WO2015064430A1 - 積層体、絶縁性冷却板、パワーモジュールおよび積層体の製造方法 - Google Patents

積層体、絶縁性冷却板、パワーモジュールおよび積層体の製造方法 Download PDF

Info

Publication number
WO2015064430A1
WO2015064430A1 PCT/JP2014/078003 JP2014078003W WO2015064430A1 WO 2015064430 A1 WO2015064430 A1 WO 2015064430A1 JP 2014078003 W JP2014078003 W JP 2014078003W WO 2015064430 A1 WO2015064430 A1 WO 2015064430A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
intermediate layer
metal film
circuit layer
ceramic substrate
Prior art date
Application number
PCT/JP2014/078003
Other languages
English (en)
French (fr)
Inventor
優 赤林
雄一郎 山内
慎二 斎藤
真也 宮地
Original Assignee
日本発條株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本発條株式会社 filed Critical 日本発條株式会社
Publication of WO2015064430A1 publication Critical patent/WO2015064430A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • C04B41/90Coating or impregnation for obtaining at least two superposed coatings having different compositions at least one coating being a metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/14Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using spraying techniques to apply the conductive material, e.g. vapour evaporation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00844Uses not provided for elsewhere in C04B2111/00 for electronic applications
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0341Intermediate metal, e.g. before reinforcing of conductors by plating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/13Moulding and encapsulation; Deposition techniques; Protective layers
    • H05K2203/1333Deposition techniques, e.g. coating
    • H05K2203/1344Spraying small metal particles or droplets of molten metal

