NRCOO-、-OCONR-、-NRCONR-、-CH=CH-、-CC-または-OCOO-で置換されていても良い。Rは水素原子又は炭素原子数1~20のアルキル基)、シアノ基、ニトロ基、水酸基またはカルボキシル基を表す)で置換されているものを使用することが好ましい。
 このようなジアミン化合物の具体例としては、例えば以下の式(DA-60)~(DA-63)が挙げられる。
Figure JPOXMLDOC01-appb-C000041
 本発明に係る光分解型の光配向膜としては、良好な液晶配向性を発現できる観点から、テトラカルボン酸無水物は、式(TCA-1)、式(TCA-2)、式(TCA-3)、式(TCA-4)、式(TCA-5)、式(TCA-33)(前記式(TCA-33)中、Tは-CO-が特に好ましい)およびTCA-34(前記式(TCA-34)中、Tは-CO-が好ましい)がより好ましく、式(TCA-1)、式(TCA-2)、式(TCA-3)、式(TCA-4)および式(TCA-5)が特に好ましい。また、本発明に係る光分解型の光配向膜としては、良好な液晶配向性を発現できる観点から、ジアミン化合物は、式(DA-1)、式(DA-25)、式(DA-49)が特に好ましい。
 以上列挙したテトラカルボン酸無水物やジアミン化合物は、求められる特性に応じて、それぞれ1種単独で又は2種以上を組み合わせて使用することができる。
 本発明に係る光応答性分解型高分子の好ましいポリアミック酸において、上述したテトラカルボン酸二無水物と上述したジアミン化合物との混合割合は、ジアミンのアミノ基1当量に対して、テトラカルボン酸二無水物の酸無水物基が0.2~2当量となる割合が好ましく、0.3~1.2当量となる割合がより好ましい。
 また、本発明に係る光配向膜において、テトラカルボン酸無水物とジアミン化合物の縮合によるポリアミック酸の合成反応は、有機溶媒中において行われることが好ましい。当該反応温度は-20℃~150℃が好ましく、0~100℃がより好ましい。また、当該反応時間は、0.1~24時間が好ましく、0.5~12時間がより好ましい。
 前記有機溶媒としては、例えば、アルコール、ケトン、エステル、エーテル、非プロトン性極性溶媒、フェノールおよびその誘導体系溶媒、ハロゲン化炭化水素系溶媒、炭化水素系溶媒などを挙げることができる。
 前記アルコールとしては、例えばメチルアルコール、エチルアルコール、イソプロピルアルコール、シクロヘキサノール、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、トリエチレングリコール、エチレングリコールモノメチルエーテルなどが好ましい。
 前記ケトンとして、例えばアセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどが好ましい。
 前記エステルとして、例えば乳酸エチル、乳酸ブチル、酢酸メチル、酢酸エチル、酢酸ブチル、メチルメトキシプロピオネ-ト、エチルエトキシプロピオネ-ト、シュウ酸ジエチル、マロン酸ジエチルなどが挙げられる。
 前記エーテルとして、例えばジエチルエーテル、エチレングリコールメチルエーテル、エチレングリコールエチルエーテル、エチレングリコール-n-プロピルエーテル、エチレングリコール-i-プロピルエーテル、エチレングリコール-n-ブチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールエチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、テトラヒドロフランなどが挙げられる。
 前記非プロトン性極性溶媒の具体例としては、例えばN-メチル-2-ピロリドン、N,N-ジメチ
ルアセトアミド、N,N-ジメチルホルムアミド、ジメチルスルホキシド、γ-ブチロラクトン、テトラメチル尿素およびヘキサメチルホスホルトリアミドなどが好ましい。
 前記フェノールおよびその誘導体としては、例えばm-クレゾール、キシレノール、ハロゲン化フェノールなどが好ましい
 前記ハロゲン化炭化水素系溶媒として、例えばジクロロメタン、1,2-ジクロロエタン、1,4-ジクロロブタン、トリクロロエタン、クロルベンゼン、o-ジクロルベンゼンなどが挙げられる。
 前記炭化水素系溶媒として、例えばヘキサン、ヘプタン、オクタン、ベンゼン、トルエン、キシレン、イソアミルプロピオネート、イソアミルイソブチレート、ジイソペンチルエーテルなどが挙げられる。
 テトラカルボン酸二無水物及びジアミン化合物の有機溶媒に対する合計量は、反応溶液の全量に対して0.1~50重量%になることが好ましい。
 上記の条件でテトラカルボン酸二無水物及びジアミン化合物を反応すると、ポリアミック酸を含む反応溶液が得られる。当該得られた反応溶液はそのまま配向膜の調製に供しても、または当該反応溶液中に含まれるポリアミック酸を単離したうえで配向膜の調製に供してもよく、さらには単離したポリアミック酸を精製したうえで配向膜の調製に供してもよい。
 また、前記得られたポリアミック酸を脱水閉環してポリイミドとする場合には、上記反応溶液をそのまま脱水閉環反応に供してもよく、反応溶液中に含まれるポリアミック酸を単離したうえで脱水閉環反応に供してもよく、または単離したポリアミック酸を精製したうえで脱水閉環反応に供してもよい。ポリアミック酸の単離及び精製は公知の方法に従って行うことができる。
 前記反応により得られたポリアミック酸をイミド化させてポリイミドとする方法としては、ポリアミック酸を脱水閉環してイミド化することにより得ることができる。具体的には、ポリアミック酸を加熱する方法またはポリアミック酸を有機溶媒に溶解し、当該溶液中に脱水剤及び脱水閉環触媒を添加し必要に応じて加熱する方法により行われる。
 脱水閉環反応に用いられる有機溶媒としては、ポリアミック酸の合成に用いられるものとして例示した有機溶媒を挙げることができるためここでは省略する。
 本発明に係る配向膜としてのポリイミドは、その前駆体であるポリアミック酸が有していたアミック酸構造のすべてを脱水閉環した完全イミド化物であってもよく、アミック酸構造の一部のみを脱水閉環し、アミック酸構造とイミド環構造が併存する部分イミド化物であってもよい。本発明に係るポリイミドは、そのイミド化率が30%以上であることが好ましく、40~99%であることがより好ましく、45~98%であることが更に好ましい。当該イミド化率は、ポリイミドのアミック酸構造の数とイミド環構造の数との合計に対するイミド環構造の数の占める割合を百分率で表したものである。ここで、イミド環の一部がイソイミド環であってもよい。
 なお、本発明において、ポリイミドのイミド化率の測定方法は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5~10.0ppm付近に現れるアミック酸のNH基に由来するプロトンピーク積算値とを用いて計算している。
 本発明においてポリアミック酸を溶液中で熱イミド化させる場合の温度は、100℃~400℃であることが好ましく、120℃~250℃であることがより好ましい。この場合、イミド化反応により生成する水を系外に除きながら行う方法が好ましい。
 本発明においてポリアミック酸を触媒によりイミド化する場合は、上記で得られたポリアミック酸の溶液に、塩基性触媒と酸無水物とを添加し、好ましくは-20~250℃、より好ましくは0~180℃で攪拌することにより得られる。また、この場合、塩基性触媒の量はアミド酸基の0.5~30モル倍、好ましくは2~20モル倍であり、酸無水物の量はアミド酸基の1~50モル倍、好ましくは3~30モル倍である。
 前記塩基性触媒としては、ピリジン、コリジン、ルチジン、トリエチルアミン、トリメチルアミン、トリブチルアミンおよびトリオクチルアミンなどを挙げることができる。また、前記酸無水物としては、無水酢酸、無水トリメリット酸、無水ピロメリット酸などを挙げることができる。
 なお、触媒イミド化によるイミド化率は、触媒量と反応温度、反応時間を調節することにより制御することができる。
 本発明において、ポリアミック酸又はポリイミドの反応溶液から、生成したポリアミック酸又はポリイミドを回収する場合には、反応溶液を貧溶媒に投入して沈殿させればよい。沈殿に用いる貧溶媒としてはメタノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン、水などを挙げることができる。貧溶媒に投入して沈殿させたポリマーは濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥することができる。
 本発明に係るポリアミック酸及びポリイミドの濃度を10重量%の溶液としたときに、10~800mPa・sの溶液粘度を持つものであることが好ましく、15~500mPa・sの溶液粘度を持つものであることがより好ましい。なお、これらの重合体の溶液粘度(mPa・s)は、当該重合体の良溶媒(例えばγ-ブチロラクトン、N-メチル-2-ピロリドンなど)を用いて調製した濃度10重量%の重合体溶液につき、E型回転粘度計を用いて25℃において測定した値である。
 本発明に係る光応答性分解型高分子としては、上記以外に下記の一般式(1A)または一般式(1B):
Figure JPOXMLDOC01-appb-C000042
(上記一般式(1)中、Spは、単結合、-(CH-(式中、uは1~20を表す。)、-OCH-、-CHO-、―COO-、-OCO-、-CH=CH-、-CF=CF-、-CFO-、-OCF-、-CFCF-および-C≡C-からなる群から選択される少なくとも1種の二価の連結基であり、これらの置換基において非隣接のCH基の一つ以上は独立して、-O-、-CO-、-CO-O-、-O-CO-、-Si(CH-O-Si(CH―、-NR-、-NR-CO-、-CO-NR-、-NR-CO-O-、-O-CO-NR-、-NR-CO-NR-、-CH=CH-、-C≡C-又は-O-CO-O-(式中、Rは独立して水素又は炭素原子数1から5のアルキル基を表す。)で置換することができ、
 A、Aはそれぞれ独立して、
(a) トランス-1,4-シクロへキシレン基(この基中に存在する1個のメチレン基又は隣接していない2個以上のメチレン基は-O-、-NH-又は-S-に置き換えられてもよい)、
(b) 1,4-フェニレン基(この基中に存在する1個又は2個以上の-CH=は-N=に置き換えられてもよい)、及び
(c) 1,4-シクロヘキセニレン基、2,5-チオフェニレン基、2,5-フラニレン基、1,4-ビシクロ(2.2.2)オクチレン基、ナフタレン-1,4-ジイル基、ナフタレン-2,6-ジイル基、デカヒドロナフタレン-2,6-ジイル基及び1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基
からなる群より選ばれる基を表し、上記の基(a)、基(b)又は基(c)はそれぞれ無置換であるか又は一個以上の水素原子がフッ素原子、塩素原子、シアノ基、メチル基又はメトキシ基によって置換されていても良く、
 Z、ZおよびZは、それぞれ独立して、単結合、-(CH-(式中、uは1~20を表す。)、-OCH-、-CHO-、―COO-、-OCO-、-CH=CH-、-CF=CF-、-CFO-、-OCF-、-CFCF-又は-C≡C-を表すが、これらの置換基において非隣接のCH基の一つ以上は独立して、-O-、-CO-、-CO-O-、-O-CO-、-Si(CH-O-Si(CH―、-NR-、-NR-CO-、-CO-NR-、-NR-CO-O-、-O-CO-NR-、-NR-CO-NR-、-CH=CH-、-C≡C-又は-O-CO-O-(式中、Rは独立して水素又は炭素原子数1から5のアルキル基を表す。)で置換することができ、
 Xは、-O-、単結合、-NR-またはフェニレン基であり、
 Rは、重合性基、アルコキシ基、シアノ基または炭素原子数1~12個のフッ化アルキル基であり、
 mは、0、1、または2であり、
 M及びMはそれぞれ独立して同一であっても異なっていても良く、以下の一般式(U-1)~(U-13)のいずれか1種のモノマー単位を表し、
Figure JPOXMLDOC01-appb-C000043
(上記一般式(U-1)~(U-10)中、破線はSpへの結合を表し、Rは独立して水素原子、炭素原子数1から5のアルキル基、フェニル基、ハロゲン原子を表し、それぞれの構造中の任意の水素原子はフッ素原子、塩素原子、メチル基、フェニル基、メトキシ基によって置換されていてもよく、
上記一般式(U-11)~(U-13)中、破線はSpへの結合を表し、Rは4価の環構造、Rは3価の有機基、Rは水素原子、水酸基、炭素原子数1~15個のアルキル基、炭素原子数1~15個のアルコキシ基を表す。)
 y及びwは、コポリマーのモル分率を表し、0<y≦1かつ、0≦w<1であり、nは4~100,000を表し、M及びMのモノマー単位は各々独立して1種類でも2種類以上の異なる単位からなっていても良い。)
で表される光応答性二量化型高分子、その加水分解物または加水分解物の縮合物であることが好ましい。
 また、上記本発明に係る一般式(1)で表される光応答性高分子の好ましい形態として、Zが単結合である光応答性二量化型高分子が好ましい。
 他の本発明に係る光応答性二量化型高分子は、下記の一般式(2):
Figure JPOXMLDOC01-appb-C000044
(上記一般式(2)中、MおよびMはそれぞれ互いに独立して、アクリレート、メタクリレート、2-クロロアクリレート、2-フェニルアクリレート、低級アルキル基でN-置換されていてもよいアクリルアミド、メタクリルアミド、2-クロロアクリルアミド、2-フェニルアクリルアミド、ビニルエーテル、ビニルエステル、スチレン誘導体およびシロキサン類からなる群から選択される少なくとも1種の繰り返し単位であり、
 Mは、アクリレート、メタクリレート、2-クロロアクリレート、2-フェニルアクリレート、低級アルキルでN-置換されていてもよいアクリルアミド、メタクリルアミド、2-クロロアクリルアミド、2-フェニルアクリルアミド、ビニルエーテル、ビニルエステル、アクリル酸またはメタクリル酸の直鎖状-もしくは分岐状アルキルエステル、アクリル酸もしくはメタクリル酸のアリルエステル、アルキルビニルエーテルもしくは-エステル、フェノキシニアルキルアクリレートもしくはフェノキシアルキルメタクリレートもしくはヒドロキシアルキルアクリレートもしくはヒドロキシアルキルメタクリレート、フェニルアルキルアクリレートもしくはフェニルアルキルメタクリレート、アクリロニトリル、メタクリロニトリル、スチレン、4-メチルスチレンおよびシロキサン類からなる群から選択される少なくとも1種の繰り返し単位であり、
 A、B、C、A、BおよびCはそれぞれ互いに独立して、
(a) トランス-1,4-シクロへキシレン基(この基中に存在する1個のメチレン基又は隣接していない2個以上のメチレン基は-O-、-NH-又は-S-に置き換えられてもよい)、
(b) 1,4-フェニレン基(この基中に存在する1個又は2個以上の-CH=は-N=に置き換えられてもよい)、及び
(c) 1,4-シクロヘキセニレン基、2,5-チオフェニレン基、2,5-フラニレン基、1,4-ビシクロ(2.2.2)オクチレン基、ナフタレン-1,4-ジイル基、ナフタレン-2,6-ジイル基、デカヒドロナフタレン-2,6-ジイル基及び1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基
からなる群より選ばれる基を表し、上記の基(a)、基(b)又は基(c)はそれぞれ無置換であるか又は一個以上の水素原子がフッ素原子、塩素原子、シアノ基、メチル基又はメトキシ基によって置換されていても良く、
 SおよびSはそれぞれ互いに独立して、フッ素原子、塩素原子もしくはシアノ基で1以上置換された直鎖状もしくは分岐状アルキレン基(-(CH-)または-(CH-L-(CH-(式中、Lは、単結合または-O-、-COO-、-OOC-、-NR-、-NR-CO-、-CO-NR-、-NR-COO-、-OCO-NR-、-NR-CO-NR-、-CH=CH-または-C≡C-を意味し、その際にRは水素原子または低級アルキル基を意味し、rおよびsは、r+s≦24という条件のもとで1~20の整数であり、)であり、
 D、Dはそれぞれ互いに独立して、-O-、-NR-、または下記の式(d)~(f):
(d) トランス-1,4-シクロへキシレン基(この基中に存在する1個のメチレン基又は隣接していない2個以上のメチレン基は-O-、-NH-又は-S-に置き換えられてもよい)、
(e) 1,4-フェニレン基(この基中に存在する1個又は2個以上の-CH=は-N=に置き換えられてもよい)、及び
