WO2013008865A1 - 積層体及び積層体の製造方法 - Google Patents

積層体及び積層体の製造方法 Download PDF

Info

Publication number
WO2013008865A1
WO2013008865A1 PCT/JP2012/067752 JP2012067752W WO2013008865A1 WO 2013008865 A1 WO2013008865 A1 WO 2013008865A1 JP 2012067752 W JP2012067752 W JP 2012067752W WO 2013008865 A1 WO2013008865 A1 WO 2013008865A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
intermediate layer
aluminum
brazing material
ceramic substrate
Prior art date
Application number
PCT/JP2012/067752
Other languages
English (en)
French (fr)
Inventor
雄一郎 山内
智資 平野
慎二 斎藤
年彦 花待
Original Assignee
日本発條株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本発條株式会社 filed Critical 日本発條株式会社
Priority to CN201280034470.9A priority Critical patent/CN103648766B/zh
Priority to US14/130,566 priority patent/US20140134448A1/en
Priority to EP12810573.1A priority patent/EP2732967A4/en
Priority to KR1020147000588A priority patent/KR101572586B1/ko
Publication of WO2013008865A1 publication Critical patent/WO2013008865A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • B05D1/12Applying particulate materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/14Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using spraying techniques to apply the conductive material, e.g. vapour evaporation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/121Metallic interlayers based on aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/126Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/126Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
    • C04B2237/128The active component for bonding being silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/341Silica or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/346Titania or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/348Zirconia, hafnia, zirconates or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/366Aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/368Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/706Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the metallic layers or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/83447Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0341Intermediate metal, e.g. before reinforcing of conductors by plating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/13Moulding and encapsulation; Deposition techniques; Protective layers
    • H05K2203/1333Deposition techniques, e.g. coating
    • H05K2203/1344Spraying small metal particles or droplets of molten metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12049Nonmetal component
    • Y10T428/12056Entirely inorganic

