WO2017057485A1 - シートおよび複合シート - Google Patents

シートおよび複合シート Download PDF

Info

Publication number
WO2017057485A1
WO2017057485A1 PCT/JP2016/078667 JP2016078667W WO2017057485A1 WO 2017057485 A1 WO2017057485 A1 WO 2017057485A1 JP 2016078667 W JP2016078667 W JP 2016078667W WO 2017057485 A1 WO2017057485 A1 WO 2017057485A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintering
sheet
layer
thickness
sintering layer
Prior art date
Application number
PCT/JP2016/078667
Other languages
English (en)
French (fr)
Inventor
菜穂 鎌倉
悠樹 菅生
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016184083A external-priority patent/JP6704322B2/ja
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to US15/763,408 priority Critical patent/US11634611B2/en
Priority to EP16851656.5A priority patent/EP3358609B1/en
Priority to CN201680058243.8A priority patent/CN108184331B/zh
Publication of WO2017057485A1 publication Critical patent/WO2017057485A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J1/00Adhesives based on inorganic constituents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/314Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive layer and/or the carrier being conductive
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/408Additional features of adhesives in the form of films or foils characterized by the presence of essential components additives as essential feature of the adhesive layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83191Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a sheet and a composite sheet.
  • the chip may be fixed to the substrate with a conductive adhesive that does not have the property of becoming a sintered body at a low temperature—for example, 300 ° C.—.
  • a power module using such a conductive adhesive may not be able to ensure predetermined reliability, for example, reliability evaluated by a temperature cycle test.
  • the bonding agent containing nano-sized metal particles can be a sintered body at a low temperature.
  • Patent Document 1 discloses a technique in which a paste containing silver fine particles having an average primary particle diameter of 1 to 50 nm is applied to a substrate, the paste is dried, and sintering is performed.
  • the bonding agent described in Patent Document 1 is a paste
  • a decrease in the thickness of the sintered body may result in a decrease in reliability evaluated in the temperature cycle test. This is because if the thickness is too small, the sintered body cannot relax the stress caused by the temperature change.
  • the sintered body of the paste described in Patent Document 1 may have uneven drying. This is because the paste contains a large amount of solvent. Unevenness of drying may cause a decrease in reliability.
  • the object of the present invention is also to provide a sheet having a pre-sintered layer. It is also an object of the present invention to provide a composite sheet having a pre-sintering layer.
  • the present invention relates to a sheet including a pre-sintering layer.
  • the viscosity of the pre-sintering layer at 90 ° C. is 0.27 MPa ⁇ s or more. Since it is 0.27 MPa ⁇ s or more, thickness reduction due to sintering is small.
  • the thickness of the pre-sintering layer is 30 ⁇ m to 200 ⁇ m. Since the thickness is 30 ⁇ m or more, the thickness after sintering—the thickness of the sintered body—is a thickness that can relieve stress.
  • the present invention also relates to a composite sheet.
  • the composite sheet can include a release liner, a pre-sintering layer disposed on the release liner, and a dicing sheet disposed on the pre-sintering layer.
  • the present invention also relates to a method for manufacturing a power module.
  • the method for manufacturing a power module of the present invention includes a step (a) of attaching a sheet—including a dicing sheet and a pre-sintering layer disposed on the dicing sheet—to a semiconductor wafer.
  • the method for manufacturing a power module of the present invention includes a step (b) of forming a pre-sintering chip (including a semiconductor chip and a pre-sintering film disposed on the semiconductor chip) by die division after the step (a).
  • the method for producing a power module of the present invention further includes a step (c) of pressure-bonding the chip before sintering to the adherend and a step (d) of sintering the film before sintering after the step (c). .
  • FIG. 10 is a schematic sectional view of a part of a composite sheet in Modification 4.
  • FIG. 10 is a schematic cross-sectional view of a sheet according to Modification 5.
  • the composite sheet 1 has a roll shape.
  • the composite sheet 1 includes a release liner 13 and sheets 71a, 71b, 71c,..., 71m (hereinafter collectively referred to as “sheet 71”) disposed on the release liner 13.
  • sheet 71 The distance between the sheet 71a and the sheet 71b, the distance between the sheet 71b and the sheet 71c,..., The distance between the sheet 71l and the sheet 71m is constant.
  • the sheet 71 includes a pre-sintering layer 11.
  • the sheet 71 further includes a dicing sheet 12 disposed on the pre-sintering layer 11.
  • the dicing sheet 12 includes a base material 121 and a pressure-sensitive adhesive layer 122 disposed on the base material 121. Both surfaces of the pre-sintering layer 11 are defined by a first main surface in contact with the pressure-sensitive adhesive layer 122 and a second main surface opposite to the first main surface. The second main surface is in contact with the release liner 13.
  • the sheet 71 has good workability. This is because the pre-sintering layer 11 and the dicing sheet 12 are integrated from the beginning.
  • the pressure-sensitive adhesive layer 122 includes a first portion 122A.
  • the first portion 122A is cured.
  • the first portion 122A is in contact with the pre-sintering layer 11.
  • the pressure-sensitive adhesive layer 122 further includes a second portion 122B disposed around the first portion 122A.
  • the second portion 122B has a property of being cured by energy rays. Examples of energy rays include ultraviolet rays.
  • the second portion 122B does not contact the pre-sintering layer 11.
  • the pre-sintering layer 11 has the property of becoming a sintered body by heating.
  • the pre-sintering layer 11 can be used to join the first object and the second object. For example, bonding of a chip and a substrate.
  • the substrate can include an insulating substrate and a conductor layer disposed on the insulating substrate. Examples of the insulating substrate include a ceramic substrate.
  • the thickness of the pre-sintering layer 11 can be adjusted by lamination, the thickness is uniform compared to the layer formed of paste. Since the pre-sintering layer 11 is in the form of a sheet, the essential process of printing—printing and drying—can be omitted.
  • the thickness of the pre-sintering layer 11 is 30 ⁇ m or more, preferably 40 ⁇ m or more. Since the thickness is 30 ⁇ m or more, the thickness after sintering becomes such that stress can be relaxed.
  • the thickness of the pre-sintering layer 11 is 200 ⁇ m or less, preferably 150 ⁇ m or less, more preferably 100 ⁇ m or less.
  • the viscosity of the pre-sintering layer 11 at 90 ° C. is 0.27 MPa ⁇ s or more, preferably 0.5 MPa ⁇ s or more. Since it is 0.27 MPa ⁇ s or more, thickness reduction due to sintering is small.