(f) 1,4-シクロヘキセニレン基、2,5-チオフェニレン基、2,5-フラニレン基、1,4-ビシクロ(2.2.2)オクチレン基、ナフタレン-1,4-ジイル基、ナフタレン-2,6-ジイル基、デカヒドロナフタレン-2,6-ジイル基及び1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基
からなる群より選ばれる基を含み、上記の基(d)、基(e)又は基(f)はそれぞれ無置換であるか又は一個以上の水素原子がフッ素原子、塩素原子、シアノ基、メチル基又はメトキシ基によって置換されていても良い、を意味し、その際にRは水素原子または低級アルキル基であり、
 X、X、YおよびYはそれぞれ互いに独立して、水素原子、フッ素原子、塩素原子、シアノ基、場合によってはフッ素原子で置換されそしてCH基または複数の非隣接CH基が場合によっては-O-、-COO-、-OOC-および/または-CH=CH-で交換されていてもよい炭素原子数1~12のアルキル基を意味し、
 Z1a、Z1b、Z2aおよびZ2bはそれぞれ互いに独立して、単結合、-(CH)t-、-O-、-CO-、-CO-O-、-O-OC-、-NR-、-CO-NR-、-NR-CO-、-(CH-O-、-O-(CH-、-(CH-NR-または-NR-(CH-であり、その際にRは水素原子または低級アルキル基を意味し;tは1~4の整数を意味し;uは1~3の整数であり、
 p、p、qおよびqはそれぞれ互いに独立して、0または1であり、
 R1aおよびR2aはそれぞれ互いに独立して、水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、または炭素原子数1~20の直鎖状もしくは分岐状のアルキル基、アルコキシ基、アルキル-COO-、アルキル-CO-NRまたはアルキル-OCO基を意味し、その際にRは水素原子または低級アルキル基を意味し、前記アルキル基または前記アルコキシ基の1以上の水素原子は、フッ素原子、塩素原子、シアノ基またはニトロ基で置換されてもよく、前記アルキル基または前記アルコキシ基のCH基または複数の非隣接CH基が-O-、-CH=CH-または-C≡C-に置換されてもよく、
 n、nおよびnは0<n≦1、0≦n<1および0≦n≦0.5のコモノマーのモル分率である)
で表される光応答性二量化型高分子であることが好ましい。
 (基板、電極層)
 本発明に係る液晶表示素子の構成要素である一対の基板および電極層を以下説明するが、便宜上当該構成要素については、本発明に係る液晶表示素子の説明と併せて詳説する。以下、図面に基づいて、本発明に係る液晶表示素子の一実施形態を説明する。図1~6は本発明に係る液晶表示素子の好ましい一例として横電界型液晶表示素子について説明し、図7~9においては垂直電界型液晶表示素子について説明する。
 図1は、液晶表示素子の構成を模式的に示す図である。図1では、説明のために便宜上各構成要素を離間して記載している。本発明に係る液晶表示素子10の構成は、図1に記載するように、対向に配置された第一の透明絶縁基板2と、第二の透明絶縁基板7との間に挟持された液晶組成物(または液晶層5)を有するFFSモードの液晶表示素子であって、該液晶組成物として前記本発明の液晶組成物を用いたことに特徴を有するものである。第一の透明絶縁基板2は、液晶層5側の面に電極層3が形成されている。また、液晶層5と、第一の透明絶縁基板2及び第二の透明絶縁基板8のそれぞれの間に、液晶層5を構成する液晶組成物と直接当接してホモジニアス配向を誘起する一対の光配向膜4を有し、該液晶組成物中の液晶分子は、電圧無印加時に前記基板2,7に対して略平行になるように配向されている。図1および図3に示すように、前記第二の基板7および前記第一の基板2は、一対の偏光板1,8により挟持されてもよい。さらに、図1では、前記第二の基板7と配向膜4との間にカラーフィルタ6が設けられている。なお、本発明に係る液晶表示素子の形態としては、いわゆるカラーフィルタオンアレイ(COA)であってもよく、薄膜トランジスタを含む電極層と液晶層との間にカラーフィルタを設けても、または当該薄膜トランジスタを含む電極層と第二の基板との間にカラーフィルタを設けてもよい。
 すなわち、本発明に係る液晶表示素子10は、第一の偏光板1と、第一の基板2と、薄膜トランジスタを含む電極層3と、配向膜4と、液晶組成物を含む液晶層5と、配向膜4と、カラーフィルタ6と、第二の基板7と、第二の偏光板8と、が順次積層された構成である。
 第一の基板2と第二の基板7はガラス又はプラスチックの如き柔軟性をもつ透明な材料を用いることができ、一方はシリコン等の不透明な材料でも良い。2枚の基板2、7は、周辺領域に配置されたエポキシ系熱硬化性組成物等のシール材及び封止材によって貼り合わされていて、その間には基板間距離を保持するために、例えば、ガラス粒子、プラスチック粒子、アルミナ粒子等の粒状スペーサーまたはフォトリソグラフィー法により形成された樹脂からなるスペーサー柱が配置されていてもよい。
 図2は、図1における基板2上に形成された電極層3のII線で囲まれた領域を拡大した平面図である。図3は、図2におけるIII-III線方向に図1に示す液晶表示素子を切断した断面図である。図2に示すように、第一の基板2の表面に形成されている薄膜トランジスタを含む電極層3は、走査信号を供給するための複数のゲートバスライン26と表示信号を供給するための複数のデータバスライン25とが、互いに交差してマトリクス状に配置されている。なお、図2には、一対のゲートバスライン25及び一対のデータバスライン24のみが示されている。
 複数のゲートバスライン26と複数のデータバスライン25とにより囲まれた領域により、液晶表示装置の単位画素が形成され、該単位画素内には、画素電極21及び共通電極22が形成されている。ゲートバスライン26とデータバスライン25が互いに交差している交差部近傍には、ソース電極27、ドレイン電極24およびゲート電極28を含む薄膜トランジスタが設けられている。この薄膜トランジスタは、画素電極21に表示信号を供給するスイッチ素子として、画素電極21と連結している。また、ゲートバスライン26と並行して、共通ライン29が設けられる。この共通ライン29は、共通電極22に共通信号を供給するために、共通電極22と連結している。
 薄膜トランジスタの構造の好適な一態様は、例えば、図3で示すように、基板2表面に形成されたゲート電極11と、当該ゲート電極11を覆い、且つ前記基板2の略全面を覆うように設けられたゲート絶縁層12と、前記ゲート電極11と対向するよう前記ゲート絶縁層12の表面に形成された半導体層13と、前記半導体層17の表面の一部を覆うように設けられた保護膜14と、前記保護層14および前記半導体層13の一方の側端部を覆い、かつ前記基板2表面に形成された前記ゲート絶縁層12と接触するように設けられたドレイン電極16と、前記保護膜14および前記半導体層13の他方の側端部を覆い、かつ前記基板2表面に形成された前記ゲート絶縁層12と接触するように設けられたソース電極17と、前記ドレイン電極16および前記ソース電極17を覆うように設けられた絶縁保護層18と、を有している。ゲート電極11の表面にゲート電極との段差を無くす等の理由により陽極酸化被膜(図示せず)を形成してもよい。
 前記半導体層13には、アモルファスシリコン、多結晶ポリシリコンなどを用いることができるが、ZnO、IGZO(In-Ga-Zn-O)、ITO等の透明半導体膜を用いると、光吸収に起因する光キャリアの弊害を抑制でき、素子の開口率を増大する観点からも好ましい。
 さらに、ショットキー障壁の幅や高さを低減する目的で半導体層13とドレイン電極16またはソース電極17との間にオーミック接触層15を設けても良い。オーミック接触層には、n型アモルファスシリコンやn型多結晶ポリシリコン等のリン等の不純物を高濃度に添加した材料を用いることができる。
 ゲートバスライン26やデータバスライン25、共通ライン29は金属膜であることが好ましく、Al、Cu、Au、Ag、Cr、Ta、Ti、Mo、W、Ni又はその合金がより好ましく、Al又はその合金の配線を用いる場合が特に好ましい。また、絶縁保護層18は、絶縁機能を有する層であり、窒化ケイ素、二酸化ケイ素、ケイ素酸窒化膜等で形成される。
 図2及び図3に示す実施の形態では、共通電極22はゲート絶縁層12上のほぼ全面に形成された平板状の電極であり、一方、画素電極21は共通電極22を覆う絶縁保護層18上に形成された櫛形の電極である。すなわち、共通電極22は画素電極21よりも第一の基板2に近い位置に配置され、これらの電極は絶縁保護層18を介して互いに重なりあって配置される。画素電極21と共通電極22は、例えば、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、IZTO(Indium Zinc Tin Oxide)等の透明導電性材料により形成される。画素電極21と共通電極22が透明導電性材料により形成されるため、単位画素面積で開口される面積が大きくなり、開口率及び透過率が増加する。
 また、画素電極21と共通電極22とは、これらの電極間にフリンジ電界を形成するために、画素電極21と共通電極22との間の電極間距離(最小離間距離とも称する):Rが、第一の基板2と第二の基板7との距離:Gより小さくなるように形成される。ここで、電極間距離:Rは各電極間の基板に水平方向の距離を表す。図3では、平板状の共通電極22と櫛形の画素電極21とが重なり合っているため、最小離間距離(または電極間距離):R=0となる例が示されており、最小離間距離:Rが第一の基板2と第二の基板7との距離(すなわち、セルギャップ):Gよりも小さくなるため、フリンジの電界Eが形成される。したがって、FFS型の液晶表示素子は、画素電極21の櫛形を形成するラインに対して垂直な方向に形成される水平方向の電界と、放物線状の電界を利用することができる。画素電極21の櫛状部分の電極幅:l、及び、画素電極21の櫛状部分の間隙の幅:mは、発生する電界により液晶層5内の液晶分子が全て駆動され得る程度の幅に形成することが好ましい。また、画素電極と共通電極との最小離間距離Rは、ゲート絶縁膜12の(平均)膜厚として調整することができる。
 本発明に係る液晶表示素子は、垂直電界方式または横電界方式液晶表示素子であることが好ましく、フリンジ電界を利用するFFS方式またはVA方式の液晶表示素子であることよりが好ましい。共通電極22と画素電極21との隣接する最短離間距離Rが、配向層4同士(基板間距離)の最短離間距離Gより短いと、共通電極と画素電極との間にフリンジ電界が形成され、液晶分子の水平方向および垂直方向の配向を効率的に利用することができる。本発明の好ましい形態のようなFFS方式の液晶表示素子の場合、長軸方向が、配向層の配向方向と平行になるように配置している液晶分子に電圧を印加すると、画素電極21と共通電極22との間に放物線形の電界の等電位線が画素電極21と共通電極22の上部にまで形成され、液晶層5内の液晶分子は、形成された電界に沿って液晶層5内を回転する。特に、本発明に係る液晶組成物は負の誘電率異方性を有する液晶分子を用いるため、液晶分子の長軸方向が、発生した電界方向に直行するように回転する。画素電極21の近くに位置する液晶分子はフリンジ電界の影響を受けやすいものの、負の誘電率異方性を有する液晶分子は分極方向が分子の短軸にあることから、その長軸方向が配向層4に対して直行する方向に回転することはなく、液晶層5内の全ての液晶分子の長軸方向は、配向膜4に対して平行方向を維持できる。したがって、正の誘電率異方性を有する液晶分子を用いたFFS方式の液晶表示素子に比べて、優れた透過率特性を得ることができる。
 カラーフィルタ6は、光の漏れを防止する観点で、薄膜トランジスタおよびストレイジキャパシタ23に対応する部分にブラックマトリックス(図示せず)を形成することが好ましい。
 電極層3、及び、カラーフィルタ6上には、液晶層5を構成する液晶組成物と直接当接してホモジニアス配向を誘起する一対の配向膜4が設けられている。
 ここで、図4を用いて、本実施形態における配向膜4の配向方向(液晶分子の配向方向)について説明する。図4は、配向膜4により誘起された液晶の配向方向を模式的に示す図である。本発明においては、負の誘電率異方性を有する液晶組成物が用いられる。したがって、画素電極21の櫛形を形成するラインに対して垂直な方向(水平電界が形成される方向)をx軸としたときに、該x軸と液晶分子30の長軸方向とのなす角θが、概ね0~45°となるように配向されることが好ましい。図3に示す例では、x軸と液晶分子30の長軸方向とのなす角θが、概ね0°の例が示されている。このように液晶の配向方向を誘起するのは、液晶表示装置の最大透過率を高めるためである。
 配向膜を光配向膜にすることにより、ラビングムラによる液晶分子に対する配向規制力の低下を軽減でき、かつ優れた透過率特性のFFS方式の液晶表示素子を提供することができる。
 また、偏光板1及び偏光板8は、各偏光板の偏光軸を調整して視野角やコントラストが良好になるように調整することができ、それらの透過軸がノーマリブラックモードで作動するように、互いに直行する透過軸を有することが好ましい。特に、偏光板1及び偏光板8のうちいずれかは、液晶分子30の配向方向と平行な透過軸を有するように配置することが好ましい。また、コントラストが最大になるように液晶の屈折率異方性Δnとセル厚dとの積を調整することが好ましい。更に、視野角を広げるための位相差フィルムも使用することもできる。
 また、本発明に係る液晶表示素子は、共通電極が第一の基板のほぼ全面に形成され、かつ画素電極より第一の基板側に配置されていることが好ましい。すなわち、本発明に係る液晶表示素子の好適な実施形態は、対向に配置された第一の基板および第二の基板と、前記第一の基板と前記第二の基板との間に充填された液晶組成物を含有する液晶層と、前記第一の基板上に、透明導電性材料を含む共通電極、マトリクス状に配置される複数個のゲートバスライン及びデータバスライン、前記ゲートバスラインとデータバスラインとの交差部に設けられる薄膜トランジスタおよび透明導電性材料を含み、かつ前記薄膜トランジスタにより駆動され前記共通電極との間でフリンジ電界を形成する画素電極と、を画素毎に有する電極層と、前記液晶層と前記第一の基板および前記第二の基板との間にそれぞれ形成されたホモジニアス配向を誘起する光配向膜層と、を有し、前記画素電極と共通電極との間の電極間距離Rが、前記第一の基板と第二の基板との距離Gより小さく、前記共通電極が前記第一の基板のほぼ全面に形成され、かつ画素電極より第一の基板側に配置されている。なお、本発明の一形態である図1~4では、通電極が第一の基板のほぼ全面に形成され、かつ画素電極より第一の基板側に配置されている形態を示している。
 図1~図4を用いて説明したFFS型の液晶表示素子は一例であって、本発明の技術的思想から逸脱しない限りにおいて、他の様々な形態で実施することが可能である。
 本発明に係る液晶表示素子の他の実施形態を図5および図6を用いて以下説明する。
例えば、図5は、図1における基板2上に形成された電極層3のII線で囲まれた領域を拡大した平面図の他の実施形態である。図5に示すように、画素電極21がスリットを有する構成としてもよい。また、スリットのパターンを、ゲートバスライン26又はデータバスライン25に対して傾斜角を持つようにして形成してもよい。
 当該図5に示す画素電極21は、略長方形の平板体の電極を略矩形枠状の切欠き部でくり抜かれた形状である。また、当該画素電極21の背面には絶縁層18(図示せず)を介して櫛歯状の共通電極22が一面に形成されている。そして、隣接する共通電極と画素電極との最短離間距離Rは配向層同士の最短離間距離Gより短い。また、前記画素電極の表面には保護絶縁膜及び配向膜層によって被覆されていることが好ましい。なお、前記複数のゲートバスライン25と複数のデータバスライン24とに囲まれた領域にはデータ配線24を介して供給される表示信号を保存するストレイジキャパシタ(図示せず)を設けてもよい。なお、切欠き部の形状は特に制限されるものではなく、図5で示す略矩形だけでなく、楕円、円形、長方形状、菱形、三角形、または平行四辺形など公知の形状の切欠き部を使用できる。
 図6は、図3とは別の実施形態であり、図2におけるIII-III線方向に図1に示す液晶表示素子を切断した断面図の他の例である。配向層4および薄膜トランジスタ20を含む電極層3が表面に形成された第一の基板2と、配向層4が表面に形成された第二の基板8とが所定の間隔Dで配向層同士向かい合うよう離間しており、この空間に液晶組成物を含む液晶層5が充填されている。第一の基板2の表面の一部にゲート絶縁膜12、共通電極22、絶縁膜18、画素電極21および配向層4の順で積層されている。また、図8にも示すように、画素電極21は、平板体の中央部および両端部が三角形状の切欠き部でくり抜かれ、さらに残る領域を長方形状の切欠き部でくり抜かれた形状であり、かつ共通電極22は前記画素電極21の略楕円形状の切欠き部と略平行に櫛歯状の共通電極が前記画素電極より第一の基板側に配置されてなる構造である。