Definitions

  • This invention relates to the laminated body which laminated
  • a chip (transistor) is disposed on one surface of an insulating base material (for example, a ceramic base material) as a base material through a circuit pattern of a metal film, and a metal film is provided on the other surface.
  • a temperature control unit cooling unit or heating unit
  • the temperature adjusting unit for example, a metal or alloy member provided with a moving path of a cooling or heating heat medium is used. In such a power module, the heat generated from the chip can be cooled by moving it to the temperature adjusting unit through the metal film and dissipating it to the outside.
  • Examples of a method for producing a laminate in which a metal film is formed on an insulating base include a thermal spraying method and a cold spray method.
  • the thermal spraying method is a method of forming a film by spraying a material (spraying material) heated to a molten state or a state close thereto to the base material.
  • the cold spray method a powder of a material is sprayed from a Laval nozzle together with an inert gas having a melting point or a softening point or lower, and is allowed to collide with the base material in a solid state.
  • an inert gas having a melting point or a softening point or lower for example, refer to Patent Document 2.
  • the processing is performed at a lower temperature than the thermal spraying method, the influence of thermal stress is reduced. Therefore, it is possible to obtain a metal film having no phase transformation and suppressing oxidation.
  • both the base material and the coating material are metals, plastic deformation occurs between the powder and the base material when the metal material powder collides with the base material (or the previously formed film). Since the anchor effect is obtained and the oxide films of each other are destroyed and metal bonds are formed by the new surfaces, a laminate with high adhesion strength can be obtained.
  • the present invention has been made in view of the above, and an object thereof is to provide a laminate having high adhesion strength between a ceramic substrate and a metal film, and a method for producing such a laminate.
  • the laminated body according to the present invention includes an insulating ceramic base material and an intermediate composed mainly of a metal or alloy formed on the surface of the ceramic base material. And a metal film layer formed by accelerating a powder made of a metal or an alloy together with a gas on the surface of the intermediate layer and spraying and depositing the powder in a solid state on the surface. To do.
  • the intermediate layer is formed by brazing a plate-like metal or alloy member to the ceramic base material.
  • the ceramic substrate is made of a nitride ceramic.
  • the intermediate layer includes at least a layer mainly composed of aluminum.
  • the intermediate layer contains at least one selected from the group consisting of any metal of germanium, magnesium, silicon, and copper.
  • the intermediate layer further includes a layer mainly composed of any one of silver, nickel, gold, and copper.
  • the metal film layer is made of copper or aluminum.
  • the method for producing a laminate according to the present invention includes an intermediate layer forming step of forming an intermediate layer mainly composed of a metal or an alloy on the surface of an insulating ceramic substrate, and a metal or an A film forming step of forming a metal film layer by accelerating powder made of an alloy together with a gas and spraying and depositing the powder in a solid state on the surface.
  • the intermediate layer forming step includes a brazing material arranging step of arranging an aluminum brazing material on the surface of the ceramic substrate, and a plate-like metal or alloy member is arranged on the aluminum brazing material. It includes a metal member arranging step and a heat treatment step of heat treating the ceramic base material on which the aluminum brazing material and the metal or alloy member are sequentially arranged.
  • the brazing material arranging step includes the application of a brazing material paste to the ceramic base material, the placement of the brazing material foil on the ceramic base material, and the vapor deposition method or the sputtering method. Any one of the steps of adhesion of the brazing material to the ceramic substrate is included.
  • the heat treatment step is performed in a vacuum or in an inert gas atmosphere.
  • the aluminum brazing material contains at least one selected from the group consisting of any metal of germanium, magnesium, silicon, and copper.
  • the metal or alloy member has a thickness of 1 mm or less.
  • an intermediate layer mainly composed of a metal or an alloy is formed on the surface of the ceramic substrate, and the powder made of the metal or alloy is accelerated together with the gas on the surface of the intermediate layer, and remains in a solid state. Since the metal film layer is formed by spraying on and depositing, the metal film layer adheres to the intermediate layer by the anchor effect, and the intermediate layer is pressed toward the ceramic substrate when the powder collides with the intermediate layer. . Thereby, a laminate having high adhesion strength between the ceramic substrate and the metal film layer can be obtained.
  • FIG. 1 is a schematic diagram showing a configuration of a power module that is a laminate according to an embodiment of the present invention.
  • FIG. 2 is an enlarged cross-sectional view showing a main part of the power module shown in FIG.
  • FIG. 3 is a flowchart showing a manufacturing method of the power module shown in FIG.
  • FIG. 4A is a cross-sectional view illustrating a process of forming an aluminum brazing material layer on a ceramic substrate.
  • FIG. 4B is a cross-sectional view illustrating a process of placing an aluminum foil on the aluminum brazing material layer.
  • FIG. 5 is a schematic diagram showing an outline of the cold spray apparatus.
  • FIG. 1 is a schematic diagram showing a configuration of a power module that is a laminate according to an embodiment of the present invention.
  • FIG. 2 is an enlarged cross-sectional view showing a main part of the power module shown in FIG.
  • FIG. 3 is a flowchart showing a manufacturing method of the power module shown in FIG.
  • FIG. 6 is a schematic diagram illustrating a schematic configuration of a tensile test apparatus that has performed an adhesion strength test on a laminate.
  • FIG. 7 is a table showing production conditions and experimental conditions of the laminates according to Examples and Comparative Examples, and experimental results.
  • 8A is a photograph showing a cross section of the laminate according to Example 1.
  • FIG. 8B is an enlarged photograph showing the vicinity of the boundary between the aluminum foil and the copper film shown in FIG. 8A.
  • FIG. 8C is an enlarged photograph showing the vicinity of the boundary between the aluminum brazing material layer and the aluminum nitride base material shown in FIG. 8A.
  • 9A is a photograph showing a cross section of the laminate according to Example 2.
  • FIG. 9B is an enlarged photograph showing the vicinity of the boundary between the aluminum foil and the copper film shown in FIG. 9A.
  • FIG. 9C is an enlarged photograph showing the vicinity of the boundary between the aluminum brazing material layer and the silicon nitride substrate shown in FIG. 9A.
  • FIG. 1 is a schematic diagram showing a configuration of a power module that is a laminate according to an embodiment of the present invention.
  • FIG. 2 is an enlarged cross-sectional view showing a main part of the laminate shown in FIG.
  • a power module 1 shown in FIG. 1 includes a ceramic substrate 10 that is an insulating substrate, a circuit layer 20 formed on one surface of the ceramic substrate 10, and a chip 30 that is bonded to the circuit layer 20 by solder C1. And a cooling fin 40 provided on the surface of the ceramic substrate 10 opposite to the circuit layer 20.
  • the ceramic substrate 10 is a substantially plate-like member made of an insulating material.
  • the insulating material include nitride ceramics such as aluminum nitride and silicon nitride, and oxide ceramics such as alumina, magnesia, zirconia, steatite, forsterite, mullite, titania, silica, and sialon.
  • the circuit layer 20 is a metal film layer formed by a cold spray method, which will be described later, and is made of a metal or alloy having good electrical conductivity, such as copper.
  • the circuit layer 20 is formed with a circuit pattern for transmitting an electrical signal to the chip 30 and the like.
  • the chip 30 is realized by a semiconductor element such as a diode, a transistor, or an IGBT (insulated gate bipolar transistor). Note that a plurality of chips 30 may be provided on the ceramic substrate 10 in accordance with the purpose of use.
  • the cooling fin 40 is a metal film layer formed by a cold spray method, which will be described later, and is made of a metal or alloy having good thermal conductivity such as copper, copper alloy, aluminum, aluminum alloy, silver, or silver alloy. The heat generated from the chip 30 is released to the outside through the ceramic substrate 10 through the cooling fin 40.
  • an intermediate layer 50 mainly composed of a metal or an alloy is provided between the ceramic substrate 10 and the circuit layer 20 and between the ceramic substrate 10 and the cooling fin 40.
  • the intermediate layer 50 is formed by joining a plate-like metal or alloy member (hereinafter collectively referred to as a metal member) to the ceramic substrate 10 using a brazing material. ing.
  • the type of brazing material can be selected according to the type of ceramic substrate 10 and the type of plate-like metal member.
  • an aluminum brazing material containing aluminum as a main component and containing at least one of germanium, magnesium, silicon, and copper is used.
  • the plate-like metal member a metal or alloy having a hardness that can be joined to the ceramic substrate 10 by brazing and can form a film by a cold spray method is used. Since the hardness range varies depending on the film forming conditions in the cold spray method and the like, it is not unconditionally determined, but in general, any metal member having a Vickers hardness of 100 HV or less can be applied. Specific examples include aluminum, silver, nickel, gold, copper, and alloys containing these metals. In the present embodiment, aluminum is used as the plate-like metal member, and in this case, the intermediate layer 50 is a layer mainly composed of aluminum as a whole.
  • FIG. 3 is a flowchart showing a method for manufacturing the power module 1.
  • an aluminum (Al) brazing material 51 is preferably disposed on the surface of a nitride-based ceramic substrate 10 as shown in FIG. 4A.
  • a paste-like brazing material containing an organic solvent and an organic binder may be applied to the ceramic substrate 10 by a screen printing method.
  • a foil-like brazing material (brazing material foil) may be placed on the ceramic substrate 10.
  • a brazing material may be attached to the surface of the ceramic substrate 10 by vapor deposition or sputtering.
  • an aluminum (Al) foil 52 is disposed on the aluminum brazing material 51 as shown in FIG. 4B.
  • the aluminum foil 52 is a plate-like rolled member having a thickness of about 0.01 mm to 0.2 mm, for example.
  • positioned on the aluminum brazing material 51 it is not limited to foil-shaped aluminum, As long as thickness is about 1 mm or less, you may arrange
  • the ceramic substrate 10 having the aluminum brazing material 51 disposed on both surfaces is sandwiched between two aluminum foils 52. Good.
  • the ceramic base material 10 on which the aluminum brazing material 51 and the aluminum foil 52 are arranged is kept at a predetermined temperature for a predetermined time and subjected to heat treatment in a vacuum.
  • heat treatment the aluminum brazing material 51 is melted, and a joined body of the ceramic substrate 10 and the aluminum foil 52 is obtained.
  • the aluminum brazing material 51 and the aluminum foil 52 provided on the surface of the ceramic substrate 10 become the intermediate layer 50.
  • heat treatment may be performed in an inert gas atmosphere such as nitrogen gas instead of vacuum brazing.
  • FIG. 5 is a schematic view showing an outline of a cold spray apparatus used for forming a metal film layer.
