WO2015063903A1 - 耐食性寿命診断部品、熱交換器、冷凍空調装置 - Google Patents

耐食性寿命診断部品、熱交換器、冷凍空調装置 Download PDF

Info

Publication number
WO2015063903A1
WO2015063903A1 PCT/JP2013/079483 JP2013079483W WO2015063903A1 WO 2015063903 A1 WO2015063903 A1 WO 2015063903A1 JP 2013079483 W JP2013079483 W JP 2013079483W WO 2015063903 A1 WO2015063903 A1 WO 2015063903A1
Authority
WO
WIPO (PCT)
Prior art keywords
corrosion
heat exchanger
sacrificial anode
base material
anode layer
Prior art date
Application number
PCT/JP2013/079483
Other languages
English (en)
French (fr)
Inventor
亜紀典 木俣
岡島 るみ
平井 康順
一普 宮
栗木 宏徳
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201380078288.8A priority Critical patent/CN105408720B/zh
Priority to JP2015544706A priority patent/JP6058154B2/ja
Priority to US14/898,571 priority patent/US9964367B2/en
Priority to EP13896643.7A priority patent/EP3023728B1/en
Priority to PCT/JP2013/079483 priority patent/WO2015063903A1/ja
Publication of WO2015063903A1 publication Critical patent/WO2015063903A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/06Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of metal
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/10Anti-corrosive paints containing metal dust
    • C09D5/106Anti-corrosive paints containing metal dust containing Zn
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • C23F13/06Constructional parts, or assemblies of cathodic-protection apparatus
    • C23F13/08Electrodes specially adapted for inhibiting corrosion by cathodic protection; Manufacture thereof; Conducting electric current thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/003Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass for preventing corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • G01N17/006Investigating resistance of materials to the weather, to corrosion, or to light of metals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • G01N17/04Corrosion probes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F2201/00Type of materials to be protected by cathodic protection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/071Compressor mounted in a housing in which a condenser is integrated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • F28D1/0478Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0061Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for phase-change applications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/085Heat exchange elements made from metals or metal alloys from copper or copper alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2200/00Prediction; Simulation; Testing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/16Safety or protection arrangements; Arrangements for preventing malfunction for preventing leakage