 また、図6に示す例では、櫛形あるいはスリットを有する共通電極22を用いており、画素電極21と共通電極22との電極間距離はR=αとなる。さらに、図3では共通電極22がゲート絶縁膜12上に形成されている例が示されていたが、図6に示されるように、共通電極22を第一の基板2上に形成して、ゲート絶縁膜12を介して画素電極21を設けるようにしてもよい。画素電極21の電極幅:l、共通電極22の電極幅:n、及び、電極間距離:Rは、発生する電界により液晶層5内の液晶分子が全て駆動され得る程度の幅に適宜調整することが好ましい。
 本発明に係るFFSモードの液晶表示素子は、特定の液晶組成物と特定の光配向膜とを用いているため、高速応答と表示不良の抑制を両立させることができる。
 本発明の好ましい他の実施形態は、液晶組成物を用いた垂直電界型の液晶表示素子である。図7は、垂直電界型の液晶表示素子の構成を模式的に示す図である。また、図7では、説明のために便宜上各構成要素を離間して記載している。図8は、当該図7における基板上に形成された薄膜トランジスタを含む電極層3(または薄膜トランジスタ層3とも称する。)のII線で囲まれた領域を拡大した平面図である。図9は、図8におけるIII-III線方向に図1に示す液晶表示素子を切断した断面図である。以下、図7~9を参照して、本発明に係る垂直電界型の液晶表示素子を説明する。
 本発明に係る液晶表示素子10の構成は、図7に記載するように透明導電性材料からなる透明電極(層)60(または共通電極60とも称する。)を具備した第一の基板80と、透明導電性材料からなる画素電極および各画素に具備した前記画素電極を制御する薄膜トランジスタを形成した薄膜トランジスタ層30を含む第二の基板20と、前記第一の基板80と第二の基板20との間に挟持された液晶組成物(または液晶層50)を有し、該液晶組成物中の液晶分子の電圧無印加時の配向が前記基板20,80に対して略垂直である液晶表示素子であって、該液晶組成物として前記本発明の液晶組成物を用いたことに特徴を有するものである。また図7および図9に示すように、前記第二の基板20および前記第一の基板80は、一対の偏光板10,90により挟持されてもよい。さらに、図7では、前記第一の基板8と共通電極6との間にカラーフィルタ70が設けられている。またさらに、本発明に係る液晶層50と隣接し、かつ当該液晶層50を構成する液晶組成物と直接当接するよう一対の光配向膜40を透明電極(層)60,140表面に形成してもよい。
 すなわち、本発明に係る液晶表示素子10は、第二の偏光板10と、第二の基板20と、薄膜トランジスタを含む電極層(又は薄膜トランジスタ層とも称する)30と、光配向膜40と、液晶組成物を含む層50と、光配向膜40と、共通電極60と、カラーフィルタ70と、第一の基板80と、第一の偏光板90と、が順次積層された構成である。
 また図8および図9に示すように、第二の基板20の表面に形成されている薄膜トランジスタを含む電極層30は、走査信号を供給するためのゲート配線250と表示信号を供給するためのデータ配線240とが互いに交差しており、かつ前記複数のゲート配線250と複数のデータ配線240とに囲まれた領域には、画素電極210がマトリックス状に形成されている。画素電極210に表示信号を供給するスイッチ素子として、前記ゲート配線250と前記データ配線240が互いに交差している交差部近傍において、ソース電極260、ドレイン電極230およびゲート電極270を含む薄膜トランジスタが、前記画素電極210と連結して設けられている。さらに、前記複数のゲート配線250と複数のデータ配線240とに囲まれた領域にはデータ配線240を介して供給される表示信号を保存するストレイジキャパシタ220が設けられている。
 本発明においては、図2に記載するように薄膜トランジスタが逆スタガード型である液晶表示素子に好適に使用でき、ゲート配線250やデータ配線240などは金属膜であることが好ましく、アルミニウム配線を用いる場合が特に好ましい。さらに、ゲート配線250およびデータ配線240はゲート絶縁膜を介して重なっている。
 また、当該カラーフィルタ70は、光の漏れを防止する観点で、薄膜トランジスタおよびストレイジキャパシタ22に対応する部分にブラックマトリックス(図示せず)を形成することが好ましい。
 本発明に係る液晶表示素子の薄膜トランジスタの構造の好適な一態様は、上述した通りである。
 上述したように液晶表示素子を製造する過程において、滴下痕の発生は、注入される液晶材料に大きな影響を受けるものであるが、液晶表示素子の構成によってもその影響は避けられない、図9に示すように、薄い光配向膜40や透明電極60,140等だけが液晶組成物と直接当接する部材であるため、例えば光配向膜40に用いられる高分子の化学構造と特定の化学構造を有する液晶化合物との組合せにより滴下痕の発生に影響が生じる。
 また、FFSモードの液晶表示素子は、第一の基板2と第二の基板7との間に液晶層5を注入する際、例えば、真空注入法又は滴下注入(ODF:One Drop Fill)法等の方法が行われるが、本願発明においては、ODF法において、液晶組成物を基板に滴下した際の滴下痕の発生を抑えることができる。なお、滴下痕とは、黒表示した場合に液晶組成物を滴下した痕が白く浮かび上がる現象と定義する。
 滴下痕の発生は、注入される液晶材料に大きな影響を受けるものであるが、さらに、表示素子の構成によってもその影響は避けられない。FFSモードの液晶表示素子においては、表示素子中に形成される薄膜トランジスタ、及び、櫛形やスリットを有する画素電極21等は、薄い配向膜4、あるいは薄い配向膜4と薄い絶縁保護層18等しか液晶組成物を隔てる部材が無いことから、イオン性物質を遮断しきれない可能性が高く、電極を構成する金属材料と液晶組成物の相互作用による滴下痕の発生を避けることができなかったが、FFS型の液晶表示素子において本願発明の液晶組成物および光配向膜を組み合わせて用いることにより、効果的に滴下痕の発生が抑えられる。
 また、ODF法による液晶表示素子の製造工程においては、液晶表示素子のサイズに応じて最適な液晶注入量を滴下する必要があるが、本願発明の液晶組成物は、例えば、液晶滴下時に生じる滴下装置内の急激な圧力変化や衝撃に対する影響が少なく、長時間にわたって安定的に液晶を滴下し続けることが可能であるため、液晶表示素子の歩留まりを高く保持することもできる。特に、最近流行しているスマートフォンに多用される小型液晶表示素子は、最適な液晶注入量が少ないために最適値からのずれを一定範囲内に制御すること自体が難しいが、本願発明の液晶組成物を用いることにより、小型液晶表示素子においても安定した液晶材料の吐出量を実現できる。
 以下に、本発明の液晶表示素子の製造方法を説明する。本発明の液晶表示素子は、例えば以下の工程(1)~(3)により製造することが好ましい。
 本発明に係る液晶表示素子の製造方法は、基板上に本発明に係る光配向膜前駆体溶液を塗布した後、当該塗布面を加熱することにより基板上に塗膜を形成することが好ましい(工程(1))。より詳細には、例えば櫛歯型にパターニングされた透明導電膜が設けられている基板の導電膜形成面と、導電膜が設けられていない対向基板の一面とに、本発明の光配向膜前駆体溶液をそれぞれ塗布し、次いで各塗布面を加熱することにより塗膜を形成する。
 本発明に係る光配向膜前駆体溶液は、上述した光応答性高分子を含む溶液であることが好ましい。当該光応答性高分子は、テトラカルボン酸二無水物と、ジアミン化合物とを反応させて得られるポリアミック酸及びポリイミドよりなる群から選択される少なくとも一種の重合体および前記有機溶媒とを含有することがより好ましい。
 本発明の光配向膜前駆体溶液を、好ましくはオフセット印刷法、スピンコート法、ロールコーター法又はインクジェット印刷法によりそれぞれ塗布する。ここに、基板としては、例えばフロートガラス、ソーダガラスなどのガラス;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエーテルスルホン、ポリカーボネート、ポリ(脂環式オレフィン)などのプラスチックからなる透明基板を用いることができる。(第一の)基板の一面に設けられる透明導電膜としては、酸化スズ(SnO)からなるNESA膜、酸化インジウム-酸化スズ(In-SnO)からなるITO膜などを用いてもよい。さらに、パターニングされた透明導電膜を得るには、例えばパターンなし透明導電膜を形成した後フォト・エッチングによりパターンを形成する方法や、透明導電膜を形成する際に所望のパターンを有するマスクを用いる方法などに採用することができる。前記光配向膜前駆体溶液の塗布に際しては、基板表面及び透明導電膜と塗膜との接着性をさらに良好にするために、基板表面を官能性シラン化合物、官能性チタン化合物などの公知の方法で予め表面処理をしてもよい。
 前記光配向膜前駆体溶液を塗布した後、必要によりプレベークを行ってもよく、その場合のプレベーク温度は、好ましくは30~200℃である。また、当該プレベーク時間は、好ましくは0.25~10分である。その後、溶剤を完全に除去し、必要に応じて重合体に存在するアミック酸構造を熱イミド化することを目的として焼成工程を行うことが好ましい。このときの焼成温度は、好ましくは80~300℃である。焼成時間は、好ましくは5~200分である。このようにして、形成される膜の膜厚は、好ましくは0.001~1μmである。
 また、本発明の光配向膜前駆体溶液に含有される重合体が、ポリアミック酸又はイミド環構造とアミック酸構造とを有するイミド化重合体である場合には、塗膜形成後に更に加熱することによって脱水閉環反応を進行させ、よりイミド化された塗膜としてもよい。
 本発明に係る液晶表示素子の製造方法は、前記基板上に形成されたポリアミック酸またはポリイミドを含む塗膜に光照射することが好ましい(工程(2))。また、当該工程(2)は、後述の工程(3)の後行ってもよい。当該塗膜に対して照射する光としては、150~800nmの波長の光を含む紫外線または可視光線を用いることができ、300~400nmの波長の光を含む紫外線が好ましい。
 前記照射光の光源としては、低圧水銀ランプ、高圧水銀ランプ、重水素ランプ、メタルハライドランプ、アルゴン共鳴ランプ、キセノンランプ、エキシマーレーザーなどを使用することができる。なお、上記好ましい波長領域の紫外線は、光源を、例えばフィルター、回折格子などと併用する手段などにより得ることができる。光の照射量としては、好ましくは1,000J/m以上100,000J/m以下である。
 本発明に係る液晶表示素子の製造方法は、光配向膜または塗膜が形成された一対の基板を間隙(セルギャップ)を介して対向配置し、かつ当該間隙に本発明に係る液晶組成物を充填することが好ましい(工程(3))。
 前記液晶組成物を充填する方法としては、(1)真空注入法(光配向膜または塗膜が形成された一対の基板につき、二枚の基板の当該膜の配向方向が直交となるように間隙(セルギャップ)を介して対向配置し、二枚の基板の周辺部をシール剤を用いて貼り合わせ、基板表面及びシール剤により区画されたセルギャップ内に液晶を注入充填し、注入孔を封止して液晶セルを構成する方法)または(2)ODF法が挙げられる。真空注入法による液晶組成物を導入する方法では滴下痕は発生しないものの基板サイズの大型化に伴い、製造時間やコストなどに問題がある。しかし、本願発明においては、光配向膜と液晶組成物との組み合わせからODF法を用いて製造する表示素子により好適に使用することができる。
 また、本願発明のようにFFS方式では同一基板(図3では第一の基板)の表面にTFTなど電極層3(光配向膜が被覆している面)が形成されているため、当該表面には多数の凹凸が存在し、滴下痕の発生を促進しやすい環境になっているが、光配向膜と液晶組成物との組み合わせによりこの問題点が軽減されていると考えられる。
 以下に実施例を挙げて本発明を更に詳述するが、本発明はこれらの実施例に限定されるものではない。また、以下の実施例及び比較例の組成物における「%」は『質量%』を意味する。
 実施例中、測定した特性は以下の通りである。
 TNI :ネマチック相-等方性液体相転移温度(℃)
 Δn :25℃における屈折率異方性
 Δε :25℃における誘電率異方性
 η  :20℃における粘度(mPa・s)
 γ :25℃における回転粘度(mPa・s)
VHR:周波数60Hz,印加電圧1Vの条件下で60℃における電圧保持率(%)
 焼き付き :
 液晶表示素子の焼き付き評価は、表示エリア内に所定の固定パターンを1000時間表示させた後に、全画面均一な表示を行ったときの固定パターンの残像のレベルを目視にて以下の4段階評価で行った。
 ◎残像無し
 ○残像ごく僅かに有るも許容できるレベル
 △残像有り許容できないレベル
 ×残像有りかなり劣悪
 滴下痕 :
 液晶表示装置の滴下痕の評価は、全面黒表示した場合における白く浮かび上がる滴下痕を目視にて以下の4段階評価で行った。
 ◎残像無し
 ○残像ごく僅かに有るも許容できるレベル
 △残像有り許容できないレベル
 ×残像有りかなり劣悪
プロセス適合性 :
 プロセス適合性は、ODFプロセスにおいて、定積計量ポンプを用いて1回に50pLずつ液晶を滴下することを100000回行い、次の「0~100回、101~200回、201~300回、・・・・99901~100000回」の各100回ずつ滴下された液晶量の変化を以下の4段階で評価した。
 ◎変化が極めて小さい(安定的に液晶表示素子を製造できる)
 ○変化が僅かに有るも許容できるレベル
 △変化が有り許容できないレベル(斑発生により歩留まりが悪化)
 ×変化が有りかなり劣悪(液晶漏れや真空気泡が発生)
 低温での溶解性:
 低温での溶解性評価は、液晶組成物を調製後、2mLのサンプル瓶に液晶組成物を1g秤量し、これに温度制御式試験槽の中で、次を1サイクル「-20℃(1時間保持)→昇温(0.1℃/毎分)→0℃(1時間保持)→昇温(0.1℃/毎分)→20℃(1時間保持)→降温(-0.1℃/毎分)→0℃(1時間保持)→降温(-0.1℃/毎分)→-20℃」として温度変化を与え続け、目視にて液晶組成物からの析出物の発生を観察し、以下の4段階評価を行った。
 ◎600時間以上析出物が観察されなかった。
 ○300時間以上析出物が観察されなかった。
 △150時間以内に析出物が観察された。
 ×75時間以内に析出物が観察された。
尚、実施例において化合物の記載について以下の略号を用いる。
(側鎖)
 -n    -CnH2n+1 炭素原子数nの直鎖状アルキル基
 -On   -OCnH2n+1 炭素原子数nの直鎖状アルコキシ基
 -V    -C=CH2 ビニル基
 -Vn   -C=C-CnH2n+1 炭素原子数(n+1)の1-アルケン
(環構造)
Figure JPOXMLDOC01-appb-C000045
 (実施例1(液晶組成物1))
 次に示す組成を有する液晶組成物(液晶組成物1)を調製し、その物性値を測定した。この結果を次の表に示す。
 本発明の液晶組成物を用いて、TV用として一般的であるセル厚3.0μmのFFSモードおよびVAモードの液晶表示素子を作製し、配向膜については、以下のような方法で作製した。
 <光分解型光配向膜>
 「光配向膜1」
 p-フェニレンジアミン1.0モル%を、N-メチル-2-ピロリドン中に溶解させた後、これにシクロブタンテトラカルボン酸二無水物1モル%を加えて20℃で12時間反応させ、標準ポリスチレン換算重量平均分子量が約100,000、重量平均分子量/数平均分子量(Mv/Mn)が約1.6のポリアミック酸ワニスを得た。次に、このポリアミック酸ワニスを6%濃度に希釈してγ-アミノプロピルトリエトキシシランを固形分で0.3重量%添加した後、第1の薄膜積層体上および第2の薄膜積層体の上に印刷し、210℃で30分加熱して光分解型の絶縁膜(ポリイミド膜)を形成した。
 その後、当該光分解型のポリイミド膜に、たとえば、240nmから400nmの波長域に輝線をもつ偏光UVランプからの光(紫外線)を照射する配向処理を施した。この配向処理は、たとえば、高圧水銀ランプからの紫外線を、石英基板を積層したパイル偏光子を用いて偏光比約20:1の直線偏光とし、約4J/cmの照射エネルギーで照射して行った。
 「光配向膜2」
 (ポリアミック酸Aの合成)
 4、4’-ジアミノジフェニルエーテル1.0モル%、N-メチル-2-ピロリドン中に溶解させた後、これにシクロブタンテトラカルボン酸二無水物1モル%を加えて20℃で12時間反応させ、標準ポリスチレン換算重量平均分子量が約50,000、重量平均分子量/数平均分子量(Mv/Mn)が約1.6のポリアミック酸A溶液を得た。
(ポリアミック酸Bの合成)
