WO2015019890A1 - 放熱板、パワーモジュールおよび放熱板の製造方法 - Google Patents
放熱板、パワーモジュールおよび放熱板の製造方法 Download PDFInfo
- Publication number
- WO2015019890A1 WO2015019890A1 PCT/JP2014/069862 JP2014069862W WO2015019890A1 WO 2015019890 A1 WO2015019890 A1 WO 2015019890A1 JP 2014069862 W JP2014069862 W JP 2014069862W WO 2015019890 A1 WO2015019890 A1 WO 2015019890A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat sink
- alloy
- metal
- groove
- powder material
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/367—Cooling facilitated by shape of device
- H01L23/3677—Wire-like or pin-like cooling fins or heat sinks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/367—Cooling facilitated by shape of device
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
- H01L23/3735—Laminates or multilayers, e.g. direct bond copper ceramic substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Definitions
- the present invention relates to a heat sink, a power module, and a method for manufacturing a heat sink.
- a power module has a semiconductor chip (transistor) mounted on a circuit pattern made of a brazed metal plate on one surface of an insulating substrate (such as a ceramic substrate) that is a base material, and is brazed on the other surface.
- a semiconductor chip transistor
- This is a device in which a heat radiating plate is disposed via a metal plate.
- the semiconductor chip is joined to the circuit pattern by soldering, and the heat sink is joined to the metal plate by soldering or brazing (see, for example, Patent Document 1).
- the present invention has been made in view of the above, and provides a heat sink, a power module, and a method of manufacturing a heat sink that can suppress warpage under a heat cycle and are excellent in bondability with other members.
- the purpose is to do.
- a heat sink according to the present invention has a plate shape and has a groove portion with a side surface having an inclination angle of 10 to 45 ° with respect to the main surface at the center of the main surface.
- a first member made of a metal or an alloy is laminated with a metal or an alloy having a thermal conductivity larger than that of the material constituting the first member, which extends in the groove portion or from the groove portion in the thickness direction of the first member.
- the second member accelerates the powder material of the metal or alloy constituting the second member together with the gas heated to a temperature lower than the melting point of the powder material, It is characterized in that the first member is sprayed and deposited in the solid phase so as to extend in the groove portion of the first member or in the thickness direction of the second member from the groove portion, and laminated.
- the radiator plate of the present invention has a plate-like body whose side surfaces are inclined at an angle of 10 to 45 ° with respect to the main surface, and a second member made of metal or an alloy, And a first member formed by laminating a metal or alloy having a lower thermal conductivity than the material constituting the second member, and the first member comprises a powder material of the metal or alloy constituting the first member.
- the gas material is accelerated together with a gas heated to a temperature lower than the melting point of the powder material, sprayed and deposited in the solid state on the outer peripheral portion of the side surface of the second member, and laminated.
- the heat dissipation plate of the present invention is characterized in that the coefficient of thermal expansion of the metal or alloy constituting the second member is smaller than that of the metal or alloy constituting the first member.
- the first member is made of aluminum or an aluminum alloy
- the second member is made of copper or a copper alloy.
- the heat sink of the present invention is characterized in that the groove is formed so as to traverse from one end to the other end of the main surface of the first member.
- the heat dissipation plate of the present invention is characterized in that the groove portion is formed so as to penetrate the first member.
- the second member is formed in the groove, and the upper surface of the first member and the upper surface of the second member are flat.
- the upper surface of the second member is formed so as to protrude from the upper surface of the first member, and the maximum thickness of the portion of the first member in contact with the second member And the maximum thickness of the portion of the second member in contact with the first member is in a range of 1: 1 to 1: 3.
- the heat sink of the present invention has a ratio between the maximum thickness of the portion of the first member that contacts the second member and the maximum thickness of the portion of the second member that contacts the first member, The range is from 1: 1 to 20: 1.
- the first member is characterized in that a flow path through which a cooling medium flows is formed on the surface opposite to the surface on which the groove is formed.
- the power module of the present invention includes a heat dissipation plate according to any one of the above, a ceramic substrate connected to the second member of the heat dissipation plate, and a surface of the heat dissipation plate in contact with the first ceramic substrate. And a heat sink made of aluminum or an aluminum alloy connected on the opposite surface.
- the power module of the present invention is characterized in that, in the above invention, the heat radiation plate described above and a ceramic substrate connected to the second member side of the heat radiation plate are provided.
- the method for manufacturing a heat sink according to the present invention has a plate shape, and the side surface formed at the center of the main surface of the first member made of metal or alloy has an inclination angle of 10 to 45 ° with respect to the main surface.
- a metal or alloy powder material having a thermal conductivity larger than that of the material constituting the first member is accelerated in the groove portion together with a gas heated to a temperature lower than the melting point of the powder material, and from within the groove portion or the groove portion.
- a stacking step in which the second member is formed by spraying and depositing in the solid state so as to extend in the thickness direction of the second member, and at least the second member formed by the stacking step is cut And a cutting process.
- the manufacturing method of the heat radiating plate of the present invention has a plate shape whose side surface is inclined at an angle of 10 to 45 ° with respect to the main surface, from above the side surface of the second member made of metal or alloy and the outer peripheral portion of the side surface.
- a metal or alloy powder material having a lower thermal conductivity than the material constituting the second member is accelerated together with a gas heated to a temperature lower than the melting point of the powder material, sprayed and deposited in a solid state, It includes a laminating process for forming a first member, and a cutting process for cutting at least the first member formed by the laminating process.
- the manufacturing method of the heat sink of this invention WHEREIN: The thermal expansion coefficient of the metal or alloy which comprises the said 2nd member is smaller than the metal or alloy which comprises the said 1st member in the said invention. .
- the heat sink according to the present invention can reduce the amount of warpage even under a thermal cycle despite the use of two kinds of metals or alloys, and can be bonded even when used with a ceramic substrate or a cooler. There is an effect that peeling of a portion can be suppressed.
- FIG. 1 is a schematic diagram illustrating a configuration of a heat sink according to the first embodiment of the present invention.
- FIG. 2 is a schematic diagram showing an outline of a cold spray device used for manufacturing the heat sink according to the first embodiment of the present invention.
- FIG. 3 is a schematic diagram illustrating a manufacturing process of the heat sink according to the first embodiment of the present invention.
- FIG. 4 is a schematic diagram for explaining another method of manufacturing the heat sink according to the first embodiment of the present invention.
- FIG. 5 is a schematic diagram illustrating the configuration of the power module according to the first embodiment of the present invention.
- FIG. 6 is a schematic diagram illustrating a configuration of a heat sink according to the first modification of the first embodiment of the present invention.
- FIG. 1 is a schematic diagram illustrating a configuration of a heat sink according to the first embodiment of the present invention.
- FIG. 2 is a schematic diagram showing an outline of a cold spray device used for manufacturing the heat sink according to the first embodiment of the present invention.
- FIG. 3
- FIG. 7 is a schematic diagram illustrating a configuration of a heat sink according to the second modification of the first embodiment of the present invention.
- FIG. 8 is a schematic diagram for explaining a manufacturing process of the heat sink according to the second modification of the first embodiment of the present invention.
- FIG. 9 is a schematic diagram illustrating a configuration of a heat sink according to Modification 3 of Embodiment 1 of the present invention.
- FIG. 10 is a schematic diagram illustrating a configuration of a heat sink according to the fourth modification of the first embodiment of the present invention.
- FIG. 11 is a schematic diagram illustrating a configuration of a heat dissipation plate according to the second exemplary embodiment of the present invention.
- FIG. 12 is a flowchart for explaining a manufacturing process of the heat sink according to the second embodiment of the present invention.
- FIG. 13 is a schematic diagram illustrating a configuration of a heat sink according to the first modification of the second embodiment of the present invention.
- FIG. 14 is a schematic diagram illustrating a configuration of a heat sink according to the second modification of the second embodiment of the present invention.
- FIG. 15 is a flowchart for explaining a manufacturing process of the heat sink according to the second modification of the second embodiment of the present invention.
- FIG. 16 is a schematic diagram illustrating a configuration of a heat dissipation plate according to Modification 3 of Embodiment 2 of the present invention.
- FIG. 17 is a schematic diagram illustrating a configuration of a heat dissipation plate according to Modification 4 of Embodiment 2 of the present invention.
- FIG. 18 is a schematic diagram illustrating a configuration of a heat dissipation plate according to Modification 6 of Embodiment 2 of the present invention.
- FIG. 1 is a schematic diagram illustrating a configuration of a heat sink according to the first embodiment of the present invention.
- 1A is a top view of the heat sink
- FIG. 1B is a cross-sectional view taken along the line AA in FIG.
- the heat radiating plate 10 includes a first member 1 made of a metal or an alloy and a second member 2 made of a metal or an alloy having a higher thermal conductivity than the material constituting the first member 1.
- the suitable combination of the 1st member 1 and the 2nd member 2 can illustrate aluminum and copper, iron and aluminum, iron and copper.
- the first member 1 has a groove portion 3 having a side surface with an inclination angle ( ⁇ ) of 10 to 45 ° with respect to the main surface at the center of the main surface.
- the groove 3 is formed so as to cross from one end of the main surface of the first member 1 to the other end, and penetrates from the main surface upper surface of the first member 1 to the main surface. Is formed.
- “the side surface has an inclination angle ( ⁇ ) of 10 to 45 ° with respect to the main surface” means that one surface (or ridge line) forming the side surface is 10 to 45 ° with respect to the main surface.
- the tangential tilt angle ( ⁇ ) having the maximum inclination angle with the main surface among the tangent lines of the arc portion is 10 to 45. Including the case of °.
- the maximum thickness h 1 of the portion in contact with the second member 2 of the first member 1, the ratio of the maximum thickness h 2 of the portion in contact with the first member of the second member, 1: 1 to 1: 3 range It is preferable that By setting it as the said range, the curvature of the heat sink under a heat cycle can be reduced, without making the thickness of the heat sink 10 thick.
- the maximum thickness h 1 of the portion in contact with the second member 2 of the first member 1, the ratio of the maximum thickness h 2 of the portion in contact with the first member of the second member, 1: 1.5 to 1: 2 Is preferably in the range of .5.
- the second member 2 accelerates the powder material constituting the second member 2 together with the gas heated to a temperature lower than the melting point of the powder material, and extends in the thickness direction of the first member 1 from the inside of the groove portion 3. Thus, it is formed by spraying and depositing in the solid state.
- FIG. 2 is a schematic diagram showing an outline of a cold spray device used for manufacturing the heat sink according to the first embodiment of the present invention.
- FIG. 3 is a schematic diagram illustrating a manufacturing process of the heat sink according to the first embodiment of the present invention.
- FIG. 4 is a schematic diagram for explaining another method of manufacturing the heat sink according to the first embodiment of the present invention.
- the cold spray device 50 includes a gas heater 51 that heats a compressed gas, a powder supply device 52 that contains a powder material to be sprayed onto a base material and supplies the powder material to the spray gun 54, and a compressed gas heated by the spray gun 54.
- a gas nozzle 53 is provided for injecting the mixed material powder onto the first base material portion 1a that becomes the first member 1 after the cutting process.