Definitions

  • the present invention relates to a corrosion-resistant life diagnosis component, a heat exchanger, and a refrigeration air conditioner.
  • the heat exchanger mounted on the refrigeration air conditioner functions as an evaporator
  • the air supplied to the heat exchanger is cooled, and the fins and heat transfer tubes (refrigerant piping) of the heat exchanger are cooled. ), Etc., with condensed water.
  • the heat exchanger made of aluminum has low corrosion resistance compared to that of copper, and the fins and heat transfer tubes of the heat exchanger are corroded by condensed water. And when corrosion generate
  • Aluminum materials are cheaper than copper materials, and aluminum heat exchangers are attracting attention as an alternative to conventional copper heat exchangers.
  • the aluminum material has lower corrosion resistance than the copper material.
  • a through hole is formed in the heat transfer tube due to corrosion, and the refrigerant flowing through the heat transfer tube leaks into the atmosphere, and the heat exchange efficiency of the heat exchanger is reduced.
  • the cause of corrosion of the heat exchanger and the progress speed of the corrosion differ depending on the environment in which the heat exchanger is installed and manufacturing defects, and there are uncertain factors in the diagnosis of the corrosion resistance life. That is, there is a problem that it is difficult to accurately diagnose the corrosion-resistant life while maintaining convenience.
  • the present invention has been made in order to solve the above-described problems, and is capable of accurately diagnosing the corrosion resistance life while suppressing the loss of convenience, a corrosion resistance life diagnosis component, a heat exchanger, and a freezer. It aims to provide an air conditioner.
  • the corrosion-resistant life diagnosis component according to the present invention has a plate-like base material having an aluminum layer on the surface, and a sacrificial anode layer formed on the base material and made of zinc.
  • the surface of the base material is made of aluminum. It has a base material exposed part where the layer is exposed.
  • the corrosion-resistant life diagnosis component according to the present invention has the above-described configuration, so that it is possible to accurately diagnose the corrosion-resistant life while suppressing the loss of convenience.
  • FIG. 1 is a plan view of a plate member 30 having a corrosion-resistant life diagnosis component 10 according to an embodiment.
  • FIG. 2 is a plan view of the corrosion-resistant life diagnosis component 10 cut out from the plate 30 shown in FIG. 2A is a plan view of the corrosion resistance life diagnosis component 10, and
  • FIG. 2B is a cross-sectional view of the corrosion resistance life diagnosis component 10.
  • FIG.1 and FIG.2 (a) the one surface of the board
  • the plate material 30 has a plate-like base material 31 having an aluminum layer on the surface and a sacrificial anode layer 11 made of zinc.
  • the plate 30 is provided with a sacrificial anode layer 11 formed by, for example, zinc spraying or zinc-containing coating on the base material 31.
  • the sacrificial anode layer 11 is formed on a part of one surface of the plate member 30. Specifically, as shown in FIG. 1, the sacrificial anode layer 11 is provided on one surface of the plate member 30 with a predetermined interval. For this reason, the aluminum layer which is the base material 31 is exposed in the part where the sacrificial anode layer 11 is not provided in the base material 31 on one surface of the plate material 30.
  • the plate 30 is alternately provided with the sacrificial anode layer 11 and portions where the aluminum layer as the base material 31 is exposed (a base material exposed portion 31A described later).
  • the base material 31 having the aluminum layer has been described as being provided in the corrosion-resistant life diagnosis component 10.
  • the base material 31 is not limited thereto, and an aluminum plate made entirely of aluminum is used as the base material 31. Also good.
  • a zinc layer is formed on the other surface of the plate member 30. That is, as shown in FIG. 2B, the third sacrificial anode layer 11C, which is a layer made of zinc, is formed on the entire other surface of the plate member 30.
  • the third sacrificial anode layer 11C is the entire surface sacrificial anode layer.
  • the third sacrificial anode layer 11C is also formed by, for example, zinc spraying or zinc-containing coating.
  • the corrosion resistance life diagnosis component 10 is attached to the heat exchanger sacrificial anode layer 1A of the heat transfer tube 1 of the heat exchanger 150 to be described later. For this reason, the entire back surface of the corrosion resistance life diagnosis component 10 is used as a sacrificial anode to prevent corrosion between different metals.
  • FIG. 2B shows a cross-sectional view showing a case where zinc is applied to the base material 31 by zinc-containing coating.
  • the corrosion resistance life diagnosis component 10 according to the embodiment is attached to, for example, a heat exchanger 100 described later, and is used for diagnosis of the corrosion resistance life of the heat exchanger 100. In diagnosing the corrosion resistance life, it is preferable that the conditions of the corrosion resistance life diagnosis component 10 and the heat exchanger 100 are the same.
  • the corrosion resistance life diagnosis component 10 when the heat exchanger 100 is manufactured using zinc spraying, the corrosion resistance life diagnosis component 10 also uses zinc spraying, and the heat exchanger 100 is manufactured using zinc-containing coating. In such a case, the corrosion-resistant life diagnosis component 10 may be made of zinc-containing paint.
  • the corrosion resistance life diagnosis component 10 can be obtained by cutting out the plate material 30 shown in FIG. That is, by cutting the plate member 30 along the broken line shown in FIG. 1, a portion of the plate member 30 divided by the broken line is cut out, and the corrosion resistance life diagnosis component 10 can be obtained.
  • the corrosion resistance life diagnosis component 10 is provided with a plurality of sacrificial anode layers 11 formed in a band shape. That is, the corrosion resistance life diagnosis component 10 is provided with a first sacrificial anode layer 11A formed on one end side and a second sacrificial anode layer 11B formed on the other end side. .
  • the base material exposure part 31A which is the part which the base material 31 is exposed is provided.
  • the base material exposed portion 31A is located between the first sacrificial anode layer 11A and the second sacrificial anode layer 11B.
  • a third sacrificial anode layer 11C having a zinc layer is formed on the entire other surface of the corrosion-resistant life diagnostic component 10.
  • the corrosion resistance life diagnosis component 10 is attached to the heat transfer tube 1 so that the other surface of the base material on the third sacrificial anode layer 11 ⁇ / b> C side is in contact with the outer surface of the heat transfer tube 1.
  • the first sacrificial anode layer 11A and the second sacrificial anode layer 11B have a width of 5 mm or more parallel to the direction from one side to the other side of the base material 31, and the base material exposed portion 31A is formed of a base material.
  • the width parallel to the direction from one side of 31 to the other side is 8 to 12 mm (see FIG. 9). The reason why the width parallel to the direction from one side of the base material 31 to the other side is set to 8 to 12 mm will be described in detail with reference to FIGS. 13 and 14 later.
  • the plate material 30 includes the base material 31 having an aluminum layer and the corrosion-resistant life diagnosis component 10 is obtained by performing zinc spraying or zinc-containing coating is described as an example, but the present invention is not limited thereto. It is not something.
  • a clad plate formed by joining an aluminum plate and a zinc plate may be used. That is, a clad plate in which a zinc plate material corresponding to the first sacrificial anode layer 11A and the second sacrificial anode layer 11B is bonded to an aluminum plate material corresponding to the base material 31 may be used.
  • the clad plate may be a three-layer structure in which a zinc plate material corresponding to the third sacrificial anode layer 11C is also joined.
  • an aluminum layer is provided on one surface side of the plate material 30 so that the base material exposed portion 31A is an aluminum layer.
  • FIG. 3 is an overall perspective view of the outdoor unit 200 as a refrigeration air conditioner having the corrosion resistance life diagnosis component 10.
  • FIG. 4 is a perspective view of the outdoor unit 200 shown in FIG. 3 with the front panel 51, the side panel 52, the blower and the fan guard 54, etc. removed.
  • An example of the refrigerating and air-conditioning apparatus will be described using the outdoor unit 200 of the air conditioner as an example.
  • the outdoor unit 200 has, for example, a vertically long outline. That is, as shown in FIG. 3, the outdoor unit 200 includes a front panel 51 that constitutes a front side shell of the outdoor unit 200, a fan guard 54 provided on the top of the outdoor unit 200, and a side shell of the outdoor unit 200.
  • the side panel 52 which comprises this.
  • the outdoor unit 200 is provided with an air suction port 59 for taking in air into the side and back of the outer shell, and an air outlet 55 for exhausting air to the outside at the upper part of the outdoor unit 200. That is, the outdoor unit 200 is formed in the side panel 52 and formed in the air inlet 59 used to take air into the outdoor unit 200 and the fan guard 54, and the air in the outdoor unit 200 is transferred to the outdoor unit 200. It has an air outlet 55 that is used for discharge to the outside.
  • the outdoor unit 200 includes a heat exchanger 100, a base panel 56 that supports the heat exchanger 100 and the like, a compressor 57 that compresses and discharges refrigerant, and an accumulator 58 that stores excess refrigerant. It is.
  • the heat exchanger 100 exchanges heat between the refrigerant supplied to itself and the air passing through the heat exchanger 100.
  • the heat exchanger 100 functions as a condenser (heat radiator) during cooling operation to condense the refrigerant, and functions as an evaporator during heating operation to evaporate the refrigerant.
  • the heat exchanger 100 is provided at a position facing the side panel 52, and is fixed to the side panel 52, for example.
  • the heat exchanger 100 is demonstrated as what was laminated
  • the base panel 56 supports the heat exchanger 100, the compressor 57, the accumulator 58, and the like, and these are, for example, screwed.
  • the base panel 56 constitutes an outer shell on the bottom surface side of the outdoor unit 200.
  • the compressor 57 is installed on the base panel 56, for example, and compresses and discharges the refrigerant.
  • the compressor 57 is connected to the accumulator 58 on the suction side.
  • the compressor 57 has a discharge side connected to the heat exchanger 100 during the cooling operation, and is connected to a use-side heat exchanger mounted on an indoor unit (not shown) during the heating operation.
  • the accumulator 58 is connected to the suction side of the compressor 57 and stores liquid refrigerant.
  • a heat exchanger 100 is erected on the rear side, right side, and left side of the accumulator 58.
  • the outdoor unit 200 is equipped with a fan (not shown) that is used to take air into and out of the outdoor unit 200.
  • the fan is exposed when the fan guard 54 is removed, and rotates to take in air into the outdoor unit 200 and exhaust the air out of the outdoor unit 200.
  • the fan is provided so as to be surrounded by the fan guard 54, and the air outlet 55 is formed on the upper side of the fan. That is, the air that has passed through the heat exchanger 100 disposed along the air suction port 59 is sucked into the outdoor unit 200 and exhausted from the air outlet 55 formed in the upper portion of the outer shell through the fan. .
  • FIG. 5 is an explanatory diagram of the mounting position of the corrosion resistance life diagnosis component 10 according to the embodiment.
  • FIG. 6 is an explanatory diagram for attaching the corrosion-resistant life diagnosis component 10 to a position different from that in FIG. 5.
  • FIG. 7 is an explanatory view of a method for attaching the corrosion-resistant life diagnosis component 10 according to the embodiment to the hairpin portion 6a side of the heat transfer tube 1.
  • FIG. 8 is a view of what is shown in FIG. 7 as viewed from the hairpin part 6 a side of the heat transfer tube 1 in a direction parallel to the longitudinal direction of the heat transfer tube 1.
  • the case where the heat exchanger 100 is a flat tube heat exchanger provided with the heat exchanger tube 1 which has a flat shape is shown as an example.
  • FIG. 6 it is the heat exchanger 150 which bent the heat exchanger 100 which connected the heat exchanger tube 1 to the fin 2 shown in FIG. 5 in the U-shape, and accumulated the bent heat exchanger 100 in multiple numbers.
  • FIG. 6 the example of the heat exchanger 150 at the time of superposing three is shown.
  • the heat exchanger 100 has a heat transfer tube 1 and plate-like fins 2 as shown in FIGS. 5 and 6.
  • a flow path 1a (see FIG. 10) through which a heat exchange medium flows is formed.
  • the heat transfer tube 1 includes a straight portion 6A inserted into a notch (not shown) formed in the fin 2, and a hairpin portion 6a connected to the straight portion 6A and formed in a U shape having a flat cross section.
  • it has the aluminum joint 6b connected to the edge part side on the opposite side to the hairpin part 6a among the edge part side of 6 A of linear parts.
  • the straight section 6A has a flat cross section perpendicular to the longitudinal direction.
  • a header pipe (not shown) is connected to the aluminum joint 6b.
  • heat transfer tube 1 fluid such as water, refrigerant, or brine flows through the heat transfer tube 1.
  • fluid such as water, refrigerant, or brine flows through the heat transfer tube 1.
  • the heat transfer tube 1 having the hairpin portion 6a having a flat cross-sectional shape is used as a tube to be inserted into the fin 2
  • the present invention is not limited thereto.
  • a plurality of fins 2 are connected to the heat transfer tube 1, and the installation location of the corrosion resistance life diagnosis component 10 is limited accordingly. That is, if the corrosion resistance life diagnosis component 10 is attached to the heat exchanger 100, the fin 2 may be damaged. Therefore, as shown in FIG. 5, the corrosion resistance life diagnosis component 10 is attached to the end of the linear portion 6 ⁇ / b> A at a position away from the fin 2 in the heat transfer tube 1. Specifically, as shown in FIG. 5, the corrosion-resistant life diagnosis component 10 may be attached to a portion T ⁇ b> 1 where the fins 2 are not arranged in the heat transfer tube 1, that is, a portion on the hairpin portion 6 a side of the straight portion 6 ⁇ / b> A.
  • the linear portion 6A has a corrosion resistance to the straight portion 6A between the attachment position of the fin 2 that is attached to the most hairpin portion 6a side and the straight portion 6A to which the hairpin portion 6a is connected.
  • a life diagnosis component 10 may be attached.
  • the corrosion-resistant life diagnosis component 10 is also similar to the heat exchanger tube of the heat exchanger. Must be placed in a temperature environment. Therefore, the corrosion resistance life diagnosis component 10 may be attached so as to be in close contact with the heat transfer tube 1 of the heat exchanger 100.
  • some heat exchangers mounted on outdoor units of refrigeration air conditioners are sprinkled from the outside of the housing for the purpose of improving heat exchange efficiency.
  • tap water is used as water for watering
  • the tap water contains iron ions and copper ions that are less ionized than aluminum.
  • metal corrosion is affected by ionization tendency.
  • metals with different ionization tendencies come into contact
  • metals with a large ionization tendency preferentially corrode. Therefore, iron ions and copper ions in tap water adhering to the surface by watering may promote corrosion of the aluminum heat exchanger. For this reason, it is necessary to diagnose the corrosion-resistant life in the heat exchanger where it is easily affected by water spray.
  • the corrosion resistance life diagnosis component 10 it is preferable to attach the corrosion resistance life diagnosis component 10 to a location that is particularly susceptible to water spraying in the heat transfer tube 1 of the heat exchanger 100.
  • the part which is most easily influenced by watering is near the periphery of the watering range W where the wet state and the dry state are frequently switched.
  • the outdoor unit 200 is equipped with a sprinkler (not shown) at a position facing the back surface of the heat exchanger 150. Therefore, as shown in FIG. 6, the corrosion-resistant life diagnosis component 10 may be attached to a portion T 3 on the back side of the heat exchanger 150.
  • the corrosion-resistant life diagnosis component 10 may be attached to the peripheral portion W2 of the heat exchanger 150 in a range (sprinkling range W) having a certain extent to which water supplied from the sprinkling unit is applied.
  • a peripheral part is a part used as the boundary of the range which does not take water, and the range which does not start.
  • the heat exchanger 150 is configured by stacking the heat exchangers 100.
  • a support member (not shown) that supports the upper and lower heat exchangers 100 may be attached to the heat exchanger 100. Therefore, the corrosion resistance life diagnosis component 10 may be attached to the support member, and the corrosion resistance life diagnosis component 10 may be arranged at the peripheral portion of the watering range W.