 4、4’-ジアミノジフェニルアミン1.0モル%、N-メチル-2-ピロリドン中に溶解させた後、これにシクロブタンテトラカルボン酸二無水物1モル%を加えて20℃で6時間反応させ、標準ポリスチレン換算重量平均分子量が約55,000、重量平均分子量/数平均分子量(Mv/Mn)が約1.9のポリアミック酸B溶液を得た。
 (混合物の調整)
 ポリアミック酸A溶液、ポリアミック酸B溶液を固形分質量比が1:1となるように混合し、更にN-メチル-2-ピロリドンと2-ブトキシエタノールの質量比が1:1の混合溶媒で希釈することによってポリアミック酸溶液を得た。
 これを第1の薄膜積層体上および第2の薄膜積層体の上に印刷し、230℃で30分加熱して光分解型の絶縁膜(ポリイミド膜)を形成した。その後、当該光分解型のポリイミド膜に、高圧紫外線ランプからの光(紫外線)をワイヤーグリッド偏光子を用いて消光比約100:1の直線偏光とし、0.5J/cmの照射エネルギーで照射して行った。
 「光配向膜3」
 (光配向膜用溶液の調製)
 1,4-フェニレンジアミン3.24gに N-メチル-2-ピロリドン 32.40g を加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を撹拌しながら、シクロブタンテトラカルボン酸二無水物7.81gを添加し、さらに N-メチル-2-ピロリドン 78.03g を加え、窒素雰囲気下、30℃で18時間撹拌して反応させた。さらに常温で、N-メチル-2-ピロリドンと2-ブトキシエタノールの質量比が1:1の混合溶媒62.68gを添加して希釈攪拌し、光配向膜用溶液を得た。
 (液晶配向膜の形成)
 (光分解型樹脂膜の形成)
 第1基板に形成された櫛形透明電極の上に、前記光配向膜溶液をスピンコート法により形成し、乾燥厚さ0.1μmの樹脂膜を形成した。第2基板にも同様にして配向膜を形成した。
樹脂膜を形成した基板を、230℃で30分加熱して反応させることにより、光分解型の樹脂膜(ポリイミド膜)を形成した。
 (配向処理)
高圧水銀ランプからバンドパスフィルターを用いて256nmの紫外線を取り出し、ワイヤーグリッド偏光子を用いて消光比約100:1の直線偏光とし、当該光分解型の樹脂膜に、1.0J/cm2の照射エネルギーで照射して光配向処理を行った。その後、分解生成した不純物を除去するため、230℃で30分焼成した後、ポリイミド膜を純水で洗浄して乾燥させることにより、光分解型の配向膜が形成されたガラス基板を得た。
 <光二量化型光配向膜>
 「光配向膜4」
 (モノマーの合成)
 (合成例1)
 下記式に示す方法により、化合物1~6の中間体を経て、目的のモノマー(I-1-1)を合成した。
Figure JPOXMLDOC01-appb-C000046
 (化合物1の合成)
Figure JPOXMLDOC01-appb-C000047
 199g(1.21mol)の8-クロロオクタノール、158.3g(1.84mol)のメチルメタクリレート、1.5gの4-メトキシフェノール、22.8g(0.12mol)のp-トルエンスルホン酸を450mLのシクロヘキサンに溶解させ、6時間加熱還流させた。反応液を室温まで冷却し、溶液を水で3回洗浄した後、飽和炭酸水素ナトリウム水溶液で3回洗浄した後、飽和食塩水で2回洗浄した。溶液を無水硫酸ナトリウムで乾燥させ、溶媒を留去することにより258gの化合物1(メタクリル酸8-クロロオクチル)を無色透明な液体として得た。純度99%(GC)。 EI-MS: 232[M+]
 (化合物2の合成)
Figure JPOXMLDOC01-appb-C000048
 34.6g(0.284mol)の4-ヒドロキシベンズアルデヒド、49g(0.341mol)の炭酸カリウム、0.1gの18-クラウン-6、を500mLのジメチルホルムアミドに溶解させ、窒素雰囲気下、室温で58g(0.284mol)のメタクリル酸8-クロロオクチルを加えた。反応液を90度まで加熱し6時間攪拌を行った。反応が完結したことをGCで確認した後、反応液を室温まで冷却し、ろ過を行った。200mLの酢酸エチルと200mLの水を加え、再度ろ過を行った。有機層と水層を分離し、水層に酢酸エチルを加えて3回抽出を行った。全ての有機層を合わせ、飽和食塩水で3回洗浄を行った。有機層に無水硫酸ナトリウムを加えて乾燥させ、溶媒を留去して粗製の化合物2を得た。得られた化合物2は、特段の精製を行うことなく次の反応に用いた。
 EI-MS: 318[M
 (化合物3の合成)
Figure JPOXMLDOC01-appb-C000049
 50g(約0.14mol)の化合物2、4.43g(0.029mol)リン酸二水素ナトリウム、16gの30%過酸化水素水を、60mLの水及び350mLのアセトニトリルに溶解させ、氷冷した。ついで23gの78%亜塩素酸ナトリウムを200mLの水に希釈した溶液を反応液に滴下した後、反応液を室温で一晩攪拌した。HPLCを用いて反応が完結したことを確認した。反応液にpHが1になるまで10%塩酸を加え、析出してきた白色固体をろ別した。得られた固体を水で3回洗浄した。得られた固体を、ジクロロメタンに溶解させ、これに無水硫酸ナトリウムを加えて乾燥させた。溶液にヘプタンを加えてジクロロメタンを減圧留去し、析出した固体をろ別し、目的とする化合物3を30g得た。純度99%(HPLC)。
 (化合物4の合成)
Figure JPOXMLDOC01-appb-C000050
 50g(0.246mol)の4-ブロモ-2-メトキシフェノール、47.2g(0.369mol)のアクリル酸t-ブチル、50.9g(0.369mol)の炭酸カリウムを700mLのN-メチルピロリドンに溶解させ、系を窒素置換した。反応液に0.055g(0.246mmol)の酢酸パラジウムを加えて再度窒素置換を行い、系を130℃で6時間攪拌させた。HPLCで反応が完結したことを確認した。反応液を室温まで冷却し、これに300mLの酢酸エチルと300mLの5%塩酸を加えた。有機層と水層を分離し、水層に酢酸エチルを加えて抽出を行った。全ての有機層を合わせて飽和食塩水で3回洗浄し、無水硫酸ナトリウムで乾燥させた。溶媒を留去し、これに80gのシリカゲルを加えてスラリーとした。これを100gアルミナ/300gシリカゲルカラムに充填し、酢酸エチル/ヘプタン混合溶液で溶出させた。溶媒を留去し、得られた粗結晶をヘプタンで再結晶して、白色固体として43.2gの化合物4を得た。純度99%(HPLC)。 EI-MS: 250[M+]
 (化合物5の合成)
Figure JPOXMLDOC01-appb-C000051
 22.3g(0.06676mol)の化合物3、16.7g(0.06677mol)の化合物4、1.22g(10mmol)の4-ジメチルアミノピリジンを400mLのジクロロメタンを溶解させ、系を窒素置換したのち氷冷させた。ついで12.6g(0.1mol)のN,N’-ジイソプロピルカルボジイミドを100mLのジクロロメタンに溶解させた溶液を反応液に滴下させた後、室温で一晩攪拌を行った。反応液をろ過し、反応液を200mLの10%塩酸で洗浄し、ついで200mLの飽和食塩水で3回洗浄し、無水硫酸マグネシウムで乾燥させた。溶媒をある程度留去し、これに70gのシリカゲルを加えてスラリーとし、100gアルミナ/200gシリカゲルカラムに充填し、ジクロロメタンで溶出させた。溶媒を留去し、酢酸エチル/ヘプタンの混合溶媒で再結晶することにより、白色固体として目的とする化合物5を31.8g得た。純度99%(HPLC)。 EI-MS: 566[M+]
 (化合物6の合成)
Figure JPOXMLDOC01-appb-C000052
 31.8g(0.0562mol)の化合物5を200mLのジクロロメタンに溶解させ、系を窒素置換した後、氷冷した。系に32g(0.280mol)のトリフルオロ酢酸を滴下した後、室温で一晩攪拌させた。反応が完結したことをHPLCで確認した。反応液に300mLのヘプタンを加え、溶媒を留去することにより固体を析出させ、これをろ別した。得られた個体を水とヘプタンで洗浄し、目的とする化合物6を無色の結晶として26g得た。純度99%(HPLC)。
 (モノマー(I-1-1)の合成)
Figure JPOXMLDOC01-appb-C000053
 22.9g(45mmol)の化合物6、4.9g(0.04mol)の3-ヒドロキシプロピオニトリル、0.70g(5.6mmol)の4-ジメチルアミノピリジンを200mLのジクロロメタンに溶解させ、系を窒素置換したのち氷冷させた。ついで7.87g(64mmol)のN,N’-ジイソプロピルカルボジイミドを50mLのジクロロメタンに溶解させた溶液を反応液に滴下させた後、室温で一晩攪拌を行った。反応液をろ過し、反応液を100mLの10%塩酸で洗浄し、ついで100mLの飽和食塩水で3回洗浄し、無水硫酸マグネシウムで乾燥させた。30gアルミナ/300gシリカゲルカラムと酢酸エチル/ジクロロメタン混合溶媒を用いて精製を行った。溶媒を留去しえられた固体をメタノールを用いて再結晶し、16.4gの目的のモノマー(I-1-1)を白色個体として得た。純度99.5%(HPLC)。
 EI-MS: 563[M+]
 (ポリマー(PA-1)の合成)
 モノマー(I-1-1)10部をテトラヒドロフラン(THF)45部に溶解し、アゾビスイソブチロニトリル(AIBN)0.03部を加えた溶液を、窒素雰囲気下8時間加熱還流して反応させた。次に、反応後の溶液をメタノール600部に滴下攪拌し、析出物を回収してTHF50部に溶解した後、氷冷したヘキサン1200部に滴下攪拌し、析出した固体を回収した。得られた固体をTHF50部に溶解させ、氷冷したメタノール1200部に滴下攪拌し、析出した固体を回収し、THFに溶解させた後、真空乾燥することで、ポリマー(PA-1)を得た。得られたポリマー(PA-1)の重量平均分子量(Mw)は383,000、分子量分布(Mw/Mn)は2.75であった。
 なお、ポリマーの分子量の調整は、上記窒素雰囲気下の加熱還流時間を調節し、重量平均分子量(Mw)を測定することにより行った。
 (分子量の測定)
 Mw及びMnは以下測定条件のもと、GPC(ゲル浸透クロマトグラフィー、Gel Permeation Chromatography)により測定した。
 測定装置には、東ソー社製GPC装置HLC-8220GPCを用い、分析カラムにはTSKgel GMHXL×2本、TSKgel G2000XL×1本、TSKgel G1000XL×1本の計4本直列、検出器には示差屈折率(RI)検出器、較正曲線作成のための標準試料には、昭和電工製ポリスチレン標準試料STANDARD SM-105(分子量範囲1,300~3,800,000)を用いた。得られたポリマーをTHFに1μg/mLの濃度となるよう溶解し、移動相をTHF、送液速度を1mL/分、カラム温度を40℃、試料注入量を300μLとして測定した。
 (ガラス転移温度の測定)
 ガラス転移温度は、示差走査熱量計(DSC)により測定した。測定装置は、セイコーインスツル社製のDSC装置DSC6220を用いた。ポリマー試料約4mgをアルミニウム製パンに封入し、-20℃から180℃まで、10℃/分の割合で昇温したとき、ガラス転移に伴うベースラインシフトが観測された。転移開始点を接線の交点から読み取り、ガラス転移温度(Tg)とした。
 (液晶配向膜の形成)
 (光二量化型樹脂膜の作製)
 ポリマー(PA-1)5部と、N-メチルピロリドン47.5部と、2-ブトキシエタノール47.5部との混合物を室温で10分間攪拌して、均一に溶解させた。次に、該溶液を、スピンコーターを用いてガラス基板上に塗布し、100℃で3分間乾燥することで、上記ガラス基板上に膜を形成した。形成された膜を目視で観察したところ、平滑な膜が形成されていることが確認された。
 (光配向処理)
 次に、超高圧水銀ランプ、波長カットフィルター、バンドパスフィルター及び偏光フィルターを備えた偏光照射装置を用いて、紫外光(波長313nm)の直線偏光(照度:10mW/cm)を、形成された膜に対して、鉛直方向から10秒照射(照射光量100mJ/cm)することにより、光配向膜を得た。焼成処理および洗浄処理は不要であった。樹脂膜の乾燥厚さは、0.1μmであった。
 <光異性化型光配向膜>
 「光配向膜5」
 (合成例1)二色性化合物(a)の合成
 2,2’-ベンジジンジスルホン酸8.6g(25mmol)に2%塩酸230mlを加え、0~5℃に保ちながら亜硝酸ナトリウム3.5g(51mmol)の水溶液を少しずつ滴下し、2時間反応させてジアゾニウム塩を調製した。次にサリチル酸6.9g(50mmol)を300mlの5%炭酸ナトリウム水溶液に溶かし、これに前記ジアゾニウム塩混合物を徐々に滴下した。1時間反応後、20%食塩水を加えて沈殿物を得た。この沈殿物を、エタノールと水の混合溶媒で再結晶させて、4.8gの式(a)で表されるアゾ化合物を得た。
Figure JPOXMLDOC01-appb-C000055
 (実施例用組成物 光配向膜用組成物(1)の調製)
 式(a)で示される化合物2部をN-メチル-2-ピロリドン(NMP)98部に溶解させた(溶液A)。メチル化メラミン スミマールM-100C(以下M-100C)(長春人造樹脂製。ヘキサメトキシメチル化メラミン単量体として、分子量=390。平均重合度は1.3~1.7である。)2部に2-ブトキシエタノール(BC)98部を加えて均一溶液とした(溶液B)。溶液A100部、溶液B23部及びBC77部を混合し、固形分比1.0%の溶液を調製した。得られた溶液を0.45μmのメンブランフィルターでろ過し、光配向膜用組成物(1)を得た。
 (液晶配向膜の形成)
 (光異性化型樹脂膜の作製)
 光配向膜用組成物(1)をスピンコーターでガラス基板上に塗布し、100℃で1分間乾燥した。
 (光配向処理)
 得られた塗膜表面に、超高圧水銀ランプに波長カットフィルター、及び、偏光フィルターを介して、波長365nm付近の紫外光(照射強度:10mW/cm)の直線偏光でかつ平行光を、ガラス基板に対して垂直方向から照射エネルギー100mJ/cmで光照射を行い、光配向膜を得た。焼成処理および洗浄処理は不要であった。樹脂膜の乾燥厚さは、0.1μmであった。
 <ラビング型配向膜>
 (ラビング型配向膜)
 (ラビング型ポリイミド液晶配向膜の形成)
 (配向膜溶液の調製)
 4,4’-ジアミノジフェニルアミン5.98gに N-メチル-2-ピロリドン 59.72gを加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を撹拌しながら、ピロメリット酸二無水物 6.54g添加し、さらに N-メチル-2-ピロリドン 65.30g を加え、窒素雰囲気下、30℃で18時間撹拌して反応させた。さらに常温で、N-メチル-2-ピロリドンと2-ブトキシエタノールの質量比が1:1の混合溶媒71.06gを添加して希釈攪拌し、ポリアミック酸溶液を得た。
 (液晶配向膜の形成)
 (樹脂膜の作製)
 配向膜溶液をスピンコーターで第1の基板および第2の基板の上に塗布し、230℃で30分加熱して反応させポリイミドの絶縁膜を形成した。
 (配向処理)
 バフ布を巻いたローラーを基板搬送方向とは反対方向に回転させ、基板上に形成された配向膜表面を一方向に擦ることにより、配向処理を行った。ローラーの回転数は600rpm,基板の搬送速度は5mm/秒,バフ布の基板表面に対する押し込み深さは0.3mmであった。その後、ラビングで削れた配向膜の屑やバフ布の繊維片を除去するためポリイミド膜を純水で洗浄して乾燥させた。
 (表示品位の評価)
 配向膜を光配向膜にすることにより、ラビングムラによる液晶分子に対する配向性の低下を軽減でき、かつ優れた透過率特性の液晶表示素子を提供することができる。各種の光配向膜による液晶配向性の評価を行ったので、その評価方法を以下に説明する。
 第1の基板上には薄膜トランジスタと透明電極層が形成され、その上に配向膜が形成される。接触方式であるラビング法を用いて配向処理を行うと、ラビングによって配向膜表面にランダムな擦り傷が形成される。特に薄膜トランジスタや透明電極層パターンが形成された第1基板においては、薄膜トランジスタや透明電極層パターンによる段差と、ラビングローラーのバフ布の繊維の直径(数十μm)とに起因した、より深い擦り傷が、段差に沿って形成されやすい。この擦り傷が形成された箇所には、電界オフ時に液晶分子が一定方向に並ぶことができないために、黒表示時に液晶パネルに光ヌケが生じる。その結果、一定の値以上のコントラストが得られ難くなる。
