WO2015060346A1 - ダイボンドシート及び半導体装置の製造方法 - Google Patents

ダイボンドシート及び半導体装置の製造方法 Download PDF

Info

Publication number
WO2015060346A1
WO2015060346A1 PCT/JP2014/078095 JP2014078095W WO2015060346A1 WO 2015060346 A1 WO2015060346 A1 WO 2015060346A1 JP 2014078095 W JP2014078095 W JP 2014078095W WO 2015060346 A1 WO2015060346 A1 WO 2015060346A1
Authority
WO
WIPO (PCT)
Prior art keywords
die bond
sheet
bond sheet
die
silver
Prior art date
Application number
PCT/JP2014/078095
Other languages
English (en)
French (fr)
Inventor
偉夫 中子
田中 俊明
名取 美智子
正人 西村
石川 大
祐貴 川名
松本 博
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2015543884A priority Critical patent/JP6477486B2/ja
Publication of WO2015060346A1 publication Critical patent/WO2015060346A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29347Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/3201Structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/3205Shape
    • H01L2224/32057Shape in side view
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/83201Compression bonding
    • H01L2224/83203Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/83439Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/83447Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a die bond sheet and a method for manufacturing a semiconductor device, and more specifically, semiconductor elements such as power semiconductors, LSIs, and light emitting diodes (LEDs), lead frames, ceramic wiring boards, glass epoxy wiring boards, polyimide wiring boards, and the like.
  • semiconductor elements such as power semiconductors, LSIs, and light emitting diodes (LEDs), lead frames, ceramic wiring boards, glass epoxy wiring boards, polyimide wiring boards, and the like.
  • the present invention relates to a die bond sheet suitable for bonding to a semiconductor mounting substrate and a method of manufacturing a semiconductor device using the same.
  • a paste-like adhesive in which a filler such as silver powder is dispersed in a resin such as an epoxy resin or a polyimide resin (for example, there is a method using silver paste).
  • a paste adhesive is applied to a die pad of a lead frame using a dispenser, a printing machine, a stamping machine, etc., and then a semiconductor element is die-bonded and bonded by heat curing to obtain a semiconductor device.
  • Patent Documents 1 to 5 listed below, a die bonding paste (Patent Documents 1 and 2) highly filled with silver particles having high thermal conductivity, and a conductive adhesive containing spherical silver powder having a specific particle size (Patent Documents 1 and 2) Patent Document 3), adhesive paste containing solder particles (Patent Document 4), metal powder having a specific particle diameter, and conductive adhesive containing metal ultrafine particles having a specific particle diameter (Patent Document 5) ) Is disclosed.
  • Patent Document 6 silver particles are sintered by heating a paste-like silver particle composition comprising non-spherical silver particles subjected to surface treatment and a volatile dispersion medium at 100 ° C. or more and 400 ° C. or less.
  • a technique for forming solid silver having a predetermined thermal conductivity There has been proposed a technique for forming solid silver having a predetermined thermal conductivity.
  • JP 2006-73811 A JP 2006-302834 A Japanese Patent Laid-Open No. 11-66953 JP 2005-93996 A JP 2006-83377 A Japanese Patent No. 4353380
  • the paste-like silver particle composition described in Patent Document 6 is considered to have better thermal conductivity and connection reliability at high temperatures than other methods because the silver particles form metal bonds.
  • a paste-like silver particle composition requires three steps of coating, preliminary drying, and heat sintering.
  • it contains a solvent there are problems such as generation of spots due to flow during application, drying, mounting of a semiconductor element and sintering, and generation of voids during drying and sintering.
  • solder when solder is used, die bonding is performed by interposing a sheet-like solder between the substrate and the semiconductor element and heating and melting. In this method, the process can be simplified and the occurrence of spots and voids due to the solvent can be suppressed as compared with the paste.
  • soldering has a problem in connection reliability at high temperatures. In addition, there is a problem that even if a metal having a high melting point is simply used instead of solder, bonding becomes difficult.
  • the present invention provides a die bond sheet that is excellent in thermal conductivity and connection reliability, and that can join a semiconductor element and a semiconductor element mounting support member in a simple process, and a method for manufacturing a semiconductor device using the same. With the goal.
  • the present invention provides a porous sheet having a porosity of 15 to 50% by volume, containing silver and / or copper, and having a carbon content of 1.5% by mass or less, a semiconductor element and a support member for mounting a semiconductor element,
  • a semiconductor device manufacturing method is provided in which a semiconductor element and a semiconductor element mounting support member are joined by heating and pressing them.
  • the semiconductor element and the semiconductor element mounting support member can be joined in a simple process, and excellent thermal conductivity is obtained.
  • a semiconductor device having connection reliability can be obtained.
  • the present invention also provides a die bond sheet comprising a porous sheet having a porosity of 15 to 50% by volume, containing silver and / or copper, and having a carbon content of 1.5% by mass or less. To do.
  • the semiconductor element and the semiconductor element mounting support member can be joined in a simple process, and excellent thermal conductivity and connection reliability can be obtained.
  • the die bond sheet of the present invention preferably contains 0.06 to 13.6 atomic percent vanadium and 0.12 to 7.8 atomic percent tellurium in terms of atoms. In this case, adhesion to Ag, Cu, Ni, Al, and SiO 2 can be improved.
  • the porous sheet is preferably obtained by forming a composition containing silver particles and / or copper particles and a dispersion medium into a sheet shape and heating.
  • the present invention can also provide a semiconductor device characterized by having a structure in which a semiconductor element and a semiconductor element mounting support member are bonded via the die bond sheet according to the present invention.
  • the semiconductor device of the present invention can have excellent thermal conductivity and connection reliability when the semiconductor element is bonded to the semiconductor element mounting support member by the die bond sheet according to the present invention.
  • ADVANTAGE OF THE INVENTION According to this invention, it is excellent in thermal conductivity and connection reliability, and provides the manufacturing method of the die-bonding sheet
  • FIG. 3 is a SEM image showing a cross section of a die bond sheet before die bonding in Example 1.
  • FIG. 4 is a SEM image showing a cross section of an adhesive layer in a bonded sample using the die bond sheet of Example 1.
  • FIG. 4 is a SEM image showing a cross section of an adhesive layer in a bonded sample using the die bond sheet of Example 1.
  • FIG. It is a SEM image which shows the cross section of the contact bonding layer in the joining sample using the die-bonding sheet
  • FIG. It is a SEM image which shows the interface of the die bond sheet and a copper plate in the joining sample using the die bond sheet of Example 9. It is a SEM image which shows the die bond sheet and interface in the joining sample using the die bond sheet of Example 13. It is a SEM image which shows the die bond sheet and aluminum substrate interface in the joining sample using the die bond sheet of Example 13. It is a SEM image which shows the cross section of the contact bonding layer in the joining sample using the silver foil of the comparative example 1. It is a SEM image which shows the cross section of the contact bonding layer in the joining sample using the die-bonding sheet
  • FIG. It is a SEM image which shows the cross section of the contact bonding layer in the joining sample using the die-bonding sheet of the comparative example 3. It is a SEM image which shows the cross section of the die-bonding sheet
  • FIG. 1 is a schematic cross-sectional view showing an example of a semiconductor device according to the present invention.
  • a semiconductor device 100 shown in FIG. 1 has a structure in which a semiconductor element 2 and a semiconductor element mounting support member 3 are bonded via a die bond sheet according to the present invention.
  • the die bond sheet 1 to be joined to the semiconductor element 2 and the semiconductor element mounting support member 3 is a die bond sheet according to the invention that has been deformed / modified by heat and pressure, and is after joining.
  • the die bond sheet 1 firmly bonds two adherends by forming a metal bond with the adherend surface 4a of the semiconductor element 2 and with the adherend surface 4b of the semiconductor element mounting support member 3. is doing.
  • the die bond sheet of the present embodiment is a porous sheet having a porosity of 15 to 50% by volume, containing silver and / or copper, and having a carbon content of 1.5% by mass or less.
  • the porous sheet preferably contains gold, silver and copper as main components from the viewpoints of thermal conductivity, ductility and connectivity.
  • silver or copper is preferable from the viewpoint of cost, and an alloy of silver and copper may be used. If metallic components other than silver and copper are contained, it is not preferable because the thermal conductivity is lowered and an oxide film that cannot be easily removed is formed on the surface, which hinders bonding. Therefore, among the elements contained in the porous sheet, the element ratio occupied by silver and / or copper in the element ratio excluding hydrogen, carbon and oxygen is preferably 60 atomic% or more, and 70 atomic% or more. More preferably, it is more preferably 80 atomic% or more.
  • the porous sheet is preferably a flat porous sheet made of a continuous silver and / or copper containing pores in the sheet.
  • the porous sheet is preferably composed of a sintered body of silver particles and / or copper particles.
  • the die bond sheet of the present embodiment can contain a glass component as an adhesion aid for the purpose of expanding the types of adherends.
  • the glass component is preferably sufficiently melted and fluidized at the time of thermocompression bonding of the die bond sheet.
  • a low melting glass having a softening point of 350 ° C. or lower is preferable.
  • Examples of such a low-melting glass include those containing both vanadium, tellurium and silver.
  • a lead-free glass composition having a total content of Ag 2 O, V 2 O 5 and TeO 2 of 75% by mass or more is preferable.
  • the low melting point glass further includes P 2 O 5 (diphosphorus pentoxide), BaO (barium oxide), K 2 O (potassium oxide), WO 3 (tungsten trioxide), MoO 3 (molybdenum trioxide), Fe 2.
  • P 2 O 5 diphosphorus pentoxide
  • BaO barium oxide
  • K 2 O potassium oxide
  • WO 3 tungsten trioxide
  • MoO 3 molecular trioxide
  • Fe 2 O 5 diphosphorus pentoxide
  • BaO barium oxide
  • K 2 O potassium oxide
  • WO 3 tungsten trioxide
  • MoO 3 molecular trioxide
  • Fe 2 O 3 iron oxide (III)
  • MnO 2 manganese dioxide
  • Sb 2 O 3 antimony trioxide
  • ZnO zinc oxide
  • the die bond sheet of this embodiment preferably contains 0.06 to 13.6 atomic% of vanadium in terms of atoms and 0.12 to 7.8 atomic% of tellurium in terms of atoms. In this case, adhesion to Ag, Cu, Ni, Al, and SiO 2 can be improved.
  • the contents of various elements such as vanadium and tellurium in the die bond sheet can be quantified by fluorescent X-ray measurement, atomic absorption analysis, emission analysis (Atomic Emission Spectrometry), ICP-MS (Inductively Coupled Plasma-Mass Spectrometry).
  • 0.1 g of the die bond sheet is weighed into a plastic container with a lid, 4 mL of nitric acid and 3 mL of hydrogen peroxide are added, and the mixture is sonicated for 30 minutes to be dissolved. This is diluted with pure water to obtain a measurement solution.
  • an inductively coupled plasma emission spectrometer SPS5100, manufactured by Hitachi High-Tech Science Co., Ltd.
  • the contained elements and the ratio thereof can be obtained.
  • Each element emits light at the following wavelengths. V: 292.401 nm, Te: 214.282 nm, W207.912 nm, Ag: 328.068 nm.
  • the density M 2 of the material constituting the die bond sheet is calculated using the following formula (3), and M in the formula (1) By substituting for 2 , the porosity is obtained.
  • M 2 (g / cm 3 ) 1 / [ ⁇ (B / 100) / M 3 ⁇ + ⁇ (1 ⁇ B / 100) / M 4 ⁇ ] (3)
  • B Low melting point glass content (% by mass)
  • M 3 Low melting point glass density (for example, 5.5 g / cm 3 )
  • M 4 Silver density (for example, 10.5 g / cm 3 ), Copper density (for example, 8.96 g / cm 3 ), density of silver and copper mixture (for example, density M 2 (g / cm 3 ) calculated by the above formula (2)]
  • the die bond sheet of this embodiment has a porosity of 15 to 50% by volume, preferably 15 to 40% by volume, and more preferably 15 to 30% by volume from the viewpoint of connection reliability. If the porosity is within the above range, the die bond sheet can follow the adherend due to the deformation of the holes when the die bond is crimped, and can exhibit a sufficiently high adhesive force, and the die bond sheet has sufficient mechanical strength. It can be ensured, and it is possible to prevent problems such as breakage and chipping and poor handling.
  • the shape of the holes included in the die bond sheet according to the present embodiment may be continuous holes or independent holes.
  • the pores are preferably distributed throughout the die bond sheet.
  • the die bond sheet of the present embodiment has a carbon content of 1.5% by mass or less, and preferably 1.0% by mass or less.
  • a carbon content of 1.5% by mass or less, and preferably 1.0% by mass or less.
  • the carbon content can be measured by an induction heating combustion infrared absorption method.
  • the die bond sheet according to the present embodiment can be obtained by forming a composition containing silver particles and / or copper particles and a dispersion medium into a sheet shape and heating.
  • Silver particles are particles containing silver atoms, and particles containing 90% by mass or more of silver atoms are preferable.
  • Silver particles may contain silver oxides such as silver oxide, other noble metals such as gold and copper, or oxides thereof in addition to metallic silver.
  • the ratio of the noble metal in the silver particles is preferably 80 atomic% or more, and 90 atomic%. More preferably, it is more preferably 95 atomic% or more.
  • the shape of the silver particles examples include a spherical shape, a lump shape, a needle shape, and a flake shape.
  • the volume average particle diameter of primary particles of silver particles is preferably 0.01 ⁇ m or more and 50 ⁇ m or less, more preferably 0.05 ⁇ m or more and 30 ⁇ m or less, and further preferably 0.1 ⁇ m or more and 10 ⁇ m or less.
  • Silver particles may be treated with a surface treatment agent.
  • the surface treating agent is preferably one that can be removed in the process of producing the die bond sheet.
  • examples of such a surface treating agent include aliphatic carboxylic acids such as palmitic acid, stearic acid, arachidic acid, terephthalic acid, and oleic acid, aromatic carboxylic acids such as pyromellitic acid and o-phenoxybenzoic acid, and cetyl alcohol.
  • Fatty alcohols such as stearyl alcohol, isobornylcyclohexanol, aliphatic alcohols such as tetraethylene glycol, aromatic alcohols such as p-phenylphenol, alkylamines such as octylamine, dodecylamine, stearylamine, stearonitrile, deconitrile, etc.
  • Silane coupling agents such as group nitriles and alkylalkoxysilanes, and polymer treatment agents such as polyethylene glycol, polyvinyl alcohol, polyvinylpyrrolidone, and silicone oligomers.
  • the copper particles are particles containing copper atoms, and particles containing 90% by mass or more of copper atoms are preferable.
  • the copper particles may contain copper oxides such as copper oxide (I) and copper oxide (II), other noble metals such as silver and gold, or oxides thereof in addition to copper metal.
  • grains which coated the copper particle surface with silver may be sufficient.
  • the ratio of the noble metal in the copper particles is preferably 80 atomic% or more, and 90 atomic%. More preferably, it is more preferably 95 atomic% or more.
  • Examples of the shape of the copper particles include a spherical shape, a block shape, a needle shape, and a piece shape.
  • the volume average particle size of the primary particles of the copper particles is preferably 0.01 ⁇ m or more and 50 ⁇ m or less, more preferably 0.05 ⁇ m or more and 30 ⁇ m or less, and further preferably 0.1 ⁇ m or more and 10 ⁇ m or less.
  • the copper particles may be treated with a surface treatment agent.
  • the surface treating agent is preferably one that can be removed in the process of producing the die bond sheet.
  • Examples of such a surface treating agent include aliphatic carboxylic acids such as palmitic acid, stearic acid, arachidic acid, terephthalic acid, and oleic acid, aromatic carboxylic acids such as pyromellitic acid and o-phenoxybenzoic acid, and cetyl alcohol.
  • Fatty alcohols such as stearyl alcohol, isobornylcyclohexanol, aliphatic alcohols such as tetraethylene glycol, aromatic alcohols such as p-phenylphenol, alkylamines such as octylamine, dodecylamine, stearylamine, stearonitrile, deconitrile, etc.
  • Silane coupling agents such as group nitriles and alkylalkoxysilanes, and polymer treatment agents such as polyethylene glycol, polyvinyl alcohol, polyvinylpyrrolidone, and silicone oligomers.
  • the dispersion medium is preferably a volatile one, such as pentanol, hexanol, heptanol, octanol, decanol, ethylene glycol, diethylene glycol, propylene glycol, butylene glycol, ⁇ -terpineol, bornylcyclohexanol (MTPH) and the like.
  • a volatile one such as pentanol, hexanol, heptanol, octanol, decanol, ethylene glycol, diethylene glycol, propylene glycol, butylene glycol, ⁇ -terpineol, bornylcyclohexanol (MTPH) and the like.
  • polyhydric alcohols ethylene glycol butyl ether, ethylene glycol phenyl ether, diethylene glycol methyl ether, diethylene glycol ethyl ether, diethylene glycol butyl ether, diethylene glycol isobutyl ether, diethylene glycol hexyl ether, triethylene glycol methyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethyl Glycol dibutyl ether, diethylene glycol butyl methyl ether, diethylene glycol isopropyl methyl ether, triethylene glycol dimethyl ether, triethylene glycol butyl methyl ether, propylene glycol propyl ether, dipropylene glycol methyl ether, dipropylene glycol ethyl ether, dipropylene glycol propyl ether, Ethers such as dipropylene glycol butyl ether, dipropylene glycol dimethyl ether, tripropylene glycol
  • Examples of mercaptans having an alkyl group having 1 to 18 carbon atoms include ethyl mercaptan, n-propyl mercaptan, i-propyl mercaptan, n-butyl mercaptan, i-butyl mercaptan, t-butyl mercaptan, pentyl mercaptan, and hexyl mercaptan. And dodecyl mercaptan.
  • Examples of mercaptans having a cycloalkyl group having 5 to 7 carbon atoms include cyclopentyl mercaptan, cyclohexyl mercaptan, and cycloheptyl mercaptan.
  • the blending amount of the dispersion medium is preferably 5 to 50 parts by mass with respect to 100 parts by mass of silver particles or copper particles.
  • the composition may contain a glass component as an adhesion aid.
  • a glass component As an adhesion aid.
  • a low melting point glass having a softening point of 350 ° C. or lower is preferable from the viewpoint of sufficiently melting and flowing during thermocompression bonding.
  • low melting point glass particles can be blended with the above composition.
  • the low melting point glass particles include, as main components, 10 to 60% by mass of Ag 2 O (silver (I) oxide), 5 to 65% by mass of V 2 O 5 (divanadium pentoxide), and 15 to 50% by mass. % Of TeO 2 (tellurium dioxide), and a lead-free glass composition having a total content of Ag 2 O, V 2 O 5 and TeO 2 of 75% by mass or more is preferable.
  • the low-melting glass particles further include P 2 O 5 (diphosphorus pentoxide), BaO (barium oxide), K 2 O (potassium oxide), WO 3 (tungsten trioxide), MoO 3 (molybdenum trioxide), Fe
  • P 2 O 5 diphosphorus pentoxide
  • BaO barium oxide
  • K 2 O potassium oxide
  • WO 3 tungsten trioxide
  • MoO 3 molecular trioxide
  • Fe One or more of 2 O 3 (iron oxide (III)), MnO 2 (manganese dioxide), Sb 2 O 3 (antimony trioxide) and ZnO (zinc oxide) may be included.
  • the volume average particle size of the primary particles of the low-melting glass particles is preferably 0.01 ⁇ m or more and 50 ⁇ m or less, more preferably 0.05 ⁇ m or more and 30 ⁇ m or less, and further preferably 0.1 ⁇ m or more and 10 ⁇ m or less. preferable.
  • the blending amount of the low-melting glass particles is preferably 1 part by mass or more and 30 parts by mass or less, preferably 2 parts by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the composition from the viewpoint of adhesiveness of the low melting point glass. It is more preferable that By making the blending amount of the low melting point glass particles within the above range, it becomes easy to obtain the effect of improving the adhesiveness by the low melting point glass, and it is possible to suppress a decrease in thermal conductivity and an increase in volume resistivity, Sufficient characteristics as a die-bonding material can be secured.
  • the blending amount of the low melting point glass particles is such that the vanadium content in the above-described die bond sheet is 0.06 to 13.6 atomic% in terms of atoms, and the tellurium content is 0.12 to 7.8 in terms of atoms. It is preferable to set the atomic%.
  • the composition is preferably pasty.
