JP4447448B2 - 腐食診断方法 - Google Patents

腐食診断方法 Download PDF

Info

Publication number
JP4447448B2
JP4447448B2 JP2004375669A JP2004375669A JP4447448B2 JP 4447448 B2 JP4447448 B2 JP 4447448B2 JP 2004375669 A JP2004375669 A JP 2004375669A JP 2004375669 A JP2004375669 A JP 2004375669A JP 4447448 B2 JP4447448 B2 JP 4447448B2
Authority
JP
Japan
Prior art keywords
corrosion
metal
diagnosis method
resistant material
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004375669A
Other languages
English (en)
Other versions
JP2006184053A (ja
Inventor
泉 武藤
圭一 大村
明彦 高橋
詠一朗 石丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2004375669A priority Critical patent/JP4447448B2/ja
Publication of JP2006184053A publication Critical patent/JP2006184053A/ja
Application granted granted Critical
Publication of JP4447448B2 publication Critical patent/JP4447448B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Description

本発明は、土木建築構造物、車両・輸送機器、送電設備、ガス・水道設備など屋内外あるいは海水・河川・水道水や土中などにおいて使用される金属製の機器あるいは構造物を構成している金属材料の腐食診断方法に関する。
鉄鋼材料をはじめとする金属材料は、低コストであることに加え、靱性や強度などの機械的特性に優れるため土木建築物などの社会インフラや化学プラントなどの産業インフラ、さらには自動車などの民生品にも広範囲に適用されている。しかし、金属材料で構成された装置などを長く使用するには、腐食侵食の有無や程度を定期的に診断し、適切なメンテナンスや部材交換などを適切な時期に実施することが不可欠である。
しかし、実構造物や実際に稼働している装置において、金属材料の腐食侵食深さを計測することは容易ではない。すなわち、下地金属を侵食したり、キズをつけたりしないような特殊な手段で腐食により生成したサビ層を除去した上で残存板厚を計測する必要があるためである。しかし、通常サビ層は、硫酸や硝酸を使わないと除去できず、しかも薬液を加温する必要があるため、屋外や稼働している装置の脇で作業を行うことは困難である。仮に、サビを除去できたとしても、通常のノギスやマイクロメータで、構造物として組み立てられた金属材料の厚みを計測できる可能性は低い。このような課題に対応するため、超音波厚み計が開発・実用化されているが、φ10mmほどの超音波センサーを材料に密着させるため材料表面を研削する必要がある。すなわち、これら一連の操作は、作業自体が困難であることに加えて、装置などを構成し正常に機能しているかもしれない金属材料を逆に傷つけてしまう危険性も高い。
特許文献1には、発錆や汚損が問題となる箇所を備えた電気機器において、これと同一材料で同等の表面仕上げからなる取り外し可能な試験片を取り付け、これを用いて機器の点検を行える機能を備えた電気機器が開示されている。また、特許文献2においては、腐食環境に使用される機器において、腐食原因物質に接触する母材に、耐食材料からなる腐食減量確認標識材を母材の厚み方向に沿って埋設したことを特徴とする母材の腐食減量確認標識構造が開示されている。