- the compressed gas helium, nitrogen, air or the like is used.
- the supplied compressed gas is supplied to the gas heater 51 and the powder supply device 52 by valves 55 and 56, respectively.
- the compressed gas supplied to the gas heater 51 is, for example, 50 ° C. or higher, heated to a temperature not higher than the melting point of the material powder of the second member 2, and then supplied to the spray gun 54.
- the heating temperature of the compressed gas is preferably 300 to 900 ° C.
- the compressed gas supplied to the powder supply device 2 supplies, for example, material powder having a particle size of about 10 to 100 ⁇ m in the powder supply device 52 to the spray gun 54 so as to have a predetermined discharge amount.
- the heated compressed gas is made a supersonic flow (about 340 m / s or more) by a gas nozzle 53 having a tapered and wide shape.
- the gas pressure of the compressed gas is preferably about 1 to 5 MPa. By setting the pressure of the compressed gas to about 1 to 5 MPa, the adhesion strength between the first member 1 and the second member 2 can be improved.
- the treatment is preferably performed at a pressure of about 2 to 4 MPa.
- the powder material supplied to the spray gun 54 is accelerated by the injection of the compressed gas into the supersonic flow, and collides with the substrate at a high speed in the solid state to form a film.
- it is an apparatus which can make material powder collide with the groove part 3 formed in the 1st base material part 1a in a solid-phase state, and can form the 2nd film
- the heat radiating plate 10 includes a first base material portion 1a having a groove portion 3 whose side surface has an inclination angle of 10 to 45 ° with respect to the main surface.
- the second coating is prepared by spraying and depositing the powder material constituting the second member 2 in the solid state in the solid state by the cold spray device 50 described above. Part 2a is formed.
- the upper surface of the second film portion 2a and the surface opposite to the surface on which the groove portion 3 of the first member 1a is formed should be flat. It can be manufactured by cutting.
- the heat radiating plate 10 according to the first embodiment can also be manufactured by the process shown in FIG.
- the first member 1b made of two parts is aligned by an alignment member (not shown) so that the groove 3 has a predetermined shape (see FIG. 4A).
- the powder material constituting the second member 2 is sprayed and deposited in the solid state by the cold spray device 50 to form the second coating portion 2a.
- it can manufacture by cutting the upper surface of the 2nd membrane
- the heat sink 10 may also cut the surface (the 1st member 1b and the 2nd film part 2a) on the opposite side to the side by which the 2nd film part 2a was laminated
- the material powder is accelerated together with the gas by the cold spray device 50, and the second member 2a is formed by being sprayed and deposited in the solid state in the groove portion 3 whose side surface has an inclination angle of 10 to 45 ° with respect to the main surface.
- the adhesive strength between the 1st member 1 and the 2nd member 2 can be improved.
- the heat sink 10 concerning Embodiment 1 is not limited to manufacture by the cold spray method, It can manufacture also by the clad material with which the dissimilar metal was joined, and FSW (Friction Stir Welding).
- the heat sink 10 concerning Embodiment 1 is formed so that the groove part 3 may be penetrated from the main surface upper surface of the 1st member 1 to a main surface, the contact area of the 1st member 1 and the 2nd member 2 is formed. And the amount of warpage due to the difference in thermal expansion can be greatly reduced.
- FIG. 5 is a schematic diagram illustrating the configuration of the power module according to the first embodiment of the present invention.
- the power module 100 includes a power module substrate 30 on which the semiconductor element 31 is mounted, a heat radiating plate 10 that transfers heat emitted from the semiconductor element 31, and a cooler 20 that discharges heat from the heat radiating plate 10.
- the power module substrate 30 includes a ceramic substrate 33, and a circuit layer 32 is formed on one surface of the ceramic substrate 33, and a metal layer 34 is formed on the other surface.
- the ceramic substrate 33 is a substantially plate-like member made of an insulating material.
- the material for the ceramic substrate 33 include nitride ceramics such as aluminum nitride and silicon nitride, and oxide ceramics such as alumina, magnesia, zirconia, steatite, forsterite, mullite, titania, silica, and sialon. It is done.
- the circuit layer 32 is made of, for example, a metal having good electrical conductivity such as aluminum, copper, silver, or an alloy containing the metal. In the circuit layer 32, a circuit pattern for transmitting an electric signal to the semiconductor element 31 and the like is formed.
- the semiconductor element 31 is realized by a semiconductor element such as a diode, a transistor, or an IGBT (insulated gate bipolar transistor).
- the semiconductor element 31 is connected to the circuit layer 32 by solder 35.
- the semiconductor element 31 is preferably a power device that can be used at a high voltage, particularly a silicon carbide chip having excellent heat resistance, and a plurality of semiconductor elements 31 may be provided on the ceramic substrate 33 in accordance with the purpose of use.
- the metal layer 34 is formed of the same material as the material of the circuit layer 32, and the circuit layer 32 and the metal layer 34 are joined to the ceramic substrate 33 by a brazing material.
- the power module 100 is a DBC substrate (a “Direct Bonded Copper substrate”, hereinafter referred to as a DBC substrate) in which a circuit layer 32 and a metal layer 34 made of a copper plate are directly bonded to a ceramic substrate 33. There may be.
- DBC substrate a “Direct Bonded Copper substrate”, hereinafter referred to as a DBC substrate
- a circuit layer 32 and a metal layer 34 made of a copper plate are directly bonded to a ceramic substrate 33. There may be.
- the cooler 20 is made of a metal or alloy having good thermal conductivity, for example, aluminum or an aluminum alloy.
- a flow path 21 through which a cooling medium such as air or water flows is formed on the surface of the cooler 20 opposite to the side in contact with the heat sink 10.
- the heat radiating plate 10 is connected to the metal layer 34 of the power module substrate 30 by the brazing material 5 on the protruding surface of the second member 2. Further, the heat radiating plate 10 is connected to the cooler 20 by the brazing material 4 on the surface opposite to the surface in contact with the metal layer 24.
- the coefficient of thermal expansion of the metal or alloy constituting the second member 2 of the heat sink 10 may be smaller than the coefficient of thermal expansion of the metal or alloy constituting the first member 1. preferable. Since the coefficient of thermal expansion of the metal or alloy constituting the second member 2 is smaller than the coefficient of thermal expansion of the metal or alloy constituting the first member 1, the ceramic substrate 33 and the cooler 20 are subjected to thermal cycle. It is possible to buffer the thermal stress that can be generated in
- the first member 1 is preferably formed from aluminum or an aluminum alloy
- the second member 2 is preferably formed from copper or a copper alloy.
- the first member 1 is made of aluminum or an aluminum alloy
- the second member 2 is made of copper or a copper alloy, so that not only the amount of warpage under a heat cycle can be reduced, but also excellent thermal diffusivity, ceramic substrate 33 and cooling It becomes possible to suppress peeling of the bonded portion when bonded to the vessel 20.
- the heat sink shown in FIG. 6 can be illustrated as the modification 1 of the heat sink 10 concerning Embodiment 1.
- the heat sink 10A according to the modified example 1 can be manufactured by the method for manufacturing the heat sink 10 of the first embodiment shown in FIG. 3 or FIG.
- a first base material portion 1a having a groove portion 3 whose side surface has an inclination angle of 10 to 45 ° with respect to the main surface is prepared.
- the powder material constituting the second member 2 is sprayed and deposited in the solid state in the groove portion 3 to form the second coating portion 2a, and the groove portion 3 of the first member 1a is formed.
- the surface opposite to the formed surface is cut, and the upper surface of the second film portion 2a and the upper surface of the first member 1a may be cut so that the second member 2A and the first member 1A form a plane. .
- the 1st member 1b which consists of two parts shown to Fig.4 (a) is prepared, and the 2nd member 2 is comprised in the groove part 3 as shown in FIG.4 (b) by the cold spray apparatus 50.
- FIG. The powder material is sprayed and deposited in the solid state to form the second film portion 2a, and the upper surface of the second film portion 2a and the upper surface of the first member 1a are flat with the second member 2A and the first member 1A being flat. It may be cut so as to make.
- FIG. 7 is a schematic diagram illustrating a configuration of a heat sink according to the second modification of the first embodiment of the present invention.
- FIG. 8 is a schematic diagram for explaining a manufacturing process of the heat sink according to the second modification of the first embodiment of the present invention.
- the heat sink 10B according to the second modification of the first embodiment is the same as the heat sink 10 of the first embodiment in that the second member 2B protrudes from the first member 1B, but the groove 3B. Is different from the heat dissipation plate 10 of the first embodiment in that it is formed in a convex shape.
- the inclination angle ( ⁇ ) with respect to the main surface of the side surface of the groove 3B on the side from which the second member 2B protrudes is set to 10 to 45 °. Since the second member 2B is a convex shape, the heat diffusing plate 10B of Modification 2 can be more easily diffused.
- a second base material portion 2c whose side surface has an inclination angle of 10 to 45 ° with respect to the main surface is prepared.
- the powder material constituting the first member 1B is sprayed and deposited on the outer peripheral portion of the side surface of the second base material portion 2c in the solid state to form the first coating 1c.
- the upper surface of the first coating 1c is cut so as to form a plane, and the corner portion of the second base material portion 2c is cut. can do.
- the heat radiating plate may have a shape as shown in FIG. FIG. 9 is a cross-sectional view of a heat sink according to the third modification of the first embodiment of the present invention.
- the heat radiating plate 10K according to Modification 3 has a shape in which the heat radiating plate 10A according to Modification 1 is turned upside down.
- the heat radiating plate 10K is formed so that the area where the second member 2K is exposed on the main surface is larger on the lower surface side connected to the cooler than on the upper surface side connected to the ceramic substrate. Therefore, the heat sink 10K according to the modified example 3 is excellent in diffusibility of heat released from the semiconductor element on the ceramic substrate.
- the heat radiating plate 10K according to the modified example 3 may be used after being inverted after the heat radiating plate 10A according to the modified example 1 is manufactured.
- the heat sink may have a shape as shown in FIG.
- FIG. 10A is a top view of a heat sink according to Modification 4 of Embodiment 1 of the present invention
- FIG. 10B is a cross-sectional view taken along line BB in FIG.
- the heat sink 10D according to the modified example 4 is formed so that the groove 3D penetrates through the center of the main surface.
- the heat sink 10E according to the second embodiment differs from the first embodiment in that the groove 3E formed in the first member 1E is not a through hole.
- the heat sink 10E according to the second exemplary embodiment will be described with reference to the drawings.
- FIG. 11 (a) is a top view of the heat sink 10E according to the second embodiment of the present invention
- FIG. 11 (b) is a cross-sectional view taken along the line CC of FIG. 11 (a).
- the heat radiating plate 10E is different from the heat radiating plate 10 of the first embodiment in that the groove 3E does not penetrate the first member 1E.
- the first member 1E has a groove 3E having a tilt angle ( ⁇ ) whose side surface is 10 to 45 ° with respect to the main surface at the center of the main surface.
- the groove 3E is formed so as to traverse from one end of the main surface of the first member 1 to the other end.
