WO2019092960A1 - 焼結接合用組成物、焼結接合用シート、および焼結接合用シート付きダイシングテープ - Google Patents

焼結接合用組成物、焼結接合用シート、および焼結接合用シート付きダイシングテープ Download PDF

Info

Publication number
WO2019092960A1
WO2019092960A1 PCT/JP2018/032290 JP2018032290W WO2019092960A1 WO 2019092960 A1 WO2019092960 A1 WO 2019092960A1 JP 2018032290 W JP2018032290 W JP 2018032290W WO 2019092960 A1 WO2019092960 A1 WO 2019092960A1
Authority
WO
WIPO (PCT)
Prior art keywords
bonding
sheet
sinter
sinter bonding
composition
Prior art date
Application number
PCT/JP2018/032290
Other languages
English (en)
French (fr)
Inventor
市川智昭
菅生悠樹
下田麻由
三田亮太
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to EP18876142.3A priority Critical patent/EP3711879A4/en
Priority to JP2019551897A priority patent/JPWO2019092960A1/ja
Priority to US16/763,298 priority patent/US11352527B2/en
Priority to CN201880073024.6A priority patent/CN111328302B/zh
Publication of WO2019092960A1 publication Critical patent/WO2019092960A1/ja
Priority to JP2022190681A priority patent/JP7440598B2/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/35Heat-activated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/008Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression characterised by the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3006Ag as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3612Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with organic compounds as principal constituents
    • B23K35/3613Polymers, e.g. resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • B22F2007/042Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal characterised by the layer forming method
    • B22F2007/047Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal characterised by the layer forming method non-pressurised baking of the paste or slurry containing metal powder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0806Silver
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/085Copper
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2248Oxides; Hydroxides of metals of copper
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2286Oxides; Hydroxides of metals of silver
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/408Additional features of adhesives in the form of films or foils characterized by the presence of essential components additives as essential feature of the adhesive layer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2433/00Presence of (meth)acrylic polymer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2469/00Presence of polycarbonate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/561Batch processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68377Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support with parts of the auxiliary support remaining in the finished device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/03Manufacturing methods
    • H01L2224/034Manufacturing methods by blanket deposition of the material of the bonding area
    • H01L2224/03444Manufacturing methods by blanket deposition of the material of the bonding area in gaseous form
    • H01L2224/0345Physical vapour deposition [PVD], e.g. evaporation, or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04026Bonding areas specifically adapted for layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05073Single internal layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/05166Titanium [Ti] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05639Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/27001Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate
    • H01L2224/27002Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate for supporting the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/27001Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate
    • H01L2224/27003Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate for holding or transferring the layer preform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/271Manufacture and pre-treatment of the layer connector preform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/274Manufacturing methods by blanket deposition of the material of the layer connector
    • H01L2224/2743Manufacturing methods by blanket deposition of the material of the layer connector in solid form
    • H01L2224/27436Lamination of a preform, e.g. foil, sheet or layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/29294Material of the matrix with a principal constituent of the material being a liquid not provided for in groups H01L2224/292 - H01L2224/29291
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29301Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29311Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29344Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29347Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29355Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29363Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/29364Palladium [Pd] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/29386Base material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/2939Base material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/294Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29438Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29439Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/294Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29438Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29444Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29499Shape or distribution of the fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/32227Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the layer connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/757Means for aligning
    • H01L2224/75743Suction holding means
    • H01L2224/75745Suction holding means in the upper part of the bonding apparatus, e.g. in the bonding head
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83053Bonding environment
    • H01L2224/83054Composition of the atmosphere
    • H01L2224/83055Composition of the atmosphere being oxidating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83053Bonding environment
    • H01L2224/83054Composition of the atmosphere
    • H01L2224/83065Composition of the atmosphere being reducing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83053Bonding environment
    • H01L2224/83054Composition of the atmosphere
    • H01L2224/83075Composition of the atmosphere being inert
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83191Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/83201Compression bonding
    • H01L2224/83203Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding
    • H01L2224/83204Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding with a graded temperature profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/83439Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/83444Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/83447Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/83455Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83463Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/83464Palladium [Pd] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83463Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/83469Platinum [Pt] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83905Combinations of bonding methods provided for in at least two different groups from H01L2224/838 - H01L2224/83904
    • H01L2224/83907Intermediate bonding, i.e. intermediate bonding step for temporarily bonding the semiconductor or solid-state body, followed by at least a further bonding step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • H01L2224/85207Thermosonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/94Batch processes at wafer-level, i.e. with connecting carried out on a wafer comprising a plurality of undiced individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/03Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1027IV
    • H01L2924/10272Silicon Carbide [SiC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/1033Gallium nitride [GaN]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a sinter bonding composition, a sinter bonding sheet, and a dicing tape with a sinter bonding sheet that can be used for manufacturing a semiconductor device or the like.
  • Au— as a method for die bonding a semiconductor chip to a support substrate such as a lead frame or an insulating circuit substrate while electrically connecting the semiconductor chip to the support substrate side.
  • a support substrate such as a lead frame or an insulating circuit substrate
  • solder or a conductive particle-containing resin as a bonding material.
  • the semiconductor chip is subjected to the sinter bonding composition at a predetermined temperature with respect to the chip bonding planned portion of the support substrate. Placed under load conditions. Thereafter, predetermined temperature and pressure conditions are applied so that evaporation of the solvent in the composition for sintering and bonding occurs between the support substrate and the semiconductor chip thereon and sintering progresses between the sinterable particles. A heating process is performed. As a result, a sintered layer is formed between the support substrate and the semiconductor chip, and the semiconductor chip is mechanically connected to the support substrate while being electrically connected.
  • Patent Documents 1 and 2 Such techniques are described, for example, in the following Patent Documents 1 and 2.
  • the sinter layer formed between the support substrate and the semiconductor chip is caused by the large porosity thereof. In some cases, sufficient bonding reliability can not be secured.
  • the porosity of the sintered layer to be formed tends to be smaller as the load condition such as the pressure condition in the high temperature heating process for sintering becomes higher, the equipment and equipment for carrying out the sintering process are required Performance is increased. From the viewpoint of production efficiency of the product to be produced, it is preferable that the performance required for the apparatus and equipment for the sintering process is not high.
  • the present invention was conceived under the circumstances as described above, and the object thereof is a sinter bonding suitable for realizing sinter bonding with a high density sinter layer under a low load condition. It is an object of the present invention to provide a composition for sintering, a sheet for sintering bonding, and a dicing tape with a sheet for sintering bonding.
  • a composition for sinter bonding contains sinterable particles containing a conductive metal.
  • the average particle size of the sinterable particles in the present composition is 2 ⁇ m or less.
  • the proportion of particles having a particle size of 100 nm or less in the sinterable particles is 80% by mass or more. That is, in the sinterable particles, the proportion of particles having a particle size exceeding 100 nm is 20% by mass or less.
  • the composition of this configuration can be used for sinter bonding between objects to be bonded.
  • the present composition can be used to sinter and bond a semiconductor chip to a support substrate while making an electrical connection with the support substrate in the manufacture of a semiconductor device.
  • the objects to be bonded are pressure-bonded and temporarily fixed under predetermined conditions, Then, a high temperature heating process under a predetermined temperature and pressure condition is performed, and a sintered layer for joining objects to be joined is formed from the composition.
  • the above particle size distribution configuration of the conductive metal-containing sinterable particles to be blended in the composition for sinter bonding used in such sinter bonding process that is, the average particle diameter is 2 ⁇ m or less
  • the present inventors have found that a configuration in which the proportion of particles with a diameter of 100 nm or less is 80% by mass or more is suitable for forming a high-density sintered layer from the composition by sintering under low load conditions. It has gained. For example, they are as shown by the following examples and comparative examples.
  • the particles in the composition when the content ratio of the sinterable particles in the composition for sinter bonding is as large as, for example, 85 mass%, the particles in the composition It is considered that particles having a diameter of 100 nm or less and particles having a particle diameter of more than 100 nm are in a close packing state and the total contact area between particles tends to be large.
  • the present inventors also found that the higher the density of the sintered layer formed from the composition containing the conductive metal-containing sinterable particles, the higher the bonding reliability tends to be obtained in the sintered layer. Is getting. For example, they are as shown by the following examples and comparative examples. Particularly in sinter bonding for mechanically bonding a semiconductor chip to a support substrate while taking an electrical connection with the support substrate side, a high degree of reliability is secured for bonding between objects to be joined by a sintered layer. It is required to be done.
  • the present composition suitable for achieving sinter bonding with high density sinter layer under low load condition is suitable for achieving high bonding reliability with high density sinter layer in low load condition sintering process .
  • the composition for sinter bonding according to the first aspect of the present invention is suitable for achieving sinter bonding with a high density sinter layer under a low load condition, and thus a high density sinter layer It is suitable to realize high bonding reliability by the sintering process under low load conditions.
  • Such a composition for sinter bonding is preferable from the viewpoint of improving the production efficiency of the product to be produced.
  • low load conditions in the sintering process include pressureless conditions.
  • the content ratio of the sinterable particles in the present composition for sinter bonding is preferably 90 to 98% by mass, more preferably 92 to 98% by mass, and more preferably 94 to 98% by mass. Such a configuration is suitable for achieving high density of the formed sintered layer.
  • the porosity of the present sintering bonding composition is preferably 10% or less, more preferably 8% or less, more preferably 6% or less, more preferably 4% or less. Such a configuration is suitable for achieving high density of the formed sintered layer.
  • the present sinter bonding composition preferably comprises a thermally degradable polymer binder together with the above-mentioned sinterable particles containing a conductive metal.
  • the thermally degradable polymer binder refers to a binder component that can be thermally decomposed in a high temperature heating process for sintering and bonding. According to such a configuration, the cohesive force of the main sintering bonding composition using the viscoelasticity of the thermally degradable polymer binder at the temperature at the above-mentioned temporary fixation, for example, at a temperature range of 70 ° C. and its vicinity It is easy to ensure the adhesion of the composition.
  • the weight average molecular weight of the thermally degradable polymer binder in the present sintering bonding composition is preferably 10,000 or more. Such a configuration is suitable for securing the cohesion and adhesion of the present sintering bonding composition by utilizing the viscoelasticity of the thermally degradable polymer binder.
  • the thermally degradable polymer binder in the present sintering bonding composition is preferably a polycarbonate resin and / or an acrylic resin.
  • high temperature heating for sinter bonding is performed after the objects to be bonded are temporarily fixed with the composition. .
  • the high temperature heating for sinter bonding is performed, for example, in a temperature range including 300 ° C. and the vicinity thereof, and the polycarbonate resin and the acrylic resin can be easily prepared as a polymer binder which decomposes and volatilizes at a temperature of about 300 ° C.
  • the present configuration is suitable for reducing organic residues in a sintered layer formed between bonding objects sintered and bonded using the present sintering bonding composition.
  • the sinterable particles in the present sinter bonding composition preferably include at least one selected from the group consisting of silver, copper, silver oxide, and copper oxide. Such a configuration is suitable for forming a strong sintered layer between bonding objects to be sintered and bonded using the present sintering bonding composition.
  • a sheet for sinter bonding includes an adhesive layer formed by the above-described sinter bonding composition according to the first aspect of the present invention.
  • Such a configuration is suitable for supplying a sinter bonding composition with a uniform thickness between objects to be joined and for sinter bonding between objects to be joined with a sinter layer of uniform thickness.
  • Sinter bonding by a sintered layer of uniform thickness is suitable for achieving high bonding reliability of, for example, a semiconductor chip to a supporting substrate.
  • the present sintering bonding sheet is used to sinter and bond the objects to be joined while suppressing the protrusion of the sintered metal from between the objects to be joined and the creeping up of the sintered metal on the side surface of the objects to be joined. Suitable. Since the present sintering bonding sheet is to supply the sintering bonding material in the form of a hard-to-fluidize sheet, it is suitable for suppressing such protrusion and creeping up. Such suppression of protrusion and creeping is preferable in order to improve the yield of a product to be manufactured such as a semiconductor device accompanied by sintering and bonding.
  • a sheet-attached dicing tape for sinter bonding includes the dicing tape and the above-described sinter bonding sheet according to the second aspect of the present invention.
  • the dicing tape has a laminated structure including a substrate and an adhesive layer, and the sinter bonding sheet is disposed on the adhesive layer of the dicing tape.
  • the dicing tape having such a configuration can be used to obtain a semiconductor chip with a chip-sized sintered bonding sheet in the process of manufacturing a semiconductor device.
  • the same effects as those described above for the composition for sinter bonding according to the first aspect of the present invention can be obtained.
  • An effect similar to that described above with respect to the second side sintered bonding sheet is obtained.
  • FIG. 7 illustrates a part of steps in a method of manufacturing a semiconductor device, which is performed using the sinter bonding sheet illustrated in FIG. 1.
  • FIG. 7 illustrates a part of steps in a method of manufacturing a semiconductor device, which is performed using the sinter bonding sheet illustrated in FIG. 1.
  • FIG. 7 illustrates a part of steps in a method of manufacturing a semiconductor device, which is performed using the sinter bonding sheet illustrated in FIG. 1.
  • FIG. 7 illustrates a part of steps in a method of manufacturing a semiconductor device, which is performed using a dicing tape with a sintering bonding sheet shown in FIG. 5.
  • FIG. 1 is a schematic partial cross-sectional view of a sinter bonding sheet 10 according to an embodiment of the present invention.
  • the sinter bonding sheet 10 is for use in sinter bonding between objects to be bonded, and includes an adhesive layer 11 formed by the sinter bonding composition of the present invention.
  • the adhesive layer 11 or the composition for sinter bonding forming the adhesive layer 11 at least includes conductive metal-containing sinterable particles, a thermally decomposable polymer binder, and a low boiling point binder.
  • Such a sintering bonding sheet 10 can be used, for example, to sinter and bond a semiconductor chip to a supporting substrate while making an electrical connection with the supporting substrate in the process of manufacturing a semiconductor device. .
  • the sinterable particles contained in the sinter bonding sheet 10 or the adhesive layer 11 thereof are sinterable particles containing a conductive metal element.
  • a conductive metal element for example, gold, silver, copper, palladium, tin and nickel can be mentioned.
  • the constituent material of such sinterable particles include gold, silver, copper, palladium, tin, nickel, and an alloy of two or more metals selected from these groups.
  • the constituent material of the sinterable particles also include silver oxides and metal oxides such as copper oxide, palladium oxide and tin oxide.
  • the sinterable particles may be particles having a core-shell structure.
  • the sinterable particles may be particles of a core-shell structure having a core containing copper as a main component and a shell containing gold, silver or the like as a main component and covering the core.
  • the sinterable particles preferably include at least one selected from the group consisting of silver particles, copper particles, silver oxide particles, and copper oxide particles.
  • Silver particles and copper particles are preferable as sinterable particles from the viewpoint of achieving high conductivity and high thermal conductivity in the formed sintered layer.
  • silver particles are preferable because they are easy to handle.
  • the average particle diameter of the sinterable particles contained in the sinter bonding sheet 10 or the adhesive layer 11 thereof is 2 ⁇ m or less.
  • the average particle diameter of the sinterable particles is preferably 1.5 ⁇ m or less, more preferably 1 from the viewpoint of securing a good sinterability by realizing a low sintering temperature for the sinterable particles, etc. .2 ⁇ m or less, more preferably 1 ⁇ m or less, more preferably 700 nm or less, more preferably 500 nm or less.
  • the average particle diameter of the sinterable particles is preferably 70 nm or more, more preferably 100 nm, from the viewpoint of securing good dispersibility of the sinterable particles in the adhesive layer 11 or the composition for forming the same. It is above.
  • the average particle size of the sinterable particles can be determined based on the observations made using a scanning electron microscope (SEM).
  • the average particle diameter of the sinterable particles when the adhesive layer contains sinterable particles can be specifically determined by the following method. First, the adhesive layer containing the sinterable particles is subjected to ion polishing in a cooling environment to expose the cross section of the adhesive layer. Next, the exposed cross section is imaged using a field emission scanning electron microscope SU8020 (manufactured by Hitachi High-Technologies Corporation) to obtain a backscattered electron image as image data. As for the imaging condition, the acceleration voltage is 5 kV and the magnification is 50000 times. Next, automatic binarization processing is performed on the obtained image data using image analysis software ImageJ, and then the average particle diameter of the particles is calculated from the image data.
  • SEM scanning electron microscope
  • the content ratio of the sinterable particles in the adhesive layer 11 is, for example, 85% by mass or more, preferably 90 to 98% by mass, more preferably 92 to 98% by mass, and more preferably 94 to 98% by mass.
  • the ratio of particles having a particle diameter of 100 nm or less in the sinterable particles in the adhesive layer 11 is 80% by mass or more, preferably 85% by mass or more, and more preferably 90% by mass or more. That is, the ratio of particles having a particle diameter of more than 100 nm in the sinterable particles in the adhesive layer 11 is 20% by mass or less, preferably 15% by mass or less, more preferably 10% by mass or less.
  • the thermally decomposable polymer binder contained in the sheet 10 for sinter bonding or the adhesive layer 11 thereof is a binder component that can be pyrolyzed in the high temperature heating process for sinter bonding, and the sinter bonding is performed before the heating process. It is an element which contributes to holding of the sheet shape of the sheet 10 or the adhesive layer 11 thereof.
  • the thermally degradable polymer binder is a solid material at normal temperature (23 ° C.).
  • polycarbonate resin and an acrylic resin can be mentioned, for example.
  • a polycarbonate resin as a thermally decomposable polymer binder for example, an aliphatic polycarbonate comprising an aliphatic chain without containing an aromatic compound such as a benzene ring between carbonic acid ester groups (-O-CO-O-) in the main chain And aromatic polycarbonates containing an aromatic compound between carbonate groups (—O—CO—O—) in the main chain.
  • Aliphatic polycarbonates include, for example, polyethylene carbonate and polypropylene carbonate.
  • Aromatic polycarbonates include polycarbonates having a bisphenol A structure in the main chain.
  • acrylic resin as the thermally degradable polymer binder examples include polymers of acrylic acid ester and / or methacrylic acid ester having a linear or branched alkyl group having 4 to 18 carbon atoms.
  • (meth) acrylic represents “acrylic” and / or “methacrylic”.
  • alkyl group of (meth) acrylic acid ester for forming an acrylic resin as a thermally degradable polymer binder for example, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, t-butyl group, Isobutyl group, amyl group, isoamyl group, hexyl group, heptyl group, cyclohexyl group, 2-ethylhexyl group, octyl group, isooctyl group, nonyl group, isononyl group, decyl group, isodecyl group, undecyl group, lauryl group, tridecyl group Tetradecyl group, stearyl group, and octadecyl group.
  • the acrylic resin as the thermally degradable polymer binder may be a polymer containing a monomer unit derived from a monomer other than the (meth) acrylic acid ester.
  • Such other monomers include, for example, carboxy group-containing monomers, acid anhydride monomers, hydroxy group-containing monomers, sulfonic acid group-containing monomers, and phosphoric acid group-containing monomers.
  • carboxy group-containing monomer for example, acrylic acid, methacrylic acid, carboxyethyl acrylate, carboxypentyl acrylate, itaconic acid, maleic acid, fumaric acid, and crotonic acid can be mentioned.
  • Examples of the acid anhydride monomer include maleic anhydride and itaconic anhydride.
  • Examples of the hydroxy group-containing monomer include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate, Examples thereof include 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate, and 4- (hydroxymethyl) cyclohexylmethyl (meth) acrylate.
  • sulfonic acid group-containing monomers examples include styrenesulfonic acid, allylsulfonic acid, 2- (meth) acrylamido-2-methylpropanesulfonic acid, (meth) acrylamidopropanesulfonic acid, sulfopropyl (meth) acrylate, and (meth And acryloyloxy naphthalene sulfonic acid.
  • the phosphoric acid group-containing monomer include 2-hydroxyethyl acryloyl phosphate.
  • the weight average molecular weight of the thermally degradable polymer binder is preferably 10000 or more.
  • the weight average molecular weight of the thermally degradable polymer binder is a value calculated by polystyrene conversion as measured by gel permeation chromatography (GPC).
  • the content ratio of the thermally degradable polymer binder in the adhesive layer 11 is preferably 0.5 to 10% by mass, and more preferably 0.8 to 8%, from the viewpoint of appropriately exerting the above-mentioned sheet shape holding function. %, More preferably 1 to 6% by mass.