Definitions

  • the present invention relates to a laminate, an insulating cooling plate, a power module, and a method for producing the laminate.
  • the power module has a heat radiating plate that radiates heat from the semiconductor chip through an insulating substrate as a base material.
  • the heat radiating plate is made of a metal or a ceramic composite, and has a moving path for a cooling heat medium.
  • the heat radiating plate is connected to the surface of a ceramic base material, which is an insulating substrate, by a brazing material or the like.
  • a cooling plate that uses heat radiation of ceramics to dissipate heat has been developed, and heat generated from semiconductor chips (transistors) stacked on the surface of the ceramic substrate where the flow path is not formed. Can be emitted from the cooling plate to the outside, thereby cooling the electronic circuit board such as the power module.
  • a circuit pattern made of a metal film is formed between the ceramic substrate and the semiconductor chip.
  • an intermediate layer mainly composed of a metal or an alloy is formed on the surface of a ceramic substrate, and then a metal film such as a circuit layer or a cooling plate is formed by a cold spray method.
  • the technique to do is proposed by the present applicant (see, for example, Patent Documents 1 and 2).
  • Patent Documents 1 and 2 although a metal film with high adhesion can be formed by forming a metal film on the ceramic substrate via an intermediate layer, the adhesion between the ceramic substrate and the metal film having a large thermal expansion difference. Therefore, the substrate such as alumina, which is inferior in heat resistance, may be cracked due to thermal stress under a thermal cycle.
  • Patent Document 3 a method of manufacturing a heat transfer member having a two-layer structure including a lower layer film having a porous structure and an upper layer film having a porous structure having a structure different from that of the lower layer film has been proposed (for example, Patent Document 3). reference).
  • Patent Document 3 the difference in thermal expansion between the insulating member and the heat sink can be reduced by forming the lower layer film and the upper layer film by the cold spray method while changing the density with the same material.
  • Patent Document 3 is not a technique for directly forming a metal film on a ceramic substrate, it cannot be used for manufacturing a cooling plate made of a ceramic substrate.
  • the present invention has been made in view of the above, and in the case of producing a laminate in which a metal film is formed on a ceramic substrate using a cold spray method, the adhesion strength between the ceramic and the metal film is high.
  • a laminate that is high and can prevent cracking of the ceramic substrate due to a difference in thermal expansion between the ceramic substrate and the metal film under a thermal cycle, and an insulating cooling plate, a power module, and a method for producing the laminate Objective.
  • the laminate according to the present invention includes an insulating ceramic base material and an intermediate layer mainly composed of a metal or an alloy formed on the surface of the ceramic base material. And a first metal having a porosity of 5 to 15% formed by accelerating a powder containing a metal together with a gas on the surface of the intermediate layer and spraying and depositing the powder in a solid state on the surface. By accelerating a powder containing the same metal as the metal forming the first metal film on the surface of the film and the first metal film together with the gas, and spraying and depositing the powder in the solid state on the surface And a formed second metal film having a porosity of 0 to 0.5%.
  • the intermediate layer is composed of a metal or an alloy as a main component, the first intermediate layer forming a layer on the first metal film side, an active metal, or an active metal.
  • a second intermediate layer made of an oxide or a hydride and in contact with the first intermediate layer and laminated by being bonded to the ceramic substrate on a surface different from the surface in contact with the first intermediate layer.
  • the first intermediate layer and the second intermediate layer are formed by applying a brazing material to the ceramic base material and then performing a heat treatment.
  • the laminate according to the present invention is characterized in that, in the above invention, the intermediate layer is formed by heat treatment in a vacuum.
  • the second intermediate layer includes at least one selected from the group consisting of any metal of titanium, zirconium, hafnium, germanium, or a metal hydride. It is characterized by that.
  • the laminate according to the present invention is characterized in that, in the above invention, the first intermediate layer includes at least one selected from the group consisting of gold, silver, copper, aluminum, and nickel.
  • the laminate according to the present invention is characterized in that, in the above invention, the intermediate layer is formed by heat treatment in the atmosphere.
  • the second intermediate layer is made of titanium, zirconium, hafnium, germanium, boron, silicon, aluminum, chromium, indium, or a metal oxide or hydride. It includes at least one type selected.
  • the laminate according to the present invention is characterized in that, in the above invention, the first intermediate layer contains at least one of gold and silver.
  • the laminate according to the present invention is characterized in that, in the above invention, the first metal film and the second metal film are made of copper, aluminum, or an alloy of these metals.
  • the laminate according to the present invention is characterized in that, in the above invention, the ceramic substrate is alumina.
  • the insulating cooling plate of the present invention is an insulating cooling plate comprising the laminate according to any one of the above, wherein the ceramic base material has a heat radiating portion, and the first metal film and the The second metal film is a circuit layer.
  • the power module of this invention is a power module which has a laminated body as described in any one of the above, Comprising:
  • the said ceramic base material is an insulated substrate,
  • the said 1st metal film and the said 2nd metal film are It is a circuit layer,
  • the cooling plate which has copper or aluminum as a main component is formed in the surface different from the surface in which the said 1st metal film and the said 2nd metal film of the said insulated substrate were formed.
  • the method for producing a laminate of the present invention is a method for producing a laminate in which a metal film is formed on the surface of a ceramic substrate, and an intermediate comprising a metal or an alloy as a main component on the surface of the ceramic substrate.
  • An intermediate layer forming step for forming a layer and a surface of the first intermediate layer formed by the intermediate layer forming step are accelerated with a gas containing a metal together with a gas and sprayed on the surface in a solid state.
  • the manufacturing method of the laminated body concerning this invention is the said invention
  • positioning By heat-treating the ceramic substrate on which the brazing material is disposed in the step, the ceramic base material is in contact with the first intermediate layer and the first intermediate layer, and on a surface different from the surface in contact with the first intermediate layer.
  • the laminated body, the insulating cooling plate, the power module, and the laminated body manufacturing method according to the present invention include: forming a first metal film having a large porosity on the ceramic substrate side by a cold spray method; By forming the second metal film having a low porosity on the first metal film, the first metal film functions as a buffer layer that relieves the difference in thermal expansion from the ceramic substrate, and heat is dissipated by the high thermal conductivity of the second metal film. The effect is excellent.
  • FIG. 1 is a schematic diagram showing a configuration of an electronic circuit board using an insulating cooling plate that is a laminate according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a configuration of a main part of the insulating cooling plate shown in FIG.
  • FIG. 3 is a cross-sectional view schematically illustrating the formation of the intermediate layer of the insulating cooling plate according to the first embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing an outline of the cold spray apparatus.
  • FIG. 5 is a schematic diagram illustrating a configuration of a power module including the laminate according to the second embodiment of the present invention.
  • 6 is a cross-sectional view showing a configuration of a main part of the power module shown in FIG.
  • FIG. 7 is an electrophotography showing a cross section of the laminate according to Example 1 of the present invention.
  • FIG. 8 is an electrophotography showing a cross section of the laminate according to Comparative Example 3.
  • FIG. 1 is a schematic diagram illustrating a configuration of an electronic circuit board using an insulating cooling plate that is a laminate according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a configuration of a main part of the insulating cooling plate shown in FIG.
  • the electronic circuit board 1 is an insulating substrate and has a ceramic base material 10 that functions as a cooling plate, a metal circuit layer 20 laminated on the ceramic base material 10, and a metal circuit layer 20 laminated on the electronic circuit board 1 and fixed by solder C1.
  • Semiconductor chip 30 is an insulating substrate and has a ceramic base material 10 that functions as a cooling plate, a metal circuit layer 20 laminated on the ceramic base material 10, and a metal circuit layer 20 laminated on the electronic circuit board 1 and fixed by solder C1.
  • Semiconductor chip 30 is an insulating substrate and has a ceramic base material 10 that functions as a cooling plate, a metal circuit layer 20 laminated on the ceramic base material 10, and a metal circuit layer 20 laminated on the electronic circuit board 1 and fixed by solder C1.
  • Semiconductor chip 30 is an insulating substrate and has a ceramic base material 10 that functions as a cooling plate, a metal circuit layer 20 laminated on the ceramic base material 10, and a metal circuit layer 20 laminated on the electronic circuit board 1
  • the ceramic substrate 10 is made of an insulating member, and has a heat radiating portion in which a flow path for a heat radiating fluid is formed on the surface opposite to the surface on which the semiconductor chip 30 is mounted.
  • alumina having excellent heat dissipation and aluminum nitride having high thermal conductivity are used in order to function as a cooling plate.
  • the ceramic substrate 10 is not limited to this. Since the laminated body according to the first embodiment can relieve thermal stress under a thermal cycle by the metal circuit layer 20 described later, even when alumina having poor thermal shock resistance is used as the material of the ceramic substrate 10, Cracking due to stress can be prevented.
  • the metal circuit layer 20 includes a first metal circuit layer 21 that is a first metal film laminated on the ceramic substrate 10 and a second metal circuit layer that is a second metal film laminated on the first metal circuit layer 21. 22.
  • the first metal circuit layer 21 and the second metal circuit layer 22 are metal film layers formed by a cold spray method to be described later, and are made of, for example, a metal or alloy having good electrical conductivity such as copper or aluminum.
  • the first metal circuit layer 21 and the second metal circuit layer 22 are formed with circuit patterns for transmitting electrical signals to the semiconductor chip 30 and the like.
  • the semiconductor chip 30 is realized by a semiconductor element such as a diode, a transistor, or an IGBT (insulated gate bipolar transistor). A plurality of semiconductor chips 30 may be provided on the ceramic substrate 10 in accordance with the purpose of use.
  • An intermediate layer 50 as shown in FIG. 2 is formed between the ceramic substrate 10 and the first metal circuit layer 21.
  • the intermediate layer 50 includes a first intermediate layer 51 formed on the first metal circuit layer 21 side, and a second intermediate layer 52 formed on the ceramic substrate 10 side.
  • the first intermediate layer 51 is formed of any one of aluminum, nickel, copper, silver, and gold.
  • the first intermediate layer 51 forms a metal bond with the metal or alloy that is the material of the first metal circuit layer 21 on a surface different from the contact surface with the second intermediate layer 52.
  • the second intermediate layer 52 is formed of titanium, zirconium, hafnium, germanium, boron, silicon, aluminum, chromium, indium, vanadium, molybdenum, tungsten, manganese, or an oxide or hydride thereof.
  • the second intermediate layer 52 forms a covalent bond with the material of the ceramic substrate 10 on a surface different from the contact surface with the first intermediate layer 51.
