WO2015064201A1 - 高純度In及びその製造方法 - Google Patents

高純度In及びその製造方法 Download PDF

Info

Publication number
WO2015064201A1
WO2015064201A1 PCT/JP2014/073029 JP2014073029W WO2015064201A1 WO 2015064201 A1 WO2015064201 A1 WO 2015064201A1 JP 2014073029 W JP2014073029 W JP 2014073029W WO 2015064201 A1 WO2015064201 A1 WO 2015064201A1
Authority
WO
WIPO (PCT)
Prior art keywords
purity
ppm
less
catholyte
content
Prior art date
Application number
PCT/JP2014/073029
Other languages
English (en)
French (fr)
Inventor
英治 日野
裕史 大部
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Priority to JP2015503600A priority Critical patent/JP5996771B2/ja
Publication of WO2015064201A1 publication Critical patent/WO2015064201A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B58/00Obtaining gallium or indium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/22Electrolytic production, recovery or refining of metals by electrolysis of solutions of metals not provided for in groups C25C1/02 - C25C1/20
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells

Definitions

  • the present invention provides a high-purity indium (In) having a purity of 8N or more that is particularly useful as a raw material for indium phosphide (InP), and a method for producing the same, and is manufactured at a lower cost than the prior art.
  • the present invention relates to a method for producing high-purity In by electrolytic purification, which has a feature that it can be performed.
  • high-purity raw materials are used for the production of a compound semiconductor single crystal such as InP, which is one of Group 3-5 compound semiconductors.
  • Distillation and zone purification are used for the production of high-purity In. It is refine
  • Patent Document 1 it is distilled at 1250 ° C.
  • Patent Document 2 it is zone-melted after baking
  • Patent Document 3 it is distilled by reacting with chlorine gas, and In chloride is distilled with distilled water.
  • Patent Document 4 describes a method of continuously casting In distilled.
  • Patent Document 5 describes a method for purifying In.
  • the specific contents are as follows. Crude In containing less than 10 ppm of Cd and less than 1 ppm of Tl is used as a raw material, and this is used as an anode in a hydrochloric acid bath. In concentration: 100 to 300 g / L, pH: 0.5 to 2, Current density: 0.5 to 2 A Electrolytic purification is performed at / dm 2 . The anode chamber and the cathode chamber are separated by a diaphragm and subjected to electrolytic purification.
  • the electrolyte solution in the anode chamber is extracted, filtered, and then contacted with an anion exchange resin for purification. Further, noble impurities are removed from In in the electrolytic solution by electrolysis at a current density of 0.3 to 2.5 A / dm 2 , and this is supplied to the cathode chamber for electrolytic purification.
  • Examples of the material of the diaphragm include natural fibers such as cotton, and woven and non-woven fabrics of synthetic fibers such as polyethylene, polypropylene, and polyester, and those having sufficiently small holes are preferred. Cloth is used. Regarding the filter, a cartridge filter is used in the embodiment as long as it can be filtered. However, this Patent Document 5 has a problem that it is necessary to use an expensive anion exchange resin and a problem that it is necessary to perform electrolysis to remove impurities for the purification of the electrolytic solution.
  • Patent Document 6 describes a method for purifying In. This is considered an improved version of the above-mentioned Patent Document 5.
  • the purity is 4 to 5N, but crude In, which has more impurities than Patent Document 5, is used as a raw material, and this is used as an anode in a hydrochloric acid bath.
  • concentration 100 to 200 g / L, pH: 1.5 to 2. 5.
  • Electrolytic purification is performed at a current density of 0.5 to 2 A / dm 2 .
  • the anode chamber and the cathode chamber are separated by a diaphragm and subjected to electrolytic purification.
  • electrolytic purification After the electrolysis, the electrolyte solution in the anode chamber is extracted and brought into contact with an anion exchange resin for purification. Further, by removing the current density from 0.3 to 2.5 A / dm 2 and contacting the metal In with the electrolytic solution, impurities more precious than In in the electrolytic solution are removed, and this is supplied to the cathode chamber.
  • Electrolytic purification is performed.
  • a method of supplying In ions to the electrolytic solution by diaphragm electrolysis using a ceramic filter or the like is also described.
  • Examples of the material of the diaphragm include natural fibers such as cotton, and woven fabrics and nonwoven fabrics of synthetic fibers such as polyethylene, polypropylene, and polyester, and those having sufficiently small through holes are preferable.
  • Tetron filter cloth is used.
  • a cartridge filter is used so that the filtration can be performed as necessary.
  • this Patent Document 6 has a problem that an expensive anion exchange resin must be used and a problem that it is necessary to perform electrolysis to remove impurities for cleaning the electrolytic solution. is there.
  • Patent Document 7 describes high-purity metal In, a method for producing the same, and uses.
  • the specific contents are as follows. Purification is performed by removing residual volatiles by blowing an inert gas when casting the electrodeposited In obtained by the second stage of electrolytic purification. The achieved purity of Patent Document 7 is assumed to be “6N level”.
  • Electrolysis may be performed using a hydrochloric acid bath or a sulfuric acid bath. In concentration is preferably 20 to 80 g / L and pH is preferably 1.0 to 2.5, and no diaphragm is used.
  • the total current density of the first electrolysis and the second electrolysis is 100 to 500 A / m 2 (1 to 5 A / dm 2 ), and the current density of the second electrolysis is lower than that of the first electrolysis.
  • Na hydroxide or a mixture of Na hydroxide and nitrate is added as a flux so that Cl is 0.03 ppm or less and S is 0.01 ppm or less.
  • Example 1 is a result of no inert gas blowing
  • Example 2 is a result of blowing an inert gas
  • Examples 3 to 5 are a result of blowing an inert gas using a flux.
  • This patent document 7 has a problem of high cost due to electrolysis in two stages, and it is necessary to perform casting for producing an anode between the first stage and the second stage, and the process becomes complicated. There is a problem.
  • Patent Document 8 in the purification method of In, an electrolytic solution is extracted from the anode chamber, filtered, and contacted with an anion exchange resin after the filtration.
  • a purification method comprising a step of supplying an electrolyte solution to a cathode chamber of a liquid tank and purifying an electrolyte is described. Also in this case, there is a problem that an expensive anion exchange resin must be used and a problem that it is necessary to perform electrolysis to remove impurities for the purification of the electrolytic solution. And the purity achieved is only 6N level.
  • Patent Document 9 an In-containing material is dissolved with hydrochloric acid, and an alkali is added to the solution to neutralize the solution to a predetermined value within the range of 0.5 to 4. Then, the metal ions are precipitated and removed as hydroxides, and then hydrogen sulfide gas is blown into the metal ions, and the metal ions harmful to the electrolysis in the next step are precipitated and removed as sulfides. In metal is electrolytically purified.
  • Patent Document 10 discloses a method for producing high-purity strontium carbonate (SrCO 3 ) used in the present invention, which will be described later.
  • JP 2002-212647 A Japanese Patent Laid-Open No. 04-026728 Japanese Patent Laid-Open No. 01-156437 JP-A-10-121163 Japanese Patent Laid-Open No. 01-031988 JP-A-01-219186 JP 2005-179778 A JP-A 64-31988 JP 2007-131953 A JP-A-9-77516
  • An object of the present invention is to provide a high-purity In having a purity of 8N or more that is particularly useful as a raw material for InP and a method for producing the same, and further by electrolytic purification that can be produced at a lower cost than the prior art. It is an object to provide a manufacturing method. There is a possibility that the demand for In for LEDs such as InGaN and AlInGaP will increase, and it will be required to manufacture in large quantities at low cost in the future. The present invention provides a technology that can cope with this.
  • the present application provides the following inventions.
  • the analytical values of each element concentration are values analyzed by a GDMS (Glow Discharge Mass Spectrometry) method.
  • the unit notation of “ppm” used in the present invention means “wtppm”.
  • a method for producing high-purity In by electrolysis in which 5N (99.999%) In is used as a raw material and high-purity SrCO 3 is added to the electrolytic solution when electrolytic purification is performed using this raw material. The content of Pb in the electrolytic solution is reduced, and the electrodeposited In is peeled off from the cathode plate and accommodated in a crucible. After melting In at 170 to 190 ° C. in the air or in an oxygen-containing atmosphere, A method for producing high-purity In, characterized by stirring for 1 to 5 minutes and further casting to obtain a purity of 8N (99.99999999%) or higher.
  • a method for producing high-purity In by electrolytic purification in which an anolyte (anolyte) and a catholyte (catholyte) are partitioned by a gas-permeable diaphragm of 5 cm 3 / cm 2 sec or less, and a part of catholyte Is taken out into a catholyte tank different from the electrolyzer and Pb in the catholite is removed by adding high-purity SrCO 3 to the catholite in the catholite tank, and the catholite from which the Pb has been removed has a pore size of 0.5 ⁇ m or less.
