WO2015064114A1 - 回転切削工具による被加工材表面の加工方法 - Google Patents

回転切削工具による被加工材表面の加工方法 Download PDF

Info

Publication number
WO2015064114A1
WO2015064114A1 PCT/JP2014/005527 JP2014005527W WO2015064114A1 WO 2015064114 A1 WO2015064114 A1 WO 2015064114A1 JP 2014005527 W JP2014005527 W JP 2014005527W WO 2015064114 A1 WO2015064114 A1 WO 2015064114A1
Authority
WO
WIPO (PCT)
Prior art keywords
cutting
workpiece
blade
processing
cutting edge
Prior art date
Application number
PCT/JP2014/005527
Other languages
English (en)
French (fr)
Inventor
俊博 矢島
Original Assignee
兼房株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 兼房株式会社 filed Critical 兼房株式会社
Priority to PL14857669T priority Critical patent/PL3064369T3/pl
Priority to JP2015544818A priority patent/JP6457394B2/ja
Priority to CN201480059409.9A priority patent/CN105722688B/zh
Priority to BR112016008261-3A priority patent/BR112016008261B1/pt
Priority to DK14857669.7T priority patent/DK3064369T3/da
Priority to EP14857669.7A priority patent/EP3064369B1/en
Priority to ES14857669T priority patent/ES2787173T3/es
Priority to US15/030,540 priority patent/US9925603B2/en
Priority to KR1020167011494A priority patent/KR102191805B1/ko
Priority to MX2016005696A priority patent/MX2016005696A/es
Publication of WO2015064114A1 publication Critical patent/WO2015064114A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/02Milling-cutters characterised by the shape of the cutter
    • B23C5/10Shank-type cutters, i.e. with an integral shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27MWORKING OF WOOD NOT PROVIDED FOR IN SUBCLASSES B27B - B27L; MANUFACTURE OF SPECIFIC WOODEN ARTICLES
    • B27M1/00Working of wood not provided for in subclasses B27B - B27L, e.g. by stretching
    • B27M1/003Mechanical surface treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44CPRODUCING DECORATIVE EFFECTS; MOSAICS; TARSIA WORK; PAPERHANGING
    • B44C1/00Processes, not specifically provided for elsewhere, for producing decorative surface effects
    • B44C1/22Removing surface-material, e.g. by engraving, by etching
    • B44C1/222Removing surface-material, e.g. by engraving, by etching using machine-driven mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/08Side or top views of the cutting edge
    • B23C2210/088Cutting edges with a wave form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44BMACHINES, APPARATUS OR TOOLS FOR ARTISTIC WORK, e.g. FOR SCULPTURING, GUILLOCHING, CARVING, BRANDING, INLAYING
    • B44B3/00Artist's machines or apparatus equipped with tools or work holders moving or able to be controlled substantially two- dimensionally for carving, engraving, or guilloching shallow ornamenting or markings
    • B44B3/02Artist's machines or apparatus equipped with tools or work holders moving or able to be controlled substantially two- dimensionally for carving, engraving, or guilloching shallow ornamenting or markings wherein plane surfaces are worked
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44CPRODUCING DECORATIVE EFFECTS; MOSAICS; TARSIA WORK; PAPERHANGING
    • B44C3/00Processes, not specifically provided for elsewhere, for producing ornamental structures
    • B44C3/06Sculpturing