  • the paste-like composition preferably has a Casson viscosity at 25 ° C. of 0.01 Pa ⁇ s or more and 10 Pa ⁇ s or less, and 0.05 Pa ⁇ s or more and 5 Pa ⁇ s or less from the viewpoint of application and moldability. More preferred.
  • a small amount of additives may be added to the paste-like composition from the viewpoint of improving the dispersibility and sintering properties of the particles and adjusting the viscosity of the paste.
  • the above additives include aliphatic carboxylic acids such as palmitic acid, stearic acid, arachidic acid, terephthalic acid, oleic acid, linoleic acid, phosphorous acid such as diphenyl phosphite, diisopropyl phosphite, dihydroxynaphthoic acid, dihydroxy Aliphatic hydroxycarboxylic acids such as benzoic acid, aromatic hydroxycarboxylic acids such as 3-hydroxy-2-methylbenzoic acid, and the like can be used.
  • stearic acid is preferred from the viewpoint of improving the dispersibility and sinterability of the particles and adjusting the viscosity of the paste.
  • the compounding amount of the additive is preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the metal and glass particles.
  • an organic substance particularly a binder resin.
  • a binder resin When such an organic substance or a binder resin is included in the die bond sheet, there is a tendency that the connectivity at the time of die bonding by the die bond sheet and the heat resistance after die bonding are inferior.
  • the technique for forming the composition into a sheet may be any technique that allows particles to be deposited in a sheet form on a molded substrate.
  • examples of such techniques include inkjet printing, super inkjet printing, screen printing, transfer printing, Offset printing, jet printing method, dispenser, jet dispenser, needle dispenser, comma coater, slit coater, die coater, gravure coater, slit coat, letterpress printing, intaglio printing, gravure printing, stencil printing, soft lithography, bar coat, applicator, particle
  • a deposition method, spray coater, spin coater, dip coater, electrodeposition coating, or the like can be used.
  • the molded substrate on which the particles are deposited in a sheet shape is preferably a plate-shaped or sheet-shaped substrate having a flat surface with a 10-point average surface roughness of 20 ⁇ m or less from the viewpoint of the smoothness of the molded die-bonded sheet.
  • substrate does not have adhesiveness with respect to a die-bonding sheet from the necessity of releasing a die-bonding sheet formed through the heating process from a board
  • the molded substrate is preferably made of a material having heat resistance that does not deform at a temperature at which silver particles or copper particles are sintered.
  • Examples of the material of the molded substrate include polytetrafluoroethylene, polyimide, PEEK resin, and the like.
  • the above composition does not contain low-melting glass particles, copper, nickel, aluminum, glass, alumina, silicon nitride, and stainless steel can be used.
  • a substrate having heat resistance and a cloth coated or impregnated with the above material may be used as a molded substrate.
  • the heating process is performed after the composition is formed into a sheet on a molded substrate and then transferred from the molded substrate to another heating process substrate before the heating step, the material of the molded substrate is limited. No, as long as the substrate for the heating process does not have adhesiveness to the die bond sheet.
  • the paste-like composition formed into a sheet can be appropriately dried from the viewpoint of suppressing flow and void generation during sintering.
  • the above drying method can be drying at room temperature, drying by heating, or drying under reduced pressure.
  • hot plate warm air dryer, warm air heating furnace, nitrogen dryer, infrared dryer, infrared heating furnace, far infrared heating furnace, microwave heating device, laser heating device, electromagnetic heating device
  • a heater heating device, a steam heating furnace, a hot plate press device, or the like can be used.
  • the drying temperature and time are preferably adjusted as appropriate according to the type and amount of the dispersion medium used. For example, drying at 50 to 180 ° C. for 1 to 120 minutes is preferable.
  • the paste-like composition formed into a sheet is heat-treated and sintered.
  • Sintering may be performed by heat treatment or heat and pressure treatment.
  • heat treatment hot plate, hot air dryer, hot air heating furnace, nitrogen dryer, infrared dryer, infrared heating furnace, far infrared heating furnace, microwave heating device, laser heating device, electromagnetic heating device, heater heating An apparatus, a steam heating furnace, or the like can be used.
  • a hot plate press apparatus, a heated roll press, or the like may be used for the heat and pressure treatment, or the above heat treatment may be performed while applying pressure with a weight.
  • the above sintering temperature and time may be any temperature and time at which silver and / or copper particles can be sintered. For example, heating at 200 to 300 ° C. for 5 minutes to 2 hours is preferable.
  • the copper particles may be sintered in a reducing atmosphere from the viewpoint of removing the surface oxide film.
  • a reducing atmosphere examples include a hydrogen atmosphere, a nitrogen atmosphere containing formic acid, and an atomic hydrogen atmosphere.
  • the die bond sheet obtained by sintering can be released from the molded substrate and obtained as a self-supporting sheet.
  • the obtained die bond sheet is used for the die bonding step.
  • a blade-like plate can be obtained by being inserted between the obtained die bond sheet and the molded substrate.
  • the die bond sheet can be cut to a required size in the die bonding process. Cutting may be performed before releasing from the molded substrate or after.
  • the die bond sheet thus produced may be impregnated with a reducing agent for the purpose of removing the oxide film from the metal surface of the adherend.
  • a reducing agent for the purpose of removing the oxide film from the metal surface of the adherend.
  • phenol compounds such as phloroglucinol and resole, phosphorous acid such as diisopropyl phosphite and diphenyl phosphite, formic acid compounds such as formic acid and ethyl formate, aliphatic compounds such as dihydroxynaphthoic acid and dihydroxybenzoic acid Hydroxycarboxylic acids, aromatic hydroxycarboxylic acid carboxylic acids such as 3-hydroxy-2-methylbenzoic acid, sugars such as glucose and sucrose, polyols such as diglycerin, dipropylene glycol and triethylene glycol, tin chloride (II ) And the like, and oxalic acid and glyoxylic acid.
  • the porosity of the die bond sheet can be adjusted by the pressure during the production of the die bond sheet.
  • the pressure condition is preferably 0 to 5 MPa. If the pressure at the time of producing the die bond sheet is within the above range, the porosity included in the sheet is 15% by volume or more, and the sheet is deformed to exhibit a sufficiently high adhesive force to the adherend. it can. On the other hand, when the pressure is higher than the above upper limit, the porosity is less than 15% by volume, and the sheet is difficult to deform during pressure bonding, and there is a tendency that a gap is formed between the joining surface and the sheet. Such voids are not preferable because they increase the local thermal resistance, lower the adhesive force, and become the starting point of breakage due to thermal stress, and lower the connection reliability.
  • the carbon content in the die bond sheet can be adjusted by appropriately selecting the components to be blended in the paste-like composition and the sintering conditions. Specifically, it is preferable not to include a binder resin in the paste-like composition.
  • the dispersion medium to be blended in the paste-like composition is preferably volatile. Examples of the method for adjusting the viscosity of the paste-like composition to the above preferable range using a volatile dispersion medium include, for example, adjustment of particle concentration, adjustment of particle shape, particularly aspect ratio and particle size, isobornylcyclohexanol, and the like. The use of a high-viscosity dispersion medium such as
  • the surface treatment agent for silver particles and / or copper particles is volatile or thermally decomposable.
  • the carbon content contained in the die bond sheet can be adjusted to 1.5% by mass or less by performing sintering at 200 to 300 ° C. for 30 minutes to 2 hours using the above paste-like composition.
  • the thickness of the die bond sheet can be appropriately set according to the surface roughness of the semiconductor element as the adherend and the semiconductor element mounting support member and the connection reliability after bonding.
  • the thickness of the die bond sheet needs to be a thickness that allows the die bond sheet to compress and deform and absorb the surface irregularities of the semiconductor element and the semiconductor element mounting support member, and is preferably 10 ⁇ m or more, preferably 20 ⁇ m or more. It is more preferable that Moreover, since it is not preferable that the semiconductor element is embedded in the die bond sheet, it is preferable that the die bond sheet is thinner than the thickness of the semiconductor element. Generally, this thickness is 600 ⁇ m or less.
  • the semiconductor device 100 shown in FIG. 1 is obtained by interposing the above-described die bond sheet between the semiconductor element 2 and the semiconductor element mounting support member 3 and heating and pressing them.
  • Heating and pressing can be performed with a thermocompression bonding apparatus.
  • a thermocompression bonding apparatus a hot plate press apparatus, a heating roll press, or the like may be used, or heat treatment may be performed while applying pressure with a weight.
  • the temperature at the time of thermocompression bonding is preferably 220 ° C. or higher, more preferably 250 ° C. or higher, from the viewpoint of obtaining sufficient adhesive strength.
  • the upper limit of the thermocompression bonding temperature is set by the heat-resistant temperature of the device, can be 400 ° C. or lower, and can be 350 ° C. or lower.
  • the pressure during thermocompression bonding is preferably 1 MPa or more, more preferably 5 MPa or more, further preferably 7 MPa or more, and particularly preferably 10 MPa or more, from the viewpoint of adhesion. If the pressure is not applied, the adhesion between the die bond sheet and the adherend due to the deformation of the sheet is difficult to obtain, and there is a tendency that sufficient adhesive force cannot be obtained.
  • the upper limit value of the thermocompression bonding pressure is preferably 35 MPa or less, and more preferably 20 MPa or less, from the viewpoint of preventing the semiconductor element and the semiconductor element mounting support member from being damaged.
  • the die shear strength of the joined body after thermocompression bonding is preferably 20 MPa or more. In particular, the die shear strength with respect to the semiconductor element and the substrate provided with silver plating is preferably 20 MPa or more.
  • the atmosphere during thermocompression bonding is preferably carried out in air or in an inert gas if the adherend is a combination of a non-oxidizing material to be adhered and a die bond sheet containing silver.
  • an inert gas nitrogen containing no oxygen or a rare gas is preferable.
  • thermocompression bonding is performed while removing the oxide film in a reducing atmosphere.
  • a reducing atmosphere include a hydrogen atmosphere or a nitrogen atmosphere containing formic acid.
  • hydrogen gas may be activated by using a hot wire method, an RF plasma method, or a surface wave plasma method.
  • a reducing agent may be impregnated in the die bond sheet instead of the reducing atmosphere, and thermocompression bonding may be performed in an inert gas.
  • a protective sheet may be provided.
  • the protective sheet may be made of a material that can withstand the temperature during thermocompression bonding and is softer than the adherend to be contacted. Examples of such a material include polyimide, fluororesin, aluminum, copper, and carbon.
  • the porosity of the die bond sheet after thermocompression bonding is preferably 10% by volume or less, more preferably 8% by volume or less, and further preferably 5% by volume or less. preferable.
  • the material is copper, it is preferably 15% by volume or less, more preferably 10% by volume or less, and still more preferably 6% by volume or less. Since copper has a higher elastic modulus than silver, the same or higher strength can be obtained even with a porosity higher than that of a silver die bond sheet.
  • a die bond sheet is interposed between a semiconductor element and a semiconductor element mounting support member, and heat bonding is performed so as to achieve such a porosity, so that the voids are deformed when the die bond sheet is pressed and bonded.
  • the mechanical strength of the die bond sheet can be sufficiently secured, and the reliability against thermal shock and thermal stress due to power cycle can be secured.
  • the porosity of the die bond sheet after thermocompression bonding can be measured by a method of calculating from the area ratio of the hole portion and the dense portion from the SEM image of the cross section. For example, it can be measured by the following method.
  • the pressure-bonded sample is poured with epoxy casting resin so that the entire sample is filled and cured.
  • the cast sample is cut near the cross section to be observed, the cross section is cut by polishing, and the cross section is processed by a CP (cross section polisher) processing machine.
  • a cross-sectional image is obtained by observing the cross section with an SEM apparatus (eg, TM-1000, manufactured by Hitachi High-Technologies Corporation).
  • the ratio of the holes included in the cross-section is the ratio of the number of dots to the cross-section by measuring the number of dots by selecting the hole using the image processing software and calculating the weight ratio by printing the image and cutting it out. Or a method of calculating the porosity from the area ratio of the hole portion occupying the cross section by adjusting the threshold value for the image of the cross section, binarizing the hole portion and the dense portion into white / black Etc. can be obtained.
  • Image processing software includes Adobe Photoshop series (manufactured by Adobe Systems Inc.), Paint Tool SAI series (SYSTEMX Corporation), GIMP (manufactured by the GIMP development team.), Corel PrintShop Pro series (manufactured by Corel Corporation J) US National Institutes of Health), but is not limited thereto.
  • V 2 / V 1 Is preferably 0.37 or less, more preferably 0.31 or less, and even more preferably 0.19 or less.
  • the thickness of the die bond sheet after thermocompression bonding is preferably 80% or less, more preferably 76% or less, and even more preferably 64% or less, compared with that before thermocompression bonding.
  • the porosity and / or thickness after thermocompression bonding can be adjusted by the pressure during thermocompression bonding.
  • a pressure can be appropriately set by those skilled in the art within the above-described pressure range during thermocompression bonding.
  • FIG. 2 is a schematic cross-sectional view showing another example of the semiconductor device according to the present invention.
  • the semiconductor device 102 shown in FIG. 2 includes a semiconductor element mounting support member 3 and a plurality of semiconductor elements 2a and 2b. Has a structure bonded via a die bond sheet 1.
  • 3 is a schematic cross-sectional view showing another example of the semiconductor device according to the present invention.
  • the semiconductor device 104 shown in FIG. 3 includes a semiconductor element 2 and a semiconductor element mounting support member 3 having a plurality of die bonds. It has a structure joined via sheets 1a and 1b. In the semiconductor device 104, the thickness of the die bond layer can be increased, and the followability to a non-smooth deposition surface can be improved.
  • FIG. 4 is a schematic cross-sectional view showing an example of a semiconductor device manufactured using the die bond sheet of the present embodiment.
  • a semiconductor device 106 shown in FIG. 4 includes a semiconductor element 2 connected via a die bond sheet 1 according to the present embodiment on a lead frame 5a, and a mold resin 7 for molding them.
  • the semiconductor element 2 is connected to the lead frame 5 b through the wire 6.
  • a semiconductor device obtained by using the die bond sheet according to the present embodiment includes a power module including a diode, a rectifier, a thyristor, a MOS gate driver, a power switch, a power MOSFET, an IGBT, a Schottky diode, a fast recovery diode, a transmitter, Examples include amplifiers and LED modules.
  • the power module, transmitter, amplifier, and LED module obtained using the die bond sheet according to the present embodiment can have high adhesion between the semiconductor element and the semiconductor element mounting support member.
  • Paste compositions 1 to 10 were prepared according to Preparation Examples 1 to 10 below. Tables 1 to 3 show the amount of each component in parts by mass.
  • AgC239 Silver particles (Fukuda Metal Foil Powder Co., Ltd., product name “AgC239”, volume average particle size 3.0 ⁇ m).
  • K-0082P Silver particles (manufactured by METALOR, product name “K-0082P”, volume average particle size 1.6 ⁇ m).
  • Silver foil Silver foil (manufactured by Alfa Aesar, product name “Silver Foil 0.1 mm thick hard Prem. 99.998%, thickness 100 ⁇ m)
  • Cu-HWQ Copper particles (manufactured by Fukuda Metal Foil Powder Industry Co., Ltd., product name “Cu-HWQ”, volume average particle size 1.5 ⁇ m).
  • Nanotech CUO Copper oxide particles (manufactured by CIK Nanotech, product name “Nanotech CUO”, volume average particle size 70 ⁇ m).
  • CH-002 Spherical copper particles (manufactured by Mitsui Kinzoku Co., Ltd., product name “CH-002”, volume average particle size 0.3 ⁇ m)
  • Cupric oxide (Wako Pure Chemical Industries, product name “Copper (II) oxide”).
  • 3L3 (Fukuda Metal Foil Powder Co., Ltd., product name “3L3”, volume average particle size 10 ⁇ m flake shape)
  • Stearic acid (New Nippon Rika Co., Ltd., product name "Stearic acid”).
  • VP-1300 Low melting point glass particles (manufactured by Hitachi Chemical Co., Ltd., product name “Bunny Tect III VP-1300”, volume average particle size 1 ⁇ m).
  • MTPH (manufactured by Nippon Terpene Kogyo Co., Ltd., product name “Bornylcyclohexanol”).
  • DPMA (manufactured by Daicel Chemical Industries, product name “dipropylene glycol methyl ether acetate”).
  • Polypropylene carbonate (product name “4-methyl-1,3-dioxolan-2-one, manufactured by Wako Pure Chemical Industries, Ltd.).
  • Terpineol (Wako Pure Chemical Industries, product name “ ⁇ -terpineol”).
  • Polyamic acid (manufactured by Aldrich, product name “Poly (pyromeric dianhydride-co-oxydianline) NMP solution”).
  • Preparation Example 2 Add 3.2 g of propylene carbonate as a dispersion medium, 14.28 g of Cu-HWQ (manufactured by Fukuda Metal Foil Powder Co., Ltd.) as copper particles, and 2.52 g of nanotech CUO (manufactured by CIK Nanotech) as copper oxide particles to a poly bottle. Stir with a spatula until the dry powder is gone. Thereafter, a paste-like composition 2 was obtained in the same manner as in Preparation Example 1.
  • Paste composition 1 was applied in a film form on a glass plate using a Baker applicator (YBA5 type, manufactured by Yoshimitsu Seiki Co., Ltd.) with a gap set at 100 ⁇ m.
  • the glass plate was heated from room temperature to 200 ° C. at 10 ° C./min on a hot plate, and then allowed to stand at 200 ° C. for 1 hour. After returning this glass substrate to room temperature (25 degreeC), the cured film of the paste-form composition 1 was obtained as a self-supporting film
  • This cured film was cut into a square of 14 ⁇ 14 mm 2 to obtain a die bond sheet.
  • a digital linear gauge (DG-525H, manufactured by Ono Sokki Co., Ltd.)
  • the difference between the glass substrate thickness and the total thickness of the glass substrate and the die bond sheet was measured as the film thickness of the die bond sheet. It was.
  • Carbon content measurement In order to evaluate the amount of organic matter contained in the die bond sheet, the carbon content was measured by an induction heating combustion infrared absorption method. When the carbon content is below the detection limit (10 ppm), it is indicated by “ ⁇ ” in the table.
  • the element ratio contained in the die bond sheet was quantified by the following emission analysis. First, about 0.1 g of a die bond sheet was weighed to 4 digits after the decimal point in a plastic container with a lid. To this, 4 mL of nitric acid (AA-100, manufactured by Tama Chemical Co., Ltd.) and 3 mL of hydrogen peroxide (for atomic absorption measurement, manufactured by Wako Pure Chemical Industries, Ltd.) were added and subjected to ultrasonic treatment for 30 minutes to dissolve the die bond sheet.
  • AA-100 nitric acid
  • hydrogen peroxide for atomic absorption measurement, manufactured by Wako Pure Chemical Industries, Ltd.
  • a die-bonded sheet of 14 ⁇ 14 mm 2 is placed on a silver-plated alumina DCB substrate, on which titanium, nickel and gold are plated in this order, and a silicon chip having a 2 ⁇ 2 mm 2 deposition surface is gold-plated 16
  • the sheets were placed side by side, and the expanded graphite sheet was placed on top of each other, and a heat pressure bonding apparatus (manufactured by Tester Sangyo Co., Ltd.) was used for bonding for 10 minutes at 10 MPa and 300 ° C. in air.
  • the bond strength of the die bond sheet was evaluated by die shear strength.
  • a universal bond tester equipped with a DS-100 load cell (4000 series, manufactured by DAGE), a silicon chip with a measurement speed of 5 mm / min, a measurement height of 50 ⁇ m, and a gold-plated surface is pressed horizontally to form a die bond sheet The die shear strength was measured. The average value of the values obtained by measuring 15 silicon chips was defined as the die shear strength.