 さらに、近年実用化された4Kと呼ばれる解像度モードでは、40インチパネルにおける計算例で、1ピクセル寸法が 0.23mmとなる。また、追って実用化される8Kと呼ばれる解像度モードでは、40インチパネルにおける計算例で、1ピクセル寸法が 0.11mmにも微細になる。すなわち、1ピクセル寸法が、ラビングローラーのバフ布の繊維の直径に近づくことから、ラビング法によって配向処理された時に形成される擦り傷により、ピクセル単位、または断続的なピクセル列単位で、電界オフ時に液晶分子が一定方向に並ぶことができない箇所が発生し、黒表示時の多量の光ヌケによる大幅なコントラストの低下や、多数の表示欠損を引き起こすおそれがある。
 そこで光配向法によって非接触で配向処理を行うことにより、配向膜表面に擦り傷が発生しないことから、光ヌケのない、高いコントラストと、くっきりとした黒表示を実現することができる。
 第1基板に形成された(FFSモードでは櫛形)透明電極の上に、配向膜溶液をスピンコート法により形成し、乾燥厚さ0.1μmの配向膜を形成した。第2基板にも同様にして配向膜を形成した。また、VAモードの液晶セルではガラス基板上に共通電極を設けており、当該共通電極上に光配向膜を形成した。
 (液晶セルの作製)
 上記液晶配向膜を備えたガラス基板を用いて、VAモードとFFSモードの液晶セルを、滴下法によりそれぞれ作製した。より具体的には、配向膜がそれぞれ形成された第1基板と第2基板を、それぞれの液晶配向膜が対向し、かつ直線偏光を照射した、またはラビングした方向がアンチパラレル方向(180°)となるように準備し、第1基板の配向膜を形成した面の周辺部に、スペーサー用樹脂ビーズ(直径4μm)を混合した紫外線硬化型シール剤を塗布したのち、当該第1基板の配向膜を形成した面上に、下記の液晶組成物(液晶組成物1~9)の適量を、ディスペンサーを用いて滴下した。次に、真空装置内で、これを第2基板の配向膜を形成した面と貼り合わせることで、液晶が2枚の基板のギャップ内に均一な厚みで配置されるようにした。その後、紫外線を照射してシール剤を硬化させることで、液晶セルを作製した。液晶セルには、透明点をちょうど超える温度に一旦加温し、室温まで冷却することで、液晶の配向状態を安定化させる処理を行った。このように作製した液晶セルを評価用素子とし、静的コントラストによる表示品位の評価を行った。
 (静的コントラストの評価方法)
 静的コントラスト(CRS)を次の方法で測定した。
白色光源、分光器、偏光子(入射側偏光板)、検光子(出射側偏光板)、検出器を備えた光学測定装置(RETS-100、大塚電子株式会社製)の、偏光子-検光子間に、測定対象である前記光学フィルムを配置した。ここで、偏光子と検光子との回転角が0度(偏光子と検光子の偏光方向が平行位置[パラレルニコル])である状態において、光学フィルムを回転させながら、検出器にて透過光の光量を検出し、検出した光量が最も大きくなる、光学フィルムの回転位置(偏光子の偏光方向と重合性液晶の分子長軸方向が平行)における、透過光の光量(オン時光量)をYonとした。また、偏光子と光学フィルムの位置を固定したまま、偏光子に対する検光子の回転角を90度(偏光子と検光子の偏光方向が直交位置[クロスニコル])としたときにおける、透過光の光量(オフ時光量)をYoffとした。コントラストCRSは、次式(式1)により求めた。
   CRS =Yon/Yoff ・・・・・・・・・ (式1)
(式1)の静的コントラストCRSの数値が大きいほど、オフ時光量Yoffが小さいこと、すなわち、光ヌケが少ないため、優れた黒表示であることを示す。
 液晶組成物の注入は、滴下法にて行い、焼き付き、滴下痕、プロセス適合性及び低温での溶解性の評価を行った。
 尚、含有量の左側の記号は、上記化合物の略号の記載である。
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-T000057
 液晶組成物1は、TV用液晶組成物として実用的な75.6℃のTNIを有し、大きいΔεの絶対値を有し、低いη及び最適なΔnを有していることが解る。液晶組成物1を用いて、FFSモードの液晶表示素子を作製し前述の方法により、焼き付き、滴下痕、プロセス適合性及び低温での溶解性を評価したところ、極めて優れた評価結果を示した。
 (実施例2(液晶組成物2))
 液晶組成物1と同等のTNI、同等のΔnの値及び同等のΔεの値を有するように設計した次に示す組成を有する液晶組成物(液晶組成物2)を調製し、その物性値を測定した。この結果を次の表に示す。
 液晶組成物2を用いて、実施例1と同様にFFSモードの液晶表示素子を作製し、焼き付き、滴下痕、プロセス適合性及び低温での溶解性の評価を行った結果を同じ表に示す。
Figure JPOXMLDOC01-appb-T000058
 液晶組成物2は、TV用液晶組成物として実用的な液晶相温度範囲を有し、大きい誘電率異方性の絶対値を有し、低い粘性及び最適なΔnを有していることが解る。液晶組成物2を用いて、実施例1と同様のFFSモードの液晶表示素子を作製し前述の方法により、焼き付き、滴下痕、プロセス適合性及び低温での溶解性を評価したところ、優れた評価結果を示した。
 (実施例3(液晶組成物3))
 液晶組成物1,2と同等のTNI、同等のΔnの値及び同等のΔεの値を有するように設計した次に示す組成を有する液晶組成物(液晶組成物3)を調製し、その物性値を測定した。この結果を次の表に示す。
 液晶組成物3を用いて、実施例1と同様にFFSモードの液晶表示素子を作製し、焼き付き、滴下痕、プロセス適合性及び低温での溶解性の評価を行った結果を同じ表に示す。
Figure JPOXMLDOC01-appb-T000059
 液晶組成物3は、TV用液晶組成物として実用的なTNIを有し、大きいΔεの絶対値を有し、低いη及び最適なΔnを有していることが解る。液晶組成物3を用いて、実施例1と同様のFFSモードの液晶表示素子を作製し前述の方法により、焼き付き、滴下痕、プロセス適合性及び低温での溶解性を評価したところ、優れた評価結果を示した。
 (実施例15~17)
 液晶組成物1~3を用いて、TV用として一般的であるセル厚3.5μmの垂直配向液晶表示素子(VAモードの液晶表示素子)を作製した。
 実施例1~3においてそれぞれ作製したFFSモードの液晶表示素子と、実施例1~3においてそれぞれ作成したVAモードの液晶表示素子について、透過率、コントラスト比、応答速度の比較を行った。その結果を次の表4に示す。なお、実施例1~3及び実施例15~17の液晶表示素子における透過率は、それぞれのモードにおける液晶組成物注入前の素子の透過率を100%とした際の値である。
Figure JPOXMLDOC01-appb-T000060
 液晶組成物1~3を用いて作製されたFFSモードの表示素子(実施例1~3 いずれも同一の光配向膜1を使用した。)は、それぞれ同じ液晶組成物を用いて作成されたVAモードの液晶表示素子(実施例15~17 いずれも同一の光配向膜1を使用した。)に比べ、最高透過率、コントラスト比及び応答速度いずれにおいても優れた特性を示した。一方、VAタイプは視野角依存が低減していることが確認された。
 液晶分子が基板に対して平行に配向し、且つ、フリンジの電界が生じるFFSモードの液晶表示素子においては、液晶分子が基板に対して垂直に配向し、且つ、垂直に電界が生じるVAモードの液晶表示素子とは異なった液晶の基本特性が求められる。液晶組成物1~3が一般式(I)を含有することにより、液晶表示素子としての基本的特性を損なうこと無く、FFSモードの大きな特徴である透過率の向上を達成したものである。一方、FFSモードのこれらの差異により、焼き付きや滴下痕といった効果については、従来の知見からは予測のつけにくいものとなっている。本発明の液晶表示素子においては、これらの点についても良好な特性を示している。
 また、以下の表5に光配向膜の種類を変えた実施例(実施例1B、実施例21~29)および比較例(比較例1B、比較例2B)について、透過率、コントラスト比、応答速度の比較を行った。その結果を次の表5を示す。また、比較例1Bおよび比較例2Bは、実施例1Bと実施例21との配向膜をラビング配向膜に代えた以外は同様の方法で液晶セルを作成して評価した。
Figure JPOXMLDOC01-appb-T000061
Figure JPOXMLDOC01-appb-T000062
 光配向膜を形成して作製された液晶表示素子(実施例)は、それぞれ同じ液晶組成物を用いて、ラビング配向膜を形成して作製されたFFSモードおよびVAモードの液晶表示素子(比較例)と比べて、コントラストにおいて優れた特性を示した。
 (実施例4(液晶組成物4))
 組成物1~3と同等のTNI、同等のΔnの値及び同等のΔεの値を有するように設計した次に示す組成を有する液晶組成物(液晶組成物4)を調製し、その物性値を測定した。この結果を次の表に示す。
Figure JPOXMLDOC01-appb-T000063
 液晶組成物4は、TV用液晶組成物として実用的なTNIを有し、大きいΔεの絶対値を有し、低いη及び最適なΔnを有していることが解る。液晶組成物4を用いて、FFSモードの液晶表示素子を作製したところ、実施例1~3と同等の優れた表示特性を示した。
 (実施例5(液晶組成物5))
 液晶組成物1~4と同等のTNI、同等のΔnの値及び同等のΔεの値を有するように設計した次に示す組成を有する液晶組成物(液晶組成物5)を調製し、その物性値を測定した。この結果を次の表に示す。
Figure JPOXMLDOC01-appb-T000064
 液晶組成物5は、TV用液晶組成物として実用的なTNIを有し、大きいΔεの絶対値を有し、低いη及び最適なΔnを有していることが解る。液晶組成物5を用いて、FFSモードの液晶表示素子を作製したところ、実施例1~3と同等の優れた表示特性を示した。
 (実施例6(液晶組成物6))
 液晶組成物1~5と同等のTNI、同等のΔnの値及び同等のΔεの値を有するように設計した次に示す組成を有する液晶組成物(液晶組成物6)を調製し、その物性値を測定した。この結果を次の表に示す。
Figure JPOXMLDOC01-appb-T000065
 液晶組成物6は、TV用液晶組成物として実用的なTNIを有し、大きいΔεの絶対値を有し、低いη及び最適なΔnを有していることが解る。液晶組成物6を用いて、FFSモードの液晶表示素子を作製したところ、実施例1~3と同等の優れた表示特性を示した。
 (実施例7(液晶組成物7))
 液晶組成物1~6と同等のΔnの値を有し、より高いTNI及びΔεの値を有するように設計した次に示す組成を有する液晶組成物(液晶組成物7)を調製し、その物性値を測定した。この結果を次の表に示す。
Figure JPOXMLDOC01-appb-T000066
 液晶組成物7は、TV用液晶組成物として実用的なTNIを有し、大きいΔεの絶対値を有し、低いη及び最適なΔnを有していることが解る。液晶組成物7を用いて、実施例1と同様のFFSモードの液晶表示素子を作製し前述の方法により、焼き付き、滴下痕、プロセス適合性及び低温での溶解性を評価したところ、優れた評価結果を示した。
 (実施例8(液晶組成物8))
 液晶組成物7と同等のTNI、同等のΔnの値及び同等のΔεの値を有するように設計した次に示す組成を有する液晶組成物(液晶組成物8)を調製し、その物性値を測定した。この結果を次の表に示す。
Figure JPOXMLDOC01-appb-T000067
 液晶組成物8は、TV用液晶組成物として実用的なTNIを有し、大きいΔεの絶対値を有し、低いη及び最適なΔnを有していることが解る。液晶組成物8を用いて、実施例1と同様のFFSモードの液晶表示素子を作製し前述の方法により、焼き付き、滴下痕、プロセス適合性及び低温での溶解性を評価したところ、優れた評価結果を示した。
 (実施例9(液晶組成物9))
 液晶組成物7,8と同等のTNI、同等のΔnの値及び同等のΔεの値を有するように設計した次に示す組成を有する液晶組成物(液晶組成物9)を調製し、その物性値を測定した。この結果を次の表に示す。
Figure JPOXMLDOC01-appb-T000068
 液晶組成物9は、TV用液晶組成物として実用的なTNIを有し、大きいΔεの絶対値を有し、低いη及び最適なΔnを有していることが解る。液晶組成物9を用いて、実施例1と同様のFFSモードの液晶表示素子を作製し前述の方法により、焼き付き、滴下痕、プロセス適合性及び低温での溶解性を評価したところ、優れた評価結果を示した。
 (実施例18~20)
 液晶組成物7~9を用いて、実施例15~17と同様のVAモードの液晶表示素子を作製した(光配向膜1を使用)。
 実施例7~9においてそれぞれ作製したFFSモードの液晶表示素子と、実施例18~20においてそれぞれ作成したVAモードの液晶表示素子について、透過率、コントラスト比、応答速度の比較を行った。その結果を次に示す。
Figure JPOXMLDOC01-appb-T000069
 液晶組成物7~9を用いて作製されたFFSモードの表示素子(実施例7~9)は、それぞれ同じ液晶組成物を用いて作成されたVAモードの液晶表示素子(比較例4~6)に比べ、最高透過率、コントラスト比及び応答速度いずれにおいても優れた特性を示した。
 (実施例10(液晶組成物10))
 液晶組成物7~9と同等のTNI、同等のΔnの値及び同等のΔεの値を有するように設計した次に示す組成を有する液晶組成物(液晶組成物10)を調製し、その物性値を測定した。この結果を次の表に示す。
Figure JPOXMLDOC01-appb-T000070
 液晶組成物10は、TV用液晶組成物として実用的なTNIを有し、大きいΔεの絶対値を有し、低いη及び最適なΔnを有していることが解る。液晶組成物10を用いて、FFSモードの液晶表示素子を作製し前述の方法により、焼き付き、滴下痕、プロセス適合性及び低温での溶解性を評価したところ、優れた評価結果を示した。
 (実施例11(液晶組成物11))
 液晶組成物7~10と同等のTNI、同等のΔnの値及び同等のΔεの値を有するように設計した次に示す組成を有する液晶組成物を調製し、その物性値を測定した。この結果を次の表に示す。
Figure JPOXMLDOC01-appb-T000071
 液晶組成物11は、TV用液晶組成物として実用的なTNIを有し、大きいΔεの絶対値を有し、低いη及び最適なΔnを有していることが解る。液晶組成物11を用いて、FFSモードの液晶表示素子を作製し前述の方法により、焼き付き、滴下痕、プロセス適合性及び低温での溶解性を評価したところ、優れた評価結果を示した。
 (実施例12(液晶組成物12))
 液晶組成物7~11と同等のTNI、同等のΔnの値及び同等のΔεの値を有するように設計した次に示す組成を有する液晶組成物(液晶組成物12)を調製し、その物性値を測定した。この結果を次の表に示す。
Figure JPOXMLDOC01-appb-T000072
 液晶組成物12は、TV用液晶組成物として実用的なTNIを有し、大きいΔεの絶対値を有し、低いη及び最適なΔnを有していることが解る。液晶組成物12を用いて、FFSモードの液晶表示素子を作製し前述の方法により、焼き付き、滴下痕、プロセス適合性及び低温での溶解性を評価したところ、優れた評価結果を示した。
 (実施例13(液晶組成物13))
 液晶組成物7~12と同等のTNI、同等のΔnの値及び同等のΔεの値を有するように設計した次に示す組成を有する液晶組成物(液晶組成物13)を調製し、その物性値を測定した。この結果を次の表に示す。
Figure JPOXMLDOC01-appb-T000073
 液晶組成物13は、TV用液晶組成物として実用的なTNIを有し、大きいΔεの絶対値を有し、低いη及び最適なΔnを有していることが解る。液晶組成物13を用いて、実施例1と同様のFFSモードの液晶表示素子を作製し前述の方法により、焼き付き、滴下痕、プロセス適合性及び低温での溶解性を評価したところ、優れた評価結果を示した。
 (実施例14(液晶組成物14))
 液晶組成物7~13と同等のTNI、同等のΔnの値及び同等のΔεの値を有するように設計した次に示す組成を有する液晶組成物(液晶組成物14)を調製し、その物性値を測定した。この結果を次の表に示す。
Figure JPOXMLDOC01-appb-T000074
 液晶組成物14は、TV用液晶組成物として実用的なTNIを有し、大きいΔεの絶対値を有し、低いη及び最適なΔnを有していることが解る。液晶組成物14を用いて、実施例1と同様のFFSモードの液晶表示素子を作製し前述の方法により、焼き付き、滴下痕、プロセス適合性及び低温での溶解性を評価したところ、優れた評価結果を示した。
1,8 偏光板
2 第一の基板
3 電極層
4 配向膜
5 液晶層
6 カラーフィルタ
7 第二の基板
11 ゲート電極
12 ゲート絶縁膜
13 半導体層
14 絶縁層
15 オーミック接触層
16 ドレイン電極
17 ソース電極
18 絶縁保護層
21 画素電極
22 共通電極
23 ストレイジキャパシタ
25 データバスライン
27 ソースバスライン
29 共通ライン