  • the low boiling point binder contained in the sheet 10 for sinter bonding or the adhesive layer 11 thereof is measured at 23 ° C. using a dynamic viscoelasticity measuring apparatus (trade name “HAAKE MARS III”, manufactured by Thermo Fisher Scientific). Is a liquid or semi-liquid which exhibits a viscosity of 1 ⁇ 10 5 Pa ⁇ s or less. In this viscosity measurement, a parallel plate of 20 mm ⁇ is used as a jig, the gap between the plates is 100 ⁇ m, and the shear rate in rotational shear is 1 s ⁇ 1 .
  • Examples of the low boiling point binder contained in the adhesive layer 11 include terpene alcohols, alcohols excluding terpene alcohols, alkylene glycol alkyl ethers, and ethers excluding alkylene glycol alkyl ethers.
  • Terpene alcohols include, for example, isobornyl cyclohexanol, citronellol, geraniol, nerol, carveol, and ⁇ -terpineol.
  • alcohols other than terpene alcohols include, for example, pentanol, hexanol, heptanol, octanol, 1-decanol, ethylene glycol, diethylene glycol, propylene glycol, butylene glycol, and 2,4-diethyl-1,5 pentanediol.
  • alkylene glycol alkyl ethers include ethylene glycol butyl ether, diethylene glycol methyl ether, diethylene glycol ethyl ether, diethylene glycol butyl ether, diethylene glycol isobutyl ether, diethylene glycol hexyl ether, triethylene glycol methyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether Diethylene glycol butyl methyl ether, diethylene glycol isopropyl methyl ether, triethylene glycol dimethyl ether, triethylene glycol butyl methyl ether, propylene glycol propyl ether, dipropylene glycol methyl Ether, dipropylene glycol ethyl ether, dipropylene glycol propyl ether, dipropylene glycol butyl ether, dipropylene glycol dimethyl ether, tripropylene glycol methyl ether and tripropylene glycol methyl
  • Ethers other than alkylene glycol alkyl ethers include, for example, ethylene glycol ethyl ether acetate, ethylene glycol butyl ether acetate, diethylene glycol ethyl ether acetate, diethylene glycol butyl ether acetate, dipropylene glycol methyl ether acetate, and ethylene glycol phenyl ether.
  • the low boiling point binder contained in the adhesive layer 11 one type of low boiling point binder may be used, or two or more types of low boiling point binder may be used. From the viewpoint of stability at normal temperature, terpene alcohols are preferable as the low boiling point binder contained in the adhesive layer 11, and isobornyl cyclohexanol is more preferable.
  • the sinter bonding sheet 10 or the adhesive layer 11 thereof may contain, for example, a plasticizer and the like in addition to the above components.
  • the thickness of the adhesive layer 11 at 23 ° C. is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, and preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less.
  • the viscosity at 70 ° C. of the adhesive layer 11 and the composition for sintering and joining that make up the adhesive layer 11 is, for example, 5 ⁇ 10 3 to 1 ⁇ 10 7 Pa ⁇ s, preferably 1 ⁇ 10 4 to 1 ⁇ 10 6 It is Pa ⁇ s.
  • the porosity of the pressure-sensitive adhesive layer 11 and the composition for sintering and bonding forming the adhesive layer 11 is preferably 10% or less, more preferably 8% or less, more preferably 6% or less, more preferably 4% or less.
  • the adhesive layer 11 or the composition for sinter bonding forming the same has a porosity after sintering including a heating step at 300 ° C. for 2.5 minutes under an applied pressure of 10 MPa (ie, the sintering
  • the porosity of the sintered layer formed from the adhesive layer 11 is preferably 10% or less, more preferably 8% or less, more preferably 6% or less, more preferably 4% or less.
  • the sheet 10 for sintering bonding mixes the above-mentioned each component in a solvent, for example, prepares a varnish, applies the said varnish on the separator as a base material, forms a coating film, and its coating film Can be made by drying.
  • An organic solvent or alcohol solvent can be used as a solvent for varnish preparation.
  • Organic solvents include, for example, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, acetone, methyl ethyl ketone, cyclohexanone, toluene, and xylene.
  • alcohol solvent for example, ethylene glycol, diethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2-butene
  • examples include -1,4-diol, 1,2,6-hexanetriol, glycerin, octanediol, 2-methyl-2,4-pentanediol, and terpineol.
  • polyethylene terephthalate (PET) film As a substrate or separator, polyethylene terephthalate (PET) film, polyethylene film, polypropylene film, and various plastic films surface-coated with a release agent (for example, a fluorine-based release agent or a long chain alkyl acrylate release agent) Paper etc. can be used.
  • a release agent for example, a fluorine-based release agent or a long chain alkyl acrylate release agent
  • Paper etc. can be used for application of the varnish onto the substrate.
  • a die coater, a gravure coater, a roll coater, a reverse coater, a comma coater, or a pipe doctor coater can be used.
  • the drying temperature of the coating is, for example, 70 to 160 ° C.
  • the drying time of the coating is, for example, 1 to 5 minutes.
  • FIGS. 2 to 4 show a part of the steps of the semiconductor device manufacturing method which is performed using the sinter bonding sheet 10.
  • a sheet 10 for sintering and bonding and a plurality of semiconductor chips C are prepared.
  • the sinter bonding sheet 10 has the adhesive layer 11 of the above-described configuration made of the sinter bonding composition of the present invention, and a release liner L is provided on one side thereof.
  • Each of the plurality of semiconductor chips C is one in which a predetermined semiconductor element is already formed, and is fixed on the adhesive surface T1a of the chip fixing tape T1.
  • a planar electrode (not shown) is already formed as an external electrode on the surface (upper surface in FIG. 2) on the side to which the sinter bonding sheet 10 is bonded.
  • the thickness of the flat electrode is, for example, 10 to 1000 nm.
  • This flat electrode is made of, for example, silver.
  • the flat electrode may be laminated on a titanium thin film formed on the surface of the semiconductor chip.
  • the thickness of the titanium thin film is, for example, 10 to 1000 nm.
  • the planar electrode and the titanium thin film can be formed, for example, by vapor deposition. Further, on the other surface (lower surface in FIG. 2) of each semiconductor chip C, other electrode pads and the like (not shown) are formed as necessary.
  • the sintering bonding sheet 10 is bonded to the plurality of semiconductor chips C.
  • the sintering bonding sheet 10 to the adhesive layer 11 are bonded to a plurality of semiconductor chips C while the sintering bonding sheet 10 is pressed from the release liner L side to the semiconductor chip C side.
  • a press means, a pressure bonding roll is mentioned, for example.
  • the lamination temperature is, for example, 50 to 90 ° C.
  • the load for lamination is, for example, 0.01 to 5 MPa.
  • the semiconductor chip C is temporarily fixed to the support substrate S (temporary fixing step). Specifically, for example, using a chip mounter, the semiconductor chip C with a sheet for sintering bonding is pressed against the supporting substrate S via the sheet for sintering bonding 10 and temporarily fixed.
  • the support substrate S for example, an insulating circuit board with a surface such as a copper wiring, and a lead frame can be mentioned.
  • the chip mounting location on the support substrate S may be a base surface such as a copper wiring or a lead frame, or may be the surface of a plating film formed on the base surface.
  • the temperature condition for temporary fixation is, for example, 50 to 90 ° C., which is a temperature range including 70 ° C. and its vicinity
  • the load condition for pressing is, for example, 0.01 to 5 MPa
  • the bonding time is, for example 0.01 to 5 seconds.
  • the semiconductor chip C is bonded to the support substrate S through a high temperature heating process (sinter bonding step).
  • the low boiling point binder in the adhesive layer 11 is volatilized between the support substrate S and the semiconductor chip C by undergoing a predetermined high temperature heating process, and the thermally decomposable polymer binder is thermally decomposed. Volatilize and sinter the conductive metal of the sinterable particles.
  • the sintered layer 12 is formed between the support substrate S and each semiconductor chip C, and the semiconductor chip C is joined to the support substrate S while the electrical connection with the support substrate S side is taken. It will be.
  • the temperature conditions of the sinter bonding are, for example, 200 to 400 ° C.
  • the pressure condition of the sinter bonding is, for example, 40 MPa or less, preferably 20 MPa or less, more preferably 15 MPa or less, more preferably 12 MPa or less, more preferably 10 MPa or less.
  • the bonding time of the sinter bonding is, for example, 0.3 to 300 minutes, preferably 0.5 to 240 minutes. For example, within the range of these conditions, a temperature profile and a pressure profile for carrying out the sinter bonding process are appropriately set.
  • the above-mentioned sinter bonding process can be performed using the apparatus which can perform heating and pressurization simultaneously. Such devices include, for example, flip chip bonders and parallel plate presses. Further, from the viewpoint of preventing oxidation of the metal involved in the sinter bonding, it is preferable that the present step be performed under a nitrogen atmosphere, under a reduced pressure, or under a reducing gas atmosphere.
  • the electrode pads (not shown) of the semiconductor chip C and the terminal portions (not shown) of the support substrate S are bonded if necessary. It electrically connects via the wire W (wire bonding process).
  • the wire connection between the electrode pad of the semiconductor chip C and the terminal portion of the support substrate S and the bonding wire W is realized by, for example, ultrasonic welding accompanied by heating.
  • As the bonding wire W for example, a gold wire, an aluminum wire, or a copper wire can be used.
  • the wire heating temperature in wire bonding is, for example, 80 to 250 ° C., preferably 80 to 220 ° C.
  • the heating time is a few seconds to a few minutes.
  • a sealing resin R for protecting the semiconductor chip C and the bonding wires W on the support substrate S is formed (sealing process).
  • the sealing resin R is formed by a transfer molding technique performed using a mold.
  • an epoxy resin can be used, for example.
  • the heating temperature for forming the sealing resin R is, for example, 165 to 185 ° C., and the heating time is, for example, 60 seconds to several minutes.
  • a post-curing step for completely curing the sealing resin R is performed after the main step.
  • the semiconductor device can be manufactured through the process of using the sinter bonding sheet 10.
  • FIG. 5 is a schematic cross-sectional view of a sheet with dicing tape X for sintering bonding according to an embodiment of the present invention.
  • the sheet-bonded dicing tape X for sintering bonding has a laminated structure including the above-described sheet 10 for sintering bonding and the dicing tape 20 according to an embodiment of the present invention, and the chip size is baked in the manufacture of a semiconductor device. It can be used to obtain a semiconductor chip with a bonding sheet.
  • the sheet-attached dicing tape X for sintering bonding has, for example, a disk shape having a size corresponding to the semiconductor wafer to be processed in the manufacturing process of the semiconductor device.
  • the dicing tape 20 has a laminated structure including the base 21 and the pressure-sensitive adhesive layer 22.
  • the base 21 of the dicing tape 20 is an element that functions as a support in the dicing tape 20 or the dicing tape X with a sheet for sintering bonding.
  • a plastic substrate such as a plastic film can be used as the substrate 21.
  • the constituent material of the plastic base include polyvinyl chloride, polyvinylidene chloride, polyolefin, polyester, polyurethane, polycarbonate, polyetheretherketone, polyimide, polyetherimide, polyamide, wholly aromatic polyamide, polyphenyl sulfide, Aramid, fluororesin, cellulose resin, and silicone resin are mentioned.
  • polyolefin examples include low density polyethylene, linear polyethylene, medium density polyethylene, high density polyethylene, ultra low density polyethylene, random copolymer polypropylene, block copolymer polypropylene, homopolypropylene, polybutene, polymethylpentene, ethylene-
  • examples include vinyl acetate copolymer, ionomer resin, ethylene- (meth) acrylic acid copolymer, ethylene- (meth) acrylic acid ester copolymer, ethylene-butene copolymer, and ethylene-hexene copolymer.
  • Polyesters include, for example, polyethylene terephthalate (PET), polyethylene naphthalate, and polybutylene terephthalate (PBT).
  • the substrate 21 may be made of one type of material or may be made of two or more types of materials.
  • the base 21 may have a single layer structure or a multilayer structure.
  • the substrate 21 preferably has UV transparency.
  • the substrate 21 is a plastic film, it may be a non-oriented film, a uniaxially stretched film, or a biaxially stretched film.
  • the surface of the substrate 21 on the pressure-sensitive adhesive layer 22 side may be subjected to a treatment for enhancing the adhesion to the pressure-sensitive adhesive layer 22.
  • a treatment for enhancing the adhesion to the pressure-sensitive adhesive layer 22 include, for example, physical treatments such as corona discharge treatment, plasma treatment, sand mat treatment treatment, ozone exposure treatment, flame exposure treatment, high piezoelectric bombardment treatment, and ionizing radiation treatment, and chemistry such as chromic acid treatment. Treatment, as well as primer treatment.
  • the thickness of the substrate 21 is preferably 40 ⁇ m or more, more preferably from the viewpoint of securing the strength for the substrate 21 to function as a support in the dicing tape 20 or the dicing tape X with a sheet for sintering bonding. It is 50 ⁇ m or more, more preferably 55 ⁇ m or more, and more preferably 60 ⁇ m or more. Further, from the viewpoint of achieving appropriate flexibility in the dicing tape 20 to the sheet-attached dicing tape X for sintering bonding, the thickness of the base 21 is preferably 200 ⁇ m or less, more preferably 180 ⁇ m or less, and more preferably Is 150 ⁇ m or less.
  • the adhesive layer 22 of the dicing tape 20 contains an adhesive.
  • the pressure-sensitive adhesive for example, an acrylic pressure-sensitive adhesive or a rubber-based pressure-sensitive adhesive containing an acrylic polymer as a base polymer can be used.
  • the pressure-sensitive adhesive may be a pressure-sensitive adhesive (pressure-sensitive adhesive with reduced adhesive strength) capable of intentionally reducing the adhesive strength by an external action such as heating or radiation irradiation, or the external action In some cases, it may be a pressure-sensitive adhesive (pressure-sensitive adhesive non-reducing pressure-sensitive adhesive) with little or no decrease in adhesion.
  • mold adhesive a radiation-curable adhesive (pressure-curable adhesive) and a heat-foaming type adhesive are mentioned, for example.
  • the non-adhesive force reducing type pressure sensitive adhesive include a pressure sensitive type pressure sensitive adhesive.
  • the acrylic polymer as a base polymer of the acrylic pressure-sensitive adhesive preferably has a mass of monomer units derived from an acrylic acid alkyl ester and / or a methacrylic acid alkyl ester. Contain as the largest monomer unit in proportion.
  • Examples of (meth) acrylic acid alkyl esters for forming monomer units of acrylic polymers include (meth) acrylic acid alkyl esters having a linear or branched alkyl group, and (meth) acrylic acid cycloalkyl esters Can be mentioned.
  • Examples of (meth) acrylic acid alkyl esters include methyl ester of (meth) acrylic acid, ethyl ester, propyl ester, isopropyl ester, butyl ester, isobutyl ester, s-butyl ester, t-butyl ester, pentyl ester, iso Pentyl ester, hexyl ester, heptyl ester, octyl ester, 2-ethylhexyl ester, isooctyl ester, nonyl ester, decyl ester, isodecyl ester, undecyl ester, dodecyl ester, tridecyl ester, tetradecyl ester, hexadecyl ester, It includes octadecyl ester or eicosyl ester.
  • Examples of (meth) acrylic acid cycloalkyl ester include cyclopentyl ester or cyclohexyl ester of (meth) acrylic acid.
  • the (meth) acrylic acid alkyl ester for the acrylic polymer one kind of (meth) acrylic acid alkyl ester may be used, or two or more kinds of (meth) acrylic acid alkyl ester may be used.
  • the proportion of the (meth) acrylic acid alkyl ester in all the monomer components for forming the acrylic polymer allows the pressure-sensitive adhesive layer 22 to properly express basic properties such as adhesiveness by the (meth) acrylic acid alkyl ester. Is, for example, 50% by mass or more.
  • the acrylic polymer may contain a monomer unit derived from another monomer copolymerizable with the (meth) acrylic acid alkyl ester, in order to modify its cohesion and heat resistance.
  • monomers include, for example, carboxy group-containing monomers, acid anhydride monomers, hydroxy group-containing monomers, sulfonic acid group-containing monomers, phosphoric acid group-containing monomers, acrylamide, and acrylonitrile.
  • Examples of carboxy group-containing monomers include acrylic acid, methacrylic acid, carboxyethyl (meth) acrylate, carboxypentyl (meth) acrylate, itaconic acid, maleic acid, fumaric acid and crotonic acid.
  • Anhydride monomers include, for example, maleic anhydride and itaconic anhydride.
  • Examples of the hydroxy group-containing monomer include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate, Mention may be made of 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate, and 4- (hydroxymethyl) cyclohexylmethyl (meth) acrylate.
  • sulfonic acid group-containing monomers examples include styrenesulfonic acid, allylsulfonic acid, 2- (meth) acrylamido-2-methylpropanesulfonic acid, (meth) acrylamidopropanesulfonic acid, sulfopropyl (meth) acrylate, and (meth And acryloyloxy naphthalene sulfonic acid.
  • phosphoric acid group-containing monomers include 2-hydroxyethyl acryloyl phosphate.
  • the other monomer for the acrylic polymer one kind of monomer may be used, or two or more kinds of monomers may be used.
  • the proportions of monomers other than (meth) acrylic acid alkyl ester in all monomer components for forming an acrylic polymer are suitable for the adhesive layer 22 with the basic characteristics such as adhesiveness due to the (meth) acrylic acid alkyl ester.
  • For expression for example, 50% by mass or less.
  • the acrylic polymer may contain a monomer unit derived from a polyfunctional monomer copolymerizable with the (meth) acrylic acid alkyl ester to form a crosslinked structure in the polymer backbone.
  • polyfunctional monomers for example, hexanediol di (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, Pentaerythritol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, epoxy (meth) acrylate, glycidyl (meth) acrylate, polyester (meth) And acrylates and urethane (meth) acrylates.
  • polyfunctional monomer for acrylic polymers one kind of polyfunctional monomer may be used, or two or more kinds of polyfunctional monomers may be used.
  • the ratio of the polyfunctional monomer in all the monomer components for forming the acrylic polymer is, for example, the case where the adhesive layer 22 properly exhibits basic characteristics such as adhesiveness by the (meth) acrylic acid alkyl ester, for example It is 40 mass% or less.
  • An acrylic polymer can be obtained by polymerizing a raw material monomer for forming it.
  • polymerization techniques include solution polymerization, emulsion polymerization, bulk polymerization, and suspension polymerization.
  • the dicing tape 20 to the adhesive layer 22 in the sheet-attached dicing tape X for sintering bonding is used, the dicing tape 20 to the adhesive layer 22 in the sheet-attached dicing tape X for sintering bonding
  • the low molecular weight component of is preferably smaller, and the number average molecular weight of the acrylic polymer is, for example, 100,000 or more.
  • the pressure-sensitive adhesive layer 22 or a pressure-sensitive adhesive for making the same may contain, for example, an external crosslinking agent in order to increase the number average molecular weight of a base polymer such as an acrylic polymer.
  • an external crosslinking agent for reacting with a base polymer such as an acrylic polymer to form a crosslinked structure polyisocyanate compounds, epoxy compounds, aziridine compounds, and melamine based crosslinking agents can be mentioned.
  • the content of the external crosslinking agent in the pressure-sensitive adhesive layer 22 or the pressure-sensitive adhesive for making the same is, for example, 5 parts by mass or less with respect to 100 parts by mass of the base polymer.
  • the pressure-sensitive adhesive layer 22 may be a radiation-curable pressure-sensitive adhesive layer in which the degree of crosslinking of the irradiated portion is increased by receiving the irradiation of radiation such as ultraviolet light and the adhesion is lowered.
  • the radiation-curable pressure-sensitive adhesive for forming such a pressure-sensitive adhesive layer includes, for example, a radiation-polymerizable material having a base polymer such as the above-mentioned acrylic polymer and a functional group such as a radiation-polymerizable carbon-carbon double bond. And an additive-type radiation-curable pressure-sensitive adhesive containing a monomer component or an oligomer component of
  • urethane (meth) acrylate for example, urethane (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol monohydroxy penta (Meth) acrylate, dipentaerythritol hexa (meth) acrylate, and 1,4-butanediol di (meth) acrylate.
  • urethane (meth) acrylate for example, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol monohydroxy penta (Meth) acrylate, dipentaerythritol hexa (meth)
  • the radiation polymerizable oligomer component examples include various oligomers such as urethane type, polyether type, polyester type, polycarbonate type and polybutadiene type, and those having a molecular weight of about 100 to 30000 are suitable.
  • the content of the radiation polymerizable monomer component or oligomer component in the pressure-sensitive adhesive layer 22 or the radiation-curable pressure-sensitive adhesive for making the same is determined within a range which can appropriately reduce the adhesion of the formed pressure-sensitive adhesive layer 22. And, for example, 40 to 150 parts by mass with respect to 100 parts by mass of the base polymer such as an acrylic polymer.
  • the addition type radiation-curable pressure-sensitive adhesive for example, the one disclosed in JP-A-60-196956 may be used.
  • the radiation-curable pressure-sensitive adhesive for forming the pressure-sensitive adhesive layer 22 includes, for example, a base having a functional group such as a radiation-polymerizable carbon-carbon double bond at the polymer side chain, in the polymer main chain, at the polymer main chain terminal Mention may also be made of intrinsic radiation-curable adhesives containing polymers. Such an integral type radiation-curable pressure-sensitive adhesive is suitable for suppressing unintended changes in adhesion properties caused by the movement of low molecular weight components in the pressure-sensitive adhesive layer 22 to be formed.
  • a base polymer contained in the intrinsic type radiation-curable pressure-sensitive adhesive one having an acrylic polymer as a basic skeleton is preferable.
  • the acrylic polymer forming such a basic skeleton the above-mentioned acrylic polymer can be adopted.
  • a method for introducing a radiation-polymerizable carbon-carbon double bond into an acrylic polymer for example, a raw material monomer containing a monomer having a predetermined functional group (first functional group) is copolymerized to obtain an acrylic polymer.
  • a compound having a predetermined functional group (second functional group) capable of causing a reaction with the first functional group (second functional group) and a radiation-polymerizable carbon-carbon double bond is carbon-carbon
  • a method of subjecting an acrylic polymer to a condensation reaction or an addition reaction while maintaining the radiation polymerizable property of a double bond can be mentioned.
  • Examples of combinations of the first functional group and the second functional group include a carboxy group and an epoxy group, an epoxy group and a carboxy group, a carboxy group and an aziridyl group, an aziridyl group and a carboxy group, a hydroxy group and an isocyanate group, and an isocyanate group. And hydroxy groups are mentioned. Among these combinations, a combination of a hydroxy group and an isocyanate group and a combination of an isocyanate group and a hydroxy group are preferable from the viewpoint of the ease of reaction tracking. In addition, although it is technically difficult to produce a polymer having a highly reactive isocyanate group, the first functional group on the acrylic polymer side is preferable from the viewpoint of preparation or availability of the acrylic polymer.
  • the group is a hydroxy group and the second functional group is an isocyanate group.
  • the isocyanate compound having both the radiation polymerizable carbon-carbon double bond and the isocyanate group which is the second functional group for example, methacryloyl isocyanate, 2-methacryloyl oxyethyl isocyanate, and m-isopropenyl- ⁇ , ⁇ -dimethylbenzyl isocyanate.
  • an acrylic polymer with a 1st functional group what contains the monomer unit derived from said hydroxy-group containing monomer is suitable, and 2-hydroxyethyl vinyl ether, 4-hydroxy butyl vinyl ether, diethylene glycol is preferable. Those containing monomer units derived from ether compounds such as monovinyl ether are also suitable.
  • the radiation-curable pressure-sensitive adhesive for forming the pressure-sensitive adhesive layer 22 preferably contains a photopolymerization initiator.
  • the photopolymerization initiator include ⁇ -ketol compounds, acetophenone compounds, benzoin ether compounds, ketal compounds, aromatic sulfonyl chloride compounds, photoactive oxime compounds, benzophenone compounds, thioxanthone compounds, and camphors. These include quinones, halogenated ketones, acyl phosphinoxides, and acyl phosphonates.
  • Examples of ⁇ -ketol compounds include 4- (2-hydroxyethoxy) phenyl (2-hydroxy-2-propyl) ketone, ⁇ -hydroxy- ⁇ , ⁇ ′-dimethylacetophenone, 2-methyl-2-hydroxypro Piophenone and 1-hydroxycyclohexyl phenyl ketone can be mentioned.
  • Examples of acetophenone compounds include methoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxyacetophenone, and 2-methyl-1- [4- (methylthio) -phenyl] -2-morpholino. Propane-1 is mentioned.
  • benzoin ether compounds include benzoin ethyl ether, benzoin isopropyl ether, and anisoin methyl ether.
  • ketal compounds include benzyl dimethyl ketal.
  • aromatic sulfonyl chloride compounds include 2-naphthalene sulfonyl chloride.
  • photoactive oxime compounds include 1-phenone-1,2-propanedione-2- (O-ethoxycarbonyl) oxime.
  • benzophenone compounds include benzophenone, benzoylbenzoic acid, and 3,3'-dimethyl-4-methoxybenzophenone.
  • Thioxanthone compounds include, for example, thioxanthone, 2-chlorothioxanthone, 2-methyl thioxanthone, 2,4-dimethyl thioxanthone, isopropyl thioxanthone, 2,4-dichloro thioxanthone, 2,4-diethyl thioxanthone, and 2,4-diisopropyl.
  • Thioxanthone is mentioned.