- the heat sink 10E according to the second embodiment can be manufactured as shown in FIG.
- the heat radiating plate 10E is prepared by first preparing a first member 1E having a groove 3E having a side surface with an inclination angle of 10 to 45 ° with respect to the main surface. 50, as shown in FIG. 12B, the powder material constituting the second member 2E is sprayed and deposited in the solid state in the groove 3E to form the second coating 2e.
- the second film portion 2e can be manufactured by cutting the upper surface of the second film portion 2e into a flat surface.
- the heat radiating plate may have a shape as shown in FIG.
- FIG. 13A is a top view of a heat sink according to Modification 1 of Embodiment 2 of the present invention
- FIG. 13B is a cross-sectional view taken along the line DD in FIG.
- the groove part 3F is formed only in the main surface center part.
- FIG. 14 is a schematic diagram illustrating a configuration of a heat sink according to the second modification of the second embodiment of the present invention.
- the heat radiating plate 10G according to the second modification of the second embodiment includes the first member 1G in which the flow path 21 through which the cooling medium flows is formed on the surface facing the surface on which the groove 3G is formed.
- the heat radiating plate 10G can discharge the heat transferred through the second member 2G through the flow path 21 of the first member 1G.
- the heat radiating plate 10G according to the second modification of the second embodiment is formed by forming a channel 21 and a groove 3G in a bulk material of a metal or an alloy that is a material of the first member 1G.
- the cold spray device 50 described above as a member 1G step S1
- the powder material constituting the second member 2 is sprayed and deposited in the solid state in the groove 3G to form the second coating portion (Ste S2).
- the second film part After the second film part is laminated, it can be manufactured by performing a cutting process in which the upper surface of the second film part is a flat surface (step S3).
- the groove 3G is formed in the metal or alloy bulk material that is the material of the first member 1G, the second film portion is formed by the cold spray device 50, and the second member is formed by cutting, and then the flow path 21 is formed. It may be formed.
- the heat radiating plate may have a shape as shown in FIG.
- FIG. 16A is a top view of a heat sink according to the third modification of the second embodiment of the present invention
- FIG. 16B is a cross-sectional view taken along the line EE in FIG.
- 2nd member 2M is formed in the groove part 3 of 1st member 1M, and the upper surface of 2nd member 2M and the upper surface of 1st member 1M comprise a plane. ing.
- the heat sink may have a shape as shown in FIG.
- FIG. 17A is a top view of a heat dissipation plate according to Modification 4 of Embodiment 2 of the present invention
- FIG. 17B is a cross-sectional view of the FF line in FIG.
- the heat sink 10H according to the fourth modification of the second embodiment three grooves 3H that cross from the position end of the main surface to the other end are formed in parallel on the first member 1H.
- the second member 2H is formed in the groove 3H of the first member 1H, and the upper surface of the second member 2H and the upper surface of the first member 1H are flat.
- the heat sink may have a shape as shown in FIG.
- FIG. 18A is a top view of a heat sink according to Modification 5 of Embodiment 2 of the present invention
- FIG. 18B is a cross-sectional view taken along the line GG in FIG.
- a plurality of grooves 3J are formed on the first member 1J in a lattice shape at equal intervals.
- the second member 2J is formed in the groove 3J of the first member 1J, and the upper surface of the second member 2J and the upper surface of the first member 1J are flat.
- the first member the maximum thickness h 1 of the portion in contact with the two members, the ratio of the maximum thickness h 2 of the portion in contact with the first member of the second member, 1: 1 to 20: it is preferably 1.
- the curvature of the heat sink under a heat cycle can be reduced, without thickening the thickness of a heat sink.
- Example 1 The heat radiating plate 10 having the shape shown in FIG. 1 is formed with the first member 1 made of aluminum (A6063-T5) and the second member 2 made of copper (phosphorus deoxidized copper).
- the first member 1 includes an aluminum plate (r 1 : 50 mm, r 3 : 50 mm) having a thickness (h 1 ) of 3.0 mm, an angle ( ⁇ ) with respect to the main surface of the side surface: 30 °, r 2 : 30 mm, r 3 : A groove 3 of 50 mm was formed.
- the second member 2 was laminated by spraying copper particles (particle size 30 ⁇ m) onto the groove portion 3 at a compressed gas: nitrogen, a compressed gas temperature: 600 ° C., and a gas pressure: 3 MPa by a cold spray device 50.
- the thickness h 2 of the second member 2 is 5.0 mm.
- a heat radiating plate 10E having the shape shown in FIG. 11 was formed by using aluminum (A6063-T5) for the first member 1E and copper (phosphorus deoxidized copper) for the second member 2E.
- the first member 1E includes an aluminum plate (r 1 : 50 mm, r 3 : 50 mm) having a thickness (h 1 ) of 3.0 mm, an angle ( ⁇ ) with respect to the main surface of the side surface: 30 °, and a base thickness h 3. : 2.0 mm or 1.0mm, r 2: 30mm, r 3: the formation of the groove portion 3E of 50 mm.
- the second member 2E was laminated by spraying copper particles (particle size 30 ⁇ m) onto the groove 3E at a compressed gas: nitrogen, a compressed gas temperature: 600 ° C., and a gas pressure: 3 MPa by a cold spray device 50.
- the thickness h 2 of the second member 2E is 3.0mm or 4.0Mmm.
- the second member 2 is laminated on the first member 1 that does not have the groove 3.
- An aluminum plate (A6063-T5, r 1 : 50 mm, r 3 : 50 mm) having a thickness (h 1 ) of 3 mm is used for the first member, and the second member 2 is compressed gas by the cold spray device 50. : Nitrogen, compressed gas temperature: 600 ° C., gas pressure: 3 MPa, and copper particles (phosphorus deoxidized copper, particle size 30 ⁇ m) were sprayed and laminated.
- the size of the second member is r 2 : 30 mm, r 3 : 50 mm, and h 2 : 2 mm. Table 1 shows the thicknesses of the first member and the second member of Reference Example 1.
- Example 4 The heat radiating plate 10D having the shape shown in FIG. 10 was formed by using aluminum (A6063-T5) for the first member 1D and copper (phosphorus deoxidized copper) for the second member 2D.
- the first member 1D includes an aluminum plate (r 1 : 50 mm, r 3 : 50 mm) with a thickness (h 1 ) of 3 mm, an angle ( ⁇ ) with respect to the main surface of the side surface: 30 °, r 2 : 30 mm, r 4 : 30 mm groove 3D was formed.
- the second member 2D was laminated by spraying copper particles (particle size 30 ⁇ m) onto the groove 3D at a compressed gas: nitrogen, a compressed gas temperature: 600 ° C., and a gas pressure: 3 MPa by a cold spray device 50.
- the thickness h 2 of the second member 2D is 5.0 mm.
- the heat radiating plate 10F having the shape of FIG. 13 was formed by using aluminum (A6063-T5) for the first member 1F and copper (phosphorus deoxidized copper) for the second member 2F.
- the first member 1F includes an aluminum plate (r 1 : 50 mm, r 3 : 50 mm) having a thickness (h 1 ) of 3.0 mm, an angle ( ⁇ ) with respect to the main surface of the side surface: 30 °, and a base thickness h 3. : 2.0 mm or 1.0 mm, r 2 : 30 mm, r 4 : 30 mm groove 3F was formed.
- the second member 2F was laminated by spraying copper particles (particle size 30 ⁇ m) onto the groove 3F at a compressed gas: nitrogen, a compressed gas temperature: 600 ° C., and a gas pressure: 3 MPa by a cold spray device 50.
- the thickness h 2 of the second member 2F is 3.0mm or 4.0 mm.
- the heat radiating plate 10M having the shape shown in FIG. 16 is formed by using aluminum (A6063-T5) for the first member 1M and copper (phosphorus deoxidized copper) for the second member 2M.
- the first member 1M includes an aluminum plate (r 1 : 50 mm, r 3 : 50 mm) having a thickness (h 1 ) of 5.0 mm, an angle ( ⁇ ) with respect to the main surface of the side surface: 30 °, and a base thickness h 3. : Groove portion 3M of 4.0 mm, r 2 : 30 mm, r 3 : 50 mm was formed.
- the first member 2M Cutting was performed so that the upper surface of the member 1M and the upper surface of the second member 2M were flat.
- Table 3 shows the thicknesses of the first member 1M and the second member 2M of Example 7.
- the heat radiating plate 10H having the shape shown in FIG. 17 was formed by using aluminum (A6063-T5) for the first member 1H and copper (phosphorus deoxidized copper) for the second member 2H.
- the first member 1H includes an aluminum plate (r 1 : 50 mm, r 3 : 50 mm) having a thickness (h 1 ) of 5.0 mm, an angle ( ⁇ ) with respect to the main surface of the side surface: 30 °, and a base thickness h 3. : 4.0 mm, r 2 : 9 mm, and r 3 : 50 mm, three groove portions 3H were formed at intervals of r 4 : 1.5 mm.
- the second member 2H is laminated by spraying copper particles (particle size 30 ⁇ m) onto the groove 3H at a compressed gas: nitrogen, a compressed gas temperature: 600 ° C., a gas pressure: 3 MPa by the cold spray device 50, the first member 2H is laminated. Cutting was performed so that the upper surface of the member 1H and the upper surface of the second member 2H were flat. Table 3 shows the thicknesses of the first member 1H and the second member 2H of Example 8.
- Example 9 The heat radiating plate 10J having the shape shown in FIG. 18 was formed by using aluminum (A6063-T5) for the first member 1J and copper (phosphorus deoxidized copper) for the second member 2J.
- the first member 1J includes an aluminum plate (r 1 : 50 mm, r 3 : 50 mm) having a thickness (h 1 ) of 5.0 mm, an angle ( ⁇ ) with respect to the main surface of the side surface: 30 °, and a base thickness h 3. : 4.0 mm, r 2 : 9 mm, r 5 : 9 mm groove portions 3J were formed in a lattice shape at intervals of r 4 : 1.5 mm and r 6 : 1.5 mm (9 complete grooves).
- the second member 2J is laminated by spraying copper particles (particle size 30 ⁇ m) onto the groove 3J at a compressed gas: nitrogen, a compressed gas temperature: 600 ° C., a gas pressure: 3 MPa, by the cold spray device 50, the first member 2J is laminated. Cutting was performed so that the upper surface of the member 1J and the upper surface of the second member 2J were flat. Table 3 shows the thicknesses of the first member 1J and the second member 2J of Example 9.
- the second member 2 is laminated on the first member 1 that does not have the groove 3.
- an aluminum plate (A6063-T5, r 1 : 50 mm, r 3 : 50 mm) having a thickness (h 1 ) of 4.0 mm is used, and the second member 2 is formed by the cold spray device 50.
- Compressed gas nitrogen, compressed gas temperature: 600 ° C., gas pressure: 3 MPa, and copper particles (phosphorus deoxidized copper, particle size 30 ⁇ m) were sprayed and laminated.
- the size of the second member is r 2 : 30 mm, r 3 : 50 mm, and h 2 : 1.0 mm. Table 3 shows the thicknesses of the first member and the second member of Reference Example 3.