  • a cold spray device 60 shown in FIG. 5 includes a gas heater 61 that heats a compressed gas, a powder supply device 62 that stores powder of the material of the metal coating layer, and supplies the powder to the spray gun 63, and the heated compressed gas and A gas nozzle 64 for injecting the material powder supplied thereto onto the substrate, and valves 65 and 66 for adjusting the amount of compressed gas supplied to the gas heater 61 and the powder supply device 62 are provided.
  • the compressed gas helium, nitrogen, air or the like is used.
  • the compressed gas supplied to the gas heater 61 is, for example, 50 ° C. or higher, heated to a temperature in a range lower than the melting point of the material powder of the metal coating layer, and then supplied to the spray gun 62.
  • the heating temperature of the compressed gas is preferably 300 to 900 ° C.
  • the compressed gas supplied to the powder supply device 62 supplies the material powder in the powder supply device 62 to the spray gun 63 so as to have a predetermined discharge amount.
  • the heated compressed gas is made a supersonic flow (about 340 m / s or more) by the gas nozzle 64 having a divergent shape.
  • the gas pressure of the compressed gas is preferably about 1 to 5 MPa. This is because the adhesion strength of the metal film layer to the intermediate layer 50 can be improved by adjusting the pressure of the compressed gas to this level. More preferably, the treatment is performed at a pressure of about 2 to 4 MPa.
  • the powder material supplied to the spray gun 63 is accelerated by the injection of this compressed gas into the supersonic flow, and collides with the intermediate layer 50 on the ceramic substrate 10 at high speed and deposits in the solid state. Form a film.
  • the apparatus is not limited to the cold spray apparatus 60 shown in FIG. 5 as long as the apparatus can form a film by causing the material powder to collide with the ceramic substrate 10 in a solid phase state.
  • a metal mask having a circuit pattern formed on the intermediate layer 50 may be disposed, and the film may be formed using, for example, copper powder.
  • the film may be formed using, for example, copper powder.
  • a film (deposition layer) having a desired thickness is formed using, for example, aluminum powder, and then laser cutting is performed on the film (deposition layer).
  • a desired flow path pattern may be formed by, for example.
  • the intermediate layer 50 is formed on the surface of the ceramic substrate 10 using the aluminum brazing material 51 and the aluminum foil 52, and the metal is formed on the intermediate layer 50 by a cold spray method.
  • a film layer is formed.
  • a sufficient anchor effect is produced when the material powder collides with the intermediate layer 50, and a metal film layer that is firmly adhered to the intermediate layer 50 is formed.
  • the pressing force in the direction of the ceramic substrate 10 is applied to the intermediate layer 50 when the material powder collides, the bonding strength of the intermediate layer 50 to the ceramic substrate 10 is improved.
  • the circuit layer 20 and the cooling fin 40 can be disposed without using a mechanical fastening member, solder, silicon grease, or the like. Therefore, the thermal conductivity is superior to the conventional one, the structure is simplified, and the size can be reduced. Further, when the size of the power module 1 is set to the same level as the conventional size, the ratio of the main components such as cooling fins can be increased.
  • the circuit layer 20 and the cooling fin 40 are disposed on the ceramic substrate 10 only through the intermediate layer 50 mainly composed of aluminum having good thermal conductivity.
  • the heat generated in the layer 20 can be efficiently radiated from the cooling fins 40.
  • nitride ceramics having good thermal conductivity.
  • members such as cooling fins are brazed to the nitride ceramic substrate, the bonding strength between the two is insufficient.
  • the heat treatment temperature is high (for example, 600 ° C. or more) in vacuum brazing, There was a risk of cracking.
  • a thin member such as an aluminum foil is brazed in vacuum (or in an inert gas atmosphere) to the nitride-based ceramic base material to form an intermediate layer. Even when the heat treatment temperature becomes high, peeling or cracking of the intermediate layer from the substrate due to the difference in thermal expansion coefficient does not occur. And since the metal film layer that becomes a member such as a cooling fin is directly formed on the intermediate layer by the cold spray method, it is possible to produce a power module having high mechanical strength and good thermal conductivity. Become.
  • the temperature control device formed by the metal film layer has been described as a cooling fin that dissipates heat generated from the chip.
  • the component laminated on the ceramic substrate such as the chip is heated. It may be a heating device provided for this purpose.
  • the intermediate layer 50 and the metal film layer are formed on both sides of the ceramic substrate 10, but only on one surface of the ceramic substrate 10 (for example, the surface on the cooling fin 40 side).
  • An intermediate layer 50 and a metal film layer may be provided.
  • the nitride-based ceramics and oxide-based ceramics having insulating properties are cited as the base material of the laminate, but the same method can be applied to conductive base materials such as carbide-based ceramics. Thus, a laminate can be produced.
  • the intermediate layer 50 is formed using the aluminum brazing material 51 and the aluminum foil 52, the intermediate layer 50 is often observed as a substantially uniform layer mainly composed of aluminum. .
  • the element distribution analysis with respect to the intermediate layer 50, the metal structure observation by SEM, and the like are derived from the aluminum foil 52 which is a plate-like aluminum member, derived from the substantially aluminum layer and the aluminum brazing material 51, and other than aluminum.
  • a layer containing a component can be distinguished.
  • the intermediate layer 50 may have a two-layer structure of a layer mainly composed of the metal and a layer derived from the aluminum brazing material 51 and mainly composed of aluminum.
  • a laminate test piece in which a copper (Cu) film is formed on a nitride ceramic substrate is produced by the method for manufacturing a laminate according to the present embodiment, and the adhesion strength between the substrate and the copper film is An experiment was conducted to measure.
  • FIG. 6 is a schematic diagram showing a test apparatus using a simple tensile test method used for measuring the adhesion strength of a test piece.
  • this test apparatus 70 an aluminum pin 72 is fixed to a coating layer (copper coating) 83 through an adhesive 73, and the test piece 80 is fixed to the fixing base 71 by inserting the aluminum pin 72 into the hole 71 a of the fixing base 71 from above.
  • the adhesion strength between the base material 81 and the coating layer 83 formed through the intermediate layer 82 was evaluated by placing the aluminum pin 72 downward.
  • the same experiment was performed by bonding the aluminum pin 72 to the coating layer 83 formed directly on the substrate 81.
  • the evaluation was performed based on the tensile stress and the peeled state when the coating layer 83 peeled from the substrate 81.
  • the size of the base material 81 it was 50 mm x 50 mm x 0.635 mm in both the Example and the Comparative Example.
  • FIG. 7 is a table showing the production conditions and experimental conditions of the laminates according to the examples and comparative examples, and the experimental results.
  • the numerical value in the “adhesion strength” column indicates the value of tensile stress when peeling occurs between the base material 81 and the coating layer 83.
  • the description “ ⁇ 60 MPa” in the “Adhesion strength” column indicates that peeling occurred due to the fracture of the adhesive 73 in the test apparatus 70, that is, the maximum tensile stress (60 MPa) that can be measured in the test apparatus 70 is given. However, it means that the base material 81 and the coating layer 83 did not peel off.
  • Example 1 As Example 1, an aluminum brazing material and an aluminum (Al) foil having a thickness of about 0.2 mm are placed on an aluminum nitride (AlN) base material, and heat treatment is performed in a vacuum at 590 ° C. for 4 hours. A layer was formed. A copper (Cu) film having a thickness of about 1.0 mm was formed on the intermediate layer by a cold spray method. The film formation conditions at this time were a nitrogen gas (N 2 ) temperature of 400 ° C. and an injection pressure of 5 MPa.
  • N 2 nitrogen gas
  • FIG. 8A to 8C are photographs obtained by observing a cross section of the laminate according to Example 1 with a scanning electron microscope (SEM) after the tensile test.
  • FIG. 8A is an enlarged photograph of 300 times including an aluminum nitride (AlN) base material, an intermediate layer (Al foil + Al brazing material layer), and a copper (Cu) film.
  • FIG. 8B is an enlarged photograph of 2000 times showing the vicinity of the boundary between the aluminum (Al) foil and the copper film shown in FIG. 8A.
  • FIG. 8C is an enlarged photograph of 2000 times showing the vicinity of the boundary between the aluminum nitride base material and the aluminum (Al) brazing material layer shown in FIG. 8A.
  • FIG. 8A As a result of heat treatment in the intermediate layer, no clear boundary was found between the aluminum foil and the aluminum brazing material layer. Moreover, as shown in FIG. 8B, an anchor effect in which the copper film bites into the aluminum foil and the two are in close contact with each other was observed on the upper part of the aluminum foil. Furthermore, as shown in FIG. 8C, a phenomenon in which the aluminum brazing material layer softened by the heat treatment was closely bonded to the aluminum nitride base material surface was observed at the boundary between the aluminum nitride base material and the aluminum brazing material layer. . In any of these FIGS. 8A to 8C, there was no evidence of peeling or fracture due to the tensile test.
  • Example 2 As Example 2, an aluminum brazing material and an aluminum (Al) foil having a thickness of about 0.2 mm are arranged on a silicon nitride (Si 3 N 4 ) substrate, and heat treatment is performed in a vacuum at 590 ° C. for 4 hours. Thus, an intermediate layer was formed. A copper (Cu) film having a thickness of about 1.0 mm was formed on the intermediate layer by a cold spray method. The film forming conditions at this time are the same as those in Example 1.
  • adhesion strength of 60 MPa or more was obtained between the base material 81 and the coating layer 83.
  • FIG. 9A to 9C are photographs obtained by observing a cross section of the laminate according to Example 2 with a SEM (scanning electron microscope) after the tensile test.
  • FIG. 9A is an enlarged photograph of 300 times including a silicon nitride (Si 3 N 4 ) base material, an intermediate layer (Al foil + Al brazing material layer), and a copper (Cu) film.
  • FIG. 9B is an enlarged photograph of 2000 times showing the vicinity of the boundary between the aluminum (Al) foil and the copper film shown in FIG. 9A.
  • FIG. 9C is an enlarged photograph of 2000 times showing the vicinity of the boundary between the silicon nitride substrate and the aluminum (Al) brazing material layer shown in FIG. 9A.
  • Example 2 in Example 2 as well as Example 1, a clear boundary between the aluminum foil and the aluminum brazing material layer was not observed in the intermediate layer. Further, as shown in FIG. 9B, a phenomenon in which the copper film was in close contact with the aluminum foil due to the anchor effect was observed on the top of the aluminum foil. As shown in FIG. 9C, it is observed that the aluminum brazing material layer is closely bonded to the silicon nitride base material even at the boundary between the silicon nitride base material and the aluminum brazing material layer. No peeling of the layer or copper film was observed.
  • Comparative Example 1 As Comparative Example 1, a copper (Cu) film was directly formed on an aluminum nitride (AlN) substrate by a cold spray method. Further, as Comparative Example 2, a copper (Cu) film was directly formed on a silicon nitride (Si 3 N 4 ) substrate by a cold spray method. The film forming conditions in the comparative example are the same as in Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Structural Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Laminated Bodies (AREA)
  • Ceramic Products (AREA)