  • the content of the photopolymerization initiator in the radiation-curable pressure-sensitive adhesive for forming the pressure-sensitive adhesive layer 22 is, for example, 0.05 to 20 parts by weight with respect to 100 parts by weight of the base polymer such as an acrylic polymer.
  • the pressure-sensitive adhesive layer 22 or the pressure-sensitive adhesive for producing the same may contain, in addition to the above components, an additive such as a crosslinking accelerator, a tackifier, an antiaging agent, or a colorant.
  • the colorant may be a compound that is colored upon exposure to radiation. Such compounds include, for example, leuco dyes.
  • the thickness of the pressure-sensitive adhesive layer 22 is, for example, 1 to 50 ⁇ m from the viewpoint of the balance of adhesion to the sinter bonding sheet 10 before and after radiation curing of the pressure-sensitive adhesive layer 22.
  • the sheet-with-sintered bonding dicing tape X having the above-described configuration can be manufactured, for example, as follows.
  • the resin base material 21 is manufactured by a film forming method such as a calendar film forming method, a casting method in an organic solvent, a closed system inflation extrusion method, a T-die extrusion method, a coextrusion method, and the like. be able to.
  • the pressure-sensitive adhesive layer 22 is prepared by applying a pressure-sensitive adhesive composition on a substrate 21 or a predetermined separator (that is, a release liner) after preparing the pressure-sensitive adhesive composition for forming the pressure-sensitive adhesive layer 22.
  • It can be formed by forming a layer and, if necessary, drying the pressure-sensitive adhesive composition layer (at this time, heat crosslinking as necessary).
  • Examples of the method for applying the pressure-sensitive adhesive composition include roll coating, screen coating, and gravure coating.
  • the temperature for drying the pressure-sensitive adhesive composition layer is, for example, 80 to 150 ° C., and the time is, for example, 0.5 to 5 minutes.
  • a varnish for forming the sheet for sintering and joining 10 is prepared, and the varnish is applied onto the separator as a substrate Can be applied to form a coating, and the coating can be dried.
  • the sheet 10 for sintering bonding is attached by pressure bonding to the adhesive layer 22 side of the dicing tape 20, for example.
  • the bonding temperature is, for example, 30 to 50.degree.
  • the bonding pressure linear pressure
  • the pressure-sensitive adhesive layer 22 is a radiation-curable pressure-sensitive adhesive layer as described above, for example, the pressure-sensitive adhesive layer 22 may be irradiated with radiation such as ultraviolet light from the side of the base 21, for example.
  • the irradiation dose is, for example, 50 to 500 mJ / cm 2 , preferably 100 to 300 mJ / cm 2 .
  • the area (irradiated area D) where irradiation as the adhesive force reduction measure of the pressure-sensitive adhesive layer 22 is performed in the sheet-attached dicing tape X for sintering and bonding is, for example, within the sheet bonding area for sintering bonding in the pressure-sensitive adhesive layer 22. It is an area excluding the peripheral portion.
  • the dicing tape X with a sheet for sintering bonding shown in FIG. 5 can be manufactured.
  • a separator (not shown) may be provided on the dicing tape X with a sheet for sintering bonding so as to cover the pressure-sensitive adhesive layer 22 with the sheet 10 for sintering bonding.
  • This separator is an element for protecting the pressure-sensitive adhesive layer 22 and the sinter bonding sheet 10 from being exposed, and is separated from the film before using the sinter bonding sheet-attached dicing tape X.
  • PET polyethylene terephthalate
  • a release agent for example, a fluorine-based release agent or a long chain alkyl acrylate release agent
  • FIG. 6 shows a partial process of a semiconductor device manufacturing method performed by using a dicing tape X with a sheet for sintering bonding.
  • the semiconductor wafer 30 is bonded onto the sinter bonding sheet 10 of the sinter bonding sheet-attached dicing tape X. Specifically, the semiconductor wafer 30 is pressed to the sintering bonding sheet 10 side of the sintering bonding sheet-attached dicing tape X by a pressure bonding roll or the like, and the sintering bonding sheet-attached dicing tape X or for sintering bonding It is stuck to the sheet 10.
  • the semiconductor wafer 30 is one in which a plurality of semiconductor elements are already formed, and the surface (the lower surface in FIG.
  • a flat electrode (not shown) as an external electrode. Is formed.
  • the thickness of the flat electrode is, for example, 10 to 1000 nm.
  • the flat electrode is made of, for example, silver.
  • the flat electrode may be laminated on a titanium thin film formed on the surface of the semiconductor wafer.
  • the thickness of the titanium thin film is, for example, 10 to 1000 nm.
  • the planar electrode and the titanium thin film can be formed, for example, by vapor deposition. Further, on the other surface (upper surface in FIG. 6) of the semiconductor wafer 30, other electrode pads and the like (not shown) are formed as needed for each semiconductor element.
  • the bonding temperature is, for example, 50 to 90 ° C.
  • the load for bonding is, for example, 0.01 to 10 MPa.
  • the pressure-sensitive adhesive layer 22 in the sheet-attached dicing tape X for sintering bonding is a radiation-curable pressure-sensitive adhesive layer
  • baking is performed instead of the above-described radiation irradiation in the manufacturing process of the sheet-attached dicing tape X for sintering bonding.
  • the adhesive layer 22 may be irradiated with radiation such as ultraviolet light from the side of the base 21.
  • the irradiation dose is, for example, 50 to 500 mJ / cm 2 , preferably 100 to 300 mJ / cm 2 .
  • the region (shown as the irradiation region D in FIG. 5) where radiation irradiation is performed as the adhesive force reduction measure of the pressure-sensitive adhesive layer 22 in the sheet-attached dicing tape X for sintering bonding is, for example, for sintering bonding in the pressure-sensitive adhesive layer 22. It is an area
  • dicing is performed on the semiconductor wafer 30. Specifically, in a state in which the semiconductor wafer 30 is held by the dicing tape X with a sheet for sintering bonding, the semiconductor wafer 30 is diced using a rotating blade such as a dicing apparatus and separated into semiconductor chip units. (In the figure, the cut portion is schematically represented by a thick line). As a result, the semiconductor chip C with the chip-sized sintered bonding sheet 10 is formed.
  • the semiconductor chip with a sheet for sintering bonding is then carried out Pick up C from the dicing tape 20 (pickup process). For example, with regard to the semiconductor chip C with a sheet for sintering and bonding to be picked up, after raising the pin member (not shown) of the pickup mechanism at the lower side of the dicing tape 20 in the figure, pushing up through the dicing tape 20 It adsorbs and holds with a tool (not shown).
  • FIG. 3A the semiconductor chip C is temporarily fixed to the support substrate S (temporary fixing step), and as shown in FIG. 3B, the high temperature for sintering bonding
  • the semiconductor chip C is bonded to the support substrate S through the heating process (sinter bonding step).
  • FIGS. 3A and 3 relate to the temporary fixing step and the sintering bonding step in the semiconductor device manufacturing method performed using the sheet for sintering bonding 10. Same as described above with reference to (b).
  • FIG. 4A the electrode pads (not shown) of the semiconductor chip C and the terminal portions (not shown) of the support substrate S are electrically connected through the bonding wires W as necessary. Connect to (wire bonding process).
  • FIG. 4B a sealing resin R for protecting the semiconductor chip C and the bonding wires W on the support substrate S is formed (sealing process).
  • FIG. 4A and FIG. 4 (with respect to the wire bonding step and the sealing step in the semiconductor device manufacturing method performed by using the sintering bonding sheet 10. as described above with reference to b).
  • the semiconductor device can be manufactured through the process using the dicing tape X with a sheet for sintering bonding.
  • the adhesive layer 11 of the sinter-bonding sheet 10 or the composition for sinter-bonding comprising the same has an average particle diameter of 2 ⁇ m or less as described above for the conductive metal-containing sinter particles contained therein. It has a particle size distribution configuration in which the proportion of particles having a particle size of 100 nm or less is 80% by mass or more. The same proportion is, as described above, preferably 85% by mass or more, more preferably 90% by mass or more. Such a particle size distribution configuration of the sinterable particles is suitable for forming a high density sintered layer 12 by sintering under low load conditions from the sinter bonding composition that constitutes the adhesive layer 11.
  • the composition when the content ratio of the sinterable particles in the composition for sinter bonding forming the adhesive layer 11 is as large as, for example, 85 mass%, the composition It is considered that particles having a particle size of 100 nm or less and particles having a particle size of more than 100 nm in a substance have a dense packing state and the total contact area between particles tends to be large. The larger the total contact area between the sinterable particles, the lower the load conditions such as pressure conditions for appropriately integrating the sinterable particles by sintering.
  • the adhesive layer 11 suitable for realizing the sinter bonding by the high density sinter layer under the low load condition or the composition for sinter bonding comprising the same has low high joint reliability due to the high density sinter layer 12 Suitable for realization in sintering process under load conditions.
  • seat 10 for sintering joining and the composition for sintering joining which comprise this are suitable for implement
  • Such a sintering bonding sheet 10 is preferable from the viewpoint of improving the production efficiency of the product to be manufactured.
  • the content ratio of the sinterable particles in the adhesive layer 11 of the sinter bonding sheet 10 or the composition for sinter bonding forming the same is preferably 90 to 98 mass%, more preferably 92 to 98 mass as described above. %, More preferably 94 to 98% by mass. Such a configuration is suitable for achieving high density of the sintered layer 12 to be formed.
  • the porosity of the pressure-sensitive adhesive layer 11 of the sinter bonding sheet 10 or the composition for sinter bonding forming the same is preferably 10% or less, more preferably 8% or less, more preferably 6% or less, as described above. More preferably, it is 4% or less.
  • the adhesive layer 11 of the sinter bonding sheet 10 or the composition for sinter bonding, which constitutes the void has undergone sintering under the conditions of 300 ° C., 10 MPa, and 2.5 minutes.
  • the rate is preferably 10% or less, more preferably 8% or less, more preferably 6% or less, more preferably 4% or less.
  • the adhesive layer 11 of the sinter bonding sheet 10 or the composition for sinter bonding comprising the same preferably comprises a pyrolyzable polymer binder together with the above-mentioned sinterable particles containing a conductive metal, as described above,
  • the weight average molecular weight of the thermally degradable polymer binder is preferably 10000 or more. According to these configurations, for example, the viscoelasticity of the thermally degradable polymer binder is used at the temporary fixing temperature in the above temporary fixing step, that is, at 50 to 90 ° C. which is a temperature range including 70 ° C. and the vicinity thereof. It is easy to ensure the cohesion of the adhesive layer 11, and hence to ensure the adhesive force of the adhesive layer 11.
  • the thermally decomposable polymer binder contained in the adhesive layer 11 of the sinter bonding sheet 10 or the composition for sinter bonding forming the same is preferably a polycarbonate resin and / or an acrylic resin.
  • a polycarbonate resin and an acrylic resin can be easily prepared as a polymer binder that decomposes and volatilizes at a temperature of about 300 ° C. Therefore, the configuration relates to the supporting substrate S and the semiconductor to be sintered and bonded using the sintering bonding sheet 10 It is suitable for reducing the organic residue in the sintered layer 12 formed between the chips C. As the organic residue in the sintered layer 12 is smaller, the sintered layer 12 tends to be strong, and thus, it is easy to obtain excellent bonding reliability in the sintered layer 12.
  • the sinter bonding sheet 10 supplies the sinter bonding material in the form of a sheet which can be easily produced with a uniform thickness, according to the sinter bonding sheet 10, the supporting substrate S and the semiconductor chip C Can be joined by the sintered layer 12 of uniform thickness.
  • the sinter bonding by the sinter layer 12 with a uniform thickness is suitable for realizing high bonding reliability of the semiconductor chip C with respect to the support substrate S.
  • the sinter bonding sheet 10 supplies the sinter bonding material in the form of a sheet that is hard to fluidize, sintering from between the supporting substrate S and the semiconductor chip C, which are objects to be bonded, is performed. It is suitable for sintering and joining the semiconductor chip C to the supporting substrate S while suppressing the protrusion of the metal and the creeping of the sintered metal to the side surface of the semiconductor chip C. Such suppression of protrusion and creeping is preferable in order to improve the yield in a semiconductor device involving sintering and bonding.
  • Example 1 53.78 parts by mass of first silver particles (average particle diameter 60 nm, particle size distribution 5 to 100 nm, manufactured by Dowa Electronics Co., Ltd.) as sinterable particles, and second silver particles (average particle diameter as sinterable particles) Particle size: 1100 nm, particle size distribution: 400 to 5000 nm, 5.97 parts by mass of Mitsui Metal Mining Co., Ltd., polycarbonate resin as a thermally degradable polymer binder (trade name "QPAC40", weight average molecular weight is 150000, normal temperature Solid, 0.87 parts by mass of Empower Materials, and 3.47 parts by mass of isobornyl cyclohexanol (trade name "Telsorb MTPH", liquid at normal temperature, manufactured by Nippon Terpene Chemical Industry Co., Ltd.) as a low boiling point binder , 35.91 parts by mass of methyl ethyl ketone as a solvent, a hybrid mixer (trade name "HM-500", Key Co.,
  • the Nsu Ltd. were mixed using its stirring mode, to prepare a varnish.
  • the stirring time was 3 minutes.
  • the obtained varnish is applied to a release-treated film (trade name "MRA 50", manufactured by Mitsubishi Resins Co., Ltd.) and then dried to form a 40 ⁇ m thick adhesive layer for sinter bonding, ie, sinter bonding
  • a sheet of 40 ⁇ m in thickness was formed.
  • the drying temperature was 110 ° C., and the drying time was 3 minutes.
  • a sinter-bonding sheet of Example 1 having a pressure-sensitive adhesive layer containing sinterable particles, a thermally-degradable polymer binder, and a low boiling point binder was produced.
  • the content ratio of the sinterable particles in the sheet for sinter bonding (composition for sinter bonding) of Example 1 is 93.2 mass%, and the ratio of particles having a particle diameter of 100 nm or less in the sinterable particles is 90. It is mass%.
  • the compositions relating to the sintered bonding sheet of Example 1 are listed in Table 1 (the same applies to Examples and Comparative Examples described later. In Table 1, units of numerical values representing the compositions are relative to each other. “Parts by mass”).
  • Example 2 61.29 parts by mass of first silver particles (average particle diameter 60 nm, particle size distribution 5 to 100 nm, manufactured by Dowa Electronics Co., Ltd.) as sinterable particles, and second silver particles (average particle diameter as sinterable particles) 6.81 parts by mass of particle diameter 1100 nm, particle diameter distribution 400-5000 nm, Mitsui Metal Mining Co., Ltd., polycarbonate resin as a thermally degradable polymer binder (trade name "QPAC40", weight average molecular weight 150000, at normal temperature Solid, Empower Materials Co., Ltd.
  • QPAC40 thermally degradable polymer binder
  • the obtained varnish is applied to a release-treated film (trade name "MRA 50", manufactured by Mitsubishi Resins Co., Ltd.) and then dried to form a 40 ⁇ m thick adhesive layer for sinter bonding, ie, sinter bonding
  • a sheet of 40 ⁇ m in thickness was formed.
  • the drying temperature was 110 ° C., and the drying time was 3 minutes.
  • a sinter bonding sheet of Example 2 having a pressure-sensitive adhesive layer containing sinterable particles, a thermally degradable polymer binder, and a low boiling point binder was produced.
  • the content ratio of the sinterable particles in the sheet for sinter bonding (composition for sinter bonding) of Example 2 is 95% by mass, and the ratio of particles having a particle diameter of 100 nm or less in the sinterable particles is 90% by mass It is.
  • Example 3 Third silver particles (average particle size 300 nm, particle size distribution 145-1700 nm) instead of 6.81 parts by mass of second silver particles (average particle size 1100 nm, particle size distribution 400-5000 nm, manufactured by Mitsui Mining & Smelting Co., Ltd.)
  • a sheet for sintering and bonding of Example 3 was produced in the same manner as the sheet for sintering and bonding of Example 2 except that 6.81 parts by mass of Dowa Electronics Co., Ltd. was used.
  • the content ratio of the sinterable particles in the sinter bonding sheet (composition for sinter bonding) of Example 3 is 95 mass%, and the ratio of particles having a particle diameter of 100 nm or less in the sinterable particles is 90 mass%. It is.
  • Example 4 Changing the blending amount of the first silver particles (average particle diameter 60 nm, particle diameter distribution 5 to 100 nm, manufactured by Dowa Electronics Co., Ltd.) to 61.29 parts by mass to 68.1 parts by mass, and A sheet for sintering and bonding of Example 4 was produced in the same manner as the sheet for sintering and bonding of Example 2 except that silver particles were not used.
  • the content ratio of the sinterable particles in the sheet for sinter bonding (composition for sinter bonding) of Example 4 is 95 mass%, and the ratio of particles having a particle diameter of 100 nm or less in the sinterable particles is 100 mass%. It is.
  • Example 5 Fourth silver particle (average particle size 20 nm, particle size distribution 1 to 50 nm, manufactured by Dowa Electronics Corporation) 61 instead of 61.29 parts by mass of the first silver particle and 6.81 parts by mass of the second silver particle
  • a sinter bonding sheet of Example 5 was produced.
  • the content ratio of sinterable particles in the sheet for sinter bonding (composition for sinter bonding) of Example 5 is 95 mass%, and the ratio of particles having a particle diameter of 100 nm or less in the sinterable particles is 90 mass%. It is.
  • Example 6 Changing the blending amount of the first silver particles (average particle diameter 60 nm, particle size distribution 5 to 100 nm, manufactured by Dowa Electronics Co., Ltd.) to 53.78 parts by mass to 35.86 parts by mass, and Sintering of Example 1 except that in addition to the second silver particles, 17.93 parts by mass of fourth silver particles (average particle diameter 20 nm, particle diameter distribution 1 to 50 nm, manufactured by Dowa Electronics Co., Ltd.) were used In the same manner as the bonding sheet, a sinter bonding sheet of Example 6 was produced.
  • the content ratio of sinterable particles in the sheet for sinter bonding (composition for sinter bonding) of Example 6 is 93.2 mass%, and the ratio of particles having a particle diameter of 100 nm or less in the sinterable particles is 90. It is mass%.
  • Comparative Example 1 Changing the blending amount of the first silver particles (average particle diameter 60 nm, particle diameter distribution 5 to 100 nm, manufactured by Dowa Electronics Co., Ltd.) to 53.78 parts by mass to 35.86 parts by mass; The amount of the silver particles (average particle diameter: 1100 nm, particle diameter distribution: 400 to 5000 nm, manufactured by Mitsui Kinzoku Mining Co., Ltd.) was changed to 5.3.9 parts by mass to 23.9 parts by mass, except that A sheet for sintering and bonding of Comparative Example 1 was produced in the same manner as the sheet for sintering and bonding.
  • the content ratio of the sinterable particles in the sinter bonding sheet of Comparative Example 1 is 93.2% by mass, and the ratio of particles having a particle diameter of 100 nm or less in the sinterable particles is 60% by mass.
  • Comparative Example 2 First silver particles (average particle diameter 60 nm, particle size distribution 5 to 100 nm, manufactured by Dowa Electronics Co., Ltd.) as sinterable particles and 34.05 parts by mass, and third silver particles (average particle diameter as sinterable particles) Particle size 300 nm, particle size distribution 145-1700 nm, Dowa Electronics Co., Ltd.
  • polycarbonate resin as a thermally degradable polymer binder
  • QPAC40 weight average molecular weight 150000, solid at normal temperature , Empower Materials Co., Ltd.
  • isobornyl cyclohexanol trade name “Telsorb MTPH”, liquid at normal temperature, manufactured by Nippon Terpene Chemical Co., Ltd.
  • HM-500 stock The company Keyence
  • the obtained varnish is applied to a release-treated film (trade name "MRA 50", manufactured by Mitsubishi Resins Co., Ltd.) and then dried to form a 40 ⁇ m thick adhesive layer for sinter bonding, ie, sinter bonding A sheet of 40 ⁇ m in thickness was formed.
  • the drying temperature was 110 ° C., and the drying time was 3 minutes.
  • a sinter bonding sheet of Comparative Example 2 having a pressure-sensitive adhesive layer containing sinterable particles, a thermally-degradable polymer binder, and a low boiling point binder was produced.
  • the content ratio of the sinterable particles in the sinter bonding sheet of Comparative Example 2 is 95% by mass, and the ratio of particles having a particle diameter of 100 nm or less in the sinterable particles is 50% by mass.
  • a silicon chip (5 mm square, 350 ⁇ m thick) having a flat electrode (5 mm square) on one side was prepared.
  • the flat electrode has a laminated structure of a Ti layer (50 nm thick) on the surface of the silicon chip and an Au layer (100 nm thick) thereon.
  • a sheet for sinter bonding was bonded to the flat electrode of the silicon chip using a laminator equipped with a pressure roll.
  • the bonding temperature is 70 ° C.
  • the bonding load (pressure by the pressure roll) is 0.3 MPa
  • the speed of the pressure roll is 10 mm / sec.
  • the obtained silicon chip with a sintering bonding sheet was sintered and bonded to a copper plate (3 mm in thickness) entirely covered with an Ag film (5 ⁇ m in thickness).
  • a sintering process is performed using a sintering apparatus (trade name "HTM-3000", manufactured by Shoto Co., Ltd.) Did.
  • the pressure applied to the object to be sintered in the thickness direction is 10 MPa
  • the heating temperature for sintering is 300 ° C.
  • the heating time is 2.5 minutes.
  • an SEM image image by a scanning electron microscope
  • a field emission scanning electron microscope SU8020 manufactured by Hitachi High-Technologies Corporation
  • a backscattered electron image Were obtained as image data.
  • the imaging conditions were such that the acceleration voltage was 5 kV and the magnification was 2000 times.
  • the obtained image data was subjected to an automatic binarization process of binarizing a solid part and a void part or a pore part using image analysis software ImageJ.
  • the porosity of the sintered layer in the sinter bonded sample was examined as follows for each of the sinter bonded sheets of Examples 1 to 6 and Comparative Examples 1 and 2. Specifically, first, a cross section along a silicon chip diagonal was exposed in the sintered joint sample by mechanical polishing. Next, ion polishing was performed on the exposed cross section using an ion polishing apparatus (trade name “Cross Section Polisher SM-09010”, manufactured by Nippon Denshi Co., Ltd.).
  • an SEM image image by a scanning electron microscope
  • a field emission scanning electron microscope SU8020 manufactured by Hitachi High-Technologies Corporation
  • the imaging conditions were such that the acceleration voltage was 5 kV and the magnification was 2000 times.
  • the image analysis software ImageJ the obtained image data was subjected to an automatic binarizing process of binarizing the metal portion and the void portion or the pore portion.
  • the bonding reliability of the sintered layer in the sintered bonded sample was examined as follows for each of the sintered bonding sheets of Examples 1 to 6 and Comparative Examples 1 and 2. Specifically, first, using a thermal shock tester (trade name "TSE-103ES", manufactured by Espec Corp.), 500 cycles of thermal shock at a temperature range of -40 ° C to 200 ° C on the sample Gave. One cycle of the temperature profile includes a 15 minute hold period at -40.degree. C. and a 15 minute hold period at 200.degree.
  • the sinter bonding sheets of Examples 1 to 6 are the sinter bonding sheets of Comparative Examples 1 and 2 and the identification degree.
  • the sintered layer of the sinter bonded sample according to the sinter bonded sheets of Examples 1 to 6 and the sintered layer of the sinter bonded sample according to the sinter bonded sheets of Comparative Examples 1 and 2 The pressure is 10 MPa and is formed under the same load condition of low load.
  • the void ratio is significantly lower and the density is higher than in the case of the sheets for sinter bonding of Comparative Examples 1 and 2.
  • a certain sintered layer can be formed, and a sinter bonding with a significantly high bonding rate after the above thermal shock test can be realized.
  • a composition for sinter bonding comprising: a conductive metal-containing sinterable particle having an average particle diameter of 2 ⁇ m or less and a ratio of particles having a particle diameter of 100 nm or less of 80% by mass or more.
  • a conductive metal-containing sinterable particle having an average particle diameter of 2 ⁇ m or less and a ratio of particles having a particle diameter of 100 nm or less of 80% by mass or more.
  • composition for sinter bonding according to Supplementary Note 1 or 2 wherein the average particle size of the sinterable particles is 70 nm or more or 100 nm or more.
  • composition for sinter bonding according to any one of Appendices 1 to 3 wherein the proportion of particles having a particle diameter of 100 nm or less in the sinterable particles is 85% by mass or more or 90% by mass or more.
  • content ratio of the sinterable particles is 90 to 98% by mass, 92 to 98% by mass, or 94 to 98% by mass.
  • composition for sinter bonding according to Appendix 8 wherein the weight average molecular weight of the thermally degradable polymer binder is 10000 or more.
  • thermally degradable polymer binder is a polycarbonate resin and / or an acrylic resin.
  • sinterable particles comprise at least one selected from the group consisting of silver, copper, silver oxide, and copper oxide.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Adhesive Tapes (AREA)
  • Dicing (AREA)
  • Powder Metallurgy (AREA)