  • FIG. 3 is a cross-sectional view schematically showing the formation of the intermediate layer in the electronic circuit board 1.
  • FIG. 4 is a schematic diagram showing an outline of a cold spray apparatus used for forming a metal circuit layer.
  • a brazing material 50a used as the intermediate layer 50 is applied to one surface of the ceramic substrate 10 by a screen printing method.
  • the brazing material 50a includes a metal or alloy used as the first intermediate layer, and a metal used as the second intermediate layer, or an oxide, hydride, or the like of the metal, and an organic solvent and an organic binder are mixed.
  • an organic solvent methyl cellosolve, ethyl cellosolve, isophorone, toluene, ethyl acetate, terpineol, diethylene glycol monobutyl ether, texanol, etc.
  • organic binder acrylic resin such as polyisobutyl methacrylate, ethyl cellulose, High molecular compounds such as methylcellulose can be used.
  • the mixing ratio of the organic solvent and the organic binder is preferably 3 to 20% by mass, and preferably 5 to 15% by mass.
  • brazing material 50a After applying the brazing material 50a, heat treatment is performed in a vacuum of 800 to 1000 ° C. or in the air for 1 hour. After the heat treatment for 1 hour, the brazing material 50a becomes the intermediate layer 50 in a state separated into the first intermediate layer 51 and the second intermediate layer 52, as shown in FIG.
  • the first intermediate layer 51 is formed of at least one material selected from gold, silver, copper, aluminum, or nickel
  • the second intermediate layer 52 is formed of titanium, zirconium, It is formed from at least one material selected from hafnium, germanium, or hydrides of these metals.
  • the first intermediate layer 51 is made of at least one material selected from gold or silver
  • the second intermediate layer 52 is made of titanium, zirconium, hafnium, germanium, boron, silicon, It is formed from at least one material selected from aluminum, chromium, indium, vanadium, molybdenum, tungsten, or manganese, or an oxide or hydride of these metals.
  • the second intermediate layer 52 forms an active ingredient layer.
  • the brazing material 50a for forming the first intermediate layer 51 and the second intermediate layer 52 made of the above-mentioned materials corresponding to the heat treatment in vacuum or in the air. May be used as appropriate.
  • atmosphere is applicable as a material of the 1st intermediate
  • the second intermediate layer 52 formed by heat treatment in the atmosphere can also use nitrides, carbonides, and hydrides of silicon, calcium, titanium, and zirconium. Any combination of the first intermediate layer 51 and the second intermediate layer 52 described above is applicable.
  • the first intermediate layer and the second intermediate layer include at least one of the listed metals or metal oxides or hydrides. It is also possible to use an alloy mainly composed of any of the listed metals.
  • the brazing material 50a is heat-treated to form the intermediate layer 50 separated into the first intermediate layer 51 and the second intermediate layer 52, and the first intermediate layer 51 is exposed with the first intermediate layer 51 exposed to the outside.
  • the first metal circuit layer 21 and the second metal circuit layer 22 are formed on the side surface using a cold spray method. Film formation by the cold spray method is performed by a cold spray apparatus 60 shown in FIG.
  • the cold spray device 60 contains a gas heater 61 that heats the compressed gas, a powder supply device 62 that contains a powder material to be sprayed on the sprayed material, and supplies the powder material to the spray gun 64, and a compressed gas heated by the spray gun 64. And a gas nozzle 63 for injecting the mixed material powder onto the substrate.
  • the compressed gas helium, nitrogen, air or the like is used.
  • the supplied compressed gas is supplied to the gas heater 61 and the powder supply device 62 by valves 65 and 66, respectively.
  • the compressed gas supplied to the gas heater 61 is heated to, for example, 50 to 1000 ° C. and then supplied to the spray gun 64. More preferably, the compressed gas is heated so that the upper limit temperature of the metal material powder sprayed onto the second intermediate layer 52 and the first intermediate layer 51 laminated on the ceramic substrate 10 is kept below the melting point of the metal material. . This is because the oxidation of the metal material can be suppressed by keeping the heating temperature of the powder material below the melting point of the metal material.
  • the compressed gas supplied to the powder supply device 62 supplies, for example, material powder having a particle size of about 10 to 100 ⁇ m in the powder supply device 62 to the spray gun 64 so as to have a predetermined discharge amount.
  • material powder any one produced by a mechanical process such as an atomizing method or a pulverizing method, or various chemical processes can be used.
  • the heated compressed gas is made a supersonic flow (about 340 m / s or more) by a gas nozzle 63 having a tapered and wide shape.
  • the powder material supplied to the spray gun 64 is accelerated by the injection of the compressed gas into the supersonic flow, and collides with the substrate at a high speed in the solid state to form a film.
  • the apparatus is not limited to the cold spray apparatus 60 in FIG. 4 as long as the apparatus can form a film by colliding the material powder with the base material in a solid state.
  • the porosity of the first metal circuit layer 21 laminated on the first intermediate layer 51 is 5 to 15%.
  • the porosity of the first metal circuit layer 21 is obtained by performing image processing for dualizing the cross section of the first metal circuit layer 21 with black pores and white metal portions of the first metal circuit layer 21. Calculation was performed based on the ratio of pores to the first metal circuit layer 21.
  • the first metal circuit layer 21 having a porosity of 5 to 15% can be formed by adjusting the temperature and pressure of the compressed gas when forming the first metal circuit layer 21 by a cold spray method.
  • the temperature of the compressed gas when laminating the first metal circuit layer 21 is, for example, 200 ° C. to 600 ° C. when the first metal circuit layer 21 and the second metal circuit layer 22 are formed of copper powder.
  • the pressure of the compressed gas when laminating the first metal circuit layer 21 is, for example, 1.5 MPa to 2.5 MPa when the first metal circuit layer 21 and the second metal circuit layer 22 are formed of copper powder. It is preferable that By setting the temperature and pressure of the compressed gas within the above ranges, the porosity can be 5 to 15%, and the first metal circuit layer 21 is formed between the ceramic substrate 10 and the second metal circuit layer 22. The difference in thermal expansion can be buffered.
  • the porosity of the second metal circuit layer 22 laminated on the first metal circuit layer 21 is 0 to 0.5%.
  • the porosity of the second metal circuit layer 22 is particularly preferably 0 to 0.1%. Similar to the first metal circuit layer 21, the porosity of the second metal circuit layer 22 may be calculated by the ratio of the area of the pores in the electrophotographic cross section of the second metal circuit layer 22.
  • the second metal circuit layer 22 having a porosity of 0 to 0.5% can be formed by adjusting the temperature and pressure of the compressed gas when forming the second metal circuit layer 22 by a cold spray method. .
  • the temperature of the compressed gas when laminating the second metal circuit layer 22 is, for example, 600 ° C. to 1000 ° C.
  • the pressure of the compressed gas when the second metal circuit layer 22 is laminated is, for example, 2.5 MPa to 3.5 MPa when the first metal circuit layer 21 and the second metal circuit layer 22 are formed of copper powder. It is preferable that By setting the temperature and pressure of the compressed gas within the above ranges, the porosity can be reduced to 0 to 0.5%, and the second metal circuit layer 22 exhibits the same thermal conductivity as that of the bulk metal and dissipates heat. Can be improved. In addition, since the second metal circuit layer 22 has a dense surface with almost no pores, it has good solder wettability and can prevent poor connection of the semiconductor chip 30.
  • the arithmetic average roughness (Ra) of the surface of the second metal circuit layer 22 is preferably 10 ⁇ m or less. This is because the solder wettability is improved by being 10 ⁇ m or less.
  • the arithmetic average roughness (Ra) of the surface of the second metal circuit layer 22 is more preferably 5 ⁇ m or less, and particularly preferably 1 ⁇ m or less.
  • the second metal circuit layer 22 may be cut after being laminated by the cold spray method.
  • the semiconductor chip 30 can be mounted by soldering, but the surface of the second metal circuit layer 22 is By cutting the arithmetic average roughness (Ra) to 1 ⁇ m or less, the occurrence of poor connection of the semiconductor chip 30 can be further reduced. Further, since the oxide layer of the second metal circuit layer 22 can be removed by cutting the surface, it is possible to prevent an increase in electrical resistance and a decrease in thermal conductivity.
  • the first metal circuit layer 21 and the second metal circuit layer 22 as shown in FIGS.
  • the brazing material 50a used in the first embodiment has been described as a paste in which an organic solvent and an organic binder are mixed, the metal or alloy forming the first intermediate layer 51, and the second intermediate layer As long as it contains the metal or metal oxide forming 52, hydride, or the like, it may be in the form of a foil.
  • the adhesiveness between the ceramic substrate and the metal circuit layer is improved, and the thermal stress generated due to the difference in thermal expansion coefficient between the ceramic substrate and the metal circuit layer is increased at a predetermined rate. Since the first metal circuit layer having pores can be relaxed, cracking of the ceramic substrate can be prevented even under a thermal cycle. Moreover, in Embodiment 1, since the roughness of the surface of the 2nd metal circuit layer which mounts a semiconductor chip is small, there exists an effect that solder wettability is good and generation
  • FIG. 5 is a schematic diagram illustrating a configuration of a power module including the laminate according to the second embodiment of the present invention.
  • 6 is a cross-sectional view showing a configuration of a main part of the power module shown in FIG.
  • a power module 100 shown in FIG. 5 includes a ceramic substrate 110 that is an insulating substrate, a metal circuit layer 120 formed on one surface of the ceramic substrate 110, and a semiconductor bonded to the metal circuit layer 120 by solder C2.
  • the chip 130 and the cooling fin 140 provided on the surface of the ceramic base 110 opposite to the metal circuit layer 120 are provided.
  • the ceramic substrate 110 is a substantially plate-shaped member made of an insulating material.
  • nitride ceramics such as aluminum nitride and silicon nitride, alumina, magnesia, zirconia, steatite, Oxide ceramics such as forsterite, mullite, titania, silica, and sialon are used.
  • the metal circuit layer 120 is a metal film layer formed by a cold spray method, and is laminated on the first metal circuit layer 121 and the first metal circuit layer 121 that is the first metal film laminated on the ceramic substrate 110. And a second metal circuit layer 122 that is a second metal film.
  • the first metal circuit layer 121 and the second metal circuit layer 122 are made of a metal or alloy having good electrical conductivity such as copper, for example, and the first metal circuit layer 121 and the second metal circuit layer 122 are formed of the semiconductor chip 130. A circuit pattern for transmitting an electric signal to, etc. is formed.
  • the semiconductor chip 130 is realized by a semiconductor element such as a diode, a transistor, or an IGBT (insulated gate bipolar transistor), as in the first embodiment.
  • a plurality of semiconductor chips 130 may be provided on the ceramic substrate 110 in accordance with the purpose of use.
  • the cooling fin 140 is a metal film layer formed by a cold spray method, and includes a first metal film 141 laminated on the ceramic substrate 110, a second metal film 142 laminated on the first metal film 141, Is provided.
  • the first metal film 141 and the second metal film 142 are made of a metal or alloy having good thermal conductivity such as copper, copper alloy, aluminum, aluminum alloy, silver, silver alloy or the like. Heat generated from the semiconductor chip 130 is released to the outside through the ceramic substrate 110 through the cooling fins 140 formed of the first metal film 141 and the second metal film 142.
  • an intermediate layer 150 mainly composed of a metal or an alloy is provided between the ceramic substrate 110 and the first metal circuit layer 121 and between the ceramic substrate 110 and the first metal film 141.
  • the intermediate layer 150 includes a first intermediate layer 151 formed on the first metal circuit layer 121 and the first metal film 141 side, and a second intermediate layer 152 formed on the ceramic substrate 110 side.