  • the thickness of the first sacrificial anode layer 11A and the second sacrificial anode layer 11B may be a thickness within a preset range including the thickness of the heat exchanger sacrificial anode layer 1A of the heat transfer tube 1. This is because it is easier to diagnose the corrosion of the heat exchanger 150 when the conditions of the heat exchanger 150 and the corrosion resistance life diagnosis component 10 are the same. Therefore, for example, when the thickness of the heat exchanger sacrificial anode layer 1A is about 85 ⁇ m, the thickness of the first sacrificial anode layer 11A and the second sacrificial anode layer 11B is preferably about 75 to 100 ⁇ m, for example.
  • FIG. 9 is an explanatory diagram of dimensions and the like of the corrosion resistance life diagnosis component 10 according to the embodiment.
  • 10A is a longitudinal sectional view of the heat transfer tube 1 of the heat exchanger 100
  • FIG. 10B is a view showing the end portion side of the heat transfer tube 1 shown in FIG. 10A.
  • FIG. 11 is an explanatory diagram of a method for grasping the corrosion resistance life of the heat exchanger 100 to which the corrosion resistance life diagnosis component 10 is attached.
  • FIG. 12 is an example of a corrosion state of a portion of the heat transfer tube 1 of the heat exchanger 100 that is not sprayed with zinc. Note that the lines indicated by dotted lines A to E in FIG.
  • the black dots on the dotted lines A to E indicate the measurement points and indicate the positions where the measurement as to whether corrosion has occurred is made.
  • the heat exchanger sacrificial anode layer 1 ⁇ / b> A made of zinc is formed on the outer surface of the heat transfer tube 1 of the heat exchanger 100.
  • the heat transfer tube 1 which is an aluminum heat transfer tube, improves the corrosion resistance by subjecting the surface of the base aluminum (A3003) to zinc spraying and sacrificial protection.
  • Sacrificial corrosion protection is a technique for preventing corrosion of precious metals by selectively corroding electrically base metals using the potential difference between different metals. That is, in the aluminum heat exchanger, in order to prevent corrosion of the underlying aluminum (noble), zinc (base) is sprayed on the aluminum surface to preferentially corrode the zinc.
  • a base metal layer used for sacrificial corrosion protection is called a sacrificial anode layer. Therefore, by forming the heat exchanger sacrificial anode layer 1A on the heat transfer tube 1, the heat exchanger tube 1 is corroded instead of being corroded, and as a result, the heat transfer tube 1 is prevented from corroding. .
  • the heat exchanger sacrificial anode layer 1 ⁇ / b> A is a first heat exchanger sacrificial anode layer 1 ⁇ / b> A ⁇ b> 1 formed on the outer surface on one side (upper side in the drawing) when the heat transfer tube 1 is viewed in a longitudinal section.
  • a second heat exchanger sacrificial anode layer 1A2 formed on the outer surface on the other side (the lower side in the drawing).
  • the first heat exchanger sacrificial anode layer 1 ⁇ / b> A ⁇ b> 1 and the second heat exchanger sacrificial anode layer 1 ⁇ / b> A ⁇ b> 2 are formed to extend in the longitudinal direction of the heat transfer tube 1.
  • the first heat exchanger sacrificial anode layer 1A1 and the second heat exchanger sacrificial anode layer 1A2 are formed on the outer surface of the heat transfer tube 1 at a predetermined interval. That is, between the first heat exchanger sacrificial anode layer 1A1 and the second heat exchanger sacrificial anode layer 1A2, a heat exchanger base material exposed portion 1B, which is a portion where the heat transfer tube 1 is exposed, is provided. It has been. In the present embodiment, a case where the maximum of the width of the heat exchanger base material exposed portion 1B, that is, the circumferential width of the heat transfer tube 1 is 6 mm will be described as an example.
  • sacrificial corrosion protection works at a position within 5 mm from the first sacrificial anode layer 11A and the second sacrificial anode layer 11B, and corrosion of the base material exposed portion 31A is suppressed. It has been confirmed that That is, the corrosion of the base material exposed portion 31A is started from a position far from the first sacrificial anode layer 11A and the second sacrificial anode layer 11B in the base material exposed portion 31A.
  • the corrosion of the base material exposed portion 31A is started from the position of the A line farthest from the first sacrificial anode layer 11A and the second sacrificial anode layer 11B, and the corrosion area is A ⁇ B ⁇ C ⁇ . proceed.
  • the first sacrificial anode layer 11A and the second sacrificial anode layer 11B also recede.
  • the corrosion start line L corresponds to any of the B line to the E line.
  • the corrosion start line L is the C line
  • the heat transfer tube 1 itself is not corroded while the base material exposed portion 31A is corroded in the portion from the A line to the C line, but heat exchange is performed. It means that the vessel sacrificial anode layer 1A is corroded.
  • the corrosion of the base material exposed portion 31A exceeds the C line and reaches the D line side, it means that the heat transfer tube 1 itself starts to corrode.
  • the corrosion start line L is determined based on the effective range of sacrificial corrosion protection of the first sacrificial anode layer 11A and the second sacrificial anode layer 11B, the width of the heat exchanger base material exposed portion 1B, and the like.
  • the maximum width (X) of the initial heat exchanger base material exposed portion 1B in the actual machine (heat exchanger 100) and the width of the initial base material exposed portion 31A of the corrosion resistance life diagnosis component 10 are different
  • the position of half the width (X / 2) of the initial heat exchanger base material exposed portion 1B from the first sacrificial anode layer 11A and the second sacrificial anode layer 11B becomes the corrosion start line L.
  • the base material exposed portion 1B when the maximum one (X) of the width of the initial heat exchanger base material exposed portion 1B assumed in the actual machine is 6 mm, the base material exposed portion The position 3 mm (X / 2) from the center of 31A (the position of the A line) from the first sacrificial anode layer 11A and the second sacrificial anode layer 11B is the corrosion start line L (the position of the C line).
  • the effective range of sacrificial anticorrosion is 4 to 6 mm from the end of the sacrificial anode layer 11, and is within a certain range. Has an opening. For this reason, for example, it is necessary to determine the degree of corrosion progress in the circumferential direction of the heat transfer tube 1 in consideration of the possibility of an error of about ⁇ 1 mm.
  • the corrosion resistance life of the heat exchanger 100 is expressed by (step 1) a first period in which the heat exchanger sacrificial anode layer 1A corrodes and (step 2) a second period in which the heat transfer tube 1 also corrodes. Can do. That is, (step 1) a first period from the start of corrosion of only the heat exchanger sacrificial anode layer 1A instead of the heat transfer tube 1 to the start of corrosion of the heat transfer tube 1, and (step 2) the heat transfer tube 1 Can be expressed as a second period from when corrosion starts to when a through hole is formed in the heat transfer tube 1.
  • the corrosion resistance life diagnosis component 10 is collected and the corrosion progress of the heat exchanger 100 can be diagnosed (predicted) by confirming the progress of corrosion. For example, even if corrosion is confirmed in the A line, if corrosion is not confirmed in the B line, it is determined that the heat exchanger sacrificial anode layer 1A is corroded but the heat transfer tube 1 is not yet corroded. Can do. This time corresponds to the first period.
  • the corrosion rate in the depth direction of the heat transfer tube 1 can be estimated. That is, as shown in FIG. 12, as the corrosion in the width direction (lateral direction) of the base material exposed portion 31A progresses, the corrosion in the depth direction of the base material exposed portion 31A progresses more deeply. it is conceivable that. For this reason, it is that the corrosion rate to the depth direction of the heat exchanger base material exposure part 1B of the heat exchanger tube 1 can be estimated based on the horizontal corrosion of the base material exposure part 31A. This corrosion rate in the depth direction is used for calculation of the second period.
  • the first period is estimated from the corrosion in the width direction of the base material exposed portion 31A
  • the second period is estimated from the corrosion in the depth direction of the base material exposed portion 31A.
  • the corrosion-resistant life of the heat exchanger 100 can be diagnosed. For example, if the corrosion of the base material exposed portion 31A reaches the B line which is the corrosion start line L, the time until the corrosion reaches the C line is determined based on the corrosion rate from the A line to the B line. One period can be calculated.
  • the corrosion rate in the depth direction of the heat exchanger base material exposed portion 1B is estimated based on the time required from the A line to the B line, the thickness of the heat transfer tube 1 is a known value.
  • the corrosion resistance life of the heat exchanger 100 can be calculated by summing the calculated first period and second period. In this way, the corrosion resistance life diagnosis component 10 is attached, the line where the corrosion has reached is confirmed, and the corrosion resistance life of the heat transfer tube 1 can be accurately calculated by performing a certain calculation. Yes.
  • the corrosion in the depth direction of the base material exposed portion 31A may be actually measured, and the corrosion rate in the depth direction of the heat exchanger base material exposed portion 1B of the heat exchanger tube 1 may be estimated based on the measurement result. Needless to say.
  • the heat exchanger base material exposed portion 1B may be 2 mm.
  • the position of 1 mm (X / 2) from the center of the base material exposed portion 31A (the position of the A line) and the first sacrificial anode layer 11A and the second sacrificial anode layer 11B is the corrosion start line L ( E line position).
  • the width of the base material exposed portion 31A is in the range of 8 to 12 mm.
  • the first sacrificial anode layer 11A and The range of corrosion protection from the end face of the second sacrificial anode layer 11B is 4 to 6 mm and does not change. Accordingly, in the portion of the base material exposed portion 31A that is 6 mm or more away from the first sacrificial anode layer 11A and the second sacrificial anode layer 11B, the anticorrosion of the first sacrificial anode layer 11A and the second sacrificial anode layer 11B. There is no effect.
  • the portion which the anticorrosion effect cannot be obtained is handled in the same manner as the A line. Even when the width of the base material exposed portion 31A exceeds 12 mm, it can be used as the corrosion resistance life diagnosis component 10 in the same manner as the base material exposed portion 31A having a width of 8 to 12 mm.
  • FIG. 13 is an explanatory diagram of a sample used in a test for confirming the sacrificial anticorrosive effective range.
  • FIG. 14 is a diagram showing the corrosion depth measurement points of the sample shown in FIG.
  • FIG. 15 is an explanatory diagram of the effective range of the sacrificial anode layer 11 ′.
  • FIG. 16 is a view showing a state in which the sacrificial anode layer 11 ′ is retracted due to corrosion of the sacrificial anode layer 11 ′.
  • a sample for accelerated corrosion test was prepared by applying a 10 mm ⁇ 20 mm sacrificial anode (zinc sprayed) layer at 75 to 100 ⁇ m on the left half of a 20 mm ⁇ 20 mm aluminum plate.
  • Table 2 shows the results of observing the cross section of the sample for accelerated corrosion test after 480 h and measuring the corrosion depth of the base material.
  • the sample shown in FIG. 13 was further subjected to a corrosion acceleration test, and the corrosion depth was measured by cross-sectional observation at 960h and 2160h.
  • Table 3 shows the presence or absence of the sacrificial anode layer 11 'at each measurement point and the corrosion depth of the base material 31'.
  • the presence or absence of the sacrificial anode layer 11 ′ was observed with a cross section using SEM / EDX.
  • SEM refers to a scanning electron microscope
  • EDX refers to energy dispersive X-ray analysis. This means that the corrosion depth was determined by checking the presence or absence of the sacrificial anode layer 11 ′, which is a zinc layer, at each measurement point by SEM • EDX.
  • the corrosion progresses while maintaining the distance of 4 to 6 mm or more between the end face of the sacrificial anode layer 11 ′ and the base metal corrosion portion. That is, as shown in FIG. 16, as the corrosion progresses, the interface between the sacrificial anode layer 11 ′ and the base material exposed portion 31A ′ recedes to the left, and accordingly, the corrosion progress region 38 of the base material exposed portion 31A ′ also recedes the interface. It is thought that it expanded by the same distance.
  • FIG. 17 shows a modification (corrosion resistance life diagnosis component 90) of the corrosion resistance life diagnosis component 10 according to the embodiment.
  • the corrosion resistance life diagnosis component 10 the example in which the sacrificial anode layer 11 is formed on both ends of the base material exposed portion 31A has been described.
  • the sacrificial anode layer 91 may be formed only on one side.
  • the same effects as those of the corrosion resistance life diagnosis component 10 can be obtained. That is, like the sacrificial anode layer 11 of the corrosion-resistant life diagnosis component 10, the distance to be protected from the end face of the sacrificial anode layer 91 is 4 to 6 mm and does not change.
  • the corrosion-resistant life diagnosis component 90 in which the sacrificial anode layer 91 is formed only on one side of the base material exposed portion 92, the number of corrosion depth measurement points is halved, but the corrosion-resistant life can be diagnosed.
  • the width of the base material exposed portion 92 exceeds 6 mm, the range of corrosion protection from the end face of the sacrificial anode layer 91 remains unchanged at 4 to 6 mm. Therefore, the anticorrosion effect of the sacrificial anode layer 91 cannot be obtained in a portion of the base material exposed portion 92 that is 6 mm or more away from the sacrificial anode layer 91. About the part which cannot obtain this anticorrosion effect, it corrodes similarly to the A line mentioned above. That is, the portion where the anticorrosion effect cannot be obtained is handled in the same manner as the A line. Thus, even when the width of the base material exposed portion 92 exceeds 6 mm, it can be used as the corrosion resistance life diagnosis component 90 in the same manner as the width of the base material exposed portion 92 does not exceed 6 mm.
  • the corrosion-resistant life diagnosis component 10 the method of manufacturing the plate material 30 as shown in FIG. 1 and then cutting along the broken line shown in FIG. 1 has been described, but the method is not limited thereto. That is, like the corrosion resistance life diagnosis component 10 shown in FIG. 9 and the corrosion resistance life diagnosis component 90 shown in FIG. 17, the sacrificial anode layer 11, the base material exposed portion 31A, the sacrificial anode layer 91, and the base material exposure having preset dimensions are used. If the part 92 is obtained, it will not be limited to the method of manufacturing and cutting the board
  • the corrosion resistance life diagnosis component 10 attaches the corrosion resistance life diagnosis component 10 to the heat exchanger 100, confirms which line the corrosion has reached, and performs a certain calculation to thereby calculate the heat transfer tube 1 of the heat transfer tube 1.
  • the corrosion resistance life can be calculated with high accuracy.
  • the corrosion resistance life diagnosis component 10 according to the present embodiment takes into account that the cause of corrosion of the heat exchanger 100 and the progress speed of the corrosion differ based on the environment in which the heat exchanger 100 is installed. It can be easily installed at 100 preset locations.
  • the corrosion-resistant life diagnosis component 10 is a compact plate-like member, and can be attached to a peripheral portion (part T3) of a range (sprinkling range W) having a certain spread to which water supplied from the sprinkling unit is applied.
  • the heat transfer tube 1 can also be attached to a portion (portion T1 and portion T2) where the fins 2 are not disposed. For this reason, even if there is an uncertain element in the diagnosis of the corrosion resistance life, the corrosion resistance life can be accurately diagnosed while suppressing the loss of convenience.
  • the corrosion-resistant life diagnosis component 10 can accurately diagnose the corrosion-resistant life, a service person or the like can perform an appropriate maintenance period for the heat exchanger 100 and the refrigeration air conditioner including the heat exchanger 100. Can be determined. Thereby, when the refrigeration air conditioning apparatus provided with the heat exchanger 100 and the heat exchanger 100 comes to the market, it can prevent beforehand that the malfunction resulting from corrosion will arise.
  • 1 heat transfer tube 1A heat exchanger sacrificial anode layer, 1A1 first heat exchanger sacrificial anode layer, 1A2, second heat exchanger sacrificial anode layer, 1B heat exchanger base material exposed part, 1a flow path, 2 fins, 6A straight part, 6a hairpin part, 6b aluminum joint, 10 corrosion resistance life diagnosis part, 11 sacrificial anode layer, 11A first sacrificial anode layer, 11B second sacrificial anode layer, 11C third sacrificial anode layer, 30 plate material, 31 base material, 31A base material exposed part, 38 corrosion progress area, 51 front panel, 52 side panel, 54 fan guard, 55 air outlet, 56 base panel, 57 compressor, 58 accumulator, 59 air inlet, 90 corrosion resistance life Diagnostic parts, 91 sacrificial anode layer, 92 exposed base material, 100 heat exchanger, 150 heat exchanger, 200 outdoor , L corrosion initiation line, T1 portion, T2 moiety