前者は小型試験片のためサビ除去作業は容易であるが、屋外や現地で酸液などを扱う困難さは回避されない。また、一度サビを除去した試験片の再利用は不可能であり、多数の試験片を備えておく必要がある。後者は母材よりも耐食性に優れる材料を埋設しておく必要があり、腐食環境において異種金属接触腐食が生じてしまう危険性を否定できない。また、侵食度合いを見るために、母材の侵食に伴うサビを除去必要がある点では、前者と同じである。
特開平11−354353号公報 特開2000−230668号公報
上述したように、屋外や現地でのサビ除去などの板厚計測のための表面調整を必要とせず、簡便に、腐食環境において使用される金属製の機器あるいは構造物を構成している金属材料の侵食状況を把握できる手法は未だ開発されていない。
本発明者は、従来技術の短所を補い、未解決の課題を解決するため種々の試験研究を行い、本発明を完成させた。
本発明の主旨は、以下の通りである。
(1)腐食環境において使用される金属製の機器あるいは構造物において、これらを構成している金属材料と同一組成の金属からなり、腐食原因物質に直接接触する母材が露出した部分と、高耐食材料により被覆された部分が表裏面として対を構成している腐食診断用部品を設け、高耐食材料側から超音波を送り反射波を解析することで、前記腐食診断用部品の残存板厚を計測し、該残存板厚の計測値に基づいて前記金属製の機器あるいは構造物の腐食侵食度を診断することを特徴とする腐食診断方法。
(2)前記高耐食材料が、膜厚20μm以上の有機被覆であることを特徴とする上記(1)の腐食診断方法
(3)前記高耐食材料が、亜鉛あるいはアルミニウムを主成分とするメッキ層であることを特徴とする上記(1)の腐食診断方法
(4)前記高耐食材料が、亜鉛あるいはアルミニウムの微粒子を含む有機被覆層であることを特徴とする上記(1)の腐食診断方法
(5)前記高耐食材料が、ステンレス鋼、ニッケル基合金、純チタン、チタン合金、アルミニウム、アルミニウム合金、銅、銅合金のいずれかであることを特徴とする上記(1)の腐食診断方法
(6)前記高耐食材料の表面に有機被覆が存在することを特徴とする上記(3)〜(5)の腐食診断方法
(7)前記高耐食材料と金属母材露出部の外表面における境界部が電気的に絶縁されていることを特徴とする上記(3)〜(6)の腐食診断方法
)前記腐食環境において使用される金属製の機器あるいは構造物を構成している金属材料が、耐候性鋼であることを特徴とする上記(1)〜(7)の腐食診断方法。
)前記腐食環境において使用される金属製の機器あるいは構造物を構成している金属材料が、質量百分率でクロムを7%以上14%以下含有する鋼であることを特徴とする上記(1)〜(7)の腐食診断方法。
本発明によれば、金属製の装置や建築物などが設置されている屋外や現地において、サビ除去などの板厚計測のための表面調整を必要とせず、簡便に、装置や構造物を構成している金属材料の侵食状況を把握することができる特徴を有している。
以下に、本発明の限定理由について述べる。
まず、腐食診断を行う部品は、対象とする金属製の機器あるいは構造物を構成している金属材料と同一組成である必要がある。これは材料の組成が異なると耐食性が変化し、腐食診断部品の侵食量から装置や構造物の侵食量を適切に評価することができないためである。ところで、本願で言う同一組成とは、同等の耐食性を示す金属組成のことであり、数値的に全く同一分析値であることを意味するものではない。目安としては、JIS(日本工業規格)などに規定されている各種規格材料の組成範囲程度の差異があっても、同一組成として腐食診断部品を構成することができる。