  • the upper limit of the viscosity of the pre-sintering layer 11 at 90 ° C. is, for example, 15 MPa ⁇ s, 10 MPa ⁇ s, or 8 MPa ⁇ s.
  • the viscosity of the pre-sintering layer 11 at 90 ° C. varies mainly depending on the type of binder and the binder content.
  • the thickness of the sintered body with respect to 100% of the thickness of the pre-sintering layer 11 is preferably 40% to 80%.
  • a pre-sintering laminate having a substrate, a chip, and a pre-sintering layer 11 sandwiched between the substrate and the chip is heated under the following condition 1 to change the pre-sintering layer 11 into a sintered body and then firing. Measure the thickness of the body.
  • Condition 1 While applying a pressure of 10 MPa to the pre-sintered laminate with a flat plate press, the temperature is increased from 80 ° C. to 300 ° C. at 1.5 ° C./second and maintained at 300 ° C. for 2.5 minutes while applying a pressure of 10 MPa.
  • the pre-sintering layer 11 includes a binder having a property of being thermally decomposed by sintering (hereinafter referred to as “thermally decomposable binder”).
  • thermally decomposable binder a binder having a property of being thermally decomposed by sintering
  • the carbon concentration after heating from 23 ° C. to 400 ° C. at a heating rate of 10 ° C./min in an air atmosphere is 15% by weight or less.
  • the carbon concentration can be measured by energy dispersive X-ray analysis.
  • the thermally decomposable binder is preferably solid at 23 ° C. When solid at 23 ° C., the pre-sintering layer 11 can be easily formed.
  • the thermally decomposable binder is, for example, polycarbonate, acrylic polymer, ethyl cellulose, polyvinyl alcohol or the like.
  • the pre-sintering layer 11 can contain one or more types of thermally decomposable binders. Of these, acrylic polymers and polycarbonate are preferable, and polycarbonate is more preferable.
  • the weight average molecular weight of the polycarbonate is preferably 10,000 or more, more preferably 30,000 or more, and even more preferably 50,000 or more.
  • the weight average molecular weight of the polycarbonate is preferably 1,000,000 or less, more preferably 500,000 or less, and still more preferably 350,000 or less.
  • the weight average molecular weight is a value measured by GPC (gel permeation chromatography) and calculated in terms of polystyrene.
  • Polycarbonate is, for example, aliphatic polycarbonate. It is preferable that the aliphatic polycarbonate does not have an aromatic compound (for example, benzene ring) between the carbonic acid ester groups (—O—CO—O—) of the main chain.
  • the aliphatic polycarbonate preferably has an aliphatic chain between the carbonate groups of the main chain.
  • Aliphatic polycarbonates are, for example, polypropylene carbonate, polyethylene carbonate, tert-polybutylethylene carbonate. Of these, polypropylene carbonate is preferred. It is because it thermally decomposes effectively by sintering.
  • the content of the thermally decomposable binder in the 100% by weight pre-sintering layer 11 is preferably 0.5% by weight or more, more preferably 1% by weight or more, and further preferably 2% by weight or more.
  • the content of the thermally decomposable binder in the pre-sintering layer 11 of 100% by weight is preferably 20% by weight or less, more preferably 15% by weight or less, and further preferably 10% by weight or less.
  • the pre-sintering layer 11 contains metal particles. Silver particles, copper particles, silver oxide particles, copper oxide particles, and the like.
  • the pre-sintering layer 11 can include one kind or two or more kinds of metal particles. It is preferable that the metal particles have a property of becoming a sintered body by raising the temperature from 80 ° C. to 300 ° C. at 1.5 ° C./second and maintaining 300 ° C. for 2.5 minutes.
  • the average diameter of the crystallites in the metal particles is preferably 0.01 nm or more, more preferably 0.1 nm or more, and further preferably 0.5 nm or more.
  • the upper limit of the average diameter of the crystallite is, for example, 60 nm, preferably 50 nm, more preferably 45 nm. The smaller the crystallite size, the lower the sintering temperature.
  • the lower limit of the average particle diameter of the metal particles is, for example, 0.05 nm, 0.1 nm, and 1 nm.
  • the upper limit of the average particle diameter of the metal particles is, for example, 1000 nm or 100 nm.
  • the D50 data obtained by measuring in the standard mode using a particle size distribution measuring device (Nikkiso Microtrac HRA) is defined as the average particle size.
  • the content of the metal particles in the pre-sintering layer 11 of 100% by weight is preferably 50% by weight or more, more preferably 60% by weight or more, and further preferably 65% by weight or more.
  • the content of metal particles in 100% by weight of the pre-sintering layer 11 is preferably 98% by weight or less, more preferably 97% by weight or less, and still more preferably 95% by weight or less.
  • the pre-sintering layer 11 further includes a binder having a boiling point of 100 ° C. to 350 ° C. (hereinafter referred to as “low boiling point binder”).
  • a binder having a boiling point of 100 ° C. to 350 ° C. for example, monovalent and pentanol, hexanol, heptanol, octanol, 1-decanol, ethylene glycol, diethylene glycol, propylene glycol, butylene glycol, ⁇ -terpineol, 1,6-hexanediol, isobornylcyclohexanol (MTPH) and the like
  • Polyhydric alcohols ethylene glycol butyl ether, ethylene glycol phenyl ether, diethylene glycol methyl ether, diethylene glycol ethyl ether, diethylene glycol butyl ether, diethylene glycol isobutyl ether, diethylene glycol hexyl ether,
  • a pre-sintering layer 11 can be obtained by preparing a varnish containing a thermally decomposable binder, metal particles, etc., applying the varnish to a support, and drying the varnish.
  • the solvent for the varnish is, for example, methyl ethyl ketone.
  • the thickness of the pressure-sensitive adhesive layer 122 is preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more.
  • the thickness of the pressure-sensitive adhesive layer 122 is preferably 50 ⁇ m or less, more preferably 30 ⁇ m or less.
  • the adhesive layer 122 is formed of an adhesive.
  • the adhesive is, for example, an acrylic adhesive or a rubber adhesive.
  • an acrylic pressure-sensitive adhesive is preferred.
  • the acrylic pressure-sensitive adhesive is an acrylic pressure-sensitive adhesive based on an acrylic polymer (homopolymer or copolymer) using one or more (meth) acrylic acid alkyl esters as monomer components. It is an agent.
  • the thickness of the substrate 121 is preferably 50 ⁇ m to 150 ⁇ m.
  • the substrate 121 preferably has a property of transmitting energy rays.
  • the thickness of the release liner 13 is preferably 20 ⁇ m to 75 ⁇ m, more preferably 25 ⁇ m to 50 ⁇ m.
  • Examples of the release liner 13 include a polyethylene terephthalate (PET) film.
  • a sheet 71 is attached to the semiconductor wafer 4.
  • the semiconductor wafer 4 is, for example, a silicon wafer, a silicon carbide wafer, a gallium nitride wafer, or the like. For example, it is applied at 70 ° C. to 80 ° C.
  • the pre-sintering chip 5 includes a semiconductor chip 41 and a pre-sintering film 111 disposed on the semiconductor chip 41.
  • the pre-sintering composite body 2 is obtained by pressure-bonding the chip 5 before sintering to the adherend 6.