Definitions

  • the present invention is a work by a rotary cutting tool such as a small diameter milling cutter, end mill, etc. used for milling, router processing, etc. when manufacturing furniture members, lighting fixtures, etc. using wood, wood, resin, metal, etc.
  • the present invention relates to a method for processing a surface of a workpiece for forming a decorative pattern on the surface of the material.
  • the surface of the workpiece is rotated by using a rotary cutting tool having a cutting edge on the outer periphery, and a knife mark having a width of 5 mm to 150 mm is generated to decorate the workpiece surface. It is said.
  • a knife mark having a rectangular uneven shape continuous in the rotation axis direction is formed.
  • the blade diameter of the rotary cutting tool is as large as 125 mm and 150 mm, and the ratio of the knife mark width W (mm) to the depth d (mm) (d / W) was also a small value of 0.016 to 0.020. Since the ratio (d / W) is small as described above, the difference in surface irregularities due to the knife mark is not sufficient, and the knife mark is insufficient to evoke aesthetics as a decorative pattern.
  • the present invention is intended to solve such a problem, and processing of a workpiece surface by a rotary cutting tool capable of forming a decorative pattern that arouses aesthetics on the surface of the workpiece using the rotary cutting tool. It aims to provide a method.
  • the structural feature of the present invention is that the surface of a workpiece is formed using a rotary cutting tool in which cutting edges extending in the direction of the rotation axis are provided at a plurality of locations in the circumferential direction on the outer periphery of the body.
  • a cutting method in which a cutting pattern is formed by a plurality of divided blades divided at equal pitches in the rotation axis direction, and formed on the surface of the workpiece by the divided blades.
  • the ratio (d / W) of the depth d to the width W of the knife mark is 3/100 or more.
  • the ratio of the depth d to the width W of the knife mark (d / W) may be 3/100 or more, but preferably 5/100 or more.
  • the ratio (d / W) of the depth d to the width W of the knife mark formed on the surface of the workpiece is set to 3/100 or more, so that The difference in unevenness on the workpiece surface can be fully recognized. For this reason, the knife marks regularly formed on the surface of the workpiece have been sufficiently aesthetically pleasing as a decorative pattern.
  • high-value processing can be performed as a decoration that exhibits a sufficient aesthetic appearance in surface cutting of a workpiece with a rotary cutting tool.
  • the knife mark having sufficient unevenness formed on the surface of the work material provides a good anti-slip function on the surface of the work material.
  • the light diffuses the concave and convex portions of the knife mark, so that the surface of the workpiece can be made brighter than other portions, and the design of the luminaire is improved.
  • an oil sump function can be obtained in addition to the decorativeness of the knife mark.
  • Another feature of the present invention is that a plurality of inclined cutting edges extending in the axial direction on the outer periphery of the body or curved cutting edges extending in the axial direction are provided at a plurality of locations in the circumferential direction.
  • the ratio (d / W) of the depth d to the width W of the knife mark formed on the surface of the workpiece by the divided blade is set to 3/100 or more.
  • a cutting pattern of an inclined surface or a curved surface can be formed on the corner of the work material, etc. It can bring about an innovative aesthetic that is different from the cutting pattern. Moreover, the novel decoration effect that the cutting pattern also changes continuously is acquired by the diameter of a division
  • each of the divided blades is shifted in the rotation axis direction with respect to the cutting blades located adjacent to each other in the rotation direction.
  • the cutting edge of the divided blade can be formed into a convex or concave arc shape, and the ratio (R / D) of the cutting edge arc diameter R to the cutting edge diameter D can be set to 0.2 to 5.
  • the dividing blade can be a triangular chevron.
  • the dividing blade can be made into a triangular chevron, it is possible to make an acute knife mark as compared with a curved dividing blade, and to obtain a decorative appearance different from a curved one. it can.
  • the blade diameter D of the cutting edge can be 20 mm or less.
  • the ratio (d / W) can be easily increased substantially, and a clear decorative pattern with a large difference in unevenness can be obtained.
  • the ratio (d / W) of the depth d to the width W of the knife mark formed on the surface of the workpiece by the rotary cutting tool is 3/100 or more, so that the workpiece by the knife mark is processed.
  • the difference in surface irregularities can be sufficiently recognized, and the knife mark formed so as to change regularly or continuously on the surface of the workpiece is sufficiently aesthetically appealing as a decorative pattern.
  • high-value processing can be performed as a decoration exhibiting a sufficient aesthetic appearance by surface cutting of the workpiece.
  • FIG. 5 It is a top view which shows the process example 5 using the end mill. It is a perspective view which shows the process example 5.
  • FIG. It is a top view which shows the process example 6 using the end mill. It is a perspective view which shows the process example 6.
  • FIG. It is a top view which shows the process example 7 using the same end mill. It is a perspective view which shows the process example 7.
  • FIG. It is a top view which shows process example 8 using the end mill.
  • FIG. It is a top view which shows process example 9 using the same end mill.
  • It is a perspective view which shows the process example 9.
  • FIG. is a top view which shows the process example 10 using the end mill. It is a perspective view which shows the process example 10.
  • FIG. 11 It is a top view which shows the process example 11 using the end mill. It is a perspective view which shows the process example 11.
  • FIG. 12 is a top view which shows the process example 12 using the same end mill.
  • FIG. It is an enlarged front view which expands and shows the body part of the end mill which concerns on Example 2.
  • FIG. 13 using the end mill.
  • FIG. 13 is a perspective view which shows the process example 13.
  • FIG. 13 It is an enlarged front view which expands and shows the body part of the end mill which concerns on Example 3.
  • FIG. It is a top view which shows the process example 14 using the end mill. It is a perspective view which shows the process example 14.
  • FIG. 14 shows the end mill using the end mill.
  • FIG. 10 is a front view showing an end mill according to Embodiment 7.
  • FIG. 10 is a front view showing an end mill according to Embodiment 7.
  • FIG. 20 is a top view which shows the process example 20 using the end mill. It is a perspective view which shows the process example 20.
  • FIG. 21 is a top view which shows the process example 21 using the end mill. It is a perspective view which shows the process example 21.
  • FIG. 21 is a front view which shows the saddle drum which is a prior art example. It is a right view which shows the same cylinder. It is a perspective view which shows the process example using the same cylinder.
  • FIG. 1 is a front view of a rotary cutting end mill (hereinafter referred to as an end mill) 10 according to the first embodiment
  • FIGS. 2A and 2B are views showing a body 13 of the end mill 10 in an enlarged front view and an enlarged side view. is there.
  • the end mill 10 is provided with a small-diameter body 13 coaxially at the end of a large-diameter shank 11 via a connecting portion 12, and extends in the rotational axis direction at two circumferentially spaced intervals on the outer periphery of the body 13.
  • a pair of cutting edges 14 and 15 are provided. That is, the number of teeth Z of the end mill 10 is 2.
  • the cutting blades 14 and 15 are formed with a plurality of continuous cutting blades 14a and 15a having the same pitch P (same length) in the rotation axis direction.
  • the cutting edges of the divided blades 14a and 15a have an arc shape that bulges outward with a cutting edge arc diameter R. Further, the divided blade 14a and the divided blade 15a are arranged so as to be shifted by a half pitch in the rotation axis direction.
  • the edge diameter D of the end mill 10 is twice the length from the outermost cutting edge of the cutting edges 14 and 15 to the axis of the body 13.
  • the cutting pattern of Processing Example 1 has a square lattice shape inclined by 45 ° with respect to the processing direction.
  • the width W of the knife mark was 1.250 mm, the depth d was 0.100 mm, and the ratio (d / W) was 0.080.
  • the cutting pattern of Processing Example 2 has a very small square lattice shape as compared to Processing Example 1 by reducing the pitch P and the feed rate F compared to Processing Example 1. It has become.
  • the width W of the knife mark was 0.500 mm, the depth d was 0.016 mm, and the ratio (d / W) was 0.031.
  • the cutting pattern of Processing Example 3 is larger than Processing Example 1 by increasing the blade diameter D and the cutting edge arc diameter R by 2.5 times, the pitch P by 2.2 times, and the feed rate F by 2.2 times.
  • FIGS. 5A and 5B the lattice shape is very large compared to the first working example inclined 45 ° with respect to the working direction.
  • the width W of the knife mark was 2.800 mm, the depth d was 0.200 mm, and the ratio (d / W) was 0.071.
  • the cutting pattern of Processing Example 4 has a shape in which small regular hexagons are continuously arranged in the processing direction as shown in FIGS. 6A and 6B by reducing the feed rate F to about 0.6 times that of Processing Example 1. It has become.
  • the width W of the knife mark was 0.722 mm, the depth d was 0.044 mm, and the ratio (d / W) was 0.061.
  • the cutting pattern of Processing Example 5 has a shape in which large regular hexagons are alternately arranged as shown in FIGS. 7A and 7B by increasing the feed rate F to about 1.7 times that of Processing Example 1. .
  • the width W of the knife mark was 1.442 mm, the depth d was 0.134 mm, and the ratio (d / W) was 0.093.
  • the cutting pattern of Processing Example 6 has a lattice shape in which the square of Processing Example 1 is slightly broken as shown in FIGS. 8A and 8B by reducing the feed rate F to 0.8 times that of Processing Example 1. Yes.
  • the width W of the knife mark was 1.000 mm, the depth d was 0.067 mm, and the ratio (d / W) was 0.067.
  • the cutting pattern of Processing Example 7 has a shape in which short hexagons are alternately arranged in the processing direction as shown in FIGS. 9A and 9B by increasing the cutting edge arc diameter R to 2.5 times that of Processing Example 1. ing.
  • the width W of the knife mark was 0.874 mm, the depth d was 0.048 mm, and the ratio (d / W) was 0.055.
  • the cutting edge arc diameter R is reduced to 0.75 times that of Processing Example 1 so that the rhombus obtained by slightly breaking the square of Processing Example 1 as shown in FIGS.
  • the shape is arranged continuously.
  • the width W of the knife mark was 1.250 mm, the depth d was 0.102 mm, and the ratio (d / W) was 0.082.
  • the cutting pattern of Working Example 9 has a cutting edge arc diameter R that is 0.75 times smaller and a pitch P that is 1.6 times larger than that of Working Example 1. It has a shape in which squares are continuously arranged in the machining direction.
  • the width W of the knife mark was 1.250 mm, the depth d was 0.145 mm, and the ratio (d / W) was 0.116.
  • the cutting pattern of Processing Example 10 is obtained by reducing the cutting edge arc diameter R by 0.4 times and the pitch P by 0.56 times compared to Processing Example 1. It has a shape in which minute hexagons that are long in the direction are arranged alternately.
  • the width W of the knife mark was 0.700 mm, the depth d was 0.038 mm, and the ratio (d / W) was 0.054.
  • the cutting pattern of the processing example 11 has a cutting edge arc diameter R that is 10 times larger than that of the processing example 1, and the pitch P that is 2.4 times larger. It has a shape in which short hexagons are alternately arranged.
  • the width W of the knife mark was 1.222 mm, the depth d was 0.096 mm, and the ratio (d / W) was 0.079.
  • the cutting pattern of Processing Example 12 is larger than Processing Example 1 by increasing the blade diameter D by 5 times, the cutting edge arc diameter R by 2 times, and the pitch P by 2.4 times.
  • the large hexagons that are long in the machining direction are alternately arranged.
  • the width W of the knife mark was 3.000 mm, the depth d was 0.139 mm, and the ratio (d / W) was 0.046.
  • FIG. 15 is an enlarged front view of the body 17 of the end mill 16 according to the second embodiment.
