WO2015060380A1 - 温度センサ - Google Patents

温度センサ Download PDF

Info

Publication number
WO2015060380A1
WO2015060380A1 PCT/JP2014/078206 JP2014078206W WO2015060380A1 WO 2015060380 A1 WO2015060380 A1 WO 2015060380A1 JP 2014078206 W JP2014078206 W JP 2014078206W WO 2015060380 A1 WO2015060380 A1 WO 2015060380A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature sensing
temperature
temperature sensor
tip
end side
Prior art date
Application number
PCT/JP2014/078206
Other languages
English (en)
French (fr)
Inventor
森 昭夫
鈴木 達也
西 俊紀
大矢 誠二
俊哉 大矢
Original Assignee
日本特殊陶業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本特殊陶業株式会社 filed Critical 日本特殊陶業株式会社
Priority to DE112014004869.0T priority Critical patent/DE112014004869T5/de
Priority to US15/022,142 priority patent/US10254172B2/en
Priority to JP2015518109A priority patent/JP6510405B2/ja
Publication of WO2015060380A1 publication Critical patent/WO2015060380A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/08Protective devices, e.g. casings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/14Supports; Fastening devices; Arrangements for mounting thermometers in particular locations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor

Definitions

  • the present invention relates to a temperature sensor including a temperature sensitive element such as a thermistor element or a Pt resistor element.
  • a temperature sensing element such as a thermistor element, a sheath part that insulates and holds a metal core wire that is electrically connected to an element electrode wire extending from an electrode of the temperature sensing element by welding joint, a temperature sensing element, a metal
  • a temperature sensor mainly composed of a metal tube that accommodates a core wire and a sheath part, and a cement that is filled in the metal tube and holds a temperature sensitive element and a metal core wire (for example, Patent Documents 1 to 3). reference.).
  • Such a sensor is used for exhaust gas measurement of a vehicle-mounted temperature sensor or a stationary general-purpose engine. In other words, it is used as a sensor that is used under use conditions where the measurement temperature is high and vibration is applied around the heat-sensitive part, such as a high-temperature sensor.
  • JP 2009-175129 A Japanese Patent No. 4760584 Japanese Patent No. 4768432
  • cement is filled up to the tip of the metal tube in order to hold the temperature sensitive element inside the metal tube.
  • the method include a method of filling the cement to the tip of the metal tube by applying centrifugal force or the like before the cement filled in the metal tube is solidified.
  • the temperature around the temperature sensing element may suddenly decrease from a high temperature to a low temperature.
  • the temperature of the metal tube constituting the outer wall first decreases, and the metal tube contracts due to this temperature decrease. Thereafter, the temperature of the sheath disposed inside starts to decrease, and the sheath begins to contract.
  • the timing at which the contraction of the metal tube begins is different from the timing at which the sheath disposed inside the metal tube begins to contract.
  • the sheath remains in an expanded state due to heat.
  • the shrinkage of the metal tube is transmitted to the element electrode wire and sheath of the temperature sensing element through the cement filled therein, and stress is applied to the joint portion of these members, which may cause the joint portion to be cut. sell.
  • a temperature sensor having a configuration in which cutting of a joint portion of a temperature sensitive element due to thermal stress is suppressed.
  • the temperature sensor includes a temperature sensitive element, a sheath portion, a surrounding portion, and a holding member.
  • the temperature sensitive element has a temperature sensing element and an element electrode line.
  • the sheath part includes a sheath core wire joined to the element electrode wire.
  • the surrounding portion has a cylindrical shape having a bottom portion on the distal end side and extending in the axial direction, and accommodates at least the temperature-sensitive element in its own internal space and includes a joint portion between the element electrode wire and the sheath core wire.
  • a holding member is arrange
  • An air bubble is provided on the tip side of the temperature sensing element in the surrounding portion.
  • the temperature sensor is configured so that the air bubbles enclose at least the front end surface of the temperature sensing body when viewed from the front end side of the surrounding portion in a direction along the axis.
  • the air bubbles are formed as spaces that do not contain solids or liquids, and may be formed as spaces that contain gas (such as the atmosphere), or may be formed as vacuum spaces. Also good.
  • the thermal stress applied to the temperature sensing element, the sheath core wire, and the joint portion is formed by the air bubbles present on the tip side of the temperature sensing body so as to enclose the tip surface of the temperature sensing element.
  • the holding member When the surrounding portion is thermally contracted due to a temperature drop, the holding member is pushed to the rear end side by the bottom of the surrounding portion. At this time, if air bubbles are present on the leading end side of the temperature sensing element, the pushing to the rear end side of the holding member is absorbed by the air bubbles. As a result, since the temperature-sensitive element is not pushed into the rear end side, the thermal stress acting on the junction between the element electrode wire and the sheath core wire is reduced. If air bubbles are formed so that at least the front end surface of the temperature sensing element is included, the above effect is exhibited. In addition, air bubbles may be formed so that the tip-facing surface of the temperature sensing element is included when viewed in a direction along the axis from the tip side of the surrounding portion. Thereby, the said effect is exhibited more.
  • the holding member may be in contact with an inner wall surface of the bottom portion of the surrounding portion.
  • the bottom part which is the front-end
  • a heat conduction path is formed from the bottom of the enclosure part to the temperature sensing element via the holding member, and the response speed as a temperature sensor is easily improved.
  • the air bubbles are arranged from the tip-facing surface of the temperature sensing element to the side periphery, and the dimension from the temperature sensing element to the tip side boundary of the air bubbles is the temperature sensing element. To a side boundary of the air bubbles. Thereby, the space by an air bubble is securable on the front end side of a temperature sensing element. As a result, a sufficient space for absorbing the contraction of the holding member in the axial direction can be secured, and the stress due to the contraction can be easily absorbed.
  • the bottom portion has a curved shape, and one continuous air bubble is formed from the bottom portion to the boundary between the cylindrical cylindrical surface of the surrounding portion and the bottom portion. May be.
  • the air bubbles provided in the region from the bottom of the surrounding portion to the boundary with the bottom of the cylindrical cylindrical surface absorb the pushing to the rear end side of the holding member due to the thermal contraction of the surrounding portion, The thermal stress acting on the joint between the electrode wire and the sheath core wire is reduced.
  • discontinuous air bubbles are formed by forming one continuous air bubble from the bottom of the enclosure to the boundary between the cylindrical cylindrical surface and the bottom. Pushing to the rear end side of the holding member is easily absorbed, and thermal stress acting on the joint between the element electrode wire and the sheath core wire is easily reduced.
  • the bottom portion may have a curved shape, and one continuous air bubble from the bottom portion to the end portion on the distal end side of the temperature sensing element may be formed.
  • one continuous air bubble from the bottom portion to the end portion on the distal end side of the temperature sensing element may be formed.
  • the air bubbles provided in the region from the bottom of the surrounding part to the end part on the front end side of the temperature sensing element absorb the pushing to the rear end side of the holding member due to the thermal contraction of the surrounding part, and the element electrode wire
  • the thermal stress acting on the joint between the sheath core wire and the sheath core wire is reduced.
  • by forming one continuous bubble from the bottom of the enclosure to the end of the temperature sensing element it is retained compared to when discontinuous bubbles are formed. Pushing to the rear end side of the member is easily absorbed, and thermal stress acting on the joint portion between the element electrode wire and the sheath core wire is easily reduced.
  • the air bubbles present on the distal end side of the temperature sensing element are formed so as to enclose the distal end surface of the temperature sensing element, thereby acting on the junction between the element electrode wire and the sheath core wire. It becomes easy to reduce thermal stress, and there is an effect that it is possible to suppress the occurrence of malfunction of the temperature sensitive element due to thermal stress.
  • FIG. 3 is an explanatory diagram showing the positional relationship of a small diameter portion, air bubbles, and a temperature sensing portion as projected onto a III-III cross section of FIG. 2 from the front end of the metal tube toward the rear end side in the axial direction. It is a figure explaining the filling method of the cement in a metal tube. It is sectional drawing explaining the other example of the internal structure of FIG. It is sectional drawing explaining the internal structure of the metal tube front end side of the temperature sensor which is a modification of the 1st Embodiment of this invention.
  • FIG. 7A is a schematic diagram illustrating the configuration of the temperature sensing element of FIG. 6, and FIG. 7B is a cross-sectional view taken along the line VIIB-VIIB in FIG. 7A. It is sectional drawing explaining the internal structure of the metal tube front end side of the temperature sensor which is the 2nd Embodiment of this invention.
  • the temperature sensor 1 of the present embodiment is used for detecting the temperature of a measurement target gas (exhaust gas) by being mounted in a flow pipe such as an exhaust pipe of an internal combustion engine so as to be arranged in the flow pipe through which the measurement target gas flows.
  • the temperature sensor 1 is mainly provided with a thermistor element (temperature sensing element) 10, a sheath part 20, a metal tube (enclosure part) 30, an attachment part 50, and a nut part 60.
  • the thermistor element 10 is a temperature-sensitive element arranged in a flow pipe through which a measurement target gas flows, and is arranged inside the metal tube 30.
