WO2015064115A1 - 電磁流量計 - Google Patents

電磁流量計 Download PDF

Info

Publication number
WO2015064115A1
WO2015064115A1 PCT/JP2014/050581 JP2014050581W WO2015064115A1 WO 2015064115 A1 WO2015064115 A1 WO 2015064115A1 JP 2014050581 W JP2014050581 W JP 2014050581W WO 2015064115 A1 WO2015064115 A1 WO 2015064115A1
Authority
WO
WIPO (PCT)
Prior art keywords
flange
tube
flow meter
electromagnetic flow
axial direction
Prior art date
Application number
PCT/JP2014/050581
Other languages
English (en)
French (fr)
Inventor
智 北條
Original Assignee
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝 filed Critical 株式会社東芝
Priority to CA2928978A priority Critical patent/CA2928978A1/en
Priority to CN201480058524.4A priority patent/CN105683719A/zh
Priority to KR1020167010472A priority patent/KR20160061372A/ko
Priority to EA201690883A priority patent/EA201690883A1/ru
Priority to US15/031,659 priority patent/US20160238420A1/en
Publication of WO2015064115A1 publication Critical patent/WO2015064115A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/56Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects
    • G01F1/58Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters
    • G01F1/586Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters constructions of coils, magnetic circuits, accessories therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/56Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects
    • G01F1/58Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters
    • G01F1/588Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters combined constructions of electrodes, coils or magnetic circuits, accessories therefor