  • the die shear strength was measured by thermocompression bonding using an atmosphere-controlled thermocompression bonding apparatus (RF-100B, manufactured by Ayumi Kogyo Co., Ltd.) in a formic acid-containing nitrogen atmosphere according to the method described in [Measurement of die shear strength]. .
  • RF-100B atmosphere-controlled thermocompression bonding apparatus
  • the die bond sheet of Example 1 exhibited a die shear strength of 50 MPa or more, which is a measurement limit, with respect to Ag, Cu, and Ni, and had sufficient adhesive strength.
  • Example 2 to 8 The die shear strength was measured according to the method described in [Measurement of die shear strength] except that the die bonding sheet of Example 1 was changed to the conditions shown in Table 1 for the crimping conditions by the thermocompression bonding apparatus. As a result, it was confirmed that when the temperature was 250 ° C. or higher, the pressure was 1 MPa or higher, and the time was 90 seconds or longer, the die shear strength was 10 MPa or higher and sufficient adhesive strength was obtained.
  • Example 9 Paste composition 2 was applied in a film form on a glass plate using a Baker applicator (YBA5 type, manufactured by Yoshimitsu Seiki Co., Ltd.) with a gap set at 100 ⁇ m.
  • This glass plate was heated at 300 ° C. for 1 hour in nitrogen containing formic acid (formic acid content was 10% by mass at 30 ° C.) with a formic acid reflow apparatus “SR-300-2” (manufactured by Ayumi Kogyo Co., Ltd.). After sintering, the substrate was allowed to stand in nitrogen at 300 ° C. for 10 minutes, then cooled to 50 ° C. or lower in nitrogen and then taken out into the air.
  • SR-300-2 manufactured by Ayumi Kogyo Co., Ltd.
  • the cured film of the paste-like composition 2 was obtained as a self-supporting film by inserting a blade of a cutter knife between the glass and the cured film and peeling off. This cured film was cut into a square of 14 ⁇ 14 mm 2 to obtain a die bond sheet. Using a digital linear gauge (DG-525H, manufactured by Ono Sokki Co., Ltd.), the difference between the glass substrate thickness and the total thickness of the glass substrate and the die bond sheet was measured as the film thickness of the die bond sheet. It was. Various measurements and analyzes were performed in the same manner as in Example 1 using this die bond sheet.
  • DG-525H digital linear gauge
  • the die-bond strength test piece of this die bond sheet contains formic acid using an atmosphere control thermocompression bonding apparatus (RF-100B, manufactured by Ayumi Kogyo Co., Ltd.) using a silver-plated alumina DCB (Direct Copper Bond) substrate and a copper plate as substrates.
  • the die shear strength was measured according to the method described in [Measurement of Die Shear Strength] except that crimping was performed in a nitrogen atmosphere.
  • the die shear strength of the die bond sheet of Example 9 was 20 MPa for the silver-plated alumina DCB substrate and 22 MPa for the copper plate, and both showed sufficient adhesive strength.
  • Example 10 to 14 A die-bonding sheet was produced in the same manner as in Example 1 except that the pasty compositions 3 to 7 were coated on a PTFE (tetrafluoroethylene) impregnated glass cloth fixed on a glass substrate with a polyimide tape. Various measurements and analyzes were performed in the same manner as in Example 1 using this die bond sheet.
  • PTFE tetrafluoroethylene
  • thermocompression bonding was performed using an atmosphere-controlled thermocompression bonding apparatus (RF-100B, manufactured by Ayumi Kogyo Co., Ltd.), and the die shear strength was measured. The results are shown in Table 2. In the die bond sheet of Example 12 to which the low melting point glass particles were added, adhesion to Ag, Cu, Ni, Al, and SiO 2 was obtained.
  • Example 15 A Teflon (registered trademark) -impregnated glass cloth sheet was fixed on an aluminum plate with a polyimide tape, and a paste-like composition 8 was applied in a film shape using a Baker applicator having a gap of 150 ⁇ m.
  • This aluminum plate was introduced into a formic acid reflow apparatus and allowed to stand for 10 minutes under reduced pressure. Thereafter, the aluminum plate was heated at a pressure of 0.09 MPa in a formic acid-containing nitrogen atmosphere, and was treated for 1 hour in a state of reaching 385 ° C. Thereafter, this was decompressed at 385 ° C.
  • the cured film of the paste-like composition 8 was obtained as a self-supporting film by inserting a blade of a cutter knife between the glass and the cured film and peeling off. This self-supporting film was cut into a square of 14 ⁇ 14 mm 2 to obtain a die bond sheet.
  • a die bond sheet prepared from the paste-like composition 8 is placed on a copper plate (19 ⁇ 25 mm, thickness 3 mm), and four copper chips (2 ⁇ 2 mm 2 ) are arranged in four rows on it, and an alumina plate is placed thereon. (14 ⁇ 14 mm 2 , thickness 1 mm) and an expanded graphite sheet (14 ⁇ 14 mm 2 , thickness 0.5 mm) were stacked in this order.
  • RF-100B atmosphere-controlled thermocompression bonding apparatus
  • the die shear strength was measured according to the method described in [Measurement of die shear strength] except that this joined body was used. As a result, the die bond sheet of Example 15 was judged to have a die shear strength of 50 MPa or more because the copper chip was broken rather than the die bond layer at around 50 MPa.
  • Example 16 An opening of 20 ⁇ 20 mm 2 was provided on a Teflon (registered trademark) sheet having a thickness of 300 ⁇ m to form a mask. This mask was overlaid on a quartz glass plate, paste-like composition 9 was applied to the mask opening, leveled with a metal squeegee, and the mask was removed. The glass plate was dried on a hot plate at 110 ° C. for 10 minutes and then set on a tube heater (made by ALL VACUUM CREATE). Thereafter, the glass plate was treated at 350 ° C. for 1 hour in a hydrogen atmosphere, and then nitrogen was passed and the mixture was allowed to cool and taken out into the air near room temperature.
  • the cured film of the paste-like composition 9 was obtained as a self-supporting film by inserting a blade of a cutter knife between the glass and the cured film and peeling off. This self-supporting film was cut into a square of 14 ⁇ 14 mm 2 to obtain a die bond sheet.
  • the die shear strength was measured in the same manner as in Example 15 except that a die bond sheet produced from the paste-like composition 9 was used. As a result, the die bond sheet produced from the paste-like composition 9 had a die shear strength of 50 MPa or more.
  • Example 17 A Teflon (registered trademark) sheet having a thickness of 300 ⁇ m is provided with a 20 ⁇ 20 mm 2 opening as a mask, this mask is overlaid on a quartz glass plate (27 ⁇ 35 mm 2 ), a paste-like composition 10 is applied, and a metal squeegee is applied. And the mask was removed.
  • This quartz glass plate was introduced into a formic acid reflow apparatus, decompressed and left for 10 minutes. Thereafter, the quartz glass plate was heated at a pressure of 0.09 MPa in a formic acid-containing nitrogen atmosphere and treated for 1 hour in a state of reaching 385 ° C. Thereafter, this was decompressed at 385 ° C.
  • the cured film of the paste-like composition 10 was obtained as a self-supporting film by inserting a blade of a cutter knife between the glass and the cured film and peeling off. This self-supporting film was cut into a square of 14 ⁇ 14 mm 2 to obtain a die bond sheet.
  • the die shear strength was measured in the same manner as in Example 15 except that a die bond sheet produced from the paste-like composition 10 was used. As a result, the die bond sheet produced from the paste-like composition 10 has a die shear strength of 50 MPa or more.
  • Comparative Example 1 A silver foil having a thickness of 100 ⁇ m (Silver Foil, 0.1 mm thick, hard, 99.998%, PREMION, manufactured by Alfa Aesar) was cut into a square of 14 ⁇ 14 mm 2 and used as a die bond sheet. Various measurements and analyzes were performed in the same manner as in Example 1 using this die bond sheet. As a result, the die shear strength of the die bond sheet of Comparative Example 1 was as low as 8 MPa, indicating poor adhesion.
  • Example 2 The die bond sheet of Example 1 was impregnated with a polyamic acid (Product No. 575801, manufactured by Aldrich) solution diluted to 5% by mass with N-methylpyrrolidone so as not to overflow from the surface. Thereafter, an excess polyamic acid solution was wiped off with Bencot (registered trademark, Asahi Kasei Fibers Corporation), and then dried on a hot plate heated to 100 ° C. with a polytetrafluoroethylene sheet.
  • Bencot registered trademark, Asahi Kasei Fibers Corporation
  • Various measurements and analyzes were performed in the same manner as in Example 1 using this die bond sheet. As a result, the die shear strength of the die bond sheet of Comparative Example 2 was as low as 2 MPa,
  • the cross section was shaved with a polishing apparatus (Refine Polisher HV, manufactured by Refinetech) equipped with water-resistant abrasive paper (Carbo Mac paper, manufactured by Refinetech) to give a silicon chip with no cracks. Thereafter, the cross section was smoothed with a polishing apparatus in which a buffing cloth dyed with a buffing abrasive was set.
  • the cross section was measured with an ion milling device (IM4000, manufactured by Hitachi, Ltd.) under conditions of an ion beam irradiation angle of 30 °, an eccentricity of 2 mm, an acceleration voltage of 6 kV, an argon gas flow rate of 0.07 to 0.1 cm 3 / min, and a processing time of 5 minutes.
  • IM4000 ion milling device
  • FIG. 5 is an SEM image obtained as a result of observing the cross-sectional morphology of the die bond sheet 8a before bonding in Example 1 at 1000 times.
  • a 14 ⁇ 14 mm 2 die bond sheet is placed on the silver-plated alumina DCB substrate 10, and titanium, nickel and gold are plated in this order, and a 12.5 ⁇ 12.5 mm 2 deposition surface is gold plated.
  • a silicon chip was further installed, and an expanded graphite sheet having a size of 13 ⁇ 13 mm 2 was further disposed thereon, and an atmosphere-controlled thermocompression bonding apparatus (RF-100B, manufactured by Ayumi Kogyo Co., Ltd.) was used.
  • RF-100B manufactured by Ayumi Kogyo Co., Ltd.
  • the processed cross section of the bonded sample 1 was observed according to the method described in ⁇ Observation of Cross Section Morphology>.
  • the SEM image of FIG. 6 was obtained, and as a result of observing at 5000 times, the SEM image of FIG. 7 was obtained.
  • 8b is a die bond sheet
  • 9 is a silicon chip.
  • the die bond sheet 8 b of Example 1 was compressed to a thickness of 55 ⁇ m to 44 ⁇ m while the internal pores were crushed by thermocompression bonding. With this deformation, the die bond sheet of Example 1 was compressed. 8b followed the silver plating layer 11 on the substrate which is the adherend surface without any gap. Furthermore, as FIG.6 and FIG.7 shows, the die-bonding sheet
  • Example 2 was used as the die bond sheet, and pressure bonding was performed in a formic acid-containing nitrogen atmosphere using an atmosphere-controlled thermocompression bonding apparatus (RF-100B, manufactured by Ayumi Industry Co., Ltd.).
  • RF-100B thermocompression bonding apparatus
  • the cross-sectional morphology of the processed cross section of the joined sample 2 was observed according to the method described in ⁇ Observation of cross-sectional morphology>.
  • the SEM image of FIG. 8 was obtained, and as a result of observing at 20000 times, the SEM image of FIG. 9 was obtained.
  • the die bond sheet 12 of Example 2 was compressed to a thickness of 150 ⁇ m to 54 ⁇ m while the internal pores were crushed by thermocompression, and this change Accordingly, the die bond sheet 12 of Example 2 followed the copper plate 13 as the adherend surface without any gap. Furthermore, as FIG. 9 shows, the die-bonding sheet 12 of Example 2 was joined to the copper plate 13 as the adherend surface without any boundary, and was joined by metal bonding.
  • FIG. 3 is an SEM image obtained as a result of observing a cross section of the bonded samples 3 and 4 prepared in the same manner as in Example 1 and observing the bonded samples according to the method described in ⁇ Observation of Cross-sectional Morphology>.
  • a bonded sample 5 was obtained in the same manner as in the observation of the die bond sheet of Example 1, except that the die bond sheet made of the silver foil of Comparative Example 1 was used as the die bond sheet.
  • FIG. 12 is an SEM image obtained as a result of observing the cross-sectional morphology of the bonded sample 5 at a magnification of 5000 times.
  • voids were observed between the silver foil 17 and the silver plating layer 11 on the adherend surface. It is thought that adhesion failure occurred due to the small deposition area.
  • the holes in the sheet are deformed while being crushed during crimping, and the sheet follows the adherend, whereby good adhesion can be obtained.
  • the dense silver foil 17 was used, the silver foil could not be greatly deformed at the time of pressure bonding, and voids were generated between the silver foil and the adherend, and an adhesive force could not be obtained.
  • Paste composition 1 was applied onto a polyimide sheet having a thickness of 50 ⁇ m using a metal film squeegee using a 125 ⁇ m thick PET film opened in a 20 ⁇ 20 mm 2 square as a mask.
  • the polyimide sheet coated with this paste-like composition 1 was placed on a hot plate, dried at 110 ° C. for 10 minutes and 180 ° C. for 10 minutes, and then covered with another polyimide sheet on the dried paste-like composition, Using a thermocompression bonding apparatus, the composition was cured at 300 ° C. for 10 minutes under the pressure conditions described in Table 4.
  • the cured paste-like composition was peeled from the polyimide sheet and cut into 10 ⁇ 10 mm 2 squares to obtain die bond sheets of Examples 18 and 19 and Comparative Example 3.
  • the porosity was measured by the following method.
  • the die bond sheet was cut into a rectangle, the length and width of the die bond sheet were measured with a ruler, and the thickness was measured with a film thickness meter (ID-C112C, granite comparator stand, release, manufactured by Mitutoyo Corporation) to calculate the volume of the sheet. .
  • the apparent density M 1 (g / cm 3 ) of the die bond sheet was determined from the volume of the cut die bond sheet and the weight of the die bond sheet measured with a precision balance.
  • M 1 obtained by using the density M 2 of the material constituting the die-bonding sheet (g / cm 3) was determined porosity from the following equation (4).
  • Porosity (volume%) [1- (M 1 ) / (M 2 )] ⁇ 100 (4)
  • M 2 in the above formula (4) has a silver density of 10.5 g / cm 3 . Using this, the porosity (volume%) was determined. Since the die-bonding sheet of Example 9 uses the paste-like composition 2 made of copper, the M 2 in the above formula (4) uses a copper density of 8.96 g / cm 3 and uses a porosity (volume%). )
  • Examples 10 to 14 including low-melting glass (density 5.5 g / cm 3 ), the density M 2 of the material constituting the die bond sheet is calculated using the following formula (5), and M in formula (4) is calculated. By substituting for 2 , the porosity was determined. M 2 (g / cm 3 ) 1 / [ ⁇ (B / 100) /5.5 ⁇ + ⁇ (1 ⁇ B / 100) /10.5 ⁇ ] (5) [B: Content of low melting point glass (mass%)]
  • the porosity of the die bond sheet after thermocompression bonding was measured by the following method. According to the method described in ⁇ Observation of cross-sectional morphology>, cross-sectional image data of 5000 times that of the die-bonded sheet after thermocompression bonding was obtained for the bonded sample. ImageJ was started up, the cross-sectional image data was opened, only the die bond sheet after thermocompression bonding was selected by dragging, and Image ⁇ Crop was selected to cut out the image. In the data of the die bond sheet after the cut out thermocompression bonding, Analyze ⁇ Measure was pressed, and the area (A 1 ) of the entire image was measured.
  • FIG. 13 shows an SEM image of a die bond layer using the die bond sheet 8c of Example 19 produced under a pressure condition of 5 MPa
  • FIG. 14 uses the die bond sheet 8d of Comparative Example 3 produced under a pressure condition of 10 MPa
  • 2 shows an SEM image of the die bond layer.
  • voids are not preferable because they increase the local thermal resistance, decrease the adhesive force, and become a starting point of destruction due to thermal stress, thereby reducing the reliability of the device.
  • the die bond sheet of Example 15 is placed on a copper plate (19 ⁇ 25 mm 2 , thickness 3 mm), an Au-plated Si chip (3 ⁇ 3 mm 2 ) is placed thereon, and an alumina plate (4 ⁇ 4 mm 2 , thickness 1 mm) is placed. Expanded graphite sheets (4 ⁇ 4 mm 2 , thickness 0.5 mm) were stacked in this order. This was treated for 60 minutes under a formic acid-containing nitrogen atmosphere at 30 MPa and 385 ° C. with an atmosphere-controlled thermocompression bonding apparatus, and then treated with no pressure at 300 ° C. for 10 minutes for bonding to obtain a bonded sample 9.
  • the die shear strength of the die bond sheets of Examples 1, 18, 19 and Comparative Example 3 was measured by the method described in [Measurement of die shear strength].
  • the die shear strength of the die bond sheets of Examples 9 and 15 to 17 is described in [Measurement of die shear strength] except that the die shear strength of the die bond sheets of Examples 10 to 14 is measured in a nitrogen atmosphere under the formic acid-containing nitrogen atmosphere. It measured by the method of. The results are shown in Table 4.
  • connection reliability test sample using Ag paste Mix 5.5 parts by mass of isobornylcyclohexanol (Telsolve MTPH, manufactured by Nippon Terpene) and 5.5 parts by mass of butyl stearate (manufactured by Wako Pure Chemical Industries, Ltd.) in a plastic bottle, seal and warm in a 50 ° C water bath. A clear and uniform solution was obtained while shaking. To this solution, 89 parts by mass of scaly silver particles (AgC239, manufactured by Fukuda Metal Foil Powder Industry) was added and stirred with a spatula until there was no dry powder. Further, the plastic bottle was sealed, and the mixture was stirred at 2000 rpm for 1 minute using a rotation / revolution type stirring device (Planetary Vacuum Mixer ARV-310, manufactured by Sinky Corporation) to obtain an Ag paste.
  • a rotation / revolution type stirring device Plantetary Vacuum Mixer ARV-310, manufactured by Sinky Corporation
  • a metal mask having an opening of 5 ⁇ 9 mm 2 was superimposed on a substrate (silver-plated copper plate 19 ⁇ 25 mm, thickness 3 mm), and Ag paste was printed using a metal squeegee.
  • the substrate on which the Ag paste was printed was dried at 180 ° C. for 20 minutes using a clean oven (PVHC-210, manufactured by TABAIESPEC).
  • Titanium, nickel, and gold are plated on the Ag paste in this order, and a 4 ⁇ 8 mm 2 adherent surface is gold plated silicon chip, alumina plate (5 ⁇ 9 mm 2 , thickness 1 mm), expanded graphite sheet (5 ⁇ 9 mm 2 , thickness 0.5 mm) were stacked in this order, and bonded by processing for 10 minutes in air at 10 MPa and 300 ° C. using a thermocompression bonding apparatus.
  • a primer (HIMAL, manufactured by Hitachi Chemical Co., Ltd.) is coated on the joined body, which is sealed with a sealing material (CEL-420, manufactured by Hitachi Chemical Co., Ltd.), and a connection reliability test sample 1 using Ag paste is prepared. Produced.
  • Example 2 (Preparation of Ag die bond sheet connection reliability test sample)
  • the Ag die bond sheet used in Example 1 was cut into 5 ⁇ 9 mm 2 .
  • a substrate silver plated copper plate 19 ⁇ 25 mm, thickness 3 mm
  • an Ag die bond sheet, titanium, nickel and gold are plated in this order, and a 4 ⁇ 8 mm 2 adherent surface is a gold chip, an alumina plate,
  • the expanded graphite sheets were stacked in this order, and bonded by treatment for 10 minutes under the conditions of 10 MPa and 300 ° C. in air using a thermocompression bonding apparatus.
  • the joined body was coated with a primer and sealed with a sealing material to prepare a connection reliability test sample 2 using an Ag die bond sheet.
  • Example 9 (Preparation of Cu die bond sheet connection reliability test sample) The Cu die bond sheet used in Example 9 was cut into 5 ⁇ 9 mm 2 . On a substrate (copper plate 19 ⁇ 25 mm, thickness 3 mm), a Cu die bond sheet, titanium, nickel and gold are plated in this order, and a 4 ⁇ 8 mm 2 adherent surface is gold-plated silicon chip, alumina plate, expanded graphite The sheets are stacked in this order, and treated with an atmosphere-controlled thermocompression bonding apparatus (RF-100B, manufactured by Ayumi Kogyo Co., Ltd.) in a formic acid-containing nitrogen atmosphere at 10 MPa and 300 ° C. for 10 minutes, and then in nitrogen without pressure 300 ° C. 10 Minute processing and joining. The joined body was coated with a primer and sealed with a sealing material to prepare a connection reliability test sample 3 using a Cu die bond sheet.
  • RF-100B atmosphere-controlled thermocompression bonding apparatus
  • connection reliability test The connection reliability test was performed at a low temperature side of ⁇ 40 ° C., a high temperature side of 200 ° C., and a cycle of 30 minutes using a thermal shock test apparatus (TSA-72ES-W, manufactured by Tabay Espec). The connection reliability of the test sample was evaluated based on the ratio of the area where the die bond layer was peeled after 200 cycles of the connection reliability test using ultrasonic tomography (InSight-300, manufactured by Insight). As a result, when using test sample 1 (Ag paste), 20 area%, when using test sample 2 (Ag die bond sheet), 20 area%, and when using test sample 3 (Cu die bond sheet), 0 area%. Area% peeling was observed. From the above results, the Ag die bond sheet had connection reliability equivalent to that of the Ag paste, and the Cu die bond sheet was superior in connection reliability to the Ag die bond sheet and the Ag die bond sheet.
  • TSA-72ES-W thermal shock test apparatus
  • die bonding sheet low-melting glass component containing