Abstract

 コールドスプレー法を用いてセラミックス基材に金属皮膜を形成した積層体を作製する場合に、セラミックスと金属皮膜との間の密着強度が高い積層体及びこのような積層体の製造方法を提供する。積層体は、絶縁性を有するセラミックス基材(10)と、該セラミックス基材(10)の表面に形成された金属又は合金を主成分とする中間層(50)と、該中間層(50)の表面に、金属又は合金からなる粉末をガスと共に加速し、表面に固相状態のままで吹き付けて堆積させることによって形成された金属皮膜層(回路層(20)、冷却フィン(40))とを備える。

Description

積層体及び積層体の製造方法
 本発明は、絶縁基材に金属を積層した積層体及び積層体の製造方法に関する。
 従来、産業用、自動車用などの電力制御からモータ制御まで、幅広い分野に使用される省エネルギー化のキーデバイスとして、パワーモジュールが知られている。パワーモジュールは、基材である絶縁基材(例えばセラミックス基材)の一方の面に、金属皮膜による回路パターンを介してチップ(トランジスタ)を配設し、他方の面に、金属皮膜を介して温度調節部(冷却部又は加熱部)を配設した装置である(例えば、特許文献1参照)。温度調節部としては、例えば金属又は合金の部材に冷却用又は加熱用の熱媒体の移動経路を設けたものが用いられる。このようなパワーモジュールにおいては、チップから発生した熱を、金属皮膜を介して温度調節部に移動させ外部に放熱することにより、冷却を行うことができる。
 絶縁基材に金属皮膜を形成した積層体の作製方法としては、例えば、溶射法やコールドスプレー法が挙げられる。溶射法は、溶融又はそれに近い状態に加熱された材料(溶射材)を基材に吹き付けることによって皮膜を形成する方法である。
 一方、コールドスプレー法は、材料の粉末を、融点又は軟化点以下の状態の不活性ガスとともに末広(ラバル)ノズルから噴射し、固相状態のまま基材に衝突させることにより、基材の表面に皮膜を形成する方法である(例えば、特許文献2参照)。コールドスプレー法においては、溶射法と比較して低い温度で加工が行われるので、熱応力の影響が緩和される。そのため、相変態がなく酸化も抑制された金属皮膜を得ることができる。特に、基材及び皮膜となる材料がともに金属である場合、金属材料の粉末が基材(又は先に形成された皮膜)に衝突した際に粉末と基材との間で塑性変形が生じてアンカー効果が得られると共に、互いの酸化皮膜が破壊されて新生面同士による金属結合が生じるので、密着強度の高い積層体を得ることができる。
特開2011-108999号公報 米国特許第5302414号明細書
 ところで、上述した積層体をパワーモジュール等に適用する場合、基材と金属皮膜との間には高い密着強度が求められる。しかしながら、セラミックス基材に対して金属皮膜を形成する場合、コールドスプレー法においては塑性変形が金属側のみで生じるので、セラミックス基材と金属との間で十分なアンカー効果が得られない。そのため、セラミックス基材と金属皮膜との間の密着強度が不十分な積層体が形成されるという問題があった。
 本発明は、上記に鑑みてなされたものであって、セラミックス基材と金属皮膜との間の密着強度が高い積層体及びこのような積層体の製造方法を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係る積層体は、絶縁性を有するセラミックス基材と、前記セラミックス基材の表面に形成された金属又は合金を主成分とする中間層と、前記中間層の表面に、金属又は合金からなる粉末をガスと共に加速し、前記表面に固相状態のままで吹き付けて堆積させることによって形成された金属皮膜層とを備えることを特徴とする。
 上記積層体において、前記中間層は、板状の金属又は合金部材を前記セラミックス基材にろう付することにより形成されていることを特徴とする。
 上記積層体において、前記セラミックス基材は窒化物系セラミックスからなることを特徴とする。
 上記積層体において、前記中間層は、少なくとも、アルミニウムを主成分とする層を含むことを特徴とする。
 上記積層体において、前記中間層は、ゲルマニウム、マグネシウム、珪素、銅の内のいずれかの金属からなる群より選択される少なくとも1種類を含有することを特徴とする。
 上記積層体において、前記中間層は、銀、ニッケル、金、銅の内のいずれかの金属を主成分とする層をさらに含むことを特徴とする。
 上記積層体において、前記金属皮膜層は、銅又はアルミニウムからなることを特徴とする。
 本発明に係る積層体の製造方法は、絶縁性を有するセラミックス基材の表面に、金属又は合金を主成分とする中間層を形成する中間層形成工程と、前記中間層の表面に、金属又は合金からなる粉末をガスと共に加速し、前記表面に固相状態のままで吹き付けて堆積させることによって金属皮膜層を形成する皮膜形成工程とを含むことを特徴とする。
 上記積層体の製造方法において、前記中間層形成工程は、前記セラミックス基材の表面にアルミニウムろう材を配置するろう材配置工程と、前記アルミニウムろう材上に板状の金属又は合金部材を配置する金属部材配置工程と、前記アルミニウムろう材及び前記金属又は合金部材が順次配置された前記セラミックス基材を熱処理する熱処理工程とを含むことを特徴とする。
 上記積層体の製造方法において、前記ろう材配置工程は、ろう材ペーストの前記セラミックス基材への塗布と、ろう材箔の前記セラミックス基材上への載置と、蒸着法若しくはスパッタ法による前記セラミックス基材へのろう材の付着との内のいずれかの工程を含むことを特徴とする。
 上記積層体の製造方法において、前記熱処理工程は真空中又は不活性ガス雰囲気中で行われることを特徴とする。
 上記積層体の製造方法において、前記アルミニウムろう材は、ゲルマニウム、マグネシウム、珪素、銅の内のいずれかの金属からなる群より選択される少なくとも1種類を含有することを特徴とする。
 上記積層体の製造方法において、前記金属又は合金部材の厚さが1mm以下であることを特徴とする。
 本発明によれば、セラミックス基材の表面に金属又は合金を主成分とする中間層を形成し、この中間層の表面に、金属又は合金からなる粉末をガスと共に加速し、固相状態のままで吹き付けて堆積させることによって金属皮膜層を形成するので、金属皮膜層がアンカー効果により中間層に密着すると共に、粉末が中間層に衝突する際に中間層がセラミックス基材に向かって押圧される。それにより、セラミックス基材と金属皮膜層との間の密着強度が高い積層体を得ることができる。
図1は、本発明の実施の形態に係る積層体であるパワーモジュールの構成を示す模式図である。 図2は、図1に示すパワーモジュールの要部を拡大して示す断面図である。 図3は、図1に示すパワーモジュールの作製方法を示すフローチャートである。 図4Aは、セラミックス基材に対してアルミニウムろう材層を形成する工程を説明する断面図である。 図4Bは、アルミニウムろう材層上にアルミニウム箔を配置する工程を説明する断面図である。 図5は、コールドスプレー装置の概要を示す模式図である。 図6は、積層体に対する密着強度の試験を行った引張試験装置の概略構成を示す模式図である。 図7は、実施例及び比較例による積層体の作製条件及び実験条件、並びに実験結果を示す表である。 図8Aは、実施例1に係る積層体の断面を示す写真である。 図8Bは、図8Aに示すアルミニウム箔と銅皮膜との境界付近を拡大して示す写真である。 図8Cは、図8Aに示すアルミニウムろう材層と窒化アルミニウム基材との境界付近を拡大して示す写真である。 図9Aは、実施例2に係る積層体の断面を示す写真である。 図9Bは、図9Aに示すアルミニウム箔と銅皮膜との境界付近を拡大して示す写真である。 図9Cは、図9Aに示すアルミニウムろう材層と窒化珪素基材との境界付近を拡大して示す写真である。
 以下、本発明を実施するための形態を、図面を参照しながら詳細に説明する。なお、以下の実施の形態により本発明が限定されるものではない。また、以下の説明において参照する各図は、本発明の内容を理解し得る程度に形状、大きさ、及び位置関係を概略的に示してあるに過ぎない。即ち、本発明は各図で例示された形状、大きさ、及び位置関係のみに限定されるものではない。
(実施の形態)
 図1は、本発明の実施の形態に係る積層体であるパワーモジュールの構成を示す模式図である。また、図2は、図1に示す積層体の要部を拡大して示す断面図である。
 図1に示すパワーモジュール1は、絶縁基板であるセラミックス基材10と、セラミックス基材10の一方の面に形成された回路層20と、回路層20上に半田C1によって接合されたチップ30と、セラミックス基材10の回路層20とは反対側の面に設けられた冷却フィン40とを備える。