Definitions

  • Embodiments of the present invention relate to an electromagnetic flow meter.
  • the electromagnetic flow meter it is preferable if a part of the components constituting the electromagnetic flow meter can be shared with a plurality of specifications, for example, the positions of the mounting holes of the flanges are different.
  • the electromagnetic flow meter includes, as an example, a pipe, a detection unit, and a flange.
  • a fluid to be measured flows through the tube.
  • the detection unit detects the fluid to be measured.
  • the flange includes a plurality of members that are integrated with the pipe by the coupler in a state in which the pipe is surrounded from the outer peripheral side.
  • FIG. 1 is a perspective view showing an example of an electromagnetic flow meter according to the first embodiment.
  • 2 is a cross-sectional view taken along the line II-II in FIG. 3 is a cross-sectional view taken along the line III-III in FIG.
  • FIG. 4 is a plan view (partially sectional view) showing an example of an electromagnetic flow meter according to the second embodiment.
  • FIG. 5 is a plan view (partially sectional view) showing an example of the electromagnetic flow meter according to the third embodiment.
  • the electromagnetic flow meter 1 includes a detector 2 and a converter 3 (display device, electronic device).
  • the detector 2 includes a tube body 7 in which a flow path 7a is provided, and a detection unit 14 (see FIG. 2) that detects a fluid to be measured flowing through the flow path 7a.
  • the detection unit 14 includes a pair of electrode units 9 and 9 (only one is shown in FIG. 2) in contact with the fluid to be measured, and an excitation coil 8 (coil unit) housed in the housing unit 20 of the tube body 7. And).
  • a line connecting the pair of electrode portions 9 and 9 is substantially orthogonal to an axis of the tube body 7 (measurement tube 4) (hereinafter simply referred to as an axis).
  • the exciting coil 8 generates a magnetic field in a direction orthogonal to the line connecting the pair of electrode portions 9 and 9 and the axis.
  • the converter 3 includes a housing 10 provided with a display device 12 and the like, and a control unit (not shown). The converter 3 is fixed to the detector 2 via the connecting portion 13.
  • a wiring (harness, cord) and the like for electrically connecting the converter 3 (control unit) and the detector 2 (detection unit 14) are provided inside the coupling unit 13.
  • the electromagnetic flow meter 1 when a magnetic field is generated inside the tube body 7 by the exciting coil 8 and a fluid to be measured flows in a direction orthogonal to the magnetic field, an electromotive force is generated in a direction orthogonal to the magnetic field and the fluid to be measured. To do.
  • the electromotive force generated by the fluid to be measured is detected by the pair of electrode portions 9 and 9. Then, a detection signal corresponding to the electromotive force is sent from the pair of electrode portions 9 and 9 to the control unit of the converter 3.
  • the control unit calculates (detects) the magnitude (value) of the electromotive force from the detection signal. And a control part calculates a flow volume from the magnitude
  • the display device 12 has a display screen 12a.
  • the display device 12 is supported by the housing 10 so that the display screen 12a is visible.
  • the display device 12 is housed in the housing 10 and covered with the panel 11.
  • the panel 11 is provided with a transparent (for example, colorless and transparent) cover portion 11a (a transmission portion, a light transmission portion, and a window).
  • the display screen 12a of the display device 12 is visually recognized through the cover 11a.
  • the display device 12 is, for example, a liquid crystal display (LCD, Liquid Crystal Display) or the like.
  • the tube body 7 includes a measurement tube 4 (tube), a flange 5, and a lining 6 as shown in FIGS.
  • the tube body 7 can be connected to another tube body (the tube body to be measured, not shown) through which the fluid to be measured flows.
  • the detection unit 14 and the control unit detect the flow rate of the fluid to be measured that has flowed into the tube body 7 from another tube body.
  • the measuring tube 4 has, as an example, a base portion 41 (tubular portion) and an overhang portion 42 (flange portion).
  • the base 41 is configured in a cylindrical shape (in this embodiment, a cylindrical shape as an example) along the axial direction (axial center direction) of the tube body 7.
  • the overhanging portion 42 is provided at both ends 41c and 41c (see FIG. 2) on both sides in the axial direction of the base portion 41, and protrudes in a direction intersecting the axial direction (in this embodiment, an orthogonal direction as an example).
  • the overhanging portion 42 is formed in a flat plate shape and an annular shape (in the present embodiment, an annular shape as an example) extending along a direction orthogonal to the axial direction (radial direction).
  • the base 41 includes an outer surface 41a (outer peripheral surface, outer surface, surface opposite to the flow channel 7a, first surface), and an inner surface 41b (inner peripheral surface, inner surface, surface on the flow channel 7a side, second surface). And).
  • the accommodating portion 20 (excitation coil 8), the flange 5, and the like are provided on the outer surface 41a of the measurement tube 4 (base portion 41), and the pair of electrode portions 9, 9 and the lining 6 are the inner surface of the measurement tube 4 (base portion 41). 41b.
  • the overhanging portion 42 has an end surface 42a (a surface opposite to the flange 5, a first surface) and an end surface 42b (a surface on the flange 5 side, a second surface).
  • the measuring tube 4 can be made of a nonmagnetic material such as SUS (stainless steel).
  • the accommodating part 20 has a pair of end plate parts 15 and 15 and a cover part 16 (cover) as an example.
  • the pair of end plate portions 15, 15 are provided at intervals in the axial direction of the measurement tube 4 (base portion 41), and in a posture along a direction crossing the axial direction (in the present embodiment, an orthogonal direction as an example). Has been placed.
  • the end plate portion 15 can be fixed (coupled) to the outer surface 41a of the base portion 41 by, for example, welding.
  • the cover 16 is located on the side opposite to the base 41 of the excitation coil 8 and covers the excitation coil 8.
  • the cover portion 16 can be fixed (coupled) to the outer peripheral portion of the end plate portion 15 by welding or the like, for example.
  • the lining 6 includes, as an example, a tube portion 6a (first portion) and a flare portion 6b (second portion).
  • the cylindrical portion 6a is configured in a cylindrical shape (in the present embodiment, a cylindrical shape as an example) along the inner surface 41b of the base portion 41, and covers (covers) the inner surface 41b.
  • the inner surface of the cylindrical part 6a constitutes a flow path 7a.
  • the flare portion 6b is formed in an annular shape (in the present embodiment, a plate shape and an annular shape as an example) along the end surface 42a of the overhang portion 42, and covers (covers) the end surface 42a.
  • the flare portions 6b are provided at both ends of the cylindrical portion 6a in the axial direction, and project in a direction intersecting the axial direction (in the present embodiment, an orthogonal direction as an example). Thus, the flare part 6b covers the overhang part 42 from the outside in the axial direction.
  • the flare portion 6b has an end face 6c.
  • the end surface 6 c is a surface opposite to the end surface 42 a of the overhanging portion 42 and constitutes the outer surface of the tubular body 7.
  • the lining 6 is provided across the base portion 41 and the overhang portion 42.
  • the lining 6 protects the inner surface 41b of the base portion 41 and the end surface 42a of the overhang portion 42 by the cylindrical portion 6a and the flare portion 6b.
  • the lining 6 can be made of, for example, a synthetic resin material such as a fluororesin.
  • the flange 5 is formed in an annular shape (in the present embodiment, an annular shape) along the outer surface 41a of the base 41.
  • the flange 5 is provided at end portions 41c and 41c on both sides in the axial direction of the measuring tube 4 (base portion 41).
  • FIG. 1 when it demonstrates without distinguishing a pair of flanges 5 and 5 specially, they are also only called the flange 5.
  • the flange 5 has an end surface 5a (surface, coupling surface).
  • the end surface 5a is a surface that overlaps (opposes) the object to be coupled (a flange of another tube coupled to the tube 7).
  • the flange 5 is provided with a hole 5b (attachment hole) penetrating the flange 5 along the axial direction. As shown in FIG. 3, the holes 5 b are provided at a plurality of (arbitrary number) locations at equal intervals (arbitrary intervals) along the circumferential direction of the flange 5.
  • a coupling tool for example, a bolt or the like, not shown
  • the flange 5 can be made of a metal material such as SUS (stainless steel).
  • the flange 5 is composed of a plurality of members. Specifically, as illustrated in FIGS. 1 and 3, the flange 5 includes, as an example, a first member 5A and a second member 5B.
  • the first member 5 ⁇ / b> A and the second member 5 ⁇ / b> B have a shape in which the flange 5 is equally divided into two on a plane passing through the central axis of the tube body 7.