  • the high purity In is characterized in that it is purified by electrolytic purification while being circulated and fed back to the cathode box in the electrolytic cell to obtain a purity of 8N (99.99999999%) or more.
  • Manufacturing method. 8) The method for producing high-purity In according to any one of 5) to 7) above, wherein the electrolytic solution is sulfuric acid and electrolysis is performed at a pH of 0.5 to 1.5. 9) The method for producing high-purity In according to any one of 5) to 8) above, wherein electrolysis is performed at a current density of 1 to 5 A / dm 2 .
  • Si, S, Ca, Fe, Ni, and Pb, which are impurity elements in the high-purity SrCO 3 added to the electrolytic solution, are Si: 0.51 ppm or less, S: 4.9 ppm or less, and Ca: 50 ppm, respectively.
  • the method for producing high-purity In according to any one of 5) to 16) above, wherein Fe ⁇ 0.5 ppm, Ni ⁇ 0.5 ppm, and Pb ⁇ 0.1 ppm.
  • the present invention has an excellent effect that can provide a high-purity In having a purity of 8N or more, which is particularly useful as a raw material for InP, and a method for producing the same.
  • the production method by electrolytic purification of the present invention is characterized in that it can be produced at a lower cost than the prior art.
  • the demand for In for LEDs such as InGaN and AlInGaP is growing rapidly, and it will be required to manufacture in large quantities at low cost in the future.
  • the present invention can provide a technology that can cope with this.
  • the target purity was set to 8N or more, and the test was conducted by electrolytic purification in a sulfuric acid bath.
  • a titanium (Ti) metal plate serving as a cathode plate is disposed in an electrolytic cell (battery cell), and an In ingot of purity 5N is disposed on the anode.
  • a cathode box having a filter cloth serving as a partition is disposed between the cathode and the anode, and both electrode plates are partitioned.
  • JIS L 1096 which is air permeability
  • a filter cloth having an air permeability of 5 cm 3 / cm 2 sec or less is used at 124.5 Pa.
  • a catholyte tank is arranged outside the electrolytic cell, and a part of the electrolyte solution in the cathode box is introduced into the catholyte tank, and high purity SrCO 3 is added thereto.
  • lead (Pb) contained in the catholite is precipitated as PbCO 2 —O—CO 2 Sr at the bottom of the catholyte tank, and the catholite from which Pb has been removed is placed in the cathode box in the battery case. By returning, the Pb-removed catholyte is circulated and used.
  • the catholite from which Pb has been removed in the catholyte tank is filtered through a filter having pores of 0.5 ⁇ m or less and purified, thereby preventing Pb from being mixed into the cathode box.
  • the pores of the filter are more preferably 0.2 ⁇ m.
  • As the raw material In 5N (99.999%) In is used as the anode. 5N level In can be easily produced by using the distillation method alone, and commercially available materials can be used.
  • the main impurities of 5N In produced by using the distillation method alone are Pb (lead), Zn (zinc), and Sn (tin), and in particular, Pb contains about 1 ppm. Impurities such as Sn, Fe (iron), and Ni (nickel) can be reduced by the electrolytic purification method, but the most problematic is the removal of Pb, and the simple removal of Pb is a major issue. . It is extremely difficult to improve the purity of 8N, and it is the actual situation that the above-mentioned purity could not be achieved by the prior art.
  • a sulfuric acid solution is used in the electrolytic purification process, and S (sulfur) in the 5N In raw material produced by the distillation method is 0.005 ppm, but increases to 0.05 ppm after the electrolytic purification.
  • S sulfur
  • Zn was also contained in the 5N In raw material produced by the above-mentioned distillation method, and 0.1 ppm of Zn could be reduced to 0.05 ppm after electrolytic purification, but in order to produce 8N In. Therefore, it is necessary to reduce it under more severe conditions such as reduction of impurities and prevention of contamination of impurities during the process.
  • Electrolytic purification is carried out in a sulfuric acid solution, and the cathode box is arranged so as to surround the cathode.
  • the cathode box has a filter cloth on the surface facing the anode plate, and impurities such as suspended matter in the anolyte are contained in the catholyte. I tried to prevent confusion.
  • the filter cloth used had a breathability of 5 cm 3 / cm 2 sec or less, more preferably 1 cm 3 / cm 2 sec or less.
  • 5N In is arranged outside the cathode box.
  • a catholyte tank is disposed outside the electrolytic cell, and a portion of the catholyte in the cathode box is introduced into the catholyte tank, and high purity SrCO 3 is added thereto.
  • the electrolytic solution is sulfuric acid and electrolysis is performed at a pH of 0.5 to 1.5. If the pH is less than 0.5, the current efficiency decreases due to hydrogen generation, and if the pH exceeds 1.5, the electrolysis voltage increases. Furthermore, electrolysis is performed at a current density of 1 to 5 A / dm 2 . This poor productivity is less than 1A / dm 2, is because the the electrolysis voltage exceeds 5A / dm 2 becomes high. In addition, dendrites are easily generated, and impurities more precious than In are easily deposited on the cathode in electrolytic purification.
  • Electrolysis is performed at an In concentration of 65 to 120 g / L and a Cl concentration of 11 to 15 g / L in the electrolyte solution (catholyte) in contact with the cathode.
  • the In concentration is less than 65 g / L
  • current efficiency decreases due to hydrogen generation particularly in electrolytic refining, and when it exceeds 120 g / L, the in-process inventory of expensive In increases.
  • the Cl concentration is less than 11 g / L, the electrodeposition of In precipitates in a dendritic state and damages the diaphragm, so that the purity of In cannot be increased to 8N or more.
  • 0.1-2.0 g / L is added to the catholite in the catholite tank to precipitate Pb as PbCO 2 —O—CO 2 Sr at the bottom of the catholite tank.
  • the catholyte in the catholyte tank in which Pb is precipitated is returned to the electrolyte in the cathode box through a filter having a pore size of 0.5 ⁇ m or less so as not to contain PbCO 2 —O—CO 2 Sr. Is used cyclically.
  • Pb 2+ is precipitated as PbCO 2 —O—CO 2 Sr and is precipitated at the bottom of the catholyte tank.
  • Pb can be reduced, and Pb can be removed from the electrolytically purified In.
  • concentration of SrCO 3 is less than 0.1 g / L, the effect of removing Pb is reduced, and when it exceeds 2.0 g / L, the filter is clogged and the frequency of filter replacement is increased.
  • the raw material In used as the anode is dissolved in the electrolytic solution (anolyte).
  • the electrolytic solution anolyte
  • impurities more precious than In do not electrodeposit on the cathode and remain on the anode surface or are mixed as fine floating substances in the electrolyte, but if they become floating substances, they are electrodeposited on the cathode.
  • a partition wall having sufficiently small pores between the anode and the cathode.
  • the cathode reaction is as follows. In 3+ + 3e ⁇ In Filter cloth membrane In 3+ (anode chamber) ⁇ In 3+ (cathode chamber)
  • the anodic reaction is as follows. In ⁇ In 3+ + 3e (Trace) Pb ⁇ Pb 2+ + 2e (Catholite tank) Pb 2+ + SrCO 2 —O—CO 2 Sr ⁇ PbCO 2 —O—CO 2 Sr + Sr 2+
  • Pb 2+ precipitates as PbCO 2 —O—CO 2 Sr by the addition of SrCO 3 , and thus can be removed.
  • the catholite from which Pb was removed was passed through a filter having a pore size of 0.5 ⁇ m or less to filter PbCO 2 —O—CO 2 Sr, and then returned to the cathode box again. And In having a purity of 8N or higher can be obtained.
  • impurities in the high purity SrCO 3 introduced into the catholyte tank are Si: 0.51 ppm or less, S: 4.9 ppm or less, Ca: 50 ppm or less, Fe ⁇ 0.5 ppm, Ni ⁇ 0.5 ppm, Pb ⁇ 0.1 ppm can be used. Since impurities in the high purity SrCO 3 used here are diluted in the catholyte, the amount actually mixed into In is further reduced as shown in the examples.
  • impurities of commercially available special grade SrCO 3 are Si: 8.4 ppm, S: 290 ppm, Ca: 500 ppm, Fe: 6.5 ppm, Ni ⁇ 6 ppm, Pb ⁇ 0.1 ppm, and impurities other than Pb
  • concentration is approximately one digit or more higher than the high purity SrCO 3 used in the present invention.
  • FIG. 1 shows an example in which sulfuric acid is used.
  • Japanese Patent Laid-Open No. 08-060264 Japanese Patent No. 3089595
  • the electrodeposited In is peeled off from the cathode, and melted and cast at 170 to 190 ° C. to produce an ingot.
  • the electrodeposited In peeled from the cathode plate was placed in a crucible, and after dissolving In in the atmosphere or in an oxygen-containing atmosphere, the molten metal was sufficiently stirred for 1 to 5 minutes, Further, this is cast to obtain high purity In of 8N (99.99999999%) or more.
  • oxides such as Zn and S are formed and separated and removed from In in a solid (zinc oxide) or gas (sulfur oxide) state.
  • the oxygen-containing gas a mixed gas of high purity argon and high purity oxygen, oxygen-enriched air, or the like can be used.
  • the content of sulfur (S) is less than 0.01 ppm
  • the content of lead (Pb) and zinc (Zn) is less than the detection limit in GDMS analysis
  • the content of Sn) and silicon (Si) can also be made less than the detection limit value in the GDMS analysis, and high purity In having a purity of 8N (99.99999999%) or more can be obtained.
  • Example 1 As Example 1, electrolytic purification using a sulfuric acid bath (using the apparatus shown in FIG. 1) will be described. Between the anolyte and catholyte partitioned by the cathode box, a filter cloth with air permeability of 5 cm 3 / cm 2 sec or less is arranged to prevent impurities such as suspended solids existing in the anolyte from entering the catholyte side. .