 セラミックス基材10は、絶縁性材料からなる略板状の部材である。絶縁性材料としては、例えば、窒化アルミニウム、窒化珪素等の窒化物系セラミックスや、アルミナ、マグネシア、ジルコニア、ステアタイト、フォルステライト、ムライト、チタニア、シリカ、サイアロン等の酸化物系セラミックスが用いられる。
 回路層20は、後述するコールドスプレー法によって形成された金属皮膜層であり、例えば銅等の良好な電気伝導度を有する金属又は合金からなる。この回路層20には、チップ30等に対して電気信号を伝達するための回路パターンが形成されている。
 チップ30は、ダイオード、トランジスタ、IGBT(絶縁ゲートバイポーラトランジスタ)等の半導体素子によって実現される。なお、チップ30は、使用の目的に合わせてセラミックス基材10上に複数個設けられても良い。
 冷却フィン40は、後述するコールドスプレー法によって形成された金属皮膜層であり、銅、銅合金、アルミニウム、アルミニウム合金、銀、銀合金等の良好な熱伝導性を有する金属又は合金からなる。このような冷却フィン40を介して、チップ30から発生した熱がセラミックス基材10を介して外部に放出される。
 図2に示すように、セラミックス基材10と回路層20との間、及びセラミックス基材10と冷却フィン40との間には、金属又は合金を主成分とする中間層50が設けられている。この中間層50は、後で詳細に説明するように、ろう材を用いて板状の金属又は合金部材(以下、これらをまとめて金属部材という)をセラミックス基材10に接合することにより形成されている。
 ろう材の種類は、セラミックス基材10の種類や板状の金属部材の種類に応じて選択することができる。本実施の形態においては、アルミニウムを主成分とし、ゲルマニウム、マグネシウム、珪素、銅の内の少なくとも1種を含有するアルミニウムろう材を用いている。
 また、板状の金属部材としては、セラミックス基材10に対してろう付による接合が可能であり、且つ、コールドスプレー法による皮膜形成が可能な程度の硬度を有する金属又は合金が用いられる。この硬度の範囲はコールドスプレー法における成膜条件等によっても異なるため、一概には定められないが、概ね、ビッカース硬度が100HV以下の金属部材であれば適用することができる。具体的には、アルミニウム、銀、ニッケル、金、銅、又はこれらの金属を含む合金等が挙げられる。本実施の形態においては、板状の金属部材としてアルミニウムを用いており、この場合、中間層50は全体として、アルミニウムを主成分とする層となる。
 次に、パワーモジュール1の作製方法について、図3~5を参照しながら説明する。図3は、パワーモジュール1の作製方法を示すフローチャートである。
 まず、工程S1において、図4Aに示すように、好ましくは窒化物系のセラミックス基材10の表面にアルミニウム(Al)ろう材51を配置する。
 アルミニウムろう材51をセラミックス基材10表面に配置する方法としては、公知の種々の方法が用いられる。例えば、有機溶剤及び有機バインダーを含むペースト状のろう材をスクリーン印刷法によってセラミックス基材10に塗布しても良い。また、箔状のろう材(ろう材箔)をセラミックス基材10上に載置しても良い。或いは、蒸着法やスパッタ法等によりろう材をセラミックス基材10の表面に付着させても良い。
 続く工程S2において、図4Bに示すように、アルミニウムろう材51上にアルミニウム(Al)箔52を配置する。アルミニウム箔52は、厚さが例えば0.01mm~0.2mm程度の板状の圧延部材である。本実施の形態においては、このように厚さの小さい部材を用いることにより、後述する熱処理工程において、アルミニウム箔52とセラミックス基材10との間における熱膨張率の差に起因する破損を防止することとしている。なお、アルミニウムろう材51上に配置する部材としては、箔状のアルミニウムに限定されず、厚さが約1mm以下であれば、板状のアルミニウム部材を配置しても良い。
 なお、図2に示すように、セラミックス基材10の両面に中間層50を形成する場合には、アルミニウムろう材51を両面に配置したセラミックス基材10を2枚のアルミニウム箔52によって挟むようにすると良い。
 続く工程S3において、アルミニウムろう材51及びアルミニウム箔52を表面に配置したセラミックス基材10を所定時間、所定温度に保持して真空中において熱処理を施す。この熱処理により、アルミニウムろう材51が溶融し、セラミックス基材10とアルミニウム箔52との接合体が得られる。このようにしてセラミックス基材10表面に設けられたアルミニウムろう材51及びアルミニウム箔52が中間層50となる。なお、真空ろう付の代わりに、窒素ガス等の不活性ガス雰囲気中で熱処理を行っても良い。
 続く工程S4において、コールドスプレー法により中間層50上に金属皮膜層(回路層20及び冷却フィン40)を形成する。図5は、金属皮膜層の形成に使用されるコールドスプレー装置の概要を示す模式図である。
 図5に示すコールドスプレー装置60は、圧縮ガスを加熱するガス加熱器61と、金属皮膜層の材料の粉末を収容し、スプレーガン63に供給する粉末供給装置62と、加熱された圧縮ガス及びそこに供給された材料粉末を基材に噴射するガスノズル64と、ガス加熱器61及び粉末供給装置62に対する圧縮ガスの供給量をそれぞれ調節するバルブ65及び66とを備える。
 圧縮ガスとしては、ヘリウム、窒素、空気などが使用される。ガス加熱器61に供給された圧縮ガスは、例えば50℃以上であって、金属皮膜層の材料粉末の融点よりも低い範囲の温度に加熱された後、スプレーガン62に供給される。圧縮ガスの加熱温度は、好ましくは300~900℃である。
 一方、粉末供給装置62に供給された圧縮ガスは、粉末供給装置62内の材料粉末をスプレーガン63に所定の吐出量となるように供給する。
 加熱された圧縮ガスは末広形状をなすガスノズル64により超音速流(約340m/s以上)にされる。この際の圧縮ガスのガス圧力は、1~5MPa程度とすることが好ましい。圧縮ガスの圧力をこの程度に調整することにより、中間層50に対する金属皮膜層の密着強度の向上を図ることができるからである。より好ましくは、2~4MPa程度の圧力で処理すると良い。スプレーガン63に供給された粉末材料は、この圧縮ガスの超音速流の中への投入により加速され、固相状態のまま、セラミックス基材10上の中間層50に高速で衝突して堆積し、皮膜を形成する。なお、材料粉末をセラミックス基材10に向けて固相状態で衝突させて皮膜を形成できる装置であれば、図5に示すコールドスプレー装置60に限定されるものではない。
 なお、金属皮膜層として回路層20を形成する場合には、例えば、中間層50の上層に回路パターンが形成されたメタルマスク等を配置し、例えば銅の粉末を用いて皮膜形成を行えば良い。一方、金属皮膜層として冷却フィン40を形成する場合には、例えばアルミニウムの粉末を用いて所望の厚さの皮膜(堆積層)を形成し、その後、この皮膜(堆積層)に対してレーザ切削等により所望の流路パターンを形成すれば良い。
 さらに、必要に応じてチップ30等の部品を半田で回路層20に接合する。それにより、図1に示すパワーモジュール1が完成する。
 以上説明したように、本実施の形態においては、セラミックス基材10の表面にアルミニウムろう材51及びアルミニウム箔52を用いて中間層50を形成し、この中間層50上に、コールドスプレー法により金属皮膜層を形成する。このため、材料粉末が中間層50に衝突した際に十分なアンカー効果が生じ、中間層50に強固に密着した金属皮膜層が形成される。また、材料粉末の衝突の際に、中間層50にセラミックス基材10方向の押圧力が加えられるので、セラミックス基材10に対する中間層50の接合強度が向上する。その結果、セラミックス基材10と中間層50と金属皮膜層とが強固に密着した積層体を得ることができる。従って、このような積層体をパワーモジュール1に適用することにより、モジュール全体の機械的強度を向上させることができる。
 また、本実施の形態によれば、回路層20や冷却フィン40を、機械締結部材や半田やシリコングリース等を用いることなく配設することができる。従って、従来よりも熱伝導性に優れ、構造も簡素となり、サイズを小型化することができる。また、パワーモジュール1のサイズを従来と同程度にする場合には、冷却フィン等の主要な構成部分が占める割合を大きくすることができる。
 また、本実施の形態によれば、回路層20及び冷却フィン40を、良好な熱伝導性を有するアルミニウムを主成分とする中間層50のみを介してセラミックス基材10に配設するので、回路層20において発生した熱を冷却フィン40から効率良く放熱することができる。