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Metallurgy (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental Sciences (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Ecology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Prevention Of Electric Corrosion (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

 表面にアルミニウム層を有する板状の母材と、母材に形成され、亜鉛で構成された犠牲陽極層と、を有し、母材の表面は、アルミニウム層が露出している母材露出部を有しているものである。

Description

耐食性寿命診断部品、熱交換器、冷凍空調装置
 本発明は、耐食性寿命診断部品、熱交換器、冷凍空調装置に関するものである。
 従来、冷凍空調装置で使用される熱交換器には銅管が用いられてきたが、近年の銅価格高騰により、比較的安価な代替材料が求められている。そこで、銅材の代替としてアルミ材を用いたアルミ製の熱交換器を搭載した冷凍空調装置が提案されている(たとえば、特許文献1参照)。
 ここで、冷凍空調装置に搭載される熱交換器は、たとえば、蒸発器として機能している場合には熱交換器に供給される空気が冷却されて熱交換器のフィン及び伝熱管(冷媒配管)などに結露水が付着する。アルミ製の熱交換器は、銅のものと比較すると耐食性が低く、結露水により、熱交換器のフィン及び伝熱管などが腐食される。そして、伝熱管に腐食が発生すると貫通孔が形成されてしまう可能性がある。
 そこで、特許文献1に記載の技術では、冷凍空調装置にアルミ熱交換器を搭載した場合において、伝熱管の表面に亜鉛で構成された犠牲陽極層(Zn層)を形成し、犠牲陽極層を腐食させることで伝熱管の腐食を抑制している。
特開平6-194092号公報(たとえば、要約書参照)
 アルミ材は銅材と比較すると安価であり、従来の銅製の熱交換器に代わる材料としてアルミ製の熱交換器が注目されている。その一方で、アルミ材は銅材と比較すると耐食性が低い。このため、アルミ材を熱交換器の伝熱管に使用する場合には、伝熱管に腐食による貫通孔が形成され、伝熱管を流れる冷媒が大気中に漏れ出し、熱交換器における熱交換効率の低下を引き起こしたり、環境に負荷を与えてしまったりする可能性がある。このため、貫通孔が形成される前に熱交換器を交換する必要がある。
 腐食による伝熱管の貫通孔の形成を防止するためには、熱交換器の耐食性寿命を事前に診断(予測)する必要がある。しかし、熱交換器が設置される場所の環境によって、腐食の原因及び腐食の進行速度が異なる。また、犠牲陽極層を形成させる手法によっては、製造不良などにより、本来的には犠牲陽極層が形成される位置に犠牲陽極層が形成されないということも起こりうる。このため、熱交換器によって腐食の進行速度が異なることになる。
 このように、熱交換器の設置される環境、及び製造不良などによって、熱交換器の腐食の原因及び腐食の進行速度が異なり、耐食性寿命の診断にあたっては不確定な要素が存在している。すなわち、利便性を損なわないようにしながら、精度よく耐食性寿命の診断を行いにくいという課題がある。
 本発明は、以上のような課題を解決するためになされたもので、利便性が損なわれることを抑制しながら、精度よく耐食性寿命を診断することができる耐食性寿命診断部品、熱交換器、冷凍空調装置を提供することを目的としている。
 本発明に係る耐食性寿命診断部品は、表面にアルミニウム層を有する板状の母材と、母材に形成され、亜鉛で構成された犠牲陽極層と、を有し、母材の表面は、アルミニウム層が露出している母材露出部を有しているものである。
 本発明に係る耐食性寿命診断部品によれば、上記構成を有しているため、利便性が損なわれることを抑制しながら、精度よく耐食性寿命を診断することができる。
本発明の実施の形態に係る耐食性寿命診断部品を有する板材の平面図である。 図1に示す板材から切り出した耐食性寿命診断部品の平面図である。 耐食性寿命診断部品を有する冷凍空調装置としての室外機の全体斜視図である。 図3に示す室外機の前面パネル、サイドパネル、送風機及びファンガードなどを取り外した状態の斜視図である。 本発明の実施の形態に係る耐食性寿命診断部品の取付位置についての説明図である。 耐食性寿命診断部品を図5とは異なる位置に取り付けることについての説明図である。 本発明の実施の形態に係る耐食性寿命診断部品を伝熱管のうちのヘアピン部側に取り付ける方法についての説明図である。 図7に示すものを伝熱管のヘアピン部側から伝熱管の長手方向に平行な方向に向かって見た図である。 本発明の実施の形態に係る耐食性寿命診断部品の寸法などの説明図である。 (a)が熱交換器の伝熱管の縦断面図であり、(b)が(a)に示す伝熱管の端部側について示した図である。 耐食性寿命診断部品が取り付けられた熱交換器の耐食性の寿命の把握方法についての説明図である。 熱交換器の伝熱管のうち亜鉛溶射がされていない部分の腐食状態の一例である。 犠牲防食有効範囲を確認するための試験で使用したサンプルの説明図である。 図13に示すサンプルの腐食深さ測定点を示す図である。 犠牲陽極層の有効範囲についての説明図である。 犠牲陽極層が腐食されることで犠牲陽極層が後退した様子を示した図である。 本発明の実施の形態に係る耐食性寿命診断部品の変形例である。
 以下、本発明の実施の形態を図面に基づいて説明する。
実施の形態. 
 図1は、実施の形態に係る耐食性寿命診断部品10を有する板材30の平面図である。図2は、図1に示す板材30から切り出した耐食性寿命診断部品10の平面図である。なお、図2(a)は耐食性寿命診断部品10の平面図であり、図2(b)は耐食性寿命診断部品10の断面図である。また、図1及び図2(a)では、板材30の一方の面を示している。
 板材30は、表面にアルミニウム層を有する板状の母材31と、亜鉛で構成された犠牲陽極層11とを有しているものである。また、板材30には、母材31に、たとえば亜鉛溶射若しくは亜鉛含有塗装を施すことで形成される犠牲陽極層11が設けられている。なお、この犠牲陽極層11は、板材30の一方の面の一部に形成されている。具体的には、板材30の一方の面には、図1に示すように、犠牲陽極層11が予め設定された間隔を空けて設けられている。このため、板材30の一方の面において、母材31のうち犠牲陽極層11が設けられていない部分は、母材31であるアルミニウム層が露出している。このように、板材30には、犠牲陽極層11と母材31であるアルミニウム層が露出している部分(後述の母材露出部31A)とが交互に設けられている。本実施の形態では、アルミニウム層を有する母材31が耐食性寿命診断部品10が備えているものを説明したが、それに限定されるものではなく、全てアルミニウムで構成されたアルミ板を母材31としてもよい。
 なお、板材30の他方の面には、亜鉛の層が形成されている。すなわち、図2(b)に示すように、板材30の他方の面の全面は、亜鉛で構成された層である第3の犠牲陽極層11Cが形成されている。第3の犠牲陽極層11Cが全面犠牲陽極層である。なお、この第3の犠牲陽極層11Cも、たとえば亜鉛溶射或若しくは亜鉛含有塗装を施すことで形成される。異種金属を長時間に渡って接触させると、金属間の電位差によって異種金属の接触面で腐食が促進される。耐食性寿命診断部品10は、後述する熱交換器150の伝熱管1の熱交換器犠牲陽極層1Aに取り付けることを想定している。このため、耐食性寿命診断部品10の裏面の全面を犠牲陽極とし、異種金属間腐食を防止している。
 ここで、亜鉛溶射とは、母材31に亜鉛を吹き付けることを指している。このため、母材31のアルミニウム層と、亜鉛との間には境界が生じていない。一方、亜鉛含有塗装とは、母材31に亜鉛を塗ることを指しており、母材31のアルミニウム層と、亜鉛との間には境界が生じている。図2(b)では、亜鉛含有塗装により母材31に亜鉛を塗装した場合を示した断面図を示している。実施の形態に係る耐食性寿命診断部品10は、たとえば後述の熱交換器100などに取り付けられ、熱交換器100の耐食性寿命の診断に利用される。この耐食性の寿命の診断にあたって、耐食性寿命診断部品10と熱交換器100との条件が同一である方が好ましい。このため、熱交換器100が亜鉛溶射を利用して製造されている場合には、耐食性寿命診断部品10も亜鉛溶射を利用することとし、熱交換器100が亜鉛含有塗装を利用して製造されている場合には、耐食性寿命診断部品10も亜鉛含有塗装を利用するとよい。
 耐食性寿命診断部品10は、図1に示す板材30を切り出すことで得ることができるものである。すなわち、板材30を図1に示す破線に沿って切ることで、板材30のうち破線で区画された部分が切り出され、耐食性寿命診断部品10を得ることができる。
 耐食性寿命診断部品10は、帯状に形成された複数の犠牲陽極層11が設けられている。すなわち、耐食性寿命診断部品10には、一方の端部側に形成された第1の犠牲陽極層11Aと、他方の端部側に形成された第2の犠牲陽極層11Bとが設けられている。そして、第1の犠牲陽極層11Aと第2の犠牲陽極層11Bとの間には、母材31が露出している部分である母材露出部31Aが設けられている。このように、耐食性寿命診断部品10の一方の面には、第1の犠牲陽極層11Aと第2の犠牲陽極層11Bとの間に、母材露出部31Aが位置している。なお、耐食性寿命診断部品10の他方の面の全面は、亜鉛の層を有する第3の犠牲陽極層11Cが形成されている。耐食性寿命診断部品10は、母材の他方の表面であって第3の犠牲陽極層11C側の面が、伝熱管1の外表面と当接するように伝熱管1に取り付けられている。
 第1の犠牲陽極層11A及び第2の犠牲陽極層11Bは、母材31の一方側から他方側に向かう方向と平行な幅が5mm以上の寸法であり、母材露出部31Aは、母材31の一方側から他方側に向かう方向と平行な幅が8~12mmである(図9参照)。なお、母材31の一方側から他方側に向かう方向と平行な幅を8~12mmとした理由については、後段の図13及び図14で詳しく説明する。
 なお、本実施の形態では、板材30がアルミニウム層を有する母材31を備え、亜鉛溶射又は亜鉛含有塗装を実施することで耐食性寿命診断部品10を得る場合を例に説明したが、それに限定されるものではない。たとえば、アルミニウムの板材と亜鉛の板材とが接合されて構成されたクラッド板を用いてもよい。すなわち、母材31に対応するアルミニウムの板材に、第1の犠牲陽極層11A及び第2の犠牲陽極層11Bに対応する亜鉛の板材が接合されたクラッド板を用いてもよいということである。また、このクラッド板は、第3の犠牲陽極層11Cに対応する亜鉛の板材も接合され、3層となっているものであってもよい。なお、クラッド板を用いる場合には、板材30の一方の面側にアルミニウム層がくるようにし、母材露出部31Aがアルミニウム層となるようにする。
 図3は、耐食性寿命診断部品10を有する冷凍空調装置としての室外機200の全体斜視図である。図4は、図3に示す室外機200の前面パネル51、サイドパネル52、送風機及びファンガード54などを取り外した状態の斜視図である。空気調和装置の室外機200を例として、冷凍空調装置の一例について説明する。
 室外機200は、たとえば、縦長な外郭を有するものである。すなわち、室外機200は、図3に示すように、室外機200の前面側の外郭を構成する前面パネル51と、室外機200の上部に設けられるファンガード54と、室外機200の側面の外郭を構成するサイドパネル52とを有している。室外機200は、その外郭の側面及び背面に、内部に空気を取り込む空気吸込口59が設けられ、室外機200の上部に外部に空気を排気する空気吹出口55が設けられている。すなわち、室外機200は、サイドパネル52に形成され、空気を室外機200内に取り込むのに利用される空気吸込口59と、ファンガード54に形成され、室外機200内の空気を室外機200外に放出するのに利用される空気吹出口55とを有している。
 室外機200は、熱交換器100と、この熱交換器100などを支持するベースパネル56と、冷媒を圧縮して吐出するコンプレッサ57と、余剰冷媒を貯留するアキュムレータ58とを有しているものである。
 熱交換器100は、自身に供給される冷媒と、自身を通過する空気とを熱交換させるものである。そして、熱交換器100は、冷房運転時には凝縮器(放熱器)として機能して冷媒を凝縮液化し、暖房運転時には蒸発器として機能し冷媒を蒸発気化させるものである。熱交換器100は、サイドパネル52の対向位置に設けられ、たとえば、サイドパネル52に固定されるものである。
 ここで、本実施の形態において、熱交換器100は、上下方向に3段積層されたものとして説明しているが、それに限定されるものではなく、積層されていない態様であってもよい。