  • pressure bonding is performed at 80 to 100 ° C.
  • the adherend 6 is, for example, a substrate, a lead frame, an interposer, a TAB film, a semiconductor chip, or the like.
  • the composite 2 before sintering includes an adherend 6, a semiconductor chip 41, and a film 111 before sintering sandwiched between the adherend 6 and the semiconductor chip 41.
  • the pre-sintering film 111 is sintered. That is, the pre-sintering composite 2 is heated while applying a force with a flat plate to the pre-sintering composite 2 to change the pre-sintering film 111 into a sintered body.
  • the minimum of sintering temperature is 200 degreeC and 250 degreeC, for example.
  • the upper limit of the sintering temperature is 320 ° C. or 350 ° C., for example.
  • the lower limit of the pressure applied to the composite 2 before sintering is, for example, 1 MPa or 5 MPa.
  • the upper limit of the pressure applied to the composite 2 before sintering is, for example, 30 MPa or 20 MPa.
  • the bonding wire 7 is, for example, an aluminum wire, a gold wire, or a copper wire.
  • the semiconductor chip 41 is sealed with the sealing resin 8. You may further heat after sealing. Thereby, the insufficiently cured sealing resin 8 can be completely cured.
  • the power module obtained by the above method includes an adherend 6, a semiconductor chip 41, and a sintered body sandwiched between the adherend 6 and the semiconductor chip 41.
  • the power module further includes a sealing resin 8 that covers the semiconductor chip 41.
  • the power module manufacturing method includes the step (a) of attaching the sheet 71 to the semiconductor wafer 4, the step (b) of forming the pre-sintered chip 5 by die division after the step (a), A step (c) of pressing the pre-bonding chip 5 to the adherend 6 and a step (d) of sintering the pre-sintering film 111 after the step (c).
  • Step (d) includes the step of heating the pre-sintering composite 2.
  • a step (e) including a step of bonding the first end of the bonding wire 7 and the semiconductor chip 41 and a step of bonding the second end of the bonding wire 7 and the adherend 6 are performed.
  • the manufacturing method further includes.
  • the method for manufacturing the power module further includes a step (f) of sealing the semiconductor chip 41 with the sealing resin 8.
  • the first portion 122A of the pressure-sensitive adhesive layer 122 has a property of being cured by energy rays.
  • the second portion 122B of the pressure-sensitive adhesive layer 122 also has a property of being cured by energy rays.
  • the method for manufacturing the power module further includes a step of picking up the pre-sintering chip 5 by irradiating the pressure-sensitive adhesive layer 122 with energy rays after the step (b) of forming the pre-sintering chip 5. When the energy beam is irradiated, it is easy to pick up the chip 5 before sintering.
  • the first portion 122A of the pressure-sensitive adhesive layer 122 is cured by energy rays.
  • the second portion 122B of the pressure-sensitive adhesive layer 122 is also cured by energy rays.
  • the pre-sintering layer 11 has a multi-layer shape including a first layer and a second layer disposed on the first layer.
  • the method for manufacturing the power module further includes a step of picking up the pre-sintering chip 5 by irradiating the pressure-sensitive adhesive layer 122 with energy rays after the step (b) of forming the pre-sintering chip 5.
  • the sheet 171 includes the pre-sintering layer 11. Both surfaces of the pre-sintering layer 11 are defined by the first surface and the second surface facing the first surface.
  • the sheet 171 further includes a first release liner 14 disposed on the first surface and a second release liner 15 disposed on the second surface.
  • Modifications 1 to 5 can be arbitrarily combined.
  • ANP-1 An appropriately adjusted amount of solvent for viscosity adjustment contained in ANP-1 (a paste in which nano-sized silver fine particles are dispersed in a binder) manufactured by Applied Nanoparticles Laboratory.
  • Copper fine particles Copper fine particles having an average particle diameter of 200 nm and crystallite diameter of 31 nm manufactured by Mitsui Mining & Mining Co., Ltd.
  • MM-2002-1 MM-2002-1 (acrylic polymer) manufactured by Fujikura Kasei Co., Ltd.
  • QPAC40 QPAC40 manufactured by Empower (polypropylene carbonate having a weight average molecular weight of 50,000 to 350,000)
  • Tersolve MTPH Tersolve MTPH (high viscosity terpene alcohol) manufactured by Nippon Terpene Chemical Co., Ltd.
  • MAX102 paste-like bonding agent manufactured by Nihon Solda
  • a chip with a pre-sintered sheet was placed on an Ag-plated Cu substrate—having a Cu substrate having a thickness of 3 mm and an Ag film having a thickness of 5 ⁇ m covering the entire Cu substrate.
  • Sintering was performed with a sintering apparatus (HTM-3000 manufactured by Hakutosha Co., Ltd.) to join the Ag-plated Cu substrate and the chip. Specifically, the temperature is increased from 80 ° C. to 300 ° C. at a heating rate of 1.5 ° C./sec while applying a pressure of 10 MPa with a flat plate press, and the temperature is maintained at 300 ° C. for 2.5 minutes while applying a pressure of 10 MPa. Were joined. Only Example 6 was sintered in a nitrogen environment.
  • the sample obtained by joining the Ag-plated Cu substrate and the chip has an Ag-plated Cu substrate, a chip, an Ag-plated Cu substrate, and a sintered body sandwiched between the chips.
  • the sample was subjected to a temperature change of 100 cycles with a thermal shock tester (TSE-103ES manufactured by Espec Corp.).
  • TSE-103ES thermal shock tester
  • One cycle consists of a first time of holding ⁇ 40 ° C. for 15 minutes and a second time of holding 125 ° C. for 15 minutes.
  • the sample after 100 cycles was observed with an ultrasonic imaging apparatus (FineSAT II, manufactured by Hitachi Construction Machinery Finetech Co., Ltd.).
  • PQ-50-13: WD (frequency 50 MHz) -probe- was used.
  • the area of the portion where the bonding remained hereinafter referred to as “remaining area” was obtained.
  • the ratio of the remaining area when the total area was 100% was calculated. When the ratio of the remaining area was 50% or more, it was determined as “good”. When it was lower than 50%, it was determined as x.
  • Table 2 The results are shown in Table 2.
  • Comparative Example 4 An example in which a bonding agent layer was formed with MAX102 and the solvent was removed—has been difficult to work with. This is because there is a step of skipping the solvent.
  • the sintered body formed in Comparative Example 4 may have uneven drying. This is because a large amount of solvent was skipped. Reliability was not good either.
  • Comparative Example 3- Example using adjusted ANP-1-failed to form a bonding agent layer. This is because the viscosity of ANP-1 was too high after adjustment.
  • Example 2 Compared with Comparative Example 2, the thicknesses of Examples 2, 3, and 5 were small. This is because the flow during sintering is small. Compared to Comparative Example 1, Example 2 had a greater thickness after sintering. This is because the thickness of Example 2 before sintering is larger than that of Comparative Example 1. Examples 1 to 5 also had good reliability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Laminated Bodies (AREA)