  • the body 17 is provided with a pair of cutting edges 18 and 19 extending in the direction of the rotation axis at two locations 180 ° apart from each other in the circumferential direction on the outer periphery.
  • the cutting blades 18 and 19 are formed with a plurality of continuous cutting blades 18a and 19a having the same pitch P (same length) in the rotation axis direction.
  • the cutting edges of the divided blades 18a and 19a have an arc shape that is recessed in the radial direction with a cutting edge arc diameter R.
  • the cutting pattern of Processing Example 13 has a shape in which a streak is added to the square arrangement of Processing Example 1 in the processing direction as shown in FIGS. 16A and 16B by making the cutting edge a concave shape opposite to that of Processing Example 1. Yes.
  • the width W of the knife mark was 1.250 mm, the depth d was 0.100 mm, and the ratio (d / W) was 0.080.
  • FIG. 17 is an enlarged front view of the body 21 of the end mill 20 according to the third embodiment.
  • the body 21 is provided with a pair of cutting edges 22 and 23 extending in the direction of the rotation axis at two locations 180 ° apart in the circumferential direction on the outer periphery.
  • the cutting blades 22 and 23 are formed with a plurality of continuous cutting blades 22a and 23a having the same pitch P (same length) in the rotation axis direction.
  • the cutting edges of the divided blades 22a and 23a are chevron protruding in an isosceles triangle having an apex angle of 120 °.
  • the cutting pattern of Working Example 14 has a shape in which long hexagons are continuously arranged in the machining direction and separated by lines extending in the machining direction, as shown in FIGS. 18A and 18B. It has become.
  • the width W of the knife mark was 1.250 mm, the depth d was 0.234 mm, and the ratio (d / W) was 0.187.
  • the end mill according to the fourth embodiment is different from the first embodiment in that the cutting edges are provided at three locations 120 ° apart in the circumferential direction of the body or at four locations 90 ° apart in the circumferential direction.
  • the divided blades of each cutting edge are shifted by 1/3 pitch in the rotational axis direction.
  • the divided blades of each cutting edge are in the rotational axis direction. They are shifted by a quarter pitch.
  • FIG. The data of Processing Examples 15 and 16 are shown in Table 1 above.
  • the cutting pattern of the processing example 15 has three cutting edges and a circular arc shape in which the cutting edge bulges outward, and as shown in FIGS. Hexagons are arranged in a grid.
  • the width W of the knife mark was 1.633 mm, the depth d was 0.116 mm, and the ratio (d / W) was 0.071.
  • the cutting pattern of the processing example 16 has four cutting edges and a circular arc shape in which the cutting edge bulges outward, so that the cutting pattern is a slanted slant with respect to the processing direction as shown in FIGS. 20A and 20B. Rectangles are arranged.
  • the width W of the knife mark was 1.500 mm, the depth d was 0.106 mm, and the ratio (d / W) was 0.071.
  • Example 5 the end mill 10 according to the processing example 1 of the first embodiment is used.
  • the cutting blades 14 and 15 are cut into the workpiece by the split blades 14a and 15a. This is a part (0.02 mm) on the outer side.
  • a processing example 17 of Example 5 is shown in FIGS. 21A and 21B.
  • the cutting pattern is arranged as a small circular groove separated from each other at a position corresponding to the apex of the square of Processing Example 1. The diameter of the circular groove can be changed by changing the cut amount.
  • FIG. 22 is an enlarged front view of the distal end side of the body 26 of the end mill 25 according to the sixth embodiment.
  • the body 26 is provided with a pair of cutting edges 27 and 28 extending in the direction of the rotation axis at two locations 180 ° apart from each other in the circumferential direction on the outer periphery.
  • the cutting blades 27, 28 are formed with a plurality of split blades 27a, 28a at the same pitch P (same length) in the rotation axis direction and with the recesses 27b, 28b therebetween.
  • the cutting edges of the divided blades 27a and 28a are flat blades parallel to the rotation axis direction.
  • the cutting pattern of Processing Example 18 has a shape in which substantially squares are continuously arranged in the processing direction as shown in FIGS. 23A and 23B by making the blade edge a flat surface.
  • the width W of the knife mark was 1.000 mm, the depth d was 0.064 mm, and the ratio (d / W) was 0.064.
  • Example 7 will be described with reference to the drawings.
  • 24 and 25 show the end mill 30 according to the seventh embodiment from a front view, and the front end side of the body 31 from an enlarged front view.
  • the tip end side where the cutting edge of the body 31 is formed is an inclined surface cut out at about 45 ° with respect to the axial direction.
  • the cutting edges 32 and 33 are provided at two locations 180 ° apart from each other in the circumferential direction of the outer periphery.
  • the cutting blades 32 and 33 are formed with a plurality of continuous cutting blades 32a and 33a having the same pitch P (same length) along the inclination.
  • the cutting edges of the divided blades 32a and 33a have an arc shape that swells outward with a cutting edge arc diameter R. Further, the divided blades 18a and the divided blades 19a are arranged so as to be shifted by a half pitch in the inclination direction. Since the cutting blades 32 and 33 are arranged in an inclined manner, the outer diameter of the cutting position of the divided blades 32a and 33a per rotation of the end mill 30 becomes smaller toward the tip side. Below, the processing example 19 by the end mill 30 of Example 7 is demonstrated.
  • the cutting pattern of the processing example 19 can form the cutting pattern of an inclined surface in the corner
  • the diameters of the divided blades 32a and 33a are continuously changed to have a hexagonal shape that is long in the processing direction on the cutting blade shank side, but gradually becomes longer in the vertical direction, and is approximately rhombus on the tip end side of the cutting blade.
  • a novel decorative effect that the shape changes and the cutting pattern changes continuously is also obtained.
  • the width of the knife mark was 1.250 mm
  • the depth d was 0.052 mm
  • the ratio (d / W) was 0.042.
  • FIG. 27 is a partially enlarged front view of the distal end side of the body 36 of the end mill 35 according to the eighth embodiment.
  • the tip end side where the cutting edge of the body 36 is formed is an arcuate surface cut out in a quarter circle.
  • the cutting edges 37 and 38 are provided at two locations 180 degrees apart in the circumferential direction on the outer periphery of the body 36.
  • the cutting blades 37 and 38 are formed with a plurality of continuous cutting blades 37a and 38a having the same pitch P (same length) in the arc direction.
  • the cutting edges of the divided blades 37a and 38a have an arc shape that bulges outward with a cutting edge arc diameter R.
  • the divided blade 37a and the divided blade 38a are arranged so as to be shifted by a half pitch in the tilt direction. Since the cutting blades 37 and 38 are arranged in an arcuate shape, the blade diameter at the cutting position of the divided blades 37a and 38a per rotation of the end mill 35 becomes smaller toward the tip side.
  • the processing example 20 by the end mill 35 of Example 8 is demonstrated.
  • the data of Processing Example 20 is shown in Table 2 above.
  • the cutting pattern of the machining example 20 swelled in a 1/4 arc shape of the inclined surface at the corner of the work material as shown in FIGS. 28A and 28B by arranging the cutting edges 37 and 38 in an arc shape.
  • a cutting pattern can be formed, and a novel aesthetic different from a plane cutting pattern can be brought about.
  • the diameters of the divided blades 32a and 33a are continuously changed, so that the cutting blade shank side has a long rectangular shape in the processing direction, but gradually becomes a hexagonal shape, and the cutting blade tip side has a substantially rhombus shape.
  • the width of the knife mark was 1.250 mm
  • the depth d was 0.088 mm
  • the ratio (d / W) was 0.070.
  • FIG. 29 is a partially enlarged front view of the distal end side of the body 41 of the end mill 40 according to the ninth embodiment.
  • the distal end side of the body 41 where the cutting edge is formed is an arc surface that is cut out in an arc shape toward the axial center and toward the outside again toward the distal end.
  • the cutting edges 42 and 43 are provided at two locations 180 degrees apart in the circumferential direction on the outer periphery of the body 41.
  • the cutting edges 42 and 43 are formed with a plurality of continuous dividing edges 42a and 43a having the same pitch P (same length) in the arc direction.
  • the cutting edges of the divided blades 42a and 43a have an arc shape that bulges outward with a cutting edge arc diameter R. Further, the divided blades 42a and the divided blades 43a are arranged so as to be shifted by a half pitch in the inclination direction. Since the cutting blades 42 and 43 are arranged in an arc shape, the outer diameter of the cutting position of the divided blades 42a and 43a per rotation of the end mill 40 becomes smaller toward the center in the axial direction. Below, the processing example 21 by the end mill 40 of Example 9 is demonstrated. The data of Processing Example 20 is shown in Table 2 above.
  • the cutting pattern of Working Example 21 is a cutting pattern that swells in a circular arc shape symmetrical to the work material as shown in FIGS. 30A and 30B by arranging the cutting edges 42 and 43 in a circular arc shape symmetrical in the axial direction. Can be formed, and a novel aesthetic different from the planar cutting pattern can be brought about.
  • the cutting blade has a substantially hexagonal shape at the center of the cutting edge, but has a long hexagonal shape in the processing direction at both ends of the cutting blade, and the cutting pattern is continuous. You can also get a new decorative effect that changes.
  • the width W of the knife mark was 1.000 mm, the depth d was 0.048 mm, and the ratio (d / W) was 0.048.
  • the ratio of the cutting edge arc diameter R of the divided blades 14a, 15a, 18a, 19a, 32a, 33a, 37a, 38a, 42a, 43a to the cutting edge diameter D of the end mills 10, 16, 20, 30, 35, 40 (R / D) is set in the range of 0.2 to 5 times, and the blade edge angle V of the divided blades 22a and 23a is changed, so that various knife mark arrangements can be made according to the blade edge arc diameter R or the blade edge angle V. Changes can be made, and the aesthetics of the decorative pattern can be further enhanced.
  • the value of the ratio (R / D) also changes as the blade diameter D changes, and a part thereof becomes smaller than 0.2. In the range where (R / D) is 0.2 or more, the effect of enhancing the aesthetics of the decorative pattern by providing various changes in the arrangement of the knife marks is remarkably obtained.
  • Example 5 the processing of the polka dot pattern which has the beauty
  • FIG. 1 to 6 high-value processing can be performed as a decoration that exhibits a sufficient aesthetic appearance by rotational cutting of the workpiece.
  • the inclined cutting edges 32, 33 and the curved cutting edges 37, 38, 42, 43 are used, so that the cutting pattern of the inclined surface or the curved surface is provided on the corner of the work material. It can be formed, and can bring about a novel aesthetic that is different from a plane cutting pattern. Further, since the diameters of the divided blades 32a, 33a, 37a, 38a, 42a, and 43a are continuously changed, a novel decorative effect that the cutting pattern is continuously changed can be obtained.
  • a good anti-slip function can be obtained on the surface of the workpiece by the knife mark having sufficient irregularities formed on the surface of the workpiece. Furthermore, by cutting the surface of the luminaire, the light diffuses the concavo-convex portion, so that the surface of the workpiece can be brighter than other portions, and the design of the luminaire can be improved. Further, on the surface of the metal workpiece, an oil sump function can be obtained in addition to the decorativeness of the knife mark.
  • each Example it is an example and it changes the blade diameter D of a cutting edge, the number of blades Z, the cutting edge arc diameter R, the pitch P, the rotation speed N of a cutting tool, and the feed rate F.
  • various cutting patterns can be obtained.
  • an end mill is used as a rotary cutting tool, it can replace with this and a milling machine, a saddle drum, etc. can be used.
  • the said Example it is an example and can be variously changed and implemented in the range which does not deviate from the meaning of this invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Forests & Forestry (AREA)
  • Milling Processes (AREA)