  • the conditions for electrolytic purification were as follows: In concentration in catholyte: 80 g / L, pH: 1.2, high-purity SrCO 3 : 0.5 g / L, current density: 3 A / dm 2 , and Cl concentration in catholite of 11 g / L L.
  • the content of impurities contained in the high purity SrCO 3 added to the catholyte tank is as follows: Si: 0.51 ppm, S: 4.9 ppm, Ca: 50 ppm, Fe ⁇ 0.5 ppm, Ni ⁇ 0.5 ppm, Pb ⁇ It was 0.1 ppm.
  • high-purity SrCO 3 high-purity SrCO 3 was added to the catholyte in the catholyte tank to a concentration of 0.5 g / L, and Pb was precipitated as PbCO 2 —O—CO 2 Sr.
  • the solution was filtered through a filter having a pore size of 0.5 ⁇ m or less, and electrolytic purification was performed while circulating and supplying the filtered catholyte back to the cathode box.
  • Table 1 shows the results of separating the electrodeposited In after electrolytic purification from the cathode Ti electrode plate and analyzing impurities.
  • impurities in In after electrolytic purification can be reduced to Pb: less than 0.005 ppm (less than detection limit value), Sn: less than 0.01 ppm (less than detection limit value), Ni: 0.006 ppm, Fe: It was reduced to 0.001 ppm. Further, Zn could be reduced to 0.05 ppm, but at this content, purity of 8N could not be achieved, and S was 0.005 ppm in the 5N In raw material produced by the distillation method. After electrolytic purification, S content from sulfuric acid in the electrolytic solution is mixed and increased to 0.05 ppm, and in order to produce 8N In, it must be reduced.
  • the electrodeposited In after electrolytic purification is peeled off from the cathode plate, accommodated in a crucible, and In is melted in the atmosphere at 180 ° C., then the molten metal is stirred for 3 minutes, and this is further dissolved in the atmosphere. Casted with.
  • the impurities in In after casting are maintained in the content after electrolytic purification for Pb, being less than 0.005 ppm (less than the detection limit value), and S Became 0.008ppm and increased to 0.05ppm after electrolytic refining, but it reacted with atmospheric oxygen to form oxides by the casting process to form a sulfur oxide gas, which was separated from dissolved In and removed. Was reduced.
  • Zn after the casting process is less than 0.001 ppm (less than the detection limit value), but was 0.05 ppm after electrolytic purification, but it reacted with oxygen in the atmosphere by the casting process to produce an oxide ( The slag was formed into a solid (floating matter) state, and when the molten metal was poured into the mold, it was separated and removed from In, so that the floating material did not enter the mold, and reduced to below the detection limit value.
  • Na, Ca, Fe, and Ni which showed a slight content after electrolytic purification, were reduced to less than the detection limit value of GDMS.
  • Example 1 as impurities other than the above, Li, Be, B, F, Mg, Al, P, Cl, K, Sc, Ti, V, Cr, Mn, Co, Cu, Ga, Ge, As, Se, Br, Rb, Sr, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, Sb, Te, I, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Tl, Bi, Th, and U are contained in GDMS. These elements are excluded because they are below the detection limit. The same applies to the following embodiments.
  • the impurities are reduced by electrolytic refining and casting treatment, and in particular, the impurities of Pb, Zn, S, Fe, Sn, Si can be reduced to the limit, and the purity of 8N In could be produced.
  • the yield was 98% or more.
  • Comparative Example 1 Next, as Comparative Example 1, in Example 1 above, the step of adding high-purity SrCO 3 into the electrolytic solution in the catholyte tank was eliminated, and the Cl concentration in the electrolytic solution was 8 g / L. Other than that, electrolytic purification of In was performed under the same conditions as in Example 1.
  • a step of stirring the molten metal in the crucible in the atmosphere at the time of casting the molten metal to promote the oxidation of impurities in the molten metal was provided.
  • a molten metal stirring step was not provided. And cast at a molten metal temperature of 170 ° C. The results are shown in Table 2.
  • Pb contained 0.5 ppm, S: 0.03 ppm, Zn: 0.02 ppm, and a purity of 8N could not be achieved. It was. About other impurities, it was able to be reduced to content equivalent to Example 1.
  • Example 2 As Example 2, the concentration of high-purity SrCO 3 added to the catholyte tank was 0.1 g / L, the In concentration in the catholyte was 65 g / L, the pH was 0.5, the current density was 1 A / dm 2 , The concentration of Cl in catholyte was 13 g / L.
  • the major difference from the electrolytic purification conditions of Example 1 is that the concentration of high-purity SrCO 3 in the catholyte is lower than that in Example 1, and the Cl concentration in the electrolytic solution is changed from 11 g / L to 13 g / L. It is in the point raised.
  • the content of impurities of high purity SrCO 3 added to the catholyte tank is Si: 0.51 ppm, S: 4.9 ppm, Ca: 50 ppm, Fe ⁇ 0.5 ppm, Ni ⁇ 0.5 ppm, Pb ⁇ 0.1 ppm. Met. Performing electrolytic purification under the above conditions, peeling In deposited by electrolytic purification from the cathode plate, placing this in a crucible, melting In at 170 ° C. in the atmosphere, stirring the molten metal for 3 minutes, Further, this was cast in the atmosphere. The results are shown in Table 3.
  • Zn was contained at 0.05 ppm after electrolytic purification, it reacted with oxygen in the atmosphere by the casting process to form an oxide (slag), becoming a solid (floating matter), and pouring the molten metal into the mold At this time, it was separated and removed from In, preventing suspended matter from entering the mold, and reduced to less than 0.001 ppm (less than the detection limit).
  • Na, Ca, Fe, and Ni which showed a slight content after electrolytic purification, were reduced to less than the detection limit value of GDMS. Thus, In having a purity of 8N could be produced. The yield was 98% or more.
  • Example 3 As Example 3, the addition concentration of high-purity SrCO 3 into the catholyte tank was set to 2.0 g / L, the In concentration in the catholite: 120 g / L, pH: 1.5, current density: 5 A / dm 2 , The concentration of Cl in catholyte was 15 g / L.
  • the major difference between the electrolytic purification conditions of Examples 1 and 2 is that the concentration of high-purity SrCO 3 in the catholyte is higher than that of Examples 1 and 2, and the Cl concentration in the electrolytic solution is 15 g / L. It is in the point raised.
  • Impurities contained in the high purity SrCO 3 added to the catholyte tank are Si: 0.51 ppm, S: 4.9 ppm, Ca: 50 ppm, Fe ⁇ 0.5 ppm, Ni ⁇ 0.5 ppm, Pb ⁇ 0. 0.1 ppm.
  • electrolytic purification under the above conditions peeling In deposited by electrolytic purification from the cathode plate, storing this in a crucible, dissolving In at 190 ° C. in the atmosphere, stirring the molten metal for 3 minutes, Further, this was cast in the atmosphere.
  • the results (results of impurity concentration in In) are shown in Table 4.
  • the impurities in In after casting are Pb, the content after electrolytic purification is maintained, being less than 0.005 ppm (less than the detection limit), and S is Although it increased to 0.05 ppm after electrolytic refining, it reacted with oxygen in the atmosphere by the casting process to become a sulfur oxide gas, which was separated and removed from dissolved In and reduced to 0.006 ppm.
  • Zn was contained at 0.05 ppm after electrolytic refining, but it reacted with oxygen in the atmosphere by the casting process to form an oxide (slag), becoming a solid (floating matter) state, and dissolved In And reduced to less than 0.001 ppm (less than the detection limit).
  • Na, Ca, Fe, and Ni which showed a slight content after electrolytic purification, were reduced to less than the detection limit value of GDMS.
  • the yield was 98% or more.
  • Comparative Example 2 presupposes much of the contents of Example 1 above, but when adding SrCO 3 into the electrolyte solution in the catholyte tank, special grade SrCO 3 which is a conventional commercial product is added. This is the case when it is added. Other conditions were the same as in Example 1.
  • the impurity concentration in SrCO 3 used here is Si: 8.4 ppm, S: 290 ppm, Ca: 500 ppm, Fe: 6.5 ppm, Ni: 4.6 ppm, Pb ⁇ 0.1 ppm, and impurities other than Pb
  • the concentration is approximately one digit higher than that of the high purity SrCO 3 used in the present invention.
  • Table 5 shows the results of electrolytic purification of In under the above conditions.
  • Pb was 0.005 ppm, Ca ⁇ 0.005 ppm (less than detection limit value), Zn ⁇ 0.001 ppm (less than detection limit value), : 0.002 ppm, Si: 0.03 ppm, S: 0.01 ppm, Fe: 0.002 ppm, Ni: 0.002 ppm, and as a whole, the amount of impurities increased, and 8N (99.99999999%) contemplated by the present invention. ) Purity could not be achieved.
  • the present invention is high-purity indium (In) of 8N (99.99999999%) or more with a sulfur (S) content of less than 0.01 ppm, and a lead (Pb) and zinc (Zn) content of GDMS.
  • High purity In of 8N (99.99999999%) or more which is less than the detection limit in the analysis, and also the content of iron (Fe), tin (Sn), and silicon (Si) are less than the detection limit in the GDMS analysis
  • the present invention provides a high-purity In of 8N (99.99999999%) or more and a method for producing the same.
  • the present invention provides a technology that can cope with this. Furthermore, compared with the dry refining method, an effective equipment cost is not required, and the running cost can be reduced, so that the cost can be reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