  • the first member 5A and the second member 5B have the same shape.
  • the first member 5 ⁇ / b> A and the second member 5 ⁇ / b> B each have a base 51, a pair of protrusions 52 and 53, and end surfaces 54 and 55.
  • the base 51 is configured in an arc shape (arch shape) along the outer surface 41a of the measuring tube 4 (base 41).
  • the protruding portion 52 is provided at one end 51 a in the circumferential direction of the base portion 51 and protrudes toward the radially outer side of the base portion 51.
  • the protruding portion 53 is provided at an end portion 51 b on the other side in the circumferential direction of the base portion 51 and protrudes toward the radially outer side of the base portion 51.
  • the end surface 54 and the end surface 55 are surfaces that overlap (oppose) each other.
  • the end surface 54 and the end surface 55 extend over the base 51 and the pair of protrusions 52 and 53, respectively.
  • the protrusion 52 and the protrusion 53 are provided with holes 52a, 52b, 53a, 53b (attachment holes).
  • the holes 52a and 52b penetrate the projecting portion 52 along a direction intersecting the projecting portion 52 (in this embodiment, an orthogonal direction as an example).
  • the holes 53a and 53b penetrate the protrusion 53 along a direction intersecting with the protrusion 53 (in this embodiment, an orthogonal direction as an example).
  • the first member 5A and the second member 5B are integrated by a coupler 18 (in the present embodiment, as an example, a bolt 18a and a nut 18b). Specifically, the first member 5A and the second member 5B are overlapped with the end face 42b of the overhanging portion 42, and the base 41 or the like is obtained by spot welding (a welding spot by spot welding is indicated by Wp, see FIG. 2). It is partially positioned and fixed to the overhang portion 42.
  • the bolts 18a are passed through the holes 52a, 52b, 53a, 53b of the protrusions 52, 53, and the first member 5A and the second member 5B are integrated by tightening the nut 18b.
  • a coupler 18 in the present embodiment, as an example, a bolt 18a and a nut 18b.
  • the protruding portion 52 and the protruding portion are disposed between the first member 5 ⁇ / b> A and the second member 5 ⁇ / b> B in a state where the end surface 54 and the end surface 55 are overlapped.
  • a constant gap 30 extending in the direction connecting the portion 53 is provided. Therefore, according to the present embodiment, as an example, manufacturing variations (dimensional variations) are easily absorbed. Therefore, as an example, compared with the case where there is no gap 30, it is easier to obtain a binding force by the coupler 18, and as a result, the measurement tube 4 and the flange 5 (first member 5A and second member 5B). And are more easily integrated.
  • the 1st member 5A and the 2nd member 5B are the base 41 and overhang
  • the flange 5 includes the first member 5A and the second member 5B integrated with the measuring tube 4 by the coupler 18. Therefore, according to the present embodiment, as an example, the flange 5 can be easily attached to the measuring tube 4 as compared with the conventional configuration in which the flange 5 is attached to the measuring tube 4 by all-around welding. Further, according to the present embodiment, as an example, a plurality of pipe bodies 7 (electromagnetic flowmeters 1) having different specifications can be obtained by combining one measurement pipe 4 and flanges 5 having different specifications. . That is, the measurement pipe 4 is easily shared for a plurality of pipe bodies 7 (electromagnetic flowmeters 1) having different specifications. Therefore, as an example, the manufacturing cost of the electromagnetic flowmeter 1 is more likely to be reduced. Moreover, compared with the case where the flange 5 is welded to the measuring tube 4 all around, the thermal influence on the lining 6 is more easily reduced.
  • the measurement tube 4 since it is the structure which attaches the flange 5 (1st member 5A and 2nd member 5B) to the measurement tube 4 as an example with the coupling tool 18, after shaping
  • the flange 5 in the conventional configuration in which the flange 5 is attached by all-around welding, it is necessary to attach the flange 5 to the measurement tube 4 (base 41) before forming the lining 6 in consideration of the thermal effect on the lining 6. .
  • the measuring pipe 4 and the flange 5 are integrated.
  • the manufacturing lead time (waiting time) was likely to be relatively long.
  • the manufacturing lead time is easily shortened and the stock is being manufactured. There is an advantage that it is easy to decrease. Therefore, according to the present embodiment, as an example, labor and cost required for manufacturing the electromagnetic flow meter 1 are easily reduced.
  • the measurement tube 4 includes a base portion 41 and an overhang portion 42 provided at an end portion 41c of the base portion 41, and the flange 5 and the overhang portion 42 are arranged in the axial direction. overlapping. Therefore, according to the present embodiment, as an example, it is easy to suppress the first member 5 ⁇ / b> A and the second member 5 ⁇ / b> B from moving in the axial direction of the measurement tube 4 by the overhang portion 42. Therefore, as an example, the operation of attaching the first member 5A and the second member 5B to the measurement tube 4 is easier, smoother, or more accurate. As an example, the flange 5 (the integrated first member 5 ⁇ / b> A and second member 5 ⁇ / b> B) is easily suppressed from coming off the measurement tube 4.
  • the lining 6 includes a cylindrical portion 6a (first portion) that covers the inner surface 41b of the base portion 41, and a flare portion 6b (first portion) that covers the overhang portion 42 from the outside in the axial direction. A second part). Therefore, according to the present embodiment, as an example, the flare 6b tends to improve the sealing performance between the flange 5 and the object to be joined (the flange of another pipe connected to the pipe 7).
  • the electromagnetic flow meter 1 is exemplified as a liquid contact type in which the pair of electrode portions 9 and 9 are in contact with the fluid to be measured.
  • the electromagnetic flow meter 1 is not limited to this.
  • the non-wetted type in which the pair of electrode portions 9 and 9 do not come into contact with the fluid to be measured may be used.
  • the first member 5A and the second member 5B are positioned with respect to the measurement tube 4 by spot welding, but spot welding is not necessarily performed.
  • spot welding is partially welded unlike all-around welding, even if it is performed after the lining 6 is formed, the thermal influence on the lining 6 is likely to be reduced.
  • the electromagnetic flow meter according to the embodiment shown in FIG. 4 has the same configuration as the electromagnetic flow meter 1 of the first embodiment. Therefore, also according to this embodiment, the same result (effect) based on the same configuration as that of the first embodiment can be obtained.
  • the cover portion 16 ⁇ / b> A extends along the axial direction of the measurement tube 4 and is connected to the flange 5.
  • the cover portion 16A is welded to the flange 5 (the first member 5A and the second member 5B) by all-around welding (a welding location by all-around welding is indicated by Wf). It is fixed. Therefore, according to the present embodiment, as an example, the load applied to the flange 5 when the object to be joined (the flange of another pipe connected to the pipe 7) and the flange 5 are joined is released to the cover 16A. Can do.
  • the electromagnetic flow meter according to the embodiment shown in FIG. 5 has the same configuration as that of the second embodiment. Therefore, according to this embodiment, the same result (effect) based on the same configuration as that of the second embodiment can be obtained.
  • the cover 16A and the flange 5 are integrally formed.
  • the tubular body 7 includes a first member 23 and a second member 24.
  • the first member 23 is formed by integrally molding the first member 5A of the flange 5 and the first cover member 26 of the cover portion 16A.
  • the second member 24 is formed by integrally molding the second member 5B of the flange 5 and the second cover member 27 of the cover portion 16A.
  • the first member 23 and the second member 24 are cast parts (die cast parts) configured by casting (die casting) of a metal material.
  • first member 23 and the second member 24 have a shape in which the flange 5 and the cover portion 16A are equally divided into two on a plane passing through the central axis of the tube body 7.
  • the first member 23 and the second member 24 have the same shape.
  • the first member 5A and the second member 5B are coupled by the coupler 18, and the coupler 21 (in this embodiment, the bolt 21a and the nut 21b as an example)
  • the covering member 26 and the second covering member 27 are coupled, and the first member 23 and the second member 24 are integrated. Therefore, according to this embodiment, as an example, since the cover portion 16A and the flange 5 are integrated, the welding operation at the time of assembly can be omitted for the connection between the cover portion 16A and the flange 5. . Therefore, the manufacturing lead time may be further shortened. Further, as an example, since the cover portion 16A and the flange 5 are integrally formed, the rigidity and strength of the tube body 7 are likely to increase.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measuring Volume Flow (AREA)