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Die Bonding (AREA)

Abstract

 本発明の半導体装置の製造方法は、空孔率が15~50体積%であり、銀又は銅を含み、炭素分が1.5質量%以下である多孔質シートを、半導体素子と半導体素子搭載用支持部材との間に介在させ、これらを加熱加圧することにより半導体素子と半導体素子搭載用支持部材とを接合することを特徴とする。

Description

ダイボンドシート及び半導体装置の製造方法
 本発明は、ダイボンドシート及び半導体装置の製造方法に関し、さらに詳しくは、パワー半導体、LSI、発光ダイオード(LED)等の半導体素子を、リードフレーム、セラミック配線板、ガラスエポキシ配線板、ポリイミド配線板等の半導体搭載用基板に接合するのに好適なダイボンドシート及びこれを用いた半導体装置の製造方法に関する。
 半導体装置を製造する際、半導体素子とリードフレーム(支持部材)とを接着させる方法としては、エポキシ系樹脂、ポリイミド系樹脂等の樹脂に銀粉等の充填剤を分散させたペースト状の接着剤(例えば、銀ペースト)を使用する方法がある。この方法では、ディスペンサー、印刷機、スタンピングマシン等を用いて、ペースト状接着剤をリードフレームのダイパッドに塗布した後、半導体素子をダイボンドし、加熱硬化により接着させ半導体装置とする。
 近年、半導体素子の高速化、高集積化が進むに伴い、半導体装置の動作安定性を確保するために、接着剤にも高放熱特性が求められている。
 これまでにも熱伝導性の向上を目的とした接着剤が提案されている。例えば、下記特許文献1~5には、熱伝導率の高い銀粒子が高充填されたダイボンディングペースト(特許文献1及び2)、特定の粒径を有する球状銀粉を含有する導電性接着剤(特許文献3)、ハンダの粒子を含有する接着剤のペースト(特許文献4)、特定の粒子径を有する金属粉及び特定の粒子径を有する金属超微粒子を含有する導電性接着剤(特許文献5)が開示されている。
 また、下記特許文献6には、表面処理が施された非球状銀粒子と揮発性分散媒とからなるペースト状銀粒子組成物を100℃以上400℃以下で加熱することにより銀粒子同士を焼結させて所定の熱伝導度を有する固形状銀にする技術が提案されている。
特開2006-73811号公報 特開2006-302834号公報 特開平11-66953号公報 特開2005-93996号公報 特開2006-83377号公報 特許第4353380号公報
 特許文献6に記載のペースト状銀粒子組成物は、銀粒子が金属結合を形成するため、他の手法よりも熱伝導率及び高温下での接続信頼性が優れるものと考えられる。しかし、このようなペースト状銀粒子組成物では、塗布、予備乾燥及び加熱焼結の3段階の工程を必要とする。また溶媒を含むため、塗布時、乾燥時、半導体素子搭載時及び焼結時の流動による斑の発生、乾燥時及び焼結時のボイド発生といった課題がある。
 一方、ハンダを用いる場合、シート状のハンダを基板と半導体素子との間に介在させ、加熱溶融させることによりダイボンドが行われる。この手法では、ペーストに比べて工程の簡略化及び溶媒による斑やボイドの発生を抑制することができる。しかし、ハンダでは高温での接続信頼性に課題が生じる。なお、単にハンダに代えて高融点の金属を用いても、接合が困難になるという問題がある。
 本発明は、熱伝導性及び接続信頼性に優れ、半導体素子と半導体素子搭載用支持部材との接合を簡便な工程で行うことができるダイボンドシート及びそれを用いる半導体装置の製造方法を提供することを目的とする。
 本発明は、空孔率が15~50体積%であり、銀及び/又は銅を含み、炭素分が1.5質量%以下である多孔質シートを、半導体素子と半導体素子搭載用支持部材との間に介在させ、これらを加熱加圧することにより半導体素子と半導体素子搭載用支持部材とを接合することを特徴とする半導体装置の製造方法を提供する。
 本発明の半導体装置の製造方法によれば、上記特定の多孔質シートを用いることにより、半導体素子と半導体素子搭載用支持部材との接合を簡便な工程で行うことができ、優れた熱伝導性及び接続信頼性を有する半導体装置を得ることができる。
 本発明はまた、空孔率が15~50体積%であり、銀及び/又は銅を含み、炭素分が1.5質量%以下である多孔質シートからなることを特徴とするダイボンドシートを提供する。
 本発明のダイボンドシートによれば、半導体素子と半導体素子搭載用支持部材との接合を簡便な工程で行うことができるとともに優れた熱伝導性及び接続信頼性を得ることができる。
 本発明のダイボンドシートは、バナジウムを原子換算で0.06~13.6原子%及びテルルを原子換算で0.12~7.8原子%含むことが好ましい。この場合、Ag、Cu、Ni、Al及びSiOに対する接着性を向上させることができる。
 また、上記多孔質シートが、銀粒子及び/又は銅粒子と分散媒とが含まれる組成物をシート状に形成し、加熱して得られるものであることが好ましい。
 本発明はまた、上記本発明に係るダイボンドシートを介して、半導体素子と半導体素子搭載用支持部材とが接合された構造を有することを特徴とする半導体装置を提供することができる。本発明の半導体装置は、本発明に係るダイボンドシートにより半導体素子が半導体素子搭載用支持部材と接合されていることにより、優れた熱伝導性及び接続信頼性を有することができる。
 本発明によれば、熱伝導性及び接続信頼性に優れ、半導体素子と半導体素子搭載用支持部材との接合を簡便な工程で行うことができるダイボンドシート及びそれを用いる半導体装置の製造方法を提供することができる。
本発明に係る半導体装置の一例を示す模式断面図である。 本発明に係る半導体装置の別の例を示す模式断面図である。 本発明に係る半導体装置の別の例を示す模式断面図である。 本発明に係る半導体装置の別の例を示す模式断面図である。 実施例1のダイボンド前のダイボンドシートの断面を示すSEM像である。 実施例1のダイボンドシートを用いた接合サンプルにおける接着層の断面を示すSEM像である。 実施例1のダイボンドシートを用いた接合サンプルにおける接着層の断面を示すSEM像である。 実施例9のダイボンドシートを用いた接合サンプルにおける接着層の断面を示すSEM像である。 実施例9のダイボンドシートを用いた接合サンプルにおけるダイボンドシートと銅板の界面を示すSEM像である。 実施例13のダイボンドシートを用いた接合サンプルにおけるダイボンドシートと界面を示すSEM像である。 実施例13のダイボンドシートを用いた接合サンプルにおけるダイボンドシートとアルミニウム基板界面を示すSEM像である。 比較例1の銀箔を用いた接合サンプルにおける接着層の断面を示すSEM像である。 実施例19のダイボンドシートを用いた接合サンプルにおける接着層の断面を示すSEM像である。 比較例3のダイボンドシートを用いた接合サンプルにおける接着層の断面を示すSEM像である。 熱圧着前の実施例15のダイボンドシートの断面を示すSEM像である。 実施例15のダイボンドシートを用いた接合サンプルにおける接着層(熱圧着後)の断面を示すSEM像である。
 以下、図面を参照しながら本発明の公的な実施形態について詳細に説明する。なお、図面中、同一又は相当部分には同一符号を付し、重複する説明については省略する。
 図1は、本発明に係る半導体装置の一例を示す模式断面図である。図1に示される半導体装置100は、本発明に係るダイボンドシートを介して半導体素子2と半導体素子搭載用支持部材3とが接合された構造を有する。半導体素子2と半導体素子搭載用支持部材3と接合するダイボンドシート1は、発明に係るダイボンドシートが熱と圧力により変形・変性したものであり、接合後のものである。ダイボンドシート1は、半導体素子2の被着面4aとの間及び半導体素子搭載用支持部材3の被着面4bとの間で金属結合を形成することで、2つの被着体を強固に接合している。
 まず、本発明に係るダイボンドシートについて説明する。
 本実施形態のダイボンドシートは、空孔率が15~50体積%であり、銀及び/又は銅を含み、炭素分が1.5質量%以下である多孔質シートからなる。
 多孔質シートは、熱伝導率、延性、接続性の観点から、金、銀、銅を主成分とすることが好ましい。特にコストの点から銀又は銅が好適であり、銀と銅との合金であってもよい。銀、銅以外の金属性の成分が含まれると、熱伝導率の低下や表面に容易に除去できない酸化被膜が生じて接合の妨げになるため好ましくない。そのため多孔質シートに含まれる元素の内、水素、炭素、酸素を除く元素割合の内で、銀及び/又は銅が占める元素割合は、60原子%以上が好ましく、70原子%以上であることがより好ましく、80原子%以上であることがさらに好ましい。
 多孔質シートは、シート内に空孔を含む銀及び/又は銅の連続体からなる平板状の多孔質シートであることが好ましい。また、多孔質シートは、銀粒子及び/又は銅粒子の焼結体から構成されていることが好ましい。
 本実施形態のダイボンドシートは、被着体の種類を拡大することを目的とした接着助剤として、ガラス成分を含有することができる。
 上記ガラス成分は、ダイボンドシートの熱圧着時に十分溶融及び流動することが好ましく、このような観点から、350℃以下の軟化点を有する低融点ガラスが好ましい。このような低融点ガラスとしては、バナジウム、テルル及び銀を共に含むものが挙げられる。例えば、10~60質量%のAgO(酸化銀(I))と、5~65質量%のV(五酸化二バナジウム)と、15~50質量%のTeO(二酸化テルル)とを含有し、AgOとVとTeOとの合計含有量が75質量%以上である無鉛ガラス組成物が好ましい。低融点ガラスは、さらに、P(五酸化二燐)、BaO(酸化バリウム)、KO(酸化カリウム)、WO(三酸化タングステン)、MoO(三酸化モリブデン)、Fe(酸化鉄(III))、MnO(二酸化マンガン)、Sb(三酸化アンチモン)及びZnO(酸化亜鉛)のうち1種以上を含んでいてもよい。
 本実施形態のダイボンドシートは、バナジウムを原子換算で0.06~13.6原子%及びテルルを原子換算で0.12~7.8原子%含むことが好ましい。この場合、Ag、Cu、Ni、Al及びSiOに対する接着性を向上させることができる。
 バナジウム及びテルルの含有量が上記下限値を下回る場合、低融点ガラスが十分に含まれていないことを意味し、接着助剤としての効果が得られにくい傾向がある。また、バナジウム及びテルルの含有量が上記上限値を超える場合、低融点ガラスが過剰に含まれていることを意味し、熱伝導率の低下や体積抵抗率の増加が顕著になる傾向がある。
 ダイボンドシート中のバナジウム及びテルルなどの各種元素の含有量は、蛍光X線測定、原子吸光分析、発光分析(Atomic Emission Spectrometry)、ICP-MS(Inductively Coupled Plasma-Mass Spectrometry)で定量できる。
 例えば、ふた付きのポリ容器に、ダイボンドシートを0.1g秤量し、硝酸4mL、過酸化水素3mLを添加し、30分間超音波処理をして溶解する。これを、純水を用いて希釈し、測定溶液とする。この測定溶液を誘導結合プラズマ発光分光分析装置(SPS5100、日立ハイテクサイエンス社製)により測定することで、含有元素とその割合が得られる。なお、それぞれの元素は以下の波長に発光が得られる。V:292.401nm、Te:214.282nm、W207.912nm、Ag:328.068nm。
 ダイボンドシートを構成する材料の組成が分かっている場合には、以下の手順で空孔率を求めることができる。まず、ダイボンドシートを長方形に切り出し、ダイボンドシートの縦、横の長さを定規や外形形状測定装置で測定し、厚みを膜厚計で測定することによりダイボンドシートの体積を計算する。切り出したダイボンドシートの体積と、精密天秤で測定したダイボンドシートの重量とから見かけの密度M(g/cm)を求める。求めたMと、ダイボンドシートを構成する材料の密度M(g/cm)とを用いて、下記式(1)から空孔率(体積%)が求められる。
空孔率(体積%)=[1-(M)/(M)]×100   …(1)
 式(1)において、シートを構成する材料が純度95質量%以上の銀である場合、Mは10.5g/cmとすることでき、純度95質量%以上の銅である場合、Mは8.96g/cmとすることができる。シートを構成する材料が銀と銅との混合物である場合、密度は加成則を用いて、銅の含有量(質量%)をAとすると、下記式(2)を用いてMを算出することができる。
(g/cm)=1/[{(A/100)/8.96}+{(1-A/100)/10.5}]   …(2)
 また、ダイボンドシートが、銀及び/又は銅と低融点ガラスとを含む場合には、下記式(3)を用いてダイボンドシートを構成する材料の密度Mを算出し、式(1)のMに代入することで、空孔率が求められる。
(g/cm)=1/[{(B/100)/M}+{(1-B/100)/M}]   …(3)
[B:低融点ガラスの含有量(質量%)、M:低融点ガラスの密度(例えば、5.5g/cm)、M:銀の密度(例えば、10.5g/cm)、銅の密度(例えば、8.96g/cm)、銀と銅との混合物の密度(例えば、前記式(2)で算出した密度M(g/cm)]
 本実施形態のダイボンドシートは、接続信頼性の観点から、空孔率が15~50体積%であり、15~40体積%であることが好ましく、15~30体積%であることがより好ましい。空孔率が上記範囲内であれば、ダイボンドシートが圧着時に空孔が変形することで被着体に追随し、充分に高い接着力を発現させることができるとともに、ダイボンドシートの機械強度を十分確保することができ、割れや欠けが生じて取り扱い性が悪くなるなどの問題を防止することができる。
 本実施形態に係るダイボンドシート内に含まれる空孔の形状は連続空孔であっても独立空孔であってもよい。空孔はダイボンドシート全体に分布していることが好ましい。
 本実施形態のダイボンドシートは、炭素分が1.5質量%以下であり、1.0質量%以下であることが好ましい。炭素分を1.5質量%以下とすることにより、有機物等によって被着体とダイボンドシートとの間の金属結合形成が阻害されることを防止することができ、さらには、高温下で分解ガスが発生して接続信頼性が悪化することを防止することができる。
 上記炭素分は、誘導加熱燃焼赤外線吸収法によって測定できる。
 本実施形態に係るダイボンドシートは、銀粒子及び/又は銅粒子と、分散媒とが含まれる組成物をシート状に形成し、加熱して得ることができる。
 銀粒子は銀原子を含有する粒子であり、銀原子を90質量%以上含有する粒子が好ましい。銀粒子は、金属銀以外に、酸化銀等の銀酸化物、金や銅等の他の貴金属又はそれらの酸化物を含有していてもよい。本実施形態においては、卑金属が含まれると粒子表面に除去しにくい酸化被膜が生成して焼結を妨げることから、銀粒子における貴金属の割合が80原子%以上であることが好ましく、90原子%以上であることがより好ましく、95原子%以上であることがさらに好ましい。
 銀粒子の形状としては、例えば、球状、塊状、針状、片状が挙げられる。銀粒子の一次粒子の体積平均粒径が0.01μm以上50μm以下であることが好ましく、0.05μm以上30μm以下であることがより好ましく、0.1μm以上10μm以下であることがさらに好ましい。
 銀粒子は表面処理剤で処理されていてもかまわない。ただし、表面処理剤はダイボンドシートの作製工程で除去され得るものが好ましい。このような表面処理剤としては、例えば、パルミチン酸、ステアリン酸、アラキジン酸、テレフタル酸、オレイン酸等の脂肪族カルボン酸、ピロメリット酸、o-フェノキシ安息香酸等の芳香族カルボン酸、セチルアルコール、ステアリルアルコール、イソボルニルシクロヘキサノール、テトラエチレングリコール等の脂肪族アルコール、p-フェニルフェノール等の芳香族アルコール、オクチルアミン、ドデシルアミン、ステアリルアミン等のアルキルアミン、ステアロニトリル、デカニトリル等の脂肪族ニトリル、アルキルアルコキシシラン等のシランカップリング剤、ポリエチレングリコール、ポリビニルアルコール、ポリビニルピロリドン、シリコーンオリゴマー等の高分子処理剤が挙げられる。
 銅粒子は銅原子を含有する粒子であり、銅原子を90質量%以上含有する粒子が好ましい。銅粒子は、金属銅以外に、酸化銅(I)、酸化銅(II)等の銅酸化物、銀や金等の他の貴金属又はそれらの酸化物を含有していてもよい。また、銅粒子表面を銀でコートしたコア・シェル粒子でもよい。本実施形態においては、卑金属が含まれると粒子表面に除去しにくい酸化被膜が生成して焼結を妨げることから、銅粒子における貴金属の割合が80原子%以上であることが好ましく、90原子%以上であることがより好ましく、95原子%以上であることがさらに好ましい。
 銅粒子の形状としては、例えば、球状、塊状、針状、片状が挙げられる。銅粒子の一次粒子の体積平均粒径が0.01μm以上50μm以下であることが好ましく、0.05μm以上30μm以下であることがより好ましく、0.1μm以上10μm以下であることがさらに好ましい。
 銅粒子は表面処理剤で処理されていてもかまわない。ただし、表面処理剤はダイボンドシートの作製工程で除去され得るものが好ましい。このような表面処理剤としては、例えば、パルミチン酸、ステアリン酸、アラキジン酸、テレフタル酸、オレイン酸等の脂肪族カルボン酸、ピロメリット酸、o-フェノキシ安息香酸等の芳香族カルボン酸、セチルアルコール、ステアリルアルコール、イソボルニルシクロヘキサノール、テトラエチレングリコール等の脂肪族アルコール、p-フェニルフェノール等の芳香族アルコール、オクチルアミン、ドデシルアミン、ステアリルアミン等のアルキルアミン、ステアロニトリル、デカニトリル等の脂肪族ニトリル、アルキルアルコキシシラン等のシランカップリング剤、ポリエチレングリコール、ポリビニルアルコール、ポリビニルピロリドン、シリコーンオリゴマー等の高分子処理剤が挙げられる。