Claims (6)

  1.  対向に配置された第一の基板および第二の基板と、
     前記第一の基板と前記第二の基板との間に充填された液晶組成物を含有する液晶層と、
     前記第一の基板上に、透明導電性材料を含む共通電極、マトリクス状に配置される複数個のゲートバスライン及びデータバスライン、前記ゲートバスラインとデータバスラインとの交差部に設けられる薄膜トランジスタおよび透明導電性材料を含み、かつ前記薄膜トランジスタにより駆動され前記共通電極との間で電界を形成する画素電極と、を画素毎に有する電極層と、
     前記液晶層と前記第一の基板および前記第二の基板との間にそれぞれ形成された光配向膜層と、を有し、
     前記液晶組成物が、負の誘電率異方性を有し、ネマチック相-等方性液体の転移温度が60℃以上であり、誘電率異方性の絶対値が2以上であり、
     下記一般式(I)
    Figure JPOXMLDOC01-appb-C000001
    (式中、R及びRはそれぞれ独立して、炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表し、Aは1,4-フェニレン基又はトランス-1,4-シクロヘキシレン基を表し、kは1又は2を表すが、kが2の場合二つのAは同一であっても異なっていてもよい。)で表される化合物群から選ばれる少なくとも1種類の化合物を含有する液晶表示素子。
  2. 前記液晶組成物は、下記一般式(II)
    Figure JPOXMLDOC01-appb-C000002
    (式中、Rは炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表し、Rは炭素原子数1~8のアルキル基、炭素原子数4~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数3~8のアルケニルオキシ基を表し、Bは1,4-フェニレン基又はトランス-1,4-シクロヘキシレン基を表し、mは0、1又は2を表すが、mが2の場合二つのBは同一であっても異なっていてもよい。)で表される化合物および
     下記一般式(IV)
    Figure JPOXMLDOC01-appb-C000003
    (式中R及びRはそれぞれ独立して、炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表し、該アルキル基、アルケニル基、アルコキシ基又はアルケニルオキシ基中の1つ以上の水素原子はフッ素原子で置換されていてもよく、該アルキル基、アルケニル基、アルコキシ基又はアルケニルオキシ基中のメチレン基は酸素原子が連続して結合しない限り酸素原子で置換されていてもよく、カルボニル基が連続して結合しない限りカルボニル基で置換されていてもよく、
    及びAはそれぞれ独立して、1,4-シクロヘキシレン基、1,4-フェニレン基又はテトラヒドロピラン-2,5-ジイル基を表すが、A又は/及びAが1,4-フェニレン基を表す場合、該1,4-フェニレン基中の1つ以上の水素原子はフッ素原子に置換されていてもよく、
    及びZはそれぞれ独立して単結合、-OCH-、-OCF-、-CHO-、又はCFO-を表し、
    及びnはそれぞれ独立して、0、1、2又は3を表すが、n+nは1~3であり、A、A、Z及び/又はZが複数存在する場合にはそれらは同一であっても異なっていてもよいが、nが1又は2でありnが0でありAの少なくとも1つが1,4-シクロへキシレン基でありすべてのZが単結合である化合物を除く。)で表される化合物からなる群から選択される少なくとも1種をさらに含有する請求項1に記載の液晶表示素子。
  3.  前記一般式(I)で表される化合物として、下記一般式(III)
    Figure JPOXMLDOC01-appb-C000004
    (式中、Rは水素原子又はメチル基を表し、Rは炭素原子数1~5のアルキル基、炭素原子数2~5のアルケニル基、炭素原子数1~4のアルコキシ基を表す。)で表される化合物群から選ばれる少なくとも1種類の化合物を含有する請求項1記載の液晶表示素子。
  4.  下記一般式(IV)
    Figure JPOXMLDOC01-appb-C000005
    (式中R及びRはそれぞれ独立して、炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表し、該アルキル基、アルケニル基、アルコキシ基又はアルケニルオキシ基中の1つ以上の水素原子はフッ素原子で置換されていてもよく、該アルキル基、アルケニル基、アルコキシ基又はアルケニルオキシ基中のメチレン基は酸素原子が連続して結合しない限り酸素原子で置換されていてもよく、カルボニル基が連続して結合しない限りカルボニル基で置換されていてもよく、
    及びAはそれぞれ独立して、1,4-シクロヘキシレン基、1,4-フェニレン基又はテトラヒドロピラン-2,5-ジイル基を表すが、A又は/及びAが1,4-フェニレン基を表す場合、該1,4-フェニレン基中の1つ以上の水素原子はフッ素原子に置換されていてもよく、
    及びZはそれぞれ独立して単結合、-OCH-、-OCF-、-CHO-、又はCFO-を表し、
    及びnはそれぞれ独立して、0、1、2又は3を表すが、n+nは1~3であり、A、A、Z及び/又はZが複数存在する場合にはそれらは同一であっても異なっていてもよいが、nが1又は2でありnが0でありAの少なくとも1つが1,4-シクロへキシレン基でありすべてのZが単結合である化合物を除く。)で表される化合物を1種以上含有する請求項1記載の液晶表示素子。
  5.  一般式(IV)で表される化合物として次の一般式(IVa1)及び一般式(IVa2)
    Figure JPOXMLDOC01-appb-C000006
    (式中、R7a1及びR7a2、R8a1及びR8a2はそれぞれ独立して、炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表し、該アルキル基、アルケニル基、アルコキシ基又はアルケニルオキシ基中の1つ以上の水素原子はフッ素原子で置換されていてもよく、該アルキル基、アルケニル基、アルコキシ基又はアルケニルオキシ基中のメチレン基は酸素原子が連続して結合しない限り酸素原子で置換されていてもよく、カルボニル基が連続して結合しない限りカルボニル基で置換されていてもよく、
    a2は0又は1を表し、A1a2は1,4-シクロヘキシレン基、1,4-フェニレン基又はテトラヒドロピラン-2,5-ジイル基を表し、一般式(IVa1)及び一般式(IVa2)中の1,4-フェニレン基中の1つ以上の水素原子はフッ素原子に置換されていてもよい。)
    で表される化合物群の中から選ばれる少なくとも1種類の化合物を含有する請求項4に記載の液晶組成物。
  6.  該光配向膜は、光応答性分解型高分子、当該光応答性二量化型高分子および光応答性異性化型高分子からなる群から選択される少なくとも一つである請求項1記載の液晶表示素子。
PCT/JP2014/078739 2013-10-30 2014-10-29 液晶表示素子 WO2015064630A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480060122.8A CN105683831B (zh) 2013-10-30 2014-10-29 液晶显示元件
JP2015545262A JP6056983B2 (ja) 2013-10-30 2014-10-29 液晶表示素子
US15/033,529 US10437107B2 (en) 2013-10-30 2014-10-29 Liquid-crystal display element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013225452 2013-10-30
JP2013-225452 2013-10-30