  • the first intermediate layer 151 and the second intermediate layer 152 have the same configuration as the first intermediate layer 51 and the second intermediate layer 52 of the first embodiment, and a screen printing method is applied to the surface of the ceramic substrate 110.
  • the brazing material used as the intermediate layer 150 is applied by heat treatment in a vacuum at 800 to 1000 ° C. or in the air for 1 hour.
  • the intermediate layer 150 may be formed by brazing a plate-like metal or alloy member to the ceramic substrate 110 with a brazing material, as in the first embodiment.
  • the intermediate layer 150 is formed, for example, by placing an aluminum (Al) foil on the surface of the ceramic substrate 110 via an aluminum (Al) brazing material and then heat-treating it in a vacuum or in an inert gas atmosphere at a predetermined temperature. It may be what was done.
  • the first intermediate layer 151 (if the intermediate layer 150 is a plate-like metal or alloy member brazed to the ceramic substrate 110 with a brazing material) by a cold spray method, First metal circuit layer 121 and first metal film layer 141 (metal circuit layer 120 and cooling fin 140) are formed.
  • the first metal circuit layer 121 and the second metal circuit layer 122 have the same porosity as the first metal circuit layer 21 and the second metal circuit layer 22 of the first embodiment, respectively.
  • the first metal circuit layer 21 and the second metal circuit layer 22 are laminated at the same compressed gas temperature and pressure.
  • the arithmetic average roughness (Ra) of the surface of the second metal circuit layer 122 is preferably 10 ⁇ m or less, like the second metal circuit layer 22 of the first embodiment. This is because the solder wettability is improved by being 10 ⁇ m or less.
  • the arithmetic average roughness (Ra) of the surface of the second metal circuit layer 122 is more preferably 5 ⁇ m or less, and particularly preferably 1 ⁇ m or less.
  • the porosity of the first metal film 141 laminated on the first intermediate layer 151 is 5 to 15%.
  • the porosity of the first metal film 141 is calculated by the ratio of the area of the pores in the electrophotographic cross section of the first metal film 141.
  • the first metal film 141 having a porosity of 5 to 15% can be formed by adjusting the temperature and pressure of the compressed gas when forming the first metal film 141 by a cold spray method within a predetermined range. .
  • the temperature of the compressed gas when laminating the first metal film 141 is preferably 200 ° C. to 600 ° C. when the first metal film 141 and the second metal film 142 are formed of copper powder, for example, 300 C. to 500.degree. C. is particularly preferred.
  • the pressure of the compressed gas when laminating the first metal film 141 is, for example, 1.5 MPa to 2.5 MPa when the first metal film 141 and the second metal film 142 are formed of copper powder. Is preferred.
  • the porosity can be made 5 to 15%, and the first metal film 141 has a thermal expansion between the ceramic substrate 110 and the second metal film 142. The difference can be buffered.
  • the porosity of the second metal film 142 laminated on the first metal film 141 is 0 to 0.5%.
  • the porosity of the second metal film 142 is particularly preferably 0 to 0.1% or less.
  • the porosity of the second metal film 142 may be calculated by the ratio of the area of the pores in the electrophotographic cross section of the second metal film 142, as with the first metal film 141.
  • the second metal film 142 having a porosity of 0 to 0.5% can be formed by adjusting the temperature and pressure of the compressed gas when forming the second metal film 142 by the cold spray method.
  • the temperature of the compressed gas when laminating the second metal film 142 is preferably 600 ° C. to 1000 ° C.
  • the pressure of the compressed gas when the second metal film 142 is laminated is, for example, 2.5 MPa to 3.5 MPa when the first metal film 141 and the second metal film 142 are formed of copper powder. Is preferred.
  • the porosity can be set to 0 to 0.5%, and the second metal film 142 exhibits the same thermal conductivity as that of the bulk metal and has a heat dissipation property. Can be improved.
  • the thermal stress generated by the difference in thermal expansion coefficient between the ceramic substrate, the metal circuit layer, and the cooling fin is improved while improving the adhesion between the ceramic substrate, the metal circuit layer, and the cooling fin.
  • the surface roughness of the second metal circuit layer on which the semiconductor chip is mounted is small, there is an effect that the solder wettability is good and the occurrence of mounting defects and the like can be suppressed.
  • the metal circuit layer includes two metal circuit layers (first metal circuit layer and second metal circuit layer), and the cooling fin includes two metal film layers (first metal film and second metal film).
  • the cooling fin may be formed from one metal film, and the metal circuit layer may be formed from two metal circuit layers (a first metal circuit layer and a second metal circuit layer), Alternatively, even when the metal circuit layer is formed from one metal circuit layer and the cooling fin is formed from two metal films (the first metal film and the second metal film), the same effect is obtained.
  • a laminate test piece in which a first coating and a second coating made of copper (Cu) are formed on an alumina-based ceramic substrate by the method for manufacturing a laminate according to the present embodiment is manufactured. Evaluation was made on adhesion to the film, heat resistance, and solder wettability.
  • Example 1 In Example 1, an intermediate layer was formed by applying a brazing material on an alumina base material and then holding it in the atmosphere at 970 ° C. for 1 hour.
  • the intermediate layer is made of silver for the first intermediate layer and titanium hydride for the second intermediate layer, and has a thickness of 30 ⁇ m at the thinnest portion and 100 ⁇ m at the thickest portion.
  • a metal circuit layer was formed of copper powder on the surface of the first intermediate layer by a cold spray method.
  • the copper powder used has an average particle size of 25 ⁇ m and is produced by a water atomization method.
  • the first metal circuit layer uses nitrogen gas (N 2 ) as a compressed gas, the gas temperature is 400 ° C., the injection pressure is 2 MPa, the thickness is 800 ⁇ m, and the porosity is 14%. is there.
  • the second metal circuit layer uses nitrogen gas (N 2 ) as a compressed gas, the gas temperature is 800 ° C., the injection pressure is 3 MPa, the thickness is 200 ⁇ m, and the porosity is 0.1% or less.
  • Comparative Example 1 As Comparative Example 1, an intermediate layer was formed in the same manner as in Example 1, and then a metal circuit layer was formed of copper powder on the surface of the first intermediate layer by a cold spray method.
  • the copper powder used has an average particle size of 25 ⁇ m and is produced by a water atomization method.
  • nitrogen gas (N 2 ) was used as a compressed gas.
  • the gas temperature was 400 ° C.
  • the injection pressure was 2 MPa
  • the film was laminated to a thickness of 800 ⁇ m.
  • the adhesion with the alumina base material was low, and peeling occurred.
  • Comparative Example 2 As Comparative Example 2, an intermediate layer was formed in the same manner as in Example 1, and then a metal circuit layer was formed of copper powder on the surface of the first intermediate layer by a cold spray method.
  • the copper powder used has an average particle size of 25 ⁇ m and is produced by a water atomization method.
  • the first metal circuit layer uses nitrogen gas (N 2 ) as a compressed gas, the gas temperature is 400 ° C., the injection pressure is 3 MPa, the thickness is 800 ⁇ m, and the porosity is 0.5. %.
  • the second metal circuit layer uses nitrogen gas (N 2 ) as a compressed gas, the gas temperature is 800 ° C., the injection pressure is 3 MPa, the thickness is 200 ⁇ m, and the porosity is 0.1% or less.
  • Comparative Example 3 As Comparative Example 3, an intermediate layer was formed in the same manner as in Example 1, and then a metal circuit layer was formed of copper powder on the surface of the first intermediate layer by a cold spray method.
  • the copper powder used has an average particle size of 25 ⁇ m and is produced by a water atomization method.
  • the first metal circuit layer uses nitrogen gas (N 2 ) as a compressed gas, the gas temperature is 800 ° C., the injection pressure is 3 MPa, the thickness is 800 ⁇ m, and the porosity is 0.1. % Or less.
  • the second metal circuit layer uses nitrogen gas (N 2 ) as a compressed gas, the gas temperature is 400 ° C., the injection pressure is 1 MPa, the thickness is 200 ⁇ m, and the porosity is 14%.
  • Comparative Example 4 As Comparative Example 4, an intermediate layer was formed in the same manner as in Example 1, and then a metal circuit layer was formed of copper powder on the surface of the first intermediate layer by a cold spray method.
  • the copper powder used has an average particle size of 25 ⁇ m and is produced by a water atomization method. In Comparative Example 4, only one metal circuit layer was formed.
  • the metal circuit layer of Comparative Example 4 uses nitrogen gas (N 2 ) as a compressed gas, the gas temperature is 800 ° C., the injection pressure is 3 MPa, the thickness is 1000 ⁇ m, and the porosity is 0.1% or less.
  • Example 1 For the laminates of Example 1 and Comparative Examples 1 to 4, the adhesion between the alumina base material and the first metal circuit layer after the construction of the first metal circuit layer, the first metal circuit layer after the construction of the second metal circuit layer
  • the laminate after forming the metal circuit layer was held at 300 ° C. for 5 minutes, and the laminate was allowed to cool to room temperature, and further at 300 ° C. for 5 minutes.
  • a heat resistance test was carried out for a minute amount, and the crack of the alumina base material was evaluated.
  • Table 1 shows the structures of the laminates of Example 1 and Comparative Examples 1 to 4, the adhesion of the metal film, and the evaluation results of the heat resistance test.
  • Example 1 and Comparative Example 3 while measuring the arithmetic mean roughness (Ra) of the surface of a 2nd metal circuit layer, the cross section of the laminated body after a heat test was observed with the electrophotography.
  • 7 is an electrophotography (40 times) showing a cross section of the laminate according to Example 1 of the present invention
  • FIG. 8 is an electrophotography (40 times) showing a cross section of the laminate according to Comparative Example 3. .
  • Example 2 In the laminate of Example 1 in which the first metal circuit layer having a porosity of 14% and the second metal circuit layer having a porosity of 0.1% or less were formed, peeling of the circuit layer was observed after each circuit layer was applied. As shown in FIG. 7, the alumina base material did not crack after the heat resistance test.
  • the laminated body of Comparative Example 2 differs from the laminated body of Example 1 only in the porosity of the first metal circuit layer, but the porosity of the first metal circuit layer is as small as 0.5%. The relaxation was not sufficient and cracks occurred in the alumina substrate.
  • Comparative Example 4 which does not have a metal circuit layer with a porosity of 5 to 15%, which can relieve thermal stress, cracks occurred in the alumina base material in the heat resistance test.
  • the laminate of Comparative Example 3 includes the first metal circuit layer having a porosity of 0.1% or less and the second metal circuit layer having a porosity of 14%.
  • the first metal circuit layer has a porosity of Therefore, the thermal stress was not sufficiently relaxed by the heat resistance test, and the alumina base material was cracked (see FIG. 8).
  • the arithmetic mean roughness of the surface of the second metal circuit layer of Example 1 was 8.4 ⁇ m, and it was confirmed that the solder wettability was good, but the surface of the second metal circuit layer of Comparative Example 3 was good. It was confirmed that the arithmetic average roughness of was as very large as 12.2 ⁇ m.
  • the arithmetic mean roughness of the first metal circuit layer of Example 1 is 11.9 ⁇ m, and when only the first metal circuit layer having a porosity of 5 to 15% is formed on the metal circuit layer, the thermal stress is increased. Although it can be mitigated, cracking of the ceramic substrate can be prevented, but poor solder wettability tends to cause mounting defects.
  • the laminate, the insulating cooling plate, the power module, and the method for producing the laminate according to the present invention are useful when joining a ceramic substrate and a metal film, and are particularly inferior in heat resistance. Is suitable for use as a ceramic substrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Products (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Laminated Bodies (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