腐食診断を行う部品は、腐食原因物質に直接接触する母材が露出した部分が存在する必要がある。これは、材料と環境の反応箇所(腐食部)を、特定の場所に限定するためである。また、金属材料が塗装やメッキなどを施されて使用される機器や構造物であっても、これらの被覆層に欠陥が生じた場合や欠陥部の耐食性を評価する必要から、腐食診断を行う部品は、腐食原因物質に直接接触する母材が露出した部分が存在する必要がある。
また、腐食診断を行う部品は、高耐食材料により被覆された部分が金属露出部と表裏面として対を構成している必要がある。これは、高耐食材料側の外表面に超音波板厚計のセンサー部を密着させ、金属露出部と高耐食材料外表面との距離を計測することで、金属露出面の侵食量を計測するためである。超音波板厚計測のセンサー部は、計測精度を確保するため、センサーを計測対象に密着させる必要がある。このため、金属露出部の背面は腐食を長期間にわたって抑制する必要がある。このため金属露出部の背面は、高耐食材料で被覆されている必要がある。
被覆材としては、環境の腐食性が弱い場合には、有機被覆が低コストで簡便である。環境の腐食性が強いときには、有機被覆の厚さを20μm以上とすることが好適である。また、有機被覆に代えて、亜鉛あるいはアルミニウムを主成分とするメッキ層とすることもできる。これらメッキ金属は、大気環境において優れた耐食性を有するため、屋外で使用される機器や建築物などの侵食度モニターに好適である。メッキに代えて亜鉛あるいはアルミニウムの微粒子を含む有機被覆とすることもできる。有機塗膜中に分散している亜鉛やアルミニウムが優れた耐食性性を高めるため侵食度モニターの非腐食面の処理として好適である。
さらに腐食環境が厳しい場合や長期にわたり精度良く侵食量を計測する必要がある場合には、高耐食材料をステンレス鋼、ニッケル基合金、純チタン、チタン合金、アルミニウム、アルミニウム合金、銅、銅合金のいずれかとすることが望ましい。これらの金属材料は通常の屋外大気をはじめ、亜硫酸ガス環境や海浜地域、さらには海水、水道水、河川水、温泉水、土中などにおいて有効である。さらに、これら亜鉛あるいはアルミニウムを主成分とするメッキ層、ステンレス鋼、ニッケル基合金、純チタン、チタン合金、アルミニウム、アルミニウム合金、銅、銅合金の表面に有機被覆を施すことで極めて高い信頼性をもった腐食診断部品とすることができる。
海水などの電気伝導度の高い環境で使用する際には、高耐食材料の外表面と、腐食原因物質に直接接触する母材が露出した部分とが電気的に絶縁されていることが望ましい。これは異種金属接触腐食により、母材露出部の侵食速度に影響がでないようにするためである。
また、腐食環境において使用される金属製の機器あるいは構造物を構成している金属材料が耐候性鋼である場合において、本発明の腐食診断部品による腐食診断方法は著しい効果を期待できる。すなわち、耐候性鋼はP、Cu、Cr、Ni等の元素を添加した低合金鋼であり、屋外において保護作用のあるサビが形成されるため、特別な表面処理を行わずに裸のまま使用できる鋼材である。しかし、海塩付着量が多い場合などには、保護性のあるサビ層が形成されずに、侵食が継続してしまうという欠点がある。外見上は保護性のサビと、下地が侵食されたためにでてくるサビは区別することが困難である。そのため、耐候性鋼からなる金属製の機器あるいは構造物に対して、これと同一組成の鋼からなり、腐食原因物質に直接接触する母材が露出した部分と、高耐食材料により被覆された部分が表裏面として対を構成している腐食診断部品を設け、高耐食材料側から超音波を送り反射波を解析し、残存板厚を計測することで、外観観察では腐食の進行状況を判断できない耐候性鋼で構成された機器類や構造物などに対して、高い精度で腐食侵食状況をモニターすることが可能となる。