Abstract

課題は、応力を緩和可能な程度に焼結後の厚みがなることができる焼結前層を有するシートを提供することである。解決手段は、焼結前層を含むシートに関する。90℃における焼結前層の粘度は0.27MPa・s以上である。焼結前層の厚みは30μm~200μmである。

Description

シートおよび複合シート
 本発明は、シートと複合シートとに関する。
 低温―たとえば300℃―で焼結体となる性質を有さない導電性接着剤で基板にチップを固定することがある。しかしながら、このような導電性接着剤を用いたパワーモジュールは所定の信頼性―たとえば温度サイクル試験で評価される信頼性―を確保できないことがある。
 いっぽう、ナノサイズの金属粒子を含む接合剤は低温で焼結体となることができる。たとえば特許文献1は、平均一次粒子径1~50nmの銀微粒子を含むペーストを基板に塗布し、ペーストを乾燥させ、焼結をおこなう技術を開示している。
特開2015-4105
 特許文献1に記載された接合剤はペーストであるので、基板とチップとを接合するためには、基板にペーストを塗布し、焼結前にペーストの溶剤をとばす必要がある。もし溶剤をとばさずに焼結をおこなうと、ペーストが流動し、焼結で厚みが大きく低下する。焼結体の厚みの低下は、温度サイクル試験で評価される信頼性の低下をもたらすことがある。厚みが小さすぎると、温度変化によって生じる応力を焼結体が緩和できないからである。
 溶剤をとばす工程を省略するためにペーストの粘度を上げると、ペーストを基板に塗布することが困難である。
 特許文献1に記載されたペーストの焼結体は乾燥むらを有する可能性がある。ペーストが、大量の溶剤を含むからである。乾燥むらは、信頼性の低下をもたらすことがある。
 焼結後の厚みが応力を緩和可能な程度になる―という焼結前層を提供することが本発明の目的である。本発明の目的はまた、焼結前層を有するシートを提供することである。本発明の目的はまた、焼結前層を有する複合シートを提供することである。
 本発明は、焼結前層を含むシートに関する。90℃における焼結前層の粘度は0.27MPa・s以上である。0.27MPa・s以上であるので、焼結による厚み低下が小さい。焼結前層の厚みは30μm~200μmである。30μm以上であるので、焼結後の厚み―焼結体の厚み―が、応力を緩和可能な程度の厚みになる。
 本発明はまた複合シートに関する。はく離ライナーと、はく離ライナー上に配置された焼結前層と、焼結前層上に配置されたダイシングシートとを複合シートは含むことができる。
 本発明はまたパワーモジュールの製造方法に関する。本発明のパワーモジュールの製造方法は、半導体ウエハにシート―ダイシングシートとダイシングシート上に配置された焼結前層とを含む―を貼り付ける工程(a)を含む。本発明のパワーモジュールの製造方法は、工程(a)の後にダイ分割により焼結前チップ―半導体チップと半導体チップ上に配置された焼結前フィルムとを含む―を形成する工程(b)をさらに含む。本発明のパワーモジュールの製造方法は、焼結前チップを被着体に圧着する工程(c)と、工程(c)の後に焼結前フィルムの焼結をおこなう工程(d)とをさらに含む。
複合シートの概略平面図である。 複合シートの一部の概略断面図である。 パワーモジュールの製造工程の概略断面図である。 パワーモジュールの製造工程の概略断面図である。 パワーモジュールの製造工程の概略断面図である。 パワーモジュールの製造工程の概略断面図である。 変形例4における複合シートの一部の概略断面図である。 変形例5のシートの概略断面図である。
 以下に実施形態を掲げ、本発明を詳細に説明するが、本発明はこれらの実施形態のみに限定されるものではない。
 [実施形態1]
 (複合シート1)
 図1に示すように、複合シート1はロール状をなす。はく離ライナー13と、はく離ライナー13上に配置されたシート71a、71b、71c、……、71m(以下、「シート71」と総称する。)とを複合シート1は含む。シート71aとシート71bのあいだの距離、シート71bとシート71cのあいだの距離、……シート71lとシート71mのあいだの距離は一定である。
 図2に示すように、シート71は焼結前層11を含む。焼結前層11上に配置されたダイシングシート12をシート71はさらに含む。ダイシングシート12は、基材121と、基材121上に配置された粘着剤層122とを含む。粘着剤層122と接した第1主面と第1主面に対向した第2主面とで焼結前層11の両面は定義される。第2主面は はく離ライナー13と接する。シート71は作業性がよい。焼結前層11とダイシングシート12とが当初から一体化しているからである。
 粘着剤層122は第1部分122Aを含む。第1部分122Aは硬化している。第1部分122Aは焼結前層11と接する。第1部分122Aの周辺に配置された第2部分122Bを粘着剤層122はさらに含む。第2部分122Bはエネルギー線により硬化する性質を有する。エネルギー線として紫外線などを挙げることができる。第2部分122Bは焼結前層11と接しない。
 加熱により焼結体となる性質を焼結前層11は有する。第1物体と第2物体とを接合するために焼結前層11は使用されることができる。たとえばチップと基板との接合である。基板は、絶縁基板と絶縁基板上に配置された導体層とを含むことができる。絶縁基板としてセラミック基板などを挙げることができる。
 焼結前層11は、積層により厚みを調整できるので、ペーストで形成された層とくらべて厚みが均一である。焼結前層11はシート状をなすので、ペーストの必須工程―印刷および乾燥―を省略できる。
 焼結前層11の厚みは30μm以上、好ましくは40μm以上である。30μm以上であるので、応力を緩和可能な程度に焼結後の厚みがなる。焼結前層11の厚みは200μm以下、好ましくは150μm以下、より好ましくは100μm以下である。
 90℃における焼結前層11の粘度は0.27MPa・s以上、好ましくは0.5MPa・s以上である。0.27MPa・s以上であるので、焼結による厚み低下が小さい。90℃における焼結前層11の粘度の上限はたとえば15MPa・s、10MPa・s、8MPa・sである。主にバインダーの種類とバインダーの含有量とにより90℃における焼結前層11の粘度は変化する。
 焼結前層11の厚み100%に対する焼結体の厚みは40%~80%であることが好ましい。基板と、チップと、基板およびチップに挟まれた焼結前層11とを有する焼結前積層体を下記条件1で加熱することにより焼結前層11を焼結体に変化させた後に焼結体の厚みを測定する。
 条件1      10MPaの圧力を平板プレスで焼結前積層体に加えながら80℃から300℃まで1.5℃/秒で昇温し、10MPaの圧力を加えながら300℃を2.5分間 保持する。
 焼結で熱分解する性質を有するバインダー(以下、「熱分解性バインダー」という。)を焼結前層11は含む。たとえば、大気雰囲気下において昇温速度10℃/minで23℃から400℃まで昇温した後の炭素濃度が15重量%以下を示す―という性質である。炭素濃度は、エネルギー分散型X線分析により測定できる。熱分解性バインダーは、好ましくは23℃で固形をなす。23℃で固形をなすと、焼結前層11の成形が容易である。
 熱分解性バインダーはたとえばポリカーボネート、アクリルポリマー、エチルセルロース、ポリビニルアルコールなどである。1種または2種以上の熱分解性バインダーを焼結前層11は含むことができる。なかでも、アクリルポリマー、ポリカーボネートが好ましく、ポリカーボネートがより好ましい。
 ポリカーボネートの重量平均分子量は、好ましくは1万以上、より好ましくは3万以上、さらに好ましくは5万以上である。ポリカーボネートの重量平均分子量は、好ましくは100万以下、より好ましくは50万以下、さらに好ましくは35万以下である。重量平均分子量は、GPC(ゲル・パーミエーション・クロマトグラフィー)により測定し、ポリスチレン換算により算出された値である。