 ベースパネル56は、熱交換器100、コンプレッサ57及びアキュムレータ58などを支持するものであり、これらがたとえばネジ止めされているものである。ベースパネル56は、室外機200の底面側の外郭を構成するものである。コンプレッサ57は、たとえばベースパネル56上に設置されるものであり、冷媒を圧縮して吐出するものである。コンプレッサ57は、吸入側がアキュムレータ58に接続される。また、コンプレッサ57は、吐出側が、冷房運転時には熱交換器100に接続され、暖房運転時には図示省略の室内機に搭載される利用側の熱交換器に接続される。アキュムレータ58は、コンプレッサ57の吸入側に接続され、液冷媒を貯留するものである。また、アキュムレータ58の後側、右側及び左側には、熱交換器100が立設している。
 また、室外機200には、室外機200内に空気を取り込み、排出するのに利用されるファン(図示省略)が搭載されている。なお、ファンは、ファンガード54を取り外すと露出し、回転することで室外機200内に空気を取り込み、室外機200外に空気を排気させるものである。このように、ファンは、ファンガード54に囲まれるように設けられており、ファンの上側には、空気吹出口55が形成されている。すなわち、空気吸込口59に沿って配置された熱交換器100を経た空気は、室外機200の内部に吸い込まれ、ファンを介して外郭内部の上部に形成された空気吹出口55から排気される。
 図5は、実施の形態に係る耐食性寿命診断部品10の取付位置についての説明図である。図6は、耐食性寿命診断部品10を図5とは異なる位置に取り付けることについての説明図である。図7は、実施の形態に係る耐食性寿命診断部品10を伝熱管1のうちのヘアピン部6a側に取り付ける方法についての説明図である。図8は、図7に示すものを伝熱管1のヘアピン部6a側から伝熱管1の長手方向に平行な方向に向かって見た図である。
 なお、本実施の形態では、熱交換器100が扁平形状を有する伝熱管1を備えた扁平管熱交換器である場合を例に示している。また、図6では、図5に示すフィン2に伝熱管1を接続した熱交換器100をU字状に曲げ加工し、その曲げ加工した熱交換器100を複数積み重ねた熱交換器150である。図6では、3つ重ね合わせた場合の熱交換器150の例を示している。
 熱交換器100は、図5及び図6に示すように、伝熱管1と、板状のフィン2とを有するものである。伝熱管1は、内部に熱交換媒体が流れる流路1a(図10参照)が形成されている。伝熱管1は、フィン2に形成された切欠(図示省略)に挿入される直線部6Aと、直線部6Aに接続され、断面形状が扁平形状であるU字状に形成されたヘアピン部6aと、直線部6Aの端部側のうちヘアピン部6aとは反対側の端部側に接続されているアルミジョイント6bとを有している。直線部6Aは、長手方向に垂直な断面が扁平形状である。なお、アルミジョイント6bには、図示省略のヘッダーパイプが接続される。伝熱管1には、たとえば、水、冷媒、ブラインなどの流体が流れる。なお、本実施の形態では、フィン2に挿入する管として、断面形状が扁平形状であるヘアピン部6aを有する伝熱管1を用いた場合を例に説明するが、それに限定されるものではない。たとえば、断面形状が扁平形状であるヘアピン部6aの代わりに、断面形状が円形のベント管を有する伝熱管1を用いてもよい。
 伝熱管1には、複数のフィン2が接続されており、その分、耐食性寿命診断部品10の取り付け場所が制限されている。すなわち、熱交換器100に耐食性寿命診断部品10を取り付けると、フィン2を傷つけてしまう場合がある。そこで、耐食性寿命診断部品10は、図5に示すように、伝熱管1のうちフィン2からはずれた位置であって直線部6Aの端部側に取り付けられる。具体的には、図5に示すように、伝熱管1の中でもフィン2が配置されていない部分T1、すなわち直線部6Aのうちヘアピン部6a側の部分に耐食性寿命診断部品10を取り付けるとよい。より詳細には、直線部6Aのうち最もヘアピン部6a側に取り付けられているフィン2の取付位置と、直線部6Aのうちヘアピン部6aが接続されている位置との間の直線部6Aに耐食性寿命診断部品10を取り付けるとよい。
 また、図5に示すように、伝熱管1の中でもフィン2が配置されていない部分T2に耐食性寿命診断部品10を取り付けてもよい。すなわち、図5に示す直線部6Aのうち最もヘアピン部6aとは遠い側に取り付けられているフィン2の取付位置よりも、ヘアピン部6aから離れる側の部分T2に耐食性寿命診断部品10を取り付けるとよい。直線部6Aのうちアルミジョイント6b側の部分T2に耐食性寿命診断部品10を取り付けるとよいということである。
 冷凍空調装置に搭載されている熱交換器は低温側で使用した際に結露が発生する。すなわち、熱交換器が蒸発器として機能している際には、空気中の水分濃度が過飽和となり熱交換器に結露が発生する。これにより、熱交換器の表面に付着した結露水が腐食を促進させる可能性があるため、より正確な腐食診断を実施するためには耐食性寿命診断部品10も熱交換器の伝熱管と同様の温度環境に置く必要がある。そこで、耐食性寿命診断部品10を熱交換器100の伝熱管1に密着するように取り付けるとよい。耐食性寿命診断部品10を熱交換器100に密着させることで、伝熱管1と耐食性寿命診断部品10との間に直接的な熱伝導が発生し、伝熱管1の結露と耐食性寿命診断部品10の結露とを概ね同時に引き起こすことができる。耐食性寿命診断部品10の取り付け方法の例を次に説明する。
 耐食性寿命診断部品10を直線部6Aに取り付けるにあたり、図7及び図8に示すように、耐食性寿命診断部品10の両端側を折り曲げて、耐食性寿命診断部品10が直線部6Aに沿うように取り付けるとよい。これにより、接着剤などを用いなくても、耐食性寿命診断部品10を直線部6Aに密着するように取り付けることができる。なお、耐食性寿命診断部品10を伝熱管1に取り付けるのにあたり、紐及び針金などを利用してもよい。
 ここで、接着剤などを利用する方法も考えられるが、接着剤を利用すると、伝熱管1から耐食性寿命診断部品10への熱伝達が遅れ、耐食性寿命診断部品10及び伝熱管1の両方を同一の条件としにくくなってしまうことに留意が必要である。このため、接着剤などを用いる場合には、熱伝導による影響が大きくない範囲で用いることが好ましい。たとえば、耐食性寿命診断部品10の全面に接着剤を塗布するのではなく、周縁部にだけ塗布するなどにより、熱伝導による影響を抑制することができる。
 さらに、冷凍空調装置の室外機に搭載される熱交換器は、熱交換効率を向上させる目的で筐体外側から散水が行われるものがある。散水用の水には、たとえば水道水が用いられており、水道水にはアルミに比べてイオン化傾向の小さい鉄イオンおよび銅イオンが含まれている。一方で、金属の腐食はイオン化傾向の影響を受ける。イオン化傾向の異なる金属が接触した場合、イオン化傾向の大きい金属が優先的に腐食する。したがって、散水によって表面に付着した水道水中の鉄イオン及び銅イオンが、アルミ熱交換器の腐食を促進させる可能性がある。このため、熱交換器のうち、散水による影響を受けやすい箇所において耐食性寿命の診断をする必要がある。そこで、耐食性寿命診断部品10を熱交換器100の伝熱管1のうち散水の影響を特に受けやすい箇所に取り付けるとよい。なお、最も散水による影響を受けやすい部分は、湿潤状態と乾燥状態とが頻繁に切り替わる散水範囲Wの周縁付近と考えられる。
 ここで、本実施の形態でも、室外機200には、熱交換器150の背面の対向位置に図示省略の散水部が搭載されている。そこで、図6に示すように、耐食性寿命診断部品10を熱交換器150の背面側の部分T3に取り付けるとよい。すなわち、耐食性寿命診断部品10は、熱交換器150のうち、散水部から供給される水がかかる一定の拡がりを有する範囲(散水範囲W)の周縁部分W2に取り付けるとよい。なお、周縁部分とは、水のかかる範囲とかからない範囲との境目となる部分である。ここで、熱交換器150は熱交換器100が積み重ねられて構成されている。このため、上下の熱交換器100を支持する支持部材(図示省略)が熱交換器100に取り付けられている場合がある。そこで、耐食性寿命診断部品10を支持部材に取り付けて、散水範囲Wの周縁部分に耐食性寿命診断部品10が配置されるようにしてもよい。
 また、第1の犠牲陽極層11A及び第2の犠牲陽極層11Bの厚みとしては、伝熱管1の熱交換器犠牲陽極層1Aの厚みを含む、予め設定された範囲の厚みとするとよい。熱交換器150及び耐食性寿命診断部品10の条件が同一の方が、熱交換器150の腐食の診断をしやすいためである。このため、たとえば熱交換器犠牲陽極層1Aの厚みが85μm程度である場合には、第1の犠牲陽極層11A及び第2の犠牲陽極層11Bの厚みは、たとえば75~100μm程度とするとよい。
 図9は、実施の形態に係る耐食性寿命診断部品10の寸法などの説明図である。図10は、(a)が熱交換器100の伝熱管1の縦断面図であり、(b)が(a)に示す伝熱管1の端部側について示した図である。図11は、耐食性寿命診断部品10が取り付けられた熱交換器100の耐食性の寿命の把握方法についての説明図である。図12は、熱交換器100の伝熱管1のうち亜鉛溶射がされていない部分の腐食状態の一例である。なお、図9の点線A~Eで示すラインは、耐食性寿命診断部品10が取り付けられた熱交換器100の伝熱管1の腐食が開始してしまう時期を診断(予測)するためのものである。また、この点線A~E上の黒い点は測定点を示したものであって腐食が発生しているかについての測定がなされる位置を示している。
 熱交換器100の伝熱管1には、図10に示すように、その外表面に亜鉛で構成された熱交換器犠牲陽極層1Aが形成されている。アルミ材は銅材に比べて耐食性が低いため、アルミ製の伝熱管である伝熱管1は、母材のアルミ(A3003)の表面に亜鉛溶射を施し、犠牲防食させることで耐食性を向上させている。犠牲防食とは、異種金属間の電位差を利用し、電気的に卑な金属を選択的に腐食させることで、貴な金属を防食する手法である。すなわち、アルミ熱交換器では下地のアルミ(貴)を防食するために、アルミ表面に亜鉛(卑)を溶射し優先的に亜鉛を腐食させている。なお、犠牲防食を行う際の卑な金属層を犠牲陽極層と呼ぶ。したがって、熱交換器犠牲陽極層1Aを伝熱管1に形成することで、伝熱管1が腐食される代わりに熱交換器犠牲陽極層1Aが腐食される結果、伝熱管1の腐食が抑制される。
 熱交換器犠牲陽極層1Aは、図10に示すように、伝熱管1を縦断面視したときに、一方側(紙面上側)の外側面に形成された第1の熱交換器犠牲陽極層1A1と、他方側(紙面下側)の外側面に形成された第2の熱交換器犠牲陽極層1A2とから構成される。第1の熱交換器犠牲陽極層1A1及び第2の熱交換器犠牲陽極層1A2は、伝熱管1の長手方向に延びるように形成されている。第1の熱交換器犠牲陽極層1A1と第2の熱交換器犠牲陽極層1A2とは、予め設定された間隔をあけて伝熱管1の外表面に形成されている。すなわち、第1の熱交換器犠牲陽極層1A1と第2の熱交換器犠牲陽極層1A2との間には、伝熱管1が露出している部分である熱交換器母材露出部1Bが設けられている。本実施の形態では、熱交換器母材露出部1Bの幅、すなわち伝熱管1の周方向の幅のうちの最大が、6mmである場合を一例に説明する。
 本実施の形態に係る耐食性寿命診断部品10では、第1の犠牲陽極層11A及び第2の犠牲陽極層11Bから5mm以内の位置では、犠牲防食が働き、母材露出部31Aの腐食が抑制されることが確認されている。すなわち、母材露出部31Aのうちの第1の犠牲陽極層11A及び第2の犠牲陽極層11Bから遠い位置から、母材露出部31Aの腐食が開始される。このため、第1の犠牲陽極層11A及び第2の犠牲陽極層11Bから最も遠いAラインの位置から母材露出部31Aの腐食が開始され、腐食領域はA→B→C→・・・と進行する。そして、腐食領域の進行に伴って第1の犠牲陽極層11A及び第2の犠牲陽極層11Bも後退していく。
 母材露出部31Aの腐食が進行し、熱交換器100の伝熱管1の自体の腐食が開始することを示す腐食開始ラインLに母材露出部31Aの腐食が至ると、サービスマンなどは伝熱管1自体に腐食が開始したと判断することができる。ここで、腐食開始ラインLは、Bライン~Eラインのいずれかが該当する。たとえば、腐食開始ラインLがCラインである場合には、母材露出部31AがAラインからCラインまでの部分で腐食している間は、伝熱管1自体は腐食されていないが、熱交換器犠牲陽極層1Aが腐食していることを意味する。そして、母材露出部31Aの腐食がCラインを超えてDライン側に至ると、伝熱管1自体の腐食が開始していることを意味する。
 腐食開始ラインLは、第1の犠牲陽極層11A及び第2の犠牲陽極層11Bの犠牲防食の有効範囲、及び熱交換器母材露出部1Bの幅などに基づいて決定される。実機(熱交換器100)における初期の熱交換器母材露出部1Bの幅の最大のもの(X)と、耐食性寿命診断部品10の初期の母材露出部31Aの幅とが異なる場合には、第1の犠牲陽極層11A及び第2の犠牲陽極層11Bから初期の熱交換器母材露出部1Bの幅の半分(X/2)の位置が腐食開始ラインLとなる。
 たとえば、図10(b)に示すように、実機にて想定される初期の熱交換器母材露出部1Bの幅のうちの最大のもの(X)が6mmの場合には、母材露出部31Aの中心(Aラインの位置)から第1の犠牲陽極層11A及び第2の犠牲陽極層11Bから3mm(X/2)の位置が腐食開始ラインL(Cラインの位置)となる。そして、腐食開始ラインLであるCラインよりも内側のAライン及びBラインにおける母材露出部31Aの腐食有無を確認し、実機(熱交換器100)における熱交換器犠牲陽極層1Aの後退度合い(伝熱管1の周方向の腐食進行度)を知ることができる。