クロムを7%以上14%以下含有する鋼(以下、クロム鋼と呼称)は、サビが生じても母材の侵食速度が極めて遅いという特徴を有する。このためサビは発生しても、塗装などのメンテナンスを行う必要がなく、美観上許容されれば、機能的にはそのまま放置しても構わない。しかし、人間の心理としてサビを放置するには客観的な根拠が必要である。その際には、クロム鋼からなる金属製の機器あるいは構造物に対して、これと同一組成の鋼からなり、腐食原因物質に直接接触する母材が露出した部分と、高耐食材料により被覆された部分が表裏面として対を構成している腐食診断部品を設け、高耐食材料側から超音波を送り反射波を解析し、残存板厚を計測することが有効である。すなわち、高い精度でクロム鋼の腐食侵食状況をモニターできるため、「さび=腐食=装置や建造物が壊れる」という連想を払拭することができると共に、装置や建造物の耐久性や残存寿命を明確に判断することが可能となる。
尚、本発明方法では超音波による残存板厚を計測することを必要要件としているが、これは計測が短時間で、かつ容易・安全に行えるためである。
以下、本発明の具体的実施例を説明する。表1に示す各種の組み合わせで、耐食性を評価する対象機器と、腐食診断部品を作製し、4倍に濃縮した人工海水(ASTM D 1141−90)を、毎日正午に噴霧する促進大気曝露試験を1年間行った。そして、市販の超音波板厚計を用いて、腐食診断部品の高耐食材料側に超音波板厚計のセンサーを密着させて、残存板厚を計測し、耐食性の評価対象である機器の侵食量との対比を行った。
Figure 0004447448
耐食性の評価対象とする機器は、図1に模式的に示した長方形(縦50cm×横80cm×奥行き30cm)で内部は空の金属製容器(以下、評価対象金属容器と呼称)とした。板厚1mmの材料をL字アングルとビスを使い組み立て、内外面をアクリル樹脂で約15μm厚で塗装した。容器の側面には塗膜欠陥にみたて、下地金属にまで到達する幅約1mm×長さ100mmのクロスカットを3カ所導入し、この部分の侵食深さを計測して、最も深い侵食量を代表値とした。具体的には、曝露試験完了後に周囲を切断して切り出し、有機溶剤で残存する塗膜を除去し、続いて10%クエン酸水素二アンモニウム水溶液(50℃)への浸漬とナイロンブラシ擦りを繰り返し行い表面のサビを除去した。そして、光学顕微鏡を用いて、塗膜が存在したもとの表面に対し、最も侵食が深い部分との深さを求め、侵食深さとした。
尚、促進大気曝露試験では噴霧する人工海水の量を変えることで、腐食環境の厳しさを変化させた。尚、耐食性の評価対象する機器への腐食診断部品の取り付け位置も、図1に示した。腐食診断部品の大きさは縦150mm×横100mmとした。尚、腐食診断部品の残存板厚計測においては、母材露出部のサビ除去などの特別な前処理は行わなかった。超音波センサーと高耐食材料との密着を確保するため、センサー表面にグリースを塗ったのみである。
表1の番号1は、本発明の請求項1に対応する実施例である。図2に示す構成で腐食診断部品を製作し評価対象金属容器の外面に固定した。すなわち、母材金属として冷間圧延鋼SPCC(板厚2.3mm)を用い、高耐食材料として、片面をアクリル樹脂で約15μm被覆し腐食診断部品とした。評価対象金属容器は、冷間圧延鋼SPCC(板厚2.3mm)で製作し、内外面をアクリル樹脂で約15μm被覆した。人工海水は塩化物イオン(Cl-イオン)の付着量がおおむね0.1g/m2になるように噴霧を行った。表1に示すように、評価対象金属容器の侵食量と、腐食診断部品により計測した侵食速度は、ほぼ一致しており、本手法により金属機器類の腐食侵食度の診断が可能であることが分かる。
番号2は、請求項2に対応する実施例である。ここでも図2に示す構成となるように、母材金属として冷間圧延鋼SPCC(板厚2.3mm)を用いて、高耐食材料としてアクリル樹脂を用い、片面を約50μm被覆した腐食診断部品を作製した。評価対象金属容器は、冷間圧延鋼SPCC(板厚2.3mm)に内外面アクリル樹脂で約15μm被覆したものである。塩化物イオン(Cl-イオン)の付着量は約0.5g/m2になるように噴霧を行った。表1に示すように、評価対象金属容器の侵食量と、腐食診断部品により計測した侵食速度は、ほぼ一致しており、本手法により金属機器類の腐食侵食度の診断が可能であることが分かる。尚、アクリル樹脂が薄い腐食診断部品(番号1)では、アクリル樹脂に塗膜下腐食が生じ、超音波での残存板厚計測が不可能であった。このように、塩分濃度が高いなどの腐食性が強い環境では、有機被覆の厚さを厚くすることが好適であることが分かる。