 ポリカーボネートはたとえば脂肪族ポリカーボネートである。主鎖の炭酸エステル基(-O-CO-O-)のあいだに芳香族化合物(たとえば、ベンゼン環)を脂肪族ポリカーボネートは有さないことが好ましい。主鎖の炭酸エステル基のあいだに脂肪族鎖を脂肪族ポリカーボネートは有することが好ましい。脂肪族ポリカーボネートはたとえばポリプロピレンカーボネート、ポリエチレンカーボネート、tert-ポリブチルエチレンカーボネートである。なかでも、ポリプロピレンカーボネートが好ましい。焼結で効果的に熱分解するからである。
 100重量%の焼結前層11中の熱分解性バインダーの含有量は好ましくは0.5重量%以上、より好ましくは1重量%以上、さらに好ましくは2重量%以上である。100重量%の焼結前層11中の熱分解性バインダーの含有量は好ましくは20重量%以下、より好ましくは15重量%以下、さらに好ましくは10重量%以下である。
 焼結前層11は金属粒子を含む。銀粒子、銅粒子、酸化銀粒子、酸化銅粒子などである。1種または2種以上の金属粒子を焼結前層11は含むことができる。金属粒子は、80℃から300℃まで1.5℃/秒で昇温し、300℃を2.5分間 維持することにより焼結体になるという性質を有することが好ましい。金属粒子における結晶子の平均径は、好ましくは0.01nm以上、より好ましくは0.1nm以上、さらに好ましくは0.5nm以上である。結晶子の平均径上限は、たとえば60nm、好ましくは50nm、より好ましくは45nmである。結晶子径が小さいほど、焼結温度が下がる傾向がある。
 金属粒子の平均粒子径の下限はたとえば0.05nm、0.1nm、1nmである。金属粒子の平均粒子径の上限はたとえば1000nm、100nmである。粒度分布測定装置(日機装製のマイクロトラックHRA)を用い標準モードで測定することにより求められるD50データを平均粒子径とする。
 100重量%の焼結前層11中の金属粒子の含有量は好ましくは50重量%以上、より好ましくは60重量%以上、さらに好ましくは65重量%以上である。100重量%の焼結前層11中の金属粒子の含有量は好ましくは98重量%以下、より好ましくは97重量%以下、さらに好ましくは95重量%以下である。
 100℃~350℃の沸点を有するバインダー(以下、「低沸点バインダー」という。)を焼結前層11はさらに含む。たとえば、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、1-デカノール、エチレングリコール、ジエチレングリコール、プロピレングリコール、ブチレングリコール、α-テルピネオール、1,6-ヘキサンジオール、イソボルニルシクロヘキサノール(MTPH)等の一価及び多価アルコール類、エチレングリコールブチルエーテル、エチレングリコールフェニルエーテル、ジエチレングリコールメチルエーテル、ジエチレングリコールエチルエーテル、ジエチレングリコールブチルエーテル、ジエチレングリコールイソブチルエーテル、ジエチレングリコールヘキシルエーテル、トリエチレングリコールメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、ジエチレングリコールブチルメチルエーテル、ジエチレングリコールイソプロピルメチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールブチルメチルエーテル、プロピレングリコールプロピルエーテル、ジプロピレングリコールメチルエーテル、ジプロピレングリコールエチルエーテル、ジプロピレングリコールプロピルエーテル、ジプロピレングリコールブチルエーテル、ジプロピレングリコールジメチルエーテル、トリプロピレングリコールメチルエーテル、トリプロピレングリコールジメチルエーテル等のエーテル類、エチレングリコールエチルエーテルアセテート、エチレングリコールブチルエーテルアセテート、ジエチレングリコールエチルエーテルアセテート、ジエチレングリコールブチエーテルアセテート、ジプロピレングリコールメチルエーテルアセテート(DPMA)などを挙げることができる。これらは2種以上を併用してもよい。なかでも、沸点の異なる2種類を併用することが好ましい。沸点の異なる2種類を用いると、シート形状の維持の点で優れる。
 熱分解性バインダー、金属粒子などを含有するワニスを調製し、ワニスを支持体に塗工し、ワニスを乾燥させる方法などにより焼結前層11を得ることができる。ワニスの溶剤はたとえばメチルエチルケトンである。
 粘着剤層122の厚みは好ましくは3μm以上、より好ましくは5μm以上である。粘着剤層122の厚みは好ましくは50μm以下、より好ましくは30μm以下である。
 粘着剤層122は粘着剤により形成されている。粘着剤はたとえばアクリル系粘着剤、ゴム系粘着剤である。なかでもアクリル系粘着剤が好ましい。アクリル系粘着剤はたとえば、(メタ)アクリル酸アルキルエステルの1種または2種以上を単量体成分として用いたアクリル系重合体(単独重合体または共重合体)をベースポリマーとするアクリル系粘着剤である。
 基材121の厚みは好ましくは50μm~150μmである。エネルギー線を透過する性質を基材121は有することが好ましい。
 はく離ライナー13の厚みは好ましくは20μm~75μm、より好ましくは25μm~50μmである。はく離ライナー13としてポリエチレンテレフタレート(PET)フィルムなどを挙げることができる。
 (パワーモジュールの製造方法)
 図3に示すように、半導体ウエハ4にシート71を貼り付ける。半導体ウエハ4はたとえばシリコンウエハ、シリコンカーバイドウエハ、窒化ガリウムウエハなどである。たとえば70℃~80℃で貼り付ける。
 図4に示すように、半導体ウエハ4をダイシングすることにより、焼結前チップ5を形成する。半導体チップ41と半導体チップ41上に配置された焼結前フィルム111とを焼結前チップ5は含む。
 焼結前チップ5をピックアップする。すなわち、焼結前チップ5をニードルで突き上げ、つまみ、粘着剤層122から離す。
 図5に示すように、焼結前チップ5を被着体6に圧着することにより焼結前複合体2を得る。たとえば80℃~100℃で圧着する。被着体6はたとえば基板、リードフレーム、インターポーザ、TABフィルム、半導体チップなどである。焼結前複合体2は、被着体6と、半導体チップ41と、被着体6および半導体チップ41に挟まれた焼結前フィルム111とを含む。
 焼結前フィルム111の焼結をおこなう。すなわち焼結前複合体2に平板で力を加えながら、焼結前複合体2を加熱し、焼結前フィルム111を焼結体に変化させる。焼結温度の下限はたとえば200℃、250℃である。焼結温度の上限はたとえば320℃、350℃である。焼結前複合体2に与える圧力の下限はたとえば1MPa、5MPaである。焼結前複合体2に与える圧力の上限はたとえば30MPa、20MPaである。
 図6に示すように、半導体チップ41の電極パッドと被着体6の端子部とをボンディングワイヤー7で電気的に接続する。ボンディングワイヤー7はたとえばアルミニウムワイヤー、金ワイヤー、銅ワイヤーである。
 ワイヤーボンディングの後、封止樹脂8で半導体チップ41を封止する。封止後にさらに加熱をしてもよい。これにより、硬化不足の封止樹脂8を完全に硬化できる。
 以上の方法により得られたパワーモジュールは、被着体6と、半導体チップ41と、被着体6および半導体チップ41の間に挟まれた焼結体とを含む。パワーモジュールは、半導体チップ41を覆う封止樹脂8をさらに含む。
 以上のとおり、パワーモジュールの製造方法は、半導体ウエハ4にシート71を貼り付ける工程(a)と、工程(a)の後にダイ分割により焼結前チップ5を形成する工程(b)と、焼結前チップ5を被着体6に圧着する工程(c)と、工程(c)の後に焼結前フィルム111の焼結をおこなう工程(d)とを含む。焼結前複合体2を加熱するステップを工程(d)は含む。