8N(99.999999%)以上の純度を有する高純度In。電解により高純度Inを製造する方法であって、5N(99.999%)のInを原料とし、この原料を用いて電解精製する際に、電解液に高純度SrCOを添加して電解液中のPbの含有量を低減させ、さらに、電着Inを陰極板から剥離してるつぼ内に収容し、大気中もしくは酸素含有雰囲気下でInを溶解した後、溶湯を1~5分間攪拌し、さらにこれを鋳造して、8N(99.999999%)以上の純度とすることを特徴とする高純度Inの製造方法。InGaN、AlInGaPなどのLED用のIn需要が伸びていくという可能性があり、今後大量にかつ安価に製造することが要求されるが、本願発明はこれに対応できる技術を提供する。

Description

高純度In及びその製造方法
 本発明は、リン化インジウム(InP)の原料として特に有用である8N以上の純度を持つ高純度インジウム(In)及びそれを製造する方法を提供するものであり、さらに従来技術よりも安価に製造することができるという特徴を持つ電解精製による高純度Inの製造方法に関する。
 一般に、3-5族化合物半導体の1つであるInPのような化合物半導体単結晶の製造には、高純度の原料が使用されており、高純度のInの製造方法には、蒸留、ゾーン精製等の乾式法により、4Nから6N以上に精製され、特許文献としては以下が挙げられる。
 下記特許文献1には、1250℃で蒸留することが、特許文献2には、ベーキング後にゾーンメルトすることが、特許文献3には、塩素ガスと反応させて蒸留し、塩化Inを蒸留水と不均化反応させることが、特殊な例として特許文献4に蒸留したInを連続して鋳造する方法が記載されている。
 一方、湿式精製における従来技術を見ると、特許文献5にInの精製方法が記載されている。その具体的内容は、次の通りである。
 Cdを10ppm未満、かつTlを1ppm未満含有する粗Inを原料として、これをアノードとして塩酸浴でIn濃度:100~300g/L、pH:0.5~2、電流密度:0.5~2A/dmで電解精製を行っている。
 隔膜によって陽極室と陰極室を分けて電解精製を行い、電解後は陽極室の電解液を抜き取って濾過後、陰イオン交換樹脂と接触させることにより浄液を行っている。更に電流密度 0.3~2.5A/dmでの電解により電解液中のInより貴な不純物を除去し、これを陰極室に供給して電解精製を行っている。
 隔膜の材質としては、例として綿等の天然繊維、ポリエチレン、ポリプロピレン、ポリエステル等の合成繊維の織布、不織布が挙げられ、充分に小さな通孔を有するものが好ましいとされ、実施例ではテトロン濾布が使用されている。
フィルターについては、濾過ができれば良いという程度で、実施例ではカートリッジフィルターを使用している。
 しかし、この特許文献5は、高価な陰イオン交換樹脂を使用しなければならないという問題及び電解液の浄液のため、不純物を除去する電解を行う必要があるという問題がある。
 下記特許文献6は、Inの精製方法の記載がある。これは、前記特許文献5の改良版と考えられる。実施例では4~5Nの純度であるが、特許文献5よりも不純物の多い粗Inを原料として、これをアノードとして塩酸浴でIn濃度:100~200g/L、pH:1.5~2.5、電流密度:0.5~2A/dmで電解精製を行っている。
 隔膜によって陽極室と陰極室を分けて電解精製を行い、電解後は陽極室の電解液を抜き取り、陰イオン交換樹脂と接触させることにより浄液を行っている。更に電流密度:0.3~2.5A/dmでの電解、及び金属Inと電解液を接触することにより、電解液中のInより貴な不純物を除去し、これを陰極室に供給して電解精製を行っている。また、セラミックフィルター等を使用した隔膜電解により、Inイオンを電解液に補給する方法も記載されている。
 隔膜の材質としては、例として綿等の天然繊維、ポリエチレン、ポリプロピレン、ポリエステル等の合成繊維の織布、不織布が挙げられ、充分に小さな通孔を有するものが好ましいとなっている。実施例ではテトロン濾布を使用している。
濾過については必要に応じて行うこともできるという程度で、実施例ではカートリッジフィルターを使用している。
 しかし、この特許文献6は、特許文献5と同様に、高価な陰イオン交換樹脂を使用しなければならないという問題及び電解液の浄液のため不純物を除去する電解を行う必要があるという問題がある。
 下記特許文献7には、高純度金属Inとその製造方法及び用途の記載がある。具体的内容は、次の通りである。
 2段階の電解精製を行い、2段目の電解精製で得られた電析Inを鋳造する際に不活性ガスを吹き込むことで残留揮発分を除去することにより精製を行っている。この特許文献7の達成純度は「6N水準」であるとしている。
 電解は塩酸浴でも硫酸浴でも良く、In濃度:20~80g/L、pH:1.0~2.5が好ましいとなっており、隔膜は使用していない。第1電解と第2電解の合計電流密度が100~500A/m(1~5A/dm)であること、第1電解よりも第2電解の電流密度を低くしている。鋳造時にフラックスとして水酸化Na、または水酸化Naと硝酸Naの混合物を添加してClを0.03ppm以下、Sを0.01ppm以下としている。
 実施例1は不活性ガス吹き込みなし、実施例2は不活性ガス吹き込み、実施例3~5はフラックスを使用して不活性ガスを吹き込んだ結果である。この特許文献7は、2段階での電解のためコスト高になるという問題があり、また1段目と2段目の間にアノード作製のための鋳造を行う必要があり、工程が複雑になるという問題がある。
 特許文献8には、Inの精製方法において、陽極室から電解液を抜き取り、ろ過後、この電解液を陰イオン交換樹脂と接触させる工程、電解質が隔膜により陽極室と陰極室に隔てられた電解浄液槽の陰極室に供給して電解液を浄液する工程からなる精製方法が記載されている。この場合も、高価な陰イオン交換樹脂を使用しなければならないという問題及び電解液の浄液のため不純物を除去する電解を行う必要があるという問題がある。そして、達成している純度は6Nレベルに過ぎない。
 特許文献9には、In含有物を塩酸で溶解し、この溶解液にアルカリを加えてpHが0.5~4の範囲内の所定の値になるように中和し、溶解液中の所定の金属イオンを水酸化物として析出させて除去し、次いで、これに硫化水素ガスを吹き込み、次工程の電解に有害な金属イオンを硫化物として析出除去した後、この溶解液を電解元液としてInメタルを電解精製する。
 この方法によって、ITOターゲット屑から純度99.999%以上のInを回収できるとする記載がある。しかし、この場合は、5Nレベルの純度を有するInの回収方法に過ぎない。
 特許文献10には、後述する本願発明で使用する高純度炭酸ストロンチウム(SrCO)の製造方法が開示されているので、参考までに掲示する。
特開2002-212647号公報 特開平04-026728号公報 特開平01-156437号公報 特開平10-121163号公報 特開平01-031988号公報 特開平01-219186号公報 特開2005-179778号公報 特開昭64-31988号公報 特開2007-131953号公報 特開平9-77516号公報
 本発明は、特にInPの原料として有用である8N以上の純度を持つ高純度In及びそれを製造する方法を提供することを課題とし、さらに従来技術よりも安価に製造することができる電解精製による製造方法を提供することを課題とする。InGaN、AlInGaPなどのLED用のInの需要が伸びていくという可能性があり、今後大量にかつ安価に製造することが要求されるが、本願発明はこれに対応できる技術を提供する。
 以上から、本出願は、次の発明を提供する。
 尚、本発明において、ガス成分元素である炭素(C)、窒素(N)、酸素(O)を除き、各元素濃度の分析値は、GDMS(Glow Discharge Mass Spectrometry)法によって分析した値である。また、本発明で使用する「ppm」の単位表記は、「wtppm」を意味する。
 1)8N(99.999999%)以上の純度を有する高純度In。
 2)硫黄(S)の含有量が0.01ppm未満であることを特徴とする上記1)記載の高純度In。
 3)鉛(Pb)及び亜鉛(Zn)の含有量が、GDMS分析において検出限界値未満である上記1)又は2)に記載の高純度In。
 4)鉄(Fe)、錫(Sn)及びシリコン(Si)の含有量が、GDMS分析において検出限界値未満である上記1)~3)のいずれか一項に記載の高純度In。