番号3、4は、請求項3に対応する実施例である。ここでも図2に示す構成となるように溶融亜鉛メッキ(付着量270g/m2)もしくは溶融アルミニウムメッキ(付着量200g/m2)された鋼板を用い、片面のめっき層を機械研削と薬液により除去することで、腐食診断部品を作製した。評価対象金属容器は、冷間圧延鋼SPCC(板厚2.3mm)で製作し、内外面をアクリル樹脂で約15μm被覆した番号2のものである。但し、塩化物イオン(Cl-イオン)の付着量は約1g/m2になるように噴霧を行った。表1に示すように、評価対象金属容器の侵食量と、腐食診断部品により計測した侵食速度は、ほぼ一致しており、本手法により金属機器類の腐食侵食度の診断が可能であることが分かる。
同じく、番号5、6は、請求項4に対応する実施例である。これも図2に示す構成となるように、冷間圧延鋼SPCCの片面に、ジンクリッチペイントあるいはアクリル樹脂塗料にアルミニウムの微粒子を混ぜたものを約50μm被覆し腐食診断部品とした。評価対象金属容器は番号2と同じものとし、塩化物イオン(Cl-イオン)の付着量は約1g/m2となるように噴霧を行った。表1に示すように、評価対象金属容器の侵食量と、腐食診断部品により計測した侵食速度は、ほぼ一致しており、本手法により金属機器類の腐食侵食度の診断が可能であることが分かる。
番号7〜14は、請求項5に対応する実施例である。これも図2に示す構成とするため、冷間圧延鋼SPCCの片面に、ステンレス鋼SUS304(Fe−18%Cr−8%Ni)、Ni基合金Alloy600(Ni−16%Cr−10%Fe)、工業用純チタン、Ti−6%Al−4%V合金(チタン合金)、工業用純アルミニウム、Al−1.0%Mg−0.5%Si−0.3%Cu(6061アルミニウム合金)、工業用純銅、アルミニウム黄銅(Cu−22%Zn−2%Al合金)を圧延法により積層したクラッド材を切断し腐食診断部品を作製した。評価対象金属容器は番号2と同じものとし、塩化物イオン(Cl-イオン)の付着量は約5g/m2となるように噴霧を行った。表1に示すように、腐食性が高い環境においても、評価対象金属容器の侵食量と、腐食診断部品により計測した侵食速度は、ほぼ一致していることが確認され、本手法により金属機器類の腐食侵食度の診断が可能であることが分かる。
番号15〜18は、請求項6に対応する実施例である。図3に示す構成となるように、ジンクリッチペイントを冷間圧延鋼SPCCの片面に約50μm被覆したもの(番号15)、冷間圧延鋼SPCCの片面に、ステンレス鋼SUS304(Fe−18%Cr−8%Ni)、工業用純チタン、Al−1.0%Mg−0.5%Si−0.3%Cu(6061アルミニウム合金)を圧延法により積層したクラッド材(番号16〜18)を切断し、その片面にアクリル樹脂塗料を約10μm塗布して腐食診断部品とした。評価対象金属容器は番号2と同じものとし、塩化物イオン(Cl-イオン)の付着量は約10g/m2となるように噴霧を行った。この表1に示すように、腐食性が高い環境においても、評価対象金属容器の侵食量と、腐食診断部品により計測した侵食速度は、ほぼ一致していることが確認され、本手法により金属機器類の腐食侵食度の診断が可能であることが分かる。
番号19〜22は、請求項7に対応する実施例である。図4に示す構成とするため、ジンクリッチペイントを冷間圧延鋼SPCCの片面に約50μm被覆したもの(番号19)、冷間圧延鋼SPCCの片面に、ステンレス鋼SUS304(Fe−18%Cr−8%Ni)、工業用純チタン、Al−1.0%Mg−0.5%Si−0.3%Cu(6061アルミニウム合金)を圧延法により積層したクラッド材(番号20〜22)を切断し腐食診断部品の形状に加工した後、端面とその周囲幅約20mmをアクリル樹脂塗料で絶縁被覆することで、腐食診断部品を作製した。評価対象金属容器は番号2と同じものとし、塩化物イオン(Cl-イオン)の付着量は約50g/m2となるように噴霧を行った。この表1に示すように、腐食性が高い環境においても、評価対象金属容器の侵食量と、腐食診断部品により計測した侵食速度は、ほぼ一致していることが確認された。比較として、盤面を絶縁被覆していない場合、この環境条件で、番号7では+25%、番号14では−16%の侵食速度の誤差が生じた。