 ただし、後述する図13~図16及び表1~表3の試験及びその結果で説明するように、犠牲防食の有効範囲は犠牲陽極層11の端部から4~6mmとなっており、一定範囲の開きを有している。このため、たとえば、±1mm程度の誤差が生じる可能性を加味して、伝熱管1の周方向の腐食進行度について判断する必要がある。
 ここで、熱交換器100の耐食性寿命は、(ステップ1)熱交換器犠牲陽極層1Aが腐食する第1の期間と、(ステップ2)伝熱管1も腐食する第2の期間とで表すことができる。すなわち、(ステップ1)伝熱管1の代わりに熱交換器犠牲陽極層1Aのみが腐食を開始してから伝熱管1の腐食が開始するまでの第1の期間と、(ステップ2)伝熱管1が腐食を開始してから伝熱管1に貫通孔が形成されてしまうまでの第2の期間とで表すことができる。
 伝熱管1がアルミニウムで構成された実機(熱交換器100)に耐食性寿命診断部品10を装着した冷凍空調装置を設置後、定期的に(たとえば3年、5年、8年、10年、・・・)耐食性寿命診断部品10を回収し、腐食進行度を確認することで熱交換器100の耐食性寿命を診断(予測)することができる。たとえば、Aラインで腐食が確認されても、Bラインでは腐食が確認されなければ、熱交換器犠牲陽極層1Aは腐食しているものの、伝熱管1についてはまだ腐食していないと判断することができる。このときは、第1の期間に該当する。
 さらに、図11のCラインより外側の腐食の進行が実機における熱交換器母材露出部1Bの腐食の進行に相当しているので、Cラインにおける腐食開始時点でのAライン及びBラインの腐食進行度を確認することで、伝熱管1の深さ方向への腐食速度を見積もることができる。すなわち、図12に示すように、母材露出部31Aの幅方向(横方向)の腐食が進行していればいるほど、母材露出部31Aの深さ方向の腐食もより深く進行していると考えられる。このため、母材露出部31Aの横方向の腐食に基づいて、伝熱管1の熱交換器母材露出部1Bの深さ方向への腐食速度を見積もることができるということである。この深さ方向への腐食速度は、第2の期間の算出に用いられる。
 このように、母材露出部31Aの幅方向の腐食から第1の期間を見積もり、母材露出部31Aの深さ方向の腐食から第2の期間を見積もる。これによって、熱交換器100の耐食性寿命を診断をすることができる。
 たとえば、母材露出部31Aの腐食が腐食開始ラインLであるBラインに至っていれば、AラインからBラインに至るまでの腐食速度に基づいて、腐食がCラインに至るまでの時間である第1の期間を算出することができる。また、AラインからBラインに至るまでに要した時間に基づいて熱交換器母材露出部1Bの深さ方向への腐食速度を見積もれば、伝熱管1の厚みは既知の値であるため、いつごろ伝熱管1に貫通孔が形成されてしまうかを判断することができ、第2の期間を算出することができる。この算出した第1の期間及び第2の期間を合計することで熱交換器100の耐食性寿命を算出することができる。このように、耐食性寿命診断部品10を取り付け、腐食がどのラインにまで達しているかを確認し、一定の演算をすることで伝熱管1の耐食性寿命を精度よく算出することができるようになっている。
 なお、母材露出部31Aの深さ方向の腐食を実際に計測し、その計測結果に基づいて伝熱管1の熱交換器母材露出部1Bの深さ方向への腐食速度を見積もってもよいことは言うまでもない。
 また、本実施の形態では、上述のように初期の熱交換器母材露出部1Bの幅のうちの最大のもの(X)が6mmである場合を想定して説明した。ここで、亜鉛溶射で熱交換器100を製造する場合においては、図10に示す伝熱管1の左右の端部側に亜鉛が吹き付けられにくい。すなわち、製造不良などにより、熱交換器母材露出部1Bの対応する位置に亜鉛が吹き付けられない場合がある。このため、本実施の形態では、図10に示す伝熱管1の左右の端部側に亜鉛が吹き付けられなかった場合として最悪のものを想定し、熱交換器母材露出部1Bを6mmとして説明した。
 このため、亜鉛溶射が適切に実施されれば、熱交換器母材露出部1Bが2mmとなる場合もある。この場合の例では、母材露出部31Aの中心(Aラインの位置)から第1の犠牲陽極層11A及び第2の犠牲陽極層11Bから1mm(X/2)の位置が腐食開始ラインL(Eラインの位置)となる。
 また、本実施の形態では、母材露出部31Aの幅を8~12mmの範囲としたが、母材露出部31Aの幅が12mmを超える場合であっても、第1の犠牲陽極層11A及び第2の犠牲陽極層11Bの端面から防食される範囲は、4~6mmで変わらない。したがって、母材露出部31Aのうち第1の犠牲陽極層11A及び第2の犠牲陽極層11Bから6mm以上離れている部分では、第1の犠牲陽極層11A及び第2の犠牲陽極層11Bの防食効果は得られない。この防食効果が得られない部分については、上述したAラインと同様に腐食する。すなわち、防食効果が得られない部分は、Aラインと同様に扱われる。このような母材露出部31Aの幅が12mmを越える場合であっても、母材露出部31Aの幅が8~12mmのものと同様に耐食性寿命診断部品10として使用することができる。
[犠牲防食の有効範囲などの試験について]
 図13は、犠牲防食有効範囲を確認するための試験で使用したサンプルの説明図である。図14は、図13に示すサンプルの腐食深さ測定点を示す図である。図15は、犠牲陽極層11’の有効範囲についての説明図である。図16は、犠牲陽極層11’が腐食されることで犠牲陽極層11’が後退した様子を示した図である。図13~図16を参照して、耐食性寿命診断部品10に係るサンプルに対して実施した試験及び結果について説明する。
 図13に示すように、20mm×20mmアルミ板の左半面に10mm×20mmの犠牲陽極(亜鉛溶射)層を75~100μmにて施した腐食加速試験用サンプルを作成した。なお、母材露出部31A’と犠牲陽極層11’の界面をx=0とし、母材露出部31A’側を正、犠牲陽極層11’側を負として座標を定義した。
 また、図14に示すとおり、x=-8、-6、-4、-2、0、2、4、6、8の各座標において、縦方向に等間隔でNo.1~No.5の点を定義し、腐食深さ測定点とした。
 図13に記載のサンプルに対し、表1に記載の複合サイクル試験によりn=5の腐食加速試験を行った。
Figure JPOXMLDOC01-appb-T000001
 480h後、腐食加速試験用サンプルの断面観察を行い、母材の腐食深さを測定した結果を表2に示す。No.1ではx=6mmで2mm、x=8mmで5mmの母材腐食が見られた。No.2ではx=8mmで4mmの母材腐食が見られた。No.3ではx=6mmで1mm、x=8mmで6mmの母材腐食が見られた。No.4ではx=8mmで6mmの母材腐食が見られた。No.5ではx=8mmで7mmの母材腐食が見られた。
 以上より、x=-8~4mmでは一切母材の腐食が見られなかった。また、x=6mmではNo.1および3にて母材の腐食が進行していた。すなわち、サンプルの犠牲陽極層11’との界面から4~6mm以内の箇所では、母材の腐食が進行しなかったことから、図15に示す通り犠牲防食は犠牲陽極層11’の端面より4~6mm以内で作用すると考えられる。
Figure JPOXMLDOC01-appb-T000002
 図13に示すサンプルに対し、さらに腐食加速試験を実施し、960h、2160hで断面観察による腐食深さ測定を実施した。各測定点における犠牲陽極層11’の残存有無及び母材31’の腐食深さを表3に示す。なお、犠牲陽極層11’の残存有無は、SEM・EDXで断面観察を行った。ここで、SEMとは走査型電子顕微鏡を指し、EDXとはエネルギー分散型X線分析を指している。このSEM・EDXでの各測定点において、亜鉛層である犠牲陽極層11’の残存有無を確認することで、腐食深さを判断したということである。ここで、表3では、犠牲陽極層11’が残存有りを「○」で示し、犠牲陽極層11’の残存無しを「×」で示し、初期より犠牲陽極層11’が無いことを「-」で示した。また、各座標における母材腐食深さはNo.1~No.5の平均を示している。
 480hではx=0mmまで犠牲陽極層11’が残存していた。また、x=6mmでは、1mmの母材腐食が見られた。
 960hではx=-4mmまで犠牲陽極層11’が残存していた。また、x=2mmでは、4mmの母材腐食が見られた。
 2160hではx=-8mmまで犠牲陽極層11’が残存していた。また、x=-2mmで3mmの母材腐食が見られた。
 以上より、犠牲陽極層11’の端面と母材腐食の箇所は、4~6mm以上の距離を保ちつつ腐食が進行すると考えられる。すなわち、図16に示すように、腐食の進行とともに犠牲陽極層11’と母材露出部31A’の界面が左側に後退し、これに伴い母材露出部31A’の腐食進行領域38も界面後退と同じ距離だけ拡大したと考えられる。
Figure JPOXMLDOC01-appb-T000003
[変形例]
 図17は、実施の形態に係る耐食性寿命診断部品10の変形例(耐食性寿命診断部品90)である。耐食性寿命診断部品10では、母材露出部31Aの両端に犠牲陽極層11を形成した例について説明したが、図17に示すように、片側にのみ犠牲陽極層91を形成したものであっても、耐食性寿命診断部品10と同様の効果を得ることができる。すなわち、耐食性寿命診断部品10の犠牲陽極層11と同様に、犠牲陽極層91の端面から防食される距離は4~6mmで変わらない。したがって、母材露出部92の片側にのみ犠牲陽極層91を形成した耐食性寿命診断部品90においても、腐食深さ測定点数は半減するが、耐食性寿命についての診断をすることができる。
 また、母材露出部92の幅が6mmを超える場合であっても、犠牲陽極層91の端面から防食される範囲は、4~6mmで変わらない。したがって、母材露出部92のうち犠牲陽極層91から6mm以上離れている部分では、犠牲陽極層91の防食効果は得られない。この防食効果が得られない部分については、上述したAラインと同様に腐食する。すなわち、防食効果が得られない部分は、Aラインと同様に扱われる。このように、母材露出部92の幅が6mmを越える場合であっても、母材露出部92の幅が6mmを超えないものと同様に耐食性寿命診断部品90として使用することができる。
 また、耐食性寿命診断部品10の製造方法としては、図1に示すような板材30を製造し、その後、図1に示す破線に沿って切る方法について説明したがそれに限定されるものではない。すなわち、図9に示す耐食性寿命診断部品10及び図17に示す耐食性寿命診断部品90のように、予め設定された寸法の犠牲陽極層11、母材露出部31A、犠牲陽極層91、母材露出部92が得られれば、図1に示すような板材30を製造して切る方法に限定されるものではない。
[実施の形態の効果について]
 本実施の形態に係る耐食性寿命診断部品10は、耐食性寿命診断部品10を熱交換器100に取り付け、腐食がどのラインにまで達しているかを確認し、一定の演算をすることで伝熱管1の耐食性寿命を精度よく算出することができるものである。
 また、本実施の形態に係る耐食性寿命診断部品10は、熱交換器100が設置される環境に基づいて熱交換器100の腐食の原因及び腐食の進行速度が異なることを考慮し、熱交換器100の予め設定された箇所に簡便に設置することができるものである。たとえば、耐食性寿命診断部品10は、コンパクトな板状部材であり、散水部から供給される水がかかる一定の拡がりを有する範囲(散水範囲W)の周縁部分(部分T3)に取り付けることもできるし、伝熱管1の中でもフィン2が配置されていない部分(部分T1及び部分T2)に取り付けることもできる。このため、耐食性寿命の診断にあたっては不確定な要素が存在していたとしても、利便性が損なわれることを抑制しながら、精度よく耐食性寿命を診断することができるようになっている。
 本実施の形態に係る耐食性寿命診断部品10は、精度よく耐食性寿命を診断することができるため、サービスマンなどは熱交換器100及び熱交換器100を備えた冷凍空調装置についての適切なメンテナンス時期を決定することができる。これにより、熱交換器100及び熱交換器100を備えた冷凍空調装置が市場に出た際に、腐食に起因した不具合が生じてしまうことを未然に防止することができる。
 1 伝熱管、1A 熱交換器犠牲陽極層、1A1 第1の熱交換器犠牲陽極層、1A2 第2の熱交換器犠牲陽極層、1B 熱交換器母材露出部、1a 流路、2 フィン、6A 直線部、6a ヘアピン部、6b アルミジョイント、10 耐食性寿命診断部品、11 犠牲陽極層、11A 第1の犠牲陽極層、11B 第2の犠牲陽極層、11C 第3の犠牲陽極層、30 板材、31 母材、31A 母材露出部、38 腐食進行領域、51 前面パネル、52 サイドパネル、54 ファンガード、55 空気吹出口、56 ベースパネル、57 コンプレッサ、58 アキュムレータ、59 空気吸込口、90 耐食性寿命診断部品、91 犠牲陽極層、92 母材露出部、100 熱交換器、150 熱交換器、200 室外機、L 腐食開始ライン、T1 部分、T2 部分、T3 部分、W 散水範囲。