Abstract

 実施形態にかかる電磁流量計は、一例として、測定管(管)と、検出部と、フランジと、を備える。測定管(管)には、被測定流体が流れる。検出部は、被測定流体を検出する。フランジは、測定管(管)を外周側から囲った状態で結合具によって測定管(管)と一体化された複数の部材(5A,5B)を有する。

Description

電磁流量計
 本発明の実施形態は、電磁流量計に関する。
 従来、フランジが管に全周溶接によって取り付けられた電磁流量計が知られている。
特開2009-288026号公報
 この種の電磁流量計では、例えばフランジの取付孔の位置が異なるなどの複数の仕様で、電磁流量計を構成する一部の部品を共用化することができれば、好ましい。
 実施形態にかかる電磁流量計は、一例として、管と、検出部と、フランジと、を備える。管には、被測定流体が流れる。検出部は、被測定流体を検出する。フランジは、管を外周側から囲った状態で結合具によって管と一体化された複数の部材を有する。
図1は、第1実施形態にかかる電磁流量計の一例を示す斜視図である。 図2は、図1のII-II断面図である。 図3は、図2のIII-III断面図である。 図4は、第2実施形態にかかる電磁流量計の一例を示す平面図(一部断面図)である。 図5は、第3実施形態にかかる電磁流量計の一例を示す平面図(一部断面図)である。
 以下、図面を参照して、実施形態について説明する。なお、以下の複数の実施形態には、同様の構成要素が含まれている。よって、以下では、同様の構成要素には共通の符号が付されるとともに、重複する説明が省略される。また、以下に示される実施形態の構成(技術的特徴)、ならびに当該構成によってもたらされる作用および結果(効果)は、あくまで一例である。本発明は、以下の実施形態に開示される構成以外によっても実現可能であるとともに、基本的な構成(技術的特徴)によって得られる種々の効果(派生的な効果も含む)を得ることが可能である。
<第1実施形態>
 本実施形態では、一例として、図1に示されるように、電磁流量計1は、検出器2と、変換器3(表示器、電子機器)と、を備える。検出器2は、内部に流路7aが設けられた管体7と、流路7aを流れる被測定流体を検出する検出部14(図2参照)と、を有する。検出部14は、被測定流体に接触する一対の電極部9,9(図2では一つだけが示されている)と、管体7の収容部20に収容された励磁コイル8(コイル部)と、を有する。一対の電極部9,9を結ぶ線は、管体7(測定管4)の軸心(以下、単に軸心と記す)と略直交している。また、励磁コイル8は、一対の電極部9,9を結ぶ線と軸心とに直交する方向に磁界を生成する。変換器3は、表示装置12等が設けられた筐体10と、制御部(図示されず)と、を有する。変換器3は、連結部13を介して検出器2に固定されている。連結部13の内部には、変換器3(制御部)と検出器2(検出部14)とを電気的に接続する配線(ハーネス、コード)等が設けられている。
 電磁流量計1では、励磁コイル8によって管体7の内部に磁界が生成され、その磁界と直交する方向に被測定流体が流れると、磁界と被測定流体とに直交する方向に起電力が発生する。被測定流体によって発生した起電力は、一対の電極部9,9によって検出される。そして、一対の電極部9,9から起電力に応じた検出信号が変換器3の制御部に送られる。制御部は、検出信号から起電力の大きさ(値)を算出(検出)する。そして、制御部は、算出した起電力の大きさから流量を算出し、表示装置12(表示画面12a)にその流量を表示させる。
 表示装置12は、表示画面12aを有する。表示装置12は、表示画面12aが視認可能な状態に、筐体10に支持されている。本実施形態では、一例として、表示装置12は、筐体10内に収容されるとともに、パネル11で覆われている。パネル11には、透明(例えば無色透明)な覆部11a(透過部、透光部、窓)が設けられている。表示装置12の表示画面12aは、覆部11aを介して視認される。表示装置12は、例えば、液晶ディスプレイ(LCD,Liquid Crystal Display)等である。
 管体7は、一例として、図1,2に示されるように、測定管4(管)と、フランジ5と、ライニング6と、を有する。管体7は、被測定流体が流れる別の管体(測定対象の管体、図示されず)と連結されうる。検出部14および制御部は、別の管体から管体7へ流入した被測定流体の流量を検出する。
 測定管4は、一例として、基部41(筒状部)と、張出部42(フランジ部)と、を有する。基部41は、管体7の軸方向(軸心方向)に沿った筒状(本実施形態では、一例として円筒状)に構成されている。張出部42は、基部41の軸方向両側の端部41c,41c(図2参照)に設けられ、軸方向と交差する方向(本実施形態では、一例として直交方向)に張り出している。張出部42は、軸方向との直交方向(径方向)に沿って広がった扁平な板状かつ環状(本実施形態では、一例として円環状)に構成されている。
 基部41は、外面41a(外周面、外側面、流路7aと反対側の面、第一の面)と、内面41b(内周面、内側面、流路7a側の面、第二の面)と、を有する。収容部20(励磁コイル8)やフランジ5等は、測定管4(基部41)の外面41aに設けられ、一対の電極部9,9やライニング6等は、測定管4(基部41)の内面41bに設けられている。また、張出部42は、端面42a(フランジ5と反対側の面、第一の面)と、端面42b(フランジ5側の面、第二の面)と、を有する。測定管4は、一例として、SUS(ステンレス鋼)などの非磁性材料によって構成されうる。
 収容部20は、一例として、一対の端板部15,15と、覆部16(カバー)と、を有する。一対の端板部15,15は、測定管4(基部41)の軸方向に間隔をあけて設けられ、軸方向と交差する方向(本実施形態では、一例として直交方向)に沿った姿勢で配置されている。端板部15は、例えば、溶接等によって基部41の外面41aに固定(結合)されうる。覆部16は、励磁コイル8の基部41とは反対側に位置され、当該励磁コイル8を覆っている。覆部16は、例えば、溶接等によって端板部15の外周部に固定(結合)されうる。