次に、番号23と24は、請求項8に対応する実施例である。評価対象金属容器の材質を高耐候性圧延鋼材(SPA−H、Fe−0.5%Cu−1.0%Cr−0.1%P−0.5%Ni)で作製したものである。形状や表面塗装は上述の通り。腐食診断部品は、図5に示す構成とした。すなわち、評価対象金属容器の材質と同じ高耐候性圧延鋼材(SPA−H)を母材とし、市販のジンクリッチペイントを鋼材片面に約50μm被覆したもの(番号23)、鋼材片面にステンレス鋼SUS304(Fe−18%Cr−8%Ni)を圧延法により積層したクラッド材(番号24)を切断し、腐食診断部品の形状に加工した後、端面と片面全てをアクリル樹脂塗料で絶縁被覆することで作製した。また、塩化物イオン(Cl-イオン)の付着量は約50g/m2となるように噴霧を行った。表1に示すように、評価対象金属容器の侵食量と、腐食診断部品により計測した侵食速度は、ほぼ一致していることが確認された。
同様に、番号25〜28は、請求項に対応する実施例である。評価対象金属容器の材質はクロム鋼で作製した。鋼AはFe−10.5%Cr−0.2%Ti、鋼BはFe−10.5%Cr−0.4%Niの組成の鋼である。真空溶解、鋳造、圧延、焼鈍、酸洗により製造した鋼板を用いた。腐食診断部品は、図5に示す構成とした。すなわち、評価対象金属容器の材質と同じ鋼Aあるいは鋼Bを母材とし、市販のジンクリッチペイントを鋼材片面に約50μm被覆したもの(番号25、27)、鋼材片面にステンレス鋼SUS304(Fe−18%Cr−8%Ni)を圧延法により積層したクラッド材(番号26、28)を切断し、腐食診断部品の形状に加工した後、端面と片面全てをアクリル樹脂塗料で絶縁被覆することで作製した。また、塩化物イオン(Cl-イオン)の付着量は約100g/m2となるように噴霧を行った。表1に示すように、評価対象金属容器の侵食量と、腐食診断部品により計測した侵食速度は、ほぼ一致していることが確認され、本手法により金属機器類の腐食侵食度の診断が可能であることが実証された。
本発明鋼によれば、金属製の装置や建築物などが設置されている屋外や現地において、サビ除去などの板厚計測のための表面調整を必要とせず、簡便に、装置や構造物を構成している金属材料の侵食状況を把握することが可能となる。このため、装置や建築材料などの信頼性を長期に亘って維持管理する基礎データを容易に得ることができ、社会工学・経済的に優れた効果を発揮することができる。
促進大気曝露試験における評価対象部であるクロスカット位置と腐食診断部品の位置関係を示す模式図。 腐食性物質に直接触れる金属母材露出部と、これに表裏面として対となる高耐食材料からなる腐食診断部品と、評価対象金属容器への固定方法の例。 腐食性物質に直接触れる金属母材露出部と、これに表裏面として対となる高耐食材料と、その外表面に有機被覆を施した腐食診断部品と、評価対象金属容器への固定方法の例。 腐食性物質に直接触れる金属母材露出部と、これに表裏面として対となる高耐食材料からなり、金属母材露出部と高耐食材料が外表面における境界部が電気的に絶縁された腐食診断部品と、評価対象金属容器への固定方法の例。 腐食性物質に直接触れる金属母材露出部と、これに表裏面として対となる高耐食材料からなり、金属母材露出部と高耐食材料が外表面における境界部が電気的に絶縁され、さらに高耐食材料の外表面全体が有機被覆で覆われている腐食診断部品と、評価対象金属容器への固定方法の例。
符号の説明
1 評価対象金属容器
2 腐食診断部品
3 クロスカット
4 高耐食材料
5 金属母材露出部
6 固定用ボルト
7 固定用台座
8 固定用ナット
9 有機被覆
10 絶縁被覆
11 有機絶縁被覆