Abstract

 エンドミル10は、大径のシャンク11の端部に連結部12を経て同軸状に小径のボディ13を設けており、ボディ13の外周の周方向の等間隔離れた2箇所に回転軸方向に延びた一対の切れ刃14、15を設けている。切れ刃14、15は、回転軸方向に同一ピッチP(同一長さ)の分割刃14a,15aが複数連続して形成されている。分割刃14a,15aの刃先は、刃先円弧径Rで径方向に膨らんだ円弧形となっている。分割刃14aと分割刃15aとは回転軸方向に半ピッチずつずれて配置されている。

Description

回転切削工具による被加工材表面の加工方法
 本発明は、木材、木質材、樹脂、金属などを用いた家具部材、照明器具などを製造する際に、フライス加工、ルーター加工などに用いられる小径のフライス、エンドミル等の回転切削工具による被加工材の表面に装飾模様を形成するための被加工材表面の加工方法に関する。
 フライス、エンドミル等の回転切削工具による被加工材の表面切削加工においては、切れ刃間の境界における高低差等により、被加工材の切削面にナイフマークといわれる刃跡が発生し、そのために加工面の品質を劣化させていた。そのため、従来は、被加工材の表面切削加工においては、専ら邪魔なナイフマークを抑えるための対策がとられてきた。これに対して、特許文献1に示すように、このようなナイフマークを積極的に活用しようとする被加工材表面の加飾方法が提案されている。この加飾方法は、外周に切れ刃を形成した回転切削工具を用いて被加工材の表面を回転切削し、幅が5mm以上150mm以下のナイフマークを発生させることにより被加工材表面を装飾しようとしている。
 上記従来例においては、実施例1として、図31A,31B,32に示すように、刃径D=125mm、刃数=2の鉋胴を用いて、回転数N=2000rpm、送り速度F=40m/min.で切削を行った結果、回転軸方向に連なる長方形の凹凸形状であるナイフマークが形成されている。このナイフマークは、幅Wa=10mm、深さd=0.200mmであり、幅に対する深さの比(d/Wa)が0.020となっている。また、実施例3として、刃径D=150mm、刃数=2の回転切削工具を用いて、回転数N=1000rpm、送り速度F=30m/min.で切削が行なわれており、ナイフマークの幅Wb=9.5mm、深さd=0.150mmであり、比(d/Wb)が0.016であった。このように、上記加飾方法によれば、回転切削工具の刃径が125mm、150mmと非常に大きくなっており、そのナイフマーク幅W(mm)と深さd(mm)の比(d/W)についても0.016~0.020といった小さな値であった。このように比(d/W)が小さいために、ナイフマークによる表面の凹凸の差が十分ではなく、ナイフマークが装飾模様として美観を喚起するには不十分であった。
特開平10-052998号公報
 本発明は、このような問題を解決しようとするもので、回転切削工具を用いて被加工材の表面に美観を喚起させる装飾模様を形成することができる回転切削工具による被加工材表面の加工方法を提供することを目的とする。
 上記目的を達成するために、本発明の構成上の特徴は、ボディの外周に回転軸方向に延びた切れ刃を周方向の複数箇所に設けてなる回転切削工具を用いて被加工材の表面を回転切削することにより切削模様を形成する加工方法であって、切れ刃が回転軸方向に等しいピッチで分割した複数の分割刃で構成されており、分割刃により被加工材の表面に形成されるナイフマークの幅Wに対する深さdの比(d/W)を3/100以上としたことにある。なお、ナイフマークの幅Wに対する深さdの比(d/W)については、3/100以上であればよいが、好ましくは5/100以上である。
 上記のように構成した本発明においては、被加工材の表面に形成されるナイフマークの幅Wに対する深さdの比(d/W)を3/100以上としたことにより、ナイフマークによる被加工材表面の凹凸の差が十分認識できるようになった。そのため、被加工材表面に規則的に形成されるナイフマークが装飾模様として十分に美観を喚起するものになった。その結果、本発明においては、回転切削工具による被加工材の表面切削加工において、十分な美観を呈する装飾として価値の高い加工を行うことができる。また、被加工材表面に形成された十分な凹凸を有するナイフマークにより、被加工材表面において良好な滑り止め機能が得られる。さらに、照明器具の表面に切削加工を施すことにより、光がナイフマークの凹凸部分を拡散するために、被加工材表面を他の部分より明るくすることができ、照明器具のデザイン性が高められる。また、金属の被加工材表面においては、ナイフマークの装飾性に加えて油溜めの機能も得られる。
 また、本発明の他の特徴は、ボディの外周に軸心方向に傾斜して延びた傾斜切れ刃、又は軸心方向に湾曲して延びた湾曲切れ刃を周方向の複数箇所に設けてなる回転切削工具を用いて被加工材の表面を回転切削することにより切削模様を形成する加工方法であって、傾斜切れ刃が傾斜に沿って、又は湾曲切れ刃が湾曲に沿って等しいピッチで分割した複数の分割刃で構成されており、分割刃により被加工材の表面に形成されるナイフマークの幅Wに対する深さdの比(d/W)を3/100以上としたことにある。
 他の特徴においては、上記発明の作用効果に加えて、傾斜切れ刃や湾曲切れ刃としたことにより、被削材の角等に傾斜面や湾曲面の切削模様を形成することができ、平面切削模様とは異なる斬新な美観をもたらすことができる。また、分割刃の径が連続的に変化していくことにより、切削模様も連続して変化するという斬新な装飾効果も得られる。
 また、本発明において、互いに回転方向において隣接する位置にある切れ刃について、各分割刃を互いに回転軸方向にずらすことが好ましい。このように、隣接する位置にある切れ刃にピッチのずれを設けることにより、ピッチのずれの程度に応じてナイフマークの配列に多様な変化を持たせることができ、装飾模様の美観をさらに高めることができる。
 また、本発明において、分割刃の刃先を凸又は凹円弧形状とし、切れ刃の刃径Dに対する刃先円弧径Rの比(R/D)を0.2~5とすることができる。これにより、分割刃の刃先円弧径Rの大きさに応じてナイフマークの配列に多様な変化を持たせることができ、装飾模様の美観をさらに高めることができる。
 また、本発明において、分割刃を三角形山形とすることができる。このように、分割刃を三角形山形としたことにより、曲線状の分割刃に比べて鋭角的なナイフマークとすることができ、装飾模様に曲線状のものとは異った美観を得ることができる。
 また、本発明において、切れ刃の刃径Dを20mm以下とすることができる。このように、切れ刃の刃径を20mm以下の小径としたことにより、比(d/W)を実質的に大きくしやすくなり、凹凸の差の大きな明確な装飾模様が得られる。
 本発明においては、回転切削工具によって被加工材の表面に形成されるナイフマークの幅Wに対する深さdの比(d/W)を3/100以上としたことにより、ナイフマークによる被加工材表面の凹凸の差を十分認識できるようになり、被加工材表面に規則的にあるいは連続して変化するように形成されるナイフマークが装飾模様として十分に美観を喚起するものになった。その結果、本発明においては、被加工材の表面切削加工により、十分な美観を呈する装飾として価値の高い加工を行うことができる。
本発明の実施例1に係るエンドミルを概略的に示す正面図である。 同エンドミルのボディ部分を拡大して示す拡大正面図である。 同エンドミルのボディ部分を拡大して示す拡大側面図である。 同エンドミルを用いた加工例1を示す平面図である。 加工例1を示す斜視図である。 同エンドミルを用いた加工例2を示す平面図である。 加工例2を示す斜視図である。 同エンドミルを用いた加工例3を示す平面図である。 加工例3を示す斜視図である。 同エンドミルを用いた加工例4を示す平面図である。 加工例4を示す斜視図である。 同エンドミルを用いた加工例5を示す平面図である。 加工例5を示す斜視図である。 同エンドミルを用いた加工例6を示す平面図である。 加工例6を示す斜視図である。 同エンドミルを用いた加工例7を示す平面図である。 加工例7を示す斜視図である。 同エンドミルを用いた加工例8を示す平面図である。 加工例8を示す斜視図である。 同エンドミルを用いた加工例9を示す平面図である。 加工例9を示す斜視図である。 同エンドミルを用いた加工例10を示す平面図である。 加工例10を示す斜視図である。 同エンドミルを用いた加工例11を示す平面図である。 加工例11を示す斜視図である。 同エンドミルを用いた加工例12を示す平面図である。 加工例12を示す斜視図である。 実施例2に係るエンドミルのボディ部分を拡大して示す拡大正面図である。 同エンドミルを用いた加工例13を示す平面図である。 加工例13を示す斜視図である。 実施例3に係るエンドミルのボディ部分を拡大して示す拡大正面図である。 同エンドミルを用いた加工例14を示す平面図である。 加工例14を示す斜視図である。 実施例4に係るエンドミルを用いた加工例15を示す平面図である。 同エンドミルを用いた加工例15を示す斜視図である。 実施例4に係るエンドミルを用いた加工例16を示す平面図である。 加工例16を示す斜視図である。 実施例5に係るエンドミルを用いた加工例17を示す平面図である。 加工例17を示す斜視図である。 実施例6に係るエンドミルのボディ部分を拡大して示す拡大正面図である。 同エンドミルを用いた加工例18を示す平面図である。 加工例18を示す斜視図である。 実施例7に係るエンドミルを示す正面図である。 同エンドミルのボディ先端側を拡大して示す拡大正面図である。 同エンドミルを用いた加工例19を示す平面図である。 加工例19を示す斜視図である。 実施例8に係るエンドミルのボディ先端側を拡大して示す拡大正面図である。 同エンドミルを用いた加工例20を示す平面図である。 加工例20を示す斜視図である。 実施例9に係るエンドミルのボディ先端側を拡大して示す拡大正面図である。 同エンドミルを用いた加工例21を示す平面図である。 加工例21を示す斜視図である。 従来例である鉋胴を示す正面図である。 同鉋胴を示す右側面図である。 同鉋胴を用いた加工例を示す斜視図である。
 以下、本発明の実施形態について図面を用いて説明する。図1は実施例1に係る回転切削用エンドミル(以下、エンドミルと記す。)10を正面図により示し、図2A,2Bはエンドミル10のボディ13を拡大正面図及び拡大側面図により示したものである。エンドミル10は、大径のシャンク11の端部に連結部12を経て同軸状に小径のボディ13を設けており、ボディ13の外周の周方向の等間隔離れた2箇所に回転軸方向に延びた一対の切れ刃14,15を設けている。つまり、このエンドミル10の刃数Zは2である。切れ刃14,15は、回転軸方向に同一ピッチP(同一長さ)の分割刃14a,15aが複数連続して形成されている。分割刃14a,15aの刃先は、刃先円弧径Rで外方向に膨らんだ円弧形となっている。また、分割刃14aと分割刃15aとは回転軸方向に半ピッチずつずれて配置されている。エンドミル10の刃径Dは、切れ刃14,15の最も外周の刃先からボディ13の軸心までの長さの2倍である。