 分散媒としては、揮発性のものが好ましく、例えば、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、デカノール、エチレングリコール、ジエチレングリコール、プロピレングリコール、ブチレングリコール、α―テルピネオール、ボルニルシクロヘキサノール(MTPH)等の一価及び多価アルコール類、エチレングリコールブチルエーテル、エチレングリコールフェニルエーテル、ジエチレングリコールメチルエーテル、ジエチレングリコールエチルエーテル、ジエチレングリコールブチルエーテル、ジエチレングリコールイソブチルエーテル、ジエチレングリコールヘキシルエーテル、トリエチレングリコールメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、ジエチレングリコールブチルメチルエーテル、ジエチレングリコールイソプロピルメチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールブチルメチルエーテル、プロピレングリコールプロピルエーテル、ジプロピレングリコールメチルエーテル、ジプロピレングリコールエチルエーテル、ジプロピレングリコールプロピルエーテル、ジプロピレングリコールブチルエーテル、ジプロピレングリコールジメチルエーテル、トリプロピレングリコールメチルエーテル、トリプロピレングリコールジメチルエーテル等のエーテル類、エチレングリコールエチルエーテルアセテート、エチレングリコールブチルエーテルアセテート、ジエチレングリコールエチルエーテルアセテート、ジエチレングリコールブチルエーテルアセテート、ジプロピレングリコールメチルエーテルアセテート(DPMA)、乳酸エチル、乳酸ブチル、γ-ブチロラクトン、炭酸プロピレン等のエステル類、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等の酸アミド、シクロヘキサノン、オクタン、ノナン、デカン、ウンデカン等の脂肪族炭化水素、ベンゼン、トルエン、キシレン等の芳香族炭化水素、炭素数1~18のアルキル基を有するメルカプタン類、炭素数5~7のシクロアルキル基を有するメルカプタン類が挙げられる。炭素数1~18のアルキル基を有するメルカプタン類としては、例えば、エチルメルカプタン、n-プロピルメルカプタン、i-プロピルメルカプタン、n-ブチルメルカプタン、i-ブチルメルカプタン、t-ブチルメルカプタン、ペンチルメルカプタン、ヘキシルメルカプタン及びドデシルメルカプタンが挙げられる。炭素数5~7のシクロアルキル基を有するメルカプタン類としては、例えば、シクロペンチルメルカプタン、シクロヘキシルメルカプタン及びシクロヘプチルメルカプタンが挙げられる。分散媒の配合量は、銀粒子又は銅粒子100質量部に対し、5~50質量部であることが好ましい。
 非金属と接着させる場合には、上記組成物は、接着助剤としてガラス成分を含有してもよい。ガラス成分を含有させる場合には、熱圧着時に十分に溶融・流動させる観点から、350℃以下の軟化点を有する低融点ガラスが好ましい。本実施形態においては上記組成物に低融点ガラス粒子を配合することができる。
 低融点ガラス粒子としては、主要成分として10~60質量%のAgO(酸化銀(I))と、5~65質量%のV(五酸化二バナジウム)と、15~50質量%のTeO(二酸化テルル)とを含有し、AgOとVとTeOとの合計含有量が75質量%以上である無鉛ガラス組成物が好ましい。低融点ガラス粒子は、さらに、P(五酸化二燐)、BaO(酸化バリウム)、KO(酸化カリウム)、WO(三酸化タングステン)、MoO(三酸化モリブデン)、Fe(酸化鉄(III))、MnO(二酸化マンガン)、Sb(三酸化アンチモン)及びZnO(酸化亜鉛)のうち1種以上を含んでいてもよい。
 低融点ガラス粒子の一次粒子の体積平均粒径は、0.01μm以上50μm以下であることが好ましく、0.05μm以上30μm以下であることがより好ましく、0.1μm以上10μm以下であることがさらに好ましい。
 低融点ガラス粒子の配合量は、低融点ガラスの接着性発現の点から、組成物100質量部に対し、1質量部以上30質量部以下であることが好ましく、2質量部以上30質量部以下であることがより好ましい。低融点ガラス粒子の配合量を上記範囲内とすることにより、低融点ガラスによる接着性向上の効果が得られやすくなるとともに、熱伝導性の低下や体積抵抗率の上昇を抑制することができ、ダイボンド材としての特性を十分確保することができる。
 また、低融点ガラス粒子の配合量は、上述したダイボンドシートにおけるバナジウムの含有量が原子換算で0.06~13.6原子%となり、テルルの含有量が原子換算で0.12~7.8原子%となるように設定することが好ましい。
 上記組成物はペースト状であることが好ましい。ペースト状組成物は、塗布・成型性の観点から、25℃におけるCasson粘度が0.01Pa・s以上10Pa・s以下であることが好ましく、0.05Pa・s以上5Pa・s以下であることがより好ましい。
 ペースト状組成物には、粒子の分散性や焼結性の向上及びペーストの粘度の調整の観点から、少量の添加剤を加えてもよい。
 上記添加剤としては、パルミチン酸、ステアリン酸、アラキジン酸、テレフタル酸、オレイン酸、リノール酸等の脂肪族カルボン酸、亜リン酸ジフェニル、亜リン酸ジイソプロピル等の亜リン酸、ジヒドロキシナフトエ酸、ジヒドロキシ安息香酸等の脂肪族ヒドロキシカルボン酸、3-ヒドロキシ-2-メチル安息香酸等の芳香族ヒドロキシカルボン酸などを用いることができる。これらのうち、粒子の分散性や焼結性の向上及びペーストの粘度の調整の観点から、ステアリン酸が好ましい。
 添加剤の配合量は、金属及びガラス粒子100質量部に対し、0.1~5質量部であることが好ましい。
 また、ペースト状組成物の粘度を調節するためであっても、有機物、特にバインダー樹脂を含まないことが好ましい。このような有機物やバインダー樹脂をダイボンドシート中に含むと、ダイボンドシートによるダイボンド時の接続性やダイボンド後の耐熱性に劣る傾向がある。
 上記組成物をシート状に成形させる手法としては、成形基板上に粒子をシート状に堆積させられる手法であればよく、このような手法として、インクジェット印刷、スーパーインクジェット印刷、スクリーン印刷、転写印刷、オフセット印刷、ジェットプリンティング法、ディスペンサー、ジェットディスペンサ、ニードルディスペンサ、カンマコータ、スリットコータ、ダイコータ、グラビアコータ、スリットコート、凸版印刷、凹版印刷、グラビア印刷、ステンシル印刷、ソフトリソグラフ、バーコート、アプリケータ、粒子堆積法、スプレーコータ、スピンコータ、ディップコータ、電着塗装等を用いることができる。
 粒子をシート状に堆積させる成形基板は、成形されたダイボンドシートの平滑性の観点から、十点平均表面粗さが20μm以下の平坦面を有する板状又はシート状の基板が好ましい。また、加熱工程を経て形成されたダイボンドシートを基板から離型する必要性から、成形基板の表面材質はダイボンドシートに対し接着性を有していないものが好ましい。さらに、成形基板は、銀粒子又は銅粒子を焼結する温度において変形しない耐熱性を有する材質であることが好ましい。
 このような成形基板の材質としては、ポリテトラフルオロエチレン、ポリイミド、PEEK樹脂などが挙げられる。上記組成物が低融点ガラス粒子を含まない場合には、銅、ニッケル、アルミニウム、ガラス、アルミナ、窒化ケイ素、ステンレススチールを用いることができる。また、耐熱性を有する基板やクロスに上記材質をコート又は含浸したものを、成形基板として用いてもよい。ただし、上記組成物を成形基板上にシート状に成形後、加熱工程の前に成形基板から別の加熱工程用の基板に転写した後で加熱工程を行う場合には、成形基板の材質に制約はなく、加熱工程用の基板がダイボンドシートに対し接着性を有していないものであればよい。
 シート状に成形されたペースト状組成物は、焼結時の流動及びボイド発生を抑制する観点から適宜乾燥させることができる。
 上記の乾燥方法は、常温放置による乾燥、加熱乾燥又は減圧乾燥を用いることができる。加熱乾燥又は減圧乾燥には、ホットプレート、温風乾燥機、温風加熱炉、窒素乾燥機、赤外線乾燥機、赤外線加熱炉、遠赤外線加熱炉、マイクロ波加熱装置、レーザー加熱装置、電磁加熱装置、ヒーター加熱装置、蒸気加熱炉、熱板プレス装置等を用いることができる。乾燥の温度及び時間は、使用した分散媒の種類及び量に合わせて適宜調整することが好ましく、例えば、50~180℃で1~120分間乾燥させることが好ましい。
 次に、シート状に成形されたペースト状組成物に対して加熱処理して焼結を行う。焼結は加熱処理で行ってもよいし、加熱加圧処理で行ってもよい。加熱処理には、ホットプレート、温風乾燥機、温風加熱炉、窒素乾燥機、赤外線乾燥機、赤外線加熱炉、遠赤外線加熱炉、マイクロ波加熱装置、レーザー加熱装置、電磁加熱装置、ヒーター加熱装置、蒸気加熱炉等を用いることができる。また、加熱加圧処理には、熱板プレス装置、加熱ロールプレス等を用いてもよいし、重りを乗せて加圧しながら上述の加熱処理を行ってもよい。
 上記の焼結の温度及び時間は、銀及び/又は銅粒子が焼結できる温度及び時間であればよく、例えば、200~300℃で5分~2時間加熱することが好ましい。
 銅粒子の焼結には表面酸化膜の除去の観点から、還元雰囲気で焼結してもよい。還元雰囲気としては、水素雰囲気、ギ酸を含む窒素雰囲気、原子状水素雰囲気が挙げられる。
 焼結により得られたダイボンドシートは、成形基板上から離型し、自立シートとして得ることができる。得られたダイボンドシートはダイボンド工程に用いられる。離型性が悪い場合には、ブレード状の板を得られたダイボンドシートと成形基板との間に差し込んで分離することができる。
 ダイボンドシートは、ダイボンド工程で必要なサイズに切断することができる。切断は成形基板上から離型する前に行ってもよいし、後に行ってもよい。
 こうして作製されたダイボンドシートは、被着体の金属表面から酸化被膜を除去する目的で還元剤を含浸させてもよい。還元剤としては、フロログルシノール、レゾール等のフェノール化合物、亜リン酸ジイソプロピル、亜リン酸ジフェニル等の亜リン酸、ギ酸、ギ酸エチル等のギ酸化合物、ジヒドロキシナフトエ酸、ジヒドロキシ安息香酸等の脂肪族ヒドロキシカルボン酸、3-ヒドロキシ-2-メチル安息香酸等の芳香族ヒドロキシカルボン酸カルボン酸、グルコース、ショ糖等の糖類、ジグリセリン、ジプロピレングリコール、トリエチレングリコール等のポリオール類、塩化錫(II)等の錫(II)化合物、シュウ酸、グリオキシル酸が挙げられる。
 ダイボンドシートの空孔率は、ダイボンドシート作製時の圧力によって、調整することができる。圧力条件としては、0~5MPaであることが好ましい。ダイボンドシート作製時の圧力が上記範囲内であれば、シートに含まれる空孔率が15体積%以上となり、シートが変形することで被着体に対して十分に高い接着力を発現させることができる。一方、上記上限より高圧であると、空孔率が15体積%を下回り、圧着時にシートが変形し難くなり、接合面とシートとの間に空隙ができてしまう傾向がある。このような空隙は、局所的な熱抵抗の増加、接着力の低下及び熱応力による破壊の起点となり、接続信頼性を低下させるため好ましくない。
 ダイボンドシートにおける炭素分は、ペースト状組成物に配合する成分及び焼結条件を適宜選択することにより調節できる。具体的には、ペースト状組成物にバインダー樹脂を含有させないことが好ましい。また、ペースト状組成物に配合する分散媒は揮発性のものが好ましい。揮発性の分散媒を用いてペースト状組成物の粘度を上記好ましい範囲に調節する方法としては、例えば、粒子濃度の調整、粒子形状、特にアスペクト比と粒径との調整、イソボルニルシクロヘキサノールのような高粘度分散媒の使用が挙げられる。
 また、ダイボンドシートにおける炭素分を低くする観点から、銀粒子及び/又は銅粒子の表面処理剤が、揮発性又は熱分解性であることが好ましい。
 上記のペースト状組成物を用い、例えば、200~300℃で30分~2時間焼結を行うことで、ダイボンドシートに含まれる炭素分を1.5質量%以下に調節できる。
 ダイボンドシートの厚みは、被着体である半導体素子及び半導体素子搭載用支持部材の表面粗さ及び接合後の接続信頼性に応じて適宜設定することができる。本発明のダイボンドシートは熱圧着により、ダイボンドシート内の空孔が潰れることでダイボンドシートと被着体表面とが密着し、金属結合を形成する。そのため、ダイボンドシートの厚みは、ダイボンドシートが圧縮変形して、半導体素子及び半導体素子搭載用支持部材の表面凹凸を吸収して密着できる厚みが必要であり、10μm以上であることが好ましく、20μm以上であることがより好ましい。また、半導体素子がダイボンドシート中に埋まりこむことは好ましくないことから、半導体素子の厚みよりダイボンドシートが薄いほうが好ましい。一般的には、この厚みは600μm以下である。
 図1に示される半導体装置100は、上述したダイボンドシートを、半導体素子2と半導体素子搭載用支持部材3との間に介在させ、これらを加熱加圧することにより得られる。
 加熱加圧は熱圧着装置により行うことができる。熱圧着装置としては、熱板プレス装置、加熱ロールプレス等を用いてもよいし、重りを乗せて加圧しながら加熱処理を行ってもよい。
 熱圧着時の温度は、接着力を十分に得る観点から、220℃以上であることが好ましく、250℃以上であることがより好ましい。熱圧着温度の上限は、デバイスの耐熱温度によって設定され、400℃以下とすることができ、350℃以下とすることができる。
 熱圧着時の圧力は、接着性発現の観点から1MPa以上であることが好ましく、5MPa以上であることがより好ましく、7MPa以上が更に好ましく、10MPa以上が特に好ましい。加圧しない場合にはシートの変形によるダイボンドシートと被着体との密着性が得られにくくなり、十分な接着力が得られない傾向にある。一方、熱圧着圧力の上限値は、半導体素子及び半導体素子搭載用支持部材の破損を防止する観点から、35MPa以下であることが好ましく、20MPa以下であることがより好ましい。
 また、熱圧着後の接合体のダイシェア強度は20MPa以上であることが好ましい。特に、半導体素子及び銀めっきが設けられた基板とのダイシェア強度は20MPa以上であることが好ましい。
 熱圧着時の雰囲気は、被着面が非酸化性の材質である被着体と、ダイボンドシートが銀を含むものとの組み合わせであれば、空気中又は不活性ガス中で実施することが好ましい。不活性ガスとしては、酸素を含まない窒素又は希ガスが好ましい。
 一方、被着面に酸化被膜が存在し比較的還元されやすい金属を有する被着体と、ダイボンドシートが銅を含むものとの組み合わせであれば、還元雰囲気で酸化被膜を除去しながら熱圧着を実施することができる。このような還元雰囲気としては、水素雰囲気又はギ酸を含む窒素雰囲気が挙げられる。この際、ホットワイヤ法、RFプラズマ法又は表面波プラズマ法を用いて水素ガスを活性化して用いてもよい。また、還元雰囲気の替わりに還元剤をダイボンドシートに含浸させておき、不活性ガス中で熱圧着を行ってもよい。
 熱圧着時の半導体素子及び半導体素子搭載用支持部材へのダメージを減らす目的、又は圧力や温度の均一性を増す目的で、積層した半導体素子又は半導体素子搭載用支持部材と熱板との間に保護シートを配してもよい。保護シートは熱圧着時の温度に耐え、接触する被着体よりやわらかい材質のものであればよい。このような材質としては、例えば、ポリイミド、フッ化樹脂、アルミニウム、銅、カーボンがある。
 熱圧着後におけるダイボンドシートの空孔率は、材質が銀の場合には、10体積%以下とすることが好ましく、8体積%以下とすることがより好ましく、5体積%以下とすることが更に好ましい。一方、材質が銅の場合には、15体積%以下とすることが好ましく、10体積%以下とすることがより好ましく、6体積%以下とすることが更に好ましい。銅は銀より高弾性率であるため、銀のダイボンドシートよりも大きい空孔率でも同等又はそれ以上の強度を得ることができる。半導体素子と半導体素子搭載用支持部材との間にダイボンドシートを介在させ、このような空孔率となるように熱圧着することで、ダイボンドシートが圧着時に空孔が変形することで被着体に追随し、充分に高い接着力を発現させることができるとともに、ダイボンドシートの機械強度を十分確保することができ、熱衝撃やパワーサイクルによる熱応力に対する信頼性を確保することができる。
 熱圧着後におけるダイボンドシートの空孔率は、断面のSEM像から空孔部と緻密部の面積比から算出する方法により、測定することができる。例えば、以下のような方法で測定することができる。圧着したサンプルをエポキシ注形樹脂でサンプル全体が埋まるように注ぎ、硬化する。注形したサンプルの観察したい断面付近で切断し、研磨で断面を削り、CP(クロスセクションポリッシャ)加工機で断面加工を行う。SEM装置(例えばTM-1000、株式会社日立ハイテクノロジーズ製)により断面観察し断面画像を得る。断面に含まれる空孔の割合は、画像を印刷して切り抜き法で重量比として算出する方法、画像処理ソフトにより、空孔部を選択しドット数を計測し、断面部とのドット数の比から求める方法、又は、断面部の画像に対して閾値を調整し、空孔部と緻密部を白/黒二値化し、断面部に占める空孔部の面積比から空孔率を算出する方法などにより、得ることができる。画像処理ソフトとしては、Adobe Photoshop シリーズ(アドビシステムズ株式会社製)、ペイントツールSAIシリーズ(株式会社SYSTEMAX)、GIMP(the GIMP development team.製)、Corel PrintShop Proシリーズ(コーレル・コーポレーション製)、ImageJ(アメリカ国立衛生研究所製)などが挙げられるが、これらに限定されるものではない。