Claims (9)

  1. 腐食環境において使用される金属製の機器あるいは構造物において、これらを構成している金属材料と同一組成の金属からなり、腐食原因物質に直接接触する母材が露出した部分と、高耐食材料により被覆された部分が表裏面として対を構成している腐食診断用部品を設け、高耐食材料側から超音波を送り反射波を解析することで、前記腐食診断用部品の残存板厚を計測し、該残存板厚の計測値に基づいて前記金属製の機器あるいは構造物の腐食侵食度を診断することを特徴とする腐食診断方法。
  2. 前記高耐食材料が、膜厚20μm以上の有機被覆であることを特徴とする請求項1に記載の腐食診断方法
  3. 前記高耐食材料が、亜鉛あるいはアルミニウムを主成分とするメッキ層であることを特徴とする請求項1に記載の腐食診断方法
  4. 前記高耐食材料が、亜鉛あるいはアルミニウムの微粒子を含む有機被覆層であることを特徴とする請求項1に記載の腐食診断方法
  5. 前記高耐食材料が、ステンレス鋼、ニッケル基合金、純チタン、チタン合金、アルミニウム、アルミニウム合金、銅、銅合金のいずれかであることを特徴とする請求項1に記載の腐食診断方法
  6. 前記高耐食材料の表面に有機被覆が存在することを特徴とする請求項3〜5のいずれかに記載の腐食診断方法
  7. 前記高耐食材料と金属母材露出部の外表面における境界部が電気的に絶縁されていることを特徴とする請求項3〜6のいずれかに記載の腐食診断方法
  8. 前記腐食環境において使用される金属製の機器あるいは構造物を構成している金属材料が、耐候性鋼であることを特徴とする請求項1〜7のいずれかに記載の腐食診断方法。
  9. 前記腐食環境において使用される金属製の機器あるいは構造物を構成している金属材料が、質量百分率でクロムを7%以上14%以下含有する鋼であることを特徴とする請求項1〜7のいずれかに記載の腐食診断方法。
JP2004375669A 2004-12-27 2004-12-27 腐食診断方法 Active JP4447448B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004375669A JP4447448B2 (ja) 2004-12-27 2004-12-27 腐食診断方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004375669A JP4447448B2 (ja) 2004-12-27 2004-12-27 腐食診断方法