  • a temperature sensing part (temperature sensing element) 11 which is a thermistor sintered body whose electrical characteristics (electrical resistance value) change with temperature, and changes in electrical characteristics of the temperature sensing part 11 are extracted.
  • a pair of electrode wires (element electrode wires) 12 are provided.
  • the sheath portion 20 is for insulatingly holding a pair of metal core wires (sheath core wires) 21 inside the outer cylinder 22.
  • the sheath portion 20 has a metal outer tube 22, a pair of metal core wires 21 made of a conductive metal, and the outer tube 22 and the two metal core wires 21 that are electrically insulated from each other, thereby providing the metal core wire 21. And holding insulating powder (not shown).
  • the metal tube 30 is a member formed by closing the distal end side of a cylindrical member extending in the axial direction, and is formed from a corrosion-resistant metal (for example, a stainless alloy such as SUS310S which is also a heat-resistant metal). is there.
  • the metal tube 30 is formed in a cylindrical shape extending in the axial direction in which the tube tip (bottom) 31 is closed by deep drawing of a steel plate, and is formed in a shape in which the cylindrical tube rear end is opened.
  • the axial dimension of the metal tube 30 is set so that the tube rear end side comes into contact with the inner surface of the second step portion 55 of the mounting portion 50.
  • the tube tip 31 of the metal tube 30 is formed in a curved shape.
  • the thermistor element 10 and cement (holding member) 40 are disposed inside the metal tube 30.
  • a small diameter portion 32 is formed at the distal end portion, and a large diameter portion 33 having a diameter larger than that of the small diameter portion 32 is formed on the rear end side.
  • the small diameter portion 32 and the large diameter portion 33 are connected by a step portion 34.
  • the cement 40 is filled around the thermistor element 10, and holds the thermistor element 10 and suppresses its swinging.
  • a material having high thermal conductivity, high heat resistance, and high insulation may be used.
  • oxides such as Al 2 O 3 and MgO, nitrides such as AlN, TiN, Si 3 N 4 and BN, and cements mainly composed of carbides such as SiC, TiC and ZrC, or Al 2 O 3 or Mainly oxides such as MgO, nitrides such as AlN, TiN, Si 3 N 4 and BN, and carbides such as SiC, TiC and ZrC, mixed with inorganic binders such as Al 2 O 3 , SiO2 and MgO Cement may be used.
  • the mounting portion 50 is a member that supports the metal tube 30 and surrounds the outer peripheral surface on the rear end side of the metal tube 30 with at least the tip of the metal tube 30 exposed to the outside, and supports the metal tube 30.
  • the mounting portion 50 is provided with a protruding portion 51 that protrudes radially outward, and a rear end-side sheath portion 52 that is located on the rear end side of the protruding portion 51 and extends in the axial direction.
  • the protrusion 51 is an annular member provided with a mounting seat 53 on the tip side.
  • the mounting seat 53 is a taper-shaped member whose diameter decreases toward the front end, and is a taper whose diameter increases toward the rear end formed at the sensor mounting position of the exhaust pipe (not shown). Corresponding to the shape of the path.
  • the mounting seat 53 is in close contact with the tapered portion of the sensor mounting position, and suppresses leakage of exhaust gas to the outside of the exhaust pipe.
  • the rear end side sheath portion 52 is a member formed in an annular shape.
  • the rear end side sheath portion 52 includes a first step portion 54 located on the front end side and a second outer diameter smaller than the first step portion 54.
  • a stepped portion 55 is formed.
  • the nut part 60 has a hexagonal nut part 61 and a screw part 62.
  • the axial direction is the longitudinal direction of the temperature sensor 1, and is the vertical direction in FIG.
  • the front end side of the temperature sensor 1 is the lower side in FIG. 1, and the rear end side is the upper side in FIG.
  • the metal core wire 21 has a tip portion electrically connected to the electrode wire 12 of the thermistor element by a welding point (joint portion) 15 and a rear end portion connected to the crimping terminal 23 by resistance welding. is there. That is, the rear end of the metal core wire 21 is connected to an external circuit, for example, a lead wire 24 for connection such as an electronic control unit (ECU) of a vehicle via a crimping terminal 23.
  • ECU electronice control unit
  • the pair of metal core wires 21 are insulated from each other by an insulating tube 25, and the pair of crimping terminals 23 are also insulated from each other by the insulating tube 25.
  • the lead wire 24 is obtained by coating a conductive wire with an insulating coating material, and the lead wire 24 is disposed through the inside of an auxiliary ring 26 made of heat-resistant rubber.
  • air bubbles 70 are formed on the distal end side (left side in FIG. 2) of the temperature sensing unit 11.
  • the air bubble 70 is formed as a space that does not contain a solid or a liquid, and may be formed as a space that contains a gas (such as the atmosphere) or may be formed as a vacuum space. Good.
  • the air bubble 70 has a size that encloses the tip-facing surface 11 ⁇ / b> B including the tip surface 11 ⁇ / b> A of the temperature sensing unit 11.
  • 11 A of front end surfaces of the temperature sensing part 11 are side surfaces arrange
  • the tip-facing surface 11 ⁇ / b> B refers to all side surfaces that appear on the tip side and are visible when the temperature sensing unit 11 is viewed from the tip side along the axial direction L.
  • three side surfaces including a pair of side surfaces adjacent to the front end surface 11A and the front end surface 11A serve as the front end facing surface 11B.
  • a pair of side surfaces orthogonal to the axial direction L correspond to an example of the “side circumferential portion” of the present invention.
  • the cement 40 is filled so as to be in contact with the other four side surfaces corresponding to an example of the “side peripheral portion” of the present invention.
  • the temperature-sensitive part 11 is described as being applied to an example in which the height is low, but the shape of the temperature-sensitive part 11 is not limited to a hexagonal column, It may be a prismatic column or a cylinder.
  • the diameter of the air bubble 70 is controlled by adjusting the tip position of the filling needle 75 that fills the cement 40 in the metal tube 30.
  • the relative tip position of the filling needle 75 with respect to the metal tube 30 can be adjusted by moving according to the filling state of the cement 40.
  • the diameter of the bubble 70 is increased by moving the tip of the filling needle 75 to the rear end side of the metal tube 30 at a relatively high speed.
  • the diameter of the bubble 70 is reduced by slowing the moving speed of the filling needle 75.
  • the cement 40 when the cement 40 is filled, it is a sublimation material that volatilizes at a relatively low temperature (for example, 900 ° C. or less) such as carbon, theobromine, and various organic binders, and disappears in the process of cement 40 solidifying.
  • a material that forms a void in the cement 40 may be disposed inside the metal tube 30. The void formed in this way becomes the above-described air bubble 70.
  • the air bubble 70 existing on the distal end side of the temperature sensing unit 11 is from the tube distal end 31 of the metal tube 30 to the first reference plane that is a boundary between the cylindrical surface of the metal tube 30 and the tube distal end 31. It may be formed as one continuous air bubble 70 up to L1.
  • the air bubble 70 existing on the tip side of the temperature sensing unit 11 is a second tip which is an end part on the tip side of the temperature sensing unit 11 of the thermistor element 10 from the tube tip 31 of the metal tube 30. It may be formed as one continuous bubble 70 up to the reference plane L2.
  • the air bubble 70 present on the distal end side of the temperature sensing unit 11 is formed so as to enclose the distal end surface 11 ⁇ / b> A of the temperature sensing unit 11. It is possible to reduce the thermal stress applied to the welding point 15 that is a joint between the wire 12 and the metal core wire 21. That is, when the temperature sensor 1 in the high temperature state is shifted to the low temperature state, the temperature of the metal tube 30 exposed to the outside first decreases, and then the cement 40 disposed in the internal space of the metal tube 30 or The temperature of the thermistor element 10, the electrode wire 12, and the metal core wire 21 is lowered.
  • the cement 40 When the metal tube 30 is thermally contracted due to a temperature drop, the cement 40 is pushed to the rear end side by the tube tip 31 of the metal tube 30. At this time, if air bubbles 70 exist on the front end side of the temperature sensing unit 11, the air bubbles 70 absorb the pushing of the cement 40 toward the rear end side. As a result, since the temperature sensitive part 11 is not pushed into the rear end side, the thermal stress acting on the welding point 15 which is a joint part between the electrode wire 12 and the metal core wire 21 is reduced. The above effect is exhibited as long as the air bubble 70 is formed so that at least the front end surface 11A of the temperature sensing unit 11 is included, but the air bubble 70 is included so that the front end surface 11B of the temperature sensing unit 11 is included.
  • one continuous bubble 70 from the tube tip 31 of the metal tube 30 to the first reference plane L1 that is the boundary between the cylindrical cylindrical surface and the tube tip 31 is formed.
  • cement is formed by forming one continuous air bubble 70 from the tube tip 31 of the metal tube 30 to the first reference plane L1 as compared with the case where the discontinuous air bubble 70 is formed.
  • 40 is easily absorbed by the rear end side, and it is easy to suppress the occurrence of malfunction of the thermistor element 10 due to thermal stress.
  • one continuous air bubble 70 is formed from the tube tip 31 of the metal tube 30 to the second reference plane L ⁇ b> 2 that is the end portion on the tip side of the temperature sensing part 11. This makes it easier to reduce the thermal stress applied to the welding point 15 between the electrode wire 12 and the metal core wire 21.
  • the air bubbles 70 provided in the region from the tube tip 31 of the metal tube 30 to the second reference plane L2 absorb the pushing of the metal tube 30 toward the rear end side of the cement 40 due to the thermal contraction of the metal tube 30. And the thermal stress acting on the welding point 15 between the metal core wire 21 is reduced.
  • cement is formed by forming one continuous air bubble 70 from the tube tip 31 of the metal tube 30 to the second reference plane L2 as compared with the case where the discontinuous air bubble 70 is formed.
  • 40 is easily absorbed by the rear end side, and it is easy to suppress the occurrence of malfunction of the thermistor element 10 due to thermal stress.