 更に熱圧着時の条件としては、熱圧着前におけるダイボンドシートの空孔率をV体積%及び熱圧着後におけるダイボンドシートの空孔率をV体積%としたときに、V/Vが0.37以下となる条件が好ましく、0.31以下となる条件がより好ましく、0.19以下となる条件が更に好ましい。このような条件で熱圧着することにより、ダイボンドシートが圧着時に空孔が変形することで被着体に追随し、充分に高い接着力を発現させることができるとともに、ダイボンドシートの機械強度を十分確保することができ、熱衝撃やパワーサイクルによる熱応力に対する信頼性を確保することができる。
 熱圧着後のダイボンドシートの厚みは、熱圧着前と比較して、80%以下になることが好ましく、76%以下になることがより好ましく、64%以下になることが更に好ましい。熱圧着後のダイボンドシートの厚みが上記範囲となるように接着することで、ダイボンドシートが圧着時に空孔が変形することで被着体に追随し、充分に高い接着力を発現させることができるとともに、ダイボンドシートの機械強度を十分確保することができ、熱衝撃やパワーサイクルによる熱応力に対する信頼性を確保することができる。
 熱圧着後の空孔率及び/又は厚みは、熱圧着時の圧力により調整することができる。このような圧力は、上述した熱圧着時の圧力の範囲内で、当業者が適宜設定することができる。
 本実施形態のダイボンドシートは、図1に示す半導体装置とは異なる構造を有する半導体装置の製造にも用いることができる。例えば、図2は、本発明に係る半導体装置の別の例を示す模式断面図であり、図2に示される半導体装置102は、半導体素子搭載用支持部材3と複数の半導体素子2a、2bとがダイボンドシート1を介して接合された構造を有している。また、図3は、本発明に係る半導体装置の別の例を示す模式断面図であり、図3に示される半導体装置104は、半導体素子2と半導体素子搭載用支持部材3とが複数のダイボンドシート1a、1bを介して接合された構造を有している。半導体装置104においては、ダイボンド層の厚みを増やすことや、平滑ではない被着面への追随性を向上させることができる。
 図4は、本実施形態のダイボンドシートを用いて製造される半導体装置の一例を示す模式断面図である。図4に示す半導体装置106は、リードフレーム5a上に、本実施形態に係るダイボンドシート1を介して接続された半導体素子2と、これらをモールドするモールドレジン7とからなる。半導体素子2は、ワイヤ6を介してリードフレーム5bに接続されている。
 本実施形態に係るダイボンドシートを用いて得られる半導体装置は、ダイオード、整流器、サイリスタ、MOSゲートドライバ、パワースイッチ、パワーMOSFET、IGBT、ショットキーダイオード、ファーストリカバリダイオード等からなるパワーモジュール、発信機、増幅器、LEDモジュール等が挙げられる。本実施形態に係るダイボンドシートを用いて得られるパワーモジュール、発信機、増幅器、LEDモジュールは、半導体素子と半導体素子搭載用支持部材との間に高接着性を有することができる。
 以下に、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに制限されるものではない。
<ペースト状組成物の調製>
 ペースト状組成物1~10は、下記の調製例1~10に従い調製した。なお、表1~3には、各成分の配合量を質量部で示す。
 表1~3中の各成分の記号は下記のものを意味する。
AgC239:銀粒子(福田金属箔粉工業社製、製品名「AgC239」、体積平均粒径3.0μm)。
K-0082P:銀粒子(METALOR社製、製品名「K-0082P」、体積平均粒径1.6μm)。
Silver Foil:銀箔(Alfa Aesar社製、製品名「Silver Foil 0.1 mm thick hard Premion 99.998%、厚み100μm)
Cu-HWQ:銅粒子(福田金属箔粉工業社製、製品名「Cu-HWQ」、体積平均粒径1.5μm)。
ナノテックCUO:酸化銅粒子(CIKナノテック社製、製品名「ナノテックCUO」、体積平均粒径70μm)。
CH-002:球状銅粒子(三井金属社製、製品名「CH-002」、体積平均粒径0.3μm)
酸化第二銅:(和光純薬工業社製、製品名「酸化銅(II)」)。
3L3:(福田金属箔粉工業社製、製品名「3L3」、体積平均粒径10μmフレーク状)
ステアリン酸:(新日本理化社製、製品名「ステアリン酸」)。
VP-1300:低融点ガラス粒子(日立化成社製、製品名「バニーテクトIII VP-1300」、体積平均粒径1μm)。
MTPH:(日本テルペン工業社製、製品名「ボルニルシクロヘキサノール」)。
DPMA:(ダイセル化学社製、製品名「ジプロピレングリコールメチルエーテルアセテート」)。
炭酸ポリプロピレン:(和光純薬工業社製、製品名「4-メチル-1,3-ジオキソラン-2-オン)。
テルピネオール:(和光純薬工業社製、製品名「α-テルピネオール」)。
ポリアミック酸:(Aldrich社製、製品名「Poly(pyromellitic dianhydride-co-oxydianiline)NMP solution」)。
(調製例1)
 分散媒としてボルニルシクロヘキサノール(MTPH、日本テルペン社製)6.83g及びジプロピレングリコールメチルエーテルアセテート(DPMA、ダイセル化学社製)6.83gと、添加剤としてステアリン酸(新日本理化社製)1.35gとをポリ瓶に混合し、密栓し、50℃の水浴で暖め、時々振り混ぜながら透明均一な溶液とした。この溶液に銀粒子としてAgC239を135g添加し、スパチュラで乾燥粉がなくなるまでかき混ぜた。さらに、密栓をして自転公転型攪拌装置(Planetry Vacuum Mixer ARV-310、シンキー社製)を用いて、2000rpmで1分間撹拌してペースト状組成物1を得た。
(調製例2)
 分散媒として炭酸プロピレン3.2gと、銅粒子としてCu-HWQ(福田金属箔粉工業社製))14.28g及び酸化銅粒子としてナノテックCUO(CIKナノテック社製)2.52gをポリ瓶に加え、スパチュラで乾燥粉がなくなるまでかき混ぜた。その後は、調製例1と同様の方法でペースト状組成物2を得た。
(調製例3~7)
 分散媒としてテルピネオール(和光純薬工業製)1.37gと、添加剤としてステアリン酸(新日本理化社製)0.14gとをポリ瓶に混合、密栓し50℃の水浴で暖め、時々振り混ぜながら透明均一な溶液とした。この溶液に低融点ガラス粒子であるバニーテクトIII VP-1300(日立化成社製)及び2種類の銀粒子(AgC239(福田金属箔工業社製)、K-0082P(METALOR社製))を表2に示す割合で添加し、スパチュラで乾燥粉がなくなるまでかき混ぜた。その後は、調製例1と同様の方法でペースト状組成物3~7を得た。
(調製例8)
 分散媒としてテルピネオール10gと、銅粒子として球状銅粒子(CH-002、三井金属社製)90gとをポリ瓶に混合し、自動公転型攪拌装置を用いて、2000rpmで2分間攪拌して、ペースト状組成物8を得た。
(調製例9)
 二つのジルコニアポットにジルコニアボール(直径10mm)10個と酸化第二銅(和光純薬工業社製)10gをともにいれ、遊星ボールミル(P7、フリッチュ社製)のアーム両側にジルコニアポットを取り付け450rpmで2時間粉砕した。粉砕した酸化第二銅18gとジプロピレングリコールモノブチルエーテル2gとをポリ瓶に混合し、スパチュラでかき混ぜた。この混合物を、自動公転型攪拌装置を用いて、2000rpmで1分間攪拌して、ペースト状組成物9を得た。
(調製例10)
 分散媒としてテルピネオール4gと、フレーク状銅粉(3L3、福田金属箔粉工業社製)18gとをポリ瓶に混合し、自動公転型攪拌装置を用いて、減圧2kPa、2000rpmで2分間攪拌して、ペースト状組成物10を得た。
<ダイボンドシートの作製>
(実施例1)
 ペースト状組成物1をガラス板上に、ギャップを100μmにセットしたベーカーアプリケータ(YBA5型、ヨシミツ精機社製)を用いて膜状に塗布した。このガラス板をホットプレート上で室温から200℃まで10℃/minで昇温後、200℃で1時間放置した。このガラス基板を室温(25℃)に戻した後、ペースト状組成物1の硬化膜を、カッターナイフの刃をガラスと硬化膜との間に差し込み剥離することで、自立膜として得た。この硬化膜を14×14mmの正方形に切断して、ダイボンドシートとした。デジタルリニアゲージ(DG-525H、小野測器社製)を用いて、ガラス基板厚みと、ガラス基板及びダイボンドシートの合計の厚みとの差を、ダイボンドシートの膜厚として測定した結果、60μmであった。
 得られたダイボンドシートについて、下記の方法に従い各種の測定及び分析を行った。結果を表1及び2にまとめた。
[炭素分測定]
ダイボンドシート中に含まれる有機物量を評価するために炭素分を誘導加熱燃焼赤外線吸収法にて測定した。炭素分が検出限界(10ppm)以下のときには、表中「-」で示す。
[含有元素分析]
 ダイボンドシートに含まれる元素比率を以下の発光分析により定量した。まず、ふた付きのポリ容器にダイボンドシート約0.1gを小数点以下4桁まで秤量した。ここに、硝酸(AA-100、多摩化学社製)4mL、過酸化水素(原子吸光測定用、和光純薬製)3mLを添加し、30分間超音波処理をしてダイボンドシートを溶解した。残渣や浮遊物が無いことを確認した後、100mLのメスフラスコに移し、ふた付きのポリ容器を共洗いしながら純水を添加し、100mLに希釈した。必要に応じてさらに適宜希釈し、測定溶液とした。測定溶液を誘導結合プラズマ発光分光分析装置(SPS5100、日立ハイテクサイエンス社製)により測定することで、含有元素とその割合を得た。測定は以下の条件で行った。プラズマ出力:1.2kW、測定波長:V:292.401nm、Te:214.282nm、W:207.912nm、Ag:328.068nm。
[ダイシェア強度の測定]
 銀めっきアルミナDCB基板上に14×14mmのダイボンドシートを設置し、その上にチタン、ニッケル及び金がこの順でめっきされ、2×2mmの被着面が金めっきであるシリコンチップを16枚並べて置き、その上に膨張黒鉛シートを置いた状態で加熱圧着装置(テスター産業社製)を用いて空気中で10MPa、300℃の条件で10分間処理して接合した。ダイボンドシートの接着強度は、ダイシェア強度により評価した。DS-100ロードセルを装着した万能型ボンドテスタ(4000シリーズ、DAGE社製)を用い、測定スピード5mm/min、測定高さ50μmで被着面が金めっきであるシリコンチップを水平方向に押し、ダイボンドシートのダイシェア強度を測定した。15枚のシリコンチップを測定した値の平均値をダイシェア強度とした。
 ダイシェア強度の測定は、基板材料としてAg、Cu、Ni、Al又はSiOを用意し、基板材料がAgの時は空気雰囲気下又は窒素雰囲気下、SiO2、Alの時は窒素雰囲気下、Cu、Niの時はギ酸含有窒素雰囲気下で、[ダイシェア強度の測定]に記載の方法に従って雰囲気制御加熱圧着装置(RF-100B、アユミ工業社製)を用いて熱圧着を行い、ダイシェア強度を測定した。その結果、実施例1のダイボンドシートはAg、Cu、Niに対し、測定限界である50MPa以上のダイシェア強度を示し、十分な接着強度を有していた。
(実施例2~8)
 実施例1のダイボンドシートを、加熱圧着装置による圧着条件を表1に示す条件に変更した以外は、[ダイシェア強度の測定]に記載の方法に従ってダイシェア強度を測定した。その結果、加熱圧着条件として、温度が250℃以上、圧力が1MPa以上、時間が90秒以上であればダイシェア強度が10MPa以上になり、十分な接着強度が得られることが確認された。
(実施例9)
 ペースト状組成物2をガラス板上に、ギャップを100μmにセットしたベーカーアプリケータ(YBA5型、ヨシミツ精機社製)を用いて膜状に塗布した。このガラス板をギ酸リフロー装置「SR-300-2」(アユミ工業社製)にて、ギ酸を含む窒素中(ギ酸含有量は30℃時における飽和量で10質量%)で300℃1時間加熱することにより焼結を行った後、窒素中で300℃10分間静置し、その後窒素中で50℃以下に冷却してから空気中に取り出した。ペースト状組成物2の硬化膜を、カッターナイフの刃をガラスと硬化膜の間に差し込み剥離することで、自立膜として得た。この硬化膜を14×14mmの正方形に切断して、ダイボンドシートとした。デジタルリニアゲージ(DG-525H、小野測器社製)を用いて、ガラス基板厚みと、ガラス基板及びダイボンドシートの合計の厚みとの差を、ダイボンドシートの膜厚として測定した結果、70μmであった。このダイボンドシートを用いて、実施例1と同様に各種測定及び分析を行った。
 このダイボンドシートのダイシェア強度試験片を、基板として銀めっきアルミナDCB(Direct Copper Bond)基板及び銅板の2種類を用い、雰囲気制御加熱圧着装置(RF-100B、アユミ工業社製)を用いてギ酸含有窒素雰囲気で圧着した以外は、[ダイシェア強度の測定]に記載の方法に従って作製し、ダイシェア強度を測定した。その結果、実施例9のダイボンドシートのダイシェア強度は、銀めっきアルミナDCB基板に対しては20MPaであり、銅板に対しては22MPaであり、いずれも十分な接着強度を示した。
(実施例10~14)
 ペースト状組成物3~7をガラス基板上にポリイミドテープで固定したPTFE(四フッ化エチレン)含浸ガラスクロスの上に塗布した以外は実施例1と同様にして、ダイボンドシートを作製した。このダイボンドシートを用いて、実施例1と同様に各種測定及び分析を行った。
 ペースト状組成物3~7から作製したダイボンドシートを用い、基板材料としてAg、Cu、Ni、Al又はSiO2を用意し、基板材料がAg、SiO、Alのときは窒素雰囲気下、Cu、Niのときはギ酸含有窒素雰囲気下で、[ダイシェア強度の測定]に記載の方法に従って、雰囲気制御加熱圧着装置(RF-100B、アユミ工業製)を用いて熱圧着を行い、ダイシェア強度を測定した。その結果を表2に示す。低融点ガラス粒子を添加した実施例12のダイボンドシートではAg、Cu、Ni、Al、SiOに対して接着性が得られた。
(実施例15)
 アルミニウム板上にポリイミドテープでテフロン(登録商標)含浸ガラスクロスシートを固定し、その上にギャップを150μmにしたベーカーアプリケータを用いてペースト状組成物8を膜状に塗布した。このアルミニウム板をギ酸リフロー装置に導入し、減圧して10分間放置した。その後、アルミニウム板を、ギ酸含有窒素雰囲気下で、圧力0.09MPaで加熱し、385℃に達した状態で1時間処理した。その後、これを385℃で減圧し10分間放置した後、窒素で常圧に戻し、キャリヤトレイごと前室の冷却板上に移して30℃まで冷却して、空気中に取り出した。ペースト状組成物8の硬化膜を、カッターナイフの刃をガラスと硬化膜との間に差し込み剥離することで、自立膜として得た。この自立膜を14×14mmの正方形に切断して、ダイボンドシートとした。
 銅板(19×25mm、厚み3mm)の上にペースト状組成物8から作製したダイボンドシートを置き、その上に銅チップ(2×2mm)を4個ずつ4列に並べ、その上にアルミナ板(14×14mm、厚さ1mm)、膨張黒鉛シート(14×14mm、厚さ0.5mm)をこの順で重ねた。これを雰囲気制御加熱圧着装置(RF-100B、アユミ工業社製)によってギ酸含有窒素雰囲気で30MPa、385℃の条件で60分間処理し、その後窒素中、無加圧300℃10分処理して接合した。
 この接合体を用いたこと以外は、[ダイシェア強度の測定]に記載の方法に従って、ダイシェア強度を測定した。その結果、実施例15のダイボンドシートは、50MPa前後でダイボンド層ではなく銅チップが破壊したため、ダイシェア強度は50MPa以上であると判断した。
(実施例16)
 厚さ300μmのテフロン(登録商標)シートに20×20mmの開口を設けてマスクとした。このマスクを石英ガラス板上に重ねてペースト状組成物9をマスク開口部に塗布し、メタルスキージで均し、マスクを取り除いた。このガラス板を110℃のホットプレート上で10分乾燥後、チューブヒーター(ALL VACUUM CREATE社製)にセットした。その後、ガラス板を水素雰囲気下で350℃、1時間処理した後、窒素を流し放冷して室温付近で空気中に取り出した。ペースト状組成物9の硬化膜を、カッターナイフの刃をガラスと硬化膜との間に差し込み剥離することで、自立膜として得た。この自立膜を14×14mmの正方形に切断して、ダイボンドシートとした。
 ペースト状組成物9から作製したダイボンドシートを用いたこと以外は、実施例15と同様の方法でダイシェア強度を測定した。その結果、ペースト状組成物9から作製したダイボンドシートは、50MPa以上のダイシェア強度が得られた。
(実施例17)
 厚さ300μmのテフロン(登録商標)シートに20×20mmの開口を儲けてマスクとし、このマスクを石英ガラス板上(27×35mm)に重ね、ペースト状組成物10を塗布し、メタルスキージで均し、マスクを取り除いた。この石英ガラス板をギ酸リフロー装置に導入して減圧し10分間放置した。その後、石英ガラス板を、ギ酸含有窒素雰囲気下で、圧力0.09MPaで加熱し、385℃に達した状態で1時間処理した。その後、これを385℃で減圧し10分間放置した後、窒素で常圧に戻し、キャリヤトレイごと前室の冷却板上に移して30℃まで冷却して、空気中に取り出した。ペースト状組成物10の硬化膜を、カッターナイフの刃をガラスと硬化膜との間に差し込み剥離することで、自立膜として得た。この自立膜を14×14mmの正方形に切断して、ダイボンドシートとした。
 ペースト状組成物10から作製したダイボンドシートを用いたこと以外は、実施例15と同様の方法でダイシェア強度を測定した。その結果、ペースト状組成物10から作製したダイボンドシートは、50MPa以上のダイシェア強度が得られた。
(比較例1)