 エンドミル10(刃数Z=2)については、刃径D、刃先円弧径R、ピッチP、回転数N及び被加工材の送り速度Fを変化させることにより、被加工材表面に形成される切削模様が多様に変化する。以下に、三次元CADを用いたシミュレーションにより、エンドミル10によるナイフマーク形成の加工例1~12について説明し、併せてナイフマークの幅Wと深さdを算出し、比(d/W)を算出した。各加工例についての刃径D、刃数Z、刃先円弧径R、ピッチP、回転数N、送り速度F、F/N、ナイフマーク幅W、深さd、及び比(d/W)を下記表1に示す。なお、各加工例においては、刃先全体が被加工材に切り込まれるようになっている。
Figure JPOXMLDOC01-appb-T000001
 加工例1は、刃径D=4mm、刃先円弧径R=2mm、R/D=0.5、ピッチP=1.25mm、回転数N=3000rpm、送り速度F=3.75m/min.、F/N=1.25mmである。加工例1の切削模様は、図3A,3Bに示すように加工方向に対して45°傾斜した正方形の格子形状となっている。ナイフマークの幅Wが1.250mm、深さdが0.100mm、比(d/W)が0.080となった。
 加工例2は、刃径D=4mm、刃先円弧径R=2mm、R/D=0.5、ピッチP=0.5mm、回転数N=3000rpm、送り速度F=1.5m/min.、F/N=0.5mmである。加工例2の切削模様は、加工例1に対してピッチPと送り速度Fを小さくしたことにより、図4A,4Bに示すように、加工例1に比べて非常に微小な正方形の格子形状となっている。ナイフマークの幅Wが0.500mm、深さdが0.016mm、比(d/W)が0.031となった。
 加工例3は、刃径D=10mm、刃先円弧径R=5mm、R/D=0.5、ピッチP=2.8mm、回転数N=3000rpm、送り速度F=8.4m/min.、F/N=2.8mmである。加工例3の切削模様は、加工例1に対して刃径Dと刃先円弧径Rを2.5倍、ピッチPを2.2倍、送り速度Fを2.2倍と大きくしたことにより、図5A,5Bに示すように加工方向に対して45°傾斜した加工例1に比べて非常に大きい正方形の格子形状となっている。ナイフマークの幅Wが2.800mm、深さdが0.200mm、比(d/W)が0.071となった。
 加工例4は、刃径D=4mm、刃先円弧径R=2mm、R/D=0.5、ピッチP=1.25mm、回転数N=3000rpm、送り速度F=2.166m/min.、F/N=0.722mmである。加工例4の切削模様は、送り速度Fを加工例1の0.6倍程度と小さくしたことにより、図6A,6Bに示すように、小さな正六角形を加工方向に連続して配列した形状となっている。ナイフマークの幅Wが0.722mm、深さdが0.044mm、比(d/W)が0.061となった。
 加工例5は、刃径D=4mm、刃先円弧径R=2mm、R/D=0.5、ピッチP=1.25mm、回転数N=3000rpm、送り速度F=6.48m/min.、F/N=2.16mmである。加工例5の切削模様は、送り速度Fを加工例1の1.7倍程度と大きくしたことにより、図7A,7Bに示すように、大きな正六角形が交互に配列された形状となっている。ナイフマークの幅Wが1.442mm、深さdが0.134mm、比(d/W)が0.093となった。
 加工例6は、刃径D=4mm、刃先円弧径R=2mm、R/D=0.5、ピッチP=1.25mm、回転数N=3000rpm、送り速度F=3m/min.、F/N=1mmである。加工例6の切削模様は、送り速度Fを加工例1の0.8倍と小さくしたことにより、図8A,8Bに示すように、加工例1の正方形をわずかにくずした格子形状となっている。ナイフマークの幅Wが1.000mm、深さdが0.067mm、比(d/W)が0.067となった。
 加工例7は、刃径D=4mm、刃先円弧径R=5mm、R/D=1.25、ピッチP=1.25mm、回転数N=3000rpm、送り速度F=3.75m/min.、F/N=1.25mmである。加工例7の切削模様は、刃先円弧径Rを加工例1の2.5倍と大きくしたことにより、図9A,9Bに示すように、加工方向に短い六角形を交互に配列した形状となっている。ナイフマークの幅Wが0.874mm、深さdが0.048mm、比(d/W)が0.055となった。
 加工例8は、刃径D=4mm、刃先円弧径R=1.5mm、R/D=0.375、ピッチP=1.25mm、回転数N=3000rpm、送り速度F=3.75m/min.、F/N=1.25mmである。加工例8の切削模様は、刃先円弧径Rを加工例1の0.75倍と小さくしたことにより、図10A,10Bに示すように、加工例1の正方形をわずかに崩した菱形を加工方向に連続して配列した形状となっている。ナイフマークの幅Wが1.250mm、深さdが0.102mm、比(d/W)が0.082となった。
 加工例9は、刃径D=4mm、刃先円弧径R=1.5mm、R/D=0.375、ピッチP=2mm、回転数N=3000rpm、送り速度F=3.75m/min.、F/N=1.25mmである。加工例9の切削模様は、加工例1に対して刃先円弧径Rを0.75倍と小さくし、ピッチPを1.6倍と大きくしたことにより、図11A,11Bに示すように、六角形を加工方向に連続して配列した形状となっている。ナイフマークの幅Wが1.250mm、深さdが0.145mm、比(d/W)が0.116となった。
 加工例10は、刃径D=4mm、刃先円弧径R=0.8mm、R/D=0.2、ピッチP=0.7mm、回転数N=3000rpm、送り速度F=2.1m/min.、F/N=0.7mmである。加工例10の切削模様は、加工例1に対して刃先円弧径Rを0.4倍と小さくし、ピッチPを0.56倍と小さくしたことにより、図12A,12Bに示すように、加工方向に長い微小な六角形を交互に配列した形状となっている。ナイフマークの幅Wが0.700mm、深さdが0.038mm、比(d/W)が0.054となった。
 加工例11は、刃径D=4mm、刃先円弧径R=20mm、R/D=5、ピッチP=3mm、回転数N=3000rpm、送り速度F=6m/min.、F/N=2mmである。加工例11の切削模様は、加工例1に対して刃先円弧径Rを10倍と大きくし、ピッチPを2.4倍と大きくしたことにより、図13A,13Bに示すように、加工方向に短い六角形を交互に配列した形状となっている。ナイフマークの幅Wが1.222mm、深さdが0.096mm、比(d/W)が0.079となった。
 加工例12は、刃径D=20mm、刃先円弧径R=4mm、R/D=0.2、ピッチP=3mm、回転数N=3000rpm、送り速度F=9m/min.、F/N=3mmである。加工例12の切削模様は、加工例1に対して刃径Dを5倍、刃先円弧径Rを2倍、ピッチPを2.4倍と大きくしたことにより、図14A,14Bに示すように、加工方向に長い大きな六角形を交互に配列した形状となっている。ナイフマークの幅Wが3.000mm、深さdが0.139mm、比(d/W)が0.046となった。
 つぎに、実施例2について図面を用いて説明する。図15は、実施例2に係るエンドミル16のボディ17を拡大正面図により示したものである。ボディ17は、外周の周方向の180°離れた2箇所に回転軸方向に延びた一対の切れ刃18、19を設けている。切れ刃18,19は、回転軸方向に同一ピッチP(同一長さ)の分割刃18a,19aが複数連続して形成されている。分割刃18a,19aの刃先は、刃先円弧径Rで径方向に凹んだ円弧形となっている。また、分割刃18aと分割刃19aとは回転軸方向に半ピッチずつずれて配置されている。以下に、実施例1と同様にエンドミル16による加工例13について説明する。加工例13のデータについては上記表1に示す。
 加工例13は、刃径D=4mm、刃数Z=2、刃先円弧径R=逆2mm(凹形状)、R/D=0.5、ピッチP=1.25m、回転数N=3000rpm、送り速度F=3.75m/min.、F/N=1.25mmである。加工例13の切削模様は、刃先を加工例1と反対の凹形状としたことにより、図16A,16Bに示すように加工例1の正方形の配列に加工方向に筋を加えた形状となっている。ナイフマークの幅Wが1.250mm、深さdが0.100mm、比(d/W)が0.080となった。
 つぎに、実施例3について図面を用いて説明する。図17は、実施例3に係るエンドミル20のボディ21を拡大正面図により示したものである。ボディ21は、外周の周方向の180°離れた2箇所に回転軸方向に延びた一対の切れ刃22,23を設けている。切れ刃22,23は、回転軸方向に同一ピッチP(同一長さ)の分割刃22a,23aが複数連続して形成されている。分割刃22a,23aの刃先は、頂角が120°の二等辺三角形で突出した山形となっている。また、分割刃22aと分割刃23aとは回転軸方向に半ピッチずつずれて配置されている。以下に、実施例1と同様にエンドミル20による加工例14について説明する。加工例14のデータについては上記表1に示す。
 加工例14は、刃径D=4mm、刃数Z=2、刃先角度V=120°(V形状)、ピッチP=1.25m、回転数N=3000rpm、送り速度F=3.75m/min.、F/N=1.25mmである。加工例14の切削模様は、刃先を山形としたことにより、図18A,18Bに示すように、加工方向に長い六角形が連続して配置されかつ加工方向に延びた筋で分断された形状となっている。ナイフマークの幅Wが1.250mm、深さdが0.234mm、比(d/W)が0.187となった。
 つぎに、実施例4について用いて説明する。実施例4に係るエンドミルは、実施例1と異なり、切れ刃をボディの周方向の120°離れた3箇所、あるいは周方向の90°離れた4箇所に設けるようにしたものである。切れ刃が3箇所の場合は、各切れ刃の分割刃は回転軸方向に1/3ピッチずつずれて配置され、切れ刃が4箇所の場合は、各切れ刃の分割刃は回転軸方向に1/4ピッチずつずれて配置されている。以下に、実施例1と同様にエンドミルによる加工例15,16について説明する。加工例15,16のデータについては上記表1に示す。
 加工例15は、刃径D=6mm、刃数Z=3、刃先円弧径R=3mm、R/D=0.5、ピッチP=2.1mm、回転数N=3000rpm、送り速度F=6.3m/min.、F/N=2.1mmである。加工例15の切削模様は、切れ刃を3箇所とし、刃先を外方向に膨らんだ円弧形としたことにより、図19A,19Bに示すように、加工方向に対して斜めに傾いた縦長の六角形が格子状に配列されている。ナイフマークの幅Wが1.633mm、深さdが0.116mm、比(d/W)が0.071となった。
 加工例16は、刃径D=6mm、刃数Z=4、刃先円弧径R=3mm、R/D=0.5、ピッチP=2mm、回転数N=3000rpm、送り速度F=6m/min.、F/N=2mmである。加工例16の切削模様は、切れ刃を4箇所とし、刃先を外方向に膨らんだ円弧形としたことにより、図20A,20Bに示すように、加工方向に対して斜めに傾いた縦長の長方形が配列されている。ナイフマークの幅Wが1.500mm、深さdが0.106mm、比(d/W)が0.071となった。
 つぎに、実施例5について用いて説明する。実施例5においては、実施例1の加工例1に係るエンドミル10が用いられるが、被加工材への切れ刃14,15の切り込みを上記加工例1~16と異なり、分割刃14a,15aの外方側の一部(0.02mm)としたものである。実施例5の加工例17について図21A,21Bに示す。加工例17によれば、切り込み量を0.02mmとしたことにより、切削模様は互いに分離した小円形の溝として加工例1の正方形の頂点に相当する位置に配置されたものとなる。切り込み量を変化させることにより、円形溝の径を変えることができる。