Claims (13)

  1.  表面にアルミニウム層を有する板状の母材と、
     前記母材に形成され、亜鉛で構成された犠牲陽極層と、
     を有し、
     前記母材の表面は、
     前記アルミニウム層が露出している母材露出部を有している
     ことを特徴とする耐食性寿命診断部品。
  2.  前記犠牲陽極層は、
     前記母材の表面に、帯状に複数形成されており、
     前記母材は、
     複数の前記犠牲陽極層の間に前記母材露出部が設けられている
     ことを特徴とする請求項1に記載の耐食性寿命診断部品。
  3.  前記母材露出部は幅が8~12mmである
     ことを特徴とする請求項1又は2に記載の耐食性寿命診断部品。
  4.  前記犠牲陽極層は幅が5mm以上である
     ことを特徴とする請求項1~3のいずれか一項に記載の耐食性寿命診断部品。
  5.  前記母材は、
     一方の面に前記犠牲陽極層及び前記母材露出部が形成され、
     他方の面の全面に亜鉛で構成された全面犠牲陽極層が形成されている
     ことを特徴とする請求項1~4のいずれか一項に記載の耐食性寿命診断部品。
  6.  前記犠牲陽極層は前記母材に接合されたクラッド板から構成されている
     ことを特徴とする請求項1~5のいずれか一項に記載の耐食性寿命診断部品。
  7.  前記犠牲陽極層は、
     亜鉛溶射、又は亜鉛含有塗装により形成された
     ことを特徴とする請求項1~5のいずれか一項に記載の耐食性寿命診断部品。
  8.  請求項1~7のいずれか一項に記載の耐食性寿命診断部品と、
     切欠が一定のピッチで複数形成された平板状の複数のフィンと、
     前記フィンの前記切欠に取り付けられる直線部、及び両端側に前記直線部が接続され、曲げ加工が施されたヘアピン部を有し、アルミニウムで構成された伝熱管と、
     を備え、
     前記伝熱管の外表面には、
     亜鉛で構成された熱交換器犠牲陽極層が形成されている
     ことを特徴とする熱交換器。
  9.  前記耐食性寿命診断部品の前記犠牲陽極層は、
     前記伝熱管の前記熱交換器犠牲陽極層の厚みを含む、予め設定された範囲の厚みである
     ことを特徴とする請求項8に記載の熱交換器。
  10.  前記耐食性寿命診断部品は、
     前記フィンからはずれた位置であって前記直線部の端部側に取り付けられている
     ことを特徴とする請求項8又は9に記載の熱交換器。
  11.  前記耐食性寿命診断部品は、
     前記母材の他方の表面と前記伝熱管の外表面とが当接するように前記伝熱管に取り付けられている
     ことを特徴とする請求項8~10のいずれか一項に記載の熱交換器。
  12.  請求項8~11のいずれか一項に記載の熱交換器を備えた
     ことを特徴とする冷凍空調装置。
  13.  前記熱交換器に散水する散水部を備え、
     前記耐食性寿命診断部品は、
     前記熱交換器のうち前記散水部の散水範囲の周縁部分に取り付けられた
     ことを特徴とする請求項12に記載の冷凍空調装置。
PCT/JP2013/079483 2013-10-31 2013-10-31 耐食性寿命診断部品、熱交換器、冷凍空調装置 WO2015063903A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201380078288.8A CN105408720B (zh) 2013-10-31 2013-10-31 耐腐蚀性寿命诊断部件、换热器、冷冻空调装置
JP2015544706A JP6058154B2 (ja) 2013-10-31 2013-10-31 耐食性寿命診断部品、熱交換器、冷凍空調装置
US14/898,571 US9964367B2 (en) 2013-10-31 2013-10-31 Lifetime diagnosis component for anticorrosive coating, heat exchanger, refrigeration-and-air-conditioning apparatus
EP13896643.7A EP3023728B1 (en) 2013-10-31 2013-10-31 Corrosion resistance life diagnosis component, heat exchanger, and refrigeration and air conditioning device
PCT/JP2013/079483 WO2015063903A1 (ja) 2013-10-31 2013-10-31 耐食性寿命診断部品、熱交換器、冷凍空調装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/079483 WO2015063903A1 (ja) 2013-10-31 2013-10-31 耐食性寿命診断部品、熱交換器、冷凍空調装置