Publications (1)

Publication Number Publication Date
WO2015064630A1 true WO2015064630A1 (ja) 2015-05-07

Family

ID=53004230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078739 WO2015064630A1 (ja) 2013-10-30 2014-10-29 液晶表示素子

Country Status (5)

Country Link
US (1) US10437107B2 (ja)
JP (2) JP6056983B2 (ja)
CN (1) CN105683831B (ja)
TW (2) TWI553104B (ja)
WO (1) WO2015064630A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016002252A1 (ja) * 2014-06-30 2016-01-07 Jnc株式会社 液晶表示素子
CN107615144A (zh) * 2015-05-29 2018-01-19 夏普株式会社 液晶显示装置以及取向膜
CN108368428A (zh) * 2015-12-17 2018-08-03 默克专利股份有限公司 液晶显示器件的制造方法及液晶混合物
WO2019026705A1 (ja) * 2017-08-01 2019-02-07 シャープ株式会社 液晶表示装置の製造方法
JP2019211542A (ja) * 2018-05-31 2019-12-12 Jnc株式会社 液晶表示素子
JP2020042068A (ja) * 2018-09-06 2020-03-19 Dic株式会社 液晶表示素子
JP2020534579A (ja) * 2017-09-29 2020-11-26 エルジー・ケム・リミテッド 光学デバイスの製造方法
CN112074771A (zh) * 2018-05-14 2020-12-11 株式会社巴川制纸所 头戴式显示器

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105683831B (zh) 2013-10-30 2018-12-28 Dic株式会社 液晶显示元件
WO2017217465A1 (ja) * 2016-06-14 2017-12-21 日産化学工業株式会社 Boa基板又はbcs付き基板塗布用液晶配向剤及び液晶表示素子
CN109964170A (zh) * 2016-12-05 2019-07-02 Dic株式会社 液晶显示元件
CN108239541B (zh) * 2016-12-23 2022-02-11 江苏和成显示科技有限公司 高透过率的负介电各向异性的液晶组合物及其显示器件
CN108239542A (zh) * 2016-12-23 2018-07-03 江苏和成显示科技有限公司 具有负介电各向异性的液晶组合物及其显示器件
TWI665495B (zh) 2018-04-02 2019-07-11 友達光電股份有限公司 顯示裝置
KR102364813B1 (ko) * 2020-03-09 2022-02-17 성균관대학교산학협력단 투명 유연성 박막 및 이의 제조 방법
CN113773855A (zh) * 2021-09-01 2021-12-10 重庆汉朗精工科技有限公司 一种负性液晶组合物及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010503733A (ja) * 2006-07-19 2010-02-04 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 液晶媒体
JP2010535910A (ja) * 2007-08-15 2010-11-25 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 液晶媒体
WO2012043386A1 (ja) * 2010-09-28 2012-04-05 Dic株式会社 新規液晶表示装置及び有用な液晶組成物
WO2013024749A1 (ja) * 2011-08-12 2013-02-21 シャープ株式会社 液晶表示装置
WO2014069550A1 (ja) * 2012-10-31 2014-05-08 Jnc株式会社 液晶表示素子およびその製造方法