 つぎに、実施例6について図面を用いて説明する。図22は、実施例6に係るエンドミル25のボディ26の先端側を拡大正面図により示したものである。ボディ26は、外周の周方向の180°離れた2箇所に回転軸方向に延びた一対の切れ刃27,28を設けている。切れ刃27,28は、回転軸方向に同一ピッチP(同一長さ)でかつ凹部27b,28bを隔てて分割刃27a,28aが複数形成されている。分割刃27a,28aの刃先は、回転軸方向に平行な平刃となっている。また、分割刃27aと分割刃28aとは回転軸方向に半ピッチずつずれて配置されている。以下に、実施例1と同様にエンドミル25による加工例18について説明する。加工例18のデータについては上記表1に示す。
 加工例18は、刃径D=4mm、刃数Z=2、ピッチP=2mm、回転数N=3000rpm、送り速度F=3m/min.、F/N=1mmである。加工例18の切削模様は、刃先を平坦面としたことにより、図23A,23Bに示すように、加工方向にほぼ正方形が連続して配置された形状となっている。ナイフマークの幅Wが1.000mm、深さdが0.064mm、比(d/W)が0.064となった。
 つぎに、実施例7について図面を用いて説明する。図24,25は、実施例7に係るエンドミル30を正面図により示し、ボディ31の先端側を拡大正面図により示したものである。実施例7では、上記実施例1~6と異なり、ボディ31の切れ刃の形成される先端側が軸方向に対して略45°で切り欠かれた傾斜面となっている。切れ刃32,33は、外周の周方向の180°離れた2箇所に設けられている。切れ刃32,33は、傾斜に沿って同一ピッチP(同一長さ)の分割刃32a,33aが複数連続して形成されている。分割刃32a,33aの刃先は、刃先円弧径Rで外方に膨らんだ円弧形となっている。また、分割刃18aと分割刃19aとは傾斜方向に半ピッチずつずれて配置されている。切れ刃32,33を傾斜状の配置としたことにより、エンドミル30の1回転あたりの分割刃32a,33aの切削する位置の外径が、先端側に行くにしたがって小さくなる。以下に、実施例7のエンドミル30による加工例19について説明する。加工例19についての刃径D、刃数Z、刃先円弧径R、ピッチP、回転数N、送り速度F、F/N、ナイフマーク幅W、深さd、及び比(d/W)を下記表2に示す。なお、加工例19においては、刃先全体が被加工材に切り込まれるようになっている。
Figure JPOXMLDOC01-appb-T000002
 加工例19は、最小刃径D=2mm、刃数Z=2、刃先円弧径R=2mm、R/D=1、ピッチP=1.25mm、回転数N=3000rpm、送り速度F=3.75m/min.、F/N=1.25mmである。加工例19の切削模様は、切れ刃32,33を傾斜状の配置としたことにより、図26A,26Bに示すように、被削材の角等に傾斜面の切削模様を形成することができ、平面切削模様とは異なる斬新な美観をもたらすことができる。また、分割刃32a,33aの径が連続的に変化していくことにより、切れ刃シャンク側で加工方向に長い六角形状であるが、徐々に縦方向に長くなり、切れ刃先端側ではほぼ菱形形状となり、切削模様が連続して変化するという斬新な装飾効果も得られる。ナイフマークの幅が1.250mm、深さdが0.052mm、比(d/W)が0.042となった。
 つぎに、実施例8について図面を用いて説明する。図27は、実施例8に係るエンドミル35のボディ36の先端側を部分拡大正面図により示したものである。実施例8では、上記実施例7と異なり、ボディ36の切れ刃の形成される先端側が1/4円状に切り欠かれた円弧面となっている。切れ刃37,38は、ボディ36外周の周方向の180°離れた2箇所に設けられている。切れ刃37,38は、円弧方向に同一ピッチP(同一長さ)の分割刃37a,38aが複数連続して形成されている。分割刃37a,38aの刃先は、刃先円弧径Rで外方に膨らんだ円弧形となっている。また、分割刃37aと分割刃38aとは傾斜方向に半ピッチずつずれて配置されている。切れ刃37,38を円弧状の配置としたことにより、エンドミル35の1回転あたりの分割刃37a,38aの切削する位置の刃径が、先端側に行くにしたがって小さくなる。以下に、実施例8のエンドミル35による加工例20について説明する。加工例20のデータについては上記表2に示す。
 加工例20は、最小刃径D=4mm、刃数Z=2、刃先円弧径R=2mm、R/D=0.5、ピッチP=1.3mm、回転数N=3000rpm、送り速度F=3.75m/min.、F/N=1.25mmである。加工例20の切削模様は、切れ刃37,38を円弧状の配置としたことにより、図28A,28Bに示すように、被削材の角等に傾斜面の1/4円弧形状で膨らんだ切削模様を形成することができ、平面切削模様とは異なる斬新な美観をもたらすことができる。また、分割刃32a,33aの径が連続的に変化していくことにより、切れ刃シャンク側で加工方向に長い長方形状であるが、徐々に六角形になり、切れ刃先端側ではほぼ菱形形状となり、切削模様が連続して変化するという斬新な装飾効果も得られる。ナイフマークの幅が1.250mm、深さdが0.088mm、比(d/W)が0.070となった。
 つぎに、実施例9について図面を用いて説明する。図29は、実施例9に係るエンドミル40のボディ41の先端側を部分拡大正面図により示したものである。実施例9では、ボディ41の切れ刃の形成される先端側は、先端に向うに従って切れ刃が軸心に向い再び外へ向かう円弧状に切り欠かれた円弧面となっている。切れ刃42,43は、ボディ41外周の周方向の180°離れた2箇所に設けられている。切れ刃42,43は、円弧方向に同一ピッチP(同一長さ)の分割刃42a,43aが複数連続して形成されている。分割刃42a,43aの刃先は、刃先円弧径Rで外方に膨らんだ円弧形となっている。また、分割刃42aと分割刃43aとは傾斜方向に半ピッチずつずれて配置されている。切れ刃42,43を円弧状の配置としたことにより、エンドミル40の1回転あたりの分割刃42a,43aの切削する位置の外径が、軸方向中央側に行くにしたがって小さくなる。以下に、実施例9のエンドミル40による加工例21について説明する。加工例20のデータについては上記表2に示す。
 加工例21は、最小刃径D=8mm、刃数Z=2、刃先円弧径R=2mm、R/D=0.25、ピッチP=1.275mm、回転数N=3000rpm、送り速度F=3m/min.、F/N=1mmである。加工例21の切削模様は、切れ刃42,43を軸方向に対称な円弧状の配置としたことにより、図30A,30Bに示すように、被削材に対称な円弧形状で膨らんだ切削模様を形成することができ、平面切削模様とは異なる斬新な美観をもたらすことができる。また、分割刃32a,33aの径が連続的に変化していくことにより、切れ刃中央ではほぼ六角形状であるが、切れ刃両端側ではほぼ加工方向に長い六角形状となり、切削模様が連続して変化するという斬新な装飾効果も得られる。ナイフマークの幅Wが1.000mm、深さdが0.048mm、比(d/W)が0.048となった。
 以上の結果、上記各実施例1~9においては、エンドミル10,16,20,25,30,35,40を用いた被加工材の回転切削により表面に現れる切れナイフマークの幅Wに対する深さdの比(d/W)を3/100以上としたことにより、ナイフマークによる被加工材表面の凹凸の差が十分認識できるようになった。その結果、被加工材表面に規則的に形成されるナイフマークが装飾模様として十分に美観を喚起するものになった。また、実施例1~4においては、隣接する位置にある切れ刃14,15,18,19,22,23,27,28,32,33,37,38,42,43の分割刃14a,15a,18a,19a,22a,23a,27a,28a,32a,33a,37a,38a,42a,43aにピッチのずれを設けることにより、ピッチのずれの程度に応じてナイフマークの配列に多様な変化を持たせることができ、装飾模様の美観をさらに高めることができる。さらに、分割刃14a,15a,18a,19a,32a,33a,37a,38a,42a,43aの刃先円弧径Rのエンドミル10,16,20,30,35,40の刃径Dに対する比(R/D)を0.2~5倍の範囲とし、また分割刃22a,23aの刃先角度Vを変更することにより、刃先円弧径Rまたは刃先角度Vの大きさに応じてナイフマークの配列に多様な変化を持たせることができ、装飾模様の美観をさらに高めることができる。なお、実施例7~9(加工例19~21)については、刃径Dが変化することにより比(R/D)の値も変化して一部が0.2より小さくなるが、特に比(R/D)が0.2以上の範囲でナイフマークの配列に多様な変化を持たせることによる装飾模様の美観を高める効果が顕著に得られる。
 また、切れ刃14,15,18,19,22,23,27,28の刃径を20mm以下の小径としたことにより、比(d/W)を実質的に大きくしやすくなり、凹凸の差の大きな明確な装飾模様が得られる。また、実施例5では、切れ刃14,15の切り込み量を少なくすることにより、美観を有する水玉模様の加工を行うことができる。その結果、実施例1~6においては、被加工材の回転切削加工によって、十分な美観を呈する装飾として価値の高い加工を行うことができる。
 また、実施例7~9においては、傾斜した切れ刃32,33や湾曲した切れ刃37,38,42,43としたことにより、被削材の角等に傾斜面や湾曲面の切削模様を形成することができ、平面切削模様とは異なる斬新な美観をもたらすことができる。また、分割刃32a,33a,37a,38a,42a,43aの径が連続的に変化していくことにより、切削模様も連続して変化するという斬新な装飾効果も得られる。
 また、本実施例においては、被加工材表面に形成された十分な凹凸を有するナイフマークにより、被加工材表面において良好な滑り止め機能が得られる。さらに、照明器具の表面に切削加工を施すことにより、光が凹凸部分を拡散するために、被加工材表面を他の部分より明るくすることができ、照明器具のデザイン性を高めることができる。また、金属の被加工材表面においては、ナイフマークの装飾性に加えて油溜めの機能も得られる。
 なお、上記各実施例に示した切削面については一例であり、切れ刃の刃径D、刃数Z、刃先円弧径R、ピッチP、切削工具の回転数N、送り速度Fを変更することにより、多様な切削模様を得ることができる。また、上記各実施例では、回転切削工具としてエンドミルが用いられているが、これに代えてフライス、鉋胴等を用いることができる。その他、上記実施例については一例であり、本発明の趣旨を逸脱しない範囲において種々変更して実施することができる。
10,16,20,25,30,35,40…エンドミル、11…シャンク、13,17,21…ボディ、14,15,18,19,22,23,27,28,32,33,37,38,42,43…切れ刃、14a,15a,18a,19a,22a,23a,27a,28a,32a,33a,37a,38a,42a,43a…分割刃