 セラミックスと金属皮膜との間の密着強度が高く、かつ熱サイクル下でのセラミックス基材と金属皮膜との熱膨張差によるセラミックス基板の割れを防止しうる積層体、および絶縁性冷却板、パワーモジュールおよび積層体の製造方法を提供する。本発明の電子回路基板1は、絶縁性のセラミックス基材10と、セラミックス基材10の表面に形成された金属または合金を主成分とする中間層と、前記中間層の表面に、金属を含む粉体をガスと共に加速し、前記表面に固相状態のままで吹き付けて堆積させることによって形成された、気孔率が5~15%の第1金属回路層21と、第1金属回路層21の表面に、第1金属回路層21を形成する金属と同一の金属を含む粉体をガスと共に加速し、前記表面に固相状態のままで吹き付けて堆積させることによって形成された、気孔率が0~0.5%の第2金属回路層22と、を備える。

Description

積層体、絶縁性冷却板、パワーモジュールおよび積層体の製造方法
 本発明は、積層体、絶縁性冷却板、パワーモジュールおよびこの積層体の製造方法に関するものである。
 従来より、産業用、自動車用などの電力制御からモータ制御まで、幅広い分野に使用される省エネルギー化のキーデバイスとして、パワーモジュールが知られている。パワーモジュールは、基材である絶縁基板を介して半導体チップの放熱を行なう放熱板を有する。放熱板は、金属やセラミックス複合体からなり、冷却用の熱媒体の移動経路が形成されており、該放熱板は、絶縁基板であるセラミックス基材の表面にろう材等により接続されている。また、近年、セラミックスの熱放射を利用して放熱を行なう冷却板も開発されており、セラミックス基材の流路が形成されていない側の面に積層された半導体チップ(トランジスタ)から発生した熱を冷却板から外部に発散させることによって、パワーモジュール等の電子回路基板の冷却を行うことができる。なお、セラミックス基材と半導体チップとの間には、金属皮膜による回路パターンが形成されている。
 ところで、上述したパワーモジュール等の電子回路基板において、セラミックス基材の表面に、金属または合金を主成分とする中間層を形成した後、コールドスプレー法により回路層や冷却板等の金属皮膜を形成する技術が本出願人により提案されている(例えば、特許文献1および2参照)。特許文献1および2では、中間層を介してセラミックス基材上に金属皮膜を形成することにより密着性の高い金属皮膜を形成できるものの、熱膨張差が大きいセラミックス基材と金属皮膜との密着力が高いがゆえに、耐熱性に劣るアルミナ等の基材においては熱サイクル下における熱応力により割れ等が発生するおそれがあった。
 また、多孔質組織を有する下層被膜と、前記下層被膜とは構造の異なる多孔質組織を有する上層被膜とを備える二層構造の伝熱部材の製造方法が提案されている(例えば、特許文献3参照)。特許文献3では、下層被膜と上層被膜とを、コールドスプレー法により、同一の材料で密度を変えて形成することにより、絶縁部材とヒートシンクとの熱膨張差を緩和できるとしている。しかしながら、特許文献3は、直接セラミックス基材上に金属皮膜を形成する技術ではないため、セラミックス基材からなる冷却板の製造には使用することはできない。
特許第5191527号公報 特開2013-018190号公報 特開2009-127086号公報
 本発明は、上記に鑑みてなされたものであって、コールドスプレー法を用いてセラミックス基材に金属皮膜を形成させた積層体を作製する場合に、セラミックスと金属皮膜との間の密着強度が高く、かつ熱サイクル下でのセラミックス基材と金属皮膜との熱膨張差によるセラミックス基板の割れを防止しうる積層体、および絶縁性冷却板、パワーモジュールおよび積層体の製造方法を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明にかかる積層体は、絶縁性のセラミックス基材と、前記セラミックス基材の表面に形成された金属または合金を主成分とする中間層と、前記中間層の表面に、金属を含む粉体をガスと共に加速し、前記表面に固相状態のままで吹き付けて堆積させることによって形成された、気孔率が5~15%の第1金属皮膜と、前記第1金属皮膜の表面に、前記第1金属皮膜を形成する金属と同一の金属を含む粉体をガスと共に加速し、前記表面に固相状態のままで吹き付けて堆積させることによって形成された、気孔率が0~0.5%の第2金属皮膜と、を備えることを特徴とする。
 また、本発明にかかる積層体は、上記発明において、前記中間層は、金属または合金を主成分とし、前記第1金属皮膜側で層をなす第1中間層と、活性金属、または活性金属の酸化物もしくは水素化物からなり、前記第1中間層と接触すると共に、前記第1中間層と接触する面と異なる面で前記セラミックス基材と結合して積層される第2中間層と、を有し、前記第1中間層および前記第2中間層は、ろう材を前記セラミックス基材に塗布した後、熱処理することにより形成されることを特徴とする。
 また、本発明にかかる積層体は、上記発明において、前記中間層は、真空中で熱処理することによって形成されることを特徴とする。
 また、本発明にかかる積層体は、上記発明において、前記第2中間層は、チタン、ジルコニウム、ハフニウム、ゲルマニウムのいずれかの金属または金属の水素化物からなる群より選択される少なくとも1種類を含むことを特徴とする。
 また、本発明にかかる積層体は、上記発明において、前記第1中間層は、金、銀、銅、アルミニウム、ニッケルからなる群より選択される少なくとも1種類を含むことを特徴とする。
 また、本発明にかかる積層体は、上記発明において、前記中間層は、大気中で熱処理することによって形成されることを特徴とする。
 また、本発明にかかる積層体は、上記発明において、前記第2中間層は、チタン、ジルコニウム、ハフニウム、ゲルマニウム、硼素、珪素、アルミニウム、クロム、インジウムまたは金属の酸化物もしくは水素化物からなる群より選択される少なくとも1種類を含むことを特徴とする。
 また、本発明にかかる積層体は、上記発明において、前記第1中間層は、金または銀のうち少なくとも1種類を含むことを特徴とする。
 また、本発明にかかる積層体は、上記発明において、前記第1金属皮膜および前記第2金属皮膜は、銅、アルミニウム、またはこれらの金属の合金からなることを特徴とする。
 また、本発明にかかる積層体は、上記発明において、前記セラミックス基材はアルミナであることを特徴とする。
 また、本発明の絶縁性冷却板は、上記のいずれか1つに記載の積層体からなる絶縁性冷却板であって、前記セラミックス基材は放熱部を有し、前記第1金属皮膜および前記第2金属皮膜は回路層であることを特徴とする。
 また、本発明のパワーモジュールは、上記のいずれか1つに記載の積層体を有するパワーモジュールであって、前記セラミックス基材は絶縁基板であり、前記第1金属皮膜および前記第2金属皮膜は回路層であり、前記絶縁基板の前記第1金属皮膜および前記第2金属皮膜が形成された面と異なる面に、銅またはアルミニウムを主成分とする冷却板が形成されることを特徴とする。
 また、本発明の積層体の製造方法は、セラミックス基材の表面に金属皮膜が形成された積層体の製造方法であって、前記セラミックス基材の表面に、金属または合金を主成分とする中間層を形成する中間層形成ステップと、前記中間層形成ステップによって形成された前記第1中間層の表面に、金属を含む粉体をガスと共に加速し、前記表面に固相状態のままで吹き付けて堆積させることによって、気孔率が5~15%の第1金属皮膜を形成する第1金属皮膜形成ステップと、前記第1金属皮膜の表面に、前記第1金属皮膜を形成する金属と同一の金属を含む粉体をガスと共に加速し、前記表面に固相状態のままで吹き付けて堆積させることによって、気孔率が0~0.5%の第2金属皮膜を形成する第2金属皮膜形成ステップと、を含むことを特徴とする。
 また、本発明にかかる積層体の製造方法は、上記発明において、前記中間層形成ステップは、前記セラミックス基材の表面に対して、ろう材を配設するろう材配置ステップと、前記ろう材配置ステップで前記ろう材が配設された前記セラミックス基材を熱処理することにより、前記第1中間層、および前記第1中間層と接触すると共に、前記第1中間層と接触する面と異なる面で前記セラミックス基材と結合して積層される第2中間層を有する中間層を形成する熱処理ステップと、を含むことを特徴とする。
 本発明にかかる積層体、絶縁性冷却板、パワーモジュールおよび積層体の製造方法は、コールドスプレー法により、セラミックス基材側に気孔率の大きい第1金属皮膜を形成した後、該第1金属皮膜上に気孔率の小さい第2金属皮膜を形成することにより、第1金属皮膜がセラミックス基材との熱膨張差を緩和する緩衝層として機能すると共に、第2金属皮膜の高い熱伝導率により放熱効果に優れるという効果を奏する。
図1は、本発明の実施の形態1にかかる積層体である絶縁性冷却板を使用した電子回路基板の構成を示す模式図である。 図2は、図1に示す絶縁性冷却板の要部の構成を示す断面図である。 図3は、本発明の実施の形態1にかかる絶縁性冷却板の中間層の形成を模式的に説明する断面図である。 図4は、コールドスプレー装置の概要を示す模式図である。 図5は、本発明の実施の形態2にかかる積層体を含むパワーモジュールの構成を示す模式図である。 図6は、図5に示すパワーモジュールの要部の構成を示す断面図である。 図7は、本発明の実施例1にかかる積層体の断面を示す電子写真である。 図8は、比較例3にかかる積層体の断面を示す電子写真である。
 以下、本発明を実施するための形態を図面と共に詳細に説明する。なお、以下の実施の形態により本発明が限定されるものではない。また、以下の説明において参照する各図は、本発明の内容を理解し得る程度に形状、大きさ、および位置関係を概略的に示してあるに過ぎない。すなわち、本発明は各図で例示された形状、大きさ、および位置関係のみに限定されるものではない。
(実施の形態1)
 本発明の実施の形態1にかかる積層体について、図面を参照して詳細に説明する。図1は、本発明の実施の形態1にかかる積層体である絶縁性冷却板を使用する電子回路基板の構成を示す模式図である。図2は、図1に示す絶縁性冷却板の要部の構成を示す断面図である。
 電子回路基板1は、絶縁基板であるとともに冷却板としての機能を有するセラミックス基材10と、セラミックス基材10に積層された金属回路層20、金属回路層20上に積層され、半田C1によって固定されている半導体チップ30とを有する。
 セラミックス基材10は、絶縁性の部材からなり、半導体チップ30が実装される面と反対側の面に、放熱用の流体の流路が形成された放熱部を有する。実施の形態1では、セラミックス基材10としては、冷却板として機能させるべく、放熱性に優れたアルミナ、熱伝導性が高い窒化アルミニウムが使用されるが、これに限定されるものではない。本実施の形態1にかかる積層体は、後述する金属回路層20により熱サイクル下での熱応力を緩和できるので、耐熱衝撃性に劣るアルミナをセラミックス基材10の材料として使用した場合でも、熱応力による割れを防止することができる。
 金属回路層20は、セラミックス基材10に積層された第1金属皮膜である第1金属回路層21と、第1金属回路層21上に積層された第2金属皮膜である第2金属回路層22と、を有する。第1金属回路層21および第2金属回路層22は、後述するコールドスプレー法により形成された金属皮膜層であり、例えば、銅、アルミニウム等の良好な電気伝導度を有する金属または合金からなる。第1金属回路層21および第2金属回路層22には、半導体チップ30などに対して電気信号を伝達させるための回路パターンが形成されている。
 半導体チップ30は、ダイオード、トランジスタ、IGBT(絶縁ゲートバイポーラトランジスタ)等の半導体素子によって実現される。なお、半導体チップ30は、使用の目的に合わせてセラミックス基材10上に複数個設けられてもよい。
 セラミックス基材10と第1金属回路層21との間は、図2に示すような中間層50が形成されている。中間層50は、第1金属回路層21側に形成される第1中間層51と、セラミックス基材10側に形成される第2中間層52とを有する。
 第1中間層51は、アルミニウム、ニッケル、銅、銀、金のいずれかにより形成される。第1中間層51は、第2中間層52との接触面と異なる面で第1金属回路層21の材料である金属または合金と金属結合を形成する。