 5)電解により高純度Inを製造する方法であって、5N(99.999%)のInを原料とし、この原料を用いて電解精製する際に、電解液に高純度SrCOを添加して電解液中のPbの含有量を低減させ、さらに、電着Inを陰極板から剥離してるつぼ内に収容し、大気中もしくは酸素含有雰囲気下でInを170~190℃で溶解した後、溶湯を1~5分間攪拌し、さらにこれを鋳造して、8N(99.999999%)以上の純度とすることを特徴とする高純度Inの製造方法。
 6)アノード液(アノライト)とカソード液(カソライト)を5cm/cmsec以下の通気性をもつ隔膜で仕切り、カソードに接する電解液を予め0.5μm以下の細孔を持つフィルターで濾過し、精製することを特徴とする上記5)に記載の高純度Inの製造方法。
 7)電解精製による高純度Inの製造方法であって、アノード液(アノライト)とカソード液(カソライト)を、5cm/cmsec以下の通気性を持つ隔膜で仕切り、さらに、カソライトの一部を電解槽とは異なるカソライトタンクに取り出し、カソライトタンク中のカソライトに高純度SrCOを添加することにより、カソライト中のPbを除去し、該Pbを除去したカソライトを細孔0.5μm以下のフィルターに通液して濾過した後、電解槽中のカソードボックスに再び戻すように循環供給しながら電解精製し、8N(99.999999%)以上の純度とすることを特徴とする高純度Inの製造方法。
 8)電解液を硫酸とし、pH:0.5~1.5で電解することを特徴とする上記5)~7)のいずれか一項に記載の高純度Inの製造方法。
 9)電流密度:1~5A/dmで電解することを特徴とする上記5)~8)のいずれか一項に記載の高純度Inの製造方法。
 10)電解液中のIn濃度:65~120g/L、Cl濃度:11~15g/Lとして電解することを特徴とする上記5)~9)のいずれか一項に記載の高純度Inの製造方法。
 11)高純度SrCOを0.1~2.0g/Lを添加して精製することを特徴とする上記5)~10)のいずれか一項に記載の高純度Inの製造方法。
 12)上記5)~11)のいずれか一項に記載の高純度Inの電解精製方法で製造された高純度Inを陰極板から剥離し、大気中もしくは酸素含有雰囲気下で鋳造する際、170~190℃で鋳造することを特徴とする高純度Inの製造方法。
 13)上記5)~12)のいずれか一項に記載の高純度Inの電解精製方法により8N(99.999999%)以上の純度とすることを特徴とする高純度In。
 14)硫黄(S)の含有量が0.01ppm未満とすることを特徴とする上記13)記載の高純度In。
 15)鉛(Pb)及び亜鉛(Zn)の含有量が、GDMS分析において検出限界値未満とすることを特徴とする上記13)又は14)に記載の高純度In。
 16)鉄(Fe)、錫(Sn)及びシリコン(Si)の含有量が、GDMS分析において検出限界値未満とすることを特徴とする上記13)~15)のいずれか一項に記載の高純度In。
 17)電解液に添加される上記高純度SrCO中の不純物元素であるSi、S、Ca、Fe、Ni、Pbが、それぞれSi:0.51ppm以下、S:4.9ppm以下、Ca:50ppm以下、Fe<0.5ppm、Ni<0.5ppm、Pb<0.1ppmであることを特徴とする上記5)~16)のいずれか一項に記載の高純度Inの製造方法。
 本願発明は、特にInPの原料として有用である8N以上の純度を持つ高純度In及びそれを製造する方法を提供することができる優れた効果を有する。また、本発明の電解精製による製造方法は、従来技術よりも安価に製造することができるという特徴を持つ。InGaN、AlInGaPなどのLED用のInの需要が急速に伸びており、今後大量にかつ安価に製造することが要求されるが、本願発明はこれに対応できる技術を提供することができる。
本願発明の電解精製による高純度Inの製造において使用する電解槽の説明図である。
 本発明の理解を容易にするために、試験の内容を説明する。
 これまで、InPウェハーの原料であるInは、例えば4NのInをベーキング(1000℃)及び蒸留(1050℃)で6Nとする乾式法により精製されていた。しかし、乾式法は設備コスト及び製造コストがかかり、8N以上の高純度Inを増産するには、ベーキング工程と蒸留工程を複数回繰り返す必要もあり、多額の設備投資が必要である。そこで、湿式精製でInPに使用可能な高純度Inが得られるかを検討した。
 また、従来技術では、6N以上という記載はあっても、実際は6NレベルのInしか達成しておらず、さらに高純度化が必要であった。本願発明は、目標純度は8N以上とし、硫酸浴での電解精製による試験を行った。
 本発明の電解精製による高純度Inの製造は、図1に示すような装置を用いて行なう。図1について説明すると、電解槽(電槽)中に陰極板となるチタン(Ti)製の金属板が配置され、陽極には純度5NのInのインゴットが設置されている。カソードとアノードとの間には、隔壁の役割をする濾布を備えたカソードボックスが配置され、両電極板が仕切られている。
 ここで、該濾布の細孔の規格は通気性というJIS L 1096で規格化されており、本発明では、124.5Paにおいて、5cm/cmsec以下の通気性を有する濾布を使用して、アノライト中の浮遊物等の不純物がカソライト中に混同することを防いでいる。
 さらに、電解槽の外側に、カソライトタンクを配置し、カソードボックス内の電解液の一部をカソライトタンクに導入し、この中に高純度SrCOを添加する。この処理を行うことによって、カソライト中に含有される鉛(Pb)をPbCO-O-COSrとしてカソライトタンクの底部に沈殿させ、Pbを除去したカソライトを電槽内のカソードボックス内に戻すことで、Pb除去されたカソライトが循環して使用される。
 ここで、カソライトタンク内でPb除去されたカソライトは、0.5μm以下の細孔を持つフィルターで濾過され、精製されることで、カソードボックス内へのPbの混入を防いでいる。フィルターの細孔は、0.2μmであることが、より好ましい。
 原料となるInは、5N(99.999%)のInをアノードとして使用する。5NレベルのInは蒸留法を単独で用いることにより容易に製造でき、市販品の材料を使用できる。
 前記蒸留法を単独で用いることにより製造した5NのInの主たる不純物は、Pb(鉛)、Zn(亜鉛)、Sn(錫)であり、特に、Pbは1ppm程度含有する。電解精製法で、Sn、Fe(鉄)、Ni(ニッケル)などの不純物は低減できるが、最も問題となるのは、Pbの除去であり、このPbを簡便に除去することが大きな課題となる。8Nという純度の向上は、極めて難しく、従来技術では、前記純度まで達成できなかったのが実情である。
 本願発明では、電解精製工程において硫酸溶液を使用しており、前記蒸留法によって製造された5NのIn原料中のS(硫黄)は、0.005ppmであるが、電解精製後に0.05ppmに増加し、8NのInを製造するためには、電解精製後のS分の低減が必要となる。
 さらに、Znについても、前記蒸留法で製造された5NのIn原料中にはZnが0.1ppm含有されており、電解精製後0.05ppmに低減できているが、8NのInを製造するためには、不純物の低減化と工程中の不純物の混入防止という、さらに厳しい条件下で低減する必要がある。
 本発明の高純度Inの製造に際して、5N(99.999%)のInを使用し、かつ電解により精製しようとするものであるが、図1に示すような装置のカソライトタンク中の電解液に高純度SrCOを添加してPbを低減させる。これが、本願発明の大きな特徴の一つである。基本は電解精製にあるので、乾式法による精製の1/5~1/6のコストで達成できるという優れた生産性向上の利点がある。
 高純度SrCOの作製について説明すると、まず、特級硝酸ストロンチウム(Sr(NO)を純水に溶解し、その液に特級炭酸アンモニウムを1.4倍当量添加したものを用いる。その反応式を、下記に示す。
 (Sr(NO)+(NHCO→SrCO↓+2NHNO
 この反応により、難溶性のSrCOを沈殿させる。この後、さらに純度を上げるために、リパルプ洗浄を行い、次に固液分離のろ過を行い、これを乾燥させて、高純度のSrCOを作製する。
 このSrCOの高純度化の技術は、上記特許文献10(特開平9-77516号公報)により作製することができる。