  • the temperature sensor 1 corresponds to an example of a temperature sensor
  • the thermistor element 10 corresponds to an example of a temperature sensing element
  • the temperature sensing unit 11 corresponds to an example of a temperature sensing element
  • the electrode wire 12 corresponds to an example of an element electrode wire.
  • the sheath portion 20 corresponds to an example of the sheath portion
  • the metal core wire 21 corresponds to an example of the sheath core wire
  • the metal tube 30 corresponds to an example of the surrounding portion
  • the tube tip 31 corresponds to an example of the bottom portion
  • the welding point 15 corresponds to an example of the joint
  • the cement 40 corresponds to an example of the holding member
  • the air bubbles 70 correspond to an example of the air bubbles.
  • FIGS. 6, 7A, and 7B a temperature sensor according to a modification of the first embodiment of the present invention will be described with reference to FIGS. 6, 7A, and 7B.
  • the basic configuration of the temperature sensor of this embodiment is the same as that of the first embodiment, but the aspect of the temperature sensitive element is different from that of the first embodiment. Therefore, in the present embodiment, the configuration related to the temperature sensitive element will be described with reference to FIG. 6, FIG. 7A, and FIG. 7B, and description of other components and the like will be omitted.
  • the temperature sensor 1 of the present modification is provided with a temperature sensitive element 10 ⁇ / b> P using a platinum resistor, a metal tube 30, and the like.
  • the temperature sensing element 10P includes a ceramic substrate 14P having an alumina purity of 99.9%, a metal resistor 15P formed in a film shape on the surface of the ceramic substrate 14P, and a metal resistor 15P.
  • a ceramic coating layer 17P having an alumina purity of 99.9% that covers the metal resistor 15P is provided on the surface opposite to the surface in contact with the ceramic substrate 14P.
  • the metal resistor 15P is mainly composed of platinum (Pt), and the electric resistance value changes according to the temperature change.
  • the ceramic coating layer 17P is a fired sheet obtained by firing a ceramic green sheet in advance, and is bonded to the tip side (left side in FIGS. 7A and 7B) of the ceramic substrate 14P fired by the bonding layer 16P. Thus, the metal resistor 15P is provided in a state of covering the tip side.
  • the bonding layer 16P is also configured with an alumina purity of 99.9%.
  • the bonding layer 16P is a paste containing alumina powder before bonding. After the sintered ceramic base 14P and the ceramic coating layer 17P are bonded to each other with the paste, the bonding layer 16P is finally bonded by heat treatment. It becomes the layer 16P.
  • the rear end side (the right side in FIGS. 7A and 7B) of the metal resistor 15P is connected to the lead lead wire 21P through the thick film pad 18P, and then the connection portion is fixed by the lead wire fixing material 19P. As a result, the lead wire 21P is electrically connected.
  • the temperature sensing element 10P configured in this way is electrically connected to an external device or the like via the lead lead wire 21P.
  • the configuration in which the lead wire 21P is removed from the temperature sensing element 10P corresponds to an example of the “temperature sensing element” of the present invention.
  • the side surface located between the end on the tip side facing the tube tip 31 in the temperature sensing element 10P and the end on the rear end side to which the lead wire 21P is connected is the “side” of the present invention. It corresponds to an example of “peripheral part”.
  • the cement 40 is filled so as to be in contact with the side surface corresponding to an example of the “side peripheral portion” of the present invention.
  • the ceramic substrate 14P, the ceramic coating layer 17P, and the bonding layer 16P of the temperature sensitive element 10P are configured with an alumina purity of 99.9% or more (99.9% in this embodiment), and are excellent in migration resistance.
  • the temperature sensor 1 can suppress the deterioration of the metal resistor 15P due to the influence of the object to be measured, and suppress the occurrence of migration due to components other than alumina contained in the ceramic base 14P, the ceramic coating layer 17P, and the bonding layer 16P. Therefore, even when exposed to a high temperature environment (for example, 1000 [° C.]), the electric resistance value of the temperature sensitive element 10P is less likely to fluctuate, and a decrease in temperature detection accuracy can be suppressed.
  • a high temperature environment for example, 1000 [° C.]
  • the cement 40 is disposed inside the metal tube 30 in a state of being in contact with the temperature sensing element 10P and the metal tube 30, the temperature sensing element 10P is supported by the metal tube 30 via the cement 40. Provided. For this reason, even in a use environment that easily receives external force such as vibration, the collision between the temperature sensing element 10P and the metal tube 30 can be suppressed, and the damage of the temperature sensing element 10P due to the collision with the metal tube 30 can be suppressed.
  • the temperature sensitive element 10P is supported by the metal tube 30 via the cement 40, the movement of the relative position of the temperature sensitive element 10P with respect to the metal core wire 21 can be suppressed, and the temperature sensitive element 10P and the metal core wire 21 can be suppressed. It can suppress that a connection part disconnects.
  • the temperature sensing element 10P is provided inside the metal tube 30, water drops or the like do not directly adhere to the temperature sensing element 10P. Therefore, the temperature sensing element 10P is caused by the uneven temperature distribution due to the adhesion of water drops. Damage such as cracking can be suppressed.
  • thermosensor according to a second embodiment of the present invention will be described with reference to FIG.
  • the basic configuration of the temperature sensor of the present embodiment is the same as that of the first embodiment, but the form of air bubbles is different from that of the first embodiment. Therefore, in this embodiment, the form of an empty bubble is demonstrated using FIG. 8, and description of other components etc. is abbreviate
  • the thermistor element 10 and the cement 40 are arranged inside the metal tube 30 of the thermistor element 10 of the temperature sensor 101 of the present embodiment.
  • the cement 40 is filled in the metal tube 30 so as to contact the inner wall surface of the tube tip 31 of the metal tube 30.
  • at least the cement 40 is filled between the inner wall surface of the tube tip 31 and an air bubble 170 described later.
  • the side surface located between the end portion on the tip side facing the tube tip 31 in the temperature sensing portion 11 and the end portion on the rear end side to which the electrode wire 12 is connected is the “side peripheral portion” of the present invention. Is equivalent to an example.
  • the cement 40 is filled so as to be in contact with at least a part of the side surface corresponding to an example of the “side circumferential portion” of the present invention.
  • an air bubble 170 is formed in the cement 40 on the tip side (the left side in FIG. 8) of the temperature sensing part 11.
  • the air bubbles 170 are formed so as to enclose the cement 40 and the temperature sensing part 11 and not to enclose the inner wall surface of the tube tip 31.
  • the air bubbles 170 are arranged from the front end surface 11A of the temperature sensing unit 11 to the side surface.
  • the dimension Lx from the temperature sensing part 11 to the front end side boundary of the air bubble 170 and the dimension Ly from the temperature sensing part 11 to the side side boundary of the air bubble 170 satisfy the relationship Lx> Ly.
  • a temperature sensing part 11 having a tip coated with a sublimation material is prepared.
  • the coating is performed by a method in which the tip of the temperature sensing unit 11 is immersed in a liquid of a sublimation material, or a method in which a sublimation material is sprayed on the tip of the temperature sensing unit 11.
  • the prepared temperature sensing part 11 is inserted in the cement 40 with which the metal tube 30 was filled.
  • the prepared temperature sensing part 11 is placed in the metal tube 30 and then the cement 40 is filled in the metal tube 30.
  • the sublimation material is sublimated in the process of solidifying the cement 40 by firing. A space from which the sublimation material has been removed is formed as an air bubble 170.
  • the centrifugal defoaming treatment may be performed after the temperature sensing portion 11 and the cement 40 are disposed in the metal tube 30 and before the cement 40 is solidified.
  • the metal tube 30 is held so that the tube tip 31 is radially outward, and the metal tube 30 is rotated. Thereby, the centrifugal force toward the tube tip 31 acts on the cement 40, and the density of the cement 40 at the tube tip 31 is increased.
  • the density of the cement 40 in the periphery of the temperature sensitive part 11 is increased, and the thermal conductivity in the periphery is increased. Furthermore, the retainability of the temperature sensing part 11 is also increased.
  • the air bubbles 170 may be formed by using a sublimation material as described above, or by using a sublimation material and centrifugal defoaming treatment in combination, or the air bubbles 170 may be formed by reverse centrifugal defoaming treatment described below. It may be formed.
  • the reverse centrifugal defoaming process after the temperature sensing unit 11 and the cement 40 are arranged in the metal tube 30, the metal tube 30 is held so that the tube tip 31 is at the center of rotation, and the metal tube 30 is rotated. As a result, a centrifugal force acts on the cement 40 in a direction away from the tube tip 31, and the cement 40 is separated from the tube tip 31, thereby creating a space in the vicinity. Finally, the cement 40 is solidified in the process of solidifying the cement 40 by firing, and the space is formed as an air bubble 170.
  • the tube tip 31 and the cement 40 are in direct contact with each other.
  • a heat conduction path from the tube tip 31 to the temperature sensing part 11 through the cement 40 is formed, and the response speed as a temperature sensor can be improved.
  • a space by the air bubbles 170 can be secured on the tip side of the temperature sensing unit 11. As a result, a sufficient space for absorbing the shrinkage of the cement 40 in the axial direction L can be secured, and the stress due to the shrinkage can be absorbed.
  • the technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.
  • the present invention is not limited to those applied to the above-described embodiments, and may be applied to embodiments obtained by appropriately combining these embodiments, and is not particularly limited.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

 本発明の1つの局面における温度センサは、感温素子と、シース部と、包囲部と、保持部材と、を備える。この温度センサにおいては、包囲部の先端側から包囲部の軸線に沿う方向に投影して見たときに、感温体の先端側に形成された空泡は、少なくとも感温体の先端面を内包する。

Description

温度センサ 関連出願の相互参照
 本国際出願は、2013年10月24日に日本国特許庁に出願された日本国特許出願第2013-220902号に基づく優先権と、2014年2月10日に日本国特許庁に出願された日本国特許出願第2014-023578号に基づく優先権を主張するものであり、日本国特許出願第2013-220902号の全内容と日本国特許出願第2014-023578号の全内容を本国際出願に援用する。
 本発明は、サーミスタ素子やPt抵抗体素子等の感温素子を備える温度センサに関する。
 一般的に、サーミスタ素子等の感温素子と、感温素子の電極から延びる素子電極線と溶接接合によって電気的に接続される金属芯線を内部で絶縁保持するシース部と、感温素子、金属芯線及びシース部を収容する金属チューブと、金属チューブ内に充填され感温素子および金属芯線を保持するセメントと、から主に構成された温度センサが知られている(例えば、特許文献1から3参照。)。
 このようなセンサは、車載用温度センサ、または設置式汎用エンジン等の排ガス測定に用いられている。言い換えると、高温用センサのように測定温度が高く、かつ感熱部周囲に振動が加わる使用条件の下で用いられるセンサとして使用されている。
特開2009-175129号公報 特許第4760584号公報 特許第4768432号公報
 上述の特許文献1から3に記載の温度センサでは、感温素子を金属チューブの内部で保持するために、セメントを金属チューブの先端にまで充填している。その方法としては、金属チューブに充填されたセメントが固化する前に、遠心力などを作用させてセメントを金属チューブの先端まで詰める方法等が例示することができる。
 しかしながら上述の温度センサは、冷熱サイクル試験のように高温条件および低温条件に繰り返し置かれると、感温素子の素子電極線や金属芯線(無機絶縁ケーブル:シース)に応力が加わり、強度が小さい素子電極線と金属芯線との接合部が切断される場合がある。
 具体的には、温度センサが高温条件下から低温条件下に移されると、感温素子の周辺部の温度が、高温から低温に急激に低下する場合がある。この場合、外壁を構成する金属チューブの温度が最初に低下し、この温度低下により金属チューブは収縮する。その後内部に配置されたシースの温度が低下し始め、シースの収縮が始まる。言い換えると、金属チューブの収縮が始まるタイミングと、その内部に配置されたシースの収縮が始まるタイミングとが異なっている。
 そのため、金属チューブが収縮を始めた時点では、シースは熱により膨張したままの状態にあることになる。金属チューブの収縮は、その中に充填されたセメントを介して感温素子の素子電極線やシースに伝わり、これらの部材の接合部に応力が加わることで、接合部が切断される原因ともなりうる。
 本発明の一局面においては、熱応力による感温素子の接合部の切断が抑制された構成を有する温度センサを提供することが望ましい。
 本発明の1つの局面における温度センサは、感温素子と、シース部と、包囲部と、保持部材と、を備える。
 感温素子は、感温体および素子電極線を有する。シース部は、前記素子電極線に接合されるシース芯線を内包する。包囲部は、先端側に底部を有して軸線方向に延びる筒形状をなし、自身の内部空間に、少なくとも、前記感温素子を収容すると共に前記素子電極線と前記シース芯線との接合部を収容する。保持部材は、前記内部空間に配置され、前記感温体のうち、先端側の端部と後端側の端部との間に位置する側周部の少なくとも一部に接する。
 包囲部の内部のうち感温体の先端側には空泡が備えられる。
 この温度センサは、前記包囲部の先端側から前記軸線に沿う方向に投影して見たときに、前記空泡は、少なくとも前記感温体の先端面を内包するように構成されている。
 なお、空泡は、固体や液体を内部に含まない空間として形成されており、例えば、ガス(大気など)を内部に含んだ空間として形成してもよく、あるいは、真空の空間として形成してもよい。
 この温度センサによれば、感温体の先端側に存在する空泡が、感温体の先端面を内包するように形成されることにより、感温素子やシース芯線や接合部にかかる熱応力を軽減することができる。つまり、高温状態にある温度センサを低温状態に移行させる際に、外部に露出している包囲部の温度が最初に低下し、その後に包囲部の内部空間に配置された保持部材や感温素子や素子電極線やシース芯線の温度が低下する。
 包囲部が温度低下により熱収縮すると、包囲部の底部により保持部材は後端側へ押しこまれる。この際、感温体の先端側に空泡が存在すると、当該空泡によって保持部材の後端側への押し込みが吸収される。その結果、感温素子が後端側へ押しこまれないため、素子電極線とシース芯線との接合部に働く熱応力が低減される。少なくとも感温体の先端面が内包されるように空泡が形成されていれば上記効果は発揮される。なお、前記包囲部の先端側から前記軸線に沿う方向に投影して見たときに、感温体の先端向き面が内包されるように空泡が形成されていてもよい。これにより、上記効果はより発揮される。
 上記の温度センサにおいては、前記保持部材は、前記包囲部における前記底部の内壁面に当接していてもよい。これにより、包囲部の先端部分である底部と保持部材とが直接接触することになる。包囲部の底部から保持部材を介して感温体に至る熱伝導経路が形成され、温度センサとしての応答速度が向上しやすくなる。
 上記の温度センサにおいて、前記空泡は、前記感温素子の前記先端向き面から前記側周部にわたって配置され、前記感温素子から前記空泡の先端側境界までの寸法は、前記感温素子から前記空泡の側方側境界までの寸法よりも大きくてもよい。これにより、感温素子の先端側に空泡による空間を確保できる。その結果、保持部材の軸線方向への収縮を吸収する十分な空間を確保でき、当該収縮による応力を吸収しやすくなる。
 上記の温度センサにおいては、前記底部は曲面形状であり、前記底部から、前記包囲部における筒形状の円筒面と前記底部との境界に至るまでの一つの連続的な前記空泡が形成されていてもよい。このように包囲部の底部から、筒形状の円筒面と底部との境界に至るまでの一つの連続的な空泡を形成することにより、素子電極線とシース芯線との接合部にかかる熱応力を軽減しやすくなる。
 つまり、包囲部の底部から、筒形状の円筒面との底部との境界までの領域に設けられた空泡により、包囲部の熱収縮による保持部材の後端側への押し込みが吸収され、素子電極線とシース芯線との接合部に働く熱応力が低減される。特に、包囲部の底部から、筒形状の円筒面と底部との境界に至るまでの一つの連続的な空泡を形成することにより、不連続な空泡が形成されている場合と比較して保持部材の後端側への押し込みが吸収されやすくなり、素子電極線とシース芯線との接合部に働く熱応力が低減されやすくなる。
 上記の温度センサにおいては、前記底部は曲面形状であり、前記底部から、前記感温体の先端側の端部に至るまでの一つの連続的な空泡が形成されていてもよい。このように包囲部の底部から、感温体の先端側の端部に至るまでの一つの連続的な空泡を形成することにより、素子電極線とシース芯線との接合部にかかる熱応力をさらに軽減しやすくなる。
 つまり、包囲部の底部から、感温体の先端側の端部までの領域に設けられた空泡により、包囲部の熱収縮による保持部材の後端側への押し込みが吸収され、素子電極線とシース芯線との接合部に働く熱応力が低減される。特に、包囲部の底部から、感温体の先端側の端部に至るまでの一つの連続的な空泡を形成することにより、不連続な空泡が形成されている場合と比較して保持部材の後端側への押し込みが吸収されやすくなり、素子電極線とシース芯線との接合部に働く熱応力が低減されやすくなる。
 上記の温度センサによれば、感温体の先端側に存在する空泡が、感温体の先端面を内包するように形成されることにより、素子電極線とシース芯線との接合部に働く熱応力が低減されやすくなり、熱応力による感温素子の不具合発生を抑制することができるという効果を奏する。
本発明の第1の実施形態である温度センサの構造を説明する部分破断断面図である。 図1の金属チューブ先端側の内部構造を説明する断面図である。 金属チューブの先端から軸線方向後端側に向かって、小径部、空泡、感温部の位置関係を、図2のIII-III断面に投影した状態として表した説明図である。 金属チューブ内へのセメントの充填方法を説明する図である。 図2の内部構造の他の例を説明する断面図である。 本発明の第1の実施形態の変形例である温度センサの金属チューブ先端側の内部構造を説明する断面図である。 図7Aは、図6の感温素子の構成を説明する模式図であり、図7Bは図7AにおけるVIIB-VIIB断面視図である。 本発明の第2の実施形態である温度センサの金属チューブ先端側の内部構造を説明する断面図である。
  1,101…温度センサ、10…サーミスタ素子(感温素子)、10P…感温素子、11…感温部(感温体)、12…電極線(素子電極線)、15…溶接点(接合部)、15P…金属抵抗体、20…シース部、21…金属芯線(シース芯線)、30…金属チューブ(包囲部)、31…チューブ先端(底部)、40…セメント(保持部材)、70,170…空泡
 〔第1の実施形態〕
 この発明の第1の実施形態に係る温度センサについて、図1から図4および図5A,図5Bを参照しながら説明する。
 本実施形態の温度センサ1は内燃機関の排気管などの流通管に装着することにより、測定対象ガスが流れる流通管内に配置させ、測定対象ガス(排気ガス)の温度検出に用いられるものである。温度センサ1には、サーミスタ素子(感温素子)10と、シース部20と、金属チューブ(包囲部)30と、取付け部50と、ナット部60と、が主に設けられている。
 サーミスタ素子10は測定対象ガスが流れる流通管内に配置される感温素子であり、金属チューブ30の内部に配置されるものである。サーミスタ素子10には、温度によって電気的特性(電気抵抗値)が変化するサーミスタ焼結体である感温部(感温体)11と、この感温部11の電気的特性の変化を取り出すための一対の電極線(素子電極線)12とが設けられている。
 シース部20は、一対の金属芯線(シース芯線)21を外筒22の内側にて絶縁保持するものである。シース部20には、金属製の外筒22と、導電性金属からなる一対の金属芯線21と、外筒22と2本の金属芯線21との間を電気的に絶縁して金属芯線21を保持する絶縁粉末(図示せず)と、が設けられている。
 金属チューブ30は、軸線方向に延びる筒状の部材の先端側を閉塞して形成した部材であり、耐腐食性金属(例えば、耐熱性金属でもあるSUS310Sなどのステンレス合金)から形成されたものである。金属チューブ30は、鋼板の深絞り加工によりチューブ先端(底部)31が閉塞した軸線方向に延びる筒状に形成され、筒状のチューブ後端が開放した形状に形成されている。金属チューブ30は、チューブ後端側が取付け部50の第2段部55の内面に当接するように、軸線方向寸法が設定されている。金属チューブ30のチューブ先端31は曲面形状に形成されている。
 金属チューブ30の内部には、サーミスタ素子10およびセメント(保持部材)40が配置されている。金属チューブ30には、先端部分に小径部32が形成され、その後端側に小径部32よりも径が大きな大径部33が形成されている。この小径部32および大径部33の間は、段差部34により接続されている。
 セメント40はサーミスタ素子10の周囲に充填されるものであり、サーミスタ素子10を保持してその揺動を抑制するものである。セメント40としては、熱伝導率が高く、高耐熱、高絶縁性の材料を用いてもよい。例えば、Al23やMgOなどの酸化物、AlNやTiNやSi34やBN等の窒化物、および、SiCやTiCやZrC等の炭化物が主体のセメント、または、Al23やMgOなどの酸化物、AlNやTiNやSi34やBN等の窒化物、および、SiCやTiCやZrC等の炭化物が主体で、Al23やSiO2やMgO等の無機バインダーを混合したセメントを用いてもよい。
 取付け部50は金属チューブ30を支持する部材であり、少なくとも金属チューブ30の先端が外部に露出する状態で金属チューブ30の後端側の外周面を取り囲んで金属チューブ30を支持するものである。取付け部50には、径方向外側に突出する突出部51と、突出部51の後端側に位置すると共に軸線方向に延びる後端側鞘部52と、が設けられている。
 突出部51は、先端側に取り付け座53が設けられた環状の部材である。取り付け座53は、先端側に向かって径が小さくなるテ―パ形状の部材であり、排気管(図示せず)のセンサ取り付け位置に形成された後端側に向かって径が大きくなるテ―パ形状と対応したものである。取付け部50は、排気管のセンサ取り付け位置に配置されると、取り付け座53がセンサ取り付け位置のテーパ部に密着し、排気管外部への排気ガスの漏出を抑制するものである。
 後端側鞘部52は環状に形成された部材であり、後端側鞘部52には、先端側に位置する第1段部54と、第1段部54よりも外径が小さな第2段部55と、が形成されている。
 ナット部60は、六角ナット部61およびネジ部62を有するものである。なお、軸線方向は温度センサ1の長手方向であり、図1の上下方向である。温度センサ1の先端側は図1の下側であり、後端側は図1の上側である。
 金属芯線21は、先端部が溶接点(接合部)15によりサーミスタ素子の電極線12と電気的に接続されるものであり、後端部が抵抗溶接により加締め端子23と接続されるものである。つまり金属芯線21は、自身の後端が加締め端子23を介して外部回路、例えば車両の電子制御装置(ECU)等の接続用のリード線24と接続されるものである。
 一対の金属芯線21は絶縁チューブ25によって互いに絶縁されており、一対の加締め端子23も絶縁チューブ25により互いに絶縁されている。リード線24は導線を絶縁性の被覆材により被覆したものであり、リード線24は耐熱ゴム製の補助リング26の内部を貫通して配置されている。
 次に本実施形態の特徴である金属チューブ30の先端側の構成について図2から図4を参照しながら説明する。
 金属チューブ30の内部に充填されたセメント40には、図2に示すように、感温部11の先端側(図2の左側)に空泡70が形成されている。空泡70は、固体や液体を内部に含まない空間として形成されており、例えば、ガス(大気など)を内部に含んだ空間として形成してもよく、あるいは、真空の空間として形成してもよい。空泡70は、図3に示すように、感温部11の先端面11Aを含む先端向き面11Bを内包する大きさを有している。
 ここで、感温部11の先端面11Aは、高さの低い六角柱状に形成された感温部11における軸線方向Lと直交する一対の側面のうちの最先端に配置されている側面である。また、先端向き面11Bは、軸線方向Lに沿って先端側から感温部11を見た際に、先端側に表れて目視できる全ての側面のことである。本実施形態のように六角柱状に形成された感温部11の場合には、先端面11Aに隣接する一対の側面および先端面11Aからなる3つの側面が先端向き面11Bとなる。
 本実施形態においては、高さの低い六角柱状に形成された感温部11の6つの側面のうち、軸線方向Lと直交する一対の側面(言い換えると、先端側の側面である先端面11Aおよび後端側の側面)を除いた他の4つの側面が、本発明の「側周部」の一例に相当する。セメント40は、本発明の「側周部」の一例に相当する他の4つの側面に接するように充填されている。なお、本実施形態では感温部11が高さの低い六角柱状に形成された例に適用して説明するが、感温部11の形状は六角柱状に限定されるものではなく、他の多角形柱状であってもよいし、円柱状であってもよい。
 空泡70の径は、図4に示すように、金属チューブ30の内部にセメント40を充填する充填針75の先端位置を調節することにより制御される。例えば、金属チューブ30に対する充填針75の相対的な先端位置を、セメント40の充填状態に応じて移動させることにより調節できる。具体的には、充填針75の先端を金属チューブ30の後端側へ比較的早い速度で移動させることによって空泡70の径が大きくなる。その一方で、充填針75の移動速度を遅くすることにより空泡70の径が小さくなる。
 その他にも、セメント40を充填する際に、カーボンや、テオブロミンや、各種の有機バインダーなど比較的低温(例えば900℃以下)で揮発する昇華材料であって、セメント40が固化する過程で消滅してセメント40内に空隙を形成するものを金属チューブ30の内部に配置してもよい。このようにして形成された空隙が上述の空泡70となる。
 また感温部11の先端側に存在する空泡70は、図5Aに示すように、金属チューブ30のチューブ先端31から、金属チューブ30の円筒面およびチューブ先端31の境界である第1基準面L1に至るまでの一つの連続的な空泡70として形成されていてもよい。
 さらに感温部11の先端側に存在する空泡70は、図5Bに示すように、金属チューブ30のチューブ先端31から、サーミスタ素子10の感温部11における先端側の端部である第2基準面L2に至るまでの一つの連続的な空泡70として形成されていてもよい。
 上記の構成の温度センサ1によれば、感温部11の先端側に存在する空泡70が、感温部11の先端面11Aを内包するように形成されることにより、サーミスタ素子10の電極線12と金属芯線21との接合部たる溶接点15にかかる熱応力を軽減することができる。つまり、高温状態にある温度センサ1を低温状態に移行させる際に、外部に露出している金属チューブ30の温度が最初に低下し、その後に金属チューブ30の内部空間に配置されたセメント40やサーミスタ素子10や電極線12や金属芯線21の温度が低下する。
 金属チューブ30が温度低下により熱収縮すると、金属チューブ30のチューブ先端31によりセメント40は後端側へ押しこまれる。この際、感温部11の先端側に空泡70が存在すると、当該空泡70によってセメント40の後端側への押し込みが吸収される。その結果、感温部11が後端側へ押しこまれないため、電極線12と金属芯線21との接合部である溶接点15に働く熱応力が低減される。少なくとも感温部11の先端面11Aが内包されるように空泡70が形成されていれば上記効果は発揮されるが、感温部11の先端向き面11Bが内包されるように空泡70が形成されていれば、上記効果はより発揮される。その結果、電極線12と金属芯線21との溶接点15が熱応力によって断線することを抑制でき、熱応力によるサーミスタ素子10の不具合発生を抑制することができる。
 また、図5Aに示すように、金属チューブ30のチューブ先端31から、筒形状の円筒面とチューブ先端31との境界である第1基準面L1に至るまでの一つの連続的な空泡70を形成することにより、電極線12と金属芯線21との溶接点15にかかる熱応力を軽減しやすくなる。つまり、金属チューブ30のチューブ先端31から、筒形状の円筒面とのチューブ先端31との境界までの領域に設けられた空泡70により、金属チューブ30の熱収縮によるセメント40の後端側への押し込みが吸収され、電極線12と金属芯線21との溶接点15に働く熱応力が低減される。特に、金属チューブ30のチューブ先端31から第1基準面L1に至るまでの一つの連続的な空泡70を形成することにより、不連続な空泡70が形成されている場合と比較してセメント40の後端側への押し込みが吸収されやすくなり、熱応力によるサーミスタ素子10の不具合発生を抑制しやすくなる。
 さらに、図5Bに示すように、金属チューブ30のチューブ先端31から、感温部11の先端側の端部である第2基準面L2に至るまでの一つの連続的な空泡70を形成することにより、電極線12と金属芯線21との溶接点15にかかる熱応力をさらに軽減しやすくなる。つまり、金属チューブ30のチューブ先端31から第2基準面L2までの領域に設けられた空泡70により、金属チューブ30の熱収縮によるセメント40の後端側への押し込みが吸収され、電極線12と金属芯線21との溶接点15に働く熱応力が低減される。特に、金属チューブ30のチューブ先端31から第2基準面L2に至るまでの一つの連続的な空泡70を形成することにより、不連続な空泡70が形成されている場合と比較してセメント40の後端側への押し込みが吸収されやすくなり、熱応力によるサーミスタ素子10の不具合発生を抑制しやすくなる。
 ここで、特許請求の範囲と本実施形態とにおける文言の対応関係について説明する。
 温度センサ1が温度センサの一例に相当し、サーミスタ素子10が感温素子の一例に相当し、感温部11が感温体の一例に相当し、電極線12が素子電極線の一例に相当する。
 シース部20がシース部の一例に相当し、金属芯線21がシース芯線の一例に相当し、金属チューブ30が包囲部の一例に相当し、チューブ先端31が底部の一例に相当し、溶接点15が接合部の一例に相当し、セメント40が保持部材の一例に相当し、空泡70が空泡の一例に相当する。
 〔第1の実施形態の変形例〕
 次に、本発明の第1の実施形態の変形例に係る温度センサついて図6および図7A,図7Bを参照しながら説明する。本実施形態の温度センサの基本構成は、第1の実施形態と同様であるが、第1の実施形態とは、感温素子の態様が異なっている。よって、本実施形態においては、図6および図7A,図7Bを用いて感温素子に関する構成などについて説明し、その他の構成要素等の説明を省略する。
 本変形例の温度センサ1には、図6に示すように、白金抵抗体を用いた感温素子10Pや、金属チューブ30などが設けられている。
 感温素子10Pは、図7Aおよび図7Bに示すように、アルミナ純度99.9%のセラミックス基体14Pと、セラミックス基体14Pの表面に膜状に形成される金属抵抗体15Pと、金属抵抗体15Pのうちセラミックス基体14Pと接する面とは反対側の面において金属抵抗体15Pを被覆するアルミナ純度99.9%のセラミックス被覆層17Pと、を有している。
 金属抵抗体15Pは、白金(Pt)を主体に構成されており、温度変化に応じて電気抵抗値が変化する。
 セラミックス被覆層17Pは、セラミックスのグリーンシートを予め焼成することで得られた焼成済みのシートであり、接合層16Pにより焼成済みのセラミックス基体14Pの先端側(図7A,図7Bにおける左側)に接合されて、金属抵抗体15Pの先端側を覆う状態で備えられている。
 なお、接合層16Pについても、アルミナ純度99.9%で構成されている。なお、この接合層16Pは、接合前はアルミナ粉末を含むペーストであり、焼成済みのセラミックス基体14Pとセラミックス被覆層17Pとを上記ペーストで貼り合わせた後、熱処理されることで、最終的に接合層16Pとなる。
 そして、金属抵抗体15Pのうち後端側(図7A,図7Bにおける右側)は、厚膜パッド18Pを介して引出リード線21Pと接続されたあと、接続部分がリード線固定材19Pにより固定されることにより、引出リード線21Pと電気的に接続される。このように構成された感温素子10Pは、引出リード線21Pを介して外部機器などと電気的に接続される。
 なお、本変形例においては、感温素子10Pから引出リード線21Pを除いた構成が、本発明の「感温体」の一例に相当する。また、感温素子10Pにおけるチューブ先端31と対向する先端側の端部と、引出リード線21Pが接続される側の後端側の端部との間に位置する側面が、本発明の「側周部」の一例に相当する。セメント40は、本発明の「側周部」の一例に相当する上記側面に接するように充填されている。
 感温素子10Pのセラミックス基体14P、セラミックス被覆層17Pおよび接合層16Pは、アルミナ純度99.9%以上(本実施形態では、99.9%)で構成されており、耐マイグレーション性に優れる。
 つまり、温度センサ1は、被測定物の影響による金属抵抗体15Pの劣化を抑制できるとともに、セラミックス基体14P、セラミックス被覆層17Pおよび接合層16Pに含まれるアルミナ以外の成分によりマイグレーションが生じるのを抑制できることから、高温環境下(例えば、1000[℃])に晒される場合でも感温素子10Pの電気抵抗値が変動し難くなり、温度検出精度の低下を抑制できる。
 また、セメント40が感温素子10Pおよび金属チューブ30にそれぞれ接する状態で金属チューブ30の内部に配置されているため、感温素子10Pは、セメント40を介して金属チューブ30に支持される状態で備えられる。このため、振動などの外力を受けやすい使用環境においても、感温素子10Pと金属チューブ30との衝突を抑制でき、金属チューブ30との衝突に起因する感温素子10Pの破損を抑制できる。また、感温素子10Pがセメント40を介して金属チューブ30により支持されることから、金属芯線21に対する感温素子10Pの相対的位置の移動を抑制でき、感温素子10Pと金属芯線21との接続部分が断線するのを抑制できる。
 さらに、感温素子10Pが金属チューブ30の内部に備えられることから、感温素子10Pに水滴などが直接付着することがないため、水滴の付着による温度分布の偏りに起因する感温素子10Pでのクラック発生などの破損を抑制できる。
 〔第2の実施形態〕
 次に、本発明の第2の実施形態に係る温度センサついて図8を参照しながら説明する。本実施形態の温度センサの基本構成は、第1の実施形態と同様であるが、第1の実施形態とは、空泡の形態が異なっている。よって、本実施形態においては、図8を用いて空泡の形態について説明し、その他の構成要素等の説明を省略する。
 本実施形態の温度センサ101のサーミスタ素子10における金属チューブ30の内部には、図8に示すように、サーミスタ素子10およびセメント40が配置されている。セメント40は、金属チューブ30のチューブ先端31の内壁面に接するように金属チューブ30の内部に充填されている。言い換えると、チューブ先端31の内壁面と後述する空泡170との間に、少なくともセメント40が配置されるように充填されている。ここで、感温部11におけるチューブ先端31と対向する先端側の端部と、電極線12が接続される後端側の端部との間に位置する側面が、本発明の「側周部」の一例に相当する。セメント40は、本発明の「側周部」の一例に相当する上記側面の少なくとも一部に接するように充填されている。
 更にセメント40には、感温部11の先端側(図8の左側)に空泡170が形成されている。言い換えると、空泡170は、セメント40および感温部11を内包し、かつ、チューブ先端31の内壁面を内包しないように形成されている。空泡170は、感温部11の先端面11Aから側面にわたって配置されている。感温部11から空泡170の先端側境界までの寸法Lxと、感温部11から空泡170の側方側境界までの寸法Lyとは、Lx>Lyの関係を満たしている。
 空泡170を形成する方法としては次の方法を例示することができる。まず、先端に昇華材料をコートした感温部11を準備する。コートは、感温部11の先端を昇華材料の液に浸す方法、または、感温部11の先端に昇華材料をスプレーする方法により行われる。そして、金属チューブ30に充填されたセメント40の中へ、準備した感温部11を挿入する。または、準備した感温部11を金属チューブ30内に配置してから、セメント40を金属チューブ30に充填する。最後に、焼成によってセメント40を固化させる過程において昇華材料を昇華させる。昇華材料が取り除かれた空間が空泡170として形成される。
 金属チューブ30内に感温部11およびセメント40を配置した後であって、セメント40を固化させる前に遠心脱泡処理を行ってもよい。遠心脱泡処理では、チューブ先端31が径方向外側となるように金属チューブ30を保持し、金属チューブ30を回転させる。これによりセメント40には、チューブ先端31に向かう遠心力が作用し、チューブ先端31におけるセメント40の密度が高くなる。言い換えると、感温部11の周辺におけるセメント40の密度が高くなり、当該周辺における熱伝導性が高くなる。更に、感温部11の保持性も高くなる。
 なお、上述のように昇華材料を用いて、または、昇華材料および遠心脱泡処理を併用して空泡170を形成してもよいし、以下に説明する逆遠心脱泡処理により空泡170を形成してもよい。逆遠心脱泡処理では、金属チューブ30内に感温部11およびセメント40を配置した後、チューブ先端31が回転の中心側に成るように金属チューブ30を保持し、金属チューブ30を回転させる。これによりセメント40には、チューブ先端31から離れる方向に遠心力が作用し、セメント40がチューブ先端31から離れることで、当該近傍において空間が生じる。最後に、焼成によってセメント40を固化させる過程においてセメント40が固化し、当該空間が空泡170として形成される。
 上記の構成の温度センサ101によれば、チューブ先端31とセメント40とが直接接触することになる。チューブ先端31からセメント40を介して感温部11に至る熱伝導経路が形成され、温度センサとしての応答速度を向上させることができる。さらに、感温部11の先端側に空泡170による空間を確保できる。その結果、セメント40の軸線方向Lへの収縮を吸収する十分な空間を確保でき、当該収縮による応力を吸収することができる。
 なお、本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。例えば、本発明を上記の実施形態に適用したものに限られることなく、これらの実施形態を適宜組み合わせた実施形態に適用してもよく、特に限定するものではない。