- test piece produced in the above-mentioned examples and reference examples was visually evaluated for warpage when heated to 125 ° C. and cooled to ⁇ 40 ° C. ( ⁇ to ⁇ ).
- the warp is a warp from a state where there is no heat load at the end of the copper plate as the second member.
- Tables 1 to 3 summarize the thicknesses and warpage amounts of the test pieces prepared in Examples and Reference Examples. Is
- Example 1 the amount of warpage can be reduced compared to Reference Example 1. Further, as shown in Table 2, in Examples 4 to 6, it is possible to reduce the amount of warpage compared to Reference Example 2. Further, as shown in Table 3, in Examples 7 to 9, the amount of warpage can be reduced as compared with Reference Example 3.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Ceramic Engineering (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
Abstract
熱サイクル下でのそり量を抑制しうる放熱板、パワーモジュールおよび放熱板の製造方法を提供する。本発明の放熱板(10)は、板状をなし、主面中央部に側面が主面に対し10~45°の傾斜角を有する溝部(3)を有する金属または合金からなる第1部材(1)と、溝部(3)内または溝部(3)内から第1部材(1)の厚さ方向に、第1部材(1)を構成する材料より熱伝導率が大きい金属または合金が積層されてなる第2部材(2)と、を備え、第2部材(2)は、第2部材(2)を構成する金属または合金の粉末材料を、該粉末材料の融点より低い温度に加熱されたガスと共に加速し、第1部材(1)の溝部(3)内、または溝部(3)内から第2部材(2)の厚さ方向に延在するように固相状態のままで吹き付け堆積させて積層させたことを特徴とする。
Description
本発明は、放熱板、パワーモジュールおよび放熱板の製造方法に関するものである。
従来より、産業用、自動車用などの電力制御からモータ制御まで、幅広い分野に使用される省エネルギー化のキーデバイスとして、パワーモジュールが知られている。パワーモジュールは、基材である絶縁基板(例えばセラミックス基板)の一方の面に、ろう付された金属板からなる回路パターン上に半導体チップ(トランジスタ)を実装し、他方の面に、ろう付された金属板を介して放熱板を配設した装置である。このようなパワーモジュールにおいて、半導体チップは、回路パターン上に半田付けにより接合されるとともに、放熱板が半田またはろう付により金属板上に接合されている(例えば、特許文献1参照)。
特許文献1等のパワーモジュールでは、放熱板の材料としてパワーモジュールからの熱を効率よく拡散するために、熱伝導率に優れる銅が使用され、該放熱板は、絶縁基板の接する面と反対側の面で、アルミニウム合金で構成された冷却器と、固定ネジで締結、あるいは半田またはろう付されて使用されている。
パワーモジュールは、使用時に熱サイクルが負荷されるため、特許文献1のように、放熱板(銅)と冷却器(アルミニウム合金)の材料として異なる材料が使用されると、熱膨張係数の差により熱応力が発生し、放熱板と冷却器との間に生じた隙間により放熱効率が低下したり、熱応力により接合部に剥がれが生じることがあった。
本発明は、上記に鑑みてなされたものであって、熱サイクル下でのそり量を抑制しうるとともに、他の部材との接合性に優れる放熱板、パワーモジュールおよび放熱板の製造方法を提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明にかかる放熱板は、板状をなし、主面中央部に側面が主面に対し10~45°の傾斜角を有する溝部を有する金属または合金からなる第1部材と、前記溝部内または前記溝部内から前記第1部材の厚さ方向に延在する、前記第1部材を構成する材料より熱伝導率が大きい金属または合金が積層されてなる第2部材と、を備え、前記第2部材は、前記第2部材を構成する金属または合金の粉末材料を、該粉末材料の融点より低い温度に加熱されたガスと共に加速し、前記第1部材の溝部内、または溝部内から前記第2部材の厚さ方向に延在するように固相状態のままで吹き付け堆積させて積層させたことを特徴とする。
また、本発明の放熱板は、側面が主面に対し10~45°の角度で傾斜する板状体をなし、金属または合金からなる第2部材と、前記第2部材の側面外周部に、前記第2部材を構成する材料より熱伝導率が小さい金属または合金が積層されてなる第1部材と、を備え、前記第1部材は、前記第1部材を構成する金属または合金の粉末材料を、該粉末材料の融点より低い温度に加熱されたガスと共に加速し、前記第2部材の側面外周部に固相状態のままで吹き付けて堆積させて積層させたことを特徴とする。
また、本発明の放熱板は、上記発明において、前記第2部材を構成する金属または合金の熱膨張率が、前記第1部材を構成する金属または合金よりも小さいことを特徴とする。
また、本発明の放熱板は、上記発明において、前記第1部材はアルミニウムまたはアルミニウム合金であり、前記第2部材は銅または銅合金であることを特徴とする。
また、本発明の放熱板は、上記発明において、前記溝部は、前記第1部材の主面の一端部から他端部まで横断するように形成されることを特徴とする。
また、本発明の放熱板は、上記発明において、前記溝部は、前記第1部材を貫通するように形成されることを特徴とする。
また、本発明の放熱板は、上記発明において、前記第2部材は前記溝部内に形成され、第1部材の上面と第2部材の上面が平面をなすことを特徴とする。
また、本発明の放熱板は、上記発明において、前記第2部材の上面は、前記第1部材の上面から突出するように形成され、前記第1部材の前記第2部材と接する部分の最大厚さと、前記第2部材の前記第1部材と接する部分の最大厚さとの比が、1:1~1:3の範囲であることを特徴とする。
また、本発明の放熱板は、上記発明において、前記第1部材の前記第2部材と接する部分の最大厚さと、前記第2部材の前記第1部材と接する部分の最大厚さとの比が、1:1~20:1の範囲であることを特徴とする。
また、本発明の放熱板は、上記発明において、前記第1部材は、前記溝部が形成された面と反対側の面に冷却媒体が流通する流路が形成されることを特徴とする。
また、本発明のパワーモジュールは、上記のいずれか一つに記載の放熱板と、前記放熱板の第2部材と接続されるセラミックス基板と、前記放熱板の第1のセラミックス基板と接する面と反対側の面で接続される、アルミニウムまたはアルミニウム合金からなるヒートシンクと、を備えることを特徴とする。
また、本発明のパワーモジュールは、上記発明において、上記に記載の放熱板と、前記放熱板の第2部材側に接続されるセラミックス基板と、を備えることを特徴とする。
また、本発明の放熱板の製造方法は、板状をなし、金属または合金からなる第1部材の主面中央部に形成された、側面が主面に対し10~45°の傾斜角を有する溝部に、前記第1部材を構成する材料より熱伝導率が大きい金属または合金の粉末材料を、該粉末材料の融点より低い温度に加熱されたガスと共に加速し、前記溝部内または前記溝部内から前記第2部材の厚さ方向に延在するように、固相状態のままで吹き付けて堆積させ、第2部材を形成する積層工程と、前記積層工程により形成した前記第2部材を少なくとも切削加工する切削工程と、を含むことを特徴とする。
また、本発明の放熱板の製造方法は、側面が主面に対し10~45°の角度で傾斜する板状をなし、金属または合金からなる第2部材の側面および側面外周部の上方から、前記第2部材を構成する材料より熱伝導率が小さい金属または合金の粉末材料を、該粉末材料の融点より低い温度に加熱されたガスと共に加速し、固相状態のままで吹き付けて堆積させ、第1部材を形成する積層工程と、前記積層工程により形成した前記第1部材を少なくとも切削加工する切削工程と、を含むことを特徴とする。
また、本発明の放熱板の製造方法は、上記発明において、前記第2部材を構成する金属または合金の熱膨張率が、前記第1部材を構成する金属または合金よりも小さいことを特徴とする。
本発明にかかる放熱板は、2種の金属または合金を使用するにもかかわらず、熱サイクル下においてもそり量を低減しうるとともに、セラミックス基板や冷却器と接合して使用する場合においても接合部分の剥がれ等を抑制できるという効果を奏する。
以下、本発明を実施するための形態を図面と共に詳細に説明する。なお、以下の実施の形態により本発明が限定されるものではない。また、以下の説明において参照する各図は、本発明の内容を理解し得る程度に形状、大きさ、および位置関係を概略的に示してあるに過ぎない。すなわち、本発明は各図で例示された形状、大きさ、および位置関係のみに限定されるものではない。
(実施の形態1)
まず、本発明の実施の形態1にかかる放熱板について、図面を参照して詳細に説明する。図1は、本発明の実施の形態1にかかる放熱板の構成を示す概略図である。図1(a)は、放熱板の上面図、図1(b)は図1(a)のAA線での断面図を示す。
まず、本発明の実施の形態1にかかる放熱板について、図面を参照して詳細に説明する。図1は、本発明の実施の形態1にかかる放熱板の構成を示す概略図である。図1(a)は、放熱板の上面図、図1(b)は図1(a)のAA線での断面図を示す。
放熱板10は、金属または合金からなる第1部材1と、第1部材1を構成する材料より熱伝導率が大きい金属または合金からなる第2部材2とからなる。第1部材1と第2部材2の好適な組み合わせは、アルミニウムと銅、鉄とアルミニウム、鉄と銅を例示することができる。
第1部材1は、主面中央部に、側面が主面に対し10~45°の傾斜角(θ)を有する溝部3を有する。実施の形態1において、溝部3は、第1部材1の主面の一端部から他端部まで横断するように形成されるとともに、第1部材1の主面上面から主面まで貫通するように形成されている。なお、本明細書において、「側面が主面に対し10~45°の傾斜角(θ)を有する」とは、側面を形成する1つの面(または稜線)が主面に対し10~45°の傾斜角(θ)を有する場合に加え、側面が円弧部分を含む場合に、円弧部分の接線のうち、主面との傾斜角が最大である接線の傾斜角(θ)が、10~45°の場合を含む。
第1部材1の第2部材2と接する部分の最大厚さh1と、第2部材の第1部材と接する部分の最大厚さh2との比は、1:1~1:3の範囲であることが好ましい。当該範囲とすることにより、放熱板10の厚さを厚くすることなく、熱サイクル下での放熱板のそりを低減することができる。第1部材1の第2部材2と接する部分の最大厚さh1と、第2部材の第1部材と接する部分の最大厚さh2との比は、1:1.5~1:2.5の範囲であることが好ましい。
第2部材2は、第2部材2を構成する粉末材料を、該粉末材料の融点より低い温度に加熱されたガスと共に加速し、溝部3内から第1部材1の厚さ方向に延在するように、固相状態のままで吹き付けて堆積させて形成される。
次に、実施の形態1にかかる放熱板10の製造方法について説明する。図2は、本発明の実施の形態1にかかる放熱板の製造に使用されるコールドスプレー装置の概要を示す模式図である。図3は、本発明の実施の形態1にかかる放熱板の製造工程を説明する概略図である。図4は、本発明の実施の形態1にかかる放熱板の製造工程の別法を説明する概略図である。