 電解精製は硫酸溶液中で行ない、カソードの周囲を取り巻くように前記カソードボックスが配置され、カソードボックスはアノード板に対向する面に濾布を張り、アノライト中の浮遊物等の不純物がカソライト中に混同することを防ぐようにした。
 この濾布は、上記の通り、通気性5cm/cmsec以下、さらに好ましくは1cm/cmsec以下のものを使用した。電解槽内にあり、カソードボックスの外側に、5NのInを配置する。電解槽の外側には、カソライトタンクを配置し、カソードボックス内のカソライトの一部をカソライトタンクに導入し、この中に高純度SrCOを添加する。
 電解に際しては、電解液を硫酸とし、pH0.5~1.5で電解する。pH0.5未満では水素発生により電流効率が低下し、pH1.5を超えると電解電圧が高くなるためである。
 さらに、電流密度:1~5A/dmで電解する。これは、1A/dm未満では生産性が悪く、5A/dmを超えると電解電圧が高くなるためである。またデンドライトが発生しやすく、電解精製においてはInよりも貴な不純物がカソードに析出しやすいためである。
 カソードに接する電解液(カソライト)中のIn濃度:65~120g/L、Cl濃度:11~15g/Lとして電解する。In濃度:65g/L未満では、特に電解精製では水素発生により電流効率が低下し、120g/Lを超えると高価なInの工程内在庫が増えるためである。
 また、Cl濃度11g/L未満ではInの電着がデンドライト状に析出して隔膜を破損し、Inの純度を8N以上にすることができなくなる。15g/Lを超えると、周辺機器の腐食を加速させるため好ましくない。8N以上の高純度化を達成し、かつ効率的なInの高純度化のためには、Cl濃度:11~15g/Lとして電解することが必要である。
 高純度SrCOについては、0.1~2.0g/Lをカソライトタンク中のカソライトに添加して、PbをPbCO-O-COSrとしてカソライトタンクの底部に沈殿させる。Pbを沈殿させたカソライトタンク中のカソライトは、PbCO-O-COSrを含まないように、細孔0.5μm以下のフィルターを通して、カソードボックス内の電解液中に戻すことで、カソライトが循環して使用される。
 以上の工程によって、カソライトタンク中のカソライトに高純度SrCOを添加することにより、Pb2+はPbCO-O-COSrとして析出させ、カソライトタンクの底部に沈殿するので、電解液中のPbが低減でき、電解精製されるInからPbを除去することが可能となる。SrCOの濃度0.1g/L未満ではPbの除去効果が低減し、2.0g/Lを超えるとフィルターが目詰まりし、フィルターの交換頻度が高くなる。
 本願発明による電解精製を行うと、アノードとして使用する原料Inは電解液(アノライト)に溶解する。適正な電解条件では、Inよりも貴な不純物はカソードに電着せず、アノード表面に残るか、電解液中に微細な浮遊物として混入するが、浮遊物となった場合はカソードに電着するInに混入する可能性がある。したがって、電解精製の場合は、充分に小さい細孔を持つ隔壁を、アノードとカソードの間に配置することが好ましい。
(電極反応)
 カソード反応は、次の通りである。
   In3++3e → In
 濾布膜
  In3+(アノード室)→In3+(カソード室)
 アノード反応は、次の通りである。
   In → In3++3e 
  (微量)Pb → Pb2++2e
 (カソライトタンク)
 Pb2++SrCO-O-COSr→PbCO-O-COSr+Sr2+ 
 上記カソライトタンク内の反応に示すように、SrCOの添加によりPb2+はPbCO-O-COSrとして析出するので、除去が可能となる。該Pbを除去したカソライトは、細孔0.5μm以下のフィルターに通液してPbCO-O-COSrを濾過した後、再び、カソードボックスに戻し、Ti電極上にはカソライト中のInが析出し、8N以上の純度を有するInを得ることができる。
 本発明において、カソライトタンクへ導入する高純度SrCO中の不純物は、Si:0.51ppm以下、S:4.9ppm以下、Ca:50ppm以下、Fe<0.5ppm、Ni<0.5ppm、Pb<0.1ppmを使用することができる。なお、ここで使用される高純度SrCO中の不純物は、カソライト中で希釈されるので、実際にIn中へ混入する量は、実施例に示すように、さらに低減される。
 参考までに、市販の特級のSrCOの不純物は、Si:8.4ppm、S:290ppm、Ca:500ppm、Fe:6.5ppm、Ni<6ppm、Pb<0.1ppmであり、Pb以外の不純物濃度は、本願発明において使用する高純度SrCOに比べて、およそ一桁以上高い。
 図1では、硫酸を使用した例を示しているが、塩酸浴での電解精製の場合、アノードからの塩素ガス発生を防ぎたいのであれば、特開平08-060264号公報(特許3089595号公報)の電解採取によるInの回収方法(日鉱金属)のようにアノードボックスを設置して、アノードを硫酸と接触させるとよい。
 電解後、カソードから電析Inを剥離し、170~190℃で溶解・鋳造してインゴットを作製する。この溶解・鋳造の際に、陰極板から剥離した電着Inをるつぼ内に収容し、大気中もしくは酸素含有雰囲気下でInを溶解した後、溶湯を1~5分間かけて充分に攪拌し、さらにこれを鋳造して、8N(99.999999%)以上の高純度Inを得る。
 前記大気中もしくは酸素含有雰囲気下で溶解することにより、Zn、S等の酸化物が形成され、固体(亜鉛酸化物)又は気体(硫黄酸化物)の状態で、In中から分離、除去することができる。なお、上記酸素含有ガスとしては、高純度アルゴンと高純度酸素の混合ガスや酸素富化空気等が使用できる。
 上記の製造方法により、硫黄(S)の含有量を0.01ppm未満に、鉛(Pb)及び亜鉛(Zn)の含有量をGDMS分析において検出限界値未満とし、さらに鉄(Fe)、錫(Sn)及びシリコン(Si)の含有量もGDMS分析において検出限界値未満とすることができ、8N(99.999999%)以上の純度を有する高純度Inを得ることができる。
 次に、本願発明の実施例及び比較例について説明する。
(実施例1)
 実施例1として硫酸浴を用いた電解精製(図1に示す装置を使用)について説明する。カソードボックスで仕切られたアノライトとカソライトの間には、通気性5cm/cmsec以下の濾布が配置され、アノライト中に存在する浮遊物等の不純物がカソライト側へ混入することを防止した。なお、電解精製の条件については、カソライト中In濃度:80g/L、pH:1.2、高純度SrCO:0.5g/L、電流密度:3A/dm、カソライト中Cl濃度を11g/Lとした。
 カソライトタンクへ添加した高純度SrCO中に含まれる不純物の含有量は、Si:0.51ppm、S:4.9ppm、Ca:50ppm、Fe<0.5ppm、Ni<0.5ppm、Pb<0.1ppmであった。
 この高純度SrCOを使用して、カソライトタンク中のカソライトへ高純度SrCOを0.5g/Lの濃度となるように添加し、PbをPbCO-O-COSrとして沈殿させ、細孔0.5μm以下のフィルターを通して濾過し、濾過後のカソライトを再びカソードボックスへ戻すように循環供給しながら、電解精製を実施した。電解精製後の電析したInをカソードのTi電極板から剥離し、不純物を分析した結果を表1に示す。
 その結果、電解精製後のIn中の不純物は、Pb:0.005ppm未満(検出限界値未満)に低減でき、Sn:0.01ppm未満(検出限界値未満)、Ni:0.006ppm、Fe:0.001ppmに低減できた。また、Znも0.05ppmに低減できたが、この含有量では、8Nの純度を達成できるものではなく、さらに、Sは蒸留法で製造した5NのIn原料中では0.005ppmであったが、電解精製後では電解液中の硫酸からのS分が混入して0.05ppmに増加し、8NのInを製造するためには、低減しなくてはならないことになる。
 次に、電解精製後の電析したInをカソード板から剥離し、これをるつぼ内に収容し、大気中でInを180℃で溶解した後、溶湯を3分間攪拌し、さらにこれを大気中で鋳造した。
 その結果、鋳造後のIn中の不純物は、表1に示すように、Pbについては、電解精製後の含有量が維持され、0.005ppm未満(検出限界値未満)となっており、またSは0.008ppmとなり、電解精製後に0.05ppmに増加したが、鋳造工程によって大気中酸素と反応して酸化物を形成し、硫黄酸化物の気体状態となり、溶解しているInから分離、除去されたことで低減した。