Claims (6)

  1.  ボディの外周に回転軸方向に延びた切れ刃を周方向の複数箇所に設けてなる回転切削工具を用いて被加工材の表面を回転切削することにより切削模様を形成する加工方法であって、前記切れ刃が回転軸方向に等しいピッチで分割した複数の分割刃で構成されており、該分割刃により被加工材の表面に形成されるナイフマークの幅Wに対する深さdの比(d/W)を3/100以上としたこと特徴とする回転切削工具による被加工材表面の加工方法。
  2.  ボディの外周に軸心方向に傾斜して延びた傾斜切れ刃、又は軸心方向に湾曲して延びた湾曲切れ刃を周方向の複数箇所に設けてなる回転切削工具を用いて被加工材の表面を回転切削することにより切削模様を形成する加工方法であって、前記傾斜切れ刃が傾斜に沿って、又は前記湾曲切れ刃が湾曲に沿って等しいピッチで分割した複数の分割刃で構成されており、該分割刃により被加工材の表面に形成されるナイフマークの幅Wに対する深さdの比(d/W)を3/100以上としたこと特徴とする回転切削工具による被加工材表面の加工方法。
  3.  互いに回転方向において隣接する位置にある前記切れ刃について、前記各分割刃を互いに回転軸方向にずらすことを特徴とする請求項1又は2に記載の回転切削工具による被加工材表面の加工方法。
  4.  前記分割刃の刃先を凸又は凹円弧形状とし、前記切れ刃の刃径Dに対する刃先円弧径Rの比(R/D)を0.2~5としたことを特徴とする請求項1から3のいずれか1つに記載の回転切削工具による被加工材表面の加工方法。
  5.  前記分割刃を三角形山形としたことを特徴とする請求項1から3のいずれか1つに記載の回転切削工具による被加工材表面の加工方法。
  6.  前記切れ刃の刃径Dを20mm以下としたことを特徴とする請求項1から5のいずれか1つに記載の被加工材表面の加工方法。
PCT/JP2014/005527 2013-11-01 2014-10-31 回転切削工具による被加工材表面の加工方法 WO2015064114A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
PL14857669T PL3064369T3 (pl) 2013-11-01 2014-10-31 Sposób obróbki powierzchni przedmiotu obrabianego przy użyciu obrotowego narzędzia skrawającego
JP2015544818A JP6457394B2 (ja) 2013-11-01 2014-10-31 回転切削工具による被加工材表面の加工方法
CN201480059409.9A CN105722688B (zh) 2013-11-01 2014-10-31 基于旋转切削工具的被加工材料表面的加工方法
BR112016008261-3A BR112016008261B1 (pt) 2013-11-01 2014-10-31 Método de processamento para superfície de uma peça de trabalho que usa ferramenta de corte giratória
DK14857669.7T DK3064369T3 (da) 2013-11-01 2014-10-31 Fremgangsmåde til at forarbejde overflade af arbejdsstykke ved anvendelse af roterende skæreværktøj
EP14857669.7A EP3064369B1 (en) 2013-11-01 2014-10-31 Processing method for surface of workpiece using rotating cutting tool
ES14857669T ES2787173T3 (es) 2013-11-01 2014-10-31 Método de procesamiento para una superficie de pieza de trabajo usando una herramienta de corte rotatoria
US15/030,540 US9925603B2 (en) 2013-11-01 2014-10-31 Processing method for surface of workpiece using rotating cutting tool
KR1020167011494A KR102191805B1 (ko) 2013-11-01 2014-10-31 회전 절삭 공구에 의한 피가공재 표면의 가공 방법
MX2016005696A MX2016005696A (es) 2013-11-01 2014-10-31 Metodo de procesamiento para superficies de piezas de trabajo usando una herramienta giratoria de corte.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-228399 2013-11-01
JP2013228399 2013-11-01

Publications (1)

Publication Number Publication Date
WO2015064114A1 true WO2015064114A1 (ja) 2015-05-07

Family

ID=53003738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/005527 WO2015064114A1 (ja) 2013-11-01 2014-10-31 回転切削工具による被加工材表面の加工方法

Country Status (11)

Country Link
US (1) US9925603B2 (ja)
EP (1) EP3064369B1 (ja)
JP (1) JP6457394B2 (ja)
KR (1) KR102191805B1 (ja)
CN (1) CN105722688B (ja)
BR (1) BR112016008261B1 (ja)
DK (1) DK3064369T3 (ja)
ES (1) ES2787173T3 (ja)
MX (1) MX2016005696A (ja)
PL (1) PL3064369T3 (ja)
WO (1) WO2015064114A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180020968A (ko) * 2015-06-29 2018-02-28 가네후사 가부시키가이샤 엔드 밀에 의한 딤플 가공 방법 및 엔드 밀
KR20180102102A (ko) * 2016-01-06 2018-09-14 가네후사 가부시키가이샤 회전 절삭 공구를 사용한 딤플 가공 방법 및 딤플 가공용 회전 절삭 공구