Publications (2)

Publication Number Publication Date
JP2006184053A JP2006184053A (ja) 2006-07-13
JP4447448B2 true JP4447448B2 (ja) 2010-04-07

Family

ID=36737288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004375669A Active JP4447448B2 (ja) 2004-12-27 2004-12-27 腐食診断方法

Country Status (1)

Country Link
JP (1) JP4447448B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4959937B2 (ja) * 2004-12-27 2012-06-27 株式会社日立産機システム 腐食診断部品を設けてなる配電用変圧器
JP5030928B2 (ja) * 2008-12-02 2012-09-19 三菱重工業株式会社 屋外構造物及び屋外構造物構成部材の劣化推定方法
JP5030929B2 (ja) * 2008-12-02 2012-09-19 三菱重工業株式会社 屋外構造物の構成部材の寿命監視方法
BRPI0917685A2 (pt) 2008-12-02 2015-12-01 Mitsubishi Heavy Ind Ltd estrutura externa, e, métodos para estimar deterioração de um elemento constituinte de uma estrutura externa, e para monitorar a vida de um elemento constituinte de uma estrutura externa.
KR101153600B1 (ko) 2009-04-09 2012-06-11 신닛뽄세이테쯔 카부시키카이샤 실제 선박 상부 갑판 카고 탱크 내면의 내식성 평가 시험 방법
JP5921888B2 (ja) * 2011-01-17 2016-05-24 株式会社神戸製鋼所 腐食測定方法、及び腐食環境ゲージ
CN105408720B (zh) * 2013-10-31 2018-11-06 三菱电机株式会社 耐腐蚀性寿命诊断部件、换热器、冷冻空调装置
CN114264591B (zh) * 2021-12-23 2023-05-12 中国兵器工业第五九研究所 一种用于金属标准件腐蚀外观评价的装置及方法

Also Published As

Publication number Publication date
JP2006184053A (ja) 2006-07-13

Similar Documents

Publication Publication Date Title
Zhang Galvanic corrosion
US7843298B2 (en) Power distribution transformer and tank therefor
Xia et al. Detection of atmospheric corrosion of aluminum alloys by electrochemical probes: theoretical analysis and experimental tests
Zhang Galvanic corrosion of zinc and its alloys
Diler et al. Real‐time monitoring of the degradation of metallic and organic coatings using electrical resistance sensors
JP4447448B2 (ja) 腐食診断方法
Farooq et al. Corrosion Behaviour of Engineering Materials: A Review of Mitigation Methodologies for Different Environments
Zhang Corrosion of zinc and zinc alloys
Panayotova et al. Corrosion of steels in marine environment, monitoring and standards
Gao et al. Galvanic corrosion behavior of hot-dip Al and 55Al–Zn coatings applied to steel bolted joints in atmospheric environments
Dhanapal et al. Experimental investigation of the corrosion behavior of friction stir welded AZ61A magnesium alloy welds under salt spray corrosion test and galvanic corrosion test using response surface methodology
Lenard et al. Electrochemical monitoring of selective phase corrosion of nickel aluminum bronze in seawater
JP2012114451A (ja) 配電用変圧器及びタンク容器
JP4917137B2 (ja) 配電用変圧器
Møller Evaluation of atmospheric corrosion on electroplated zinc and zinc-nickel coatings by electrical resistance (ER) monitoring
Kainuma et al. Long-term deterioration mechanism of hot-dip aluminum coating exposed to a coastal-atmospheric environment
Burduhos-Nergis et al. Advanced Coatings for the Corrosion Protection of Metals
Bellezze et al. Cathodic protection of a ship propeller shaftby impressed current anodes
Totini Modeling of Corrosion and Hydrogen Embrittlement of ZnNi Coated High Strength Steel 4340 Under Atmospheric and Immersion Conditions
Syrek et al. Thermally sprayed coatings for corrosion protection of offshore structures operating in submerged and splash zone conditions
Alexey et al. Corrosion resistance of steel structures in marine conditions
Syrek-Gerstenkorn et al. Thermally sprayed coatings for corrosion protection of offshore structures operating in submerged and splash zone conditions
JP4471897B2 (ja) 金属腐食の加速試験方法及びその方法による腐食寿命予測方法
Akhtari-Zavareh et al. Introducing new coating material alloy with potential elements for high corrosion resistance for oil and gas application
Repukaiti Corrosion Resistance of Alloys in Seawater and Supercritical Carbon Dioxide Environments

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4447448

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140129

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250