 ここで、例えばパワーモジュール用の絶縁基板としては、良好な熱伝導性を有する窒化物系セラミックスの使用が従来より望まれていた。しかしながら、窒化物系セラミックス基板に対して冷却フィン等の部材を大気ろう付する場合、両者の接合強度が不十分となっていた。また、窒化物系セラミックス基板に対して真空ろう付により冷却フィン等の部材を接合する場合、真空ろう付においては熱処理温度が高温(例えば600℃以上)となるため、熱膨張率差により剥離や割れが生じるおそれがあった。
 それに対して、本実施の形態においては、窒化物系セラミックス基材に対し、アルミニウム箔という厚さの薄い部材を真空(又は不活性ガス雰囲気中で)ろう付して中間層を形成するので、熱処理温度が高温になっても、熱膨張率の差による基板からの中間層の剥離や割れが生じることはない。そして、この中間層上に、冷却フィン等の部材となる金属皮膜層をコールドスプレー法により直接形成するので、機械的強度が強く、良好な熱伝導性を有するパワーモジュールを作製することが可能となる。
 なお、上記実施の形態においては、金属皮膜層によって形成される温度調節装置を、チップから発生した熱を放熱する冷却フィンとして説明したが、チップ等のセラミックス基材に積層された部品を加熱するために設けられる加熱装置であってもよい。
 また、上記実施の形態においては、セラミックス基材10の両側に中間層50及び金属皮膜層を形成したが、セラミックス基材10のいずれか一方の面(例えば、冷却フィン40側の面)のみに中間層50及び金属皮膜層を設けることとしても良い。
 また、上記実施の形態においては、積層体の基材として絶縁性を有する窒化物系セラミックスや酸化物系セラミックスを挙げたが、炭化物系セラミックス等の導電性の基材に対しても同様の方法により積層体を作製することができる。
 上記実施の形態においては、アルミニウムろう材51及びアルミニウム箔52を用いて中間層50を形成しているため、中間層50はアルミニウムを主成分とするほぼ一様な層として観察されることが多い。しかしながら、中間層50に対する元素分布分析やSEMによる金属組織観察等により、板状のアルミニウム部材であるアルミニウム箔52に由来し、ほぼアルミニウムからなる層と、アルミニウムろう材51に由来し、アルミニウム以外の成分(ゲルマニウム、マグネシウム、珪素、銅等)を含有する層とを識別できる場合もある。
 また、上記実施の形態において、アルミニウム箔52の代わりに銀、ニッケル、金、銅といった他の種類の金属部材を用いる場合にも、同様の方法により積層体を作製することができる。この場合、中間層50は、当該金属を主成分とする層と、アルミニウムろう材51に由来し、アルミニウムを主成分とする層との2層構造となることもある。
 本実施の形態に係る積層体の製造方法により、窒化物系セラミックスの基材上に銅(Cu)皮膜を形成した積層体のテストピースを作製し、基材と銅皮膜との間の密着強度を測定する実験を行った。
 図6は、テストピースの密着強度測定の際に使用した簡易引張試験法による試験装置を示す模式図である。この試験装置70において、皮膜層(銅皮膜)83に接着剤73を介してアルミピン72を固着し、固定台71の孔部71aに、アルミピン72を上方から挿通してテストピース80を固定台71上に載置し、アルミピン72を下方に引っ張ることにより、基材81と、中間層82を介して形成された皮膜層83との間の密着強度を評価した。また、比較例については、基材81上に直接形成した皮膜層83にアルミピン72を接着して、同様の実験を行うこととした。評価は、皮膜層83が基材81から剥離した時点での引張応力と剥離状態により行なった。なお、基材81のサイズについては、実施例、比較例とも、50mm×50mm×0.635mmとした。
 図7は、実施例及び比較例による積層体の作製条件及び実験条件、並びに実験結果を示す表である。図7において、「密着強度」欄の数値は、基材81と皮膜層83との間で剥離が生じたときの引張応力の値を示す。また、「密着強度」欄の「≧60MPa」との記載は、試験装置70において接着剤73の破断による剥離が生じたこと、即ち、試験装置70において測定可能な最大引張応力(60MPa)を与えても基材81と皮膜層83とが剥離しなかったことを意味する。
(実施例1)
 実施例1として、窒化アルミニウム(AlN)基材上に、アルミニウムろう材、及び厚さ約0.2mmのアルミニウム(Al)箔を配置し、590℃の真空中で4時間熱処理を施すことにより中間層を形成した。この中間層上に、コールドスプレー法により厚さ約1.0mmの銅(Cu)皮膜を形成した。この際の成膜条件は、窒素ガス(N)の温度を400℃、噴射圧力を5MPaとした。
 図7に示すように、実施例1の場合、基材81と皮膜層83との間において、60MPa以上の密着強度が得られていた。
 図8A~図8Cは、引張試験の実施後、実施例1による積層体の断面をSEM(走査型電子顕微鏡)により観察した写真である。図8Aは、窒化アルミニウム(AlN)基材、中間層(Al箔+Alろう材層)、銅(Cu)皮膜を含む300倍の拡大写真である。図8Bは、図8Aに示すアルミニウム(Al)箔と銅皮膜との境界付近を示す2000倍の拡大写真である。図8Cは、図8Aに示す窒化アルミニウム基材とアルミニウム(Al)ろう材層との境界付近を示す2000倍の拡大写真である。
 図8Aに示すように、中間層内においては、熱処理を施した結果、アルミニウム箔とアルミニウムろう材層との間に明確な境界は見られなくなっていた。また、図8Bに示すように、アルミニウム箔の上部には、銅皮膜がアルミニウム箔に食い込んで両者が密着しているアンカー効果が観察された。さらに、図8Cに示すように、窒化アルミニウム基材とアルミニウムろう材層との境界には、熱処理により軟化したアルミニウムろう材層が窒化アルミニウム基材表面に密に結合している現象が見られた。
 これらの図8A~8Cのいずれにも、引張試験による剥離や破断の形跡は見られなかった。
(実施例2)
 実施例2として、窒化珪素(Si)基材上に、アルミニウムろう材、及び厚さ約0.2mmのアルミニウム(Al)箔を配置し、590℃の真空中で4時間熱処理を施すことにより中間層を形成した。この中間層上に、コールドスプレー法により厚さ約1.0mmの銅(Cu)皮膜を形成した。この際の成膜条件は実施例1と同様である。
 図7に示すように、実施例2の場合も、基材81と皮膜層83との間において、60MPa以上の密着強度が得られていた。
 図9A~図9Cは、引張試験の実施後、実施例2による積層体の断面をSEM(走査型電子顕微鏡)により観察した写真である。図9Aは、窒化珪素(Si)基材、中間層(Al箔+Alろう材層)、銅(Cu)皮膜を含む300倍の拡大写真である。図9Bは、図9Aに示すアルミニウム(Al)箔と銅皮膜との境界付近を示す2000倍の拡大写真である。図9Cは、図9Aに示す窒化珪素基材とアルミニウム(Al)ろう材層との境界付近を示す2000倍の拡大写真である。
 図9Aに示すように、実施例2においても実施例1と同様に、中間層内にはアルミニウム箔とアルミニウムろう材層との間の明確な境界は観察されなかった。また、図9Bに示すように、アルミニウム箔の上部には、アンカー効果により銅皮膜がアルミニウム箔に密着している現象が観察された。図9Cに示すように、窒化珪素基材とアルミニウムろう材層との境界においても、アルミニウムろう材層が窒化珪素基材に密に結合している様子が観察され、窒化珪素基材からの中間層や銅皮膜の剥離は認められなかった。
(比較例)
 比較例1として、窒化アルミニウム(AlN)基材上に、コールドスプレー法により銅(Cu)皮膜を直接形成した。また、比較例2として、窒化珪素(Si)基材上に、コールドスプレー法により銅(Cu)皮膜を直接形成した。なお、比較例における成膜条件は、実施例1と同様である。
 図7に示すように、比較例1及び2においては、基材に対して銅皮膜があまり付着せず、テストピースの作製後、基材から銅皮膜が剥離してしまい、引張試験を行うことができなかった。
 1 パワーモジュール
 10 セラミックス基材
 20 回路層
 30 チップ
 40 冷却フィン
 50 中間層
 51 アルミニウムろう材
 52 アルミニウム箔
 60 コールドスプレー装置
 61 ガス加熱器
 62 粉末供給装置
 63 スプレーガン
 64 ガスノズル
 65 バルブ
 70 試験装置
 71 固定台
 71a 孔部
 72 アルミピン
 73 接着剤
 80 テストピース
 81 基材
 82 中間層
 83 皮膜層(銅皮膜)