コールドスプレー装置50は、圧縮ガスを加熱するガス加熱器51と、基材に噴射する粉末材料を収容し、スプレーガン54に供給する粉末供給装置52と、スプレーガン54で加熱された圧縮ガスと混合された材料粉末を、切削加工後に第1部材1となる第1基材部1aに噴射するガスノズル53とを備えている。
圧縮ガスとしては、ヘリウム、窒素、空気などが使用される。供給された圧縮ガスは、バルブ55および56により、ガス加熱器51と粉末供給装置52にそれぞれ供給される。ガス加熱器51に供給された圧縮ガスは、例えば50℃以上であって、第2部材2の材料粉末の融点以下の温度に加熱された後、スプレーガン54に供給される。圧縮ガスの加熱温度は、好ましくは300~900℃である。
粉末供給装置2に供給された圧縮ガスは、粉末供給装置52内の、例えば、粒径が10~100μm程度の材料粉末をスプレーガン54に所定の吐出量となるように供給する。加熱された圧縮ガスは先細末広形状をなすガスノズル53により超音速流(約340m/s以上)にされる。また、圧縮ガスのガス圧力は、1~5MPa程度とすることが好ましい。圧縮ガスの圧力を1~5MPa程度とすることにより、第1部材1と第2部材2との間の密着強度の向上を図ることができる。2~4MPa程度の圧力で処理することが好ましい。スプレーガン54に供給された粉末材料は、この圧縮ガスの超音速流の中への投入により加速され、固相状態のまま基材に高速で衝突して皮膜を形成する。なお、材料粉末を第1基材部1aに形成された溝部3に固相状態で衝突させて、第2皮膜部2aを形成できる装置であれば、図2のコールドスプレー装置50に限定されるものではない。
実施の形態1にかかる放熱板10は、まず、図3(a)に示すように、側面が主面に対し10~45°の傾斜角を有する溝部3を形成した第1基材部1aを用意し、上述したコールドスプレー装置50により、図3(b)に示すように、溝部3内に、第2部材2を構成する粉末材料を固相状態のままで吹き付けて堆積させて第2皮膜部2aを形成する。第2皮膜部2aの積層後、図3(c)に示すように、第2皮膜部2aの上面および第1部材1aの溝部3が形成された面の反対側の面を、平面をなすように切削加工することにより製造することができる。
あるいは、実施の形態1にかかる放熱板10は、図4に示す工程によっても製造することができる。図4の方法においては、2つのパーツからなる第1部材1bを、溝部3が所定の形状となるように、図示しない位置合わせ部材により位置合わせする(図4(a)参照)。その後、図4(b)に示すように、コールドスプレー装置50により、第2部材2を構成する粉末材料を固相状態のままで吹き付けて堆積させて第2皮膜部2aを形成し、図4(c)に示すように、第2皮膜部2aの上面を、平面をなすように切削加工することにより製造することができる。なお、放熱板10は、第2皮膜部2aが積層された側と反対側の面(第1部材1bおよび第2皮膜部2a)も切削加工してもよい。
コールドスプレー装置50によって、材料粉末をガスと共に加速し、側面が主面に対し10~45°の傾斜角を有する溝部3に固相状態のままで吹き付けて堆積させて第2部材2aを形成することにより、第1部材1と第2部材2との間の密着強度を向上することができる。なお、実施の形態1にかかる放熱板10は、コールドスプレー法による製造に限定されるものではなく、異種金属が接合されたクラッド材や、FSW(Friction Stir Welding)によっても製造可能である。
また、実施の形態1にかかる放熱板10は、溝部3を第1部材1の主面上面から主面まで貫通するように形成しているため、第1部材1と第2部材2の接触面積が小さくなり、熱膨張差によるそり量を大幅に低減することができる。
実施の形態1にかかる放熱板10は、図5に示すパワーモジュールの放熱板として好適に使用することができる。図5は、本発明の実施の形態1にかかるパワーモジュールの構成を示す概略図である。
パワーモジュール100は、半導体素子31を搭載したパワーモジュール基板30と、半導体素子31が放出する熱を伝熱する放熱板10と、放熱板10からの熱を排出する冷却器20と、を備える。
パワーモジュール基板30は、セラミックス基板33を備え、セラミックス基板33の一方の面に回路層32が形成されるとともに、他方の面に金属層34が形成されている。
セラミックス基板33は、絶縁性材料からなる略板状の部材である。セラミックス基板33の材料としては、例えば、窒化アルミニウム、窒化珪素等の窒化物系セラミックスや、アルミナ、マグネシア、ジルコニア、ステアタイト、フォルステライト、ムライト、チタニア、シリカ、サイアロン等の酸化物系セラミックスが用いられる。
回路層32は、例えば、アルミニウムや銅、銀等の良好な電気伝導度を有する金属または該金属を含む合金からなる。回路層32には、半導体素子31等に対して電気信号を伝達するための回路パターンが形成されている。
半導体素子31は、ダイオード、トランジスタ、IGBT(絶縁ゲートバイポーラトランジスタ)等の半導体素子によって実現される。半導体素子31は、半田35により回路層32に接続されている。なお、半導体素子31は、高電圧で使用が可能なパワーデバイス、特に耐熱性に優れる炭化珪素チップであることが好ましく、使用の目的に合わせてセラミックス基板33上に複数個設けられても良い。
金属層34は、回路層32の材料と同様の材料から形成され、回路層32および金属層34は、ろう材によりセラミックス基板33に接合されている。
また、実施の形態1にかかるパワーモジュール100は、回路層32および銅板からなる金属層34が、セラミックス基板33に直接接合されたDBC基板(「Direct Bonded Copper基板」、以下、DBC基板という)であってもよい。
冷却器20は、熱伝導性が良好な金属または合金、たとえば、アルミニウムまたはアルミニウム合金から形成される。冷却器20の放熱板10と接する側と反対側の面には、空気や水等の冷却媒体が流通する流路21が形成される。
放熱板10は、第2部材2の突出した面で、ろう材5によりパワーモジュール基板30の金属層34と接続される。また、放熱板10は、金属層24と接する面の反対側の面で、ろう材4により冷却器20と接続される。
実施の形態1にかかるパワーモジュール100において、放熱板10の第2部材2を構成する金属または合金の熱膨張率は、第1部材1を構成する金属または合金の熱膨張率よりも小さいことが好ましい。第2部材2を構成する金属または合金の熱膨張率が、第1部材1を構成する金属または合金の熱膨張率よりも小さいことにより、熱サイクル下でセラミックス基板33と冷却器20との間で発生しうる熱応力を緩衝することができる。
放熱板10をパワーモジュール100で使用する場合、第1部材1はアルミニウムまたはアルミニウム合金から形成されることが好ましく、第2部材2は銅または銅合金から形成されることが好ましい。第1部材1をアルミニウムまたはアルミニウム合金、第2部材2を銅または銅合金とすることにより、熱サイクル下でのそり量を低減できるだけでなく、熱拡散性に優れるとともに、セラミックス基板33や、冷却器20との接合した際の接合部の剥がれを抑制することが可能となる。
なお、実施の形態1にかかる放熱板10の変形例1として、図6に示す放熱板を例示することができる。図6に示す、変形例1にかかる放熱板10Aは、第2部材2Aが、第1部材1Aの溝部3A内にのみ積層され、第2部材2Aと第1部材1Aとが平面をなしている点で実施の形態1の放熱板10と異なる。
変形例1にかかる放熱板10Aは、図3または図4に示す、実施の形態1の放熱板10の製造方法により製造することができる。たとえば、図3(a)に示す、側面が主面に対し10~45°の傾斜角を有する溝部3を形成した第1基材部1aを用意し、コールドスプレー装置50により、図3(b)に示すように、溝部3内に、第2部材2を構成する粉末材料を固相状態のままで吹き付けて堆積させて第2皮膜部2aを形成し、第1部材1aの溝部3が形成された面の反対側の面を切削加工するとともに、第2皮膜部2aの上面と第1部材1aの上面を、第2部材2Aと第1部材1Aとが平面をなすように切削すればよい。あるいは、図4(a)に示す2つのパーツからなる第1部材1bを用意し、コールドスプレー装置50により、図4(b)に示すように、溝部3内に、第2部材2を構成する粉末材料を固相状態のままで吹き付けて堆積させて第2皮膜部2aを形成し、第2皮膜部2aの上面と第1部材1aの上面を第2部材2Aと第1部材1Aとが平面をなすように切削すればよい。
さらに、放熱板は、図7に示す形状であってもよい。図7は、本発明の実施の形態1の変形例2にかかる放熱板の構成を示す概略図である。図8は、本発明の実施の形態1の変形例2にかかる放熱板の製造工程を説明する概略図である。
実施の形態1の変形例2にかかる放熱板10Bは、第2部材2Bが、第1部材1Bから突出形成している点は、実施の形態1の放熱板10と同様であるが、溝部3Bが凸型に形成される点で、実施の形態1の放熱板10と異なる。変形例2に係る放熱板10Bでは、第2部材2Bが突出する側の溝部3Bの側面の主面に対する傾斜角(θ)を、10~45°とする。変形例2の放熱板10Bは、第2部材2Bが凸型であるため、熱拡散が更に容易となる。
なお、変形例2にかかる放熱板10Bは、図8に示すようにして製造すればよい。まず、図8(a)に示すように、側面が主面に対し10~45°の傾斜角を有する第2基材部2cを用意し、上述したコールドスプレー装置50により、図8(b)に示すように、第1部材1Bを構成する粉末材料を、第2基材部2cの側面の外周部に固相状態のままで吹き付けて堆積させて第1皮膜1cを形成する。第1皮膜1bの積層後、図8(c)に示すように、第1皮膜1cの上面を平面をなすように切削するとともに、第2基材部2cの角部を切削加工することにより製造することができる。
また、放熱板は、図9に示すような形状であってもよい。図9は、本発明の実施の形態1の変形例3にかかる放熱板の断面図である。変形例3にかかる放熱板10Kは、変形例1にかかる放熱板10Aを上下反転させた形状をなす。放熱板10Kは、第2部材2Kが主面上に露出する面積が、セラミックス基板に接続される上面側より、冷却器に接続される下面側のほうが大きくなるように形成される。したがって、変形例3にかかる放熱板10Kは、セラミックス基板上の半導体素子から放出された熱の拡散性に優れる。変形例3にかかる放熱板10Kは、変形例1にかかる放熱板10Aを製造した後、反転させて使用すればよい。
さらにまた、放熱板は、図10に示すような形状であってもよい。図10(a)は、本発明の実施の形態1の変形例4にかかる放熱板の上面図であり、図10(b)は図10(a)のBB線の断面図である。変形例4にかかる放熱板10Dは、溝部3Dが主面中央部に貫通するように形成される。
(実施の形態2)
実施の形態2にかかる放熱板10Eは、第1部材1Eに形成される溝部3Eが貫通穴でない点で実施の形態1と異なる。以下、図面を参照して実施の形態2にかかる放熱板10Eについて説明する。
実施の形態2にかかる放熱板10Eは、第1部材1Eに形成される溝部3Eが貫通穴でない点で実施の形態1と異なる。以下、図面を参照して実施の形態2にかかる放熱板10Eについて説明する。
図11(a)は、本発明の実施の形態2にかかる放熱板10Eの上面図であり、図11(b)は図11(a)のCC線の断面図である。放熱板10Eにおいて、溝部3Eが第1部材1Eを貫通しない点で、実施の形態1の放熱板10と異なる。
第1部材1Eは、主面中央部に、側面が主面に対し10~45°の傾斜角(θ)を有する溝部3Eを有する。溝部3Eは、第1部材1の主面の一端部から他端部まで横断するように形成される。
実施の形態2にかかる放熱板10Eは、図12に示すようにして製造することができる。放熱板10Eは、図12(a)に示すように、まず、側面が主面に対し10~45°の傾斜角を有する溝部3Eを形成した第1部材1Eを用意し、上述したコールドスプレー装置50により、図12(b)に示すように、溝部3E内に、第2部材2Eを構成する粉末材料を固相状態のままで吹き付けて堆積させて第2皮膜部2eを形成する。第2皮膜部2eの積層後、図12(c)に示すように、第2皮膜部2eの上面を、平面とする切削加工を行なうことにより製造することができる。