 厚さ100μmの銀箔(Silver Foil、0.1mm thick、hard、99.998%、PREMION、Alfa Aesar社製)を14×14mm2の正方形に切断してダイボンドシートとして用いた。このダイボンドシートを用いて、実施例1と同様に各種測定及び分析を行った。その結果、比較例1のダイボンドシートのダイシェア強度は8MPaと低く、接着不良であった。
(比較例2)
 実施例1のダイボンドシートに、N-メチルピロリドンで5質量%に希釈したポリアミック酸(製品番号575801、Aldrich社製)溶液を表面からあふれない程度に含浸した。その後、余分なポリアミック酸溶液をベンコット(登録商標、旭化成せんい株式会社)でふき取った後、ポリテトラフルオロエチレンのシートをひいた100℃に加熱したホットプレート上で乾燥した。ポリアミック酸溶液の含浸及び乾燥を繰り返し、ダイボンドシートの乾燥状態での重量増加が1.03質量%(ポリアミック酸含量2.8質量%)となったダイボンドシートを調製した。このダイボンドシートを用いて、実施例1と同様に各種測定及び分析を行った。その結果、比較例2のダイボンドシートのダイシェア強度は2MPaと低く、接着不良であった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
<断面モルフォロジーの観察>
 シリコンチップ及び基板をダイボンドシートで接合したサンプルをカップ内にサンプルクリップ(Samplklip I、Buehler社製)で固定し、周囲にエポキシ注形樹脂(エポマウント、リファインテック社製)をサンプル全体が埋まるまで流し込み、真空デシケータ内に静置し、1分間減圧して脱泡した。その後、室温下(25℃)10時間放置後、60℃の恒温機で2時間エポキシ注形樹脂を硬化した。ダイヤモンド切断ホイール(11-304、リファインテック社製)をつけたリファインソー・ロー(リファインテック製)を用い、注形したサンプルの観察したい断面付近で切断した。耐水研磨紙(カーボマックペーパー、リファインテック社製)をつけた研磨装置(Refine Polisher HV、リファインテック社製)で断面を削り、シリコンチップにクラックの無い断面を出した。その後、バフ研磨剤を染ませたバフ研磨布をセットした研磨装置で断面を平滑に仕上げた。断面をイオンミリング装置(IM4000、日立製作所社製)でイオンビーム照射角度30°、偏心率2mm、加速電圧6kV、アルゴンガス流量0.07~0.1cm/min、処理時間5分の条件でフラットミリングを行い、断面にスパッタ装置(ION SPUTTER、日立ハイテク社製)を用いて白金を10nmの厚みでスパッタしてSEM用のサンプルとした。このSEM用サンプルをSEM装置(ESEM XL30、Philips社製)により、ダイボンドシートの断面を印加電圧10kV、各種倍率で観察した。
 実施例1のダイボンドシートを上記の方法に従って加工断面を観察し、接合前の断面モルフォロジーを観察した。図5は、実施例1の接合前のダイボンドシート8aの断面モルフォロジーを1000倍で観察した結果、得られたSEM像である。
 銀めっきアルミナDCB基板10上に14×14mmのダイボンドシートを設置し、その上にチタン、ニッケル及び金がこの順でめっきされ、12.5×12.5mmの被着面が金めっきされたシリコンチップを設置し、さらにその上に、13×13mmの膨張黒鉛シートを設置した状態で雰囲気制御加熱圧着装置(RF-100B、アユミ工業社製)を用いて空気中10MPa、300℃、10分間処理して接合サンプル1を得た。
 接合サンプル1を<断面モルフォロジーの観察>に記載の方法に従い、加工断面を観察した。実施例1のダイボンドシート8bにおける接着層の断面モルフォロジーを1000倍で観察した結果、図6のSEM像が得られ、5000倍で観察した結果、図7のSEM像が得られた。図6中、8bがダイボンドシート、9がシリコンチップを示す。
 図6及び図7に示されるように、実施例1のダイボンドシート8bは加熱圧着により内部の空孔が潰れながら、55μmから44μmの厚みに圧縮され、この変形に伴い、実施例1のダイボンドシート8bは被着面である基板上の銀めっき層11に隙間無く追随していた。さらに、図6及び図7に示されるように、実施例1のダイボンドシート8bは被着面である銀めっき層11と金属結合を形成して接合していた。
 次いで、基板として銅板を用い、ダイボンドシートとして実施例2のダイボンドシートを用いて、雰囲気制御加熱圧着装置(RF-100B、アユミ工業社製)によってギ酸含有窒素雰囲気で圧着した以外は、<断面モルフォロジーの観察>に記載の方法と同様にして接合サンプル2を得た。
 接合サンプル2を<断面モルフォロジーの観察>に記載の方法に従って、加工断面の断面モルフォロジーを観察した。実施例2のダイボンドシートによる接着層の断面モルフォロジーを200倍で観察した結果、図8のSEM像が得られ、20000倍で観察した結果、図9のSEM像が得られた。
 図8に示されるように、実施例1のダイボンドシート8bと同様に、実施例2のダイボンドシート12は加熱圧着により内部の空孔が潰されながら、150μmから54μmの厚みに圧縮され、この変化に伴い、実施例2のダイボンドシート12は被着面である銅板13に隙間無く追随していた。さらに、図9に示されるように、実施例2のダイボンドシート12は被着面である銅板13と境目無く接合しており、金属結合により結合していた。
 また、図10及び図11は、被着体が表面酸化シリコン基板(被着面:SiO2)15及びアルミニウム基板(被着面:Al)16のときに、実施例13のダイボンドシート14を用いて、実施例1と同様に接合サンプル3及び4を調製し、これらの接合サンプルを<断面モルフォロジーの観察>に記載の方法に従って、断面を観察した結果得られたSEM像である。図10及び図11では、実施例1のダイボンドシート8bの接合サンプルのSEM像である図6及び図7と比較して、ガラス成分を含む実施例13のダイボンドシート14の方が、空孔が減っており、緻密性が向上していた。これは圧着時に低融点ガラスが溶融、流動して空孔を埋めたためと考えられる。
 更に、ダイボンドシートに比較例1の銀箔からなるダイボンドシートを用いたこと以外は、実施例1のダイボンドシートの観察と同様の方法で接合サンプル5を得た。
 接合サンプル5を<断面モルフォロジーの観察>に記載の方法に従って、加工断面の断面モルフォロジーを観察した。図12は、接合サンプル5の断面モルフォロジーを5000倍で観察した結果、得られたSEM像である。断面観察の結果、銀箔17と被着面の銀めっき層11との間に空隙が見られた。被着面積が小さいため接着不良になったと考えられる。
 実施例1のダイボンドシートによれば、図6に示されるように、圧着時にシート内の空孔が潰れながら変形し、被着体にシートが追随することにより、良好な密着性が得られることが分かった。一方、緻密な銀箔17を用いた場合、銀箔は圧着時には大きく変形できず、銀箔と被着体との間には空隙が生じて接着力を得ることができなかった。
(実施例18、19及び比較例3)
(ダイボンドシートの作製)
 ペースト状組成物1を、厚さ50μmのポリイミドシート上に、20×20mmの正方形に開口させた厚さ125μmのPETフィルムをマスクとして、メタルスキージを用いて塗布した。このペースト状組成物1を塗布したポリイミドシートをホットプレート上に設置し、110℃で10分間及び180℃で10分間乾燥後、もう一枚のポリイミドシートを乾燥したペースト状組成物上に被せ、加熱圧着装置を用いて、表4に記載の圧力条件で、300℃、10分間硬化した。硬化したペースト状組成物をポリイミドシートから剥離し、10×10mmの正方形に切断して、実施例18、19及び比較例3のダイボンドシートとした。
[空孔観察]
 空孔率の測定は、以下の方法で行った。ダイボンドシートを長方形に切り出し、ダイボンドシートの縦、横の長さを定規で、厚みを膜厚計(ID-C112C、グラナイトコンパレータスタンド、レリーズ、ミツトヨ社製)で測定してシートの体積を計算した。切り出したダイボンドシートの体積と、精密天秤で測定したダイボンドシートの重量とからダイボンドシートの見かけの密度M(g/cm)を求めた。求めたMと、ダイボンドシートを構成する材料の密度M(g/cm)とを用いて、下記式(4)から空孔率を求めた。
空孔率(体積%)=[1-(M)/(M)]×100   …(4)
 実施例1、18、19及び比較例3のダイボンドシートは銀からなるペースト状組成物1を用いているため、上記式(4)のMには、銀の密度10.5g/cmを用いて空孔率(体積%)を求めた。実施例9のダイボンドシートは銅からなるペースト状組成物2を用いているため、上記式(4)のMには、銅の密度8.96g/cmを用いて空孔率(体積%)を求めた。
 低融点ガラス(密度5.5g/cm)を含む実施例10~14に関しては、下記式(5)を用いてダイボンドシートを構成する材料の密度Mを算出し、式(4)のMに代入することで、空孔率を求めた。
(g/cm)=1/[{(B/100)/5.5}+{(1-B/100)/10.5}]   …(5)
[B:低融点ガラスの含有量(質量%)]
 熱圧着後におけるダイボンドシートの空孔率の測定は、以下の方法で行った。接合サンプルを<断面モルフォロジーの観察>に記載の方法に従って、熱圧着後のダイボンドシートの5000倍の断面像データを得た。ImageJを起動し、断面像データを開き、熱圧着後におけるダイボンドシートのみをドラッグして選択し、Image→Cropを選択し画像を切り出した。切り出した熱圧着後におけるダイボンドシートのデータにおいて、Analyze→Measureを押し、画像全体の面積(A)を計測した。次に、Image→Adjust→Thresholdの順で選択し、空孔部のみが選択されるようにパラメータを調整して二値化処理を行なった。Edit→Selection→Create Selectionを押し、空孔部が選択されていることを確認し、Analyze→Measureを押して空孔部の面積(A)を計測した。熱圧着後の空孔率は、下記式(6)から求めた。
熱圧着後の空孔率(体積%)={(A)/(A)}×100   …(6)
 銀めっき銅板(20×20mm、厚み2mm)18上に、10×10mmの実施例18、19及び比較例3のダイボンドシートを置き、その上にチタン、ニッケル及び金がこの順でめっきされ、5×5mmの被着面が金めっきであるシリコンチップを置き、さらにその上に6×6mmの膨張黒鉛シートを置いた状態で雰囲気制御加熱圧着装置(アユミ工業製)を用いて、空気中10MPa、300℃、10分間処理して接合サンプル6~8を得た。
 接合サンプル6~8の断面観察を<断面モルフォロジーの観察>に記載の方法で注形、研磨まで行った後、注形サンプルの外形が幅20mm×奥行12mm×厚み7mmの範囲に入るように余分な部分を研磨装置にて削り、シリコンチップ側の注形樹脂をシリコンチップの際まで削った。その後、イオンミリング装置にてクロスセクションポリッシングモードで、加速電圧6kV、アルゴンガス流量0.07~0.1cm/min、処理時間90分間の条件でマスクから出た端部を切削し、ダイボンド層の断面を出した。スパッタ装置以降は<断面モルフォロジーの観察>に記載の方法に従いSEM観察を行った。
 図13は、5MPaの加圧条件で作製した実施例19のダイボンドシート8cを用いたダイボンド層のSEM像を示し、図14は10MPaの加圧条件で作製した比較例3のダイボンドシート8dを用いたダイボンド層のSEM像を示している。実施例18及び19のダイボンドシートを用いた場合には、ダイボンドシートと被着体との間には空隙なく密着したが、比較例3のダイボンドシートを用いた場合には、図14に示すように被着面である銀めっき層19との間に部分的に空隙が発生した。これは、ダイボンドシート中の空孔率が低くなり過ぎたため、圧着時にダイボンドシートが変形し難くなり、結果として膜厚斑や基板の凹凸を吸収しきれなくなり、空隙が残ったと考えられる。このような空隙は、局所的な熱抵抗の増加、接着力の低下、熱応力による破壊の起点となりデバイスの信頼性を低下させるため好ましくない。
 銅板(19×25mm、厚み3mm)の上に実施例15のダイボンドシートを置き、その上にAuメッキSiチップ(3×3mm)を置き、アルミナ板(4×4mm、厚さ1mm)、膨張黒鉛シート(4×4mm、厚さ0.5mm)をこの順で重ねた。これを雰囲気制御加熱圧着装置によってギ酸含有窒素雰囲気で30MPa、385℃の条件で60分間処理し、その後窒素中、無加圧300℃10分処理して接合し、接合サンプル9を得た。熱圧着前の実施例15のダイボンドシートと、接合サンプル9を<断面モルフォロジーの観察>に記載の方法に従って加工断面を観察した。熱圧着前の実施例15のダイボンドシート20の断面モルフォロジーを3000倍で観察した結果、図15のSEM像が得られ、接合サンプル9のダイボンドシート21の加工断面を3000倍で観察した結果、図16のSEM像が得られた。図15及び16から、熱圧着前にはダイボンドシート20に見られていた空孔が、熱圧着により減少していることがわかる。
 実施例1、18、19及び比較例3のダイボンドシートのダイシェア強度を、[ダイシェア強度の測定]に記載の方法で測定した。実施例9、15~17のダイボンドシートのダイシェア強度はギ酸含有窒素雰囲気下で、実施例10~14のダイボンドシートのダイシェア強度は窒素雰囲気下で測定した以外は、[ダイシェア強度の測定]に記載の方法で測定した。その結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
<接続信頼性試験>
(Agペーストを用いた接続信頼性試験サンプルの作製)
 イソボルニルシクロヘキサノール(テルソルブMTPH、日本テルペン製)5.5質量部とステアリン酸ブチル(和光純薬工業製)5.5質量部をポリ瓶に混合、密栓し50℃の水浴で暖め、時々振り混ぜながら透明均一な溶液とした。この溶液に鱗片状銀粒子(AgC239、福田金属箔粉工業製)89質量部を添加し、スパチュラで乾燥粉がなくなるまでかき混ぜた。さらに、ポリ瓶に密栓をして自転公転型攪拌装置(Planetary Vacuum Mixer ARV-310、シンキー社製)を用いて、2000rpmで1分間撹拌してAgペーストを得た。
 基板(銀めっき銅板19×25mm、厚み3mm)上に5×9mmの開口を有するメタルマスクを重ね、Agペーストをメタルスキージを用いて印刷した。Agペーストが印刷された基板をクリーンオーブン(PVHC-210、TABAIESPEC社製)を用いて180℃で20分間乾燥した。Agペースト上にチタン、ニッケル及び金がこの順でめっきされ、4×8mmの被着面が金めっきであるシリコンチップ、アルミナ板(5×9mm、厚さ1mm)、膨張黒鉛シート(5×9mm、厚さ0.5mm)をこの順で重ね、加熱圧着装置を用いて空気中で10MPa、300℃の条件で10分間処理して接合した。この接合体にプライマー(HIMAL、日立化成社製)をコートし、これを封止材(CEL-420、日立化成社製)で封止して、Agペーストを用いた接続信頼性試験サンプル1を作製した。
(Agダイボンドシート接続信頼性試験サンプルの作製)
 Agダイボンドシートは、実施例1で調製したものを5×9mmに切断して用いた。基板(銀めっき銅板19×25mm、厚み3mm)上に、Agダイボンドシート、チタン、ニッケル及び金がこの順でめっきされ、4×8mmの被着面が金めっきであるシリコンチップ、アルミナ板、膨張黒鉛シートをこの順で重ね、加熱圧着装置を用いて空気中で10MPa、300℃の条件で10分間処理して接合した。この接合体にプライマーをコートし、これを封止材で封止して、Agダイボンドシートを用いた接続信頼性試験サンプル2を作製した。
(Cuダイボンドシート接続信頼性試験サンプルの作製)
 Cuダイボンドシートは、実施例9で調製したものを5×9mmに切断して用いた。基板(銅板19×25mm、厚み3mm)上に、Cuダイボンドシート、チタン、ニッケル及び金がこの順でめっきされ、4×8mmの被着面が金めっきであるシリコンチップ、アルミナ板、膨張黒鉛シートをこの順で重ね、雰囲気制御加熱圧着装置(RF-100B、アユミ工業社製)によってギ酸含有窒素雰囲気で10MPa、300℃の条件で10分間処理し、その後窒素中、無加圧300℃10分処理して接合した。この接合体にプライマーをコートし、これを封止材で封止して、Cuダイボンドシートを用いた接続信頼性試験サンプル3を作製した。
(接続信頼性試験)
 接続信頼性試験は、冷熱衝撃試験装置(TSA-72ES-W、タバイエスペック社製)を用い、低温側-40℃、高温側200℃、1サイクル30分で行った。試験サンプルの接続信頼性は、超音波トモグラフィー(InSight-300、インサイト社製)を用いて、接続信頼性試験を200サイクル行った後のダイボンド層が剥離した面積割合で評価した。その結果、試験サンプル1(Agペースト)を用いた場合では20面積%、試験サンプル2(Agダイボンドシート)を用いた場合では20面積%、試験サンプル3(Cuダイボンドシート)を用いた場合では0面積%の剥離が見られた。以上の結果から、AgダイボンドシートはAgペーストと同等の接続信頼性を有しており、CuダイボンドシートはAgダイボンドシート及びAgダイボンドシートより接続信頼性に優れていた。
 1、1a、1b…ダイボンドシート、2、2a、2b…半導体素子、3…半導体素子搭載用支持部材、4a、4b…被着面、5a、5b…リードフレーム、6…ワイヤ、7…モールドレジン、8a、8b、8c、8d…ダイボンドシート(銀製)、9…金めっきシリコンチップ(被着面金)、10…銀めっきアルミナDCB基板の銅層、11…銀めっきアルミナDCB基板の銀めっき層(被着面銀)、12…ダイボンドシート(銅製)、13…銅板(被着面銅)、14…ダイボンドシート(低融点ガラス成分含有)、15…表面酸化Si基板(被着面SiO)、16…アルミニウム基板、17…銀箔、18…銀めっき銅板、19…銀めっき銅板の銀めっき層(被着面銀)20…銅ダイボンドシート(熱圧着前)、21…銅ダイボンドシート(熱圧着後)。