 ライニング6は、一例として、筒部6a(第一の部分)と、フレア部6b(第二の部分)と、を有する。筒部6aは、基部41の内面41bに沿った筒状(本実施形態では、一例として円筒状)に構成され、内面41bを覆っている(被覆している)。筒部6aの内面は、流路7aを構成している。フレア部6bは、張出部42の端面42aに沿った環状(本実施形態では、一例として板状かつ円環状)に構成され、端面42aを覆っている(被覆している)。フレア部6bは、筒部6aの軸方向の両端部に設けられ、軸方向と交差する方向(本実施形態では、一例として直交方向)に張り出している。このように、フレア部6bは、張出部42を軸方向の外側から覆っている。
 また、フレア部6bは、端面6cを有する。端面6cは、張出部42の端面42aとは反対側の面であり、管体7の外面を構成している。ライニング6は、一例として、基部41と張出部42とに亘って設けられている。ライニング6は、筒部6aやフレア部6bによって、基部41の内面41bと張出部42の端面42aとを保護している。ライニング6は、例えば、フッ素樹脂等の合成樹脂材料によって構成されうる。
 フランジ5は、一例として、基部41の外面41aに沿った環状(本実施形態では、一例として円環状)に構成されている。フランジ5は、測定管4(基部41)の軸方向両側の端部41c,41cに設けられている。なお、一対のフランジ5,5を特段に区別せずに説明する場合には、それらを単にフランジ5とも称する。
 フランジ5は、端面5a(面、結合面)を有する。端面5aは、結合対象(管体7と連結される別の管体のフランジ)と重ねられる(対向する)面である。また、フランジ5には、軸方向に沿って当該フランジ5を貫通した孔5b(取付孔)が設けられている。孔5bは、図3に示されるように、フランジ5の周方向に沿って等間隔(任意の間隔)で、複数(任意の数)の箇所に設けられている。孔5bには、管体7と結合対象(管体7と連結される別の管体のフランジ)とを結合する結合具(例えばボルト等、図示されず)が挿通される。フランジ5は、一例として、SUS(ステンレス鋼)などの金属材料によって構成されうる。
 また、フランジ5は、複数の部材によって構成されている。具体的には、図1,3に示されるように、フランジ5は、一例として、第一の部材5Aと、第二の部材5Bと、を有する。第一の部材5Aおよび第二の部材5Bは、管体7の中心軸を通る平面でフランジ5を均等に二分割した形状を成している。第一の部材5Aと第二の部材5Bとは、互いに同一形状である。
 第一の部材5Aおよび第二の部材5Bは、図3に示されるように、それぞれ、基部51と、一対の突出部52,53と、端面54,55と、を有する。基部51は、測定管4(基部41)の外面41aに沿った円弧状(アーチ状)に構成されている。突出部52は、基部51の周方向の一方側の端部51aに設けられ、基部51の径方向外側に向けて突出している。突出部53は、基部51の周方向の他方側の端部51bに設けられ、基部51の径方向外側に向けて突出している。端面54および端面55は、互いに重ねられる(対向する)面である。端面54および端面55は、それぞれ、基部51と一対の突出部52,53とに亘っている。さらに、突出部52および突出部53には、孔52a,52b,53a,53b(取付孔)が設けられている。孔52a,52bは、突出部52と交差する方向(本実施形態では、一例として直交方向)に沿って当該突出部52を貫通している。また、孔53a,53bは、突出部53と交差する方向(本実施形態では、一例として直交方向)に沿って当該突出部53を貫通している。
 第一の部材5Aと第二の部材5Bとは、結合具18(本実施形態では、一例としてボルト18aとナット18b)によって一体化される。具体的には、第一の部材5Aおよび第二の部材5Bは、張出部42の端面42bと重ねられ、点溶接(点溶接による溶接箇所をWpで示す、図2参照)によって基部41や張出部42に部分的に位置決め固定される。そして、突出部52,53のそれぞれの孔52a,52b,53a,53bにボルト18aが通され、ナット18bの締め付けによって第一の部材5Aと第二の部材5Bとが一体化される。ここで、本実施形態では、図3に示されるように、端面54と端面55とが重ねられた状態で、第一の部材5Aと第二の部材5Bとの間に、突出部52と突出部53とを結ぶ方向に延びる一定の隙間30が設けられるよう構成されている。よって、本実施形態によれば、一例としては、製造ばらつき(寸法ばらつき)が吸収されやすい。よって、一例としては、隙間30が無い場合に比べて、結合具18による結合力がより確実に得られやすく、ひいては、測定管4とフランジ5(第一の部材5Aおよび第二の部材5B)とがより強固に一体化されやすい。
 また、本実施形態では、図2に示されるように、第一の部材5Aや第二の部材5Bは、測定管4への取り付け時に、点溶接(溶接箇所Wp)によって基部41や張出部42に部分的に位置決め固定されている。よって、本実施形態によれば、一例としては、測定管4に第一の部材5Aや第二の部材5Bを取り付ける作業が、より容易に、より円滑に、あるいはより精度よく行われやすい。
 以上のように、本実施形態では、一例として、フランジ5は、結合具18によって測定管4と一体化された第一の部材5Aおよび第二の部材5Bを有する。よって、本実施形態によれば、一例としては、フランジ5が測定管4に全周溶接によって取り付けられる従来の構成と比べて、フランジ5が測定管4により簡単に取り付けられやすい。また、本実施形態によれば、一例としては、一つの測定管4と、仕様が異なるフランジ5とを結合して、仕様が異なる複数の管体7(電磁流量計1)を得ることができる。すなわち、仕様が異なる複数の管体7(電磁流量計1)について、測定管4が共用化されやすくなる。よって、一例としては、電磁流量計1の製造コストがより低減されやすい。また、測定管4にフランジ5が全周溶接されていた場合に比べて、ライニング6への熱影響がより低減されやすい。