また、放熱板は、図13に示すような形状であってもよい。図13(a)は、本発明の実施の形態2の変形例1にかかる放熱板の上面図であり、図13(b)は図13(a)のDD線の断面図である。実施の形態2の変形例1にかかる放熱板10Fは、溝部3Fが主面中央部のみに形成されている。
さらに、実施の形態2にかかる放熱板10Eは、第1部材1Eに流路を形成し、冷却機能を有するものとすることも可能である。図14は、本発明の実施の形態2の変形例2にかかる放熱板の構成を示す概略図である。
実施の形態2の変形例2にかかる放熱板10Gは、溝部3Gが形成された面と対向する面に冷却媒体が流通する流路21が形成された第1部材1Gを備える。放熱板10Gは、第2部材2Gを介して伝熱された熱を、第1部材1Gの流路21を介して排出することができる。
実施の形態2の変形例2にかかる放熱板10Gは、図15に示すように、第1部材1Gの材料である金属または合金のバルク材に、流路21および溝部3Gを形成して第1部材1Gとし(ステップS1)、上述したコールドスプレー装置50により、溝部3G内に、第2部材2を構成する粉末材料を固相状態のままで吹き付けて堆積させて第2皮膜部を形成する(ステップS2)。第2皮膜部の積層後、第2皮膜部の上面を平面とする切削加工を行なうことにより製造することができる(ステップS3)。あるいは、第1部材1Gの材料である金属または合金のバルク材に、溝部3Gのみ形成し、コールドスプレー装置50により第2皮膜部を形成し、切削により第2部材とした後、流路21を形成してもよい。
また、放熱板は、図16に示すような形状であってもよい。図16(a)は、本発明の実施の形態2の変形例3にかかる放熱板の上面図であり、図16(b)は図16(a)のEE線の断面図である。実施の形態2の変形例3にかかる放熱板10Mは、第2部材2Mは、第1部材1Mの溝部3内に形成され、第2部材2Mの上面と第1部材1Mの上面は平面をなしている。
さらに、放熱板は、図17に示すような形状であってもよい。図17(a)は、本発明の実施の形態2の変形例4にかかる放熱板の上面図であり、図17(b)は図17(a)のFF線の断面図である。実施の形態2の変形例4にかかる放熱板10Hにおいて、第1部材1H上には、主面の位置端部から他端部まで横断する溝3Hが、平行に3つ形成されている。第2部材2Hは、第1部材1Hの溝部3H内にそれぞれ形成され、第2部材2Hの上面と第1部材1Hの上面は、平面をなしている。
さらにまた、放熱板は、図18に示すような形状であってもよい。図18(a)は、本発明の実施の形態2の変形例5にかかる放熱板の上面図であり、図18(b)は図18(a)のGG線の断面図である。実施の形態2の変形例5にかかる放熱板10Jにおいて、第1部材1J上には、溝3Jが、等間隔で格子状に複数形成されている。第2部材2Jは、第1部材1Jの溝部3J内にそれぞれ形成され、第2部材2Jの上面と第1部材1Jの上面は、平面をなしている。
実施の形態1の変形例1および変形例3、ならびに実施の形態2の変形例3~5のような、第1部材と第2部材の上面が平面をなす放熱板において、第1部材の第2部材と接する部分の最大厚さh1と、第2部材の第1部材と接する部分の最大厚さh2との比は、1:1~20:1の範囲であることが好ましい。当該範囲とすることにより、放熱板の厚さを厚くすることなく、熱サイクル下での放熱板のそりを低減することができる。第1部材の第2部材と接する部分の最大厚さh1と、第2部材の第1部材と接する部分の最大厚さh2との比は、1:1~10:1の範囲であることが好ましい。
(実施例1)
図1の形状の放熱板10を、第1部材1をアルミニウム(A6063-T5)、第2部材2を銅(リン脱酸銅)で形成した。第1部材1には、厚さ(h1)3.0mmのアルミニウム板(r1:50mm、r3:50mm)に、側面の主面に対する角度(θ):30°、r2:30mm、r3:50mmの溝部3を形成した。第2部材2は、コールドスプレー装置50により、圧縮ガス:窒素、圧縮ガス温度:600℃、ガス圧力:3MPaで、銅粒子(粒径30μm)を溝部3に吹付けて積層した。第2部材2の厚さh2は5.0mmである。
図1の形状の放熱板10を、第1部材1をアルミニウム(A6063-T5)、第2部材2を銅(リン脱酸銅)で形成した。第1部材1には、厚さ(h1)3.0mmのアルミニウム板(r1:50mm、r3:50mm)に、側面の主面に対する角度(θ):30°、r2:30mm、r3:50mmの溝部3を形成した。第2部材2は、コールドスプレー装置50により、圧縮ガス:窒素、圧縮ガス温度:600℃、ガス圧力:3MPaで、銅粒子(粒径30μm)を溝部3に吹付けて積層した。第2部材2の厚さh2は5.0mmである。
(実施例2および3)
図11の形状の放熱板10Eを、第1部材1Eをアルミニウム(A6063-T5)、第2部材2Eを銅(リン脱酸銅)で形成した。第1部材1Eには、厚さ(h1)3.0mmのアルミニウム板(r1:50mm、r3:50mm)に、側面の主面に対する角度(θ):30°、基部厚さh3:2.0mmまたは1.0mm、r2:30mm、r3:50mmの溝部3Eを形成した。第2部材2Eは、コールドスプレー装置50により、圧縮ガス:窒素、圧縮ガス温度:600℃、ガス圧力:3MPaで、銅粒子(粒径30μm)を溝部3Eに吹付けて積層した。第2部材2Eの厚さh2は、3.0mmまたは4.0mmmである。
図11の形状の放熱板10Eを、第1部材1Eをアルミニウム(A6063-T5)、第2部材2Eを銅(リン脱酸銅)で形成した。第1部材1Eには、厚さ(h1)3.0mmのアルミニウム板(r1:50mm、r3:50mm)に、側面の主面に対する角度(θ):30°、基部厚さh3:2.0mmまたは1.0mm、r2:30mm、r3:50mmの溝部3Eを形成した。第2部材2Eは、コールドスプレー装置50により、圧縮ガス:窒素、圧縮ガス温度:600℃、ガス圧力:3MPaで、銅粒子(粒径30μm)を溝部3Eに吹付けて積層した。第2部材2Eの厚さh2は、3.0mmまたは4.0mmmである。
(参考例1)
図1の形状の放熱板10において、溝部3を有しない第1部材1に第2部材2を積層した。第1部材には、厚さ(h1)が3mmのアルミニウム板(A6063-T5、r1:50mm、r3:50mm)を使用し、第2部材2は、コールドスプレー装置50により、圧縮ガス:窒素、圧縮ガス温度:600℃、ガス圧力:3MPaで、銅粒子(リン脱酸銅、粒径30μm)を吹付けて積層した。第2部材の大きさは、r2:30mm、r3:50mm、h2:2mmである。参考例1の第1部材および第2部材の厚さを表1に示す。
図1の形状の放熱板10において、溝部3を有しない第1部材1に第2部材2を積層した。第1部材には、厚さ(h1)が3mmのアルミニウム板(A6063-T5、r1:50mm、r3:50mm)を使用し、第2部材2は、コールドスプレー装置50により、圧縮ガス:窒素、圧縮ガス温度:600℃、ガス圧力:3MPaで、銅粒子(リン脱酸銅、粒径30μm)を吹付けて積層した。第2部材の大きさは、r2:30mm、r3:50mm、h2:2mmである。参考例1の第1部材および第2部材の厚さを表1に示す。
(実施例4)
図10の形状の放熱板10Dを、第1部材1Dをアルミニウム(A6063-T5)、第2部材2Dを銅(リン脱酸銅)で形成した。第1部材1Dには、厚さ(h1)3mmのアルミニウム板(r1:50mm、r3:50mm)に、側面の主面に対する角度(θ):30°、r2:30mm、r4:30mmの溝部3Dを形成した。第2部材2Dは、コールドスプレー装置50により、圧縮ガス:窒素、圧縮ガス温度:600℃、ガス圧力:3MPaで、銅粒子(粒径30μm)を溝部3Dに吹付けて積層した。第2部材2Dの厚さh2は5.0mmである。
図10の形状の放熱板10Dを、第1部材1Dをアルミニウム(A6063-T5)、第2部材2Dを銅(リン脱酸銅)で形成した。第1部材1Dには、厚さ(h1)3mmのアルミニウム板(r1:50mm、r3:50mm)に、側面の主面に対する角度(θ):30°、r2:30mm、r4:30mmの溝部3Dを形成した。第2部材2Dは、コールドスプレー装置50により、圧縮ガス:窒素、圧縮ガス温度:600℃、ガス圧力:3MPaで、銅粒子(粒径30μm)を溝部3Dに吹付けて積層した。第2部材2Dの厚さh2は5.0mmである。
(実施例5および6)
図13の形状の放熱板10Fを、第1部材1Fをアルミニウム(A6063-T5)、第2部材2Fを銅(リン脱酸銅)で形成した。第1部材1Fには、厚さ(h1)3.0mmのアルミニウム板(r1:50mm、r3:50mm)に、側面の主面に対する角度(θ):30°、基部厚さh3:2.0mmまたは1.0mm、r2:30mm、r4:30mmの溝部3Fを形成した。第2部材2Fは、コールドスプレー装置50により、圧縮ガス:窒素、圧縮ガス温度:600℃、ガス圧力:3MPaで、銅粒子(粒径30μm)を溝部3Fに吹付けて積層した。第2部材2Fの厚さh2は3.0mmまたは4.0mmである。
図13の形状の放熱板10Fを、第1部材1Fをアルミニウム(A6063-T5)、第2部材2Fを銅(リン脱酸銅)で形成した。第1部材1Fには、厚さ(h1)3.0mmのアルミニウム板(r1:50mm、r3:50mm)に、側面の主面に対する角度(θ):30°、基部厚さh3:2.0mmまたは1.0mm、r2:30mm、r4:30mmの溝部3Fを形成した。第2部材2Fは、コールドスプレー装置50により、圧縮ガス:窒素、圧縮ガス温度:600℃、ガス圧力:3MPaで、銅粒子(粒径30μm)を溝部3Fに吹付けて積層した。第2部材2Fの厚さh2は3.0mmまたは4.0mmである。
(参考例2)
図10の形状の放熱板10Dにおいて、溝部を有しない第1部材に第2部材を積層した。第1部材には、厚さ(h1)が3mmのアルミニウム板(A6063-T5、r1:50mm、r3:50mm)を使用し、第2部材は、コールドスプレー装置50により、圧縮ガス:窒素、圧縮ガス温度:600℃、ガス圧力:3MPaで、アルミニウム粒子(リン脱酸銅、粒径30μm)を吹付けて積層した。第2部材の大きさは、r2:30mm、r4:30mm、h2:2mmである。参考例2の第1部材および第2部材の厚さを表2に示す。
図10の形状の放熱板10Dにおいて、溝部を有しない第1部材に第2部材を積層した。第1部材には、厚さ(h1)が3mmのアルミニウム板(A6063-T5、r1:50mm、r3:50mm)を使用し、第2部材は、コールドスプレー装置50により、圧縮ガス:窒素、圧縮ガス温度:600℃、ガス圧力:3MPaで、アルミニウム粒子(リン脱酸銅、粒径30μm)を吹付けて積層した。第2部材の大きさは、r2:30mm、r4:30mm、h2:2mmである。参考例2の第1部材および第2部材の厚さを表2に示す。
(実施例7)
図16の形状の放熱板10Mを、第1部材1Mをアルミニウム(A6063-T5)、第2部材2Mを銅(リン脱酸銅)で形成した。第1部材1Mには、厚さ(h1)5.0mmのアルミニウム板(r1:50mm、r3:50mm)に、側面の主面に対する角度(θ):30°、基部厚さh3:4.0mm、r2:30mm、r3:50mmの溝部3Mを形成した。第2部材2Mは、コールドスプレー装置50により、圧縮ガス:窒素、圧縮ガス温度:600℃、ガス圧力:3MPaで、銅粒子(粒径30μm)を溝部3Mに吹付けて積層した後、第1部材1Mの上面と第2部材2Mの上面が平面をなすように切削した。実施例7の第1部材1Mおよび第2部材2Mの厚さを表3に示す。
図16の形状の放熱板10Mを、第1部材1Mをアルミニウム(A6063-T5)、第2部材2Mを銅(リン脱酸銅)で形成した。第1部材1Mには、厚さ(h1)5.0mmのアルミニウム板(r1:50mm、r3:50mm)に、側面の主面に対する角度(θ):30°、基部厚さh3:4.0mm、r2:30mm、r3:50mmの溝部3Mを形成した。第2部材2Mは、コールドスプレー装置50により、圧縮ガス:窒素、圧縮ガス温度:600℃、ガス圧力:3MPaで、銅粒子(粒径30μm)を溝部3Mに吹付けて積層した後、第1部材1Mの上面と第2部材2Mの上面が平面をなすように切削した。実施例7の第1部材1Mおよび第2部材2Mの厚さを表3に示す。