 第2中間層52は、チタン、ジルコニウム、ハフニウム、ゲルマニウム、硼素、珪素、アルミニウム、クロム、インジウム、バナジウム、モリブデン、タングステン、マンガンのいずれか、またはこれらの酸化物、水素化物により形成される。第2中間層52は、第1中間層51との接触面と異なる面でセラミックス基材10の材料と共有結合を形成する。
 つづいて、電子回路基板1の中間層50の形成について、図3および図4を参照して説明する。図3は、電子回路基板1における中間層の形成を模式的に示す断面図である。図4は、金属回路層の形成に使用されるコールドスプレー装置の概要を示す模式図である。
 まず、図3(A)に示すように、セラミックス基材10の一方の表面に対して、スクリーン印刷法によって中間層50として用いられるろう材50aを塗布する。ここで、ろう材50aは、第1中間層として用いられる金属または合金、および第2中間層として用いられる金属、または金属の酸化物、水素化物等を含み、有機溶剤および有機バインダーが混合されたペースト状をなす。有機溶剤としてはメチルセルソルブ、エチルセルソルブ、イソホロン、トルエン、酢酸エチル、テルピネオール、ジエチレングリコール・モノブチルエーテル、テキサノール等が使用可能であり、有機バインダーとしては、ポリイソブチルメタクリレートなどのアクリル樹脂や、エチルセルロース、メチルセルロース等の高分子化合物が使用可能である。有機溶剤および有機バインダーの混合割合は、3~20質量%とすることが好ましく、好適には5~15質量%である。
 ろう材50aの塗布後、800~1000℃の真空中または大気中で1時間熱処理する。1時間熱処理した後、ろう材50aは、図3(B)に示すように、第1中間層51と第2中間層52とに分離した状態の中間層50となる。
 ここで、真空中で熱処理する場合、第1中間層51は金、銀、銅、アルミニウム、またはニッケルから選択される少なくとも1種の材料から形成され、第2中間層52は、チタン、ジルコニウム、ハフニウム、もしくはゲルマニウム、またはこれらの金属の水素化物から選択される少なくとも1種の材料から形成される。
 また、大気中で熱処理する場合、第1中間層51は金、または銀から選択される少なくとも1種の材料から形成され、第2中間層52はチタン、ジルコニウム、ハフニウム、ゲルマニウム、硼素、珪素、アルミニウム、クロム、インジウム、バナジウム、モリブデン、タングステン、もしくはマンガン、またはこれらの金属の酸化物もしくは水素化物から選択される少なくとも1種の材料から形成される。第2中間層52は、活性成分層をなす。真空中または大気中で熱処理して中間層を形成する場合、真空中または大気中での熱処理に対応し、上記した材料からなる第1中間層51および第2中間層52を形成するろう材50aを適宜使用すればよい。
 なお、大気中で熱処理することにより形成される第1中間層51は、大気中で溶解しても酸化しない金属であれば、第1中間層51の材料として適用可能である。また、大気中で熱処理することにより形成される第2中間層52は、珪素、カルシウム、チタン、ジルコニウムの窒化物、炭素化物および水素化物を用いることもできる。上述した第1中間層51および第2中間層52の組み合わせであれば、いかなる組み合わせでも適用可能である。第1中間層および第2中間層は、列挙した金属、または金属の酸化物もしくは水素化物のうち、少なくとも1つを含む。また、列挙した金属のいずれかを主成分とする合金を用いることも可能である。
 ろう材50aを熱処理して、第1中間層51と第2中間層52とに分離した中間層50を形成し、第1中間層51が外部に露出した状態で、第1中間層51の露出側の表面にコールドスプレー法を用いて第1金属回路層21および第2金属回路層22を形成する。コールドスプレー法による皮膜形成は、図4に示すコールドスプレー装置60によって行われる。
 コールドスプレー装置60は、圧縮ガスを加熱するガス加熱器61と、被溶射物に溶射する粉末材料を収容し、スプレーガン64に供給する粉末供給装置62と、スプレーガン64で加熱された圧縮ガスと混合された材料粉末を基材に噴射するガスノズル63とを備えている。
 圧縮ガスとしては、ヘリウム、窒素、空気などが使用される。供給された圧縮ガスは、バルブ65および66により、ガス加熱器61と粉末供給装置62にそれぞれ供給される。ガス加熱器61に供給された圧縮ガスは、例えば50~1000℃に加熱された後、スプレーガン64に供給される。より好ましくは、セラミックス基材10に積層された第2中間層52および第1中間層51上に噴射される金属材料粉末の上限温度を、金属材料の融点以下に留めるように圧縮ガスを加熱する。粉末材料の加熱温度を金属材料の融点以下に留めることにより、金属材料の酸化を抑制できるためである。
 粉末供給装置62に供給された圧縮ガスは、粉末供給装置62内の、例えば、粒径が10~100μm程度の材料粉末をスプレーガン64に所定の吐出量となるように供給する。材料粉末は、アトマイズ法、粉砕法等の機械的プロセス、または各種化学的プロセスにより製造されたいずれのものも使用可能である。加熱された圧縮ガスは先細末広形状をなすガスノズル63により超音速流(約340m/s以上)にされる。スプレーガン64に供給された粉末材料は、この圧縮ガスの超音速流の中への投入により加速され、固相状態のまま基材に高速で衝突して皮膜を形成する。なお、材料粉末を基材に固相状態で衝突させて皮膜を形成できる装置であれば、図4のコールドスプレー装置60に限定されるものではない。
 第1中間層51上に積層される第1金属回路層21は、気孔率が5~15%である。第1金属回路層21の気孔率は、第1金属回路層21の断面の電子写真について、気孔を黒、第1金属回路層21の金属部分を白とする二元化する画像処理を行い、第1金属回路層21に対する気孔の割合により算出した。気孔率が5~15%である第1金属回路層21は、コールドスプレー法により第1金属回路層21を形成する際の圧縮ガスの温度および圧力を調整することにより形成することができる。第1金属回路層21を積層する際の圧縮ガスの温度は、例えば、第1金属回路層21および第2金属回路層22が銅粉末により形成される場合、200℃~600℃であることが好ましく、300℃~500℃が特に好ましい。また、第1金属回路層21を積層する際の圧縮ガスの圧力は、例えば、第1金属回路層21および第2金属回路層22が銅粉末により形成される場合、1.5MPa~2.5MPaであることが好ましい。圧縮ガスの温度および圧力を上記範囲とすることにより、気孔率を5~15%とすることができ、第1金属回路層21は、セラミックス基材10と第2金属回路層22との間の熱膨張差を緩衝することができる。
 第1金属回路層21上に積層される第2金属回路層22は、気孔率が0~0.5%である。第2金属回路層22の気孔率は、0~0.1%であることが特に好ましい。第2金属回路層22の気孔率は、第1金属回路層21と同様に、第2金属回路層22の断面の電子写真における気孔の面積の割合により算出すればよい。気孔率が0~0.5%である第2金属回路層22は、コールドスプレー法により第2金属回路層22を形成する際の圧縮ガスの温度および圧力を調整することにより形成することができる。第2金属回路層22を積層する際の圧縮ガスの温度は、例えば、第1金属回路層21および第2金属回路層22が銅粉末により形成される場合、600℃~1000℃であることが好ましく、700℃~900℃が特に好ましい。また、第2金属回路層22を積層する際の圧縮ガスの圧力は、例えば、第1金属回路層21および第2金属回路層22が銅粉末により形成される場合、2.5MPa~3.5MPaであることが好ましい。圧縮ガスの温度および圧力を上記範囲とすることにより、気孔率を0~0.5%とすることができ、第2金属回路層22は、バルク金属と同程度の熱伝導度を示し、放熱性を向上することができる。また、第2金属回路層22は、気孔がほとんど形成されず緻密な表面を有するため、半田濡れ性がよく、半導体チップ30の接続不良を防止することができる。
 また、第2金属回路層22の表面の算術平均粗さ(Ra)は、10μm以下であることが好ましい。10μm以下であることにより、半田濡れ性が向上するためである。第2金属回路層22の表面の算術平均粗さ(Ra)は、5μm以下が更に好ましく、1μm以下が特に好ましい。第2金属回路層22の表面の算術平均粗さ(Ra)を1μm以下とするためには、第2金属回路層22をコールドスプレー法により積層後、切削加工すればよい。本実施の形態において、第2金属回路層22の表面の算術平均粗さ(Ra)が、10μm以下であれば半田付けにより半導体チップ30を実装可能であるが、第2金属回路層22表面を切削加工して算術平均荒さ(Ra)を1μm以下とすることにより、半導体チップ30の接続不良の発生をさらに低減することができる。また、表面の切削により、第2金属回路層22の酸化層を除去できるので、電気抵抗の上昇および熱伝導率の低下を防止することができる。
 実施の形態1にかかる電子回路基板1は、上述したコールドスプレー装置60によって、図1、2に示すような第1金属回路層21および第2金属回路層22が形成される。なお、実施の形態1において使用するろう材50aは、有機溶剤および有機バインダーが混合されたペースト状をなすものとして説明したが、第1中間層51を形成する金属または合金、および第2中間層52を形成する金属または金属の酸化物、水素化物等を含んでいれば、箔状をなすものであってもよい。
 上述した実施の形態1によれば、セラミックス基材と金属回路層との密着性を向上するとともに、セラミックス基材と金属回路層との熱膨張率差により発生する熱応力を、所定の割合で気孔を有する第1金属回路層により緩和しうるため、熱サイクル下においてもセラミックス基材の割れを防止することができる。また、実施の形態1では、半導体チップを実装する第2金属回路層の表面の粗さが小さいため、半田濡れ性がよく、実装不良等の発生も抑制できるという効果を奏する。
(実施の形態2)
 本発明の実施の形態2にかかる積層体について、図面を参照して詳細に説明する。図5は、本発明の実施の形態2にかかる積層体を含むパワーモジュールの構成を示す模式図である。図6は、図5に示すパワーモジュールの要部の構成を示す断面図である。
 図5に示すパワーモジュール100は、絶縁基板であるセラミックス基材110と、セラミックス基材110の一方の面に形成された金属回路層120と、金属回路層120上に半田C2によって接合された半導体チップ130と、セラミックス基材110の金属回路層120とは反対側の面に設けられた冷却フィン140とを備える。
 実施の形態2において、セラミックス基材110は、絶縁性材料からなる略板状の部材であって、例えば、窒化アルミニウム、窒化珪素等の窒化物系セラミックスや、アルミナ、マグネシア、ジルコニア、ステアタイト、フォルステライト、ムライト、チタニア、シリカ、サイアロン等の酸化物系セラミックスが用いられる。
 金属回路層120は、コールドスプレー法によって形成された金属皮膜層であり、セラミックス基材110に積層された第1金属皮膜である第1金属回路層121と、第1金属回路層121上に積層された第2金属皮膜である第2金属回路層122と、を備える。第1金属回路層121および第2金属回路層122は、例えば銅等の良好な電気伝導度を有する金属または合金からなり、第1金属回路層121および第2金属回路層122は、半導体チップ130等に対して電気信号を伝達するための回路パターンを形成する。
 半導体チップ130は、実施の形態1と同様に、ダイオード、トランジスタ、IGBT(絶縁ゲートバイポーラトランジスタ)等の半導体素子によって実現される。なお、半導体チップ130は、使用の目的に合わせてセラミックス基材110上に複数個設けられても良い。
 冷却フィン140は、コールドスプレー法によって形成された金属皮膜層であり、セラミックス基材110に積層された第1金属皮膜141と、第1金属皮膜141上に積層された第2金属皮膜142と、を備える。第1金属皮膜141および第2金属皮膜142は、銅、銅合金、アルミニウム、アルミニウム合金、銀、銀合金等の良好な熱伝導性を有する金属または合金からなる。第1金属皮膜141および第2金属皮膜142からなる冷却フィン140を介して、半導体チップ130から発生した熱がセラミックス基材110を介して外部に放出される。