 工程(d)の後に、ボンディングワイヤー7の第1端と半導体チップ41とを接合するステップ、ボンディングワイヤー7の第2端と被着体6とを接合するステップを含む工程(e)をパワーモジュールの製造方法はさらに含む。パワーモジュールの製造方法は、封止樹脂8で半導体チップ41を封止する工程(f)をさらに含む。
 (変形例1)
 粘着剤層122の第1部分122Aはエネルギー線により硬化する性質を有する。粘着剤層122の第2部分122Bもエネルギー線により硬化する性質を有する。焼結前チップ5を形成する工程(b)の後に、粘着剤層122にエネルギー線を照射し焼結前チップ5をピックアップする工程をパワーモジュールの製造方法はさらに含む。エネルギー線を照射すると、焼結前チップ5のピックアップが容易である。
 (変形例2)
 粘着剤層122の第1部分122Aはエネルギー線により硬化されている。粘着剤層122の第2部分122Bもエネルギー線により硬化されている。
 (変形例3)
 焼結前層11は、第1層および第1層上配置された第2層を含む複層形状をなす。
 (変形例4)
 図7に示すように、粘着剤層122の片面全体が焼結前層11と接する。エネルギー線により硬化する性質を粘着剤層122は有する。焼結前チップ5を形成する工程(b)の後に、粘着剤層122にエネルギー線を照射し焼結前チップ5をピックアップする工程をパワーモジュールの製造方法はさらに含む。
 (変形例5)
 図8に示すように、シート171は焼結前層11を含む。第1面と第1面に対向した第2面とで焼結前層11の両面が定義される。第1面上に配置された第1はく離ライナー14と、第2面上に配置された第2はく離ライナー15とをシート171はさらに含む
 (そのほかの変形例)
 変形例1~変形例5などは、任意に組み合わせることができる。
 以下、本発明に関し実施例を用いて詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。
 [焼結前シートの原料など]
 調整後ANP-1:応用ナノ粒子研究所製のANP-1(バインダーにナノサイズの銀微粒子が分散したペースト)に含まれる粘度調整用の溶剤量を適宜調整したもの。
 銅微粒子:三井金属鉱業社製の平均粒径200nm、結晶子径31nmの銅微粒子
 MM-2002-1:藤倉化成社製のMM-2002-1(アクリルポリマー)
 QPAC40:Empower社製のQPAC40(重量平均分子量5万~35万のポリプロピレンカーボネート)
 テルソルブMTPH:日本テルペン化学社製のテルソルブMTPH(高粘度テルペン系アルコール)
 [焼結前シートの作製]
 表1の記載にしたがい、ハイブリッドミキサー(キーエンス製 HM-500)の攪拌釜に各成分とメチルエチルケトンとを入れ、2000rpmで8分 攪拌することにより、ワニスを得た。離型処理フィルム(三菱樹脂社製のMRA38)にワニスを塗工した。110℃ 3分で乾燥させることにより焼結前シートを得た。焼結前シートの厚みは表1に示す。
Figure JPOXMLDOC01-appb-T000001
 [比較例4・5で用いた接合剤]
 ニホンハンダ社製のMAX102(ペースト状接合剤)
 [評価1 90℃粘度]
 ギャップ300μm、直径8mm、ひずみ0.05%、周波数1HzでHAAKE社製のMARS IIIを用いて接合剤(焼結前シートA~IおよびMAX102・調整後ANP-1)の粘度を測定した。結果を表2に示す。
 [評価2-1 厚み・信頼性              実施例1~7および比較例1~2]
 厚み350μm、縦5mm、横5mmのシリコンチップと、厚み100nmのAg膜と、シリコンチップおよびAg膜に挟まれた厚み50nmのTi膜とを有するチップを準備した。70℃、0.3MPa、10mm/secの条件でチップのAg膜に焼結前シートを貼り付けることにより、焼結前シート付きチップを作製した。AgめっきCu基板―厚み3mmのCu基板と、Cu基板全体を覆う厚み5μmのAg膜とを有する―上に焼結前シート付きチップを配置した。焼結装置(伯東社製のHTM-3000)で焼結をおこない、AgめっきCu基板とチップとを接合した。具体的には、平板プレスで10MPaの圧力を加えながら80℃から300℃まで昇温速度1.5℃/秒で昇温し、10MPaの圧力を加えながら300℃を2.5分間 保持する―ことにより接合した。なお、実施例6のみ窒素環境下で焼結をおこなった。
 AgめっきCu基板とチップとの接合により得られた試料は、AgめっきCu基板と、チップと、AgめっきCu基板およびチップに挟まれた焼結体とを有する。焼結体の厚み―焼結後の厚み―を測定した。結果を表2に示す。
 冷熱衝撃試験機(エスペック社製のTSE-103ES)で100サイクルの温度変化を試料に与えた。ひとつのサイクルは、-40℃を15分保持する第1時間と、125℃を15分保持する第2時間とからなる。100サイクル後の試料を超音波映像装置(日立建機ファインテック社製のFineSAT II)で観察した。PQ-50-13:WD(周波数50MHz)―プローブ―を使用した。得られた像において接合が残っている部分の面積(以下、「残面積」という)を求めた。全面積を100%としたときの残面積の割合を算出した。残面積の割合が50%以上の場合は○と判定した。50%より低い場合は×と判定した。結果を表2に示す。
 [評価2-2 厚み・信頼性              比較例4]
 MAX102の塗布によりAgめっきCu基板上に接合剤層を形成した。接合剤層の厚みを測定した。厚み測定後に、150℃ 30分で接合剤の溶剤をとばした。接合剤層上にチップを配置した。実施例1と同じ条件で焼結をおこない、AgめっきCu基板とチップとを接合した。焼結体の厚みを測定した。実施例1と同じ温度変化を試料に与え、信頼性を評価した。結果を表2に示す。
 [評価2-3 厚み・信頼性              比較例5]
 溶剤をとばすステップを省いたこと以外は、比較例4と同じ方法で厚みと信頼性とを評価した。結果を表2に示す。
 [評価3 銀微粒子または銅微粒子の含有量]
 10℃/minで500℃まで昇温するTG-DTAにより銀微粒子または銅微粒子の含有量を求めた。銅微粒子の含有量を求める際は、窒素環境下でTG-DTAをおこなった。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 比較例5-MAX102で接合剤層を形成し、溶剤をとばさずに焼結をおこなった例-は、焼結で厚みが大きく低下した。焼結前に溶剤をとばさなかったからだろう。MAX102で形成された接合剤層の厚み低下を抑えるために、溶剤をとばす必要がある。信頼性もわるかった。
 比較例4-MAX102で接合剤層を形成し、溶剤をとばした例-は、作業性がわるかった。溶剤をとばすステップがあるからである。比較例4で形成された焼結体は乾燥むらを有するかもしれない。大量の溶剤をとばしたからである。信頼性もよくはなかった。
 比較例3-調整後ANP-1を用いた例-は接合剤層を形成できなかった。調整後ANP-1の粘度が高すぎたからだ。
 比較例2とくらべて実施例2・3・5は厚みの変化が小さかった。焼結時の流動が小さいからだろう。比較例1とくらべて実施例2は焼結後の厚みが大きかった。実施例2の焼結前の厚みが比較例1のそれより大きいからだろう。実施例1~5は信頼性もよかった。
   1   複合シート
  11   焼結前層
  12   ダイシングシート
  13   はく離ライナー
  71   シート
 121   基材
 122   粘着剤層
 122A  第1部分
 122B  第2部分
   2   焼結前複合体
   4   半導体ウエハ
   5   焼結前チップ
  41   半導体チップ
 111   焼結前フィルム
   6   被着体
   7   ボンディングワイヤー
   8   封止樹脂
 171   シート
  14   第1はく離ライナー
  15   第2はく離ライナー

Claims (10)

  1.  焼結前層を含み、
     前記焼結前層の厚みが30μm~200μmであり、
     90℃における前記焼結前層の粘度が0.27MPa・s以上であるシート。
  2.  基板と、チップと、前記基板および前記チップに挟まれた前記焼結前層とを有する焼結前積層体を下記条件1で加熱することにより前記焼結前層を焼結体に変化させたとき、前記焼結前層の厚み100%に対する前記焼結体の厚みは40%~80%である請求項1に記載のシート。
     条件1      10MPaの圧力を平板プレスで前記焼結前積層体に加えながら80℃から300℃まで1.5℃/秒で昇温し、前記圧力を加えながら300℃を2.5分間 保持する。
  3.  前記焼結前層は金属粒子を含む請求項1または2に記載のシート。
  4.  前記金属粒子は、銀粒子、銅粒子、酸化銀粒子および酸化銅粒子からなる群より選ばれた少なくとも1種を含む請求項3に記載のシート。
  5.  前記焼結前層100重量%中の前記金属粒子の含有量は50重量%~98重量%である請求項3または4に記載のシート。
  6.  焼結で熱分解する性質を有するバインダーを前記焼結前層はさらに含み、
     前記バインダーは、ポリカーボネート、アクリルポリマー、エチルセルロースおよびポリビニルアルコールからなる群より選ばれた少なくとも1種を含む請求項1~5のいずれかに記載のシート。
  7.  前記焼結前層は、第1物体と第2物体とを接合するために使用される請求項1~6のいずれかに記載のシート。
  8.  第1面と前記第1面に対向した第2面とで前記焼結前層の両面が定義され、
     前記第1面上に配置された第1はく離ライナーと、
     前記第2面上に配置された第2はく離ライナーとをさらに含む請求項1~7のいずれかに記載のシート。
  9.  前記焼結前層上に配置されたダイシングシートをさらに含む請求項1~7のいずれかに記載のシート。
  10.  はく離ライナーと、
     前記はく離ライナー上に配置された請求項9に記載のシートとを含む複合シート。
PCT/JP2016/078667 2015-09-30 2016-09-28 シートおよび複合シート WO2017057485A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/763,408 US11634611B2 (en) 2015-09-30 2016-09-28 Sheet and composite sheet
EP16851656.5A EP3358609B1 (en) 2015-09-30 2016-09-28 Sheet and composite sheet
CN201680058243.8A CN108184331B (zh) 2015-09-30 2016-09-28 片和复合片

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-193218 2015-09-30
JP2015193218 2015-09-30
JP2016184083A JP6704322B2 (ja) 2015-09-30 2016-09-21 シートおよび複合シート
JP2016-184083 2016-09-21

Publications (1)

Publication Number Publication Date
WO2017057485A1 true WO2017057485A1 (ja) 2017-04-06

Family

ID=58423916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078667 WO2017057485A1 (ja) 2015-09-30 2016-09-28 シートおよび複合シート

Country Status (1)

Country Link
WO (1) WO2017057485A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6327630B1 (ja) * 2017-04-28 2018-05-23 リンテック株式会社 フィルム状焼成材料、支持シート付フィルム状焼成材料、フィルム状焼成材料の製造方法、及び支持シート付フィルム状焼成材料の製造方法
WO2019092960A1 (ja) * 2017-11-13 2019-05-16 日東電工株式会社 焼結接合用組成物、焼結接合用シート、および焼結接合用シート付きダイシングテープ
WO2019208072A1 (ja) * 2018-04-27 2019-10-31 日東電工株式会社 半導体装置製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014129626A1 (ja) * 2013-02-22 2014-08-28 古河電気工業株式会社 接続構造体、及び半導体装置
JP2015079650A (ja) * 2013-10-17 2015-04-23 Dowaエレクトロニクス株式会社 接合用銀シートおよびその製造方法並びに電子部品接合方法
WO2015060346A1 (ja) * 2013-10-23 2015-04-30 日立化成株式会社 ダイボンドシート及び半導体装置の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014129626A1 (ja) * 2013-02-22 2014-08-28 古河電気工業株式会社 接続構造体、及び半導体装置
JP2015079650A (ja) * 2013-10-17 2015-04-23 Dowaエレクトロニクス株式会社 接合用銀シートおよびその製造方法並びに電子部品接合方法
WO2015060346A1 (ja) * 2013-10-23 2015-04-30 日立化成株式会社 ダイボンドシート及び半導体装置の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3358609A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6327630B1 (ja) * 2017-04-28 2018-05-23 リンテック株式会社 フィルム状焼成材料、支持シート付フィルム状焼成材料、フィルム状焼成材料の製造方法、及び支持シート付フィルム状焼成材料の製造方法
JP2018188527A (ja) * 2017-04-28 2018-11-29 リンテック株式会社 フィルム状焼成材料、支持シート付フィルム状焼成材料、フィルム状焼成材料の製造方法、及び支持シート付フィルム状焼成材料の製造方法
US11707787B2 (en) 2017-04-28 2023-07-25 Lintec Corporation Film-shaped firing material, film-shaped firing material provided with support sheet, method for manufacturing film-shaped firing material, and method for manufacturing film-shaped firing material provided with support sheet
WO2019092960A1 (ja) * 2017-11-13 2019-05-16 日東電工株式会社 焼結接合用組成物、焼結接合用シート、および焼結接合用シート付きダイシングテープ
US11352527B2 (en) 2017-11-13 2022-06-07 Nitto Denko Corporation Sinter-bonding composition, sinter-bonding sheet and dicing tape with sinter-bonding sheet
WO2019208072A1 (ja) * 2018-04-27 2019-10-31 日東電工株式会社 半導体装置製造方法
CN112041972A (zh) * 2018-04-27 2020-12-04 日东电工株式会社 半导体装置制造方法
JPWO2019208072A1 (ja) * 2018-04-27 2021-05-13 日東電工株式会社 半導体装置製造方法
JP7228577B2 (ja) 2018-04-27 2023-02-24 日東電工株式会社 半導体装置製造方法
US11594513B2 (en) 2018-04-27 2023-02-28 Nitto Denko Corporation Manufacturing method for semiconductor device
TWI821270B (zh) * 2018-04-27 2023-11-11 日商日東電工股份有限公司 半導體裝置製造方法

Similar Documents

Publication Publication Date Title
JP6704322B2 (ja) シートおよび複合シート
TWI686249B (zh) 片材及複合片材
TWI707485B (zh) 半導體裝置之製造方法
EP3434398B1 (en) Thermal bonding sheet, thermal bonding sheet with dicing tape, bonded body production method, and power semiconductor device
CN110476233B (zh) 加热接合用片和带有加热接合用片的切割带
JP6477486B2 (ja) ダイボンドシート及び半導体装置の製造方法
CN107921540B (zh) 接合用铜糊料、接合体的制造方法及半导体装置的制造方法
JP6965531B2 (ja) ダイボンドシート及び半導体装置
CN108883490B (zh) 接合体的制造方法
WO2017057485A1 (ja) シートおよび複合シート
JP7228577B2 (ja) 半導体装置製造方法
TW202039139A (zh) 燒結接合用片材、附有基材之燒結接合用片材、及附有燒結接合用材料層之半導體晶片
TW202039140A (zh) 燒結接合用片材及附有基材之燒結接合用片材
JP2020147819A (ja) 焼結接合用シートおよび基材付き焼結接合用シート
TWI837325B (zh) 燒結接合用片材及附有基材之燒結接合用片材
JP2016054252A (ja) ダイボンド用多孔質層付き半導体素子及びそれを用いた半導体装置の製造方法、半導体装置
TW202045648A (zh) 燒結接合用片材及附有基材之燒結接合用片材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851656

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15763408

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016851656

Country of ref document: EP