 また、本実施形態では、一例として、結合具18によってフランジ5(第一の部材5Aおよび第二の部材5B)を測定管4に取り付ける構成であるため、ライニング6の成形後に、測定管4(基部41)にフランジ5を取り付けることができるという利点がある。ここで、フランジ5を全周溶接によって取り付ける従来の構成では、ライニング6への熱影響を考慮して、ライニング6の成形前に、測定管4(基部41)にフランジ5を取り付ける必要があった。この場合、例えば、結合対象(管体7と連結される別の管体のフランジ)の規格(大きさ)に合う在庫が無い場合にあっては、測定管4とフランジ5とを一体化した管体7を造るところから始めなければならず、製造リードタイム(待ち時間)が比較的長くなりやすかった。その点、本実施形態によれば、測定管4に対するライニング6の成形後に、当該測定管4(基部41)にフランジ5を取り付けることができるため、製造リードタイムが短縮されやすくかつ製造途中の在庫も減りやすいという利点がある。よって、本実施形態によれば、一例としては、電磁流量計1の製造に要する手間や費用が低減されやすい。
 また、本実施形態では、一例として、測定管4は、基部41と当該基部41の端部41cに設けられた張出部42とを有し、フランジ5と張出部42とが軸方向に重なっている。よって、本実施形態によれば、一例としては、張出部42によって第一の部材5Aと第二の部材5Bとが測定管4の軸方向に動くのが抑制されやすい。よって、一例としては、測定管4に第一の部材5Aや第二の部材5Bを取り付ける作業がより容易に、より円滑に、あるいはより精度よく行われやすい。また、一例としては、フランジ5(一体化された第一の部材5Aおよび第二の部材5B)が、測定管4から外れるのが抑制されやすい。
 また、本実施形態では、一例として、ライニング6は、基部41の内面41bを覆った筒部6a(第一の部分)と、張出部42を軸方向の外側から覆ったフレア部6b(第二の部分)と、を有する。よって、本実施形態によれば、一例としては、フレア部6bによって、フランジ5と結合対象(管体7と連結される別の管体のフランジ)との間のシール性が高まりやすい。
 なお、本実施形態では、電磁流量計1が、一対の電極部9,9が被測定流体と接触する接液型である場合を例示したが、これには限定されず、電磁流量計1は、一対の電極部9,9が被測定流体と接触しない非接液型であってもよい。
 また、本実施形態では、第一の部材5Aや第二の部材5Bが、点溶接によって測定管4に対して位置決めされたが、点溶接は必ずしも行う必要はない。なお、点溶接は、全周溶接と異なり部分的に溶接が行われるため、ライニング6の成形後に行われたとしても、ライニング6への熱影響は低減されやすい。
<第2実施形態>
 図4に示される実施形態にかかる電磁流量計は、上記第1実施形態の電磁流量計1と同様の構成を備えている。よって、本実施形態によっても、上記第1実施形態と同様の構成に基づく同様の結果(効果)が得られる。
 ただし、本実施形態では、一例として、図4に示されるように、覆部16Aが、測定管4の軸方向に沿って延設され、フランジ5と接続されている。具体的には、本実施形態では、一例として、覆部16Aは、フランジ5(第一の部材5Aおよび第二の部材5B)に全周溶接(全周溶接による溶接箇所をWfで示す)によって固定されている。よって、本実施形態によれば、一例としては、結合対象(管体7と連結される別の管体のフランジ)とフランジ5との結合時にフランジ5にかかる負荷を、覆部16Aに逃がすことができる。よって、一例としては、結合対象(管体7と連結される別の管体のフランジ)との結合によるフランジ5における応力の増大が抑制されやすい。なお、全周溶接による溶接箇所Wfが測定管4から離間しているため、ライニング6への熱影響が少ないという利点もある。また、全周溶接によって、覆部16Aとフランジ5との間の隙間からの水や異物等の進入が抑制される。
<第3実施形態>
 図5に示される実施形態にかかる電磁流量計は、上記第2実施形態と同様の構成を備えている。よって、本実施形態によっても、上記第2実施形態と同様の構成に基づく同様の結果(効果)が得られる。
 ただし、本実施形態では、一例として、図5に示されるように、覆部16Aとフランジ5とが一体成形されている。具体的には、本実施形態では、一例として、管体7は、第一部材23と、第二部材24と、を備える。第一部材23は、フランジ5の第一の部材5Aと、覆部16Aの第一の覆部材26と、が一体成形されたものである。また、第二部材24は、フランジ5の第二の部材5Bと、覆部16Aの第二の覆部材27と、が一体成形されたものである。第一部材23および第二部材24は、一例として、金属材料の鋳造(ダイキャスト)によって構成された、鋳造部品(ダイキャスト部品)である。また、第一部材23および第二部材24は、管体7の中心軸を通る平面でフランジ5ならびに覆部16Aを均等に二分割した形状を成している。第一部材23と第二部材24とは、互いに同一形状である。そして、本実施形態では、結合具18によって第一の部材5Aと第二の部材5Bとが結合されるとともに、結合具21(本実施形態では、一例としてボルト21aとナット21b)によって第一の覆部材26と第二の覆部材27とが結合され、第一部材23と第二部材24とが一体化される。よって、本実施形態によれば、一例としては、覆部16Aとフランジ5とが一体化されている分、覆部16Aとフランジ5との結合に関しては組み立て時における溶接作業を省略することができる。よって、製造リードタイムをより短縮できる場合がある。また、一例としては、覆部16Aとフランジ5とが一体成形されたため、管体7の剛性や強度が高まりやすい。
 以上、本発明の実施形態を例示したが、上記実施形態はあくまで一例であって、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、組み合わせ、変更を行うことができる。これら実施形態は、発明の範囲や要旨に含まれるとともに、請求の範囲に記載された発明とその均等の範囲に含まれる。また、各構成要素のスペック(構造や、種類、方向、形状、大きさ、長さ、幅、厚さ、高さ、数、配置、位置、材質等)は、適宜に変更して実施することができる。例えば、第一の部材と第二の部材との間の隙間や、第一の覆部材と第二の覆部材との間の隙間には、介在物(クッション部材や、シール部材等)を介在させてもよい。