(実施例8)
図17の形状の放熱板10Hを、第1部材1Hをアルミニウム(A6063-T5)、第2部材2Hを銅(リン脱酸銅)で形成した。第1部材1Hには、厚さ(h1)5.0mmのアルミニウム板(r1:50mm、r3:50mm)に、側面の主面に対する角度(θ):30°、基部厚さh3:4.0mm、r2:9mm、r3:50mmの溝部3Hを、r4:1.5mmの間隔で3つ形成した。第2部材2Hは、コールドスプレー装置50により、圧縮ガス:窒素、圧縮ガス温度:600℃、ガス圧力:3MPaで、銅粒子(粒径30μm)を溝部3Hに吹付けて積層した後、第1部材1Hの上面と第2部材2Hの上面が平面をなすように切削した。実施例8の第1部材1Hおよび第2部材2Hの厚さを表3に示す。
図17の形状の放熱板10Hを、第1部材1Hをアルミニウム(A6063-T5)、第2部材2Hを銅(リン脱酸銅)で形成した。第1部材1Hには、厚さ(h1)5.0mmのアルミニウム板(r1:50mm、r3:50mm)に、側面の主面に対する角度(θ):30°、基部厚さh3:4.0mm、r2:9mm、r3:50mmの溝部3Hを、r4:1.5mmの間隔で3つ形成した。第2部材2Hは、コールドスプレー装置50により、圧縮ガス:窒素、圧縮ガス温度:600℃、ガス圧力:3MPaで、銅粒子(粒径30μm)を溝部3Hに吹付けて積層した後、第1部材1Hの上面と第2部材2Hの上面が平面をなすように切削した。実施例8の第1部材1Hおよび第2部材2Hの厚さを表3に示す。
(実施例9)
図18の形状の放熱板10Jを、第1部材1Jをアルミニウム(A6063-T5)、第2部材2Jを銅(リン脱酸銅)で形成した。第1部材1Jには、厚さ(h1)5.0mmのアルミニウム板(r1:50mm、r3:50mm)に、側面の主面に対する角度(θ):30°、基部厚さh3:4.0mm、r2:9mm、r5:9mmの溝部3Jを、r4:1.5mm、r6:1.5mmの間隔で格子状に形成した(完全な溝は9個)。第2部材2Jは、コールドスプレー装置50により、圧縮ガス:窒素、圧縮ガス温度:600℃、ガス圧力:3MPaで、銅粒子(粒径30μm)を溝部3Jに吹付けて積層した後、第1部材1Jの上面と第2部材2Jの上面が平面をなすように切削した。実施例9の第1部材1Jおよび第2部材2Jの厚さを表3に示す。
図18の形状の放熱板10Jを、第1部材1Jをアルミニウム(A6063-T5)、第2部材2Jを銅(リン脱酸銅)で形成した。第1部材1Jには、厚さ(h1)5.0mmのアルミニウム板(r1:50mm、r3:50mm)に、側面の主面に対する角度(θ):30°、基部厚さh3:4.0mm、r2:9mm、r5:9mmの溝部3Jを、r4:1.5mm、r6:1.5mmの間隔で格子状に形成した(完全な溝は9個)。第2部材2Jは、コールドスプレー装置50により、圧縮ガス:窒素、圧縮ガス温度:600℃、ガス圧力:3MPaで、銅粒子(粒径30μm)を溝部3Jに吹付けて積層した後、第1部材1Jの上面と第2部材2Jの上面が平面をなすように切削した。実施例9の第1部材1Jおよび第2部材2Jの厚さを表3に示す。
(参考例3)
図1の形状の放熱板10において、溝部3を有しない第1部材1に第2部材2を積層した。第1部材には、厚さ(h1)が4.0mmのアルミニウム板(A6063-T5、r1:50mm、r3:50mm)を使用し、第2部材2は、コールドスプレー装置50により、圧縮ガス:窒素、圧縮ガス温度:600℃、ガス圧力:3MPaで、銅粒子(リン脱酸銅、粒径30μm)を吹付けて積層した。第2部材の大きさは、r2:30mm、r3:50mm、h2:1.0mmである。参考例3の第1部材および第2部材の厚さを表3に示す。
図1の形状の放熱板10において、溝部3を有しない第1部材1に第2部材2を積層した。第1部材には、厚さ(h1)が4.0mmのアルミニウム板(A6063-T5、r1:50mm、r3:50mm)を使用し、第2部材2は、コールドスプレー装置50により、圧縮ガス:窒素、圧縮ガス温度:600℃、ガス圧力:3MPaで、銅粒子(リン脱酸銅、粒径30μm)を吹付けて積層した。第2部材の大きさは、r2:30mm、r3:50mm、h2:1.0mmである。参考例3の第1部材および第2部材の厚さを表3に示す。
上記の実施例および参考例で作製した各テストピースについて、125℃に加温時および-40℃に冷却時のそりを目視により評価した(◎~×)。なお、そりは、第2部材である銅板の端部における熱負荷なしの状態からのそりである。実施例および参考例で作製したテストピースの厚さおよびそり量を表1~表3にまとめた。
は、
は、
表1に示すように、実施例1~3は、参考例1に比べそり量を低減することが可能となる。また、表2に示すように、実施例4~6は、参考例2に比べそり量を低減することが可能となる。さらに、表3に示すように、実施例7~9は、参考例3に比べそり量を低減することが可能となる。
1、1A、1B、1D、1E、1F、1G、1H、1J、1K、1M 第1部材
2、2A、2B、2D、2E、2F、2G、2H、2J、2K、2M 第2部材
3、3A、3B、3D、3E、3F、3G、3H、3J、3K、3M 溝部
4、5 ろう材
10、10A、10B、10D、10E、10F、10G、10H、10J、10K、10M 放熱板
20 冷却器
21 流路
30 パワーモジュール基板
31 半導体素子
32 回路層
33 セラミックス基板
34 金属層
35 半田
50 コールドスプレー装置
51 ガス加熱器
52 スプレーガン
53 粉末供給装置
54 ガスノズル
100 パワーモジュール
2、2A、2B、2D、2E、2F、2G、2H、2J、2K、2M 第2部材
3、3A、3B、3D、3E、3F、3G、3H、3J、3K、3M 溝部
4、5 ろう材
10、10A、10B、10D、10E、10F、10G、10H、10J、10K、10M 放熱板
20 冷却器
21 流路
30 パワーモジュール基板
31 半導体素子
32 回路層
33 セラミックス基板
34 金属層
35 半田
50 コールドスプレー装置
51 ガス加熱器
52 スプレーガン
53 粉末供給装置
54 ガスノズル
100 パワーモジュール
Claims (15)
- 板状をなし、主面中央部に側面が主面に対し10~45°の傾斜角を有する溝部を有する金属または合金からなる第1部材と、
前記溝部内または前記溝部内から前記第1部材の厚さ方向に、前記第1部材を構成する材料より熱伝導率が大きい金属または合金が積層されてなる第2部材と、
を備え、前記第2部材は、前記第2部材を構成する金属または合金の粉末材料を、該粉末材料の融点より低い温度に加熱されたガスと共に加速し、前記第1部材の溝部内、または溝部内から前記第2部材の厚さ方向に延在するように固相状態のままで吹き付け堆積させて積層させたことを特徴とする放熱板。 - 側面が主面に対し10~45°の角度で傾斜する板状体をなし、金属または合金からなる第2部材と、
前記第2部材の側面外周部に、前記第2部材を構成する材料より熱伝導率が小さい金属または合金が積層されてなる第1部材と、
を備え、前記第1部材は、前記第1部材を構成する金属または合金の粉末材料を、該粉末材料の融点より低い温度に加熱されたガスと共に加速し、前記第2部材の側面外周部に固相状態のままで吹き付けて堆積させて積層させたことを特徴とする放熱板。 - 前記第2部材を構成する金属または合金の熱膨張率が、前記第1部材を構成する金属または合金よりも小さいことを特徴とする請求項1または2に記載の放熱板。
- 前記第1部材はアルミニウムまたはアルミニウム合金であり、前記第2部材は銅または銅合金であることを特徴とする請求項1~3のいずれか一つに記載の放熱板。
- 前記溝部は、前記第1部材の主面の一端部から他端部まで横断するように形成されることを特徴とする請求項1~4のいずれか一つに記載の放熱板。
- 前記溝部は、前記第1部材を貫通するように形成されることを特徴とする請求項1~5のいずれか一つに記載の放熱板。
- 前記第2部材は前記溝部内に形成され、第1部材の上面と第2部材の上面が平面をなすことを特徴とする請求項1~6のいずれか一つに記載の放熱板。
- 前記第2部材の上面は、前記第1部材の上面から突出するように形成され、
前記第1部材の前記第2部材と接する部分の最大厚さと、前記第2部材の前記第1部材と接する部分の最大厚さとの比が、1:1~1:3の範囲であることを特徴とする請求項1~6のいずれか一つに記載の放熱板。 - 前記第1部材の前記第2部材と接する部分の最大厚さと、前記第2部材の前記第1部材と接する部分の最大厚さとの比が、1:1~20:1の範囲であることを特徴とする請求項7に記載の放熱板。
- 前記第1部材は、前記溝部が形成された面と反対側の面に冷却媒体が流通する流路が形成されることを特徴とする請求項1、3~5のいずれか一つに記載の放熱板。
- 請求項1~9のいずれか一つに記載の放熱板と、
前記放熱板の第2部材と接続されるセラミックス基板と、
前記放熱板のセラミックス基板と接する面と反対側の面で接続されるアルミニウムまたはアルミニウム合金からなるヒートシンクと、
を備えることを特徴とするパワーモジュール。 - 請求項10に記載の放熱板と、
前記放熱板の第2部材側に接続されるセラミックス基板と、
を備えることを特徴とするパワーモジュール。 - 板状をなし、金属または合金からなる第1部材の主面中央部に形成された、側面が主面に対し10~45°の傾斜角を有する溝部に、前記第1部材を構成する材料より熱伝導率が大きい金属または合金の粉末材料を、該粉末材料の融点より低い温度に加熱されたガスと共に加速し、前記溝部内または前記溝部内から第1部材の厚さ方向に固相状態のままで吹き付けて堆積させ、第2部材を形成する積層工程と、
前記積層工程により形成した前記第2部材を少なくとも切削加工する切削工程と、
を含むことを特徴とする放熱板の製造方法。 - 側面が主面に対し10~45°の角度で傾斜する板状体をなし、金属または合金からなる第2部材の側面および側面外周部の上方から、前記第2部材を構成する材料より熱伝導率が小さい金属または合金の粉末材料を、該粉末材料の融点より低い温度に加熱されたガスと共に加速し、固相状態のままで吹き付けて堆積させ、第1部材を形成する積層工程と、
前記積層工程により形成した前記第1部材を少なくとも切削加工する切削工程と、
を含むことを特徴とする放熱板の製造方法。 - 前記第2部材を構成する金属または合金の熱膨張率が、前記第1部材を構成する金属または合金よりも小さいことを特徴とする請求項13または14に記載の放熱板の製造方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013162815A JP2015032758A (ja) | 2013-08-05 | 2013-08-05 | 放熱板、パワーモジュールおよび放熱板の製造方法 |
JP2013-162815 | 2013-08-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015019890A1 true WO2015019890A1 (ja) | 2015-02-12 |
Family
ID=52461229
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/069862 WO2015019890A1 (ja) | 2013-08-05 | 2014-07-28 | 放熱板、パワーモジュールおよび放熱板の製造方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2015032758A (ja) |
TW (1) | TWI566344B (ja) |