Publications (1)

Publication Number Publication Date
WO2015063903A1 true WO2015063903A1 (ja) 2015-05-07

Family

ID=53003550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079483 WO2015063903A1 (ja) 2013-10-31 2013-10-31 耐食性寿命診断部品、熱交換器、冷凍空調装置

Country Status (5)

Country Link
US (1) US9964367B2 (ja)
EP (1) EP3023728B1 (ja)
JP (1) JP6058154B2 (ja)
CN (1) CN105408720B (ja)
WO (1) WO2015063903A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017199569A1 (ja) * 2016-05-18 2017-11-23 三菱電機株式会社 耐食性診断器、熱交換器、空気調和機、及び耐食性診断器の製造方法、並びに診断方法
WO2020161817A1 (ja) * 2019-02-06 2020-08-13 三菱電機株式会社 耐食性診断部品、耐食性診断器、熱交換器、空気調和機、耐食性診断部品の製造方法、及び診断方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9528781B2 (en) * 2013-08-06 2016-12-27 Trane International Inc. Anti-microbial heat transfer apparatus
JP6555424B2 (ja) * 2016-08-17 2019-08-07 三菱電機株式会社 ヒートポンプシステム
JP6836887B2 (ja) * 2016-11-30 2021-03-03 三菱アルミニウム株式会社 伝熱管、熱交換器および伝熱管の製造方法
JP6522178B1 (ja) * 2018-01-31 2019-05-29 ダイキン工業株式会社 冷媒分流器及び空気調和機
CN110793108A (zh) * 2018-08-02 2020-02-14 青岛海尔空调器有限总公司 空调器防腐方法及装置、空调器、计算机设备、存储介质
CN110793109A (zh) * 2018-08-02 2020-02-14 青岛海尔空调器有限总公司 一种用于保护空调器室外机支架的方法及装置、空调器、计算机设备、存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06194092A (ja) 1992-11-05 1994-07-15 Mitsubishi Alum Co Ltd 熱交換器用アルミニウム偏平管の製造方法
JPH0752308A (ja) * 1993-08-18 1995-02-28 Sanden Corp アルミニウム合金材およびそれを用いた熱交換器
JPH09310139A (ja) * 1996-05-17 1997-12-02 Sky Alum Co Ltd 熱交換器用アルミニウム合金製ブレージングシート
JP2010229426A (ja) * 2007-08-07 2010-10-14 Showa Denko Kk 熱交換器用部材の製造方法および熱交換器用部材
JP2011136358A (ja) * 2009-12-28 2011-07-14 Mitsubishi Alum Co Ltd 耐食性に優れる粉末ろう組成物及びそれを用いてなる熱交換器用アルミニウム合金チューブ及び熱交換器

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3053511A (en) * 1957-11-15 1962-09-11 Gen Motors Corp Clad alloy metal for corrosion resistance and heat exchanger made therefrom
US3024183A (en) * 1959-12-14 1962-03-06 Cons Mining & Smelting Co Sacrificial zinc anodes
US4150980A (en) * 1978-05-30 1979-04-24 Mitsubishi Aluminum Kabushiki Kaisha Aluminum alloy excellent in high-temperature sagging resistance and sacrificial anode property
US4187690A (en) * 1978-08-16 1980-02-12 Gulf & Western Manufacturing Company Ice-maker heat pump
US4238233A (en) * 1979-04-19 1980-12-09 Mitsubishi Aluminum Kabushiki Kaisha Aluminum alloy for cladding excellent in sacrificial anode property and erosion-corrosion resistance
US4317484A (en) * 1980-06-12 1982-03-02 Sumitomo Light Metal Industries, Ltd. Heat exchanger core
US4473110A (en) * 1981-12-31 1984-09-25 Union Carbide Corporation Corrosion protected reversing heat exchanger
JPS6072921U (ja) * 1983-10-25 1985-05-22 いすゞ自動車株式会社 腐食検知装置
CA2146463C (en) * 1990-04-19 1999-11-02 Charles S. Argyle Coolant corrosiveness indicator
US5181536A (en) * 1990-04-19 1993-01-26 Long Manufacturing Limited Coolant corrosiveness indicator
JPH11216592A (ja) * 1998-01-27 1999-08-10 Denso Corp ろう付け用アルミニウム材料及び熱交換器の製造方法
JP2000297995A (ja) 1999-04-14 2000-10-24 Mitsubishi Electric Corp 配管装置とその製造方法、熱交換器
US6788075B2 (en) * 1999-07-13 2004-09-07 Flight Refuelling Limited Anode monitoring
JP2001242074A (ja) * 2000-02-28 2001-09-07 Sumitomo Precision Prod Co Ltd 海水中での重金属付着量の検出方法
JP4151385B2 (ja) * 2001-11-13 2008-09-17 Jfeスチール株式会社 異種金属接触腐食による金属材の腐食量予測方法及び寿命予測方法、構造物の設計方法及び金属材の製造方法
EP1633907A4 (en) * 2003-05-06 2007-10-17 Performance Metals Inc WEAR INDICATOR FOR SURGERY
JP2006002223A (ja) * 2004-06-18 2006-01-05 Sumitomo Precision Prod Co Ltd 耐食性被膜
JP4959937B2 (ja) * 2004-12-27 2012-06-27 株式会社日立産機システム 腐食診断部品を設けてなる配電用変圧器
JP4447448B2 (ja) * 2004-12-27 2010-04-07 新日鐵住金ステンレス株式会社 腐食診断方法
US8037928B2 (en) * 2005-12-21 2011-10-18 Exxonmobil Research & Engineering Company Chromium-enriched oxide containing material and preoxidation method of making the same to mitigate corrosion and fouling associated with heat transfer components
US20070235170A1 (en) * 2006-04-06 2007-10-11 Brian Zinck Method and apparatus for heat exchanging
US7655116B1 (en) * 2007-03-21 2010-02-02 Herb Tilsner Anti-electrolysis system inhibiting the erosion metal objects
JP5548411B2 (ja) * 2008-09-02 2014-07-16 カルソニックカンセイ株式会社 アルミニウム合金製熱交換器およびその製造方法
JP5159709B2 (ja) * 2009-06-18 2013-03-13 古河スカイ株式会社 熱交換器用チューブ向けアルミニウム合金クラッド材およびそれを用いた熱交換器コア
CN202119322U (zh) * 2011-05-03 2012-01-18 高力热处理工业股份有限公司 具抗腐蚀耐压的板式热交换器
GB201119446D0 (en) * 2011-11-11 2011-12-21 Rolls Royce Plc A sacrificial anode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06194092A (ja) 1992-11-05 1994-07-15 Mitsubishi Alum Co Ltd 熱交換器用アルミニウム偏平管の製造方法
JPH0752308A (ja) * 1993-08-18 1995-02-28 Sanden Corp アルミニウム合金材およびそれを用いた熱交換器
JPH09310139A (ja) * 1996-05-17 1997-12-02 Sky Alum Co Ltd 熱交換器用アルミニウム合金製ブレージングシート
JP2010229426A (ja) * 2007-08-07 2010-10-14 Showa Denko Kk 熱交換器用部材の製造方法および熱交換器用部材
JP2011136358A (ja) * 2009-12-28 2011-07-14 Mitsubishi Alum Co Ltd 耐食性に優れる粉末ろう組成物及びそれを用いてなる熱交換器用アルミニウム合金チューブ及び熱交換器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3023728A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017199569A1 (ja) * 2016-05-18 2017-11-23 三菱電機株式会社 耐食性診断器、熱交換器、空気調和機、及び耐食性診断器の製造方法、並びに診断方法
JPWO2017199569A1 (ja) * 2016-05-18 2018-05-31 三菱電機株式会社 耐食性診断器、熱交換器、空気調和機、及び耐食性診断器の製造方法、並びに診断方法
WO2020161817A1 (ja) * 2019-02-06 2020-08-13 三菱電機株式会社 耐食性診断部品、耐食性診断器、熱交換器、空気調和機、耐食性診断部品の製造方法、及び診断方法
JPWO2020161817A1 (ja) * 2019-02-06 2021-02-18 三菱電機株式会社 耐食性診断部品の製造方法、及び診断方法

Also Published As

Publication number Publication date
EP3023728B1 (en) 2021-03-03
JPWO2015063903A1 (ja) 2017-03-09
CN105408720B (zh) 2018-11-06
EP3023728A1 (en) 2016-05-25
EP3023728A4 (en) 2017-05-03
US9964367B2 (en) 2018-05-08
CN105408720A (zh) 2016-03-16
JP6058154B2 (ja) 2017-01-11
US20160131445A1 (en) 2016-05-12

Similar Documents

Publication Publication Date Title
JP6058154B2 (ja) 耐食性寿命診断部品、熱交換器、冷凍空調装置
JP5401685B2 (ja) 空気調和機の室外機
RU2509969C1 (ru) Теплообменник и оснащенный им кондиционер
JP5980424B2 (ja) 空気調和装置の室外機
JP6719394B2 (ja) 熱交換器の接続配管構造、及び、空気調和機
US10175009B2 (en) Method for manufacturing refrigerant distributor, refrigerant distributor manufacturing apparatus, refrigerant distributor, heat exchanger, and air-conditioning device
CN110036244B (zh) 空调机的室外机和具备该室外机的空调机
EP1055898A2 (en) Heat exchanger made of aluminium alloy
CN205784707U (zh) 热交换器以及制冷循环装置
WO2013099904A1 (ja) 冷凍装置の室外ユニット
EP3644002A1 (en) Heat exchanger, refrigeration cycle device, and air conditioner
WO2013118583A1 (ja) 冷凍装置の室外ユニット
CN107003096A (zh) 铝合金翅片式热交换器
CN108351138A (zh) 空调
WO2020161817A1 (ja) 耐食性診断部品、耐食性診断器、熱交換器、空気調和機、耐食性診断部品の製造方法、及び診断方法
KR20170000892U (ko) 열교환기
JP2010014283A (ja) 熱交換器
JP2022152750A (ja) 空気調和機
WO2021186491A1 (ja) 熱交換器、空気調和機及び熱交換器の製造方法
JP6873252B2 (ja) 熱交換器、空気調和装置の室外機及び空気調和装置
JP7086278B2 (ja) 熱交換器及び空気調和機
CN117916537A (zh) 空调机
JP2023137748A (ja) 熱交換ユニット及び除湿機
KR101452272B1 (ko) 알루미늄 콘덴서 헤더용 연결파이프 제조방법
JP2023102026A (ja) 空気調和装置の室外ユニット

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380078288.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13896643

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015544706

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14898571

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013896643

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE