WO2015056589A1 - 接合用銀シートおよびその製造方法並びに電子部品接合方法 - Google Patents

接合用銀シートおよびその製造方法並びに電子部品接合方法 Download PDF

Info

Publication number
WO2015056589A1
WO2015056589A1 PCT/JP2014/076660 JP2014076660W WO2015056589A1 WO 2015056589 A1 WO2015056589 A1 WO 2015056589A1 JP 2014076660 W JP2014076660 W JP 2014076660W WO 2015056589 A1 WO2015056589 A1 WO 2015056589A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver
sheet
temperature
sintering
dispersion medium
Prior art date
Application number
PCT/JP2014/076660
Other languages
English (en)
French (fr)
Inventor
哲 栗田
圭一 遠藤
宏昌 三好
Original Assignee
Dowaエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowaエレクトロニクス株式会社 filed Critical Dowaエレクトロニクス株式会社
Priority to CN201480056727.XA priority Critical patent/CN105637595B/zh
Priority to KR1020167012205A priority patent/KR20160073980A/ko
Priority to US15/028,453 priority patent/US20160254243A1/en
Priority to EP14854309.3A priority patent/EP3059740A4/en
Publication of WO2015056589A1 publication Critical patent/WO2015056589A1/ja
Priority to US16/042,123 priority patent/US20180331063A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/056Submicron particles having a size above 100 nm up to 300 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/107Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing organic material comprising solvents, e.g. for slip casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/006Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of flat products, e.g. sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3006Ag as the principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/12Copper or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/56Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26 semiconducting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/271Manufacture and pre-treatment of the layer connector preform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/273Manufacturing methods by local deposition of the material of the layer connector
    • H01L2224/2733Manufacturing methods by local deposition of the material of the layer connector in solid form
    • H01L2224/27332Manufacturing methods by local deposition of the material of the layer connector in solid form using a powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/275Manufacturing methods by chemical or physical modification of a pre-existing or pre-deposited material
    • H01L2224/27505Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/277Manufacturing methods involving monitoring, e.g. feedback loop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/2901Shape
    • H01L2224/29016Shape in side view
    • H01L2224/29017Shape in side view being non uniform along the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/83201Compression bonding
    • H01L2224/83203Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15788Glasses, e.g. amorphous oxides, nitrides or fluorides

Definitions

  • the present invention relates to a metallic silver sheet used as a bonding material and a method for producing the same.
  • the present invention also relates to a method for joining an electronic component and a substrate using the sheet.
  • Patent Document 1 discloses a binder (paste) in which fine silver powder is blended.
  • Patent Document 1 is useful in a technique of applying a circuit pattern according to component arrangement by printing on an electronic component mounting board or the like.
  • the components used in the final product for example, electronic component mounting board
  • it is necessary to set equipment specifications according to the individual product components in all steps of application, drying, and firing, and various products A more rational approach is desired to respond quickly.
  • a bonding method in which a sheet-like bonding material prepared in advance is inserted between the members to be bonded and fired instead of applying the bonding material to the product member, the bonding material as described above can be obtained.
  • the process of applying is omitted, and the process of passing the product member is rationalized.
  • a brazing material sheet represented by solder has been put to practical use.
  • a metal sheet premised on the use of solid phase diffusion or sintering should be used.
  • grains of the metal fine powder which presupposed with the binder can be considered.
  • bonding can be performed at a temperature lower than that of solid phase diffusion, but in order to ensure a sufficient contact area with a member to be bonded, a high load such as 10 MPa or more is required. Pressure is needed. If the applied pressure is low, the strength of the joint is reduced. It is not always easy to apply a high pressing force to electronic parts or the like, and there are great restrictions on use.
  • the firing for bonding is performed in a state including the binder resin, voids are likely to be formed in the bonded portion, which is also a negative factor for securing the strength of the bonded portion. Further, the volatilized binder resin may have an adverse effect on the electronic component.
  • An object of the present invention is to provide a silver sheet for bonding which can obtain high bonding strength with low pressure. Moreover, it aims at providing the joining method of the electronic component using the same.
  • the above object is a silver sheet in which silver particles having a particle diameter of 1 to 250 nm, more preferably silver particles having a particle diameter of 20 to 120 nm are integrated by sintering, and a certain temperature range “T” satisfying the following formula (1): This is achieved by a joining silver sheet having such a property that the sintering further proceeds when the temperature is raised to A (° C.) or more and T B (° C.) or less. It is effective that the arithmetic average roughness Ra of the sheet surface is 0.10 ⁇ m or less on both surfaces. 270 ⁇ T A ⁇ T B ⁇ 350 (1)
  • the silver sheet has voids unique to the sintered body.
  • the “property of further sintering” means that the silver sheet is voided when subjected to an experiment in which the temperature is raised to a temperature T 3 (° C.) within a temperature range of T A (° C.) to T B (° C.). This can be confirmed by examining whether or not the shape changes. In time the heating holding time at the temperature T 3 is within 5 minutes, to the extent that the gap shape change in already before and after heating is observed, it is desirable to have the property of sintering progresses.
  • T 3 a temperature within the above temperature range and maintained for 5 minutes in a state where a surface pressure of 1 MPa is applied. It is preferable. It should be noted that a temperature range “T A (° C.) or higher and T B (° C.) or lower” in which sintering further proceeds exists within the range of 270 to 350 ° C., and is not necessarily in the entire temperature range of 270 to 350 ° C. The property need not be observed.
  • the observation of the change in the shape of the void can be performed, for example, by comparing SEM images with a magnification of 30000 before and after the heating experiment. When an apparent shape change of the voids is recognized thereby, it is clear that it has “a property of further sintering”.
  • a method for strictly examining a method of comparing the SEM images before and after heating at the same location using a position where a cone-shaped indentation is provided as a mark is effective. In this method, if it is uncertain whether the shape of the void has changed or not, it is judged that it does not have the “property of further progressing sintering”; Can be determined.
  • the thickness of the silver sheet is desirably in the range of 10 to 120 ⁇ m, for example, as measured by a two-plane micrometer. Both plane micrometers mean micrometers in which the measurement surfaces of the anvil and spindle are both flat.
  • a projection shape viewed in the thickness direction that exhibits a pattern shape formed by printing is also an object of the present invention.
  • the “projection shape” here means a shape determined by the contour of the target object when viewed from one direction at infinity.
  • a silver powder composed of silver particles having a particle diameter of 1 to 250 nm and a dispersion medium having a 25% volatilization temperature T 25 (° C.) defined by (A) below in a temperature range of 200 ° C. or less.
  • Applying the mixed silver paste on the substrate A step of heat-treating the coated film after the application in a temperature range not lower than the T 25 (° C.) and in which sintering of silver particles does not occur to advance volatilization of the dispersion medium; Firing the heat-treated coating film at a temperature of 170 to 250 ° C.
  • a manufacturing method is provided.
  • the silver paste on the substrate it may be applied in a pattern shape by printing.
  • TG thermogravimetric analysis
  • the 25% volatilization temperature is T 25 (° C.).
  • the particle diameter of the silver particles is expressed by the major diameter of the primary particles.
  • the silver powder is composed of silver particles having a particle diameter of 1 to 250 nm, a mixture of silver fine powders having various average particle diameters may be used. It is more preferable to use silver powder having an average particle diameter of 20 to 120 nm.
  • the silver sheet is inserted between an electronic component and a substrate to which the electronic component is bonded, and the contact pressure between the electronic component and the silver sheet is 0.5 to 3 MPa, more preferably 1 to 3 MPa.
  • an electronic component bonding method in which heating is performed in a temperature range of T A (° C.) or higher and T B (° C.) or lower while applying a pressure force between the electronic component and the substrate.
  • the present invention it became possible to join the members to be joined with a low pressure of 3 MPa or less using a sheet-like joining material.
  • the present invention is particularly useful as a means for bonding an electronic component to a substrate.
  • FIG. 3 is a SEM photograph of the surface of the silver sheet obtained in Example 1.
  • FIG. 4 is a SEM photograph of the surface of the silver sheet obtained in Example 5.
  • FIG. The SEM photograph of the silver sheet surface obtained in Example 6.
  • FIG. The SEM photograph of the silver sheet surface obtained in Example 7.
  • FIG. The SEM photograph of the silver sheet surface obtained in Example 8.
  • FIG. The SEM photograph of the silver coating film surface after the preheating process obtained by the comparative example 1.
  • FIG. The SEM photograph of the silver coating film surface after the preheating process obtained by the comparative example 2.
  • FIG. The SEM photograph on the surface of a silver sheet after carrying out the heat test of the silver sheet obtained in Example 1 on the conditions of applied pressure 1MPa and 300 degreeC x 5min.
  • the silver sheet according to the present invention is inserted between the materials to be joined, and is a silver sheet produced when the temperature is raised to a certain temperature range “T A (° C.) or higher and T B (° C.) or lower” satisfying the following expression (1).
  • T A ° C.
  • T B ° C.
  • the materials to be joined on both sides are joined using solid phase diffusion. 270 ⁇ T A ⁇ T B ⁇ 350 (1)
  • the applied pressure can be set as low as about 0.5 to 3 MPa.
  • the silver sheet according to the present invention is a sintered sheet formed by sintering silver powder.
  • the silver sheet can be bonded with a low pressing force at the heating temperature T 3 at the time of bonding in which the silver sheet is within the temperature range of “T A (° C.) or higher and T B (° C.) or lower”. This is due to the fact that it has the property of “settling”. That is, the sintering performed at the stage of producing the silver sheet is finished in an incomplete state.
  • the silver sheet in such a state has many voids inside. Since the sintering further proceeds at the heating temperature at the time of bonding, the shape and amount of the voids change greatly only by applying a low pressure, and the movement (diffusion) of silver atoms proceeds actively. As a result, a joint is constructed in which the materials to be joined on both sides are tightly joined.
  • the arithmetic average roughness Ra of the sheet surface is 0.10 ⁇ m or less on both the front and back surfaces.
  • a silver sheet with Ra of 0.10 ⁇ m or less can be obtained by setting the applied pressure to 8 MPa or more in the press firing described below.
  • the thickness of the silver sheet is preferably 10 to 120 ⁇ m in the thickness measured by a two-plane micrometer. In order to stably obtain a high bonding strength, it is more effective to secure a sheet thickness of 10 ⁇ m or more. More preferably, the thickness is 20 ⁇ m or more. On the other hand, even if the thickness is 120 ⁇ m or more, the effect of improving the stability of the bonding strength is saturated and uneconomical. More preferably, the thickness is 100 ⁇ m or less, and even more preferably 50 ⁇ m or less.
  • the silver powder used as the raw material for the silver sheet is preferably composed of silver particles having a particle diameter of 1 to 250 nm.
  • the silver powder composed of such fine particles undergoes a sintering phenomenon at a low temperature of less than 250 ° C., and is a silver sheet that has been sintered in an incomplete state, that is, a silver sheet having “the property of further sintering” This is extremely useful for obtaining a sheet.
  • the particle diameter means the diameter (long diameter) of the longest part of the particle.
  • the particle shape is more preferably spherical.
  • the surface of the raw material silver powder used is covered with an organic protective material.
  • This organic protective material preferably remains until subjected to pressure firing for producing a silver sheet. That is, it may be somewhat volatilized in the process before being subjected to pressure firing, but it is desirable that it does not disappear completely. More specifically, it is desirable that the residual ratio of the organic protective material (ratio to the total mass of the original organic protective material) is 30% or more when the preheating treatment is completed.
  • Examples of such an organic protective material include fatty acids such as sorbic acid, hexanoic acid, butanoic acid and malic acid.
  • Silver paste A dispersion medium and the raw material silver powder are mixed to obtain a silver paste. At that time, additives may be mixed for viscosity adjustment.
  • the inventors have sufficiently volatilized and removed the substances constituting the dispersion medium before being subjected to pressure firing in making a silver sheet. It was found to be extremely important in enabling formation. That is, when pressure firing is performed in a state where a large amount of the dispersion medium exists around the silver particles, a sintering phenomenon that occurs between adjacent silver particles is inhibited, and it becomes difficult to form a sheet. However, when pressure firing is performed in a state where the dispersion medium is sufficiently removed, the silver sheet can be constructed even if the firing temperature is less than 250 ° C., preferably less than 200 ° C. all right.
  • a substance that undergoes volatilization is dispersed by a low-temperature heat treatment that does not cause sintering. It is necessary to adopt as a medium. However, even after the dispersion medium is sufficiently removed, it is desirable that the surface of each silver particle is covered with an organic protective material until it is subjected to pressure firing. Accordingly, the substance used as the dispersion medium is selected to have a property that volatilization proceeds by a low-temperature heat treatment so that the organic protective material for silver particles remains.
  • T 25 a dispersion medium having a 25% volatilization temperature T 25 (° C.) defined in the above (A) in a temperature range of 200 ° C. or less. It is difficult to sufficiently volatilize and remove a dispersion medium having T 25 in a temperature range exceeding 200 ° C. in a low temperature range where sintering does not occur.
  • T 25 is more preferably in a temperature range of 100 ° C. or higher. When T 25 is less than 100 ° C., it tends to volatilize even in a storage environment, and it is necessary to strictly manage storage of the silver paste.
  • An example of a dispersion medium having a 25% volatilization temperature T 25 (° C.) in the range of 200 ° C. or less, more preferably in the range of 100 ° C. to 200 ° C. includes 2-ethyl-1,3-hexanediol.
  • examples of the additive added to the paste for viscosity adjustment include organic substances such as 2-butoxyethoxyacetic acid and 2-methoxyethoxyacetic acid.
  • the content of the additive in the paste is preferably 2.0% by mass or less, and more preferably 1.0% by mass or less.
  • a coating film is formed by applying the silver paste on the substrate.
  • a material capable of peeling the formed silver sheet is applied.
  • a glass substrate with good smoothness, an alumina substrate, or the like can be used.
  • a base having a curved surface or a base having an uneven shape may be used.
  • the coating thickness is adjusted so that the thickness of the silver sheet obtained after pressure firing is within a predetermined range (described above).
  • the pattern may be applied by printing.
  • the coating film applied on the substrate is heated to obtain a coating film in which the dispersion medium is sufficiently volatilized.
  • This heat treatment is referred to as “preliminary heat treatment” in this specification.
  • the preheating treatment is performed in a temperature range in which the volatilization of the dispersion medium proceeds and silver particles are not sintered. From the viewpoint of promoting the volatilization of the dispersion medium, it is effective to set the heating temperature to 25% volatilization temperature T 25 (° C.) or higher. If the heating temperature is lower than that, it takes a long time to sufficiently volatilize the dispersion medium, and the productivity is impaired, or it is impossible to sufficiently achieve volatilization of the dispersion medium.
  • an appropriate temperature may be selected within a range of 200 ° C. or lower when no pressure is applied.
  • the preheating treatment temperature is desirably in the range of 250 ° C. or lower. If the set temperature is higher than that, sintering is likely to occur partially. If sintering occurs at the stage of the preheating treatment, it is difficult to realize a stable sheet formation in pressure firing.
  • the conditions of preheating treatment holding temperature, holding time, etc.
  • the conditions of preheating treatment can be determined in advance by experiments, depending on the type of raw material silver powder and additives to be used, the conditions of pressure firing in the subsequent step, and the like. If the preheating time for volatilizing and removing the dispersion medium is too short, a large amount of organic substances derived from the dispersion medium may remain, making it difficult to form a sheet.
  • the dispersion medium is 2-ethyl-1,3-hexanediol
  • appropriate preheating treatment conditions can be found within the range of a heating temperature of 130 to 170 ° C. and a heating time of 5 to 30 min.
  • a silver sheet is obtained by baking the coated film of the silver paste from which the dispersion medium material has been sufficiently volatilized and removed after the preheating treatment, while applying pressure to the surface.
  • the applied pressure can be applied by sandwiching both surfaces of the coating film with a pair of materials that are not bonded to the silver sheet, such as a glass material or a ceramic material.
  • the substrate on which the silver paste is applied may be used as it is.
  • the applied pressure is desirably in the range of 5 to 35 MPa, and more preferably in the range of 8 to 35 MPa.
  • a silver sheet with high smoothness can be obtained by increasing the pressure.
  • a silver sheet having an arithmetic average roughness Ra of the sheet surface of 0.10 ⁇ m or less is extremely useful for obtaining a high bonding strength between the materials to be bonded.
  • By setting the applied pressure to 8 MPa or more it becomes easy to form a silver sheet having Ra of 0.10 ⁇ m or less.
  • excessively increasing the pressing force increases the process load of pressure firing, which is not preferable.
  • the silver particles are sintered in an incomplete state to obtain a silver sheet. If the pressure firing temperature is excessively higher than the sintering start possible temperature of the raw material silver powder used, it becomes difficult to finish the sintering in an incomplete state, and it has the “characteristic that further sintering proceeds”. The silver sheet cannot be produced stably.
  • the pressure firing temperature is desirably 250 ° C. or less. In particular, when raw material silver powder having an average particle size of 120 nm or less is used, the temperature can be set to 200 ° C. or less. Since sintering is likely to occur by applying a pressing force, pressure firing may be realized at a temperature equal to or lower than the preheating temperature.
  • the appropriate conditions can be set within the range of 170 to 250 ° C., more preferably 170 to 220 ° C., and the heating time of 3 to 30 min, more preferably 3 to 10 min. it can.
  • the applied pressure applied at the time of joining may be in the range of 0.5 to 3 MPa. A range of 0.8 to 2 MPa is more preferable.
  • a high pressure of 10 MPa or more has been required. It is not preferable to apply such a high pressure force to an electronic component or the like, and there are many restrictions on use. Since the silver sheet according to the present invention causes solid-phase diffusion by utilizing the “property that sintering proceeds”, it enables bonding with a very low pressure.
  • the heating time in the temperature range from T A (° C.) to T B (° C.) at the time of bonding may be set in the range of 3 to 30 min, more preferably in the range of 3 to 15 min.
  • a silver particle aggregate dry powder composed of spherical silver particles having an average primary particle diameter of about 100 nm coated with sorbic acid, which is an organic protective material, was prepared.
  • the amount of metallic silver contained in the silver powder is 99.2% by mass.
  • 2-butoxyethoxyacetic acid was prepared to adjust viscosity and thixotropy.
  • Octanediol (2-ethyl-1,3-hexanediol) was prepared as a dispersion medium.
  • a silver particle aggregate dry powder composed of spherical silver particles having an average primary particle diameter of about 0.8 ⁇ m coated with oleic acid as an organic protective material was prepared as a raw material silver powder.
  • the amount of metallic silver contained in the silver powder is 99.62% by mass.
  • a silver paste was obtained in the same manner as described above. This is called “silver paste B”.
  • any one of these silver pastes is applied onto a substrate made of flat glass using a metal mask and manually printed with a metal squeegee to a thickness of 13 mm square and a thickness of 70 ⁇ m, as shown in Tables 1 and 2
  • a preheating treatment in the atmosphere was performed under the conditions.
  • the preliminary heat treatment was a two-stage heat treatment with different temperature levels except for some examples.
  • the temperature T 1 (° C.) of the preheating treatment shown in Tables 1 and 2 is the above-mentioned “25% volatilization temperature T 25 (° C.) or higher among the treatment temperatures employed in the preheating treatment, and the silver particles are baked. It means the processing temperature corresponding to the “temperature range where no condensation occurs”.
  • T 1 is dash display is for not preheating treatment at a processing temperature corresponding to "25% volatilization temperature T 25 (° C.) or higher temperature range sintering does not occur in Katsugin particles" means.
  • Both surfaces of the coating film that had been subjected to the preheating treatment were sandwiched between a pair of flat glass plates and applied with pressure, and pressure firing was performed under the conditions shown in Tables 1 and 2.
  • the flat glass on one side was removed after the pressure firing, and the surface roughness Ra on the coating film surface after the pressure firing was measured. The results are shown in Tables 1 and 2.
  • a heating experiment was performed in which a sample cut from the obtained silver sheet was sandwiched between a pair of flat glass plates and applied with a pressure of 1 MPa and held at 300 ° C. for 5 minutes in the atmosphere. Then, SEM images with a magnification of 30000 before and after the heating experiment were compared. As a result, it was confirmed that any of the silver sheets had a clear shape change in the voids, and had “a property of further sintering”.
  • a silicon chip (12.5 mm square) having a thickness of 0.3 mm and a copper plate (30 mm square) having a thickness of 1 mm were prepared.
  • the surface of these materials is silver plated.
  • the above-described silver sheet was inserted between these materials to be joined, and a joining test was performed under the conditions shown in Table 1.
  • the both ends of the copper plate were inserted
  • the area ratio of the silicon chip remaining in the bent copper plate shape was measured, and the bonding strength was evaluated according to the following criteria.
  • FIGS. 1 to 5 show SEM photographs of the silver sheet surface for some examples.
  • the SEM photograph of the coating-film surface after pressure baking is illustrated in FIG. 6, FIG. In Tables 1 and 2, the corresponding SEM photograph figure numbers are added.
  • the SEM photograph of the surface is illustrated in FIG. 8 about the sheet
  • FIG. 9 shows an example of a TG-DTA curve when the silver paste A is heated from room temperature (25 ° C.) to 500 ° C. at 10 ° C./min in the air or nitrogen atmosphere.
  • the volatilization amount of the dispersion medium when the [weight reduction rate (%) of the dispersion medium] in the formula (2) is 25% is silver. 8.55 ⁇ (25/100) ⁇ 2.14 g per 100 g of paste.
  • the 25% volatilization temperature T 25 of the silver paste A is between 100 ° C. and 150 ° C. Is clear.
  • the preheating treatment was performed at a temperature T 1 (° C.) that is equal to or higher than the 25% volatilization temperature T 25 (° C.) and in which the silver particles are not sintered. It is considered that most of the paste dispersion medium was volatilized and removed by this preheating treatment. As a result, sheeting was possible.
  • T 2 the pressure firing temperature
  • T 2 the pressure firing temperature
  • the organic protective material on the surface of the silver particles and the organic substance of the additive have been volatilized and removed.
  • the silver sheet thus obtained was judged to have the above-mentioned “characteristic that further sintering proceeds”. It was confirmed that these silver sheets can be used for diffusion bonding with a low pressure. Moreover, it was confirmed that improving the smoothness of the silver sheet surface is effective in obtaining high bonding strength (contrast between Example 8 and other examples).
  • Comparative Examples 1 and 2 since the preheating treatment at a temperature equal to or higher than the 25% volatilization temperature T 25 (° C.) was not performed, the volatilization removal of the paste dispersion medium was insufficient, and the sheet was pressed by pressure firing. could not be converted. Since Comparative Examples 3 and 4 were not subjected to pressure firing, they could not be formed into sheets. In Comparative Examples 5 and 6, since raw material silver powder composed of silver particles having a particle diameter of more than 250 nm was used, sintering did not proceed at the press firing temperature according to the present invention, and a sheet could not be formed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Conductive Materials (AREA)
  • Die Bonding (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

【課題】3MPa以下の低い加圧力で高い接合強度が得られる接合用銀シートを提供する。 【解決手段】粒子径1~250nmの銀粒子が焼結により一体化した銀シートであって、270≦T<T≦350を満たすT3A~T(℃)に昇温して保持したときに更に焼結が進行する性質を備えた接合用銀シート。この銀シートは、粒子径1~250nmの銀粒子からなる銀粉と、200℃以下の温度域で揮発が進行する分散媒が混合された銀ペーストの塗膜を、焼結が生じない温度域で加熱処理した後、5~35MPaの加圧力付与状態で170~250℃の温度で焼成する手法により製造できる。

Description

接合用銀シートおよびその製造方法並びに電子部品接合方法
 本発明は接合材料として使用する金属銀のシート、およびその製造方法に関する。また、前記シートを使用して電子部品と基板を接合する方法に関する。
 半導体チップなどの電子部品を基板に接合する方法として、はんだなどのろう材を使用する方法の他、金属微粉末を含有するペーストを使用する方法が知られている。粒子径が100nm程度以下の金属ナノ粒子は当該金属の融点より大幅に低い温度で焼結させることが可能であるため、そのような焼結用ペーストを被接合部材同士の間に塗布した後、所定温度で焼成することで、焼結現象を利用して前記被接合部材の接合を行うことができる。例えば、特許文献1には銀微粉末を配合する結合材(ペースト)が開示されている。
国際公開WO2012/169076号
 特許文献1の接合材は、電子部品搭載基板などに、部品配置に応じた回路パターンを印刷により塗布する手法などにおいて有用である。しかし、最終製品に用いる部材(例えば電子部品搭載基板)に直接塗布することから、塗布、乾燥、焼成の全ての工程で個々の製品部材に応じた設備仕様を設定する必要があり、多様な製品に迅速に対応するためにはより合理的な手法が望まれる。
 一方、製品部材に結合材を塗布するのではなく、予め作製されたシート状の接合材料を被接合部材同士の間に挿入して焼成する接合方法を採用すれば、上記のような結合材を塗布する工程が省かれ、製品部材を通す工程が合理化される。そのような接合用シートとしては、はんだに代表されるろう材のシートが実用化されているが、その他に、固相拡散を利用することを前提とした金属シートや、焼結を利用することを前提とした金属微粉末の粒子をバインダーで結合したシートなどが考えられる。
 はんだ等のろう材シートの場合、ろう材金属の融点が低いことに起因して、用途によっては接合部の耐熱性が不足する。また、被接合部材の一方に放熱板等の比較的厚い金属部材を適用する際には、接合時に部材の「反り」が生じやすい。
 固相拡散を利用する金属シートの場合、はんだ接合よりは耐熱性の高い接合部を実現できる。しかし、固相拡散を利用するためには、高温下で被接合部材同士の間に高い圧力を付与する必要がある。したがって、電子部品の接合には適さない。
 金属微粉末の粒子をバインダーで結合したシートの場合、固相拡散よりは低温で接合が可能であるが、被接合部材との間に十分な接触面積を確保するためには10MPa以上といった高い加圧力が必要である。加圧力が低いと接合部の強度が低下してしまう。電子部品等に高い加圧力を付与することは必ずしも容易ではなく、用途上の制限が大きい。また、接合のための焼成はバインダーの樹脂を含む状態で行われるため、接合部には空隙が生じやすく、そのことも接合部の強度確保にはマイナス要因となる。さらに揮発したバインダー樹脂が電子部品に悪影響を及ぼすことも考えられる。
 本発明は、低い加圧力で高い接合強度が得られる接合用銀シートを提供することを目的とする。また、それを用いた電子部品の接合方法を提供することを目的とする。
 発明者らは詳細な研究の結果、銀微粉を予め焼結によって一体化したシートであって、更に焼結現象の進行が可能な性質を具備している銀シートを用いると、低い加圧力で固相拡散による接合が可能となることを見出した。
 すなわち上記目的は、粒子径1~250nmの銀粒子、より好ましくは粒子径20~120nmの銀粒子が焼結により一体化した銀シートであって、下記(1)式を満たすある温度範囲「T(℃)以上T(℃)以下」に昇温して保持したときに更に焼結が進行する性質を備えた接合用銀シートによって達成される。シート面の算術平均粗さRaが両面とも0.10μm以下であることが効果的である。
 270≦T<T≦350 …(1)
 前記銀シートには、焼結体に特有の空隙が存在する。「更に焼結が進行する性質」は、当該銀シートをT(℃)以上T(℃)以下の温度範囲内にある温度T(℃)に昇温する実験に供したときに空隙の形状が変化するかどうかを調べることによって確認することができる。温度Tでの加熱保持時間が5分以内である時期において、既に加熱前後における空隙の形状変化が観測される程度に、焼結が進行する性質を有していることが望ましい。具体的には、「1MPaの面圧を付与した状態で上記温度範囲内にある温度T(℃)に昇温して5分間保持したときに更に焼結が進行する性質」を備えていることが好ましい。なお、270~350℃の範囲内に更に焼結が進行する温度範囲「T(℃)以上T(℃)以下」が存在すればよく、必ずしも270~350℃の全ての温度範囲で当該性質が観測される必要はない。
 空隙の形状変化の観測は、例えば加熱実験前後における倍率30000倍のSEM画像の対比によって行うことができる。それによって空隙の明らかな形状変化が認められる場合は、「更に焼結が進行する性質」を有していることが明らかである。厳密に調べる手法として、コーン状の圧痕を付した位置を目印として、同一箇所における加熱前後の上記SEM画像を対比する手法が有効である。この手法において、空隙の形状変化が生じているかどうか真偽不明の場合は「更に焼結が進行する性質」を有していないと判断し、それ以外の場合は「更に焼結が進行する性質」を有すると判断することができる。
 当該銀シートの厚さは、両平面マイクロメータにより測定されるシート厚さが例えば10~120μmの範囲であることが望ましい。両平面マイクロメータはアンビルおよびスピンドルの測定面がいずれも平面形状であるマイクロメータを意味する。当該銀シートの形状については、銀微粉の焼結によって一体化されたものである限り、種々の形状が含まれる。例えば、厚さ方向に見た投影形状が、印刷により形成されたパターン形状を呈するものも、本発明の対象となる。ここでいう「投影形状」は、対象となる物体を無限遠の一方向から見た場合に、その物体の輪郭によって定まる形状を意味する。
 上記銀シートの製造方法として、粒子径1~250nmの銀粒子からなる銀粉と、下記(A)により定義される25%揮発温度T25(℃)を200℃以下の温度域に有する分散媒が混合された銀ペーストを基盤上に塗布する工程、
 前記塗布後の塗膜を前記T25(℃)以上かつ銀粒子の焼結が生じない温度域で加熱処理して前記分散媒の揮発を進行させる工程、
 前記加熱処理後の塗膜を5~35MPaの加圧力付与状態で170~250℃の温度で焼成し、銀粒子が焼結により一体化した銀シートを得る工程、
を有する製造方法が提供される。前記銀ペーストを基盤上に塗布する際に、印刷によりパターン形状に塗布してもよい。
(A)前記銀ペーストを大気中で常温から10℃/minで昇温する熱重量分析(TG)に供したとき、下記(2)式による分散媒の重量減少率が25%となる温度を25%揮発温度T25(℃)とする。
 [分散媒の重量減少率(%)]=[熱重量分析の昇温により既に揮発した分散媒の積算質量(g)]/[熱重量分析に供する前の銀ペースト試料中に存在していた分散媒の全質量(g)]×100 …(2)
 ここで、銀粒子の粒子径は、一次粒子の長径で表される。粒子径1~250nmの銀粒子からなる銀粉であれば、種々の平均粒子径を有する銀微粉を混合したものであってもよい。平均粒子径が20~120nmである銀粉を使用することがより好ましい。
 また、本発明では、上記の銀シートを、電子部品と、それを接合する基板の間に挿入し、前記電子部品と銀シートの接触面圧が0.5~3MPaより好ましくは1~3MPaとなるように電子部品と基板の間に加圧力を付与しながら前記T(℃)以上T(℃)以下の温度範囲に加熱する電子部品接合方法が提供される。
 本発明によれば、シート状の接合材料を用いて、3MPa以下という低い加圧力で被接合部材同士を接合することが可能となった。本発明は、特に、電子部品を基板に接合する際の手段として有用である。
実施例1で得られた銀シート表面のSEM写真。 実施例5で得られた銀シート表面のSEM写真。 実施例6で得られた銀シート表面のSEM写真。 実施例7で得られた銀シート表面のSEM写真。 実施例8で得られた銀シート表面のSEM写真。 比較例1で得られた予備加熱処理後の銀塗膜表面のSEM写真。 比較例2で得られた予備加熱処理後の銀塗膜表面のSEM写真。 実施例1で得られた銀シートを加圧力1MPa、300℃×5minの条件で加熱試験した後の銀シート表面のSEM写真。 本発明に適用可能な銀ペースト(実施例における銀ペーストA)についてのTG-DTA曲線。
 本発明に従う銀シートは、被接合材料の間に挿入され、下記(1)式を満たすある温度範囲「T(℃)以上T(℃)以下」に昇温したときに生じる銀シートの固相拡散を利用して両側の被接合材料同士を接合するものである。
 270≦T<T≦350 …(1)
 固相拡散を利用するにもかかわらず、付与する加圧力を0.5~3MPa程度と低く設定することができる点に特徴がある。
 本発明に従う銀シートは、銀粉末を焼結させることによって形成した焼結シートである。上記のように低い加圧力で接合できるのは、銀シートが、上記「T(℃)以上T(℃)以下」の温度範囲内にある接合時の加熱温度Tにおいて、「更に焼結が進行する性質」を有していることによる。すなわち、銀シートを作製する段階で行う焼結を、不完全な状態で終了させてある。このような状態の銀シートには、内部に空隙が多く存在している。接合時の加熱温度において、更に焼結が進行するので、低い加圧力を付与するだけで空隙の形状や量が大きく変化し、銀原子の移動(拡散)が活発に進行する。それによって両側の被接合材料がタイトに接合された接合部が構築される。
 「更に焼結が進行する性質」を有しているかどうかは、前述のように、当該銀シートを上記(1)式を満たすある温度範囲「T(℃)以上T(℃)以下」に加熱する実験に供することによって確かめることができる。
 低い加圧力で接合する場合において、安定して高い接合強度を得るためには、シート面の表面粗さを小さくすることが効果的である。種々検討の結果、接合強度を特に重視する場合、シート面の算術平均粗さRaが表裏の両面とも0.10μm以下であることが望ましい。後述の加圧焼成において加圧力を8MPa以上とすることによって、Raが0.10μm以下である銀シートを得ることができる。
 銀シートの厚さは、両平面マイクロメータにより測定される厚さにおいて10~120μmであることが望ましい。高い接合強度を安定して得るためには10μm以上のシート厚さを確保することがより効果的である。20μm以上の厚さとすることがより好ましい。一方、120μm以上の厚さとしても接合強度の安定性向上効果は飽和し、不経済となる。100μm以下の厚さとすることがより好ましく、50μm以下とすることが一層好ましい。
〔原料銀粉〕
 銀シートの原料となる銀粉は、粒子径1~250nmの銀粒子で構成されるものが好適である。このような微細な粒子からなる銀粉は250℃未満といった低温で焼結現象が生じ、不完全な状態で焼結を終了させた銀シート、すなわち「更に焼結が進行する性質」を備えた銀シートを得る上で極めて有用である。取り扱い性、コスト、焼結開始可能温度等を総合的に考慮すると、平均粒子径が20~120nmである銀粉を使うことがより実用的である。ここで、粒子径は粒子の最も長い部分の径(長径)を意味する。粒子形状は球状であることがより好ましい。
 使用する原料銀粉の表面は有機保護材で被覆されている。この有機保護材は銀シートを作るための加圧焼成に供するまでは、残存していることが好ましい。すなわち、加圧焼成に供するまでの過程で多少は揮発しても良いが、完全に消失しないことが望ましい。より具体的には、予備加熱処理を終えた時点で、有機保護材の残存率(当初の有機保護材の全質量に対する割合)が30%以上であることが望ましい。そのような有機保護材としては、ソルビン酸、ヘキサン酸、ブタン酸、リンゴ酸などの脂肪酸を挙げることができる。原料銀粉の製造法自体には特に制限はなく、公知の手法で得られる銀粉が使用できる。
〔銀ペースト〕
 分散媒と、上記の原料銀粉とを混合して銀ペーストとする。その際、粘度調整などのために添加剤を混合してもよい。発明者らは詳細な検討の結果、銀シートを作る際の加圧焼成に供する前に、分散媒を構成する物質を十分に揮発除去しておくことが、低温での加圧焼成によりシートの形成を可能にする上で極めて重要であることを知見した。すなわち、銀粒子の周りに分散媒が多量に存在する状態で加圧焼成を行うと、隣り合う個々の銀粒子の間で生じる焼結現象が阻害され、シートを形成することが困難となる。ところが、分散媒が十分に除去された状態で加圧焼成を行った場合には、その焼成温度が250℃未満、好ましくは200℃未満と低くても、銀シートの構築が可能となることがわかった。
 250℃未満、好ましくは200℃未満の焼成温度で焼結を生じさせることに先だって分散媒を十分に除去しておくためには、焼結が生じない低温の熱処理によって揮発が進行する物質を分散媒として採用する必要がある。ただし、分散媒が十分に除去された後も、加圧焼成に供するまでは個々の銀粒子表面が有機保護材で覆われていることが望ましい。したがって、分散媒として使用する物質は、銀粒子の有機保護材が残留するような低温での熱処理で揮発が進行する性質を有するものが選択される。具体的には、前述の(A)により定義される25%揮発温度T25(℃)を200℃以下の温度域に有する分散媒を適用することが望ましい。T25が200℃を超える温度域にあるような分散媒は、焼結が生じない低温域で十分に揮発除去させることが難しい。T25は100℃以上の温度域にあることがより好ましい。T25が100℃未満になると保管環境でも揮発しやすくなり、銀ペーストの保管管理を厳重に行う必要がある。
 25%揮発温度T25(℃)が200℃以下、より好ましくは100℃以上200℃以下の範囲にある分散媒として、2-エチル-1,3-ヘキサンジオールを挙げることができる。一方、粘度調整などのためにペーストに加える添加剤としては、例えば、2-ブトキシエトキシ酢酸、2-メトキシエトキシ酢酸などの有機物質が挙げられる。添加剤のペースト中含有量は2.0質量%以下とすることが好ましく、1.0質量%以下とすることがより好ましい。
〔基盤への塗布〕
 上記銀ペーストを基盤上に塗布することにより、塗膜を形成させる。基盤としては、形成した銀シートを剥がすことが可能な材料が適用される。例えば、平滑性の良好なガラス基板、アルミナ基板等が適用できる。用途によっては表面が曲面形状である基盤や、凹凸形状である基盤を用いてもよい。塗膜厚さは、加圧焼成後に得られる銀シート厚さが所定の範囲(上述)となるように調整される。接合する電子部品等の配置を考慮して、印刷によりパターン形状に塗布してもよい。
〔予備加熱処理〕
 加圧焼成に供する前に、基盤上に塗布された前記塗膜を加熱し、分散媒を十分に揮発させた塗膜を得る。この加熱処理を本明細書では「予備加熱処理」と呼ぶ。予備加熱処理は、分散媒の揮発が進行し、かつ、銀粒子の焼結が生じない温度域で行う。分散媒の揮発促進の観点からは、前述の25%揮発温度T25(℃)以上の加熱温度とすることが効果的である。それより加熱温度が低いと、分散媒の揮発を十分に行うために長時間を有し生産性を損なうか、あるいは分散媒の揮発を十分に達成することが不可能となる。銀粒子の焼結を生じさせないという観点からは、加圧力を付与しない場合、200℃以下の範囲で適正温度を選択すればよい。使用する銀粉の平均粒子径が例えば120nmを超えて大きい場合、200℃を超える温度域でも焼結を生じない温度を選択しやすくなる。予備加熱処理温度は250℃以下の範囲とすることが望ましい。それより設定温度が高くなると、部分的に焼結が生じやすくなる。予備加熱処理の段階で焼結が生じてしまうと、加圧焼成において安定したシート化を実現することが難しい。
 分散媒は加圧焼成前にできるだけ除去しておくことが望ましいが、多少残存していても加圧焼成でシート化が可能であれば構わない。使用する原料銀粉や添加剤の種類、後工程の加圧焼成の条件等によって、シート化が可能な予備加熱処理の条件(保持温度、保持時間など)を予め実験により定めておくことができる。分散媒を揮発除去させるための予備加熱の時間が短すぎると分散媒に由来する有機物質が多量に残留し、シート化が困難となる場合がある。分散媒が2-エチル-1,3-ヘキサンジオールである場合、例えば、加熱温度130~170℃、加熱時間5~30minの範囲内に適正な予備加熱処理条件を見つけることができる。
〔加圧焼成〕
 上記予備加熱処理を終えて分散媒の物質が十分に揮発除去されている銀ペーストの塗膜に対して、表面に加圧力を付与した状態で焼成を施し、銀シートを得る。加圧力は、例えばガラス材料やセラミックス材料など、銀シートと接合しない性質の一対の材料で塗膜の両側表面を挟むことによって付与することができる。塗膜を挟む片側の材料は前記銀ペーストを塗布した基盤をそのまま利用してもよい。
 加圧力は5~35MPaの範囲とすることが望ましく、8~35MPaの範囲がより好ましい。加圧力を高めることによって平滑性の高い銀シートを得ることができる。シート面の算術平均粗さRaが0.10μm以下である銀シートは、被接合材料間の高い接合強度を得る上で極めて有用である。加圧力を8MPa以上とすることにより、Raが0.10μm以下である銀シートを形成することが容易となる。一方、加圧力を過剰に高くすることは加圧焼成の工程負荷を増大させ好ましくない。種々検討の結果、35MPa以下の範囲で加圧力を設定することが好ましい。25MPa以下、あるいは20MPa以下の範囲に管理してもよい。
 この加圧焼成では、銀粒子同士の焼結を不完全な状態で終了させて、銀シートを得る。加圧焼成の温度が、使用する原料銀粉の焼結開始可能温度よりも過剰に高いと、焼結を不完全な状態で終了させることが難しくなり、「更に焼結が進行する性質」を有する銀シートを安定して製造することができなくなる。種々検討の結果、粒子径250nm以下の銀粒子で構成される原料銀粉を使用する場合、加圧焼成の温度は250℃以下とすることが望ましい。特に平均粒子径が120nm以下である原料銀粉を用いた場合には、200℃以下の温度とすることができる。加圧力を付与することにより焼結が生じやすくなるので、予備加熱処理温度と同温度あるいはそれより低い温度で加圧焼成が実現できる場合もある。
 通常、加圧焼成の加熱温度は170~250℃、より好ましくは170~220℃の範囲内、加熱時間は3~30min、より好ましくは3~10minの範囲内において、適正条件を設定することができる。
〔銀シートを用いた接合〕
 上記のようにして得られた銀シートは、被接合材料の間に挿入され、所定の加圧力を付与した状態で所定の接合温度に加熱することによって固相拡散を生じ、接合材料としての機能を発揮する。
 接合は、下記(1)式を満たすT(℃)以上T(℃)以下の温度範囲内で行う。この「T(℃)以上T(℃)以下」の温度範囲は、上述した通り、銀シートの焼結が更に進行する温度域を意味する。
  270≦T<T≦350 …(1)
 接合時に付与する加圧力は、0.5~3MPaの範囲とすればよい。0.8~2MPaの範囲とすることがより好ましい。従来、シート状の接合材料を挿入して例えば270~350℃程度の低温で固相拡散による接合を行う場合、10MPa以上といった高い加圧力を必要としていた。このような高い加圧力を電子部品等に加えることは好ましくなく、用途上の制限が多くなる。本発明に従う銀シートは、「更に焼結が進行する性質」を利用して固相拡散を引き起こすので、非常に低い加圧力での接合を可能にする。接合時における上記T(℃)以上T(℃)以下の温度範囲での加熱時間は3~30minの範囲、より好ましくは3~15minの範囲で設定すればよい。
 原料銀粉として、有機保護材であるソルビン酸で被覆された平均一次粒子径が約100nmである球状の銀粒子からなる銀粒子凝集体乾燥粉を用意した。この銀粉中に含まれる金属銀の量は99.2質量%である。添加剤として、粘度、チクソ性を調整するために2-ブトキシエトキシ酢酸を用意した。分散媒として、オクタンジオール(2-エチル-1,3-ヘキサンジオール)を用意した。
 上記原料銀粉90.5g(うち金属銀89.776g)と、上記添加剤0.95gと、上記分散媒8.55gを混合したのち、混練脱泡機(EME社製;V-mini300型)を用いてRevolution;1400rpm、Rotation;700rpmの条件で混練し、得られた混練物を三本ロール(EXAKT Apparatebaus社製;22851Norderstedt型)にてギャップ調整しながら5~10回パスさせて銀ペーストを得た。これを「銀ペーストA」と呼ぶ。
 比較のため、原料銀粉として、有機保護材であるオレイン酸で被覆された平均一次粒子径が約0.8μmである球状の銀粒子からなる銀粒子凝集体乾燥粉を用意した。この銀粉中に含まれる金属銀の量は99.62質量%である。この銀粉90.5g(うち金属銀90.156g)と、上記の添加剤0.95gと、上記の分散剤8.55gを混合したのち、上記と同様の手法で銀ペーストを得た。これを「銀ペーストB」と呼ぶ。
 これらいずれかの銀ペーストを平板状ガラスからなる基盤上に、メタルマスクを使用し、メタルスキージによる手印刷にて13mm角で厚さ70μmになるように塗布し、表1、表2中に示す条件にて大気中での予備加熱処理を施した。予備加熱処理は、一部の例を除き、温度水準の異なる2段階の加熱処理とした。表1、表2中に表示した予備加熱処理の温度T(℃)は、予備加熱処理で採用した処理温度のうち、前述の「25%揮発温度T25(℃)以上かつ銀粒子の焼結が生じない温度域」に該当する処理温度を意味する。Tの欄がハイフン表示のものは、「25%揮発温度T25(℃)以上かつ銀粒子の焼結が生じない温度域」に該当する処理温度での予備加熱処理を行わなかったことを意味する。予備加熱処理を終えた塗膜の両面を1対の平板状ガラスで挟んで加圧力を付与した状態とし、表1、表2中に示す条件で加圧焼成を施した。加圧焼成後に片側の平板状ガラスを取り外して、加圧焼成後の塗膜表面における表面粗さRaを測定した。その結果を表1、表2中に示してある。
 表1、表2中の「シート化評価」の欄には、加圧焼成後に銀粒子の焼結が認められ、平板状ガラスから塗膜を取り外しても塗膜に割れが生じなかった場合を○、それ以外の場合を×で表示した。シート化が可能であったものについては、その銀シートを取り出して、上記のRa測定面と反対側の表面についてもRaを測定した。その結果、表1中に示した片側のRaとほとんど変わらない値であった。
 シート化が可能であった例では、得られた銀シートから切り出したサンプルを1対の平板状ガラスで挟んで加圧力1MPaを付与した状態とし、大気中300℃で5min保持する加熱実験を実施し、加熱実験前後における倍率30000倍のSEM画像を対比した。その結果、いずれの銀シートも空隙の明らかな形状変化が認められ、「更に焼結が進行する性質」を有していることが確認された。
 被接合材料として、厚さ0.3mmのシリコンチップ(12.5mm角)と、厚さ1mmの銅板(30mm角)を用意した。これらの材料に表面には銀めっきを施してある。シート化が可能であった例では、これらの被接合材料の間に上述の銀シートを挿入し、表1中に示す条件で接合試験を行った。得られた接合体について、銅板の両端をペンチで挟み込み、30mm角の銅板中央部分が約90°折れ曲がるように曲げた。その後、銅板の形状を元の状態に曲げ戻した。曲げ戻した銅板状に残存するシリコンチップの面積率を測定し、以下の基準で接合強度を評価し、○評価以上を合格と判定した。
 ◎:シリコンチップの残存面積率が100%
 ○:シリコンチップの残存面積率が80%以上100%未満
 ×:シリコンチップの残存面積率が80%未満
 参考のため、一部の例について銀シート表面のSEM写真を図1~図5に示す。また、シート化できなかった一部の比較例について加圧焼成後の塗膜表面のSEM写真を図6、図7に例示する。表1、表2中には対応するSEM写真の図番を付記した。さらに、実施例1の銀シートに1MPaの加圧力を付与して大気中300℃で5min加熱試験を施した後のシートについて、表面のSEM写真を図8に例示する。また、銀ペーストAについて、大気中または窒素雰囲気中で常温(25℃)から500℃まで10℃/minで昇温した場合のTG-DTA曲線を図9に例示する。銀ペーストAにおける分散媒の含有量は8.55質量%であるから、上述(2)式の[分散媒の重量減少率(%)]が25%となるときの分散媒の揮発量は銀ペースト100g当たり8.55×(25/100)≒2.14gである。図9のTG曲線において、概ね170℃以下の領域の重量変化は分散媒の揮発に相当すると考えられるので、銀ペーストAの25%揮発温度T25は、100℃と150℃の間にあることが明らかである。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 各実施例では、25%揮発温度T25(℃)以上かつ銀粒子の焼結が生じない温度域にある温度T(℃)で予備加熱処理を行った。この予備加熱処理によりペーストの分散媒のほとんどが揮発除去したと考えられる。その結果、シート化が可能であった。また、加圧焼成の温度T(℃)において、銀粒子表面の有機保護材および添加剤の有機物質のほとんどが揮発除去したと考えられる。このようにして得られた銀シートは上述の「更に焼結が進行する性質」を有するものであると判断された。これらの銀シートは、低い加圧力での拡散接合に使用できることが確認された。また、銀シート表面の平滑性を向上させることが高い接合強度を得る上で有効であることが確認された(実施例8とその他の実施例の対比)。
 これに対し、比較例1、2は25%揮発温度T25(℃)以上の温度での予備加熱処理を行わなかったので、ペーストの分散媒の揮発除去が不十分となり、加圧焼成によってシート化することができなかった。比較例3、4は加圧焼成を行っていないのでシート化することができなかった。比較例5、6は、粒子径が250nmを超える銀粒子からなる原料銀粉を使用したので、本発明に従う加圧焼成温度では焼結が進行せず、シート化することができなかった。

Claims (7)

  1.  粒子径1~250nmの銀粒子が焼結により一体化した銀シートであって、下記(1)式を満たすある温度範囲「T(℃)以上T(℃)以下」に昇温して保持したときに更に焼結が進行する性質を備えた接合用銀シート。
     270≦T<T≦350 …(1)
  2.  シート面の算術平均粗さRaが両面とも0.10μm以下である請求項1に記載の接合用銀シート。
  3.  両平面マイクロメータにより測定されるシート厚さが10~120μmである請求項1または2に記載の接合用銀シート。
  4.  厚さ方向に見た投影形状が、印刷により形成されたパターン形状を呈するものである請求項1~3のいずれかに記載の接合用銀シート。
  5.  粒子径1~250nmの銀粒子からなる銀粉と、下記(A)により定義される25%揮発温度T25(℃)を200℃以下の温度域に有する分散媒が混合された銀ペーストを基盤上に塗布する工程、
     前記塗布後の塗膜を前記T25(℃)以上かつ銀粒子の焼結が生じない温度域で加熱処理して前記分散媒の揮発を進行させる工程、
     前記加熱処理後の塗膜を5~35MPaの加圧力付与状態で170~250℃の温度で焼成し、銀粒子が焼結により一体化した銀シートを得る工程、
    を有する接合用銀シートの製造方法。
    (A)前記銀ペーストを大気中で常温から10℃/minで昇温する熱重量分析(TG)に供したとき、下記(2)式による分散媒の重量減少率が25%となる温度を25%揮発温度T25(℃)とする。
     [分散媒の重量減少率(%)]=[熱重量分析の昇温により既に揮発した分散媒の積算質量(g)]/[熱重量分析に供する前の銀ペースト試料中に存在していた分散媒の全質量(g)]×100 …(2)
  6.  前記銀ペーストを基盤上に塗布する際に、印刷によりパターン形状に塗布する請求項5に記載の接合用銀シートの製造方法。
  7.  請求項1~4のいずれかに記載の銀シートを、電子部品と、それを接合する基板の間に挿入し、前記電子部品と銀シートの接触面圧が0.5~3MPaとなるように電子部品と基板の間に加圧力を付与しながら前記T(℃)以上T(℃)以下の温度範囲に加熱する電子部品接合方法。
PCT/JP2014/076660 2013-10-17 2014-10-06 接合用銀シートおよびその製造方法並びに電子部品接合方法 WO2015056589A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201480056727.XA CN105637595B (zh) 2013-10-17 2014-10-06 接合用银片及其制造方法,以及电子部件接合方法
KR1020167012205A KR20160073980A (ko) 2013-10-17 2014-10-06 접합용 은 시트 및 그 제조 방법 및 전자 부품 접합 방법
US15/028,453 US20160254243A1 (en) 2013-10-17 2014-10-06 Joining silver sheet, method for manufacturing same, and method for joining electronic part
EP14854309.3A EP3059740A4 (en) 2013-10-17 2014-10-06 Joining silver sheet, method for manufacturing same, and method for joining electronic part
US16/042,123 US20180331063A1 (en) 2013-10-17 2018-07-23 Method for joining electronic part using a joining silver sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013216150A JP6245933B2 (ja) 2013-10-17 2013-10-17 接合用銀シートおよびその製造方法並びに電子部品接合方法
JP2013-216150 2013-10-17

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/028,453 A-371-Of-International US20160254243A1 (en) 2013-10-17 2014-10-06 Joining silver sheet, method for manufacturing same, and method for joining electronic part
US16/042,123 Division US20180331063A1 (en) 2013-10-17 2018-07-23 Method for joining electronic part using a joining silver sheet

Publications (1)

Publication Number Publication Date
WO2015056589A1 true WO2015056589A1 (ja) 2015-04-23

Family

ID=52828037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076660 WO2015056589A1 (ja) 2013-10-17 2014-10-06 接合用銀シートおよびその製造方法並びに電子部品接合方法

Country Status (6)

Country Link
US (2) US20160254243A1 (ja)
EP (1) EP3059740A4 (ja)
JP (1) JP6245933B2 (ja)
KR (1) KR20160073980A (ja)
CN (2) CN107086210B (ja)
WO (1) WO2015056589A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017164782A (ja) * 2016-03-16 2017-09-21 日東電工株式会社 接合体の製造方法
WO2019021637A1 (ja) * 2017-07-27 2019-01-31 バンドー化学株式会社 金属接合積層体の製造方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106536096B (zh) * 2014-07-28 2019-06-14 贺利氏德国有限两合公司 通过压力烧结接合元件的方法
WO2017057485A1 (ja) * 2015-09-30 2017-04-06 日東電工株式会社 シートおよび複合シート
JP6704322B2 (ja) * 2015-09-30 2020-06-03 日東電工株式会社 シートおよび複合シート
JP6858520B2 (ja) * 2015-09-30 2021-04-14 日東電工株式会社 加熱接合用シート、及び、ダイシングテープ付き加熱接合用シート
WO2017057428A1 (ja) * 2015-09-30 2017-04-06 日東電工株式会社 加熱接合用シート、及び、ダイシングテープ付き加熱接合用シート
WO2017057429A1 (ja) * 2015-09-30 2017-04-06 日東電工株式会社 加熱接合用シート、及び、ダイシングテープ付き加熱接合用シート
JP2017069559A (ja) * 2015-09-30 2017-04-06 日東電工株式会社 パワー半導体装置の製造方法
JP6505571B2 (ja) * 2015-09-30 2019-04-24 日東電工株式会社 加熱接合用シート、及び、ダイシングテープ付き加熱接合用シート
JP6505572B2 (ja) * 2015-09-30 2019-04-24 日東電工株式会社 加熱接合用シート及びダイシングテープ付き加熱接合用シート
JP6870943B2 (ja) * 2015-09-30 2021-05-12 日東電工株式会社 加熱接合用シート、及び、ダイシングテープ付き加熱接合用シート
JP2017066485A (ja) 2015-09-30 2017-04-06 日東電工株式会社 シートおよび複合シート
JP2017069558A (ja) * 2015-09-30 2017-04-06 日東電工株式会社 パワー半導体装置の製造方法
JP2018012871A (ja) * 2016-07-22 2018-01-25 大陽日酸株式会社 接合材、接合材の製造方法、及び接合体
US11285536B2 (en) 2017-04-28 2022-03-29 Lintec Corporation Film-shaped fired material, and film-shaped fired material with support sheet
US11890681B2 (en) * 2018-11-29 2024-02-06 Resonac Corporation Method for producing bonded object and semiconductor device and copper bonding paste
JP6845444B1 (ja) * 2019-10-15 2021-03-17 千住金属工業株式会社 接合材、接合材の製造方法及び接合体
JP7404208B2 (ja) * 2020-09-24 2023-12-25 株式会社東芝 半導体装置
CN115121466B (zh) * 2022-07-11 2023-07-18 桂阳县华毅石墨有限公司 一种承载式预成型纳米银膜及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63186434A (ja) * 1986-12-22 1988-08-02 シーメンス、アクチエンゲゼルシヤフト 電子デバイスを基板に固定する方法
JP2005205696A (ja) * 2004-01-21 2005-08-04 Ebara Corp 接合用品
JP2007083288A (ja) * 2005-09-22 2007-04-05 Harima Chem Inc 導電性接合の形成方法
JP2008212976A (ja) * 2007-03-05 2008-09-18 Toda Kogyo Corp 接合部材および接合方法
WO2012169076A1 (ja) 2011-06-10 2012-12-13 Dowaエレクトロニクス株式会社 接合材およびそれを用いて作成された接合体

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050127134A1 (en) * 2003-09-15 2005-06-16 Guo-Quan Lu Nano-metal composite made by deposition from colloidal suspensions
TWI347614B (en) * 2006-01-11 2011-08-21 Dowa Electronics Materials Co Ltd Silver electroconductive film and manufacturing method of the same
EP2226838A1 (en) * 2009-03-04 2010-09-08 ABB Research Ltd. Fixture apparatus for low-temperature and low-pressure sintering
JP2010248617A (ja) * 2009-03-26 2010-11-04 Nippon Handa Kk 多孔質銀製シート、金属製部材接合体の製造方法、金属製部材接合体、電気回路接続用バンプの製造方法および電気回路接続用バンプ
JP2011014556A (ja) * 2009-06-30 2011-01-20 Hitachi Ltd 半導体装置とその製造方法
MY160373A (en) * 2010-07-21 2017-03-15 Semiconductor Components Ind Llc Bonding structure and method
WO2012061511A2 (en) * 2010-11-03 2012-05-10 Fry's Metals, Inc. Sintering materials and attachment methods using same
US20130256894A1 (en) * 2012-03-29 2013-10-03 International Rectifier Corporation Porous Metallic Film as Die Attach and Interconnect

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63186434A (ja) * 1986-12-22 1988-08-02 シーメンス、アクチエンゲゼルシヤフト 電子デバイスを基板に固定する方法
JP2005205696A (ja) * 2004-01-21 2005-08-04 Ebara Corp 接合用品
JP2007083288A (ja) * 2005-09-22 2007-04-05 Harima Chem Inc 導電性接合の形成方法
JP2008212976A (ja) * 2007-03-05 2008-09-18 Toda Kogyo Corp 接合部材および接合方法
WO2012169076A1 (ja) 2011-06-10 2012-12-13 Dowaエレクトロニクス株式会社 接合材およびそれを用いて作成された接合体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3059740A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017164782A (ja) * 2016-03-16 2017-09-21 日東電工株式会社 接合体の製造方法
WO2019021637A1 (ja) * 2017-07-27 2019-01-31 バンドー化学株式会社 金属接合積層体の製造方法
JP6467114B1 (ja) * 2017-07-27 2019-02-06 バンドー化学株式会社 金属接合積層体の製造方法

Also Published As

Publication number Publication date
EP3059740A4 (en) 2017-05-31
US20180331063A1 (en) 2018-11-15
CN107086210B (zh) 2020-04-28
CN105637595B (zh) 2018-06-12
JP6245933B2 (ja) 2017-12-13
EP3059740A1 (en) 2016-08-24
CN105637595A (zh) 2016-06-01
CN107086210A (zh) 2017-08-22
US20160254243A1 (en) 2016-09-01
KR20160073980A (ko) 2016-06-27
JP2015079650A (ja) 2015-04-23

Similar Documents

Publication Publication Date Title
JP6245933B2 (ja) 接合用銀シートおよびその製造方法並びに電子部品接合方法
KR101725181B1 (ko) 접합재 및 이것을 이용하여 작성된 접합체
TWI636842B (zh) 接合材及使用其之接合方法
JP6884285B2 (ja) 接合用組成物、並びに導電体の接合構造及びその製造方法
KR20170012437A (ko) 접합재 및 그것을 사용한 접합 방법
WO2016140185A1 (ja) 導電性銅ペースト、導電性銅ペースト硬化膜および半導体装置
KR101648461B1 (ko) 금속 단자 접합용 도전 페이스트, 금속 단자 구비 전자부품 및 그 제조방법
JP7150144B2 (ja) 加圧接合用組成物、並びに導電体の接合構造及びその製造方法
JP2014235942A (ja) 接合材およびその接合材を用いて電子部品を接合する方法
JP2021107569A (ja) 銅焼結基板ナノ銀含浸型接合シート、製法及び接合方法
JP2017031470A (ja) 接合材及び接合体の製造方法
JP7317397B2 (ja) 酸化銅ペースト及び電子部品の製造方法
TWI314546B (ja)
JP6763708B2 (ja) 接合材、接合材の製造方法、及び接合体
JP2003331648A (ja) 導電ペースト及び電気回路の製造方法
JP2015156260A (ja) 銀ペーストの焼成膜および電子部品
WO2023190451A1 (ja) 接合体の製造方法
JP6093633B2 (ja) 電子部品の接合方法
WO2020004342A1 (ja) 銀ペースト及び接合体の製造方法
JP2018012871A (ja) 接合材、接合材の製造方法、及び接合体
TWI850248B (zh) 接合用組合物、與導電體之接合構造及其製造方法
JP7487011B2 (ja) 接合材、接合材の製造方法及び接合方法
JP7093945B2 (ja) ナノ銀ペーストを用いた半導体チップ接合方法
WO2021060126A1 (ja) 接合材、接合材の製造方法、接合方法及び半導体装置
TW202347528A (zh) 接合體之製造方法及被接合體之接合方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14854309

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15028453

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014854309

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014854309

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167012205

Country of ref document: KR

Kind code of ref document: A