 図6に示すように、セラミックス基材110と第1金属回路層121との間、及びセラミックス基材110と第1金属皮膜141との間には、金属または合金を主成分とする中間層150が設けられている。中間層150は、第1金属回路層121および第1金属皮膜141側に形成される第1中間層151と、セラミックス基材110側に形成される第2中間層152とを有する。第1中間層151および第2中間層152は、実施の形態1の第1中間層51および第2中間層52と同様の構成を有し、セラミックス基材110の表面に対して、スクリーン印刷法によって中間層150として用いられるろう材を塗布し、800~1000℃の真空中または大気中で1時間熱処理して形成したものである。
 あるいは、中間層150は、実施の形態1と同様に、板状の金属または合金部材をセラミックス基材110にろう材によりろう付けすることにより形成されたものであっても良い。中間層150は、例えば、セラミックス基材110の表面にアルミニウム(Al)ろう材を介してアルミニウム(Al)箔を配置した後、所定温度で真空中または不活性ガス雰囲気中において熱処理することにより形成されたものであっても良い。
 中間層150を形成後、コールドスプレー法により第1中間層151(中間層150が板状の金属または合金部材がろう材によりセラミックス基材110にろう付けされた場合は中間層150)上に、第1金属回路層121および第1金属皮膜層141(金属回路層120及び冷却フィン140)を形成する。
 第1金属回路層121および第2金属回路層122は、それぞれ、実施の形態1の第1金属回路層21および第2金属回路層22と同様の気孔率を有し、実施の形態1の第1金属回路層21および第2金属回路層22と同様の圧縮ガス温度および圧力で積層形成される。
 また、第2金属回路層122の表面の算術平均粗さ(Ra)は、実施の形態1の第2金属回路層22と同様に、10μm以下であることが好ましい。10μm以下であることにより、半田濡れ性が向上するためである。第2金属回路層122の表面の算術平均粗さ(Ra)は、5μm以下が更に好ましく、1μm以下が特に好ましい。
 第1中間層151上に積層される第1金属皮膜141は、気孔率が5~15%である。第1金属皮膜141の気孔率は、第1金属皮膜141の断面の電子写真における気孔の面積の割合により算出する。気孔率が5~15%である第1金属皮膜141は、コールドスプレー法により第1金属皮膜141を形成する際の圧縮ガスの温度および圧力を所定の範囲に調整することにより形成することができる。第1金属皮膜141を積層する際の圧縮ガスの温度は、例えば、第1金属皮膜141および第2金属皮膜142が銅粉末により形成される場合、200℃~600℃であることが好ましく、300℃~500℃が特に好ましい。また、第1金属皮膜141を積層する際の圧縮ガスの圧力は、例えば、第1金属皮膜141および第2金属皮膜142が銅粉末により形成される場合、1.5MPa~2.5MPaであることが好ましい。圧縮ガスの温度および圧力を上記範囲とすることにより、気孔率を5~15%とすることができ、第1金属皮膜141は、セラミックス基材110と第2金属皮膜142との間の熱膨張差を緩衝することができる。
 第1金属皮膜141上に積層される第2金属皮膜142は、気孔率が0~0.5%である。第2金属皮膜142の気孔率は、0~0.1%以下であることが特に好ましい。第2金属皮膜142の気孔率は、第1金属皮膜141と同様に、第2金属皮膜142の断面の電子写真における気孔の面積の割合により算出すればよい。気孔率が0~0.5%である第2金属皮膜142は、コールドスプレー法により第2金属皮膜142を形成する際の圧縮ガスの温度および圧力を調整することにより形成することができる。第2金属皮膜142を積層する際の圧縮ガスの温度は、例えば、第1金属皮膜141および第2金属皮膜142が銅粉末により形成される場合、600℃~1000℃であることが好ましく、700℃~900℃が特に好ましい。また、第2金属皮膜142を積層する際の圧縮ガスの圧力は、例えば、第1金属皮膜141および第2金属皮膜142が銅粉末により形成される場合、2.5MPa~3.5MPaであることが好ましい。圧縮ガスの温度および圧力を上記範囲とすることにより、気孔率を0~0.5%とすることができ、第2金属皮膜142は、バルク金属と同程度の熱伝導度を示し、放熱性を向上することができる。
 上述した実施の形態2によれば、セラミックス基材と金属回路層および冷却フィンとの密着性を向上するとともに、セラミックス基材と金属回路層および冷却フィンとの熱膨張率差により発生する熱応力を、所定の割合で気孔を有する第1金属回路層および第1金属皮膜により緩和しうるため、熱サイクル下においてもセラミックス基材の割れを防止することができる。また、実施の形態2では、半導体チップを実装する第2金属回路層の表面の粗さが小さいため、半田濡れ性がよく、実装不良等の発生も抑制できるという効果を奏する。
 実施の形態2では、金属回路層が2つの金属回路層(第1金属回路層および第2金属回路層)、冷却フィンが2つの金属皮膜層(第1金属皮膜および第2金属皮膜)からそれぞれ形成されるパワーモジュールについて説明したが、冷却フィンを1つの金属皮膜から形成し、金属回路層を2つの金属回路層(第1金属回路層および第2金属回路層)から形成しても良く、あるいは、金属回路層を1つの金属回路層から形成し、冷却フィンを2つの金属皮膜(第1金属皮膜および第2金属皮膜)から形成するものであっても、同様の効果を奏する。
 本実施の形態に係る積層体の製造方法により、アルミナ系セラミックスの基材上に銅(Cu)からなる第1皮膜および第2皮膜を形成した積層体のテストピースを作製し、基材と銅皮膜との間の密着性、耐熱性、および半田濡れ性について評価を行った。
(実施例1)
 実施例1として、アルミナ基材上に、ろう材を塗布した後、970℃の大気中で1時間保持することによって中間層を形成した。中間層は、第1中間層が銀、第2中間層が水素化チタンからなり、厚さは最も薄い部分で30μm、厚い部分で100μmである。コールドスプレー法により、第1中間層の表面に銅粉末により金属回路層を形成した。使用した銅粉末は、平均粒径が25μmで、水アトマイズ法により製造されたものである。なお、実施例1では、第1金属回路層は、圧縮ガスとして窒素ガス(N)を使用し、ガス温度は400℃、噴射圧力は2MPa、800μmの厚さで、気孔率は14%である。第2金属回路層は、圧縮ガスとして窒素ガス(N)を使用し、ガス温度は800℃、噴射圧力は3MPa、200μmの厚さで、気孔率は0.1%以下である。
(比較例1)
 比較例1として、実施例1と同様にして中間層を形成した後、第1中間層の表面にコールドスプレー法により銅粉末により金属回路層を形成した。使用した銅粉末は、平均粒径が25μmで、水アトマイズ法により製造されたものである。なお、比較例1では、第1金属回路層として、実施例1よりも気孔率の大きい第1金属回路層(気孔率19%)を形成するために、圧縮ガスとして窒素ガス(N)を使用し、ガス温度は400℃、噴射圧力は2MPaとし、800μmの厚さに積層したが、アルミナ基材との密着性が低く、剥離が生じた。
(比較例2)
 比較例2として、実施例1と同様にして中間層を形成した後、第1中間層の表面にコールドスプレー法により銅粉末により金属回路層を形成した。使用した銅粉末は、平均粒径が25μmで、水アトマイズ法により製造されたものである。なお、比較例2では、第1金属回路層は、圧縮ガスとして窒素ガス(N)を使用し、ガス温度は400℃、噴射圧力は3MPa、800μmの厚さで、気孔率は0.5%である。第2金属回路層は、圧縮ガスとして窒素ガス(N)を使用し、ガス温度は800℃、噴射圧力は3MPa、200μmの厚さで、気孔率は0.1%以下である。
(比較例3)
 比較例3として、実施例1と同様にして中間層を形成した後、第1中間層の表面にコールドスプレー法により銅粉末により金属回路層を形成した。使用した銅粉末は、平均粒径が25μmで、水アトマイズ法により製造されたものである。なお、比較例3では、第1金属回路層は、圧縮ガスとして窒素ガス(N)を使用し、ガス温度は800℃、噴射圧力は3MPa、800μmの厚さで、気孔率は0.1%以下である。第2金属回路層は、圧縮ガスとして窒素ガス(N)を使用し、ガス温度は400℃、噴射圧力は1MPa、200μmの厚さで、気孔率は14%である。
(比較例4)
 比較例4として、実施例1と同様にして中間層を形成した後、第1中間層の表面にコールドスプレー法により銅粉末により金属回路層を形成した。使用した銅粉末は、平均粒径が25μmで、水アトマイズ法により製造されたものである。なお、比較例4では、金属回路層を1層のみ形成した。比較例4の金属回路層は、圧縮ガスとして窒素ガス(N)を使用し、ガス温度は800℃、噴射圧力は3MPa、1000μmの厚さで、気孔率は0.1%以下である。
 実施例1、ならびに比較例1~4の積層体について、第1金属回路層施工後のアルミナ基材と第1金属回路層との密着性、第2金属回路層施工後の第1金属回路層と第2金属回路層との密着性を目視で確認するとともに、金属回路層形成後の積層体について、300℃で5分保持し、積層体を室温まで放冷した後、さらに300℃で5分保持する耐熱試験を行い、アルミナ基材の割れの評価を行なった。
 表1に、実施例1、ならびに比較例1~4の積層体の構造、および金属皮膜の密着性、耐熱試験の評価結果を示す。なお、実施例1および比較例3については、第2金属回路層の表面の算術平均粗さ(Ra)を測定するとともに、耐熱試験後の積層体の断面を電子写真により観察した。図7は、本発明の実施例1にかかる積層体の断面を示す電子写真(40倍)であり、図8は、比較例3にかかる積層体の断面を示す電子写真(40倍)である。
Figure JPOXMLDOC01-appb-T000001
 気孔率が14%の第1金属回路層と、気孔率が0.1%以下の第2金属回路層を形成した実施例1の積層体は、各回路層施工後に回路層の剥離は認められず、図7に示すように、耐熱試験後、アルミナ基材の割れは生じなかった。比較例2の積層体は、実施例1の積層体と第1金属回路層の気孔率のみ異なるが、第1金属回路層の気孔率が0.5%と小さいため、耐熱試験による熱応力の緩和が十分でなく、アルミナ基材に割れが生じた。同様に、熱応力を緩和しうる、気孔率が5~15%の金属回路層を有しない比較例4は、耐熱試験によりアルミナ基材に割れが生じた。また、比較例3の積層体は、気孔率が0.1%以下の第1金属回路層と、気孔率が14%の第2金属回路層とを有するが、第1金属回路層は気孔率が小さいため、耐熱試験による熱応力の緩和が十分でなく、アルミナ基材に割れが生じた(図8参照)。
 一方、実施例1の第2金属回路層の表面の算術平均粗さは8.4μmであり、半田濡れ性も良好であることが確認されたが、比較例3の第2金属回路層の表面の算術平均粗さは12.2μmと非常に大きいことが確認された。なお、実施例1の第1金属回路層の算術平均粗さは11.9μmであり、金属回路層を気孔率が5~15%の第1金属回路層のみを形成した場合は、熱応力を緩和できるためセラミックス基材の割れは防止できるが、半田濡れ性が悪いため、実装不良を生じやすい。
 以上のように、本発明にかかる積層体、絶縁性冷却板、パワーモジュールおよびこの積層体の製造方法は、セラミックス基材と金属皮膜とを接合する場合に有用であり、特に耐熱性に劣るアルミナをセラミック基材として使用する場合に適している。
 1 電子回路基板
 10、110 セラミックス基材
 20、120 金属回路層
 21、121 第1金属回路層
 22、122 第2金属回路層
 30、130 半導体チップ
 50、150 中間層
 51、151 第1中間層
 52、152 第2中間層
 60 コールドスプレー装置
 61 ガス加熱器
 62 粉末供給装置
 63 ガスノズル
 64 スプレーガン
 100 パワーモジュール
 140 冷却フィン
 141 第1金属皮膜
 142 第2金属皮膜