Claims (6)

  1.  温度センサであって、
     感温体および素子電極線を有する感温素子と、
     前記素子電極線に接合されるシース芯線を内包するシース部と、
     先端側に底部を有して軸線方向に延びる筒形状をなし、自身の内部空間に、少なくとも、前記感温素子を収容するとともに前記素子電極線と前記シース芯線との接合部を収容する包囲部と、
     前記内部空間に配置され、前記感温体のうち、先端側の端部と後端側の端部との間に位置する側周部の少なくとも一部に接する保持部材と、
    が設けられ、
     前記包囲部の内部のうち前記感温体の先端側には空泡が備えられており、
     前記包囲部の先端側から前記軸線に沿う方向に投影して見たときに、前記空泡は、少なくとも前記感温体の先端面を内包する温度センサ。
  2.  前記包囲部の先端側から前記軸線に沿う方向に投影して見たときに、前記空泡は、少なくとも前記感温体の先端向き面を内包する請求項1記載の温度センサ。
  3.  前記保持部材は、前記包囲部における前記底部の内壁面に当接している請求項1または2に記載の温度センサ。
  4.  前記空泡は、前記感温素子の前記先端向き面から前記側周部にわたって配置され、前記感温素子から前記空泡の先端側境界までの寸法は、前記感温素子から前記空泡の側方側境界までの寸法よりも大きい請求項1から3のいずれか1項に記載の温度センサ。
  5.  前記底部は、曲面形状であり、
     前記底部から、前記包囲部における筒形状の円筒面と前記底部との境界に至るまでの一つの連続的な前記空泡が形成されている請求項1または2に記載の温度センサ。
  6.  前記底部は、曲面形状であり、
     前記底部から、前記感温体の先端側の端部に至るまでの一つの連続的な空泡が形成されている請求項1または2に記載の温度センサ。
PCT/JP2014/078206 2013-10-24 2014-10-23 温度センサ WO2015060380A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112014004869.0T DE112014004869T5 (de) 2013-10-24 2014-10-23 Temperatursensor
US15/022,142 US10254172B2 (en) 2013-10-24 2014-10-23 Temperature sensor with improved sheath
JP2015518109A JP6510405B2 (ja) 2013-10-24 2014-10-23 温度センサ

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013220902 2013-10-24
JP2013-220902 2013-10-24
JP2014-023578 2014-02-10
JP2014023578 2014-02-10

Publications (1)

Publication Number Publication Date
WO2015060380A1 true WO2015060380A1 (ja) 2015-04-30

Family

ID=52992969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078206 WO2015060380A1 (ja) 2013-10-24 2014-10-23 温度センサ

Country Status (4)

Country Link
US (1) US10254172B2 (ja)
JP (1) JP6510405B2 (ja)
DE (1) DE112014004869T5 (ja)
WO (1) WO2015060380A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017116360A (ja) * 2015-12-23 2017-06-29 株式会社デンソー 温度センサ

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10161639B2 (en) * 2015-03-10 2018-12-25 Joseph Copeland Heat transfer apparatus and heat transfer system for masonry heater
DE102018133502A1 (de) * 2018-12-21 2020-06-25 Tdk Electronics Ag Temperatursensorvorrichtung für hohe Temperaturen

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS574712U (ja) * 1980-06-06 1982-01-11
JPH11218449A (ja) * 1997-11-21 1999-08-10 Denso Corp 温度センサ及びその製造方法
JP2009175129A (ja) * 2007-12-26 2009-08-06 Ngk Spark Plug Co Ltd 温度センサおよびその製造方法
JP2010127747A (ja) * 2008-11-27 2010-06-10 Ngk Spark Plug Co Ltd 温度センサ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4768432B2 (ja) 2005-12-21 2011-09-07 日本特殊陶業株式会社 温度センサの製造方法、および温度センサ
US7719401B2 (en) * 2006-04-26 2010-05-18 Northrop Grumman Corporation Temperature probe and method of making the same
JP4760584B2 (ja) 2006-07-18 2011-08-31 株式会社デンソー 温度センサおよびその製造方法
JP2010032493A (ja) * 2008-06-25 2010-02-12 Ngk Spark Plug Co Ltd 温度センサ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS574712U (ja) * 1980-06-06 1982-01-11
JPH11218449A (ja) * 1997-11-21 1999-08-10 Denso Corp 温度センサ及びその製造方法
JP2009175129A (ja) * 2007-12-26 2009-08-06 Ngk Spark Plug Co Ltd 温度センサおよびその製造方法
JP2010127747A (ja) * 2008-11-27 2010-06-10 Ngk Spark Plug Co Ltd 温度センサ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017116360A (ja) * 2015-12-23 2017-06-29 株式会社デンソー 温度センサ

Also Published As

Publication number Publication date
US10254172B2 (en) 2019-04-09
US20160231180A1 (en) 2016-08-11
JPWO2015060380A1 (ja) 2017-03-09
JP6510405B2 (ja) 2019-05-08
DE112014004869T5 (de) 2016-07-14

Similar Documents

Publication Publication Date Title
JP4253642B2 (ja) 温度センサ
US7891870B2 (en) Temperature sensor element and method of manufacturing the same
JP6301753B2 (ja) 温度センサ
JPH11218449A (ja) 温度センサ及びその製造方法
WO2015060380A1 (ja) 温度センサ
JP4739042B2 (ja) ガスセンサ及びその製造方法
JP2004317499A (ja) 温度センサ
JP5252631B2 (ja) 温度センサおよびその製造方法
JP4760584B2 (ja) 温度センサおよびその製造方法
JP2007170952A (ja) 温度センサの製造方法、および温度センサ
JP6297914B2 (ja) 感温素子および温度センサ
JP6404726B2 (ja) 感温素子及び温度センサ
JP2011043486A (ja) 温度センサ
JP6530327B2 (ja) 温度センサ及びその製造方法
JP6321470B2 (ja) サーミスタ素子および温度センサ
CN210981571U (zh) 一种pt200温度传感器芯片及pt200温度传感器
US10429339B2 (en) Gas sensor
JP2007187562A (ja) 温度センサ素子および温度センサ
JP2011043485A (ja) 温度センサ
JP6787691B2 (ja) 温度センサ
JP2017223556A (ja) 温度センサ
JP2011038926A (ja) 温度センサ
JP2017015504A (ja) 温度センサ
JP2018185164A (ja) 温度センサ、及び温度センサの製造方法
JP2011043487A (ja) 温度センサ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015518109

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14856237

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15022142

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120140048690

Country of ref document: DE

Ref document number: 112014004869

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14856237

Country of ref document: EP

Kind code of ref document: A1