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3459664A4 (en) * 2016-05-19 2020-01-15 Kanefusa Kabushiki Kaisha PIT MOLDING METHOD USING A ROTATING CUTTER
DE102016214697A1 (de) * 2016-08-08 2018-02-08 Sauer Gmbh Verfahren und Vorrichtung zum Aufbringen einer Oberflächenstrukturierung auf einem Werkstück an einer Werkzeugmaschine
WO2019202911A1 (ja) * 2018-04-18 2019-10-24 兼房株式会社 ディンプル付き被加工物及びディンプル加工方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4964997A (ja) * 1972-09-05 1974-06-24
JPH0134121B2 (ja) * 1983-03-15 1989-07-18 Onoda Semento Kk
JPH1052998A (ja) 1996-08-08 1998-02-24 Kanefusa Kk 回転切削工具による被加工材表面の加飾方法
JP2000061923A (ja) * 1998-08-18 2000-02-29 Asahi Chem Ind Co Ltd 軽量気泡コンクリートパネルの表面加工方法及びその表面加工装置
JP2002309500A (ja) * 2001-04-11 2002-10-23 Hokuetsu Paper Mills Ltd シート状不燃成形体及びその製造方法
JP2003236809A (ja) * 2002-02-13 2003-08-26 Nisshin Mokuzai Kogyo Kk 木質材等の表面加工法及び表面加工された木質材

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2317262A (en) * 1941-11-12 1943-04-20 Century Motors Corp Apparatus for machining serrations in metallic bodies
US2327944A (en) * 1941-12-19 1943-08-24 Century Motors Corp Apparatus for machining serrations in metallic bodies
US2429822A (en) * 1944-08-03 1947-10-28 John H Kelly Leather conditioning cutter
US2643584A (en) * 1949-05-12 1953-06-30 Stanley A Wertepny Method for cutting teeth in pinking shears
US3733663A (en) * 1971-05-12 1973-05-22 Black & Decker Towson Corner shaping tool
NO139933C (no) * 1972-05-18 1979-06-06 Karl Hettich Ferdigparkett-element.
US3891015A (en) 1972-09-05 1975-06-24 Olin Corp Constant depth cutter assembly
DE3742942C1 (en) * 1987-12-18 1988-12-08 Rolf Klenk Gmbh & Co Kg Milling tool for roughing and smoothing workpieces
JP3680184B2 (ja) * 1996-02-08 2005-08-10 北越製紙株式会社 不燃化粧材
JP3969811B2 (ja) * 1997-03-06 2007-09-05 旭化成建材株式会社 軽量気泡コンクリートパネルの表面加工方法
DE19717706A1 (de) * 1997-04-26 1998-10-29 Bosch Gmbh Robert Handhobelmaschine
RU2181669C1 (ru) * 2001-07-02 2002-04-27 Акционерное общество закрытого типа "Концерн Содружество" Способ получения рельефной поверхности и устройство для его осуществления
DE10157352A1 (de) * 2001-11-22 2003-06-05 Guenter Grimme Saegewerksmasch Formstabilisiertes Massivholz
JP2004129750A (ja) * 2002-10-09 2004-04-30 Ishimoku:Kk 化粧板
WO2005023473A1 (ja) 2003-09-05 2005-03-17 Shinjo Metal Industries, Ltd. 回転切削工具およびこれを用いた切削方法
JP2007118142A (ja) * 2005-10-28 2007-05-17 Kiyomitsu Nakazawa 突起形成方法及びそれに使用される回転刃物及び切削装置
JP3119337U (ja) * 2005-12-06 2006-02-23 株式会社東新工務 建築用板材
EP1927444B1 (de) * 2006-12-01 2012-08-15 Kälin & Co. AG Hobelmesser
JP2008284791A (ja) * 2007-05-18 2008-11-27 Kanefusa Corp 回転切削工具
CA2589806A1 (en) * 2007-05-23 2008-11-23 Martin Janzen Rough hew planer
CN101602122B (zh) * 2009-07-15 2011-01-19 天津商业大学 一种薄壁零件精密数控铣削加工方法
DE102009052642A1 (de) * 2009-11-10 2011-05-12 Timura Holzmanufaktur Gmbh Verfahren zum Herstellen einer strukturierten, Erhöhungen und Vertiefungen aufweisenden Oberfläche an einem Werkstück aus Holz

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4964997A (ja) * 1972-09-05 1974-06-24
JPH0134121B2 (ja) * 1983-03-15 1989-07-18 Onoda Semento Kk
JPH1052998A (ja) 1996-08-08 1998-02-24 Kanefusa Kk 回転切削工具による被加工材表面の加飾方法
JP2000061923A (ja) * 1998-08-18 2000-02-29 Asahi Chem Ind Co Ltd 軽量気泡コンクリートパネルの表面加工方法及びその表面加工装置
JP2002309500A (ja) * 2001-04-11 2002-10-23 Hokuetsu Paper Mills Ltd シート状不燃成形体及びその製造方法
JP2003236809A (ja) * 2002-02-13 2003-08-26 Nisshin Mokuzai Kogyo Kk 木質材等の表面加工法及び表面加工された木質材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3064369A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180020968A (ko) * 2015-06-29 2018-02-28 가네후사 가부시키가이샤 엔드 밀에 의한 딤플 가공 방법 및 엔드 밀
US20180154461A1 (en) * 2015-06-29 2018-06-07 Kanefusa Kabushiki Kaisha Dimples processing method by means of end milling and end mill
EP3315233A4 (en) * 2015-06-29 2019-05-01 Kanefusa Kabushiki Kaisha RUBBER PROCESSING WITH JAM AND MILLING MACHINE
US10857602B2 (en) * 2015-06-29 2020-12-08 Kanefusa Kabushiki Kaisha Dimples processing method by means of end milling and end mill
KR102425458B1 (ko) * 2015-06-29 2022-07-25 가네후사 가부시키가이샤 엔드 밀에 의한 딤플 가공 방법 및 엔드 밀
KR20180102102A (ko) * 2016-01-06 2018-09-14 가네후사 가부시키가이샤 회전 절삭 공구를 사용한 딤플 가공 방법 및 딤플 가공용 회전 절삭 공구
CN108602139A (zh) * 2016-01-06 2018-09-28 兼房株式会社 使用转动切削工具的凹坑加工方法和凹坑加工用转动切削工具
EP3401044A4 (en) * 2016-01-06 2019-08-07 Kanefusa Kabushiki Kaisha METHOD FOR THE MACHINING OF WAVES USING A ROTARY CUTTING TOOL AND A ROTARY CUTTING TOOL FOR MACHINING WAVES
CN108602139B (zh) * 2016-01-06 2021-03-19 兼房株式会社 使用转动切削工具的凹坑加工方法和凹坑加工用转动切削工具
KR102470776B1 (ko) * 2016-01-06 2022-11-25 가네후사 가부시키가이샤 회전 절삭 공구를 사용한 딤플 가공 방법 및 딤플 가공용 회전 절삭 공구

Also Published As

Publication number Publication date
JP6457394B2 (ja) 2019-01-23
EP3064369B1 (en) 2020-04-15
KR20160078975A (ko) 2016-07-05
US9925603B2 (en) 2018-03-27
US20160263667A1 (en) 2016-09-15
MX2016005696A (es) 2017-04-13
EP3064369A1 (en) 2016-09-07
CN105722688A (zh) 2016-06-29
DK3064369T3 (da) 2020-07-13
PL3064369T3 (pl) 2020-09-21
BR112016008261B1 (pt) 2022-01-04
CN105722688B (zh) 2018-11-02
BR112016008261A2 (ja) 2017-08-01
KR102191805B1 (ko) 2020-12-16
JPWO2015064114A1 (ja) 2017-03-09
ES2787173T3 (es) 2020-10-15
EP3064369A4 (en) 2017-04-26

Similar Documents

Publication Publication Date Title
JP6457394B2 (ja) 回転切削工具による被加工材表面の加工方法
JP6010038B2 (ja) 歯フライスおよび歯車要素の歯を圧延するための方法
CN104395024B (zh) 旋转式切削刀具及其可翻转切削刀片
US20200406383A1 (en) Hob Peeling Method And Cutting Tool For Producing At Least Partially Rounded Tooth Tips
CN106715014B (zh) 旋转切削工具和具有可变宽度副后刀面的可翻转切削镶块
US8696408B2 (en) Method of manufacturing formed cutter and grinding tool for formed cutter
JP2013543450A5 (ja)
KR101919721B1 (ko) 총형 회전 절삭 공구
JP2014210335A (ja) 冠歯車のワークピース上にギヤ歯をパワースカイビングするためのパワースカイビングツール
WO2017163444A1 (ja) スカイビング加工用カッタ及びこれを使用する歯車製造方法
KR20190095260A (ko) 밀링 공구 및 밀링 공구용 제조 방법
CN114867573B (zh) 用于加工工件的工具和方法
JP2014161972A (ja) スカイビングカッター及び内歯車の創成方法
JPH1052998A (ja) 回転切削工具による被加工材表面の加飾方法
US20180217579A1 (en) Method for minimizing the appearance of undesirable tool marks during cnc operations
RU2514256C1 (ru) Способ обработки сложных криволинейных поверхностей
TWI702099B (zh) 用於加工一階級沉孔的刀具
JP2019018251A (ja) ホブカッタ
TWM543127U (zh) 不對稱刀刃之銑刀
CN102909423B (zh) 一种不锈钢铣刀及其应用
JP5557825B2 (ja) 切削工具
JP2007245253A (ja) 加工表面に規則的な模様を均一に形成する方法
JP2015188979A (ja) エンドミル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14857669

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015544818

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014857669

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014857669

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15030540

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016008261

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/005696

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 20167011494

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112016008261

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160414