 さらに、鋳造工程後のZnは0.001ppm未満(検出限界値未満)となっているが、電解精製後には0.05ppm含有していたが、鋳造工程によって大気中酸素と反応して酸化物(スラグ)を形成して個体(浮遊物)の状態となり、鋳型に溶湯を流し込む際に鋳型に浮遊物が入らないようにして、Inから分離、除去され、検出限界値未満まで低減した。その他、電解精製後に、僅かではあるが、ある程度の含有量を示していたNa、Ca、Fe、Niについては、GDMSの検出限界値未満にまで低減した。
 また、本実施例1では、上記以外の不純物として、Li、Be、B、F、Mg、Al、P、Cl、K、Sc、Ti、V、Cr、Mn、Co、Cu、Ga、Ge、As、Se、Br、Rb、Sr、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、Cd、Sb、Te、I、Cs、Ba、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Hf、Ta、W、Re、Os、Ir、Pt、Au、Hg、Tl、Bi、Th、Uの元素の含有濃度は、GDMSの検出限界値未満なので、これらの元素は除く。以下の実施例においても、同様である。
 以上の実施例の結果から明らかなように、電解精製および鋳造処理によって、いずれも不純物は低減し、特にPb、Zn、S、Fe、Sn、Siの不純物の極限までの低減ができ、8N純度のInが製造できた。また、歩留りは98%以上であった。
Figure JPOXMLDOC01-appb-T000001
(比較例1)
 次に、比較例1として、上記実施例1において、カソライトタンク内の電解液中へ高純度SrCOを添加する工程を無くし、電解液中のCl濃度を8g/Lとした。それ以外は、全て実施例1と同様の条件でInの電解精製を行った。
 また、溶湯の鋳造時に実施例では大気中で溶湯をるつぼ内で撹拌して、溶湯中の不純物の酸化を促進させる工程を設けたが、この比較例1では、溶湯の撹拌工程を設けることなく、170℃の溶湯温度で鋳造した。
 この結果を表2に示す。比較例1の条件で電解精製し、鋳造されたIn中には、Pbが0.5ppm、S:0.03ppm、Zn:0.02ppm含有しており、8Nの純度を達成することはできなかった。
 その他の不純物については、実施例1と同等の含有量に低減できていた。すなわち、Na:0.001ppm、Si:<0.005ppm(検出限界値未満)、Ca:0.004ppm、Fe:0.001ppm、Ni:0.001ppm、Sn<0.01ppm(検出限界値未満)であった。
Figure JPOXMLDOC01-appb-T000002
(実施例2)
 実施例2として、カソライトタンク中への高純度SrCOの添加濃度を0.1g/Lとし、カソライト中のIn濃度:65g/L、pH:0.5、電流密度:1A/dm、カソライト中Cl濃度を13g/Lとした。実施例1との電解精製条件との大きな相違点は、カソライト中の高純度SrCOの添加濃度を実施例1よりも低濃度とし、電解液中のCl濃度を11g/Lから13g/Lへと高くした点にある。
 カソライトタンクへ添加した高純度SrCOの不純物の含有量は、Si:0.51ppm、S:4.9ppm、Ca:50ppm、Fe<0.5ppm、Ni<0.5ppm、Pb<0.1ppmであった。
 上記の条件で電解精製を行い、電解精製で電析したInをカソード板から剥離し、これをるつぼ内に収容し、大気中でInを170℃で溶解した後、溶湯を3分間攪拌し、さらにこれを大気中で鋳造した。この結果を、表3に示す。
 この結果、鋳造後のIn中の不純物は、表3に示すように、Pbについては、電解精製後の含有量が維持され、0.005ppm未満(検出限界未満)となっており、またSは電解精製後に0.05ppmに増加したが、鋳造工程によって大気中の酸素と反応して硫黄酸化物の気体となり、溶解しているInから分離、除去され、0.007ppmに低減した。
 さらに、Znは電解精製後に0.05ppm含有していたが、鋳造工程によって大気中の酸素と反応して酸化物(スラグ)を形成し、個体(浮遊物)の状態となり、鋳型に溶湯を流し込む際に鋳型に浮遊物が入らないようにして、Inから分離、除去され、0.001ppm未満(検出限界値未満)まで低減した。その他、電解精製後に、僅かではあるが、ある程度の含有量を示していたNa、Ca、Fe、Niについては、GDMSの検出限界値未満にまで低減した。
 以上により、8Nの純度を有するInが製造できた。また、歩留りは98%以上であった。
Figure JPOXMLDOC01-appb-T000003
(実施例3)
 実施例3として、カソライトタンク中への高純度SrCOの添加濃度を2.0g/Lとし、カソライト中のIn濃度:120g/L、pH:1.5、電流密度:5A/dm、カソライト中Cl濃度を15g/Lとした。実施例1、2との電解精製条件との大きな相違点は、カソライト中の高純度SrCOの添加濃度を実施例1、2よりも高濃度とし、電解液中のCl濃度を15g/Lと高くした点にある。
 カソライトタンクへ添加した高純度SrCO中に含有されている不純物は、Si:0.51ppm、S:4.9ppm、Ca:50ppm、Fe<0.5ppm、Ni<0.5ppm、Pb<0.1ppmであった。
 上記の条件で電解精製を行い、電解精製で電析したInをカソード板から剥離し、これをるつぼ内に収容し、大気中でInを190℃で溶解した後、溶湯を3分間攪拌し、さらにこれを大気中で鋳造した。この結果(In中の不純物濃度の結果)を表4に示す。
 この結果、鋳造後のIn中の不純物は、表4に示すように、Pbについては、電解精製後の含有量が維持され、0.005ppm未満(検出限界未満)となっており、またSは電解精製後に0.05ppmに増加したが、鋳造工程によって大気中の酸素と反応して硫黄酸化物の気体となり、溶解しているInから分離、除去され、0.006ppmに低減した。
 さらに、Znは電解精製後に0.05ppm含有していたが、鋳造工程によって大気中の酸素と反応して酸化物(スラグ)を形成し、個体(浮遊物)の状態となり、溶解しているInから分離、除去され、0.001ppm未満(検出限界値未満)まで低減した。その他、電解精製後に、僅かではあるが、ある程度の含有量を示していたNa、Ca、Fe、Niについては、GDMSの検出限界値未満にまで低減した。
 以上により、8Nの純度を有するInが製造できた。また、歩留りは98%以上であった。
Figure JPOXMLDOC01-appb-T000004
(比較例2)
 次に、比較例2は、上記実施例1の内容の多くを前提とするが、カソライトタンク内の電解液中へSrCOを添加する際に、従来の市販品である特級のSrCOを添加した場合である。他は、実施例1同条件とした。ここで使用したSrCO中の不純物濃度は、Si:8.4ppm、S:290ppm、Ca:500ppm、Fe:6.5ppm、Ni:4.6ppm、Pb<0.1ppmであり、Pb以外の不純物濃度は、本願発明において使用する高純度SrCOに比べて、およそ一桁以上高いものである。
 上記の条件でInの電解精製を行った結果を、表5に示す。比較例2の条件で精製されたIn中には、Pbが0.005ppm、Ca<0.005ppm(検出限界値未満)、Zn<0.001ppm未満(検出限界値未満)であったが、Na:0.002ppm、Si:0.03ppm、S:0.01ppm、Fe:0.002ppm、Ni:0.002ppmであり、全体的に不純物が多くなり、本願発明で企図する8N(99.999999%)の純度を達成することはできなかった。
Figure JPOXMLDOC01-appb-T000005
 本発明は、硫黄(S)の含有量が0.01ppm未満である8N(99.999999%)以上の高純度インジウム(In)であり、鉛(Pb)及び亜鉛(Zn)の含有量がGDMS分析において検出限界値未満である8N(99.999999%)以上の高純度In、さらには鉄(Fe)、錫(Sn)及びシリコン(Si)の含有量がGDMS分析において検出限界値未満である8N(99.999999%)以上の高純度Inと、その製造方法を提供するものである。InGaN、AlInGaPなどのLED用のIn需要が伸びていくという可能性があり、今後大量にかつ安価に製造することが要求されるが、本願発明はこれに対応できる技術を提供する。さらに、乾式精製法に比べて、効果な設備費を必要とせず、またランニングコストも低減できるので、コスト低減を図ることができるという効果を有する。