Claims (6)

  1.  被測定流体が流れる管と、
     前記被測定流体を検出する検出部と、
     前記管を外周側から囲った状態で結合具によって前記管と一体化された複数の部材を有したフランジと、
     を備えた、電磁流量計。
  2.  前記検出部は、前記管の外面に設けられたコイル部を有し、
     前記フランジと接続され前記コイル部の前記管とは反対側を覆った覆部を、さらに備えた、請求項1に記載の電磁流量計。
  3.  前記覆部と前記フランジとが互いに溶着された、請求項2に記載の電磁流量計。
  4.  前記覆部と前記フランジとが一体成形された、請求項2に記載の電磁流量計。
  5.  前記管は、軸方向に延びた筒状の基部と、当該基部の軸方向の端部に設けられ軸方向と交差する方向に張り出した張出部と、を有し、
     前記張出部と前記フランジとが軸方向に重なった、請求項1~4のうちいずれか1項に記載の電磁流量計。
  6.  前記基部の内面を覆った第一の部分と、前記張出部を軸方向の外側から覆うとともに前記第一の部分と繋がった第二の部分と、を有したライニングを、さらに備えた、請求項5に記載の電磁流量計。
PCT/JP2014/050581 2013-10-29 2014-01-15 電磁流量計 WO2015064115A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA2928978A CA2928978A1 (en) 2013-10-29 2014-01-15 Electromagnetic flowmeter
CN201480058524.4A CN105683719A (zh) 2013-10-29 2014-01-15 电磁流量计
KR1020167010472A KR20160061372A (ko) 2013-10-29 2014-01-15 전자 유량계
EA201690883A EA201690883A1 (ru) 2013-10-29 2014-01-15 Электромагнитный расходомер
US15/031,659 US20160238420A1 (en) 2013-10-29 2014-01-15 Electromagnetic flowmeter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013224262A JP2015087157A (ja) 2013-10-29 2013-10-29 電磁流量計
JP2013-224262 2013-10-29