WO (1) | WO2015019890A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3933913A1 (de) * | 2020-06-30 | 2022-01-05 | Siemens Aktiengesellschaft | Leistungsmodul mit mindestens zwei leistungseinheiten |
WO2024028389A1 (de) * | 2022-08-02 | 2024-02-08 | Siemens Aktiengesellschaft | Verfahren zur herstellung eines halbleitermoduls mit mindestens einer halbleiteranordnung und einem kühlkörper |
EP4345886A1 (de) * | 2022-09-28 | 2024-04-03 | Siemens Aktiengesellschaft | Verfahren zur herstellung eines halbleitermoduls mit mindestens einer halbleiteranordnung und einem kühlkörper |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020009868A (ja) * | 2018-07-06 | 2020-01-16 | 日立オートモティブシステムズ株式会社 | 半導体モジュール |
JP7524044B2 (ja) | 2020-12-09 | 2024-07-29 | 新光電気工業株式会社 | 放熱板、半導体装置及び放熱板の製造方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002524862A (ja) * | 1998-09-04 | 2002-08-06 | ブラッシュ ウェルマン セラミック プロダクツ | 機能的に分類された金属基板およびそれを作製するためのプロセス |
WO2003061001A1 (en) * | 2002-01-16 | 2003-07-24 | Fujitsu Limited | Heat sink having high efficiency cooling capacity and semiconductor device comprising it |
US20050121775A1 (en) * | 2003-12-04 | 2005-06-09 | Fitzgerald Thomas J. | Device and system for heat spreader with controlled thermal expansion |
JP2013500580A (ja) * | 2009-08-25 | 2013-01-07 | 富士電機株式会社 | 半導体モジュール及び放熱部材 |
WO2013021870A1 (ja) * | 2011-08-05 | 2013-02-14 | 日本発條株式会社 | 冷却装置及びその製造方法 |
US20130091693A1 (en) * | 2011-10-12 | 2013-04-18 | International Business Machines Corporation | Thermal expansion-enhanced heat sink for an electronic assembly |
JP2013089799A (ja) * | 2011-10-19 | 2013-05-13 | Ngk Spark Plug Co Ltd | 放熱用フィン付き回路基板の製造方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08186204A (ja) * | 1994-11-02 | 1996-07-16 | Nippon Tungsten Co Ltd | ヒートシンク及びその製造方法 |
DE102010048529B4 (de) * | 2010-10-14 | 2016-04-28 | Rohde & Schwarz Gmbh & Co. Kg | Kühlkörper mit Hitzeverteiler |
-
2013
- 2013-08-05 JP JP2013162815A patent/JP2015032758A/ja active Pending
-
2014
- 2014-07-28 WO PCT/JP2014/069862 patent/WO2015019890A1/ja active Application Filing
- 2014-08-04 TW TW103126541A patent/TWI566344B/zh active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002524862A (ja) * | 1998-09-04 | 2002-08-06 | ブラッシュ ウェルマン セラミック プロダクツ | 機能的に分類された金属基板およびそれを作製するためのプロセス |
WO2003061001A1 (en) * | 2002-01-16 | 2003-07-24 | Fujitsu Limited | Heat sink having high efficiency cooling capacity and semiconductor device comprising it |
US20050121775A1 (en) * | 2003-12-04 | 2005-06-09 | Fitzgerald Thomas J. | Device and system for heat spreader with controlled thermal expansion |
JP2013500580A (ja) * | 2009-08-25 | 2013-01-07 | 富士電機株式会社 | 半導体モジュール及び放熱部材 |
WO2013021870A1 (ja) * | 2011-08-05 | 2013-02-14 | 日本発條株式会社 | 冷却装置及びその製造方法 |
US20130091693A1 (en) * | 2011-10-12 | 2013-04-18 | International Business Machines Corporation | Thermal expansion-enhanced heat sink for an electronic assembly |
JP2013089799A (ja) * | 2011-10-19 | 2013-05-13 | Ngk Spark Plug Co Ltd | 放熱用フィン付き回路基板の製造方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3933913A1 (de) * | 2020-06-30 | 2022-01-05 | Siemens Aktiengesellschaft | Leistungsmodul mit mindestens zwei leistungseinheiten |
WO2022002464A1 (de) * | 2020-06-30 | 2022-01-06 | Siemens Aktiengesellschaft | Leistungsmodul mit mindestens drei leistungseinheiten |
WO2024028389A1 (de) * | 2022-08-02 | 2024-02-08 | Siemens Aktiengesellschaft | Verfahren zur herstellung eines halbleitermoduls mit mindestens einer halbleiteranordnung und einem kühlkörper |
EP4345886A1 (de) * | 2022-09-28 | 2024-04-03 | Siemens Aktiengesellschaft | Verfahren zur herstellung eines halbleitermoduls mit mindestens einer halbleiteranordnung und einem kühlkörper |
Also Published As
Publication number | Publication date |
---|---|
TWI566344B (zh) | 2017-01-11 |
JP2015032758A (ja) | 2015-02-16 |
TW201523817A (zh) | 2015-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI702693B (zh) | 附冷卻器電力模組用基板及其製造方法 | |
JP4595665B2 (ja) | 配線基板の製造方法 | |
WO2015019890A1 (ja) | 放熱板、パワーモジュールおよび放熱板の製造方法 | |
KR101188150B1 (ko) | 냉각 장치 | |
KR102084339B1 (ko) | 적층체 및 적층체의 제조 방법 | |
WO2015064430A1 (ja) | 積層体、絶縁性冷却板、パワーモジュールおよび積層体の製造方法 | |
WO2013008865A1 (ja) | 積層体及び積層体の製造方法 | |
EP2641997A1 (en) | Laminate and method for producing laminate | |
US10475723B1 (en) | IGBT heat dissipation structure | |
JP5077529B2 (ja) | 絶縁基板の製造方法、ならびに半導体装置の製造方法 | |
JPWO2011065457A1 (ja) | 積層材およびその製造方法 | |
JP5989465B2 (ja) | 絶縁基板の製造方法 | |
WO2013047330A1 (ja) | 接合体 | |
KR20170048999A (ko) | 세라믹 기판 제조 방법 및 이 제조방법으로 제조된 세라믹 기판 | |
WO2016021561A1 (ja) | 複合基板及びパワーモジュール | |
JP6904094B2 (ja) | 絶縁回路基板の製造方法 | |
JP2009038162A (ja) | 放熱部品、その製造方法及びパワーモジュール | |
JP5654369B2 (ja) | 積層材の製造方法 | |
JP2018046265A (ja) | 絶縁回路基板の製造方法、及び、絶縁回路基板、パワーモジュール、ledモジュール、熱電モジュール | |
JPWO2016056567A1 (ja) | 放熱部材用積層体、ヒートシンク付き基板、および放熱部材用積層体の製造方法 | |
WO2016009710A1 (ja) | パワー半導体モジュール及びそれを用いたパワーモジュール | |
KR102709152B1 (ko) | 세라믹 기판 제조 방법 | |
JP2006229247A (ja) | 回路基板及びその製造方法 | |
WO2020245975A1 (ja) | 金属ベース板の反り制御構造、半導体モジュールおよびインバータ装置 | |
JP6378247B2 (ja) | 積層体、パワーモジュールおよび積層体の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14834271 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC - FORM 1205A (09.05.2016) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14834271 Country of ref document: EP Kind code of ref document: A1 |