Claims (17)

  1.  8N(99.999999%)以上の純度を有する高純度インジウム(In)。
  2.  硫黄(S)の含有量が0.01ppm未満であることを特徴とする請求項1記載の高純度In。
  3.  鉛(Pb)及び亜鉛(Zn)の含有量が、GDMS分析において検出限界値未満である請求項1又は2に記載の高純度In。
  4.  鉄(Fe)、錫(Sn)及びシリコン(Si)の含有量が、GDMS分析において検出限界値未満である請求項1~3のいずれか一項に記載の高純度In。
  5.  電解により高純度Inを製造する方法であって、5N(99.999%)のInを原料とし、この原料を用いて電解精製する際に、電解液に高純度SrCOを添加して電解液中のPbの含有量を低減させ、さらに、電着Inを陰極板から剥離してるつぼ内に収容し、大気中もしくは酸素含有雰囲気下でInを溶解した後、溶湯を1~5分間攪拌し、さらにこれを鋳造して、8N(99.999999%)以上の純度とすることを特徴とする高純度Inの製造方法。
  6.  アノード液(アノライト)とカソード液(カソライト)を5cm/cmsec以下の通気性をもつ隔膜で仕切り、カソードに接する電解液を予め0.5μm以下の細孔を持つフィルターで濾過し、精製することを特徴とする請求項5に記載の高純度Inの製造方法。
  7.  電解精製による高純度Inの製造方法であって、アノード液(アノライト)とカソード液(カソライト)を、5cm/cmsec以下の通気性を持つ隔膜で仕切り、さらに、カソライトの一部を電解槽とは異なるカソライトタンクに取り出し、カソライトタンク中のカソライトに高純度SrCOを添加することにより、カソライト中のPbをPbCO-O-COSrとして沈殿させた後、そのカソライトを細孔0.5μm以下のフィルターを通して濾過し、濾過後のカソライトを再びカソードボックスへ戻すように循環供給しながら電解精製し、電着Inを陰極板から剥離してるつぼ内に収容し、大気中もしくは酸素含有雰囲気下でInを溶解した後、溶湯を1~5分間攪拌し、さらにこれを鋳造して、8N(99.999999%)以上の純度とすることを特徴とする高純度Inの製造方法。
  8.  電解液を硫酸とし、pH:0.5~1.5で電解することを特徴とする請求項5~7のいずれか一項に記載の高純度Inの製造方法。
  9.  電流密度:1~5A/dmで電解することを特徴とする請求項5~8のいずれか一項に記載の高純度Inの製造方法。
  10.  電解液中のIn濃度:65~120g/L、Cl濃度:11~15g/Lとして電解することを特徴とする請求項5~9のいずれか一項に記載の高純度Inの製造方法。
  11.  高純度のSrCOを0.1~2.0g/Lを添加して精製することを特徴とする請求項5~10のいずれか一項に記載の高純度Inの製造方法。
  12.  上記請求項5~11のいずれか一項に記載の高純度Inの電解精製方法で製造された高純度Inを陰極板から剥離し、大気中もしくは酸素含有雰囲気下で鋳造する際、170~190℃で鋳造することを特徴とする高純度Inの製造方法。
  13.  上記請求項5~12のいずれか一項に記載の高純度Inの電解精製方法により製造された8N(99.999999%)以上の純度とすることを特徴とする高純度In。
  14.  硫黄(S)の含有量が0.01ppm未満とすることを特徴とする請求項13記載の高純度In。
  15.  鉛(Pb)及び亜鉛(Zn)の含有量が、GDMS分析において検出限界値未満とすることを特徴とする請求項13又は14に記載の高純度In。
  16.  鉄(Fe)、錫(Sn)及びシリコン(Si)の含有量が、GDMS分析において検出限界値未満とすることを特徴とする請求項13~15のいずれか一項に記載の高純度In。
  17.  電解液に添加する前記高純度SrCO中の不純物の含有量が、それぞれ、Si:0.51ppm以下、S:4.9ppm以下、Ca:50ppm以下、Fe<0.5ppm、Ni<0.5ppm、Pb<0.1ppmであることを特徴とする請求項5~12のいずれか一項に記載の高純度Inの製造方法。
PCT/JP2014/073029 2013-11-01 2014-09-02 高純度In及びその製造方法 WO2015064201A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015503600A JP5996771B2 (ja) 2013-11-01 2014-09-02 高純度In及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-227881 2013-11-01
JP2013227881 2013-11-01

Publications (1)

Publication Number Publication Date
WO2015064201A1 true WO2015064201A1 (ja) 2015-05-07

Family

ID=53003814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073029 WO2015064201A1 (ja) 2013-11-01 2014-09-02 高純度In及びその製造方法

Country Status (2)

Country Link
JP (2) JP5996771B2 (ja)
WO (1) WO2015064201A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016044318A (ja) * 2014-08-20 2016-04-04 Jx日鉱日石金属株式会社 高純度In及びその製造方法
JP2017057451A (ja) * 2015-09-15 2017-03-23 Jx金属株式会社 低α線高純度亜鉛及び低α線高純度亜鉛の製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7128075B2 (ja) * 2018-10-05 2022-08-30 株式会社アルバック 金属水酸化物の製造装置及び製造方法
CN110257648B (zh) * 2019-07-05 2021-07-06 上海大学 一种制备超高纯铟的装置及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10121163A (ja) * 1996-10-16 1998-05-12 Dowa Mining Co Ltd 高純度インジウムの製造方法および製造装置
JP2004043946A (ja) * 2002-05-21 2004-02-12 Nikko Materials Co Ltd 高純度金属の製造方法及び装置
JP2005179778A (ja) * 2003-11-28 2005-07-07 Mitsubishi Materials Corp 高純度金属インジウムとその製造方法および用途
JP2006283192A (ja) * 2006-07-12 2006-10-19 Dowa Mining Co Ltd 高純度インジウム
JP2009215623A (ja) * 2008-03-12 2009-09-24 Dowa Metals & Mining Co Ltd インジウムの回収方法
JP2009242911A (ja) * 2008-03-31 2009-10-22 Dowa Metals & Mining Co Ltd インジウムメタルの製造方法
JP2013036075A (ja) * 2011-08-05 2013-02-21 Jx Nippon Mining & Metals Corp インジウム又はインジウム合金の精製方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10121163A (ja) * 1996-10-16 1998-05-12 Dowa Mining Co Ltd 高純度インジウムの製造方法および製造装置
JP2004043946A (ja) * 2002-05-21 2004-02-12 Nikko Materials Co Ltd 高純度金属の製造方法及び装置
JP2005179778A (ja) * 2003-11-28 2005-07-07 Mitsubishi Materials Corp 高純度金属インジウムとその製造方法および用途
JP2006283192A (ja) * 2006-07-12 2006-10-19 Dowa Mining Co Ltd 高純度インジウム
JP2009215623A (ja) * 2008-03-12 2009-09-24 Dowa Metals & Mining Co Ltd インジウムの回収方法
JP2009242911A (ja) * 2008-03-31 2009-10-22 Dowa Metals & Mining Co Ltd インジウムメタルの製造方法
JP2013036075A (ja) * 2011-08-05 2013-02-21 Jx Nippon Mining & Metals Corp インジウム又はインジウム合金の精製方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHI-HUA ZHOU ET AL.: "Preparation of 6N high- purity indium by method of physical-chemical purification and electrorefining", JOURNAL OF MATERIALS SCIENCE, vol. 40, no. 24, December 2005 (2005-12-01), pages 6529 - 6533 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016044318A (ja) * 2014-08-20 2016-04-04 Jx日鉱日石金属株式会社 高純度In及びその製造方法
JP2017057451A (ja) * 2015-09-15 2017-03-23 Jx金属株式会社 低α線高純度亜鉛及び低α線高純度亜鉛の製造方法

Also Published As

Publication number Publication date
JP2016216828A (ja) 2016-12-22
JPWO2015064201A1 (ja) 2017-03-09
JP5996771B2 (ja) 2016-09-21
JP6524973B2 (ja) 2019-06-05

Similar Documents

Publication Publication Date Title
TWI628287B (zh) 高純度錫及其製造方法
KR101155355B1 (ko) Izo 스크랩으로부터의 유가 금속의 회수 방법
JP6524973B2 (ja) 高純度In及びその製造方法
TWI577836B (zh) High purity tin manufacturing methods, high purity tin electrolytic refining devices and high purity tin
US11572632B2 (en) Method for manufacturing high purity tin, electrowinning apparatus for high purity tin and high purity tin
US3326783A (en) Process for the production of electrolytic zinc powder
CN107815540A (zh) 一种湿法冶炼金属镍钴及其盐类产品的方法
JP6318049B2 (ja) 高純度In及びその製造方法
JP3882608B2 (ja) 高純度錫の電解精製方法とその装置
JP5996797B2 (ja) 高純度In及びその製造方法
JP5993097B2 (ja) 高純度塩化コバルトの製造方法
JP2019070171A (ja) 銅電解液の管理方法および電気銅の製造方法
JP2011246795A (ja) 銅電解廃液からの銅の回収方法
JP4779163B2 (ja) 硫酸銅溶液の製造方法
JP2016156065A (ja) インジウム及びガリウムの回収方法
JP2015147956A (ja) ガリウムの回収方法
JP2570076B2 (ja) 高純度ニッケルの製造方法
JP2012162764A (ja) 希土類元素の回収方法及び回収システム
JP2023066461A (ja) 低マグネシウム濃度の塩化コバルト水溶液の製造方法
US881527A (en) Process for treating complex cobalt ores and for refining cobalt from nickel, arsenical, and silver-bearing ores.
JP2021167256A (ja) 低Mg濃度の高純度塩化コバルト水溶液の製造方法
KR101752727B1 (ko) 주석 폐기물로부터 주석을 회수하는 방법
JP2016030847A (ja) 塩化コバルト溶液の浄液方法
JP2019178354A (ja) 脱銅電解処理方法、脱銅電解処理装置
JPH11269571A (ja) 回収ガリウムの精製方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015503600

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14858544

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14858544

Country of ref document: EP

Kind code of ref document: A1