Publications (1)

Publication Number Publication Date
WO2015064115A1 true WO2015064115A1 (ja) 2015-05-07

Family

ID=53003739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050581 WO2015064115A1 (ja) 2013-10-29 2014-01-15 電磁流量計

Country Status (7)

Country Link
US (1) US20160238420A1 (ja)
JP (1) JP2015087157A (ja)
KR (1) KR20160061372A (ja)
CN (1) CN105683719A (ja)
CA (1) CA2928978A1 (ja)
EA (1) EA201690883A1 (ja)
WO (1) WO2015064115A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109891200B (zh) * 2017-04-28 2021-04-20 爱知时计电机株式会社 电磁流量计

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60165814U (ja) * 1984-04-12 1985-11-02 富士電機株式会社 流量計の測定管
JPH05272670A (ja) * 1992-03-26 1993-10-19 Hayashi Eng Kk 合成樹脂管用の配管継手構造
JPH085421A (ja) * 1994-06-23 1996-01-12 Yokogawa Electric Corp フランジ形セラミックス電磁流量計
JPH0882539A (ja) * 1994-09-13 1996-03-26 Toshiba Corp 電磁流量計検出器
JPH11325352A (ja) * 1998-05-14 1999-11-26 Sankyu Inc 配管漏洩応急防止方法及びラップジョイント用割りフランジ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0394121A (ja) * 1989-09-07 1991-04-18 Toshiba Corp 電磁流量計
US7086131B2 (en) * 2004-05-14 2006-08-08 Victaulic Company Deformable mechanical pipe coupling
US7627939B2 (en) * 2004-12-21 2009-12-08 Endress + Hauser Flowtec Ag In-line measuring device with measuring tube and method for manufacture thereof
CN2807210Y (zh) * 2005-06-24 2006-08-16 浙江精华测控设备有限公司 电磁流量计
CN202903253U (zh) * 2012-11-13 2013-04-24 上海凡宜科技电子有限公司 一种新型电磁流量计
JP6157985B2 (ja) * 2013-08-12 2017-07-05 株式会社東芝 電磁流量計

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60165814U (ja) * 1984-04-12 1985-11-02 富士電機株式会社 流量計の測定管
JPH05272670A (ja) * 1992-03-26 1993-10-19 Hayashi Eng Kk 合成樹脂管用の配管継手構造
JPH085421A (ja) * 1994-06-23 1996-01-12 Yokogawa Electric Corp フランジ形セラミックス電磁流量計
JPH0882539A (ja) * 1994-09-13 1996-03-26 Toshiba Corp 電磁流量計検出器
JPH11325352A (ja) * 1998-05-14 1999-11-26 Sankyu Inc 配管漏洩応急防止方法及びラップジョイント用割りフランジ

Also Published As

Publication number Publication date
JP2015087157A (ja) 2015-05-07
CA2928978A1 (en) 2015-05-07
KR20160061372A (ko) 2016-05-31
CN105683719A (zh) 2016-06-15
US20160238420A1 (en) 2016-08-18
EA201690883A1 (ru) 2016-09-30

Similar Documents

Publication Publication Date Title
WO2016079999A1 (ja) 電磁流量計
JP5887683B2 (ja) 電磁流量計
WO2013161457A1 (ja) コリオリ流量計
WO2015083385A1 (ja) 電磁流量計
JP2015503755A5 (ja)
WO2015022783A1 (ja) 電磁流量計
WO2015064115A1 (ja) 電磁流量計
JP5039630B2 (ja) 計測モジュール
WO2016075843A1 (ja) 電磁流量計
CN108731754B (zh) 流量测量仪
JP2013036934A (ja) 電磁流量計
JP2016191594A (ja) 円筒部材表面へのセンサ設置治具
CN108955786B (zh) 流量计
JP2014095558A (ja) 接続パーツおよび差圧/圧力発信器
JP6524292B2 (ja) 電磁流量計の製造方法
JP3004135B2 (ja) 電磁流量計
JP2012225797A (ja) モールド変圧器の巻線温度測定装置
JP2014174017A (ja) 電磁流量計
JP2018036173A (ja) 電磁流量計
JP4671260B2 (ja) 電磁流量計
JP2015203608A (ja) 電磁流量計
JP2500710B2 (ja) 電磁流量計の検出器構造
JP2016166830A (ja) 電磁流量計
JP2017049128A (ja) ウエハ型電磁流量計
JP2012017999A (ja) 電磁流量計

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14858441

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167010472

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15031659

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2928978

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 201690883

Country of ref document: EA

122 Ep: pct application non-entry in european phase

Ref document number: 14858441

Country of ref document: EP

Kind code of ref document: A1