Family Cites Families (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5340524B2 (ja) 1974-12-16 1978-10-27
JPS5288224A (en) 1976-01-19 1977-07-23 Shin Kobe Electric Machinery Molten lead feeding device
DE19733199A1 (de) 1997-08-01 1999-02-04 Merck Patent Gmbh Nematische Flüssigkristallzusammensetzung
TW387997B (en) 1997-12-29 2000-04-21 Hyundai Electronics Ind Liquid crystal display and fabrication method
JP2000019321A (ja) 1998-06-29 2000-01-21 Toray Ind Inc カラーフィルター用顔料、カラーペースト及びカラーフィルター
JP2000192040A (ja) 1998-12-25 2000-07-11 Toshiba Corp 液晶表示装置
KR100671509B1 (ko) 2000-06-01 2007-01-19 비오이 하이디스 테크놀로지 주식회사 프린지 필드 구동 액정표시장치
JP2002309255A (ja) 2001-02-09 2002-10-23 Chisso Corp 液晶uvシャッター用液晶組成物
KR100494702B1 (ko) 2001-12-26 2005-06-13 비오이 하이디스 테크놀로지 주식회사 프린지 필드 스위칭 액정표시장치
JP4437651B2 (ja) 2003-08-28 2010-03-24 新日鐵化学株式会社 感光性樹脂組成物及びそれを用いたカラーフィルター
JP4639621B2 (ja) 2004-03-30 2011-02-23 Dic株式会社 ネマチック液晶組成物及びこれを用いた液晶表示素子
KR101030538B1 (ko) 2004-06-17 2011-04-22 엘지디스플레이 주식회사 Ips 모드 액정표시소자
JP5126729B2 (ja) 2004-11-10 2013-01-23 キヤノン株式会社 画像表示装置
EP1861477B1 (de) 2005-03-24 2009-10-14 Merck Patent GmbH Flüssigkristallines medium
JP4679959B2 (ja) 2005-05-11 2011-05-11 富士フイルム株式会社 ネガ型着色剤含有硬化性組成物、並びに、カラーフィルタおよびその製造方法
KR101247698B1 (ko) * 2005-08-05 2013-03-26 삼성디스플레이 주식회사 액정 표시 장치
JP5078246B2 (ja) 2005-09-29 2012-11-21 株式会社半導体エネルギー研究所 半導体装置、及び半導体装置の作製方法
CN102226860B (zh) * 2005-12-02 2013-04-10 夏普株式会社 液晶显示装置的制造方法和用于配向处理的曝光装置
EP2050807B1 (en) 2006-08-07 2013-07-17 JNC Corporation Liquid-crystal composition and liquid-crystal display element
JP2008139858A (ja) 2006-11-08 2008-06-19 Fujifilm Corp カラーフィルタ、液晶表示装置およびccdデバイス
KR20080088024A (ko) 2007-03-28 2008-10-02 엘지디스플레이 주식회사 수평 전계형 액정표시패널 및 그 제조 방법
KR20140042931A (ko) 2007-06-21 2014-04-07 미쓰비시 가가꾸 가부시키가이샤 안료 분산액, 컬러 필터용 착색 조성물, 컬러 필터, 액정 표시 장치 및 유기 el 디스플레이
JP2009058546A (ja) 2007-08-29 2009-03-19 Seiren Co Ltd カラーフィルター及び液晶表示装置の製造方法
JP2009109542A (ja) 2007-10-26 2009-05-21 Toppan Printing Co Ltd カラーフィルタおよびこれを備えた横電界方式の液晶表示装置
JP2009163014A (ja) 2008-01-07 2009-07-23 Toppan Printing Co Ltd 液晶表示装置及び液晶表示装置用カラーフィルタ
JP5446423B2 (ja) 2009-04-23 2014-03-19 Jsr株式会社 着色組成物、カラーフィルタおよびカラー液晶表示素子
JP2010140919A (ja) 2008-12-09 2010-06-24 Hitachi Ltd 酸化物半導体装置及びその製造方法並びにアクティブマトリクス基板
DE102008064171A1 (de) 2008-12-22 2010-07-01 Merck Patent Gmbh Flüssigkristallines Medium
JP5412867B2 (ja) 2009-02-19 2014-02-12 凸版印刷株式会社 赤色カラーフィルタ
US8389073B2 (en) 2009-02-19 2013-03-05 Jnc Corporation Four-ring liquid crystal compound having tetrahydropyran and 2,2′,3,3′-tetrafluorobiphenyl, liquid crystal composition and liquid crystal display device
TWI544062B (zh) * 2009-02-20 2016-08-01 Dainippon Ink & Chemicals 聚合性液晶組成物
JP5446415B2 (ja) 2009-04-16 2014-03-19 凸版印刷株式会社 液晶表示装置
US9507198B2 (en) 2009-11-19 2016-11-29 Apple Inc. Systems and methods for electronically controlling the viewing angle of a display
TWI422559B (zh) 2009-12-01 2014-01-11 Toyo Ink Mfg Co 彩色濾光片用藍色著色組成物、彩色濾光片及彩色顯示器
JP5403553B2 (ja) * 2010-01-05 2014-01-29 株式会社ジャパンディスプレイ 液晶表示装置及びその駆動方法
JP5493877B2 (ja) 2010-01-06 2014-05-14 凸版印刷株式会社 染料を含有する着色組成物、カラーフィルタ及びその製造方法、それを具備する液晶表示装置並びに有機el表示装置
TWI482839B (zh) 2010-01-26 2015-05-01 Jnc Corp 液晶組成物及液晶顯示元件
JP5788418B2 (ja) 2010-03-04 2015-09-30 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung 液晶媒体
JP5632625B2 (ja) * 2010-03-04 2014-11-26 富士フイルム株式会社 Va型液晶表示装置
JP2011186043A (ja) 2010-03-05 2011-09-22 Dic Corp カラーフィルタ用青色顔料及びカラーフィルタ
JP5708972B2 (ja) * 2010-03-31 2015-04-30 Dic株式会社 重合性液晶組成物、及び、それを用いたコレステリック反射フィルム、反射型偏光板
WO2012033014A1 (ja) 2010-09-08 2012-03-15 シャープ株式会社 液晶表示装置
TWI515289B (zh) 2010-10-20 2016-01-01 捷恩智股份有限公司 液晶組成物及液晶顯示元件
KR101844597B1 (ko) 2010-11-05 2018-04-03 엘지디스플레이 주식회사 박막 트랜지스터 액정표시장치 및 그 제조방법
WO2012117875A1 (ja) 2011-02-28 2012-09-07 シャープ株式会社 液晶パネル、及び、液晶表示装置
JP2014516366A (ja) 2011-03-29 2014-07-10 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 液晶媒体
WO2012144321A1 (ja) 2011-04-18 2012-10-26 Jnc株式会社 液晶組成物および液晶表示素子
EP2514800B2 (de) 2011-04-21 2018-03-07 Merck Patent GmbH Verbindungen und flüssigkristallines Medium
WO2013024750A1 (ja) * 2011-08-12 2013-02-21 シャープ株式会社 液晶表示装置
US9074132B2 (en) 2011-11-28 2015-07-07 Jnc Corporation Liquid crystal composition and liquid crystal display device
CN103348283B (zh) 2011-12-19 2015-02-18 Dic株式会社 液晶显示装置
EP2607451B8 (de) 2011-12-20 2019-03-27 Merck Patent GmbH Flüssigkristallines Medium
JP5983393B2 (ja) 2012-01-27 2016-08-31 Jnc株式会社 液晶組成物および液晶表示素子
CN103403613B (zh) 2012-02-01 2014-07-30 Dic株式会社 液晶显示装置
TWI452122B (zh) 2012-02-24 2014-09-11 Dainippon Ink & Chemicals 液晶組成物
TWI554599B (zh) 2012-03-08 2016-10-21 Dainippon Ink & Chemicals Liquid crystal display device
US9296949B2 (en) 2012-05-23 2016-03-29 Dic Corporation Nematic liquid crystal composition and liquid crystal display element using the same
US8961823B2 (en) 2012-07-05 2015-02-24 Jnc Corporation Polymerizable compound, liquid crystal composition and liquid crystal display device
TWI447210B (zh) 2012-07-25 2014-08-01 Dainippon Ink & Chemicals Liquid crystal display device
KR20140046818A (ko) 2012-10-11 2014-04-21 삼성디스플레이 주식회사 표시 패널 및 이를 포함하는 표시 장치
WO2014188612A1 (ja) * 2013-05-22 2014-11-27 Dic株式会社 液晶表示素子
WO2014188613A1 (ja) * 2013-05-22 2014-11-27 Dic株式会社 液晶表示素子
CN105683831B (zh) 2013-10-30 2018-12-28 Dic株式会社 液晶显示元件
CN105683830B (zh) * 2013-10-30 2018-12-28 Dic株式会社 液晶显示元件
KR101717466B1 (ko) 2013-11-12 2017-03-17 디아이씨 가부시끼가이샤 액정 표시 소자

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010503733A (ja) * 2006-07-19 2010-02-04 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 液晶媒体
JP2010535910A (ja) * 2007-08-15 2010-11-25 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 液晶媒体
WO2012043386A1 (ja) * 2010-09-28 2012-04-05 Dic株式会社 新規液晶表示装置及び有用な液晶組成物
WO2013024749A1 (ja) * 2011-08-12 2013-02-21 シャープ株式会社 液晶表示装置
WO2014069550A1 (ja) * 2012-10-31 2014-05-08 Jnc株式会社 液晶表示素子およびその製造方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016002252A1 (ja) * 2014-06-30 2017-05-18 Jnc株式会社 液晶表示素子
US10175538B2 (en) 2014-06-30 2019-01-08 Jnc Corporation Liquid crystal display device
WO2016002252A1 (ja) * 2014-06-30 2016-01-07 Jnc株式会社 液晶表示素子
CN107615144B (zh) * 2015-05-29 2020-11-24 夏普株式会社 液晶显示装置以及取向膜
CN107615144A (zh) * 2015-05-29 2018-01-19 夏普株式会社 液晶显示装置以及取向膜
CN108368428A (zh) * 2015-12-17 2018-08-03 默克专利股份有限公司 液晶显示器件的制造方法及液晶混合物
WO2019026705A1 (ja) * 2017-08-01 2019-02-07 シャープ株式会社 液晶表示装置の製造方法
JP2020534579A (ja) * 2017-09-29 2020-11-26 エルジー・ケム・リミテッド 光学デバイスの製造方法
JP6996051B2 (ja) 2017-09-29 2022-01-17 エルジー・ケム・リミテッド 光学デバイスの製造方法
CN112074771A (zh) * 2018-05-14 2020-12-11 株式会社巴川制纸所 头戴式显示器
CN112074771B (zh) * 2018-05-14 2022-06-17 株式会社巴川制纸所 头戴式显示器
JP2019211542A (ja) * 2018-05-31 2019-12-12 Jnc株式会社 液晶表示素子
JP7124462B2 (ja) 2018-05-31 2022-08-24 Jnc株式会社 液晶表示素子
JP2020042068A (ja) * 2018-09-06 2020-03-19 Dic株式会社 液晶表示素子
JP7271880B2 (ja) 2018-09-06 2023-05-12 Dic株式会社 液晶表示素子

Also Published As

Publication number Publication date
TW201527497A (zh) 2015-07-16
JP2016139139A (ja) 2016-08-04
CN105683831A (zh) 2016-06-15
CN105683831B (zh) 2018-12-28
TWI553104B (zh) 2016-10-11
US10437107B2 (en) 2019-10-08
US20160349574A1 (en) 2016-12-01
JPWO2015064630A1 (ja) 2017-03-09
JP6056983B2 (ja) 2017-01-11
TW201617439A (zh) 2016-05-16

Similar Documents

Publication Publication Date Title
JP6056983B2 (ja) 液晶表示素子
JP5930133B2 (ja) 液晶表示素子
JP6143146B2 (ja) 液晶表示素子
WO2014188612A1 (ja) 液晶表示素子
JP6070897B2 (ja) 液晶表示素子
US10035955B2 (en) Liquid-crystal display element
US9771517B2 (en) Liquid-crystal optical modulation element
WO2014188613A1 (ja) 液晶表示素子
JP5943228B2 (ja) 液晶表示素子
JP5561448B1 (ja) 液晶表示素子
WO2017033830A1 (ja) 液晶表示素子
WO2016059896A1 (ja) 液晶表示装置及び液晶組成物
WO2017033829A1 (ja) 液晶表示素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14857828

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015545262

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15033529

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14857828

Country of ref document: EP

Kind code of ref document: A1