Claims (14)

  1.  絶縁性のセラミックス基材と、
     前記セラミックス基材の表面に形成された金属または合金を主成分とする中間層と、
     前記中間層の表面に、金属を含む粉体をガスと共に加速し、前記表面に固相状態のままで吹き付けて堆積させることによって形成された、気孔率が5~15%の第1金属皮膜と、
     前記第1金属皮膜の表面に、前記第1金属皮膜を形成する金属と同一の金属を含む粉体をガスと共に加速し、前記表面に固相状態のままで吹き付けて堆積させることによって形成された、気孔率が0~0.5%の第2金属皮膜と、
     を備えることを特徴とする積層体。
  2.  前記中間層は、
     金属または合金を主成分とし、前記第1金属皮膜側で層をなす第1中間層と、
     活性金属、または活性金属の酸化物もしくは水素化物からなり、前記第1中間層と接触すると共に、前記第1中間層と接触する面と異なる面で前記セラミックス基材と結合して積層される第2中間層と、を有し、
     前記第1中間層および前記第2中間層は、ろう材を前記セラミックス基材に塗布した後、熱処理することにより形成されることを特徴とする請求項1に記載の積層体。
  3.  前記中間層は、真空中で熱処理することによって形成されることを特徴とする請求項2に記載の積層体。
  4.  前記第2中間層は、チタン、ジルコニウム、ハフニウム、ゲルマニウムのいずれかの金属または金属の水素化物からなる群より選択される少なくとも1種類を含むことを特徴とする請求項3に記載の積層体。
  5.  前記第1中間層は、金、銀、銅、アルミニウム、ニッケルからなる群より選択される少なくとも1種類を含むことを特徴とする請求項3または4に記載の積層体。
  6.  前記中間層は、大気中で熱処理することによって形成されることを特徴とする請求項2に記載の積層体。
  7.  前記第2中間層は、チタン、ジルコニウム、ハフニウム、ゲルマニウム、硼素、珪素、アルミニウム、クロム、インジウムまたは金属の酸化物もしくは水素化物からなる群より選択される少なくとも1種類を含むことを特徴とする請求項6に記載の積層体。
  8.  前記第1中間層は、金または銀のうち少なくとも1種類を含むことを特徴とする請求項6または7に記載の積層体。
  9.  前記第1金属皮膜および前記第2金属皮膜は、銅、アルミニウムまたはこれらの金属の合金からなることを特徴とする請求項1~8のいずれか1つに記載の積層体。
  10.  前記セラミックス基材はアルミナであることを特徴とする請求項1~9のいずれか1つに記載の積層体。
  11.  請求項1~10のいずれか1つに記載の積層体からなる絶縁性冷却板であって、
     前記セラミックス基材は放熱部を有し、
     前記第1金属皮膜および前記第2金属皮膜は回路層であることを特徴とする絶縁性冷却板。
  12.  請求項1~10のいずれか1つに記載の積層体を含むパワーモジュールであって、
     前記セラミックス基材は絶縁基板であり、
     前記第1金属皮膜および前記第2金属皮膜は回路層であり、
     前記絶縁基板の前記第1金属皮膜および前記第2金属皮膜が形成された面と異なる面に、銅またはアルミニウムを主成分とする冷却板が形成されることを特徴とするパワーモジュール。
  13.  セラミックス基材の表面に金属皮膜が形成された積層体の製造方法であって、
     前記セラミックス基材の表面に、金属または合金を主成分とする中間層を形成する中間層形成ステップと、
     前記中間層形成ステップによって形成された前記第1中間層の表面に、金属を含む粉体をガスと共に加速し、前記表面に固相状態のままで吹き付けて堆積させることによって、気孔率が5~15%の第1金属皮膜を形成する第1金属皮膜形成ステップと、
     前記第1金属皮膜の表面に、前記第1金属皮膜を形成する金属と同一の金属を含む粉体をガスと共に加速し、前記表面に固相状態のままで吹き付けて堆積させることによって、気孔率が0~0.5%の第2金属皮膜を形成する第2金属皮膜形成ステップと、
     を含むことを特徴とする積層体の製造方法。
  14.  前記中間層形成ステップは、
     前記セラミックス基材の表面に対して、ろう材を配設するろう材配置ステップと、
     前記ろう材配置ステップで前記ろう材が配設された前記セラミックス基材を熱処理することにより、前記第1中間層、および前記第1中間層と接触すると共に、前記第1中間層と接触する面と異なる面で前記セラミックス基材と結合して積層される第2中間層を有する中間層を形成する熱処理ステップと、
     を含むことを特徴とする請求項13に記載の積層体の製造方法。
PCT/JP2014/078003 2013-10-28 2014-10-21 積層体、絶縁性冷却板、パワーモジュールおよび積層体の製造方法 WO2015064430A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-223691 2013-10-28
JP2013223691A JP6096094B2 (ja) 2013-10-28 2013-10-28 積層体、絶縁性冷却板、パワーモジュールおよび積層体の製造方法

Publications (1)

Publication Number Publication Date
WO2015064430A1 true WO2015064430A1 (ja) 2015-05-07

Family

ID=53004038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078003 WO2015064430A1 (ja) 2013-10-28 2014-10-21 積層体、絶縁性冷却板、パワーモジュールおよび積層体の製造方法

Country Status (2)

Country Link
JP (1) JP6096094B2 (ja)
WO (1) WO2015064430A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105669250A (zh) * 2016-01-08 2016-06-15 宜兴中村窑业有限公司 一种碳化硅棚板喷涂装置
WO2018135490A1 (ja) * 2017-01-17 2018-07-26 デンカ株式会社 セラミックス回路基板の製造方法
EP3587621A4 (en) * 2017-02-24 2020-01-22 National Institute for Materials Science METHOD FOR MANUFACTURING ALUMINUM PRINTED CIRCUIT BOARD

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6936040B2 (ja) * 2016-04-28 2021-09-15 三ツ星ベルト株式会社 メタライズ基板及びその製造方法
CN107090578B (zh) * 2016-11-22 2020-04-24 佛山市顺德区美的电热电器制造有限公司 一种结构致密的导磁涂层及其制备方法
CN109413847A (zh) * 2017-08-16 2019-03-01 欣兴电子股份有限公司 金属化基板及其制造方法
JP7299672B2 (ja) * 2017-09-28 2023-06-28 デンカ株式会社 セラミックス回路基板及びその製造方法
JP7027095B2 (ja) * 2017-09-28 2022-03-01 デンカ株式会社 セラミックス回路基板
RU2687598C1 (ru) * 2017-12-12 2019-05-15 Общество с ограниченной ответственностью "НАНОКЕРАМИКС" Способ металлизации керамики под пайку
JP7088469B2 (ja) * 2018-07-12 2022-06-21 国立大学法人信州大学 成膜方法
KR102293181B1 (ko) * 2020-08-27 2021-08-25 주식회사 코멧네트워크 양면 냉각형 파워 모듈용 세라믹 회로 기판, 그 제조방법 및 이를 구비한 양면 냉각형 파워 모듈
WO2022230220A1 (ja) * 2021-04-28 2022-11-03 富士電機株式会社 半導体装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0517248A (ja) * 1991-07-04 1993-01-26 Nippon Cement Co Ltd セラミツクスと金属との接合方法
JP2007230791A (ja) * 2006-02-27 2007-09-13 Kyocera Corp セラミック回路基板およびその製造方法
JP2009127086A (ja) * 2007-11-22 2009-06-11 Toyota Motor Corp 伝熱部材及びその製造方法
JP2012111982A (ja) * 2010-11-19 2012-06-14 Nhk Spring Co Ltd 積層体および積層体の製造方法
JP2013018190A (ja) * 2011-07-11 2013-01-31 Nhk Spring Co Ltd 積層体及び積層体の製造方法
JP2013019020A (ja) * 2011-07-11 2013-01-31 Toyota Motor Corp パワーモジュールの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0517248A (ja) * 1991-07-04 1993-01-26 Nippon Cement Co Ltd セラミツクスと金属との接合方法
JP2007230791A (ja) * 2006-02-27 2007-09-13 Kyocera Corp セラミック回路基板およびその製造方法
JP2009127086A (ja) * 2007-11-22 2009-06-11 Toyota Motor Corp 伝熱部材及びその製造方法
JP2012111982A (ja) * 2010-11-19 2012-06-14 Nhk Spring Co Ltd 積層体および積層体の製造方法
JP2013018190A (ja) * 2011-07-11 2013-01-31 Nhk Spring Co Ltd 積層体及び積層体の製造方法
JP2013019020A (ja) * 2011-07-11 2013-01-31 Toyota Motor Corp パワーモジュールの製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105669250A (zh) * 2016-01-08 2016-06-15 宜兴中村窑业有限公司 一种碳化硅棚板喷涂装置
WO2018135490A1 (ja) * 2017-01-17 2018-07-26 デンカ株式会社 セラミックス回路基板の製造方法
JPWO2018135490A1 (ja) * 2017-01-17 2019-12-19 デンカ株式会社 セラミックス回路基板の製造方法
US11160172B2 (en) 2017-01-17 2021-10-26 Denka Company Limited Method for producing ceramic circuit board
EP3587621A4 (en) * 2017-02-24 2020-01-22 National Institute for Materials Science METHOD FOR MANUFACTURING ALUMINUM PRINTED CIRCUIT BOARD
US11570901B2 (en) 2017-02-24 2023-01-31 National Institute For Materials Science Method for manufacturing aluminum circuit board

Also Published As

Publication number Publication date
JP2015086085A (ja) 2015-05-07
JP6096094B2 (ja) 2017-03-15

Similar Documents

Publication Publication Date Title
JP6096094B2 (ja) 積層体、絶縁性冷却板、パワーモジュールおよび積層体の製造方法
KR101572586B1 (ko) 적층체 및 적층체의 제조 방법
KR101585142B1 (ko) 방열 구조체, 파워 모듈, 방열 구조체의 제조 방법 및 파워 모듈의 제조 방법
JP5191527B2 (ja) 積層体および積層体の製造方法
JP6811719B2 (ja) 積層体の製造方法
TW201325330A (zh) 配線基板及其製造方法以及半導體裝置
JP2013089799A (ja) 放熱用フィン付き回路基板の製造方法
JP5889488B2 (ja) 電子回路装置
KR102496716B1 (ko) 세라믹 기판 제조 방법
WO2016021561A1 (ja) 複合基板及びパワーモジュール
WO2015019890A1 (ja) 放熱板、パワーモジュールおよび放熱板の製造方法
WO2013047330A1 (ja) 接合体
JP2004047863A (ja) 放熱回路基板とその作製方法
JP2010010563A (ja) パワーモジュール用基板の製造方法及びパワーモジュール用基板
JP5278371B2 (ja) 半導体装置の製造方法
JP6299578B2 (ja) 半導体装置
WO2016056567A1 (ja) 放熱部材用積層体、ヒートシンク付き基板、および放熱部材用積層体の製造方法
JP6378247B2 (ja) 積層体、パワーモジュールおよび積層体の製造方法
JP4998387B2 (ja) パワーモジュール用基板の製造方法及びパワーモジュール用基板
JP2015002306A (ja) 絶縁基板およびその製造方法
JP2007095716A (ja) 複合体およびそれを備えた半導体製造装置用サセプタ並びにパワーモジュール
JP2012009787A (ja) パワーモジュール用基板及びその製造方法
JP5940589B2 (ja) 積層体、及びパワーモジュール
KR102496717B1 (ko) 세라믹 기판 제조 방법 및 이 제조방법으로 제조된 세라믹 기판
KR20220005497A (ko) 전자 부품 모듈, 및 질화규소 회로 기판

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14858413

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14858413

Country of ref document: EP

Kind code of ref document: A1