Claims (13)

  1.  絶縁性を有するセラミックス基材と、
     前記セラミックス基材の表面に形成された金属又は合金を主成分とする中間層と、
     前記中間層の表面に、金属又は合金からなる粉末をガスと共に加速し、前記表面に固相状態のままで吹き付けて堆積させることによって形成された金属皮膜層と、
    を備えることを特徴とする積層体。
  2.  前記中間層は、板状の金属又は合金部材を前記セラミックス基材にろう付することにより形成されていることを特徴とする請求項1に記載の積層体。
  3.  前記セラミックス基材は窒化物系セラミックスからなることを特徴とする請求項1又は2に記載の積層体。
  4.  前記中間層は、少なくとも、アルミニウムを主成分とする層を含むことを特徴とする請求項1~3のいずれか1項に記載の積層体。
  5.  前記中間層は、ゲルマニウム、マグネシウム、珪素、銅の内のいずれかの金属からなる群より選択される少なくとも1種類を含有することを特徴とする請求項4に記載の積層体。
  6.  前記中間層は、銀、ニッケル、金、銅の内のいずれかの金属を主成分とする層をさらに含むことを特徴とする請求項5に記載の積層体。
  7.  前記金属皮膜層は、銅又はアルミニウムからなることを特徴とする請求項1~6のいずれか1項に記載の積層体。
  8.  絶縁性を有するセラミックス基材の表面に、金属又は合金を主成分とする中間層を形成する中間層形成工程と、
     前記中間層の表面に、金属又は合金からなる粉末をガスと共に加速し、前記表面に固相状態のままで吹き付けて堆積させることによって金属皮膜層を形成する皮膜形成工程と、
    を含むことを特徴とする積層体の製造方法。
  9.  前記中間層形成工程は、
     前記セラミックス基材の表面にアルミニウムろう材を配置するろう材配置工程と、
     前記アルミニウムろう材上に板状の金属又は合金部材を配置する金属部材配置工程と、
     前記アルミニウムろう材及び前記金属又は合金部材が順次配置された前記セラミックス基材を熱処理する熱処理工程と、
    を含むことを特徴とする請求項8に記載の積層体の製造方法。
  10.  前記ろう材配置工程は、ろう材ペーストの前記セラミックス基材への塗布と、ろう材箔の前記セラミックス基材上への載置と、蒸着法若しくはスパッタ法による前記セラミックス基材へのろう材の付着との内のいずれかの工程を含むことを特徴とする請求項9に記載の積層体の製造方法。
  11.  前記熱処理工程は真空中又は不活性ガス雰囲気中で行われることを特徴とする請求項9又は10に記載の積層体の製造方法。
  12.  前記アルミニウムろう材は、ゲルマニウム、マグネシウム、珪素、銅の内のいずれかの金属からなる群より選択される少なくとも1種類を含有することを特徴とする請求項11に記載の積層体の製造方法。
  13.  前記金属又は合金部材の厚さが1mm以下であることを特徴とする請求項9~12のいずれか1項に記載の積層体の製造方法。
PCT/JP2012/067752 2011-07-11 2012-07-11 積層体及び積層体の製造方法 WO2013008865A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280034470.9A CN103648766B (zh) 2011-07-11 2012-07-11 层叠体和层叠体的制造方法
US14/130,566 US20140134448A1 (en) 2011-07-11 2012-07-11 Laminated body and method of manufacturing laminated body
EP12810573.1A EP2732967A4 (en) 2011-07-11 2012-07-11 LAYER BODY AND MANUFACTURING METHOD FOR LAYER BODY
KR1020147000588A KR101572586B1 (ko) 2011-07-11 2012-07-11 적층체 및 적층체의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011153198A JP5548167B2 (ja) 2011-07-11 2011-07-11 積層体及び積層体の製造方法
JP2011-153198 2011-07-11

Publications (1)

Publication Number Publication Date
WO2013008865A1 true WO2013008865A1 (ja) 2013-01-17

Family

ID=47506145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067752 WO2013008865A1 (ja) 2011-07-11 2012-07-11 積層体及び積層体の製造方法

Country Status (6)

Country Link
US (1) US20140134448A1 (ja)
EP (1) EP2732967A4 (ja)
JP (1) JP5548167B2 (ja)
KR (1) KR101572586B1 (ja)
CN (1) CN103648766B (ja)
WO (1) WO2013008865A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105009278A (zh) * 2013-03-29 2015-10-28 三菱综合材料株式会社 功率模块用基板、自带散热器的功率模块用基板及功率模块