Abstract

本発明の焼結接合用組成物は、導電性金属含有の焼結性粒子を含む。この焼結性粒子の平均粒径は2μm以下であり、且つ、当該焼結性粒子における粒径100nm以下の粒子の割合は80質量%以上である。本発明の焼結接合用シート(10)は、このような焼結接合用組成物のなす粘着層を備える。本発明の焼結接合用シート付きダイシングテープ(X)は、このような焼結接合用シート(10)およびダイシングテープ(20)を備える。ダイシングテープ(20)は、基材(21)と粘着剤層(22)とを含む積層構造を有し、焼結接合用シート(10)はダイシングテープ(20)の粘着剤層(22)上に位置する。本発明の焼結接合用組成物、焼結接合用シート、および、焼結接合用シート付きダイシングテープは、高密度の焼結層による焼結接合を低負荷条件で実現するのに適する。

Description

焼結接合用組成物、焼結接合用シート、および焼結接合用シート付きダイシングテープ
 本発明は、半導体装置の製造などに使用することのできる焼結接合用組成物、焼結接合用シート、および、焼結接合用シート付きのダイシングテープに関する。
 半導体装置の製造において、リードフレームや絶縁回路基板など支持基板に対し、半導体チップを支持基板側との電気的接続をとりつつダイボンディングするための手法として、支持基板とチップとの間にAu-Si共晶合金層を形成して接合状態を実現する手法や、接合材としてハンダや導電性粒子含有樹脂を利用する手法が、知られている。
 一方、電力の供給制御を担うパワー半導体装置の普及が近年では顕著であるところ、パワー半導体装置は、動作時の通電量が大きいことに起因して発熱量が大きい場合が多い。そのため、パワー半導体装置の製造においては、半導体チップを支持基板側との電気的接続をとりつつ支持基板にダイボンディングする手法について、高温動作時にも信頼性の高い接合状態を実現可能であることが求められる。半導体材料としてSiCやGaNが採用されて高温動作化の図られたパワー半導体装置においては特に、そのような要求が強い。そして、そのような要求に応えるべく、電気的接続を伴うダイボンディング手法として、焼結性粒子と溶剤等を含有する焼結接合用の組成物を使用する技術が提案されている。
 焼結性粒子含有の焼結接合用組成物が用いられて行われるダイボンディングでは、まず、支持基板のチップ接合予定箇所に対して半導体チップが焼結接合用組成物を介して所定の温度・荷重条件で載置される。その後、支持基板とその上の半導体チップとの間において焼結接合用組成物中の溶剤の揮発などが生じ且つ焼結性粒子間で焼結が進行するように、所定の温度・加圧条件での加熱工程が行われる。これにより、支持基板と半導体チップとの間に焼結層が形成されて、支持基板に対して半導体チップが電気的に接続されつつ機械的に接合されることとなる。このような技術は、例えば、下記の特許文献1,2に記載されている。
国際公開第2008/065728号 特開2013-039580号公報
 焼結性粒子含有の焼結接合用組成物が用いられて行われるダイボンディングでは、従来、支持基板と半導体チップとの間に形成される焼結層において、その空隙率が大きいことに起因して充分な接合信頼性を確保できない場合がある。焼結のための高温加熱工程での加圧条件など負荷条件が高いほど、形成される焼結層の空隙率は小さくなる傾向にあるものの、焼結プロセスを実施するための装置や設備に要求される性能が高くなる。製造目的物の生産効率の観点からは、焼結プロセス用の装置や設備に要求される性能は高くない方が好ましい。
 本発明は、以上のような事情のもとで考え出されたものであって、その目的は、高密度の焼結層による焼結接合を低負荷条件で実現するのに適した焼結接合用組成物、焼結接合用シート、および焼結接合用シート付きのダイシングテープを、提供することにある。
 本発明の第1の側面によると、焼結接合用組成物が提供される。この焼結接合用組成物は、導電性金属含有の焼結性粒子を含む。本組成物中の焼結性粒子の平均粒径は2μm以下である。これとともに、当該焼結性粒子における粒径100nm以下の粒子の割合は80質量%以上である。すなわち、当該焼結性粒子において粒径が100nmを超える粒子の占める割合は20質量%以下である。このような構成の本組成物は、接合対象物間を焼結接合するのに使用することができる。例えば、本組成物は、半導体装置の製造において、支持基板に対して半導体チップを支持基板側との電気的接続をとりつつ焼結接合するのに使用することができる。
 焼結接合用組成物を使用して焼結接合を実現する過程においては、例えば、接合対象物間に当該組成物が介在した状態で接合対象物どうしが所定条件で圧着されて仮固定され、そのうえで所定の温度・加圧条件での高温加熱工程が行われて、接合対象物間を接合する焼結層が当該組成物から形成される。このような焼結接合プロセスに使用される焼結接合用組成物に配合される導電性金属含有の焼結性粒子についての上記の粒度分布構成、即ち、平均粒径が2μm以下であって粒径100nm以下の粒子の割合が80質量%以上であるという構成は、当該組成物から低負荷条件の焼結によって高密度の焼結層を形成するのに適する、という知見を本発明者らは得ている。例えば、後記の実施例および比較例をもって示すとおりである。平均粒径2μm以下の焼結性粒子の上記粒度分布構成によると、本焼結接合用組成物における焼結性粒子の含有割合が例えば85質量%以上と大きい場合において、当該組成物中の粒径100nm以下の粒子群および粒径100nm超の粒子群が緻密なパッキング状態をとって粒子間の総接触面積が大きくなりやすいものと考えられる。焼結性粒子間の総接触面積が大きいほど、焼結によって当該焼結性粒子どうしを適切に一体化するための加圧条件など負荷条件は低くなる傾向にある。
 また、導電性金属含有の焼結性粒子を含む組成物から形成される焼結層の密度が高いほど当該焼結層において高い接合信頼性が得られる傾向にある、という知見も本発明者らは得ている。例えば、後記の実施例および比較例をもって示すとおりである。支持基板に対して半導体チップを支持基板側との電気的接続をとりつつ機械的に接合するための焼結接合においては特に、焼結層による接合対象物間の接合について高度の信頼性が確保されることが要求される。高密度の焼結層による焼結接合を低負荷条件で実現するのに適した本組成物は、高密度焼結層による高い接合信頼性を低負荷条件の焼結プロセスで実現するのに適する。
 以上のように、本発明の第1の側面に係る焼結接合用組成物は、高密度の焼結層による焼結接合を低負荷条件で実現するのに適し、従って、高密度焼結層による高い接合信頼性を低負荷条件の焼結プロセスで実現するのに適する。このような焼結接合用組成物は、製造目的物の生産効率向上の観点から好ましい。本発明において、焼結プロセスにおける低負荷条件には無加圧条件も含まれるものとする。
 本焼結接合用組成物における焼結性粒子の含有割合は、好ましくは90~98質量%、より好ましくは92~98質量%、より好ましくは94~98質量%である。このような構成は、形成される焼結層の高密度化を図るうえで好適である。
 本焼結接合用組成物は、その空隙率が好ましくは10%以下、より好ましくは8%以下、より好ましくは6%以下、より好ましくは4%以下である。このような構成は、形成される焼結層の高密度化を図るうえで好適である。
 本焼結接合用組成物は、好ましくは、導電性金属含有の上述の焼結性粒子と共に熱分解性高分子バインダーを含む。本発明において、熱分解性高分子バインダーとは、焼結接合用の高温加熱過程で熱分解され得るバインダー成分をいうものとする。このような構成によると、上記の仮固定での温度、例えば70℃およびその近傍の温度範囲において、熱分解性高分子バインダーの粘弾性性を利用して本焼結接合用組成物の凝集力を確保しやすく、従って当該組成物の接着力を確保しやすい。そのため、本構成は、接合対象物間に本焼結接合用組成物が介在した状態で接合対象物どうしが圧着される時や圧着後においてこれら接合対象物に位置ずれが生じるのを抑制するうえで、好適である。
 本焼結接合用組成物中の熱分解性高分子バインダーの重量平均分子量は、好ましくは10000以上である。このような構成は、熱分解性高分子バインダーの粘弾性性を利用して本焼結接合用組成物の凝集力や接着力を確保するうえで好適である。
 本焼結接合用組成物中の熱分解性高分子バインダーは、好ましくは、ポリカーボネート樹脂および/またはアクリル樹脂である。上述のように、焼結接合用組成物を使用して焼結接合を実現する過程においては、接合対象物間が当該組成物で仮固定されたうえで焼結接合用の高温加熱が行われる。焼結接合用の高温加熱は、例えば300℃およびその近傍を含む温度範囲で行われるところ、ポリカーボネート樹脂およびアクリル樹脂は、300℃程度の温度で分解・揮散する高分子バインダーとして用意しやすい。したがって、本構成は、本焼結接合用組成物を使用して焼結接合される接合対象物間に形成される焼結層において有機残渣を低減するうえで好適である。焼結層中の有機残渣が少ないほど、当該焼結層は強固である傾向にあり、従って、当該焼結層において高い接合信頼性を得やすい。
 本焼結接合用組成物における焼結性粒子は、好ましくは、銀、銅、酸化銀、および酸化銅からなる群より選択される少なくとも一種を含む。このような構成は、本焼結接合用組成物を使用して焼結接合される接合対象物間に強固な焼結層を形成するうえで、好適である。
 本発明の第2の側面によると、焼結接合用シートが提供される。この焼結接合用シートは、本発明の第1の側面に係る上述の焼結接合用組成物のなす粘着層を備える。このような構成は、接合対象物間に均一な厚さで焼結接合用組成物を供給して均一な厚さの焼結層によって接合対象物間を焼結接合するのに適する。均一な厚さの焼結層による焼結接合は、例えば支持基板に対する半導体チップの、高い接合信頼性を実現するうえで好適である。加えて、本焼結接合用シートは、接合対象物間からの焼結金属のはみ出しや接合対象物側面での焼結金属の這い上がりを抑制しつつ接合対象物間を焼結接合するのに適する。本焼結接合用シートは、焼結接合用材料を流動化しにくいシートの形態で供給するものであるため、そのようなはみ出しや這い上がりを抑制するのに適するのである。このようなはみ出しや這い上がりの抑制は、焼結接合を伴う半導体装置など製造目的物における歩留まりを向上するうえで好適である。
 本発明の第3の側面によると、焼結接合用シート付きダイシングテープが提供される。この焼結接合用シート付きダイシングテープは、ダイシングテープと、本発明の第2の側面に係る上述の焼結接合用シートとを備える。ダイシングテープは、基材と粘着剤層とを含む積層構造を有し、焼結接合用シートはダイシングテープの粘着剤層上に配されている。このような構成のダイシングテープは、半導体装置の製造過程において、チップサイズの焼結接合用シートを伴う半導体チップを得るのに使用することができる。そして、本ダイシングテープによると、半導体装置製造過程での焼結接合において、本発明の第1の側面の焼結接合用組成物に関して上述したのと同様の効果が得られ、且つ、本発明の第2の側面の焼結接合用シートに関して上述したのと同様の効果が得られる。
本発明の一の実施形態に係る焼結接合用シートの部分断面模式図である。 図1に示す焼結接合用シートが使用されて行われる半導体装置製造方法における一部の工程を表す。 図1に示す焼結接合用シートが使用されて行われる半導体装置製造方法における一部の工程を表す。 図1に示す焼結接合用シートが使用されて行われる半導体装置製造方法における一部の工程を表す。 本発明の一の実施形態に係る焼結接合用シート付きダイシングテープの部分断面模式図である。 図5に示す焼結接合用シート付きダイシングテープが使用されて行われる半導体装置製造方法における一部の工程を表す。
 図1は、本発明の一の実施形態に係る焼結接合用シート10の部分断面模式図である。焼結接合用シート10は、接合対象物間を焼結接合するのに使用するためのものであって、本発明の焼結接合用組成物のなす粘着層11を備える。粘着層11ないしこれをなす焼結接合用組成物は、本実施形態では、導電性金属含有の焼結性粒子と、熱分解性高分子バインダーと、低沸点バインダーとを少なくとも含む。このような焼結接合用シート10は、例えば、半導体装置の製造過程において、支持基板に対して半導体チップを支持基板側との電気的接続をとりつつ焼結接合するのに使用することができる。
 焼結接合用シート10ないしその粘着層11に含まれる焼結性粒子は、導電性金属元素を含有して焼結可能な粒子である。導電性金属元素としては、例えば、金、銀、銅、パラジウム、スズ、およびニッケルが挙げられる。このような焼結性粒子の構成材料としては、例えば、金、銀、銅、パラジウム、スズ、ニッケル、および、これらの群から選択される二種以上の金属の合金が挙げられる。焼結性粒子の構成材料としては、酸化銀や、酸化銅、酸化パラジウム、酸化スズなどの金属酸化物も挙げられる。また、焼結性粒子は、コアシェル構造を有する粒子であってもよい。例えば、焼結性粒子は、銅を主成分とするコアと、金や銀などを主成分とし且つコアを被覆するシェルとを有する、コアシェル構造の粒子であってもよい。本実施形態において、焼結性粒子は、好ましくは銀粒子、銅粒子、酸化銀粒子、および酸化銅粒子からなる群より選択される少なくとも一種を含む。形成される焼結層において高い導電性および高い熱伝導性を実現するという観点からは、焼結性粒子としては銀粒子および銅粒子が好ましい。加えて耐酸化性の観点からは、銀粒子は扱いやすくて好ましい。例えば、銀めっき付銅基板への半導体チップの焼結接合において、焼結性粒子として銅粒子を含む焼結材を用いる場合には、窒素雰囲気下など不活性環境下で焼結プロセスを行う必要があるものの、銀粒子が焼結性粒子をなす焼結材を用いる場合には、空気雰囲気下であっても適切に焼結プロセスを実行することが可能である。
 焼結接合用シート10ないしその粘着層11に含まれる焼結性粒子の平均粒径は2μm以下である。焼結性粒子について低い焼結温度を実現するなどして良好な焼結性を確保するという観点からは、当該焼結性粒子の平均粒径は、好ましくは1.5μm以下、より好ましくは1.2μm以下、より好ましくは1μm以下、より好ましくは700nm以下、より好ましくは500nm以下である。粘着層11ないしこれを形成するための組成物における焼結性粒子について良好な分散性を確保するという観点からは、当該焼結性粒子の平均粒径は、好ましくは70nm以上、より好ましくは100nm以上である。
 焼結性粒子の平均粒径は、走査型電子顕微鏡(SEM)を使用して行う観察に基づいて求めることが可能である。粘着層が焼結性粒子を含有する場合の当該焼結性粒子の平均粒径については、具体的には次のような方法によって求めることができる。まず、焼結性粒子を含む粘着層に対して冷却環境下でイオンポリッシングを施して粘着層の断面を露出させる。次に、当該露出断面を、電界放出形走査電子顕微鏡SU8020(株式会社日立ハイテクノロジーズ製)を使用して撮像し、反射電子像を画像データとして得る。撮像条件は、加速電圧を5kVとし、倍率を50000倍とする。次に、得られた画像データに対して画像解析ソフトImageJを使用して自動2値化処理を施した後、当該画像データから粒子の平均粒径を算出する。
 粘着層11における焼結性粒子の含有割合は、例えば85質量%以上であり、好ましくは90~98質量%、より好ましくは92~98質量%、より好ましくは94~98質量%である。
 粘着層11中の焼結性粒子における粒径100nm以下の粒子の割合は、80質量%以上であり、好ましくは85質量%以上、より好ましくは90質量%以上である。すなわち、粘着層11中の焼結性粒子における粒径100nm超の粒子の割合は、20質量%以下であり、好ましくは15質量%以下、より好ましくは10質量%以下である。
 焼結接合用シート10ないしその粘着層11に含まれる熱分解性高分子バインダーは、焼結接合用の高温加熱過程で熱分解され得るバインダー成分であり、当該加熱過程前までにおいて、焼結接合用シート10ないしその粘着層11のシート形状の保持に寄与する要素である。本実施形態においては、シート形状保持機能を担保するという観点から、熱分解性高分子バインダーは常温(23℃)で固形の材料である。そのような熱分解性高分子バインダーとしては、例えば、ポリカーボネート樹脂およびアクリル樹脂を挙げることができる。
 熱分解性高分子バインダーとしてのポリカーボネート樹脂としては、例えば、主鎖の炭酸エステル基(-O-CO-O-)間にベンゼン環など芳香族化合物を含まずに脂肪族鎖からなる脂肪族ポリカーボネート、および、主鎖の炭酸エステル基(-O-CO-O-)間に芳香族化合物を含む芳香族ポリカーボネートが挙げられる。脂肪族ポリカーボネートとしては、例えば、ポリエチレンカーボネートおよびポリプロピレンカーボネートが挙げられる。芳香族ポリカーボネートとしては、主鎖にビスフェノールA構造を含むポリカーボネートが挙げられる。
 熱分解性高分子バインダーとしてのアクリル樹脂としては、例えば、炭素数4~18の直鎖状または分岐状のアルキル基を有するアクリル酸エステルおよび/またはメタクリル酸エステルの重合体が挙げられる。以下では、「(メタ)アクリル」をもって、「アクリル」および/または「メタクリル」を表す。熱分解性高分子バインダーとしてのアクリル樹脂をなすための(メタ)アクリル酸エステルのアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、t-ブチル基、イソブチル基、アミル基、イソアミル基、ヘキシル基、へプチル基、シクロヘキシル基、2-エチルヘキシル基、オクチル基、イソオクチル基、ノニル基、イソノニル基、デシル基、イソデシル基、ウンデシル基、ラウリル基、トリデシル基、テトラデシル基、ステアリル基、およびオクタデシル基が挙げられる。
 熱分解性高分子バインダーとしてのアクリル樹脂は、上記(メタ)アクリル酸エステル以外の他のモノマーに由来するモノマーユニットを含む重合体であってもよい。そのような他のモノマーとしては、例えば、カルボキシ基含有モノマー、酸無水物モノマー、ヒドロキシ基含有モノマー、スルホン酸基含有モノマー、およびリン酸基含有モノマーが挙げられる。具体的に、カルボキシ基含有モノマーとしては、例えば、アクリル酸、メタクリル酸、カルボキシエチルアクリレート、カルボキシペンチルアクリレート、イタコン酸、マレイン酸、フマル酸、およびクロトン酸が挙げられる。酸無水物モノマーとしては、例えば、無水マレイン酸や無水イタコン酸が挙げられる。ヒドロキシ基含有モノマーとしては、例えば、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸6-ヒドロキシヘキシル、(メタ)アクリル酸8-ヒドロキシオクチル、(メタ)アクリル酸10-ヒドロキシデシル、(メタ)アクリル酸12-ヒドロキシラウリル、および、(メタ)アクリル酸4-(ヒドロキシメチル)シクロヘキシルメチルが挙げられる。スルホン酸基含有モノマーとしては、例えば、スチレンスルホン酸、アリルスルホン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、(メタ)アクリルアミドプロパンスルホン酸、スルホプロピル(メタ)アクリレート、および(メタ)アクリロイルオキシナフタレンスルホン酸が挙げられる。リン酸基含有モノマーとしては、例えば2-ヒドロキシエチルアクリロイルホスフェートが挙げられる。
 熱分解性高分子バインダーの重量平均分子量は、好ましくは10000以上である。熱分解性高分子バインダーの重量平均分子量は、ゲル・パーミエーション・クロマトグラフィー(GPC)により測定してポリスチレン換算により算出される値とする。
 粘着層11における熱分解性高分子バインダーの含有割合は、上述のシート形状保持機能を適切に発揮させるという観点からは、好ましくは0.5~10質量%、より好ましくは0.8~8質量%、より好ましくは1~6質量%である。
 焼結接合用シート10ないしその粘着層11に含まれる低沸点バインダーは、動的粘弾性測定装置(商品名「HAAKE MARS III」,Thermo Fisher Scientfic社製)を使用して測定される23℃での粘度が1×105Pa・s以下を示す液状または半液状であるものとする。本粘度測定においては、治具として20mmφのパラレルプレートを使用し、プレート間ギャップを100μmとし、回転せん断におけるせん断速度を1s-1とする。
 粘着層11に含まれる低沸点バインダーとしては、例えば、テルペンアルコール類、テルペンアルコール類を除くアルコール類、アルキレングリコールアルキルエーテル類、および、アルキレングリコールアルキルエーテル類を除くエーテル類が、挙げられる。テルペンアルコール類としては、例えば、イソボルニルシクロヘキサノール、シトロネロール、ゲラニオール、ネロール、カルベオール、およびα-テルピネオールが挙げられる。テルペンアルコール類を除くアルコール類としては、例えば、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、1-デカノール、エチレングリコール、ジエチレングリコール、プロピレングリコール、ブチレングリコール、および2,4-ジエチル-1,5ペンタンジオールが挙げられる。アルキレングリコールアルキルエーテル類としては、例えば、エチレングリコールブチルエーテル、ジエチレングリコールメチルエーテル、ジエチレングリコールエチルエーテル、ジエチレングリコールブチルエーテル、ジエチレングリコールイソブチルエーテル、ジエチレングリコールヘキシルエーテル、トリエチレングリコールメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、ジエチレングリコールブチルメチルエーテル、ジエチレングリコールイソプロピルメチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールブチルメチルエーテル、プロピレングリコールプロピルエーテル、ジプロピレングリコールメチルエーテル、ジプロピレングリコールエチルエーテル、ジプロピレングリコールプロピルエーテル、ジプロピレングリコールブチルエーテル、ジプロピレングリコールジメチルエーテル、トリプロピレングリコールメチルエーテル、およびトリプロピレングリコールジメチルエーテルが挙げられる。アルキレングリコールアルキルエーテル類を除くエーテル類としては、例えば、エチレングリコールエチルエーテルアセテート、エチレングリコールブチルエーテルアセテート、ジエチレングリコールエチルエーテルアセテート、ジエチレングリコールブチルエーテルアセテート、ジプロピレングリコールメチルエーテルアセテート、およびエチレングリコールフェニルエーテルが挙げられる。粘着層11に含まれる低沸点バインダーとしては、一種類の低沸点バインダーを用いてもよいし、二種類以上の低沸点バインダーを用いてもよい。粘着層11に含まれる低沸点バインダーとしては、常温での安定性という観点からは、テルペンアルコール類が好ましく、イソボルニルシクロヘキサノールがより好ましい。
 焼結接合用シート10ないしその粘着層11は、以上の成分に加えて、例えば可塑剤などを含有してもよい。
 粘着層11の23℃での厚さは、好ましくは5μm以上、より好ましくは10μm以上であり、且つ、好ましくは100μm以下、より好ましくは80μm以下である。また、粘着層11ないしこれをなす焼結接合用組成物の70℃での粘度は、例えば5×103~1×107Pa・sであり、好ましくは1×104~1×106Pa・sである。
 粘着層11ないしこれをなす焼結接合用組成物の空隙率は、好ましくは10%以下、より好ましくは8%以下、より好ましくは6%以下、より好ましくは4%以下である。また、粘着層11ないしこれをなす焼結接合用組成物は、10MPaの加圧下における300℃での2.5分間の加熱工程を含む焼結を経た後の空隙率(即ち、当該焼結によって粘着層11から形成される焼結層の空隙率)が、好ましくは10%以下、より好ましくは8%以下、より好ましくは6%以下、より好ましくは4%以下である。
 焼結接合用シート10は、例えば、上述の各成分を溶剤中にて混合してワニスを調製し、基材としてのセパレータの上に当該ワニスを塗布して塗膜を形成し、その塗膜を乾燥させることによって、作製することができる。ワニス調製用の溶剤としては有機溶剤やアルコール溶剤を用いることできる。有機溶剤としては、例えば、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、アセトン、メチルエチルケトン、シクロヘキサノン、トルエン、およびキシレンが挙げられる。アルコール溶剤としては、例えば、エチレングリコール、ジエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2-ブテン-1,4-ジオール、1,2,6-ヘキサントリオール、グリセリン、オクタンジオール、2-メチル-2,4-ペンタンジオール、およびテルピネオールが挙げられる。基材ないしセパレータとしては、ポリエチレンテレフタレート(PET)フィルム、ポリエチレンフィルム、ポリプロピレンフィルム、並びに、剥離剤(例えば、フッ素系剥離剤や長鎖アルキルアクリレート系剥離剤)で表面コートされた各種のプラスチックフィルムや紙などを、用いることができる。基材上へのワニスの塗布には、例えば、ダイコーター、グラビアコーター、ロールコーター、リバースコーター、コンマコーター、またはパイプドクターコーターを使用することができる。また、塗膜の乾燥温度は例えば70~160℃であり、塗膜の乾燥時間は例えば1~5分間である。
 図2から図4は、焼結接合用シート10が使用されて行われる半導体装置製造方法の一部の工程を表す。
 本方法では、まず、図2(a)に示すように、焼結接合用シート10および複数の半導体チップCが用意される。焼結接合用シート10は、本発明の焼結接合用組成物からなる上述の構成の粘着層11を有するものであって、その片面に剥離ライナーLを伴う。複数の半導体チップCのそれぞれは、所定の半導体素子が既に作り込まれたものであり、チップ固定用テープT1の粘着面T1a上に固定されている。各半導体チップCにおいて、焼結接合用シート10が貼り合わせられる側の表面(図2では上面)には既に外部電極として平面電極(図示略)が形成されている。平面電極の厚さは、例えば10~1000nmである。この平面電極は、例えば銀よりなる。また、平面電極は、半導体チップ表面に形成されたチタン薄膜の上に積層形成されていてもよい。チタン薄膜の厚さは、例えば10~1000nmである。これら平面電極およびチタン薄膜は、例えば蒸着法によって形成することができる。また、各半導体チップCの他方の面(図2では下面)には、必要に応じて他の電極パッド等(図示略)が形成されている。
 次に、図2(b)に示すように、複数の半導体チップCに対して焼結接合用シート10が貼り合わせられる。具体的には、焼結接合用シート10がその剥離ライナーLの側から半導体チップC側に押圧されつつ、複数の半導体チップCに対して焼結接合用シート10ないし粘着層11が貼り合わせられる。押圧手段としては、例えば圧着ロールが挙げられる。貼合せ温度は例えば50~90℃であり、貼合せ用の荷重は例えば0.01~5MPaである。
 次に、図2(c)に示すように、剥離ライナーLの剥離が行われる。これにより、焼結接合用シート10ないしその粘着層11の各所が各半導体チップCの表面に転写され、チップサイズの焼結接合用シート10を伴う半導体チップCが得られる。
 次に、図3(a)に示すように、支持基板Sへの半導体チップCの仮固定が行われる(仮固定工程)。具体的には、例えばチップマウンターを使用して、焼結接合用シート付き半導体チップCをその焼結接合用シート10を介して支持基板Sに対して押圧して仮固定する。支持基板Sとしては、例えば、銅配線など配線を表面に伴う絶縁回路基板、および、リードフレームが挙げられる。支持基板Sにおけるチップ搭載箇所は、銅配線やリードフレームなどの素地表面であってもよいし、素地表面上に形成されためっき膜の表面であってもよい。当該めっき膜としては、例えば、金めっき膜、銀めっき膜、ニッケルめっき膜、パラジウムめっき膜、および白金めっき膜が挙げられる。本工程において、仮固定用の温度条件は、例えば70℃およびその近傍を含む温度範囲である50~90℃であり、押圧に係る荷重条件は例えば0.01~5MPaであり、接合時間は例えば0.01~5秒間である。
 次に、図3(b)に示すように、高温加熱過程を経ることによって半導体チップCが支持基板Sに接合される(焼結接合工程)。具体的には、所定の高温加熱過程を経ることによって、支持基板Sと半導体チップCとの間において、粘着層11中の低沸点バインダーを揮発させ、熱分解性高分子バインダーを熱分解させて揮散させ、そして、焼結性粒子の導電性金属を焼結させる。これにより、支持基板Sと各半導体チップCとの間に焼結層12が形成されて、支持基板Sに対して半導体チップCが支持基板S側との電気的接続がとられつつ接合されることとなる。本工程において、焼結接合の温度条件は、例えば300℃およびその近傍を含む200~400℃であり、好ましくは330~350℃である。焼結接合の圧力条件は、例えば40MPa以下であり、好ましくは20MPa以下、より好ましくは15MPa以下、より好ましくは12MPa以下、より好ましくは10MPa以下である。また、焼結接合の接合時間は、例えば0.3~300分間であり、好ましくは0.5~240分間である。例えばこれら条件の範囲内において、焼結接合工程を実施するための温度プロファイルや圧力プロファイルが適宜に設定される。以上のような焼結接合工程は、加熱と加圧とを同時に行える装置を使用して行うことができる。そのような装置としては、例えばフリップチップボンダーおよび平行平板プレスが挙げられる。また、焼結接合に関与する金属の酸化防止の観点からは、本工程は、窒素雰囲気下、減圧下、または還元ガス雰囲気下のいずれかで行われるのが好ましい。
 半導体装置の製造においては、次に、図4(a)に示すように、半導体チップCの上記電極パッド(図示略)と支持基板Sの有する端子部(図示略)とを必要に応じてボンディングワイヤーWを介して電気的に接続する(ワイヤーボンディング工程)。半導体チップCの電極パッドや支持基板Sの端子部とボンディングワイヤーWとの結線は、例えば、加熱を伴う超音波溶接によって実現される。ボンディングワイヤーWとしては、例えば金線、アルミニウム線、または銅線を用いることができる。ワイヤーボンディングにおけるワイヤー加熱温度は、例えば80~250℃であり、好ましくは80~220℃である。また、その加熱時間は数秒~数分間である。
 次に、図4(b)に示すように、支持基板S上の半導体チップCやボンディングワイヤーWを保護するための封止樹脂Rを形成する(封止工程)。本工程では、例えば、金型を使用して行うトランスファーモールド技術によって封止樹脂Rが形成される。封止樹脂Rの構成材料としては、例えばエポキシ系樹脂を用いることができる。本工程において、封止樹脂Rを形成するための加熱温度は例えば165~185℃であり、加熱時間は例えば60秒~数分間である。本封止工程で封止樹脂Rの硬化が充分には進行しない場合には、本工程の後に封止樹脂Rを完全に硬化させるための後硬化工程が行われる。
 以上のようにして、焼結接合用シート10を使用した過程を経て半導体装置を製造することができる。
 図5は、本発明の一の実施形態に係る焼結接合用シート付きダイシングテープXの断面模式図である。焼結接合用シート付きダイシングテープXは、本発明の一の実施形態に係る上述の焼結接合用シート10とダイシングテープ20とを含む積層構造を有し、半導体装置の製造においてチップサイズの焼結接合用シートを伴う半導体チップを得るのに使用することができるものである。また、焼結接合用シート付きダイシングテープXは、半導体装置の製造過程における加工対象の半導体ウエハに対応するサイズの例えば円盤形状を有する。
 ダイシングテープ20は、基材21と粘着剤層22とを含む積層構造を有する。
 ダイシングテープ20の基材21は、ダイシングテープ20ないし焼結接合用シート付きダイシングテープXにおける支持体として機能する要素である。基材21としては、例えば、プラスチックフィルムなどプラスチック基材を用いることができる。当該プラスチック基材の構成材料としては、例えば、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリオレフィン、ポリエステル、ポリウレタン、ポリカーボネート、ポリエーテルエーテルケトン、ポリイミド、ポリエーテルイミド、ポリアミド、全芳香族ポリアミド、ポリフェニルスルフィド、アラミド、フッ素樹脂、セルロース系樹脂、およびシリコーン樹脂が挙げられる。ポリオレフィンとしては、例えば、低密度ポリエチレン、直鎖状ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、超低密度ポリエチレン、ランダム共重合ポリプロピレン、ブロック共重合ポリプロピレン、ホモポリプロレン、ポリブテン、ポリメチルペンテン、エチレン-酢酸ビニル共重合体、アイオノマー樹脂、エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸エステル共重合体、エチレン-ブテン共重合体、およびエチレン-ヘキセン共重合体が挙げられる。ポリエステルとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート、およびポリブチレンテレフタレート(PBT)が挙げられる。基材21は、一種類の材料からなってもよいし、二種類以上の材料からなってもよい。基材21は、単層構造を有してもよいし、多層構造を有してもよい。基材21上の粘着剤層22が紫外線硬化型である場合、基材21は紫外線透過性を有するのが好ましい。また、基材21は、プラスチックフィルムである場合、無延伸フィルムであってもよいし、一軸延伸フィルムであってもよいし、二軸延伸フィルムであってもよい。
 基材21における粘着剤層22側の表面は、粘着剤層22との密着性を高めるための処理が施されていてもよい。そのような処理としては、例えば、コロナ放電処理、プラズマ処理、サンドマット加工処理、オゾン暴露処理、火炎暴露処理、高圧電撃暴露処理、およびイオン化放射線処理などの物理的処理、クロム酸処理などの化学的処理、並びに、下塗り処理が挙げられる。
 基材21の厚さは、ダイシングテープ20ないし焼結接合用シート付きダイシングテープXにおける支持体として基材21が機能するための強度を確保するという観点からは、好ましくは40μm以上、より好ましくは50μm以上、より好ましくは55μm以上、より好ましくは60μm以上である。また、ダイシングテープ20ないし焼結接合用シート付きダイシングテープXにおいて適度な可撓性を実現するという観点からは、基材21の厚さは、好ましくは200μm以下、より好ましくは180μm以下、より好ましくは150μm以下である。
 ダイシングテープ20の粘着剤層22は、粘着剤を含有する。粘着剤としては、例えば、アクリル系ポリマーをベースポリマーとするアクリル系粘着剤やゴム系粘着剤を用いることができる。また、当該粘着剤は、加熱や放射線照射など外部からの作用によって意図的に粘着力を低減させることが可能な粘着剤(粘着力低減型粘着剤)であってもよいし、外部からの作用によっては粘着力がほとんど又は全く低減しない粘着剤(粘着力非低減型粘着剤)であってもよい。粘着力低減型粘着剤としては、例えば、放射線硬化型粘着剤(放射線硬化性を有する粘着剤)や加熱発泡型粘着剤が挙げられる。粘着力非低減型粘着剤としては、例えば感圧型粘着剤が挙げられる。
 粘着剤層22がアクリル系粘着剤を含有する場合、当該アクリル系粘着剤のベースポリマーとしてのアクリル系ポリマーは、好ましくは、アクリル酸アルキルエステルおよび/またはメタクリル酸アルキルエステルに由来するモノマーユニットを質量割合で最も多いモノマーユニットとして含む。
 アクリル系ポリマーのモノマーユニットをなすための(メタ)アクリル酸アルキルエステルとしては、例えば、直鎖状または分岐状のアルキル基を有する(メタ)アクリル酸アルキルエステル、および(メタ)アクリル酸シクロアルキルエステルが挙げられる。(メタ)アクリル酸アルキルエステルとしては、例えば、(メタ)アクリル酸のメチルエステル、エチルエステル、プロピルエステル、イソプロピルエステル、ブチルエステル、イソブチルエステル、s-ブチルエステル、t-ブチルエステル、ペンチルエステル、イソペンチルエステル、ヘキシルエステル、ヘプチルエステル、オクチルエステル、2-エチルヘキシルエステル、イソオクチルエステル、ノニルエステル、デシルエステル、イソデシルエステル、ウンデシルエステル、ドデシルエステル、トリデシルエステル、テトラデシルエステル、ヘキサデシルエステル、オクタデシルエステル、またはエイコシルエステルが挙げられる。(メタ)アクリル酸シクロアルキルエステルとしては、例えば、(メタ)アクリル酸のシクロペンチルエステルまたはシクロヘキシルエステルが挙げられる。アクリル系ポリマーのための(メタ)アクリル酸アルキルエステルとしては、一種類の(メタ)アクリル酸アルキルエステルを用いてもよいし、二種類以上の(メタ)アクリル酸アルキルエステルを用いてもよい。アクリル系ポリマーを形成するための全モノマー成分における(メタ)アクリル酸アルキルエステルの割合は、(メタ)アクリル酸アルキルエステルに依る粘着性等の基本特性を粘着剤層22にて適切に発現させるうえでは、例えば50質量%以上である。
 アクリル系ポリマーは、その凝集力や耐熱性などを改質するために、(メタ)アクリル酸アルキルエステルと共重合可能な他のモノマーに由来するモノマーユニットを含んでいてもよい。そのようなモノマーとしては、例えば、カルボキシ基含有モノマー、酸無水物モノマー、ヒドロキシ基含有モノマー、スルホン酸基含有モノマー、リン酸基含有モノマー、アクリルアミド、およびアクリロニトリルが挙げられる。カルボキシ基含有モノマーとしては、例えば、アクリル酸、メタクリル酸、カルボキシエチル(メタ)アクリレート、カルボキシペンチル(メタ)アクリレート、イタコン酸、マレイン酸、フマル酸、およびクロトン酸が挙げられる。酸無水物モノマーとしては、例えば、無水マレイン酸および無水イタコン酸が挙げられる。ヒドロキシ基含有モノマーとしては、例えば、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸6-ヒドロキシヘキシル、(メタ)アクリル酸8-ヒドロキシオクチル、(メタ)アクリル酸10-ヒドロキシデシル、(メタ)アクリル酸12-ヒドロキシラウリル、および(メタ)アクリル酸4-(ヒドロキシメチル)シクロヘキシルメチルが挙げられる。スルホン酸基含有モノマーとしては、例えば、スチレンスルホン酸、アリルスルホン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、(メタ)アクリルアミドプロパンスルホン酸、スルホプロピル(メタ)アクリレート、および(メタ)アクリロイルオキシナフタレンスルホン酸が挙げられる。リン酸基含有モノマーとしては、例えば、2-ヒドロキシエチルアクリロイルホスフェートが挙げられる。アクリル系ポリマーのための当該他のモノマーとしては、一種類のモノマーを用いてもよいし、二種類以上のモノマーを用いてもよい。アクリル系ポリマーを形成するための全モノマー成分における(メタ)アクリル酸アルキルエステル以外のモノマーの割合は、(メタ)アクリル酸アルキルエステルに依る粘着性等の基本特性を粘着剤層22にて適切に発現させるうえでは、例えば50質量%以下である。
 アクリル系ポリマーは、そのポリマー骨格中に架橋構造を形成するために、(メタ)アクリル酸アルキルエステルと共重合可能な多官能性モノマーに由来するモノマーユニットを含んでいてもよい。そのような多官能性モノマーとして、例えば、ヘキサンジオールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、エポキシ(メタ)アクリレート、グリシジル(メタ)アクリレート、ポリエステル(メタ)アクリレート、およびウレタン(メタ)アクリレートが挙げられる。アクリル系ポリマーのための多官能性モノマーとしては、一種類の多官能性モノマーを用いてもよいし、二種類以上の多官能性モノマーを用いてもよい。アクリル系ポリマーを形成するための全モノマー成分における多官能性モノマーの割合は、(メタ)アクリル酸アルキルエステルに依る粘着性等の基本特性を粘着剤層22にて適切に発現させるうえでは、例えば40質量%以下である。
 アクリル系ポリマーは、それを形成するための原料モノマーを重合して得ることができる。重合手法としては、例えば、溶液重合、乳化重合、塊状重合、および懸濁重合が挙げられる。ダイシングテープ20ないし焼結接合用シート付きダイシングテープXの使用される半導体装置製造方法における高度の清浄性の観点からは、ダイシングテープ20ないし焼結接合用シート付きダイシングテープXにおける粘着剤層22中の低分子量成分は少ない方が好ましく、アクリル系ポリマーの数平均分子量は例えば10万以上である。
 粘着剤層22ないしこれをなすための粘着剤は、アクリル系ポリマーなどベースポリマーの数平均分子量を高めるために例えば、外部架橋剤を含有してもよい。アクリル系ポリマーなどベースポリマーと反応して架橋構造を形成するための外部架橋剤としては、ポリイソシアネート化合物、エポキシ化合物、アジリジン化合物、およびメラミン系架橋剤が挙げられる。粘着剤層22ないしこれをなすための粘着剤における外部架橋剤の含有量は、ベースポリマー100質量部に対して例えば5質量部以下である。
 粘着剤層22は、紫外線など放射線の照射を受けることによって照射箇所の架橋度が高まって粘着力が低下する放射線硬化型粘着剤層であってもよい。そのような粘着剤層をなすための放射線硬化型粘着剤としては、例えば、上述のアクリル系ポリマーなどのベースポリマーと、放射線重合性の炭素-炭素二重結合等の官能基を有する放射線重合性のモノマー成分やオリゴマー成分とを含有する、添加型の放射線硬化型粘着剤が挙げられる。
 放射線重合性のモノマー成分としては、例えば、ウレタン(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリストールテトラ(メタ)アクリレート、ジペンタエリストールモノヒドロキシペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、および1,4-ブタンジオールジ(メタ)アクリレートが挙げられる。放射線重合性のオリゴマー成分としては、例えば、ウレタン系、ポリエーテル系、ポリエステル系、ポリカーボネート系、ポリブタジエン系など種々のオリゴマーが挙げられ、分子量100~30000程度のものが適当である。粘着剤層22ないしこれをなすための放射線硬化型粘着剤における放射線重合性のモノマー成分やオリゴマー成分の含有量は、形成される粘着剤層22の粘着力を適切に低下させ得る範囲で決定され、アクリル系ポリマーなどのベースポリマー100質量部に対して例えば40~150質量部である。また、添加型の放射線硬化型粘着剤としては、例えば特開昭60-196956号公報に開示のものを用いてもよい。
 粘着剤層22をなすための放射線硬化型粘着剤としては、例えば、放射線重合性の炭素-炭素二重結合等の官能基をポリマー側鎖や、ポリマー主鎖中、ポリマー主鎖末端に有するベースポリマーを含有する内在型の放射線硬化型粘着剤も挙げられる。このような内在型の放射線硬化型粘着剤は、形成される粘着剤層22内での低分子量成分の移動に起因する粘着特性の意図しない経時的変化を抑制するうえで好適である。
 内在型の放射線硬化型粘着剤に含有されるベースポリマーとしては、アクリル系ポリマーを基本骨格とするものが好ましい。そのような基本骨格をなすアクリル系ポリマーとしては、上述のアクリル系ポリマーを採用することができる。アクリル系ポリマーへの放射線重合性の炭素-炭素二重結合の導入手法としては、例えば、所定の官能基(第1の官能基)を有するモノマーを含む原料モノマーを共重合させてアクリル系ポリマーを得た後、第1の官能基との間で反応を生じて結合しうる所定の官能基(第2の官能基)と放射線重合性炭素-炭素二重結合とを有する化合物を、炭素-炭素二重結合の放射線重合性を維持したままアクリル系ポリマーに対して縮合反応または付加反応させる方法が、挙げられる。
 第1の官能基と第2の官能基の組み合わせとしては、例えば、カルボキシ基とエポキシ基、エポキシ基とカルボキシ基、カルボキシ基とアジリジル基、アジリジル基とカルボキシ基、ヒドロキシ基とイソシアネート基、イソシアネート基とヒドロキシ基が、挙げられる。これら組み合わせのうち、反応追跡の容易さの観点からは、ヒドロキシ基とイソシアネート基の組み合わせ、および、イソシアネート基とヒドロキシ基の組み合わせが好適である。また、反応性の高いイソシアネート基を有するポリマーを作製するのは技術的難易度が高いところ、アクリル系ポリマーの作製または入手のしやすさの観点からは、アクリル系ポリマー側の上記第1の官能基がヒドロキシ基であり且つ上記第2の官能基がイソシアネート基である場合が、より好適である。この場合、放射線重合性炭素-炭素二重結合と第2の官能基であるイソシアネート基とを併有するイソシアネート化合物としては、例えば、メタクリロイルイソシアネート、2-メタクリロイルオキシエチルイソシアネート、およびm-イソプロペニル-α,α-ジメチルベンジルイソシアネートが挙げられる。また、第1の官能基を伴うアクリル系ポリマーとしては、上記のヒドロキシ基含有モノマーに由来するモノマーユニットを含むものが好適であり、2-ヒドロキシエチルビニルエーテルや、4-ヒドロキシブチルビニルエーテル、ジエチレングルコールモノビニルエーテルなどのエーテル系化合物に由来するモノマーユニットを含むものも好適である。
 粘着剤層22をなすための放射線硬化型粘着剤は、好ましくは光重合開始剤を含有する。光重合開始剤としては、例えば、α-ケトール系化合物、アセトフェノン系化合物、ベンゾインエーテル系化合物、ケタール系化合物、芳香族スルホニルクロリド系化合物、光活性オキシム系化合物、ベンゾフェノン系化合物、チオキサントン系化合物、カンファーキノン、ハロゲン化ケトン、アシルホスフィノキシド、およびアシルホスフォナートが挙げられる。α-ケトール系化合物としては、例えば、4-(2-ヒドロキシエトキシ)フェニル(2-ヒドロキシ-2-プロピル)ケトン、α-ヒドロキシ-α,α'-ジメチルアセトフェノン、2-メチル-2-ヒドロキシプロピオフェノン、および1-ヒドロキシシクロヘキシルフェニルケトンが挙げられる。アセトフェノン系化合物としては、例えば、メトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2,2-ジエトキシアセトフェノン、および2-メチル-1-[4-(メチルチオ)-フェニル]-2-モルホリノプロパン-1が挙げられる。ベンゾインエーテル系化合物としては、例えば、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、およびアニソインメチルエーテルが挙げられる。ケタール系化合物としては、例えばベンジルジメチルケタールが挙げられる。芳香族スルホニルクロリド系化合物としては、例えば2-ナフタレンスルホニルクロリドが挙げられる。光活性オキシム系化合物としては、例えば、1-フェノン-1,2-プロパンジオン-2-(O-エトキシカルボニル)オキシムが挙げられる。ベンゾフェノン系化合物としては、例えば、ベンゾフェノン、ベンゾイル安息香酸、および3,3'-ジメチル-4-メトキシベンゾフェノンが挙げられる。チオキサントン系化合物としては、例えば、チオキサントン、2-クロロチオキサントン、2-メチルチオキサントン、2,4-ジメチルチオキサントン、イソプロピルチオキサントン、2,4-ジクロロチオキサントン、2,4-ジエチルチオキサントン、および2,4-ジイソプロピルチオキサントンが挙げられる。粘着剤層22をなすための放射線硬化型粘着剤における光重合開始剤の含有量は、アクリル系ポリマーなどのベースポリマー100質量部に対して例えば0.05~20質量部である。
 粘着剤層22ないしこれをなすための粘着剤には、以上の成分の他、架橋促進剤や、粘着付与剤、老化防止剤、着色剤などの添加剤を含有してもよい。着色剤は、放射線照射を受けて着色する化合物であってもよい。そのような化合物としては、例えばロイコ染料が挙げられる。
 粘着剤層22の厚さは、例えば、粘着剤層22の放射線硬化の前後における焼結接合用シート10に対する接着力のバランスの観点から1~50μmである。
 以上のような構成を有する焼結接合用シート付きダイシングテープXは、例えば以下のようにして作製することができる。
 焼結接合用シート付きダイシングテープXのダイシングテープ20については、用意した基材21上に粘着剤層22を設けることによって作製することができる。例えば樹脂製の基材21は、カレンダー製膜法、有機溶媒中でのキャスティング法、密閉系でのインフレーション押出法、Tダイ押出法、共押出法、ドライラミネート法などの製膜手法により作製することができる。粘着剤層22は、粘着剤層22形成用の粘着剤組成物を調製した後、基材21上または所定のセパレータ(即ち剥離ライナー)上に当該粘着剤組成物を塗布して粘着剤組成物層を形成し、必要に応じて当該粘着剤組成物層を乾燥させる(この時、必要に応じて加熱架橋させる)ことによって、形成することができる。粘着剤組成物の塗布手法としては、例えば、ロール塗工、スクリーン塗工、およびグラビア塗工が挙げられる。粘着剤組成物層の乾燥のための温度は例えば80~150℃であって時間は例えば0.5~5分間である。粘着剤層22がセパレータ上に形成される場合には、当該セパレータを伴う粘着剤層22を基材21に貼り合わせる。以上のようにして、ダイシングテープ20を作製することができる。
 焼結接合用シート付きダイシングテープXの焼結接合用シート10については、上述のように、例えば、焼結接合用シート10形成用のワニスを調製し、基材としてのセパレータの上に当該ワニスを塗布して塗膜を形成し、その塗膜を乾燥させることによって、作製することができる。
 焼結接合用シート付きダイシングテープXの作製においては、次に、ダイシングテープ20の粘着剤層22側に焼結接合用シート10を例えば圧着して貼り合わせる。貼り合わせ温度は例えば30~50℃である。貼り合わせ圧力(線圧)は例えば0.1~20kgf/cmである。粘着剤層22が上述のような放射線硬化型粘着剤層である場合には、次に、例えば基材21の側から、粘着剤層22に対して紫外線等の放射線を照射してもよい。照射量は、例えば50~500mJ/cm2であり、好ましくは100~300mJ/cm2である。焼結接合用シート付きダイシングテープXにおいて粘着剤層22の粘着力低減措置としての照射が行われる領域(照射領域D)は、例えば、粘着剤層22における焼結接合用シート貼り合わせ領域内のその周縁部を除く領域である。
 以上のようにして、例えば図5に示す焼結接合用シート付きダイシングテープXを作製することができる。焼結接合用シート付きダイシングテープXには、焼結接合用シート10を伴う粘着剤層22を被覆するようにセパレータ(図示略)が設けられていてもよい。このセパレータは、粘着剤層22および焼結接合用シート10が露出しないように保護するための要素であり、焼結接合用シート付きダイシングテープXの使用前には当該フィルムから剥がされる。セパレータとしては、ポリエチレンテレフタレート(PET)フィルム、ポリエチレンフィルム、ポリプロピレンフィルム、並びに、剥離剤(例えば、フッ素系剥離剤や長鎖アルキルアクリレート系剥離剤)で表面コートされた各種のプラスチックフィルムや紙などを、用いることができる。
 図6は、焼結接合用シート付きダイシングテープXが使用されて行われる半導体装置製造方法の一部の工程を表す。
 本方法においては、まず、図6(a)に示すように、焼結接合用シート付きダイシングテープXの焼結接合用シート10上に半導体ウエハ30が貼り合わせられる。具体的には、半導体ウエハ30が、焼結接合用シート付きダイシングテープXの焼結接合用シート10側に圧着ロール等によって押圧されて、焼結接合用シート付きダイシングテープXないし焼結接合用シート10に対して貼り付けられる。半導体ウエハ30は、複数の半導体素子が既に作り込まれたものであり、焼結接合用シート10に貼り付けられる側の表面(図6では下面)には既に外部電極として平面電極(図示略)が形成されている。平面電極の厚さは、例えば10~1000nmである。この平面電極は例えば銀よりなる。また、平面電極は、半導体ウエハ表面に形成されたチタン薄膜の上に積層形成されていてもよい。チタン薄膜の厚さは、例えば10~1000nmである。これら平面電極およびチタン薄膜は、例えば蒸着法によって形成することができる。また、半導体ウエハ30の他方の面(図6では上面)には、半導体素子ごとに、必要に応じて他の電極パッド等(図示略)が形成されている。本工程において、貼付け温度は例えば50~90℃であり、貼付け用の荷重は例えば0.01~10MPaである。焼結接合用シート付きダイシングテープXにおける粘着剤層22が放射線硬化型粘着剤層である場合には、焼結接合用シート付きダイシングテープXの製造過程での上述の放射線照射に代えて、焼結接合用シート付きダイシングテープXへの半導体ウエハ30の貼り合わせの後に、基材21の側から粘着剤層22に対して紫外線等の放射線を照射してもよい。照射量は、例えば50~500mJ/cm2であり、好ましくは100~300mJ/cm2である。焼結接合用シート付きダイシングテープXにおいて粘着剤層22の粘着力低減措置としての放射線照射が行われる領域(図5では照射領域Dとして示す)は、例えば、粘着剤層22における焼結接合用シート貼り合わせ領域内のその周縁部を除く領域である。
 次に、図6(b)に示すように、半導体ウエハ30に対してダイシングを行う。具体的には、焼結接合用シート付きダイシングテープXに半導体ウエハ30が保持された状態で、ダイシング装置等の回転ブレードを使用して半導体ウエハ30がダイシングされて半導体チップ単位に個片化される(図中では切断箇所を模式的に太線で表す)。これにより、チップサイズの焼結接合用シート10を伴う半導体チップCが形成されることとなる。
 そして、焼結接合用シート付き半導体チップCを伴うダイシングテープ20における半導体チップC側を水などの洗浄液を使用して洗浄するクリーニング工程を必要に応じて経た後、焼結接合用シート付き半導体チップCをダイシングテープ20からピックアップする(ピックアップ工程)。例えば、ピックアップ対象の焼結接合用シート付き半導体チップCについて、ダイシングテープ20の図中下側においてピックアップ機構のピン部材(図示略)を上昇させてダイシングテープ20を介して突き上げた後、吸着治具(図示略)によって吸着保持する。
 次に、図3(a)に示すように、支持基板Sへの半導体チップCの仮固定が行われ(仮固定工程)、図3(b)に示すように、焼結接合のための高温加熱過程を経ることによって半導体チップCが支持基板Sに接合される(焼結接合工程)。これら工程の具体的な実施態様および具体的な条件については、焼結接合用シート10が使用されて行われる半導体装置製造方法における仮固定工程および焼結接合工程に関して図3(a)および図3(b)を参照して上述したのと同様である。
 次に、図4(a)に示すように、半導体チップCの上記電極パッド(図示略)と支持基板Sの有する端子部(図示略)とを必要に応じてボンディングワイヤーWを介して電気的に接続する(ワイヤーボンディング工程)。次に、図4(b)に示すように、支持基板S上の半導体チップCやボンディングワイヤーWを保護するための封止樹脂Rを形成する(封止工程)。これら工程の具体的な実施態様および具体的な条件については、焼結接合用シート10が使用されて行われる半導体装置製造方法におけるワイヤーボンディング工程および封止工程に関して図4(a)および図4(b)を参照して上述したのと同様である。
 以上のようにして、焼結接合用シート付きダイシングテープXを使用した過程を経て半導体装置を製造することができる。
 焼結接合用シート10の粘着層11ないしこれをなす焼結接合用組成物は、それに含まれる導電性金属含有の焼結性粒子について、上述のように、平均粒径が2μm以下であって粒径100nm以下の粒子の割合が80質量%以上であるという粒度分布構成を有する。同割合は、上述のように、好ましくは85質量%以上、より好ましくは90質量%以上である。焼結性粒子のこのような粒度分布構成は、粘着層11をなす焼結接合用組成物から低負荷条件の焼結によって高密度の焼結層12を形成するのに適する。平均粒径2μm以下の焼結性粒子の上記粒度分布構成によると、粘着層11をなす焼結接合用組成物における焼結性粒子の含有割合が例えば85質量%以上と大きい場合において、当該組成物中の粒径100nm以下の粒子群および粒径100nm超の粒子群が緻密なパッキング状態をとって粒子間の総接触面積が大きくなりやすいものと考えられる。焼結性粒子間の総接触面積が大きいほど、焼結によって当該焼結性粒子どうしを適切に一体化するための加圧条件など負荷条件は低くなる傾向にある。
 また、導電性金属含有の焼結性粒子を含む組成物から形成される焼結層12の密度が高いほど焼結層12において高い接合信頼性が得られる傾向にある。高密度の焼結層による焼結接合を低負荷条件で実現するのに適した粘着層11ないしこれをなす焼結接合用組成物は、高密度の焼結層12による高い接合信頼性を低負荷条件の焼結プロセスで実現するのに適する。
 以上のように、上述の焼結接合用シート10の粘着層11ないしこれをなす焼結接合用組成物は、高密度の焼結層12による焼結接合を低負荷条件で実現するのに適し、従って、高密度の焼結層12による高い接合信頼性を低負荷条件の焼結プロセスで実現するのに適する。このような焼結接合用シート10は、製造目的物の生産効率向上の観点から好ましい。
 焼結接合用シート10の粘着層11ないしこれをなす焼結接合用組成物における焼結性粒子の含有割合は、上述のように、好ましくは90~98質量%、より好ましくは92~98質量%、より好ましくは94~98質量%である。このような構成は、形成される焼結層12の高密度化を図るうえで好適である。
 焼結接合用シート10の粘着層11ないしこれをなす焼結接合用組成物の空隙率は、上述のように、好ましくは10%以下、より好ましくは8%以下、より好ましくは6%以下、より好ましくは4%以下である。また、焼結接合用シート10の粘着層11ないしこれをなす焼結接合用組成物は、上述のように、300℃、10MPa、および2.5分間の条件での焼結を経た後の空隙率が、好ましくは10%以下、より好ましくは8%以下、より好ましくは6%以下、より好ましくは4%以下である。これら構成は、形成される焼結層12の高密度化を図るうえで好適である。
 焼結接合用シート10の粘着層11ないしこれをなす焼結接合用組成物は、上述のように、導電性金属含有の上述の焼結性粒子と共に好ましくは熱分解性高分子バインダーを含み、当該熱分解性高分子バインダーの重量平均分子量は好ましくは10000以上である。これら構成によると、上記の仮固定工程での仮固定温度、即ち、70℃およびその近傍を含む温度範囲である50~90℃で例えば、熱分解性高分子バインダーの粘弾性性を利用して粘着層11の凝集力を確保しやすく、従って粘着層11の接着力を確保しやすい。
 焼結接合用シート10の粘着層11ないしこれをなす焼結接合用組成物に含まれる熱分解性高分子バインダーは、上述のように、好ましくはポリカーボネート樹脂および/またはアクリル樹脂である。ポリカーボネート樹脂およびアクリル樹脂は、300℃程度の温度で分解・揮散する高分子バインダーとして用意しやすいので、当該構成は、焼結接合用シート10を使用して焼結接合される支持基板Sと半導体チップCとの間に形成される焼結層12において有機残渣を低減するうえで好適である。焼結層12中の有機残渣が少ないほど、当該焼結層12は強固である傾向にあり、従って、当該焼結層12において優れた接合信頼性を得やすい。
 焼結接合用シート10は、焼結接合用材料を、均一な厚さで作製されやすいシートの形態で供給するものであるので、焼結接合用シート10によると、支持基板Sと半導体チップCとを均一な厚さの焼結層12で接合することが可能となる。均一な厚さの焼結層12による焼結接合は、支持基板Sに対する半導体チップCの高い接合信頼性を実現するうえで好適である。
 また、焼結接合用シート10は、焼結接合用材料を、流動化しにくいシートの形態で供給するものであるので、接合対象物である支持基板Sと半導体チップCとの間からの焼結金属のはみ出しや半導体チップC側面への焼結金属の這い上がりを抑制しつつ支持基板Sに対して半導体チップCを焼結接合するのに適する。このようなはみ出しや這い上がりの抑制は、焼結接合を伴う半導体装置における歩留まりを向上するうえで好適である。
〔実施例1〕
 焼結性粒子としての第1の銀粒子(平均粒径60nm,粒径分布5~100nm,DOWAエレクトロニクス株式会社製)53.78質量部と、焼結性粒子としての第2の銀粒子(平均粒径1100nm,粒径分布400~5000nm,三井金属鉱業株式会社製)5.976質量部と、熱分解性高分子バインダーとしてのポリカーボネート樹脂(商品名「QPAC40」,重量平均分子量は150000,常温で固体,Empower Materials社製)0.87質量部と、低沸点バインダーとしてのイソボルニルシクロヘキサノール(商品名「テルソルブMTPH」,常温で液体,日本テルペン化学工業株式会社製)3.47質量部と、溶剤としてのメチルエチルケトン 35.91質量部とを、ハイブリッドミキサー(商品名「HM-500」,株式会社キーエンス製)をその撹拌モードで使用して混合し、ワニスを調製した。撹拌時間は3分間とした。そして、得られたワニスを、離型処理フィルム(商品名「MRA50」,三菱樹脂株式会社製)に塗布した後に乾燥させて、焼結接合用の厚さ40μmの粘着層、即ち、焼結接合用組成物の厚さ40μmのシート体を形成した。乾燥温度は110℃とし、乾燥時間は3分間とした。以上のようにして、焼結性粒子と、熱分解性高分子バインダーと、低沸点バインダーとを含む粘着層を有する実施例1の焼結接合用シートを作製した。実施例1の焼結接合用シート(焼結接合用組成物)における焼結性粒子の含有割合は93.2質量%であり、当該焼結性粒子における粒径100nm以下の粒子の割合は90質量%である。このような実施例1の焼結接合用シートに関する組成を表1に掲げる(後記の実施例および比較例についても同様である。また、表1において、組成を表す各数値の単位は、相対的な“質量部”である)。
〔実施例2〕
 焼結性粒子としての第1の銀粒子(平均粒径60nm,粒径分布5~100nm,DOWAエレクトロニクス株式会社製)61.29質量部と、焼結性粒子としての第2の銀粒子(平均粒径1100nm,粒径分布400~5000nm,三井金属鉱業株式会社製)6.81質量部と、熱分解性高分子バインダーとしてのポリカーボネート樹脂(商品名「QPAC40」,重量平均分子量は150000,常温で固体,Empower Materials社製)0.75質量部と、低沸点バインダーとしてのイソボルニルシクロヘキサノール(商品名「テルソルブMTPH」,常温で液体,日本テルペン化学工業株式会社製)3.02質量部と、溶剤としてのメチルエチルケトン 28.13質量部とを、ハイブリッドミキサー(商品名「HM-500」,株式会社キーエンス製)をその撹拌モードで使用して混合し、ワニスを調製した。撹拌時間は3分間とした。そして、得られたワニスを、離型処理フィルム(商品名「MRA50」,三菱樹脂株式会社製)に塗布した後に乾燥させて、焼結接合用の厚さ40μmの粘着層、即ち、焼結接合用組成物の厚さ40μmのシート体を形成した。乾燥温度は110℃とし、乾燥時間は3分間とした。以上のようにして、焼結性粒子と、熱分解性高分子バインダーと、低沸点バインダーとを含む粘着層を有する実施例2の焼結接合用シートを作製した。実施例2の焼結接合用シート(焼結接合用組成物)における焼結性粒子の含有割合は95質量%であり、当該焼結性粒子における粒径100nm以下の粒子の割合は90質量%である。
〔実施例3〕
 第2の銀粒子(平均粒径1100nm,粒径分布400~5000nm,三井金属鉱業株式会社製)6.81質量部の代わりに第3の銀粒子(平均粒径300nm,粒径分布145~1700nm,DOWAエレクトロニクス株式会社製)6.81質量部を用いたこと以外は実施例2の焼結接合用シートと同様にして、実施例3の焼結接合用シートを作製した。実施例3の焼結接合用シート(焼結接合用組成物)における焼結性粒子の含有割合は95質量%であり、当該焼結性粒子における粒径100nm以下の粒子の割合は90質量%である。
〔実施例4〕
 第1の銀粒子(平均粒径60nm,粒径分布5~100nm,DOWAエレクトロニクス株式会社製)の配合量を61.29質量部に代えて68.1質量部としたこと、および、第2の銀粒子を用いなかったこと、以外は実施例2の焼結接合用シートと同様にして、実施例4の焼結接合用シートを作製した。実施例4の焼結接合用シート(焼結接合用組成物)における焼結性粒子の含有割合は95質量%であり、当該焼結性粒子における粒径100nm以下の粒子の割合は100質量%である。
〔実施例5〕
 第1の銀粒子61.29質量部および第2の銀粒子6.81質量部の代わりに第4の銀粒子(平均粒径20nm,粒径分布1~50nm,DOWAエレクトロニクス株式会社製)61.29質量部および第5の銀粒子(平均粒径500nm,粒径分布80~3000nm,三井金属鉱業株式会社製)6.81質量部を用いたこと以外は実施例2の焼結接合用シートと同様にして、実施例5の焼結接合用シートを作製した。実施例5の焼結接合用シート(焼結接合用組成物)における焼結性粒子の含有割合は95質量%であり、当該焼結性粒子における粒径100nm以下の粒子の割合は90質量%である。
〔実施例6〕
 第1の銀粒子(平均粒径60nm,粒径分布5~100nm,DOWAエレクトロニクス株式会社製)の配合量を53.78質量部に代えて35.86質量部としたこと、および、第1および第2の銀粒子に加えて第4の銀粒子(平均粒径20nm,粒径分布1~50nm,DOWAエレクトロニクス株式会社製)17.93質量部を用いたこと、以外は実施例1の焼結接合用シートと同様にして、実施例6の焼結接合用シートを作製した。実施例6の焼結接合用シート(焼結接合用組成物)における焼結性粒子の含有割合は93.2質量%であり、当該焼結性粒子における粒径100nm以下の粒子の割合は90質量%である。
〔比較例1〕
 第1の銀粒子(平均粒径60nm,粒径分布5~100nm,DOWAエレクトロニクス株式会社製)の配合量を53.78質量部に代えて35.86質量部としたこと、および、第2の銀粒子(平均粒径1100nm,粒径分布400~5000nm,三井金属鉱業株式会社製)の配合量を5.976質量部に代えて23.9質量部としたこと、以外は実施例1の焼結接合用シートと同様にして、比較例1の焼結接合用シートを作製した。比較例1の焼結接合用シートにおける焼結性粒子の含有割合は93.2質量%であり、当該焼結性粒子における粒径100nm以下の粒子の割合は60質量%である。
〔比較例2〕
 焼結性粒子としての第1の銀粒子(平均粒径60nm,粒径分布5~100nm,DOWAエレクトロニクス株式会社製)34.05質量部と、焼結性粒子としての第3の銀粒子(平均粒径300nm,粒径分布145~1700nm,DOWAエレクトロニクス株式会社製)34.05質量部と、熱分解性高分子バインダーとしてのポリカーボネート樹脂(商品名「QPAC40」,重量平均分子量は150000,常温で固体,Empower Materials社製)0.75質量部と、低沸点バインダーとしてのイソボルニルシクロヘキサノール(商品名「テルソルブMTPH」,常温で液体,日本テルペン化学工業株式会社製)3.02質量部と、溶剤としてのメチルエチルケトン 28.13質量部とを、ハイブリッドミキサー(商品名「HM-500」,株式会社キーエンス製)をその撹拌モードで使用して混合し、ワニスを調製した。撹拌時間は3分間とした。そして、得られたワニスを、離型処理フィルム(商品名「MRA50」,三菱樹脂株式会社製)に塗布した後に乾燥させて、焼結接合用の厚さ40μmの粘着層、即ち、焼結接合用組成物の厚さ40μmのシート体を形成した。乾燥温度は110℃とし、乾燥時間は3分間とした。以上のようにして、焼結性粒子と、熱分解性高分子バインダーと、低沸点バインダーとを含む粘着層を有する比較例2の焼結接合用シートを作製した。比較例2の焼結接合用シートにおける焼結性粒子の含有割合は95質量%であり、当該焼結性粒子における粒径100nm以下の粒子の割合は50質量%である。
〈サンプルの作製〉
 実施例1~6および比較例1,2の各焼結接合用シートを用いて焼結接合を行い、実施例1~6および比較例1,2の焼結接合用シートごとに、後記の各評価に用いられる必要数のサンプルを作製した。
 サンプルの作製においては、まず、平面電極(5mm角)を一方の面に有するシリコンチップ(5mm角,厚さ350μm)を用意した。平面電極は、シリコンチップ表面上のTi層(厚さ50nm)とその上のAu層(厚さ100nm)との積層構造を有する。次に、シリコンチップの平面電極に対し、圧着ロールを備えるラミネータを使用して焼結接合用シートを貼り合わせた。貼合せ温度は70℃であり、貼合せ用の荷重(圧着ロールによる圧力)は0.3MPaであり、圧着ロールの速度は10mm/秒である。このようにして、5mm角の焼結接合用シートないし粘着層を片面に伴うシリコンチップを得た。
 次に、得られた焼結接合用シート付きシリコンチップを、Ag膜(厚さ5μm)で全体が覆われた銅板(厚さ3mm)に対して焼結接合した。具体的には、この銅板とシリコンチップとの間に焼結接合用シートが介在する積層態様において、焼結装置(商品名「HTM-3000」,伯東株式会社製)を使用して焼結工程を行った。本工程において、焼結接合対象物に対してその厚さ方向に負荷する加圧力は10MPaであり、焼結用の加熱温度は300℃であり、加熱時間は2.5分間である。
 以上のようにして、実施例1~6および比較例1,2の焼結接合用シートごとに、必要数の焼結接合サンプルを作製した。
〈焼結前の空隙率〉
 実施例1~6および比較例1,2の焼結接合用シートごとに、次のようにして空隙率を調べた。具体的には、まず、冷却環境下において焼結接合用シートについて機械研磨によって断面を露出させた。次に、この露出断面について、イオンポリッシング装置(商品名「クロスセクションポリッシャ SM-09010」,日本電子株式会社製)を使用してイオンポリッシングを行った。次に、当該露出断面における焼結層領域内のSEM像(走査型電子顕微鏡による像)を、電界放出形走査電子顕微鏡SU8020(株式会社日立ハイテクノロジーズ製)を使用して撮像し、反射電子像を画像データとして得た。撮像条件は、加速電圧を5kVとし、倍率を2000倍とした。次に、得られた画像データに対し、画像解析ソフトImageJを使用して、固形部分と空隙部分ないし気孔部分とに2値化する自動2値化処理を施した。そして、当該2値化後の画像から空隙部分の合計面積と全体(固形部分+空隙部分)の面積とを求め、空隙部分の合計面積を全体面積で除して空隙率(%)を算出した。その結果を表1に掲げる。
〈焼結後の空隙率〉
 実施例1~6および比較例1,2の焼結接合用シートごとに、次のようにして、焼結接合サンプルにおける焼結層の空隙率を調べた。具体的には、まず、機械研磨により、焼結接合サンプルにおいてシリコンチップ対角線に沿った断面を露出させた。次に、この露出断面について、イオンポリッシング装置(商品名「クロスセクションポリッシャ SM-09010」,日本電子株式会社製)を使用してイオンポリッシングを行った。次に、当該露出断面における焼結層領域内のSEM像(走査型電子顕微鏡による像)を、電界放出形走査電子顕微鏡SU8020(株式会社日立ハイテクノロジーズ製)を使用して撮像し、反射電子像を画像データとして得た。撮像条件は、加速電圧を5kVとし、倍率を2000倍とした。次に、得られた画像データに対し、画像解析ソフトImageJを使用して、金属部分と空隙部分ないし気孔部分とに2値化する自動2値化処理を施した。そして、当該2値化後の画像から空隙部分の合計面積と全体(金属部分+空隙部分)の面積とを求め、空隙部分の合計面積を全体面積で除して空隙率(%)を算出した。その結果を表1に掲げる。
〈接合信頼性〉
 実施例1~6および比較例1,2の焼結接合用シートごとに、次のようにして、焼結接合サンプルにおける焼結層の接合信頼性を調べた。具体的には、まず、冷熱衝撃試験機(商品名「TSE-103ES」,エスペック株式会社製)を使用して、サンプルに対し、-40℃~200℃の温度範囲での冷熱衝撃を500サイクル与えた。1サイクルの温度プロファイルには、-40℃での15分の保持期間および200℃での15分の保持期間が含まれる。次に、超音波映像装置(商品名「FineSAT II」,日立建機ファインテック株式会社製)を使用して、焼結接合サンプルにおける銅板とシリコンチップとの間の焼結層による接合状態を確認するための撮像を行った。この撮像には、トランスデューサーであるプローブとして、PQ-50-13:WD[周波数50MHz]を使用した。得られた像では、接合状態を維持している領域は灰色で表示され且つ剥離の生じている領域は白色で表示されており、全体面積に対する接合領域総面積の割合を接合率(%)として算出した。その結果を表1に掲げる。
[評価]
 実施例1~6の焼結接合用シート(焼結接合用組成物)によると、比較例1,2の焼結接合用シートによるよりも、接合対象物間において高密度の焼結層を形成することができ、接合信頼性の高い焼結接合を実現することができた。焼結性粒子の含有割合について、実施例1~6の焼結接合用シートは比較例1,2の焼結接合用シートと同定度である。また、実施例1~6の焼結接合用シートに係る焼結接合サンプルの焼結層、および、比較例1,2の焼結接合用シートに係る焼結接合サンプルの焼結層は、加圧力が10MPaであって低負荷の同一焼結条件を経て形成されたものである。そうであるにも関わらず、実施例1~6の焼結接合用シートによると、比較例1,2の焼結接合用シートによる場合と比較して、有意に空隙率が低くて高密度である焼結層を形成することができ、上記冷熱衝撃試験後の接合率が有意に高い焼結接合を実現することができた。
Figure JPOXMLDOC01-appb-T000001
 以上のまとめとして、本発明の構成およびそのバリエーションを以下に付記として列記する。
〔付記1〕
 平均粒径が2μm以下であり、且つ粒径100nm以下の粒子の割合が80質量%以上である、導電性金属含有の焼結性粒子、を含む焼結接合用組成物。
〔付記2〕
 前記焼結性粒子の前記平均粒径は、1.5μm以下、1.2μm以下、1μm以下、700nm以下、または500nm以下である、付記1に記載の焼結接合用組成物。
〔付記3〕
 前記焼結性粒子の前記平均粒径は70nm以上または100nm以上である、付記1または2に記載の焼結接合用組成物。
〔付記4〕
 前記焼結性粒子における粒径100nm以下の粒子の割合は、85質量%以上または90質量%以上である、付記1から3のいずれか一つに記載の焼結接合用組成物。
〔付記5〕
 前記焼結性粒子の含有割合が90~98質量%、92~98質量%、または94~98質量%である、付記1から4のいずれか一つに記載の焼結接合用組成物。
〔付記6〕
 空隙率が10%以下、8%以下、6%以下、または4%以下である、付記1から5のいずれか一つに記載の焼結接合用組成物。
〔付記7〕
 300℃、10MPa、および2.5分間の条件での焼結を経た後の空隙率が10%以下、8%以下、6%以下、または4%以下である、付記1から6のいずれか一つに記載の焼結接合用組成物。
〔付記8〕
 熱分解性高分子バインダーを更に含む、付記1から7のいずれか一つに記載の焼結接合用組成物。
〔付記9〕
 前記熱分解性高分子バインダーの重量平均分子量は10000以上である、付記8に記載の焼結接合用組成物。
〔付記10〕
 前記熱分解性高分子バインダーは、ポリカーボネート樹脂および/またはアクリル樹脂である、付記8または9に記載の焼結接合用組成物。
〔付記11〕
 前記焼結性粒子は、銀、銅、酸化銀、および酸化銅からなる群より選択される少なくとも一種を含む、付記1から10のいずれか一つに記載の焼結接合用組成物。
〔付記12〕
 70℃での粘度が5×103~1×107Pa・sまたは1×104~1×106Pa・sである、付記1から11のいずれか一つに記載の焼結接合用組成物。
〔付記13〕
 付記1から12のいずれか一つに記載の焼結接合用組成物のなす粘着層を備える焼結接合用シート。
〔付記14〕
 前記粘着層の23℃での厚さは5μm以上または10μm以上である、付記13に記載の焼結接合用シート。
〔付記15〕
 前記粘着層の23℃での厚さは100μm以下または80μm以下である、付記13または14に記載の焼結接合用シート。
〔付記16〕
 基材と粘着剤層とを含む積層構造を有するダイシングテープと、
 前記ダイシングテープにおける前記粘着剤層上の、付記13から15のいずれか一つに記載の焼結接合用シートと、を備える焼結接合用シート付きダイシングテープ。
10 焼結接合用シート
11 粘着層
12 焼結層
C  半導体チップ
X  焼結接合用シート付きダイシングテープ
20 ダイシングテープ
21 基材
22 粘着剤層
30 半導体ウエハ

Claims (9)

  1.  平均粒径が2μm以下であり、且つ粒径100nm以下の粒子の割合が80質量%以上である、導電性金属含有の焼結性粒子、を含む焼結接合用組成物。
  2.  前記焼結性粒子の含有割合が90~98質量%である、請求項1に記載の焼結接合用組成物。
  3.  空隙率が10%以下である、請求項1または2に記載の焼結接合用組成物。
  4.  熱分解性高分子バインダーを更に含む、請求項1から3のいずれか一つに記載の焼結接合用組成物。
  5.  前記熱分解性高分子バインダーの重量平均分子量は10000以上である、請求項4に記載の焼結接合用組成物。
  6.  前記熱分解性高分子バインダーは、ポリカーボネート樹脂および/またはアクリル樹脂である、請求項4または5に記載の焼結接合用組成物。
  7.  前記焼結性粒子は、銀、銅、酸化銀、および酸化銅からなる群より選択される少なくとも一種を含む、請求項1から6のいずれか一つに記載の焼結接合用組成物。
  8.  請求項1から7のいずれか一つに記載の焼結接合用組成物のなす粘着層を備える焼結接合用シート。
  9.  基材と粘着剤層とを含む積層構造を有するダイシングテープと、
     前記ダイシングテープにおける前記粘着剤層上の、請求項8に記載の焼結接合用シートと、を備える焼結接合用シート付きダイシングテープ。
PCT/JP2018/032290 2017-11-13 2018-08-31 焼結接合用組成物、焼結接合用シート、および焼結接合用シート付きダイシングテープ WO2019092960A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18876142.3A EP3711879A4 (en) 2017-11-13 2018-08-31 COMPOSITION FOR SINTERBINDING, FILM FOR SINTERBINDING AND SAW TAPE WITH FILM FOR SINTERBINDING
JP2019551897A JPWO2019092960A1 (ja) 2017-11-13 2018-08-31 焼結接合用組成物、焼結接合用シート、および焼結接合用シート付きダイシングテープ
US16/763,298 US11352527B2 (en) 2017-11-13 2018-08-31 Sinter-bonding composition, sinter-bonding sheet and dicing tape with sinter-bonding sheet
CN201880073024.6A CN111328302B (zh) 2017-11-13 2018-08-31 烧结接合用组合物、烧结接合用片、及带烧结接合用片的切割带
JP2022190681A JP7440598B2 (ja) 2017-11-13 2022-11-29 焼結接合用組成物、焼結接合用シート、および焼結接合用シート付きダイシングテープ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-218355 2017-11-13
JP2017218355 2017-11-13

Publications (1)

Publication Number Publication Date
WO2019092960A1 true WO2019092960A1 (ja) 2019-05-16

Family

ID=66439127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/032290 WO2019092960A1 (ja) 2017-11-13 2018-08-31 焼結接合用組成物、焼結接合用シート、および焼結接合用シート付きダイシングテープ

Country Status (6)

Country Link
US (1) US11352527B2 (ja)
EP (1) EP3711879A4 (ja)
JP (2) JPWO2019092960A1 (ja)
CN (1) CN111328302B (ja)
TW (1) TW201930528A (ja)
WO (1) WO2019092960A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190951A1 (ja) * 2022-03-31 2023-10-05 リンテック株式会社 加熱加圧用フィルム状焼成材料、及び半導体デバイスの製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3756789A4 (en) * 2018-02-22 2021-11-24 LINTEC Corporation FILM TYPE COOKING MATERIAL, AND FILM TYPE COOKING MATERIAL WITH SUPPORT SHEET
JP6958434B2 (ja) * 2018-03-06 2021-11-02 三菱マテリアル株式会社 金属粒子凝集体及びその製造方法並びにペースト状金属粒子凝集体組成物及びこれを用いた接合体の製造方法
EP3787011A4 (en) * 2018-04-27 2022-06-08 Nitto Denko Corporation SEMICONDUCTOR DEVICE MANUFACTURING PROCESS
CN114550971B (zh) * 2022-02-22 2022-11-15 上海银浆科技有限公司 一种硅太阳能电池正面导电银浆及制法、硅太阳能电池和用于硅太阳能电池的正面电极

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60196956A (ja) 1984-03-12 1985-10-05 Nitto Electric Ind Co Ltd 半導体ウエハ固定用接着薄板
WO2008065728A1 (fr) 2006-11-29 2008-06-05 Nihon Handa Co., Ltd. Composition de particules métalliques de frittage ayant une plasticité, procédé de production de celle-ci, agent de liaison et procédé de liaison
JP2011094223A (ja) * 2008-11-26 2011-05-12 Mitsuboshi Belting Ltd 無機素材用接合剤及び無機素材の接合体
JP2013039580A (ja) 2011-08-11 2013-02-28 Furukawa Electric Co Ltd:The 加熱接合用材料、加熱接合用シート体、及び加熱接合用成形体
JP2013091835A (ja) * 2011-10-27 2013-05-16 Hitachi Ltd 銅ナノ粒子を用いた焼結性接合材料及びその製造方法及び電子部材の接合方法
JP2016121329A (ja) * 2014-12-24 2016-07-07 日東電工株式会社 加熱接合用シート、及び、ダイシングテープ付き加熱接合用シート
WO2017057485A1 (ja) * 2015-09-30 2017-04-06 日東電工株式会社 シートおよび複合シート
US20170306170A1 (en) * 2014-08-29 2017-10-26 SDCmaterials, Inc. Composition comprising nanoparticles with desired sintering and melting point temperatures and methods of making thereof

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004107728A (ja) 2002-09-18 2004-04-08 Ebara Corp 接合材料及び接合方法
CN100337782C (zh) * 2002-09-18 2007-09-19 株式会社荏原制作所 接合材料
WO2005079353A2 (en) 2004-02-18 2005-09-01 Virginia Tech Intellectual Properties, Inc. Nanoscale metal paste for interconnect and method of use
WO2007083811A1 (ja) * 2006-01-23 2007-07-26 Hitachi Metals, Ltd. 導体ペースト、多層セラミック基板及び多層セラミック基板の製造方法
CN102470490B (zh) 2009-07-14 2015-08-05 同和电子科技有限公司 使用金属纳米粒子的接合材料及接合方法
JP2011021255A (ja) 2009-07-16 2011-02-03 Applied Nanoparticle Laboratory Corp 3金属成分型複合ナノ金属ペースト、接合方法及び電子部品
TWI666656B (zh) * 2012-10-29 2019-07-21 阿爾發裝配解決方案公司 燒結粉末
WO2015111738A1 (ja) 2014-01-23 2015-07-30 株式会社ダイセル 導電性繊維被覆粒子を含むフィルム状接着剤
CN104505137A (zh) * 2014-12-10 2015-04-08 南京工业大学 一种导电铜浆及其制备方法和用途
WO2016104188A1 (ja) * 2014-12-24 2016-06-30 日東電工株式会社 加熱接合用シート、及び、ダイシングテープ付き加熱接合用シート
JP6870943B2 (ja) * 2015-09-30 2021-05-12 日東電工株式会社 加熱接合用シート、及び、ダイシングテープ付き加熱接合用シート
JP6858520B2 (ja) * 2015-09-30 2021-04-14 日東電工株式会社 加熱接合用シート、及び、ダイシングテープ付き加熱接合用シート
JP6704322B2 (ja) 2015-09-30 2020-06-03 日東電工株式会社 シートおよび複合シート
JP6636306B2 (ja) * 2015-11-27 2020-01-29 日東電工株式会社 接着シート、ダイシングテープ一体型接着シート、及び、半導体装置の製造方法
JP6967839B2 (ja) 2016-03-23 2021-11-17 日東電工株式会社 加熱接合用シート、ダイシングテープ付き加熱接合用シート、及び、接合体の製造方法、パワー半導体装置
JP6887293B2 (ja) 2016-04-28 2021-06-16 Dowaエレクトロニクス株式会社 接合材およびそれを用いた接合方法
WO2017188206A1 (ja) * 2016-04-28 2017-11-02 Dowaエレクトロニクス株式会社 接合材およびそれを用いた接合方法
JP6858519B2 (ja) * 2016-09-21 2021-04-14 日東電工株式会社 加熱接合用シート及びダイシングテープ付き加熱接合用シート
EP3608947A4 (en) * 2017-03-29 2020-12-16 Nitto Denko Corporation THERMAL BONDING SHEET AND DICE CUTTING STRIP ATTACHED TO A THERMAL BONDING SHEET

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60196956A (ja) 1984-03-12 1985-10-05 Nitto Electric Ind Co Ltd 半導体ウエハ固定用接着薄板
WO2008065728A1 (fr) 2006-11-29 2008-06-05 Nihon Handa Co., Ltd. Composition de particules métalliques de frittage ayant une plasticité, procédé de production de celle-ci, agent de liaison et procédé de liaison
JP2011094223A (ja) * 2008-11-26 2011-05-12 Mitsuboshi Belting Ltd 無機素材用接合剤及び無機素材の接合体
JP2013039580A (ja) 2011-08-11 2013-02-28 Furukawa Electric Co Ltd:The 加熱接合用材料、加熱接合用シート体、及び加熱接合用成形体
JP2013091835A (ja) * 2011-10-27 2013-05-16 Hitachi Ltd 銅ナノ粒子を用いた焼結性接合材料及びその製造方法及び電子部材の接合方法
US20170306170A1 (en) * 2014-08-29 2017-10-26 SDCmaterials, Inc. Composition comprising nanoparticles with desired sintering and melting point temperatures and methods of making thereof
JP2016121329A (ja) * 2014-12-24 2016-07-07 日東電工株式会社 加熱接合用シート、及び、ダイシングテープ付き加熱接合用シート
WO2017057485A1 (ja) * 2015-09-30 2017-04-06 日東電工株式会社 シートおよび複合シート

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3711879A1

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190951A1 (ja) * 2022-03-31 2023-10-05 リンテック株式会社 加熱加圧用フィルム状焼成材料、及び半導体デバイスの製造方法

Also Published As

Publication number Publication date
EP3711879A1 (en) 2020-09-23
CN111328302A (zh) 2020-06-23
JP2023041064A (ja) 2023-03-23
EP3711879A4 (en) 2021-08-25
JPWO2019092960A1 (ja) 2020-11-12
TW201930528A (zh) 2019-08-01
US20200308456A1 (en) 2020-10-01
JP7440598B2 (ja) 2024-02-28
US11352527B2 (en) 2022-06-07
CN111328302B (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
JP7041669B2 (ja) 加熱接合用シートおよび加熱接合用シート付きダイシングテープ
JP6870943B2 (ja) 加熱接合用シート、及び、ダイシングテープ付き加熱接合用シート
US10748866B2 (en) Thermal bonding sheet, thermal bonding sheet with dicing tape, bonded body production method, and power semiconductor device
JP7440598B2 (ja) 焼結接合用組成物、焼結接合用シート、および焼結接合用シート付きダイシングテープ
JP6858520B2 (ja) 加熱接合用シート、及び、ダイシングテープ付き加熱接合用シート
EP3358606A1 (en) Thermal bonding sheet, and thermal bonding sheet with dicing tape
JP7350653B2 (ja) 焼結接合用組成物、焼結接合用シート、および焼結接合用シート付きダイシングテープ
JP2017069410A (ja) 加熱接合用シート、及び、ダイシングテープ付き加熱接合用シート
JP2017069559A (ja) パワー半導体装置の製造方法
JP6972216B2 (ja) 加熱接合用シート、ダイシングテープ付き加熱接合用シート、及び、接合体の製造方法、パワー半導体装置
JP2017069558A (ja) パワー半導体装置の製造方法
WO2017057428A1 (ja) 加熱接合用シート、及び、ダイシングテープ付き加熱接合用シート
WO2017057429A1 (ja) 加熱接合用シート、及び、ダイシングテープ付き加熱接合用シート

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18876142

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019551897

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018876142

Country of ref document: EP

Effective date: 20200615