Claims (5)

  1.  空孔率が15~50体積%であり、銀及び/又は銅を含み、炭素分が1.5質量%以下である多孔質シートを、半導体素子と半導体素子搭載用支持部材との間に介在させ、これらを加熱加圧することにより前記半導体素子と前記半導体素子搭載用支持部材とを接合することを特徴とする半導体装置の製造方法。
  2.  空孔率が15~50体積%であり、銀及び/又は銅を含み、炭素分が1.5質量%以下である多孔質シートからなることを特徴とするダイボンドシート。
  3.  バナジウムを原子換算で0.06~13.6原子%及びテルルを原子換算で0.12~7.8原子%含むことを特徴とする請求項2に記載のダイボンドシート。
  4.  前記多孔質シートが、銀粒子及び/又は銅粒子と分散媒とが含まれる組成物をシート状に形成し、加熱して得られるものであることを特徴とする請求項2又は3に記載のダイボンドシート。
  5.  請求項2~4のいずれか一項に記載のダイボンドシートを介して、半導体素子と半導体素子搭載用支持部材とが接合された構造を有することを特徴とする半導体装置。
PCT/JP2014/078095 2013-10-23 2014-10-22 ダイボンドシート及び半導体装置の製造方法 WO2015060346A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015543884A JP6477486B2 (ja) 2013-10-23 2014-10-22 ダイボンドシート及び半導体装置の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-220395 2013-10-23
JP2013220395 2013-10-23

Publications (1)

Publication Number Publication Date
WO2015060346A1 true WO2015060346A1 (ja) 2015-04-30

Family

ID=52992936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078095 WO2015060346A1 (ja) 2013-10-23 2014-10-22 ダイボンドシート及び半導体装置の製造方法

Country Status (3)

Country Link
JP (1) JP6477486B2 (ja)
TW (1) TWI650822B (ja)
WO (1) WO2015060346A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017057130A1 (ja) * 2015-09-30 2017-04-06 日東電工株式会社 加熱接合用シート及びダイシングテープ付き加熱接合用シート
JP2017069558A (ja) * 2015-09-30 2017-04-06 日東電工株式会社 パワー半導体装置の製造方法
WO2017057485A1 (ja) * 2015-09-30 2017-04-06 日東電工株式会社 シートおよび複合シート
JP2017069557A (ja) * 2015-09-30 2017-04-06 日東電工株式会社 シートおよび複合シート
JP2017069410A (ja) * 2015-09-30 2017-04-06 日東電工株式会社 加熱接合用シート、及び、ダイシングテープ付き加熱接合用シート
WO2017057429A1 (ja) * 2015-09-30 2017-04-06 日東電工株式会社 加熱接合用シート、及び、ダイシングテープ付き加熱接合用シート
JP2017069559A (ja) * 2015-09-30 2017-04-06 日東電工株式会社 パワー半導体装置の製造方法
WO2017057428A1 (ja) * 2015-09-30 2017-04-06 日東電工株式会社 加熱接合用シート、及び、ダイシングテープ付き加熱接合用シート
EP3346487A1 (en) * 2017-01-10 2018-07-11 Toyota Jidosha Kabushiki Kaisha Semiconductor device with a joining layer with a part with higher porosity in a recess of an electrode plate and corresponding manufacturing method
EP3431216A4 (en) * 2016-03-16 2019-03-06 Nitto Denko Corporation METHOD FOR MANUFACTURING AN ASSEMBLED PART
US10685933B2 (en) 2015-09-30 2020-06-16 Nitto Denko Corporation Thermal bonding sheet and thermal bonding sheet with dicing tape
US10707184B2 (en) 2015-09-30 2020-07-07 Nitto Denko Corporation Thermal bonding sheet and thermal bonding sheet with dicing tape
US10888929B2 (en) 2015-09-30 2021-01-12 Nitto Denko Corporation Sheet and composite sheet
CN113614894A (zh) * 2019-03-29 2021-11-05 三井金属矿业株式会社 接合体及其制造方法
US11390777B2 (en) 2016-08-31 2022-07-19 Nitto Denko Corporation Sheet for heat bonding and sheet for heat bonding having dicing tape
WO2023127968A1 (ja) * 2021-12-28 2023-07-06 三菱マテリアル株式会社 接合用シート、接合用シートの製造方法、及び接合体の製造方法
WO2023127969A1 (ja) * 2021-12-28 2023-07-06 三菱マテリアル株式会社 接合用シート、及び接合体の製造方法
US11786966B2 (en) 2016-08-31 2023-10-17 Nitto Denko Corporation Sheet for heat bonding, and sheet for heat bonding having dicing tape
CN117334655B (zh) * 2023-09-30 2024-05-31 江苏富乐华功率半导体研究院有限公司 一种应用银烧结焊片的低孔隙率界面结构及制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6677886B2 (ja) * 2016-02-29 2020-04-08 三菱マテリアル株式会社 半導体装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003003134A (ja) * 2001-06-20 2003-01-08 Japan Gore Tex Inc Icチップ接着用シートおよびicパッケージ
JP2005002335A (ja) * 2003-05-21 2005-01-06 Japan Gore Tex Inc 接着フィルムおよびこれを使った半導体装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3617306B2 (ja) * 1998-04-15 2005-02-02 株式会社日立製作所 加圧接触型半導体装置、及びこれを用いた変換器
JP2004298962A (ja) * 2003-03-17 2004-10-28 Mitsubishi Materials Corp はんだ接合材及びこれを用いたパワーモジュール基板
JP2014097529A (ja) * 2012-10-18 2014-05-29 Fuji Electric Co Ltd 発泡金属による接合方法、半導体装置の製造方法、半導体装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003003134A (ja) * 2001-06-20 2003-01-08 Japan Gore Tex Inc Icチップ接着用シートおよびicパッケージ
JP2005002335A (ja) * 2003-05-21 2005-01-06 Japan Gore Tex Inc 接着フィルムおよびこれを使った半導体装置

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108235783B (zh) * 2015-09-30 2021-05-18 日东电工株式会社 加热接合用片材及带有切割带的加热接合用片材
JP2017069557A (ja) * 2015-09-30 2017-04-06 日東電工株式会社 シートおよび複合シート
US11634611B2 (en) 2015-09-30 2023-04-25 Nitto Denko Corporation Sheet and composite sheet
WO2017057130A1 (ja) * 2015-09-30 2017-04-06 日東電工株式会社 加熱接合用シート及びダイシングテープ付き加熱接合用シート
JP2017069410A (ja) * 2015-09-30 2017-04-06 日東電工株式会社 加熱接合用シート、及び、ダイシングテープ付き加熱接合用シート
WO2017057429A1 (ja) * 2015-09-30 2017-04-06 日東電工株式会社 加熱接合用シート、及び、ダイシングテープ付き加熱接合用シート
JP2017069559A (ja) * 2015-09-30 2017-04-06 日東電工株式会社 パワー半導体装置の製造方法
WO2017057428A1 (ja) * 2015-09-30 2017-04-06 日東電工株式会社 加熱接合用シート、及び、ダイシングテープ付き加熱接合用シート
JP2017069422A (ja) * 2015-09-30 2017-04-06 日東電工株式会社 加熱接合用シート及びダイシングテープ付き加熱接合用シート
WO2017057128A1 (ja) * 2015-09-30 2017-04-06 日東電工株式会社 加熱接合用シート、及び、ダイシングテープ付き加熱接合用シート
CN108207115A (zh) * 2015-09-30 2018-06-26 日东电工株式会社 加热接合用片以及带有切割带的加热接合用片
CN108235783A (zh) * 2015-09-30 2018-06-29 日东电工株式会社 加热接合用片材及带有切割带的加热接合用片材
CN108207115B (zh) * 2015-09-30 2021-04-20 日东电工株式会社 加热接合用片以及带有切割带的加热接合用片
EP3358609A4 (en) * 2015-09-30 2018-08-15 Nitto Denko Corporation Sheet and composite sheet
US20180265744A1 (en) * 2015-09-30 2018-09-20 Nitto Denko Corporation Thermal Bonding Sheet and Thermal Bonding Sheet with Dicing Tape
EP3358605A4 (en) * 2015-09-30 2018-10-03 Nitto Denko Corporation Thermal bonding sheet, and thermal bonding sheet with dicing tape
WO2017057485A1 (ja) * 2015-09-30 2017-04-06 日東電工株式会社 シートおよび複合シート
US10888929B2 (en) 2015-09-30 2021-01-12 Nitto Denko Corporation Sheet and composite sheet
JP2017069558A (ja) * 2015-09-30 2017-04-06 日東電工株式会社 パワー半導体装置の製造方法
US10669452B2 (en) 2015-09-30 2020-06-02 Nitto Denko Corporation Thermal bonding sheet and thermal bonding sheet with dicing tape
US10685933B2 (en) 2015-09-30 2020-06-16 Nitto Denko Corporation Thermal bonding sheet and thermal bonding sheet with dicing tape
TWI700749B (zh) * 2015-09-30 2020-08-01 日商日東電工股份有限公司 加熱接合用片材、以及附切晶帶加熱接合用片材
US10707184B2 (en) 2015-09-30 2020-07-07 Nitto Denko Corporation Thermal bonding sheet and thermal bonding sheet with dicing tape
TWI696546B (zh) * 2016-03-16 2020-06-21 日商日東電工股份有限公司 接合體之製造方法
US10821543B2 (en) 2016-03-16 2020-11-03 Nitto Denko Corporation Joint manufacturing method
EP3431216A4 (en) * 2016-03-16 2019-03-06 Nitto Denko Corporation METHOD FOR MANUFACTURING AN ASSEMBLED PART
US11786966B2 (en) 2016-08-31 2023-10-17 Nitto Denko Corporation Sheet for heat bonding, and sheet for heat bonding having dicing tape
US11390777B2 (en) 2016-08-31 2022-07-19 Nitto Denko Corporation Sheet for heat bonding and sheet for heat bonding having dicing tape
EP3346487A1 (en) * 2017-01-10 2018-07-11 Toyota Jidosha Kabushiki Kaisha Semiconductor device with a joining layer with a part with higher porosity in a recess of an electrode plate and corresponding manufacturing method
RU2678509C1 (ru) * 2017-01-10 2019-01-29 Тойота Дзидося Кабусики Кайся Полупроводниковое устройство и способ изготовления полупроводникового устройства
US10269753B2 (en) 2017-01-10 2019-04-23 Toyota Jidosha Kabushiki Kaisha Semiconductor device and manufacturing method of semiconductor device
CN113614894A (zh) * 2019-03-29 2021-11-05 三井金属矿业株式会社 接合体及其制造方法
EP3951840A4 (en) * 2019-03-29 2022-06-08 Mitsui Mining & Smelting Co., Ltd. COMPOSITE BODIES AND METHOD OF MAKING THEREOF
WO2023127968A1 (ja) * 2021-12-28 2023-07-06 三菱マテリアル株式会社 接合用シート、接合用シートの製造方法、及び接合体の製造方法
WO2023127969A1 (ja) * 2021-12-28 2023-07-06 三菱マテリアル株式会社 接合用シート、及び接合体の製造方法
CN117334655B (zh) * 2023-09-30 2024-05-31 江苏富乐华功率半导体研究院有限公司 一种应用银烧结焊片的低孔隙率界面结构及制备方法

Also Published As

Publication number Publication date
JP6477486B2 (ja) 2019-03-06
TWI650822B (zh) 2019-02-11
JPWO2015060346A1 (ja) 2017-03-09
TW201535536A (zh) 2015-09-16

Similar Documents

Publication Publication Date Title
JP6477486B2 (ja) ダイボンドシート及び半導体装置の製造方法
JP7192842B2 (ja) 接合用銅ペースト、接合体の製造方法及び半導体装置の製造方法
JP6866893B2 (ja) 接合用銅ペースト、接合体の製造方法及び半導体装置の製造方法
JP6819598B2 (ja) 接合用銅ペースト、接合体の製造方法及び半導体装置の製造方法
JP5880300B2 (ja) 接着剤組成物及びそれを用いた半導体装置
JP6848549B2 (ja) 接合用銅ペースト及び半導体装置
JP2015109434A (ja) ダイボンド層付き半導体素子搭載用支持部材、ダイボンド層付き半導体素子及びダイボンド層付き接合板
WO2017043540A1 (ja) 接合体及び半導体装置
JP6965531B2 (ja) ダイボンドシート及び半導体装置
JP2018156736A (ja) 接合用銅ペースト、接合体及びその製造方法、並びに半導体装置及びその製造方法
JP7210842B2 (ja) 接合体の製造方法、焼結銅ピラー形成用銅ペースト、及び接合用ピラー付部材
JP2021127505A (ja) 接合用金属ペースト、接合体、半導体装置、及び接合体の製造方法
JP6984146B2 (ja) 樹脂含有銅焼結体及びその製造方法、接合体、並びに半導体装置
JP2021172858A (ja) 半導体装置の製造方法、半導体素子搭載用支持部材セット及び半導体素子セット
JP2016054252A (ja) ダイボンド用多孔質層付き半導体素子及びそれを用いた半導体装置の製造方法、半導体装置
JP7468358B2 (ja) 接合体及び半導体装置の製造方法、並びに接合用銅ペースト
JP2021127506A (ja) 接合用金属ペースト、接合体、半導体装置、及び接合体の製造方法
JP2021057466A (ja) 接合体の製造方法及び接合体
JP2020015950A (ja) 接合用金属ペースト、接合体及び接合体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14854942

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015543884

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14854942

Country of ref document: EP

Kind code of ref document: A1