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6096094B2 (ja) * 2013-10-28 2017-03-15 日本発條株式会社 積層体、絶縁性冷却板、パワーモジュールおよび積層体の製造方法
US9969654B2 (en) * 2014-01-24 2018-05-15 United Technologies Corporation Method of bonding a metallic component to a non-metallic component using a compliant material
US10189113B2 (en) * 2014-04-24 2019-01-29 GM Global Technology Operations LLC Resistance spot welding method
FR3031274B1 (fr) * 2014-12-30 2018-02-02 Airbus Group Sas Structure comportant des lignes electriquement conductrices en surface et procede pour la realisation de lignes electriquement conductrices sur une face d'une structure
CN104669719A (zh) * 2015-03-23 2015-06-03 王栩 一种陶瓷-金属复合体及其制备方法
CN104928672B (zh) * 2015-05-29 2017-11-03 中国兵器科学研究院宁波分院 电真空陶瓷管表面冷喷涂铝铜复合涂层的制备方法
EP3375606B1 (en) * 2015-11-11 2020-09-23 NHK Spring Co., Ltd. Laminate and laminate manufacturing method
CN108701663B (zh) * 2016-02-26 2022-03-01 国立研究开发法人产业技术综合研究所 散热基板
US11160172B2 (en) 2017-01-17 2021-10-26 Denka Company Limited Method for producing ceramic circuit board
JP6991516B2 (ja) * 2017-01-17 2022-01-12 国立大学法人信州大学 セラミックス回路基板の製造方法
CN110382738B (zh) 2017-02-24 2022-04-08 国立研究开发法人物质·材料研究机构 铝电路基板的制造方法
TWI678282B (zh) * 2017-04-21 2019-12-01 國立研究開發法人產業技術綜合研究所 積層體及其製造方法
JP6744259B2 (ja) 2017-07-03 2020-08-19 タツタ電線株式会社 金属セラミックス基材、金属セラミックス接合構造、金属セラミックス接合構造の作製方法、及び混合粉末材料
JP7369508B2 (ja) * 2017-08-04 2023-10-26 デンカ株式会社 セラミックス回路基板
JP7299671B2 (ja) * 2017-08-04 2023-06-28 デンカ株式会社 セラミックス回路基板
JP7299672B2 (ja) * 2017-09-28 2023-06-28 デンカ株式会社 セラミックス回路基板及びその製造方法
JP7027095B2 (ja) * 2017-09-28 2022-03-01 デンカ株式会社 セラミックス回路基板
AT16261U1 (de) * 2018-04-20 2019-05-15 Plansee Se Verbundkörper und Verfahren zur Herstellung eines Verbundkörpers
CN112513329A (zh) * 2018-08-10 2021-03-16 日本发条株式会社 层叠体的制造方法
EP3936332A4 (en) * 2019-03-08 2022-11-16 Kyocera Corporation ARRANGEMENT AND LIGHT SOURCE DEVICE
JP7122461B2 (ja) * 2019-03-25 2022-08-19 京セラ株式会社 回路基体およびこれを備える放熱基体または電子装置
CN109942285B (zh) * 2019-04-09 2021-11-16 济南大学 一种原位生成层状复合负温度系数热敏陶瓷材料和制备方法及应用
GB202004947D0 (en) * 2020-04-03 2020-05-20 Rolls Royce Plc Joining component bodies
KR102649715B1 (ko) * 2020-10-30 2024-03-21 세메스 주식회사 표면 처리 장치 및 표면 처리 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0517248A (ja) * 1991-07-04 1993-01-26 Nippon Cement Co Ltd セラミツクスと金属との接合方法
US5302414A (en) 1990-05-19 1994-04-12 Anatoly Nikiforovich Papyrin Gas-dynamic spraying method for applying a coating
JP2009110989A (ja) * 2007-10-26 2009-05-21 Kyocera Corp 金具付き回路基板の製造方法
JP2009197294A (ja) * 2008-02-25 2009-09-03 Honda Motor Co Ltd 積層体の製造方法
JP2010129934A (ja) * 2008-11-30 2010-06-10 Sintokogio Ltd ガラス回路基板及びガラス回路基板の製造方法
JP2011108999A (ja) 2009-11-20 2011-06-02 Mitsubishi Materials Corp パワーモジュール用基板、ヒートシンク付パワーモジュール用基板、パワーモジュール及びパワーモジュール用基板の製造方法
JP2012111982A (ja) * 2010-11-19 2012-06-14 Nhk Spring Co Ltd 積層体および積層体の製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1935143C3 (de) * 1969-07-11 1975-04-17 Semikron Gesellschaft Fuer Gleichrichterbau Und Elektronik Mbh, 8500 Nuernberg Hartlotverbindung bei Halbleiter-Bauelementen und Verfahren zu ihrer Herstellung
US4602731A (en) * 1984-12-24 1986-07-29 Borg-Warner Corporation Direct liquid phase bonding of ceramics to metals
US4854495A (en) * 1986-06-20 1989-08-08 Hitachi, Ltd. Sealing structure, method of soldering and process for preparing sealing structure
US6033787A (en) * 1996-08-22 2000-03-07 Mitsubishi Materials Corporation Ceramic circuit board with heat sink
JP3171234B2 (ja) 1997-03-26 2001-05-28 三菱マテリアル株式会社 ヒートシンク付セラミック回路基板
JP3837688B2 (ja) * 1999-02-04 2006-10-25 同和鉱業株式会社 アルミニウム−窒化アルミニウム絶縁回路基板
JP4387658B2 (ja) * 2002-10-30 2009-12-16 三菱マテリアル株式会社 ヒートシンク付セラミック回路基板及びその製造方法
JP4664816B2 (ja) * 2003-09-25 2011-04-06 株式会社東芝 セラミック回路基板、その製造方法およびパワーモジュール
US20070215677A1 (en) * 2006-03-14 2007-09-20 Honeywell International, Inc. Cold gas-dynamic spraying method for joining ceramic and metallic articles
JP5359644B2 (ja) * 2009-07-23 2013-12-04 三菱マテリアル株式会社 パワーモジュール用基板、パワーモジュール及びパワーモジュール用基板の製造方法
JP5141676B2 (ja) * 2009-12-17 2013-02-13 Tdk株式会社 端子電極の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5302414A (en) 1990-05-19 1994-04-12 Anatoly Nikiforovich Papyrin Gas-dynamic spraying method for applying a coating
US5302414B1 (en) 1990-05-19 1997-02-25 Anatoly N Papyrin Gas-dynamic spraying method for applying a coating
JPH0517248A (ja) * 1991-07-04 1993-01-26 Nippon Cement Co Ltd セラミツクスと金属との接合方法
JP2009110989A (ja) * 2007-10-26 2009-05-21 Kyocera Corp 金具付き回路基板の製造方法
JP2009197294A (ja) * 2008-02-25 2009-09-03 Honda Motor Co Ltd 積層体の製造方法
JP2010129934A (ja) * 2008-11-30 2010-06-10 Sintokogio Ltd ガラス回路基板及びガラス回路基板の製造方法
JP2011108999A (ja) 2009-11-20 2011-06-02 Mitsubishi Materials Corp パワーモジュール用基板、ヒートシンク付パワーモジュール用基板、パワーモジュール及びパワーモジュール用基板の製造方法
JP2012111982A (ja) * 2010-11-19 2012-06-14 Nhk Spring Co Ltd 積層体および積層体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2732967A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105009278A (zh) * 2013-03-29 2015-10-28 三菱综合材料株式会社 功率模块用基板、自带散热器的功率模块用基板及功率模块
EP2980844A4 (en) * 2013-03-29 2016-11-02 Mitsubishi Materials Corp SUBSTRATE FOR POWER MODULES, SUBSTRATE HAVING THERMAL DISSIPATOR FOR POWER MODULES, AND POWER MODULE
US9807865B2 (en) 2013-03-29 2017-10-31 Mitsubishi Materials Corporation Substrate for power modules, substrate with heat sink for power modules, and power module
CN105009278B (zh) * 2013-03-29 2017-12-01 三菱综合材料株式会社 功率模块用基板、自带散热器的功率模块用基板及功率模块

Also Published As

Publication number Publication date
KR101572586B1 (ko) 2015-11-27
JP5548167B2 (ja) 2014-07-16
JP2013018190A (ja) 2013-01-31
CN103648766B (zh) 2016-02-03
KR20140022102A (ko) 2014-02-21
US20140134448A1 (en) 2014-05-15
EP2732967A1 (en) 2014-05-21
EP2732967A4 (en) 2015-02-18
CN103648766A (zh) 2014-03-19

Similar Documents

Publication Publication Date Title
JP5548167B2 (ja) 積層体及び積層体の製造方法
JP5409740B2 (ja) 放熱構造体、パワーモジュール、放熱構造体の製造方法およびパワーモジュールの製造方法
JP5191527B2 (ja) 積層体および積層体の製造方法
JP6811719B2 (ja) 積層体の製造方法
WO2015064430A1 (ja) 積層体、絶縁性冷却板、パワーモジュールおよび積層体の製造方法
EP2744310A1 (en) Wiring substrate and method for manufacturing same and semiconductor device
US20070231590A1 (en) Method of Bonding Metals to Ceramics
WO2013047330A1 (ja) 接合体
JPH08255973A (ja) セラミックス回路基板
US9349704B2 (en) Jointed structure and method of manufacturing same
JP4048914B2 (ja) 回路基板の製造方法および回路基板
JP7538845B2 (ja) 積層体、及び、パワーモジュール
KR20240131921A (ko) 저온분사 적층을 포함한 방열판
JP5940589B2 (ja) 積層体、及びパワーモジュール
Hartnett et al. A room temperature, low-stress bonding process to reduce the impact of use stress on a sputtering target assembly

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12810573

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14130566

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012810573

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147000588

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE