WO2023127968A1 - 接合用シート、接合用シートの製造方法、及び接合体の製造方法 - Google Patents

接合用シート、接合用シートの製造方法、及び接合体の製造方法 Download PDF

Info

Publication number
WO2023127968A1
WO2023127968A1 PCT/JP2022/048667 JP2022048667W WO2023127968A1 WO 2023127968 A1 WO2023127968 A1 WO 2023127968A1 JP 2022048667 W JP2022048667 W JP 2022048667W WO 2023127968 A1 WO2023127968 A1 WO 2023127968A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
less
copper particles
bonding sheet
sheet
Prior art date
Application number
PCT/JP2022/048667
Other languages
English (en)
French (fr)
Inventor
弘太郎 増山
清隆 中矢
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to CN202280077199.0A priority Critical patent/CN118284484A/zh
Publication of WO2023127968A1 publication Critical patent/WO2023127968A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder

Definitions

  • the present invention relates to a bonding sheet, a method for manufacturing a bonding sheet, and a method for manufacturing a bonded body.
  • Patent Document 1 describes, as a bonding material, a bonding sheet formed by mixing copper particles and a solvent having a boiling point of 150° C. or higher and pressing the mixture at room temperature.
  • the present invention has been made in view of the above, and it is an object of the present invention to provide a bonding sheet that can be properly bonded while suppressing the risk of breakage, a method for manufacturing the bonding sheet, and a method for manufacturing a bonded body. aim.
  • the joining sheet according to the present disclosure includes a copper sintered body, has a Young's modulus of 10 GPa or more, and a filling rate of 50% or more and 70% or less. is.
  • the joining sheet according to the present disclosure preferably has a Young's modulus of 10 GPa or more and 30 GPa or less.
  • the joining sheet according to the present disclosure preferably has a surface arithmetic mean roughness Ra of 1 ⁇ m or more and 40 ⁇ m or less.
  • the bonding sheet according to the present disclosure preferably has a thermal conductivity of 10 W/mK or more and 60 W/mK or less.
  • the method for manufacturing a bonding sheet according to the present disclosure includes: filling a mold with a plurality of copper particles; The copper particles are sintered by heating at 150 ° C. or more and 250 ° C. or less for 1 minute or more and 30 minutes or less while applying pressure at 30 MPa or less, and a copper sintered body is included, and Young's modulus is and a step of producing a bonding sheet having a filling rate of 10 GPa or more and a filling rate of 50% or more and 70% or less.
  • a method for manufacturing a joined body includes steps of placing the joining sheet on a first member; obtaining a laminate in which the bonding sheet is arranged between a first member and a second member by arranging members; and heating the laminate to obtain the first member and manufacturing a joined body to which the second member is joined.
  • FIG. 1 is a schematic diagram of a bonding sheet according to this embodiment.
  • FIG. 2 is a schematic partially enlarged view of the joining sheet.
  • FIG. 3 is a flow chart illustrating a method for manufacturing a joining sheet according to this embodiment.
  • FIG. 4 is a schematic diagram for explaining the manufacturing method of the joined body.
  • FIG. 5 is a table showing the properties and evaluation results of the bonding sheets of each example.
  • FIG. 1 is a schematic diagram of a bonding sheet according to this embodiment.
  • the joining sheet 10 according to this embodiment is a sheet-shaped member for joining members together.
  • the joining sheet 10 is a sintered body of copper, and has a structure in which a plurality of copper particles 12 are bonded by sintering. It is preferable that the joining sheet 10 is further sintered when heated at 150° C. to 300° C. (150° C. to 300° C.). That is, it can be said that the joining sheet 10 is a pre-sintered body of copper.
  • the progress of sintering indicates that the bonding between the copper particles 12 progresses further, thereby increasing the filling rate.
  • the joining sheet 10 is a pre-sintered body, the Young's modulus can be kept high, the risk of breakage can be suppressed, and the members can be joined appropriately by proceeding with sintering.
  • seat 10 for joining should just contain the presintered compact of copper, and may contain the copper particle which is not sintered in part.
  • the bonding sheet 10 has a filling rate of 50% or more and 70% or less, preferably 52% or more and 68% or less, and more preferably 55% or more and 65% or less.
  • the filling rate is the ratio of bulk density to true density (bulk density/true density).
  • true density refers to the density of the material itself (copper in this case), ie, the theoretical density, assuming that there are no pores, cracks, or the like in the sintered body.
  • the bulk density refers to a value obtained by dividing the weight of the bonding sheet 10 by the volume determined from the external dimensions of the bonding sheet 10 .
  • the volume determined from the external dimensions refers to the total volume including the pores of the joining sheet 10 .
  • the true density for example, the literature value of copper density (eg, 8.96 g/cm 3 ) can be used.
  • the bulk density can be measured using a balance, a three-dimensional measuring machine, and a micrometer.
  • the area and thickness of the bonding sheet 10 are measured using a three-dimensional measuring machine and a micrometer, and the value obtained by multiplying the area and thickness is taken as the volume obtained from the external dimensions.
  • the bonding sheet 10 may be a sintered body of copper impregnated with a resin.
  • the filling rate in this case refers to the filling rate of the copper sintered body excluding the resin.
  • the properties of the joining sheet 10 other than the filling rate are defined in the following description, they may also refer to the properties of the sintered body of copper excluding the resin.
  • the bonding sheet 10 preferably has an arithmetic mean roughness Ra of 1 ⁇ m or more and 40 ⁇ m or less, and more preferably 1 ⁇ m or more and 35 ⁇ m or less between the surface 10 a which is the main surface on one side and the surface 10 b which is the main surface on the other side. is more preferable, and more preferably 1 ⁇ m or more and 30 ⁇ m or less.
  • At least one of the surface 10a and the surface 10b of the bonding sheet 10 may have an arithmetic mean roughness Ra within the above range. When the arithmetic mean roughness Ra (surface roughness) falls within this range, further sintering can proceed appropriately, and members can be properly joined together.
  • the arithmetic mean roughness Ra can be measured according to JIS B 0601:2001.
  • FIG. 2 is a schematic partially enlarged view of the joining sheet.
  • the average particle diameter which is the average value of the particle diameters D of the copper particles 12 is preferably 100 nm or more and 350 nm or less, more preferably 150 nm or more and 300 nm or less, and 200 nm or more and 250 nm or less. is more preferable.
  • the surface area of the joining sheet 10 can be kept large, and further sintering can proceed appropriately.
  • the copper particles 12 are bonded to each other by sintering, so the average particle size of the copper particles 12 means that the bonding sheet 10 is separated from the bonded copper particles 12 at the interface, It can be said that it is the average value of the particle size of each of the separated copper particles 12 .
  • the BET diameter calculated based on the BET specific surface area may be used as the average particle diameter of the copper particles 12 .
  • a specific surface area measuring device (QUANTACHROME AUTOSORB-1 manufactured by Quantachrome Instruments) is used to measure the amount of nitrogen gas adsorbed by the bonding sheet 10, and the specific surface area of the bonding sheet 10 is determined by the BET method. rice field.
  • the BET diameter is calculated from the following formula, and the average particle diameter of the copper particles 12 is obtained.
  • BET diameter (nm) 6000/( ⁇ (g/cm 3 ) x S (m 2 /g))
  • the joining sheet 10 has a Young's modulus of 10 GPa or more, preferably 10 GPa or more and 30 GPa or less, more preferably 11 GPa or more and 20 GPa or less, and even more preferably 12 GPa or more and 15 GPa or less.
  • the Young's modulus can be measured using a Picodenter HM500 (manufactured by Fisher Instruments, analysis software WIN-HCU ver.7.0), which is an apparatus conforming to ISO14577, which is the standard for the nanoindentation method.
  • the nanoindentation method is a method of calculating hardness and Young's modulus from the load applied to the sample and the indentation depth.
  • the upper surface of the bonding sheet 10 is measured five times at random using the apparatus and analysis software, and the indentation Young's modulus obtained is measured five times. Young's modulus.
  • the measurement conditions were as follows: the terminal was a Vickers indenter; the indentation depth was 2 ⁇ m; the indentation speed was 0.067 ⁇ m/sec; the measurement temperature was 25° C.; It was measured while placed on a thick silicon wafer. Young's modulus hereinafter may refer to a value measured by a similar method.
  • the bonding sheet 10 preferably has a thermal conductivity of 10 W/mK or more and 60 W/mK or less, more preferably 15 W/mK or more and 55 W/mK or less, and 20 W/mK or more and 50 W/mK or less. is more preferred.
  • Thermal conductivity can be obtained by converting from specific resistance, for example. Specifically, the sheet resistance of a bonding sheet molded to 10 mm ⁇ 10 mm at 25 ° C. is measured by the four-probe method using Loresta (MCP-250T, manufactured by Mitsubishi Yuka Co., Ltd.), and further multiplied by the sheet thickness. Calculate the resistivity. The thermal conductivity at 25° C. is obtained by converting the specific resistance using the Wiedemann-Franz law.
  • the thickness W of the bonding sheet 10 is preferably 0.1 mm or more and 1 mm or less, more preferably 0.2 mm or more and 0.7 mm or less, and even more preferably 0.3 mm or more and 0.5 mm or less. .
  • the thickness W is the direction Z, which is the thickness direction, between the portion of the surface 10a that protrudes the most from the surface 10a and the portion of the surface 10b that protrudes the most from the surface 10b. refers to the distance in
  • the projected area of the bonding sheet 10 when projected in the direction Z is preferably 10000 mm 2 or less, more preferably 6400 mm 2 or less, and even more preferably 3600 mm 2 or less.
  • a value obtained by dividing the thickness W of the bonding sheet 10 by the filling rate (%) of the bonding sheet 10 (thickness W/filling rate) is defined as a large area bonding index D1.
  • the large area bonding index D1 is preferably 1.50 or more and 10.0 or less, and more preferably 4.0 or more and 8.0 or less. When the large-area bonding index D1 falls within this range, the members can be appropriately bonded together while suppressing breakage.
  • the joining sheet 10 may be a copper sintered body impregnated with a resin. That is, the bonding sheet 10 may have resin filled at least partially inside the pores. Examples of resins used here include epoxy resins and silicone resins. By impregnating the resin, the bonding sheet 10 can be provided with appropriate functions.
  • FIG. 3 is a flow chart illustrating a method for manufacturing a joining sheet according to this embodiment.
  • copper particles 12A are first prepared (step S10).
  • the copper particles 12A here are particles of copper as a raw material of the joining sheet 10, and can be said to be copper powder before preliminary sintering. That is, by pre-sintering the copper particles 12A, the bonding sheet 10 in which the copper particles 12 are bonded by pre-sintering is manufactured. It can be said that the copper particles before temporary sintering are the copper particles 12A, and the copper particles after the temporary sintering are the copper particles 12A.
  • the copper particles 12A preferably have a BET diameter of 50 nm or more and 300 nm or less.
  • the BET diameter is a particle diameter calculated from the BET specific surface area and the true density of the copper particles obtained by the BET method, assuming that the copper particles 12A are true spheres or cubes. Specifically, it can be determined by the method described in the examples below.
  • the BET diameter of the copper particles 12A is 50 nm or more, it is difficult to form strong aggregates. Therefore, the surfaces of the copper particles 12 after pre-sintering can be uniformly coated with the solvent 20 described below. On the other hand, when the BET diameter of the copper particles 12A is 300 nm or less, the reaction area is large and the sinterability by heating is high, so that a strong bonding layer can be formed.
  • the BET diameter of the copper particles 12A is preferably in the range of 80 nm or more and 200 nm or less, and particularly preferably in the range of 80 nm or more and 170 nm or less.
  • the BET specific surface area of the copper particles 12A is preferably in the range of 2.0 m 2 /g or more and 8.0 m 2 /g or less, and is in the range of 3.5 m 2 /g or more and 8.0 m 2 /g or less. more preferably 4.0 m 2 /g or more and 8.0 m 2 /g or less is particularly preferable.
  • the shape of the copper particles 12A is not limited to a spherical shape, and may be a needle shape or a flat plate shape.
  • the surface of the copper particles 12A is preferably covered with an organic protective film, which is an organic film.
  • an organic protective film By being coated with the organic protective film, the oxidation of the copper particles 12A is suppressed, and the deterioration of the sinterability due to the oxidation of the copper particles 12A is even less likely to occur. It can be said that the organic protective film covering the copper particles 12A is not formed by the solvent 20 and is not derived from the solvent 20 . Moreover, it can be said that the organic protective film covering the copper particles 12A is not a copper oxide film formed by oxidation of copper.
  • the copper particles 12A are coated with the organic protective film can be confirmed by analyzing the surfaces of the copper particles 12A using time-of-flight secondary ion mass spectrometry (TOF-SIMS). Therefore, in the present embodiment, the copper particles 12A are C 3 H 3 O 3 ⁇ ions relative to the detected amount of Cu + ions detected by analyzing the surface using time-of-flight secondary ion mass spectrometry.
  • C 3 H 3 O 3 ⁇ /Cu + ratio is preferably 0.001 or more. More preferably, the C 3 H 3 O 3 ⁇ /Cu + ratio is in the range of 0.05 or more and 0.2 or less.
  • the surface of the copper particles 12A in this analysis is not the surface of the copper particles 12A when the organic protective film is removed from the copper particles 12A, but the surface of the copper particles 12A containing the covering organic protective film (i.e. surface of the organic protective film).
  • C 3 H 4 O 2 - ions and C 5 or higher ions may be detected.
  • the ratio of the detected amount of C 3 H 4 O 2 ⁇ ions to the detected amount of Cu + ions is preferably 0.001 or more.
  • the ratio of the detected amount of C5 or higher ions to the detected amount of Cu + ions is preferably less than 0.005.
  • the C 3 H 3 O 3 - ions, C 3 H 4 O 2 - ions, and C 5 or higher ions detected in the time-of-flight secondary ion mass spectrometry are the organic protective ions covering the surfaces of the copper particles 12A. derived from the membrane. Therefore, when each of the C 3 H 3 O 3 ⁇ /Cu + ratio and the C 3 H 4 O 2 ⁇ /Cu + ratio is 0.001 or more, the surfaces of the copper particles 12A are difficult to oxidize and the copper particles 12A becomes difficult to aggregate.
  • the copper particles 12A can be sintered without excessively decreasing the sinterability of the copper particles 12A. Oxidation and agglomeration of 12A can be suppressed, and generation of decomposition gas from the organic protective film during heating can be suppressed, so that a bonding layer with few voids can be formed.
  • the C 3 H 3 O 3 ⁇ /Cu + ratio and the C 3 H 4 O 2 The ⁇ /Cu + ratio is preferably in the range of 0.08 to 0.16.
  • the C5 and above ions/Cu + ratio is less than 0.003.
  • the organic protective film is preferably derived from citric acid.
  • a method for manufacturing the copper particles 12A coated with the citric acid-derived organic protective film will be described later.
  • the coating amount of the organic protective film on the copper particles 12A is preferably in the range of 0.5% by mass or more and 2.0% by mass or less with respect to 100% by mass of the copper particles, and 0.8% by mass or more and 1.8% by mass. It is more preferably in the range of 0.8% by mass or more and 1.5% by mass or less.
  • the coating amount of the organic protective film is 0.5% by mass or more, the copper particles 12A can be uniformly coated with the organic protective film, and oxidation of the copper particles 12A can be suppressed more reliably.
  • the coating amount of the organic protective film is 2.0% by mass or less, the generation of voids in the sintered body (bonding layer) of the copper particles due to the gas generated by the decomposition of the organic protective film due to heating is prevented. can be suppressed.
  • the coating amount of the organic protective film can be measured using a commercially available device.
  • the coating amount can be measured using a differential type differential thermal balance TG8120-SL (manufactured by RIGAKU).
  • TG8120-SL manufactured by RIGAKU
  • copper particles from which moisture has been removed by freeze-drying are used as the sample.
  • measurement was performed in nitrogen (G2 grade) gas, and the temperature increase rate was 10 ° C./min.
  • the coating amount (sample weight after measurement)/(sample weight before measurement) ⁇ 100 (wt %).
  • the measurement may be performed three times for each copper particle of the same lot, and the arithmetic average value may be taken as the coating amount.
  • the organic protective film derived from citric acid generates carbon dioxide gas, nitrogen gas, evaporative gas of acetone and water vapor when decomposed.
  • the copper particles 12A coated with an organic protective film derived from citric acid can be produced, for example, as follows. First, an aqueous dispersion of copper citrate is prepared, and a pH adjuster is added to the aqueous dispersion of copper citrate to adjust the pH to 2.0 or more and 7.5 or less. Next, in an inert gas atmosphere, 1.0 to 1.2 equivalents of a hydrazine compound capable of reducing copper ions was added as a reducing agent to the pH-adjusted copper citrate aqueous dispersion. to mix. The resulting mixed solution is heated to a temperature of 60° C. or higher and 80° C. or lower in an inert gas atmosphere and held for 1.5 hours or longer and 2.5 hours or shorter. As a result, copper ions eluted from copper citrate are reduced to form copper particles 12A, and an organic protective film derived from citric acid is formed on the surfaces of the copper particles 12A.
  • An aqueous dispersion of copper citrate is prepared by adding powdered copper citrate to pure water such as distilled water or ion-exchanged water so that the concentration is 25% by mass or more and 40% by mass or less, and using a stirring blade. It can be prepared by stirring and dispersing uniformly.
  • pH adjusters include triammonium citrate, ammonium hydrogen citrate, and citric acid. Of these, triammonium citrate is preferred because it facilitates mild pH adjustment.
  • the reason why the pH of the copper citrate aqueous dispersion is 2.0 or more is that the elution rate of copper ions eluted from the copper citrate is increased, the generation of copper particles is rapidly progressed, and the target fine copper is obtained.
  • the reason why the pH is set to 7.5 or less is to suppress eluted copper ions from becoming copper (II) hydroxide, thereby increasing the yield of the copper particles 12A. Moreover, by setting the pH to 7.5 or less, it is possible to prevent the reducing power of the hydrazine compound from becoming excessively high, making it easier to obtain the target copper particles 12A.
  • the pH of the copper citrate aqueous dispersion is preferably adjusted within the range of 4 or more and 6 or less.
  • the reduction of copper citrate with a hydrazine compound is performed under an inert gas atmosphere. This is to prevent oxidation of copper ions dissolved in the liquid.
  • inert gases include nitrogen gas and argon gas.
  • a hydrazine compound has advantages such as not producing a residue after a reduction reaction when copper citrate is reduced in an acidic environment, relatively high safety, and easy handling.
  • the hydrazine compound includes hydrazine monohydrate, anhydrous hydrazine, hydrazine hydrochloride, hydrazine sulfate, and the like. Among these hydrazine compounds, preferred are hydrazine monohydrate and anhydrous hydrazine, which do not contain impurities such as sulfur and chlorine.
  • a hydrazine compound which is a reducing agent, is added to and mixed with an acidic liquid having a pH of less than 7, and the copper particles 12A are generated in the obtained mixed liquid. Therefore, the citric acid-derived component generated from the copper citrate quickly coats the surfaces of the copper particles 12A, thereby suppressing the dissolution of the copper particles 12A.
  • the aqueous dispersion of copper citrate after adjusting the pH is preferably kept at a temperature of 50° C. or higher and 70° C. or lower to facilitate the progress of the reduction reaction.
  • Heating the mixed liquid in which the hydrazine compound is mixed in an inert gas atmosphere to a temperature of 60° C. or more and 80° C. or less and holding it for 1.5 hours or more and 2.5 hours or less is to generate the copper particles 12A and to generate This is for forming and covering the surfaces of the copper particles 12A with an organic protective film.
  • the reason for heating and holding in the inert gas atmosphere is to prevent the generated copper particles 12A from being oxidized.
  • Copper citrate which is a starting material, usually contains about 35% by mass of a copper component.
  • a hydrazine compound which is a reducing agent, is added to a copper citrate aqueous dispersion containing such a copper component, heated to the above temperature, and held for the above time to generate copper particles 12A, Since the formation of the organic protective film on the surface of the copper particles 12A proceeds in a well-balanced manner, the coating amount of the organic protective film is in the range of 0.5% by mass or more and 2.0% by mass or less with respect to 100% by mass of the copper particles. It is possible to obtain the copper particles 12A inside. When the heating temperature is less than 60° C.
  • the copper citrate is not completely reduced, and the generation rate of the copper particles 12A becomes too slow, resulting in the formation of the organic protective film covering the copper particles 12A.
  • the amount may be excessive. If the heating temperature exceeds 80° C. and the holding time exceeds 2.5 hours, the generation rate of the copper particles 12A becomes too fast, and the amount of the organic protective film covering the copper particles 12A may become too small. .
  • a preferred heating temperature is 65° C. or higher and 75° C. or lower, and a preferred holding time is 2 hours or longer and 2.5 hours or shorter.
  • the copper particles 12A generated in the mixed liquid are solid-liquid separated from the mixed liquid in an inert gas atmosphere, for example, using a centrifuge, and dried by a freeze-drying method or a reduced-pressure drying method.
  • a copper particle 12A coated with an organic protective film is obtained. Since the surfaces of the copper particles 12A are covered with an organic protective film, the copper particles 12A are not easily oxidized even if they are stored in the atmosphere until they are used as the bonding sheet 10 .
  • the mold is filled with prepared copper particles 12A (step S12).
  • the shape and material of the mold to be filled with the copper particles 12A may be arbitrary.
  • the copper particles 12A filled in the mold are pressurized at a predetermined temperature to pre-sinter the copper particles 12A, thereby producing the bonding sheet 10 (step S14).
  • the copper particles 12A filled in the mold are held at a predetermined temperature for a predetermined period of time while being pressurized with a predetermined pressure, thereby pre-sintering the copper particles 12A to generate the bonding sheet 10.
  • the predetermined pressure here is preferably 10 MPa or more and 30 MPa or less, more preferably 11 MPa or more and 25 MPa or less, and even more preferably 12 MPa or more and 20 MPa or less.
  • the predetermined temperature here is preferably 150° C. or higher and 250° C.
  • the predetermined time (the time to hold at the predetermined pressure and the predetermined temperature) is preferably 1 minute or more and 30 minutes or less, more preferably 2 minutes or more and 25 minutes or less, and 3 minutes or more and 20 minutes or less. is more preferred.
  • the joining sheet 10 is not limited to being produced by the above method, and the joining sheet 10 may be produced by any method.
  • FIG. 4 is a schematic diagram for explaining the manufacturing method of the joined body.
  • the joined body 100 is manufactured by joining the first member A and the second member B using the joining sheet 10 as a joining layer.
  • the first member A and the second member B may be arbitrary, for example, one of the first member A and the second base material B may be a substrate and the other an electronic component. you can That is, a semiconductor module in which a substrate and an electronic component are bonded with a bonding layer may be manufactured as the bonded body 100 .
  • the substrate is not particularly limited, but for example, an oxygen-free copper plate, a copper molybdenum plate, a high heat dissipation insulating substrate (e.g., DCB (Direct Copper Bond)), a substrate for mounting a semiconductor element such as an LED (Light Emitting Diode) package, etc. is mentioned.
  • Electronic components include, for example, IGBTs (Insulated Gate Bipolar Transistors), diodes, Schottky barrier diodes, MOS-FETs (Metal Oxide Semiconductor Field Effect Transistors), thyristors, logic, sensors, analog integrated circuits, LEDs, semiconductor lasers, Examples include semiconductor devices such as oscillators.
  • the bonding sheet 10 is arranged on the surface of the first member A, as shown in step S20 of FIG.
  • the joining sheet 10 is arranged on the first member A so that the surface 10b of the joining sheet 10 is in contact with the surface of the first member A.
  • the solvent 20 is applied onto the surface 10a of the joining sheet 10 (the surface not in contact with the first member A).
  • Solvent 20 acts as a binder for copper particles 12 .
  • Solvent 20 is an organic solvent. Note that the addition of the solvent 20 is not essential.
  • the solvent 20 preferably has a boiling point of 150°C or higher, and preferably has a boiling point of 200°C or lower.
  • the boiling point of the solvent 20 is more preferably 150° C. or higher and 300° C. or lower, and even more preferably 200° C. or higher and 250° C. or lower.
  • the solvent 20 preferably has a molecular weight in the range of 100 to 1000, more preferably in the range of 200 to 800, and particularly preferably in the range of 200 to 600.
  • the solvent is preferably a compound having a reducing group at its terminal.
  • the reducing group is a hydroxyl group.
  • the solvent 20 preferably has a dielectric constant of 4 or more and 80 or less, more preferably 10 or more and 45 or less, and even more preferably 20 or more and 40 or less.
  • the dielectric constant may be measured with a liquid dielectric constant meter (Model 871, manufactured by Nihon Lucas Co., Ltd.).
  • diol compounds and triol compounds can be used.
  • diol compounds include ethylene glycol, diethylene glycol and polyethylene glycol.
  • triol compounds include glycerin, butanetriol and polyoxypropylenetriol.
  • One of these organic solvents and polymer solvents may be used alone, or two or more thereof may be used in combination.
  • the solvent 20 is preferably added in a mass ratio of 0.5% to 10%, preferably 1% to 8%, and 2% to 5% by mass relative to the bonding sheet 10. more preferably. By setting the amount of the solvent 20 to be added within this range, the bondability can be appropriately maintained.
  • step S24 the solvent 20 penetrates into the pores of the bonding sheet 10 and fills the pores. That is, it can be said that the bonding sheet 10 is impregnated with the solvent 20 .
  • step S26 the second member B is arranged on the surface 10a of the bonding sheet 10 impregnated with the solvent 20. That is, the bonding sheet 10 impregnated with the solvent 20 is placed between the first member A and the second member B. As shown in FIG.
  • the heating temperature of the laminate may be, for example, within the range of 150° C. or higher and 300° C. or lower.
  • the heating time of the laminate may be, for example, within the range of 10 minutes or more and 1 hour or less. It is preferable to heat the laminate while pressurizing the laminate in the lamination direction of the laminate in an inert gas atmosphere. Nitrogen gas and argon gas can be used as the inert gas.
  • the pressure applied to the laminate is preferably in the range of 0.5 MPa or more and 30 MPa or less.
  • the joining sheet 10 contains a sintered body of copper, has a Young's modulus of 10 GPa or more, and a filling rate of 50% or more and 70% or less. Since the joining sheet 10 is a sintered body of copper having a Young's modulus of 10 GPa or more, it has sufficient strength and can suppress breakage. Moreover, since the joining sheet 10 is a pre-sintered body having a filling rate of 50% or more and 75% or less, sintering can be further advanced when the members are joined, and the members can be joined appropriately.
  • the joining sheet 10 preferably has a Young's modulus of 10 GPa or more and 30 GPa or less. When the Young's modulus falls within this range, breakage can be more suitably suppressed.
  • the bonding sheet 10 preferably has a surface arithmetic mean roughness Ra of 1 ⁇ m or more and 40 ⁇ m or less.
  • the bonding sheet 10 preferably has a thermal conductivity of 10 W/mK or more and 60 W/mK or less. When the thermal conductivity is within this range, the heat conductivity of the joined body 100 can be properly ensured.
  • the method for manufacturing the bonding sheet 10 includes a step of filling a plurality of copper particles 12A into a mold, and pressing the plurality of copper particles 12A filled in the mold at 10 MPa or more and 30 MPa or less, and By sintering the copper particles 12A by heating at 250° C. or less for 1 minute or more and 30 minutes or less, the copper sintered body is included, the Young's modulus is 10 GPa or more, and the filling rate is 50. % or more and 70% or less. According to this manufacturing method, it is possible to manufacture the joining sheet 10 capable of suppressing breakage.
  • the manufacturing method of the joined body 100 includes the step of placing the joining sheet 10 on the first member A, and placing the second member B on the joining sheet 10 to obtain the first member. a step of obtaining a laminate in which the joining sheet is arranged between a member and a second member; and a joined body in which the first member A and the second member B are joined by heating the laminate. and manufacturing 100 .
  • the bonded body 100 can be properly manufactured by using the bonding sheet 10 .
  • FIG. 5 is a table showing the properties and evaluation results of the bonding sheets of each example.
  • Example 1 (Preparation of copper particles)
  • copper citrate 2.5 hydrate manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.
  • ion-exchanged water were stirred and mixed using a stirring blade to obtain citric acid having a concentration of 30% by mass.
  • An aqueous dispersion of copper was prepared.
  • an ammonium citrate aqueous solution as a pH adjuster was added to the obtained aqueous copper citrate dispersion to adjust the pH of the aqueous copper citrate dispersion to 5.
  • the resulting copper citrate aqueous dispersion was heated to 50° C., and while maintaining that temperature, an aqueous hydrazine monohydrate solution (diluted twice as a reducing agent for copper ions) was placed under a nitrogen gas atmosphere. ) was added all at once, and stirred and mixed using a stirring blade. The amount of the hydrazine monohydrate aqueous solution added was 1.2 equivalents of the amount required to reduce the total amount of copper ions.
  • the resulting mixed solution was heated to 70° C. in a nitrogen gas atmosphere and held at that temperature for 2 hours to generate copper particles.
  • the produced copper particles were recovered using a centrifuge.
  • the collected copper particles were dried by a vacuum drying method to produce copper particles.
  • an aluminum frame having an outer dimension of 50 mm x 30 mm and an inner dimension of 30 mm x 30 mm was prepared.
  • This aluminum frame is filled with 1.5 g of copper particles, smoothed uniformly with an aluminum block of 30 mm square ⁇ 20 mm, and hot pressed for 15 minutes in the atmosphere under the conditions of an applied pressure of 30 MPa and a heating temperature of 150 ° C. It was processed to produce a bonding sheet.
  • CYPT-50kN manufactured by Shinto Kogyo Co., Ltd.
  • the Young's modulus of the bonding sheet was measured using a picodenter. The Young's modulus was measured by the method described in this embodiment. Also, the filling rate of the joining sheet was measured. The fill factor was measured as follows. The volume determined from the external dimensions of the joining sheet was measured with a vernier caliper and a micrometer. Specifically, two sides of the bonding sheet in the horizontal direction were measured at five points each at random, and the product of each average value was defined as the area of the bonding sheet. Further, the thickness of the bonding sheet was measured at random with a micrometer at 10 points, and the average value was taken as the thickness of the bonding sheet.
  • the product of the area and the thickness was defined as the volume obtained from the external dimensions of the joining sheet.
  • the weight of the joining sheet was measured.
  • the bulk density was calculated by dividing the weight of the bonding sheet by the volume determined from the external dimensions of the bonding sheet 10 .
  • the volume determined from the external dimensions refers to the total volume including the pores of the joining sheet 10 .
  • the ratio of the bulk density to the true density was calculated as the filling rate.
  • the thermal conductivity of the bonding sheet was measured. Specifically, the sheet resistance at 25° C.
  • Example 2-6 In Example 2, a bonding sheet was produced in the same manner as in Example 1, except that at least one of the heating temperature, applied pressure, and pressurizing time was changed as shown in FIG. The measured values of Young's modulus, filling factor and thermal conductivity are shown in FIG.
  • Comparative Example 1-4 bonding sheets were produced in the same manner as in Example 1, except that at least one of the heating temperature, applied pressure, and pressurizing time was changed as shown in FIG. The measured values of Young's modulus, filling factor and thermal conductivity are shown in FIG.
  • the bonding sheet of each example was cut using a commercially available cutter knife to prepare a bonding sheet piece (2.5 mm square ⁇ 500 ⁇ m thick).
  • the bonding sheet piece (2.5 mm square ⁇ 500 ⁇ m thickness) was placed on a 30 mm square ⁇ 1 mm thick oxygen-free copper substrate.
  • polyethylene glycol as a solvent was applied to the bonding sheet piece so as to be 0.05 g per sheet piece weight of 0.95 g and impregnated, and then an oxygen-free copper dummy element of 2.5 mm square ⁇ 1 mm thickness. was placed.
  • a laminate was obtained in which the oxygen-free copper substrate and the oxygen-free copper dummy element were laminated via the joining sheet piece.
  • Example A in which the oxygen-free copper substrate and the oxygen-free copper dummy element were joined through the copper joining layer was produced.
  • the shear strength of the resulting joined body was measured by a method based on JIS Z 3198-7 (Lead-free solder test method-Part 7: Chip component solder joint shear test method). Specifically, a load was applied to the oxygen-free copper dummy element using a bond tester (Nordson DAGE, SERIES 4000) tool, and the load (maximum shear load) when the oxygen-free copper dummy element was peeled off from the copper bonding layer was measured. The moving speed of the tool was set to 50 ⁇ m/sec, and the gap between the tip of the tool and the oxygen-free copper substrate was set to 50 ⁇ m.
  • the shear strength (unit: MPa) was obtained by converting the obtained maximum shear load into Newton and dividing it by the area of the copper bonding layer (2.5 mm ⁇ 2.5 mm). Seven joined bodies were produced, and the shear strength of each joined body was measured. The results are shown in FIG.
  • the joining sheets of Examples having a Young's modulus of 10 GPa or more and a filling rate of 50% or more and 70% or less passed the evaluation of the strength of the joined body, and could appropriately suppress breakage.
  • the shear strength is 30 MPa or more, and it can be seen that appropriate bonding can be achieved.
  • the bonding sheet of the comparative example which does not satisfy at least one of the Young's modulus of 10 GPa or more and the filling rate of 50% or more and 70% or less, failed the strength evaluation or the shear strength, and was damaged. It can be seen that it is not possible to achieve both suppression of the deformation and appropriate bonding.
  • evaluation was also made on a joined body in which members were joined together using a joining sheet. Specifically, the void fraction of the joined body was evaluated.
  • the bonding sheet was cut using a commercially available cutter knife to prepare a bonding sheet piece (10 mm square ⁇ 500 ⁇ m thick).
  • the bonding sheet piece (10 mm square ⁇ 500 ⁇ m thickness) was placed on an oxygen-free copper substrate of 30 mm square ⁇ 1 mm thickness.
  • polyethylene glycol as a solvent was applied to the bonding sheet piece so as to be 0.05 g per sheet weight of 0.95 g and impregnated, and then an oxygen-free copper dummy element of 10 mm square and 1 mm thickness was arranged. bottom.
  • a laminate was obtained in which the oxygen-free copper substrate and the oxygen-free copper dummy element were laminated via the joining sheet piece.
  • Example B in which the oxygen-free copper substrate and the oxygen-free copper dummy element were joined through the copper joining layer was produced.
  • An ultrasonic flaw detection image of the copper bonding layer portion of the obtained bonded body was measured using an ultrasonic flaw detector (FINE-SAT, manufactured by Hitachi High-Technologies Corporation).
  • the obtained ultrasonic flaw detection image is binarized using image processing software (ImageJ manufactured by the National Institutes of Health, USA), divided into voids (cavities) and joined bodies (copper particle sintered bodies), and the following equation
  • the embodiment of the present invention has been described above, the embodiment is not limited by the content of this embodiment.
  • the components described above include those that can be easily assumed by those skilled in the art, those that are substantially the same, and those within the so-called equivalent range.
  • the components described above can be combined as appropriate.
  • various omissions, replacements, or modifications of components can be made without departing from the gist of the above-described embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Laminated Bodies (AREA)

Abstract

破損のおそれを抑制しつつ、適切に接合する。接合用シート(10)は、銅の焼結体を含み、ヤング率が10GPa以上であり、かつ、充填率が50%以上70%以下である。

Description

接合用シート、接合用シートの製造方法、及び接合体の製造方法
 本発明は、接合用シート、接合用シートの製造方法、及び接合体の製造方法に関する。
 電子部品の組立てや実装時などにおいて、2つ以上の部品を接合させる場合、接合材が用いられることがある。例えば特許文献1には、接合材として、銅粒子と、沸点が150℃以上の溶媒とを混合して常温でプレスして形成された接合用シートが記載されている。
特開2021-116463号公報
 このような接合用シートにおいては、ハンドリング向上のため、破損のおそれを抑制することが求められており、また、適切に接合できることも求められている。
 本発明は、上記に鑑みてなされたものであって、破損のおそれを抑制しつつ、適切に接合可能な接合用シート、接合用シートの製造方法、及び接合体の製造方法を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本開示に係る接合用シートは、銅の焼結体を含み、ヤング率が10GPa以上であり、かつ、充填率が50%以上70%以下である。
 本開示に係る接合用シートは、ヤング率が10GPa以上30GPa以下であることが好ましい。
 本開示に係る接合用シートは、表面の算術平均粗さRaが1μm以上40μm以下であることが好ましい。
 本開示に係る接合用シートは、熱伝導率が10W/mK以上60W/mK以下であることが好ましい。
 上述した課題を解決し、目的を達成するために、本開示に係る接合用シートの製造方法は、複数の銅粒子を型に充填するステップと、前記型に充填した複数の銅粒子を、10MPa以上30MPa以下で加圧しつつ、150℃以上250℃以下で、1分以上30分以下の間加熱することにより、前記銅粒子を焼結させることで、銅の焼結体を含み、ヤング率が10GPa以上であり、かつ、充填率が50%以上70%以下である接合用シートを製造するステップと、を含む。
 上述した課題を解決し、目的を達成するために、本開示に係る接合体の製造方法は、前記接合用シートを第1の部材上に配置するステップと、前記接合用シート上に第2の部材を配置することで、第1の部材と第2の部材との間に前記接合用シートが配置された積層体を得るステップと、前記積層体を加熱することで、前記第1の部材と前記第2の部材が接合された接合体を製造するステップと、を含む。
 本発明によれば、破損のおそれを抑制しつつ、適切に接合することができる。
図1は、本実施形態に係る接合用シートの模式図である。 図2は、接合用シートの模式的な一部拡大図である。 図3は、本実施形態に係る接合用シートの製造方法を説明するフローチャートである。 図4は、接合体の製造方法を説明するための模式図である。 図5は、各例の接合用シートの特性および評価結果を示す表である。
 以下、本発明につき図面を参照しつつ詳細に説明する。なお、下記の発明を実施するための形態(以下、実施形態という)により本発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、下記実施形態で開示した構成要素は適宜組み合わせることが可能である。
 (接合用シート)
 図1は、本実施形態に係る接合用シートの模式図である。本実施形態に係る接合用シート10は、部材同士を接合するシート状の部材である。図1に示すように、接合用シート10は、銅の焼結体であり、複数の銅粒子12が焼結により結合した構造となっている。接合用シート10は、150℃~300℃(150℃以上300℃以下)で加熱した際に、焼結がさらに進行するものであることが好ましい。すなわち、接合用シート10は、銅の仮焼結体であるといえる。ここで焼結が進行するとは、銅粒子12同士の結合がさらに進むことで充填率が増加すること指す。接合用シート10は、仮焼結体であるため、ヤング率を高く保つことができ、破損のおそれを抑制でき、焼結を進めることで適切に部材同士を接合させることができる。なお、接合用シート10は、銅の仮焼結体を含むものであればよく、焼結していない銅粒子を一部に含んでいてもよい。
 接合用シート10は、充填率が50%以上70%以下であり、52%以上68%以下であることが好ましく、55%以上65%以下であることが更に好ましい。充填率がこの範囲となることで、ヤング率を高く保ちつつ、更なる焼結を適切に進行させることができ、部材同士を適切に接合できる。
 充填率とは、真密度に対するかさ密度の比率(かさ密度/真密度)である。ここでの真密度とは、焼結体の中にポアやクラック等が存在しないと仮定した場合の物質(ここでは銅)そのものの密度、すなわち理論密度を指す。また、かさ密度とは、接合用シート10の重量を、接合用シート10の外部寸法から求めた体積によって除した値を指す。外部寸法から求めた体積とは、接合用シート10の気孔も含めた全容積を指す。
 真密度は、例えば銅の密度の文献値(例えば8.96g/cm)を用いることができる。また、かさ密度は、天秤と三次元測定機およびマイクロメータを用いて測定できる。例えば、三次元測定機及びマイクロメータにより、接合用シート10の面積と厚みとを測定し、面積と厚みとを乗じた値を、外部寸法から求めた体積とする。そして、天秤により接合用シート10の重量を測定し、測定した重量を、外部寸法から求めた体積で除した値を、かさ密度とする。
 なお、後述のように、接合用シート10には、銅の焼結体に樹脂が含浸される場合がある。この場合の充填率とは、樹脂を除いた銅の焼結体についての充填率を指す。以降においても、充填率以外の接合用シート10の特性を規定しているが、同様に、樹脂を除いた銅の焼結体についての特性を指すものとしてよい。
 接合用シート10は、一方側の主面である表面10aと他方側の主面である表面10bの算術平均粗さRaが、1μm以上40μm以下であることが好ましく、1μm以上35μm以下であることがより好ましく、1μm以上30μm以下であることが更に好ましい。接合用シート10は、表面10aと表面10bとの少なくとも一方の算術平均粗さRaが上記範囲であってもよい。算術平均粗さRa(表面粗さ)がこの範囲となることで、更なる焼結を適切に進行させることができ、部材同士を適切に接合できる。
 なお、算術平均粗さRaは、JIS B 0601:2001の規定に従って測定できる。
 図2は、接合用シートの模式的な一部拡大図である。接合用シート10は、それぞれの銅粒子12の粒径Dの平均値である平均粒径が、100nm以上350nm以下であることが好ましく、150nm以上300nm以下であることがより好ましく、200nm以上250nm以下であることが更に好ましい。平均粒径がこの範囲となることで、接合用シート10の表面積を大きく保って、更なる焼結を適切に進行させることができる。
 なお、接合用シート10においては、銅粒子12同士は焼結により結合しているため、銅粒子12の平均粒径とは、接合用シート10を、結合した銅粒子12同士を界面で区切り、区切ったそれぞれの銅粒子12の粒径の平均値であるといえる。
 例えば、BET比表面積に基づいて算出したBET径を、銅粒子12の平均粒径としてよい。この場合、比表面積測定装置(カンタクローム・インスツルメンツ社製、QUANTACHROME AUTOSORB-1)を用いて、接合用シート10の窒素ガスの吸着量を測定し、BET法により接合用シート10の比表面積を求めた。得られた比表面積S(m/g)と、銅粒子の密度ρ(g/cm)とを用いて、下記の式よりBET径を算出して、それを銅粒子12の平均粒径としてよい。
 BET径(nm)=6000/(ρ(g/cm)×S(m/g))
 接合用シート10は、ヤング率が、10GPa以上であり、10GPa以上30GPa以下であることが好ましく、11GPa以上20GPa以下であることがより好ましく、12GPa以上15GPa以下であることが更に好ましい。ヤング率がこの範囲となることで、破損のおそれを抑制できる。
 ヤング率は、ナノインデンテーション法の規格であるISO14577に準拠した装置であるピコデンターHM500(フィッシャーインストルメンツ社製、解析ソフトはWIN-HCU ver.7.0)を用いて測定できる。ナノインデンテーション法とは試料に印加する荷重と押し込み深さから硬度やヤング率を算出する手法である。
 本実施形態では、接合用シート10の上面を、当該装置と解析ソフトを用い、無作為に5箇所選定し計5回測定したときに得られる押し込みヤング率の平均値を、接合用シート10のヤング率とする。測定条件は、端子はビッカース圧子、押し込み深さは2μm、押し込み速さは0.067μm/秒、測定温度は25℃とし、接合用シート10を、接合用シート10よりも大きいサイズの0.4mm厚のシリコンウエハ上に載せた状態で測定した。以降のヤング率についても、同様の方法での測定値を指してよい。
 接合用シート10は、熱伝導率が10W/mK以上60W/mK以下であることが好ましく、15W/mK以上55W/mK以下であることがより好ましく、20W/mK以上50W/mK以下であることが更に好ましい。熱伝導率がこの範囲となることで、接合する部材の熱を好適に伝えることができる。
 熱伝導率は、例えば比抵抗から換算し求めることができる。具体的には10mm×10mmに成形した接合用シートの25℃におけるシート抵抗を、ロレスター(MCP-250T、三菱油化社製)を用い四探針法で測定し、さらにシート膜厚を乗し比抵抗を算出する。25℃における熱伝導率はWiedemann-Franz則を用い、比抵抗を換算することで求める。
 接合用シート10は、厚みWが0.1mm以上1mm以下であることが好ましく、0.2mm以上0.7mm以下であることがより好ましく、0.3mm以上0.5mm以下であることが更に好ましい。厚みWは、図1に示すように、表面10aのうちで最も表面10aから突出している箇所と、表面10bのうちで最も表面10bから突出している箇所との間の、厚み方向である方向Zにおける距離を指す。
 また、接合用シート10を方向Zに投影した場合の投影面積が、10000mm以下であることが好ましく、6400mm以下であることがより好ましく、3600mm以下であることが更に好ましい。
 厚みWや投影面積がこの範囲となる接合用シート10とすることで、部材を適切に接合できる。
 また、接合用シート10の厚みWを接合用シート10の充填率(%)で除した値(厚みW/充填率)を、大面積接合指数D1と定義する。この場合、大面積接合指数D1は、1.50以上10.0以下であることが好ましく、4.0以上8.0以下であることがより好ましい。
 大面積接合指数D1がこの範囲となることで、破損を抑制しつつ、部材同士を適切に接合できる。
 接合用シート10は、銅の焼結体に、樹脂が含浸していてもよい。すなわち、接合用シート10は、内部の気孔内の少なくとも一部に樹脂が充填されていてもよい。ここでの樹脂としては、例えば、エポキシ樹脂、シリコーン樹脂が挙げられる。樹脂を含浸させることで、接合用シート10に適切な機能を付与することができる。
 (接合用シートの製造方法)
 図3は、本実施形態に係る接合用シートの製造方法を説明するフローチャートである。
 (銅粒子の準備)
 図3に示すように、本製造方法においては、最初に、銅粒子12Aを準備する(ステップS10)。ここでの銅粒子12Aは、接合用シート10の原料となる銅の粒子であり、仮焼結前の銅の粉末であるともいえる。すなわち、銅粒子12Aを仮焼結することで、銅粒子12が仮焼結により結合した接合用シート10が製造される。仮焼結前の銅粒子が銅粒子12Aで、仮焼結後の銅粒子が銅粒子12であるといえる。
 銅粒子12Aは、BET径が50nm以上300nm以下であることが好ましい。BET径は、銅粒子12Aを真球体もしくは立方体とみなして、BET法により求められる銅粒子のBET比表面積と真密度とから算出される粒子径である。具体的には、後述する実施例に記載の方法により求めることができる。
 銅粒子12AのBET径が50nm以上であると、強固な凝集体を形成しにくい。このため、仮焼結後の銅粒子12の表面を後述の溶媒20によって均一に被覆することができる。一方、銅粒子12AのBET径が300nm以下であると、反応面積が大きく、加熱による焼結性が高くなるので、強固な接合層を形成可能となる。銅粒子12AのBET径は、80nm以上200nm以下の範囲内にあることが好ましく、80nm以上170nm以下の範囲内にあることが特に好ましい。
 銅粒子12AのBET比表面積は、2.0m/g以上8.0m/g以下の範囲内にあることが好ましく、3.5m/g以上8.0m/g以下の範囲内にあることがより好ましく、4.0m/g以上8.0m/g以下の範囲内にあることが特に好ましい。また、銅粒子12Aの形状は、球状に限らず、針状、扁平な板状でもよい。
 銅粒子12Aは、表面が、有機物の膜である有機保護膜で被覆されていることが好ましい。有機保護膜で被覆されていることにより、銅粒子12Aの酸化が抑制され、銅粒子12Aの酸化による焼結性の低下がさらに起こりにくくなる。なお、銅粒子12Aを被覆する有機保護膜は、溶媒20によって形成されるものでなく、溶媒20由来のものでないといえる。また、銅粒子12Aを被覆する有機保護膜は、銅の酸化により形成される酸化銅の膜ではないともいえる。
 銅粒子12Aが有機保護膜で被覆されていることは、飛行時間型二次イオン質量分析法(TOF-SIMS)を用いて、銅粒子12Aの表面を分析することに確認することができる。このため、本実施形態において、銅粒子12Aは、飛行時間型二次イオン質量分析法を用いて、表面を分析することによって検出されるCuイオンの検出量に対するC イオンの検出量の比(C /Cu比)が0.001以上であることが好ましい。C /Cu比は、0.05以上0.2以下の範囲内にあることがさらに好ましい。なお、本分析における銅粒子12Aの表面とは、銅粒子12Aから有機保護膜を除去した際の銅粒子12Aの表面でなく、被覆している有機保護膜を含んだ銅粒子12Aの表面(すなわち有機保護膜の表面)を指す。
 銅粒子12Aは、飛行時間型二次イオン質量分析法を用いて、表面を分析することによってC イオンやC以上のイオンが検出されてもよい。Cuイオンの検出量に対するC イオンの検出量の比(C /Cu比)は0.001以上であることが好ましい。また、Cuイオンの検出量に対するC以上のイオンの検出量の比(C以上のイオン/Cu比)は0.005未満であることが好ましい。
 飛行時間型二次イオン質量分析法において検出されるC イオンとC イオンとC以上のイオンは、銅粒子12Aの表面を被覆している有機保護膜に由来する。このためC /Cu比とC /Cu比のそれぞれが0.001以上であると、銅粒子12Aの表面が酸化しにくくなり、かつ銅粒子12Aが凝集しにくくなる。また、C /Cu比及びC /Cu比が0.2以下であると、銅粒子12Aの焼結性を過度に低下させずに銅粒子12Aの酸化と凝集を抑制でき、さらに加熱時における有機保護膜の分解ガスの発生を抑えることができるので、ボイドが少ない接合層を形成することができる。銅粒子12Aの保存中の耐酸化性をより一層向上し、かつ低温度での焼結性をより一層向上させるために、C /Cu比及びC /Cu比は0.08以上0.16以下の範囲内にあることが好ましい。また、C以上のイオン/Cu比が0.005倍以上であると、粒子表面に脱離温度が比較的高い有機保護膜が多く存在するため、結果として焼結性が十分に発現せず強固な接合層が得られにくい。C以上のイオン/Cu比は0.003倍未満であることが好ましい。
 有機保護膜は、クエン酸由来であることが好ましい。クエン酸由来の有機保護膜で被覆された銅粒子12Aの製造方法は後述する。銅粒子12Aの有機保護膜の被覆量は、銅粒子100質量%に対して0.5質量%以上2.0質量%以下の範囲内にあることが好ましく、0.8質量%以上1.8質量%以下の範囲内にあることがより好ましく、0.8質量%以上1.5質量%以下の範囲内にあることがさらに好ましい。有機保護膜の被覆量が0.5質量%以上であることによって、銅粒子12Aを有機保護膜により均一に被覆することができ、銅粒子12Aの酸化をより確実に抑制することができる。また、有機保護膜の被覆量が2.0質量%以下であることによって、加熱による有機保護膜の分解によって発生するガスにより、銅粒子の焼結体(接合層)にボイドが発生することを抑制することができる。有機保護膜の被覆量は、市販の装置を用いて測定することができる。例えば、差動型示差熱天秤TG8120-SL(RIGAKU社製)を用いて、被覆量を測定できる。この場合例えば、試料は、凍結乾燥により水分を除去した銅粒子を用いる。銅粒子の酸化を抑制するため窒素(G2グレード)ガス中で測定し、昇温速度は10℃/minとし、250℃から300℃まで加熱したときの重量減少率を、有機保護膜の被覆量と定義できる。すなわち、被覆量=(測定後の試料重量)/(測定前の試料重量)×100(wt%)である。測定は同一ロットの銅粒子で各々3回行い、相加平均値を被覆量としてよい。
 銅粒子12Aは、アルゴンガスなどの不活性ガス雰囲気下、300℃の温度で30分加熱したときに、有機保護膜の50質量%以上が分解することが好ましい。クエン酸由来の有機保護膜は、分解時に二酸化炭素ガス、窒素ガス、アセトンの蒸発ガス及び水蒸気を発生する。
 クエン酸由来の有機保護膜で被覆された銅粒子12Aは、例えば、以下のようにして製造することができる。先ず、クエン酸銅の水分散液を用意し、このクエン酸銅水分散液にpH調整剤を加えてpHを2.0以上7.5以下に調整する。次に、不活性ガス雰囲気下でこのpH調整したクエン酸銅水分散液に、還元剤として、銅イオンを還元できる1.0倍当量分以上1.2倍当量分以下のヒドラジン化合物を添加して混合する。得られた混合液を、不活性ガス雰囲気下で、得られた混合液を60℃以上80℃以下の温度に加熱し1.5時間以上2.5時間以下保持する。これにより、クエン酸銅から溶出した銅イオンを還元して銅粒子12Aを生成させると共に、この銅粒子12Aの表面にクエン酸由来の有機保護膜を形成させる。
 クエン酸銅の水分散液は、蒸留水、イオン交換水のような純水に、粉末状のクエン酸銅を25質量%以上40質量%以下の濃度となるように添加し、撹拌羽を用いて撹拌し、均一に分散させることによって調製できる。pH調整剤としては、クエン酸三アンモニウム、クエン酸水素アンモニウム、クエン酸などが挙げられる。この中でマイルドにpH調整しやすいことからクエン酸三アンモニウムが好ましい。クエン酸銅水分散液のpHを2.0以上とするのは、クエン酸銅から溶出した銅イオンの溶出速度を速くして、銅粒子の生成を速やかに進行させ、目標とする微細な銅粒子12Aを得られるようにするためである。また、pHを7.5以下とするのは、溶出した銅イオンが水酸化銅(II)となることを抑制して、銅粒子12Aの収率を高くするためである。また、pHを7.5以下とすることによって、ヒドラジン化合物の還元力が過度に高くなることを抑制でき、目標とする銅粒子12Aが得られやすくなる。クエン酸銅水分散液のpHは4以上6以下の範囲内に調整することが好ましい。
 ヒドラジン化合物によるクエン酸銅の還元は不活性ガス雰囲気下で行われる。液中に溶出した銅イオンの酸化を防止するためである。不活性ガスの例としては、窒素ガス、アルゴンガスなどが挙げられる。ヒドラジン化合物は、酸性下でクエン酸銅を還元するときに、還元反応後に残渣を生じないこと、安全性が比較的高いこと及び取扱いが容易であることなどの利点がある。このヒドラジン化合物としては、ヒドラジン一水和物、無水ヒドラジン、塩酸ヒドラジン、硫酸ヒドラジンなどが挙げられる。これらのヒドラジン化合物の中では、硫黄や塩素といった不純物となり得る成分を含まないヒドラジン一水和物、無水ヒドラジンが好ましい。
 一般的にpH7未満の酸性液中で生成した銅は溶解してしまう。しかし本実施形態では、pH7未満の酸性液に還元剤であるヒドラジン化合物を添加混合し、得られた混合液中に銅粒子12Aを生成させる。このため、クエン酸銅から生成したクエン酸由来の成分が銅粒子12Aの表面を速やかに被覆するので、銅粒子12Aの溶解が抑制される。pHを調整した後のクエン酸銅の水分散液は、温度50℃以上70℃以下にして、還元反応を進行しやすくすることが好ましい。
 不活性ガス雰囲気下でヒドラジン化合物を混合した混合液を60℃以上80℃以下の温度に加熱し1.5時間以上2.5時間以下保持するのは、銅粒子12Aを生成させると共に、生成した銅粒子12Aの表面に有機保護膜を形成し被覆するためである。不活性ガス雰囲気下で加熱保持するのは、生成した銅粒子12Aの酸化を防止するためである。出発原料であるクエン酸銅は通常35質量%程度の銅成分を含む。この程度の銅成分を含むクエン酸銅水分散液に還元剤であるヒドラジン化合物を添加して、上記の温度で昇温加熱し、上記の時間で保持することにより、銅粒子12Aの生成と、銅粒子12Aの表面での有機保護膜の生成とがバランスよく進行するので、銅粒子100質量%に対して、有機保護膜の被覆量が0.5質量%以上2.0質量%以下の範囲内にある銅粒子12Aを得ることができる。加熱温度が60℃未満で保持時間が1.5時間未満では、クエン酸銅が完全に還元せずに、銅粒子12Aの生成速度が遅くなりすぎて、銅粒子12Aを被覆する有機保護膜の量が過剰となるおそれがある。また加熱温度が80℃を超えかつ保持時間が2.5時間を超えると、銅粒子12Aの生成速度が速くなりすぎて、銅粒子12Aを被覆する有機保護膜の量が少なりすぎるおそれがある。好ましい加熱温度は65℃以上75℃以下であり、好ましい保持時間は2時間以上2.5時間以下である。
 混合液で生成された銅粒子12Aを、不活性ガス雰囲気下で混合液から、例えば遠心分離機を用いて、固液分離して、凍結乾燥法、減圧乾燥法で乾燥することにより、表面が有機保護膜で被覆された銅粒子12Aを得る。この銅粒子12Aは、表面が有機保護膜で被覆されているため、接合用シート10として用いるまで、大気中に保存しても酸化しにくくなる。
 (銅粒子の型への充填)
 次に、図3に示すように、準備した銅粒子12Aを型に充填する(ステップS12)。銅粒子12Aを充填する型の形状や材質は任意であってよい。
 (銅粒子の仮焼結)
 次に、型に充填された銅粒子12Aを所定温度で加圧して、銅粒子12Aを仮焼結させることで、接合用シート10を生成する(ステップS14)。本ステップにおいては、型に充填された銅粒子12Aを、所定圧力で加圧しつつ、所定温度で所定時間保持することで、銅粒子12Aを仮焼結させて接合用シート10を生成する。ここでの所定圧力は、10MPa以上30MPa以下であることが好ましく、11MPa以上25MPa以下であることがより好ましく、12MPa以上20MPa以下であることが更に好ましい。またここでの所定温度は、150℃以上250℃以下であることが好ましく、160℃以上240℃以下であることがより好ましく、170℃以上230℃以下であることが更に好ましい。ここでの所定時間(所定圧力、所定温度で保持する時間)は、1分以上30分以下であることが好ましく、2分以上25分以下であることがより好ましく、3分以上20分以下あることが更に好ましい。
 このような条件で銅粒子12Aを仮焼結させることで、破損のおそれを抑制可能な接合用シート10を適切に製造できる。
 なお、接合用シート10は、以上の方法で製造されることに限られず、接合用シート10の製造方法は任意であってよい。
 (接合体の製造方法)
 次に、接合用シート10を用いて部材同士を接合することにより接合体100を製造する方法について説明する。図4は、接合体の製造方法を説明するための模式図である。本実施形態では、接合用シート10を接合層として、第1の部材Aと第2の部材Bとを接合して、接合体100を製造する。第1の部材Aと第2の部材Bは任意のものであってよいが、例えば、第1の部材Aと第2の基材Bとのうちの一方が基板で、他方が電子部品であってよい。すなわち、基板と電子部品とが接合層で接合された半導体モジュールを、接合体100として製造してよい。基板としては、特に限定されないが、例えば、無酸素銅板、銅モリブデン板、高放熱絶縁基板(例えば、DCB(Direct Copper Bond))、LED(Light Emitting Diode)パッケージなどの半導体素子搭載用基材等が挙げられる。また電子部品としては、例えば、IGBT(Insulated Gate Bipolar Transistor)、ダイオード、ショットキーバリヤダイオード、MOS-FET(Metal Oxide Semiconductor Field Effect Transistor)、サイリスタ、ロジック、センサー、アナログ集積回路、LED、半導体レーザー、発信器等の半導体素子が挙げられる。
 本製造方法においては、図4のステップS20に示すように、第1の部材Aの表面に、接合用シート10を配置する。図4の例では、接合用シート10の表面10bが第1の部材Aの表面に接触するように、第1の部材A上に接合用シート10が配置される。
 次に、ステップS22に示すように、接合用シート10の表面10a(第1の部材Aに接触していない側の表面)上に、溶媒20を塗布する。溶媒20は、銅粒子12に対するバインダーとして作用する。溶媒20は、有機溶媒である。なお、溶媒20の添加は必須ではない。
 溶媒20は、沸点が150℃以上であることが好ましく、沸点が200℃以下であることが好ましい。溶媒20の沸点は、150℃以上300℃以下であることがより好ましく、200℃以上250℃以下であることが更に好ましい。また、溶媒20は、分子量が100以上1000以下の範囲内であることが好ましく、200以上800以下の範囲内にあることがより好ましく、200以上600以下の範囲内にあることが特に好ましい。また、溶媒は、末端に還元性基を有する化合物であることが好ましい。還元性基は水酸基であることが好ましい。また、溶媒20は、誘電率が4以上80以下であることが好ましく、10以上45以下であることがより好ましく、20以上40以下であることが更に好ましい。なお、誘電率は、液体用誘電率測定計(日本ルフト社製、Model 871)で測定してよい。
 溶媒20としては、例えば、ジオール化合物、トリオール化合物を用いることができる。ジオール化合物の例としては、エチレングリコール、ジエチレングリコール、ポリエチレングリコールを挙げることができる。トリオール化合物の例としては、グリセリン、ブタントリオール、ポリオキシプロピレントリオールを挙げることができる。これらの有機溶媒及び高分子溶媒は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 溶媒20は、接合用シート10に対して、質量比で0.5%以上10%以下添加されることが好ましく、1%以上8%以下添加されることが好ましく、2%以上5%以下添加されることが更に好ましい。溶媒20の添加量がこの範囲となることで、接合性を適切に保つことができる。
 ステップS24に示すように、溶媒20は、接合用シート10の気孔に浸入して気孔内に充填される。すなわち、接合用シート10は、溶媒20が含浸された状態になるといえる。
 その後、ステップS26に示すように、溶媒20が含浸された接合用シート10の表面10a上に、第2の部材Bが配置される。すなわち、第1の部材Aと第2の部材Bとの間に、溶媒20が含浸された接合用シート10が配置された状態となる。
 その後、第1の部材Aと第2の部材Bとの間に接合用シート10が配置された積層体を、加熱することで、接合用シート10の焼結をさらに進行させて、第1の部材Aと第2の部材Bとが接合層(焼結された接合用シート10)で接合された接合体100が生成される。積層体の加熱温度は、例えば、150℃以上300℃以下の範囲内としてよい。積層体の加熱時間としては、例えば、10分間以上1時間以下の範囲内としてよい。積層体の加熱は、不活性ガス雰囲気下、積層体の積層方向に積層体を加圧しながら行うことが好ましい。不活性ガスとしては、窒素ガス、アルゴンガスを用いることができる。積層体の加圧圧力は、0.5MPa以上30MPa以下の範囲内にあることが好ましい。
 (効果)
 以上説明したように、本実施形態に係る接合用シート10は、銅の焼結体を含み、ヤング率が10GPa以上であり、かつ、充填率が50%以上70%以下である。接合用シート10は、ヤング率が10GPa以上の銅の焼結体であることで、十分な強度を有して、破損を抑制することができる。また、接合用シート10は、充填率が50%以上75%以下の仮焼結体であることで、部材同士の接合時に焼結を更に進行させて、部材同士を適切に接合できる。
 接合用シート10は、ヤング率が10GPa以上30GPa以下であることが好ましい。ヤング率がこの範囲となることで、破損をより好適に抑制できる。
 接合用シート10は、表面の算術平均粗さRaが1μm以上40μm以下であることが好ましい。表面粗さがこの範囲の仮焼結体であることで、部材同士の接合時に焼結を更に進行させて、部材同士を適切に接合できる。
 接合用シート10は、熱伝導率が10W/mK以上60W/mK以下であることが好ましい。熱伝導率がこの範囲であることで、接合体100の伝熱性を適切に担保することができる。
 本実施形態に係る接合用シート10の製造方法は、複数の銅粒子12Aを型に充填するステップと、型に充填した複数の銅粒子12Aを、10MPa以上30MPa以下で加圧しつつ、150℃以上250℃以下で、1分以上30分以下の間加熱することにより、銅粒子12Aを焼結させることで、銅の焼結体を含み、ヤング率が10GPa以上であり、かつ、充填率が50%以上70%以下である接合用シート10を製造するステップと、を含む。本製造方法によると、破損を抑制可能な接合用シート10を製造することができる。
 本実施形態に係る接合体100の製造方法は、接合用シート10を第1の部材A上に配置するステップと、接合用シート10上に第2の部材Bを配置することで、第1の部材と第2の部材との間に前記接合用シートが配置された積層体を得るステップと、積層体を加熱することで、第1の部材Aと第2の部材Bが接合された接合体100を製造するステップと、を含む。本製造方法によると、接合用シート10を用いることで、接合体100を適切に製造できる。
 (実施例)
 次に、実施例について説明する。図5は、各例の接合用シートの特性および評価結果を示す表である。
 (実施例1)
 (銅粒子の準備)
 実施例1においては、クエン酸銅・2.5水和物(富士フイルム和光純薬株式会社製)とイオン交換水とを、撹拌羽を用いて撹拌混合して、濃度30質量%のクエン酸銅の水分散液を調製した。次いで、得られたクエン酸銅水分散液に、pH調整剤としてのクエン酸アンモニウム水溶液を加えて、クエン酸銅水分散液のpHを5に調整した。次に、得られたクエン酸銅水分散液を50℃まで昇温し、その温度を保持しながら、窒素ガス雰囲気下で、銅イオンの還元剤としてのヒドラジン一水和物水溶液(2倍希釈)を一時に添加し、撹拌羽を用いて撹拌混合した。ヒドラジン一水和物水溶液の添加量は、銅イオン全量を還元させるのに必要な量に対して1.2倍当量分とした。得られた混合液を窒素ガス雰囲気下で70℃まで昇温し、その温度で2時間保持して、銅粒子を生成させた。生成した銅粒子を、遠心分離機を用いて回収した。回収した銅粒子を減圧乾燥法で乾燥して、銅粒子を作製した。
 比表面積測定装置(カンタクローム・インスツルメンツ社製、QUANTACHROME AUTOSORB-1)を用いた。事前に脱気温度を50℃、脱気時間60分にて吸着ガスを除去した後、銅粒子の窒素ガスの吸着量を測定し、BET法により銅粒子の比表面積を求めた。得られた比表面積S(m/g)と、銅粒子の密度ρ(g/cm)とを用いて、下記の式よりBET径を算出した。
 BET径(nm)=6000/(ρ(g/cm)×S(m/g))
 (接合用シートの生成)
 準備した銅粒子を充填する型として、外寸50mm角×30mmで内寸30mm角×30mmの穴が空いているアルミフレームを用意した。このアルミフレームに銅粒子1.5gを充填し、30mm角×20mmのアルミブロックで均一にならしたうえで、大気中で、印加圧力が30MPa、加熱温度が150℃の条件で、15分間ホットプレス処理して、接合用シートを生成した。ホットプレス装置はCYPT-50kN(新東工業社製)を用いた。ホットプレス処理の後、室温に冷却して、アルミブロックに挟まれた30mm角×0.4mmの接合用シートをアルミブロックから剥がし、目的の接合用シートを得た。
 (接合用シートの特性)
 ピコデンターを用いて接合用シートのヤング率を測定した。ヤング率の測定方法は、本実施形態で説明した方法を用いた。
 また、接合用シートの充填率を測定した。充填率は、次のように測定した。接合用シートの外部寸法から求めた体積を、ノギスとマイクロメータ―によって測定した。具体的には、接合用シートの水平方向の2辺を各5点ずつ無作為に測定し、各々の平均値の積を接合用シートの面積とした。更にマイクロメータ―で接合用シートの厚みを10点無作為に測定し、平均値を接合用シートの厚みとした。面積と厚みの積を接合用シートの外部寸法から求めた体積とした。次に接合用シートの重量を測定した。そして、接合用シートの重量を、接合用シート10の外部寸法から求めた体積によって除した値を、かさ密度として算出した。外部寸法から求めた体積とは、接合用シート10の気孔も含めた全容積を指す。そして、真密度を8.96g/cmとして、真密度に対するかさ密度の比率を、充填率として算出した。
 また、接合用シートの熱伝導率を測定した。具体的には、10mm×10mmに成形した接合用シートの25℃におけるシート抵抗を、ロレスター(MCP-250T、三菱油化社製)を用い四探針法で測定し、さらにシート膜厚を乗し比抵抗を算出した。そして、25℃における熱伝導率を、Wiedemann-Franz則を用い、比抵抗を換算することで求めた。
 ヤング率、充填率、熱伝導率の測定値を図5に示す。
 (実施例2-6)
 実施例2においては、加熱温度、印加圧力、加圧時間の少なくとも1つを図5のように変更した以外は実施例1と同様の方法で接合用シートを生成した。ヤング率、充填率、熱伝導率の測定値を図5に示す。
 (比較例1-4)
 比較例1-4においては、加熱温度、印加圧力、加圧時間の少なくとも1つを図5のように変更した以外は実施例1と同様の方法で接合用シートを生成した。ヤング率、充填率、熱伝導率の測定値を図5に示す。
 (評価)
 (接合用シートの評価)
 各例の接合用シートの強度を評価した。50mm×50mm×1mm厚の無酸素銅板の上に30mm×30mmの接合用シートを載せ、接合用シート上面の中央部の高さを0mmとしたとき、30mmの高さからφ20mmのジルコニアビーズ(ニッカトー社、YTZ-20)を静かに落下させた。1枚あたり1回落下する操作を10回繰り返した後に接合用シートを目視で観察し、割れや欠けがみられないものが7枚以上である場合を合格(〇)とし、6枚以下である場合を不合格(×)とした。
 (接合体のシェア強度の評価)
 各例の接合用シートを、市販のカッターナイフを用いて切断して、接合用シート片(2.5mm角×500μm厚)を作製した。30mm角×1mm厚の無酸素銅基板の上に、上記の接合用シート片(2.5mm角×500μm厚)を配置した。次いで、その接合用シート片の上に、溶媒としてポリエチレングリコールをシート片重量0.95gあたり0.05gとなるよう塗布して含浸させた後、2.5mm角×1mm厚の無酸素銅ダミー素子を配置した。こうして、無酸素銅基板と無酸素銅ダミー素子とが接合用シート片を介して積層された積層体を得た。得られた積層体を、ダイボンダー(アルファーデザイン株式会社製、HTB-MM)を用いて、窒素ガス雰囲気下、加圧圧力5MPa、温度300℃の条件で、15分間保持することにより2.5mm角の無酸素銅基板と無酸素銅ダミー素子とが銅接合層を介して接合された接合体(サンプルA)を作製した。
 得られた接合体(サンプルA)のシェア強度を、JIS Z 3198-7(鉛フリーはんだ試験方法-第7部:チップ部品のはんだ継手せん断試験方法)に準拠した方法により測定した。具体的には、ボンドテスタ(Nordson DAGE社製、SERIES 4000)のツールを用いて無酸素銅ダミー素子に荷重を加え、無酸素銅ダミー素子が銅接合層から剥離したときの荷重(最大せん断荷重)を測定した。ツールの移動速度は50μm/secとし、ツールの先端と無酸素銅基板のギャップは50μmとした。得られた最大せん断荷重を、ニュートン換算し、銅接合層の面積(2.5mm×2.5mm)で除することに求めた値をシェア強度(単位:MPa)とした。接合体は7個作製し、それぞれの接合体についてシェア強度を測定した。その結果を図5に示す。
 評価においては、接合用シートの強度の評価が〇であり、かつ接合体のシェア強度が30MPa以上を合格とした。一方、接合用シートの強度の評価が〇であることと、接合体のシェア強度が30MPa以上であることとの、少なくとも一方を満たさない場合には、不合格とした。
 図5に示すように、ヤング率が10GPa以上であり、充填率が50%以上70%以下となる実施例の接合用シートは、接合体の強度の評価が合格であり破損を適切に抑制でき、シェア強度が30MPa以上であり適切に接合できることが分かる。一方、ヤング率が10GPa以上であることと充填率が50%以上70%以下であることとも少なくとも一方を満たさない比較例の接合用シートは、強度の評価又はシェア強度が不合格であり、破損の抑制と適切な接合の両立を実現できないことが分かる。
 (オプションの評価)
 また、オプションの評価として、接合用シートを用いて部材同士を接合した接合体についての評価も行った。具体的には、接合体のボイド率の評価を行った。
 (接合体のボイド率)
 接合用シートを、市販のカッターナイフを用いて切断して、接合用シート片(10mm角×500μm厚)を作製した。30mm角×1mm厚の無酸素銅基板の上に、上記の接合用シート片(10mm角×500μm厚)を配置した。次いで、その接合用シート片の上に、溶媒としてポリエチレングリコールをシート片重量0.95gあたり0.05gとなるよう塗布して含浸させた後、10mm角×1mm厚の無酸素銅ダミー素子を配置した。こうして、無酸素銅基板と無酸素銅ダミー素子とが接合用シート片を介して積層された積層体を得た。得られた積層体を、ダイボンダー(アルファーデザイン株式会社製、HTB-MM)を用いて、窒素ガス雰囲気下、加圧圧力5MPa、温度250℃の条件で、15分間保持することにより2.5mm角の無酸素銅基板と無酸素銅ダミー素子とが銅接合層を介して接合された接合体(サンプルB)を作製した。
 得られた接合体(サンプルB)の銅接合層部分について、超音波探傷装置(株式会社日立ハイテクノロジーズ製、FINE-SAT)を用いて超音波探傷像を測定した。得られた超音波探傷像を、画像処理ソフト(米国国立衛生研究所製ImageJ)を用いて2値化して、ボイド(空洞)と接合体(銅粒子焼結体)とに分け、下記の式よりボイド率を算出した。
 ボイド率(%)=(ボイド部分の総面積/銅接合層の面積(10mm×10mm))×100
 接合体は7個作製し、それぞれの接合体についてボイド率を測定した。その結果を図5に示す。
 以上、本発明の実施形態を説明したが、この実施形態の内容により実施形態が限定されるものではない。また、前述した構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、前述した構成要素は適宜組み合わせることが可能である。さらに、前述した実施形態の要旨を逸脱しない範囲で構成要素の種々の省略、置換又は変更を行うことができる。
 10 接合用シート
 12、12A 銅粒子

Claims (6)

  1.  銅の焼結体を含み、ヤング率が10GPa以上であり、かつ、充填率が50%以上70%以下である、
     接合用シート。
  2.  ヤング率が10GPa以上30GPa以下である、請求項1に記載の接合用シート。
  3.  表面の算術平均粗さRaが1μm以上40μm以下である、請求項1又は請求項2に記載の接合用シート。
  4.  熱伝導率が10W/mK以上60W/mK以下である、請求項1から請求項3のいずれか1項に記載の接合用シート。
  5.  複数の銅粒子を型に充填するステップと、
     前記型に充填した複数の銅粒子を、10MPa以上30MPa以下で加圧しつつ、150℃以上250℃以下で、1分以上30分以下の間加熱することにより、前記銅粒子を焼結させることで、銅の焼結体を含み、ヤング率が10GPa以上であり、かつ、充填率が50%以上70%以下である接合用シートを製造するステップと、
     を含む、
     接合用シートの製造方法。
  6.  請求項1から請求項5のいずれか1項に記載の接合用シートを第1の部材上に配置するステップと、
     前記接合用シート上に第2の部材を配置することで、第1の部材と第2の部材との間に前記接合用シートが配置された積層体を得るステップと、
     前記積層体を加熱することで、前記第1の部材と前記第2の部材が接合された接合体を製造するステップと、
     を含む、
     接合体の製造方法。
PCT/JP2022/048667 2021-12-28 2022-12-28 接合用シート、接合用シートの製造方法、及び接合体の製造方法 WO2023127968A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280077199.0A CN118284484A (zh) 2021-12-28 2022-12-28 接合用片、接合用片的制造方法及接合体的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021215295A JP2023098495A (ja) 2021-12-28 2021-12-28 接合用シート、接合用シートの製造方法、及び接合体の製造方法
JP2021-215295 2021-12-28

Publications (1)

Publication Number Publication Date
WO2023127968A1 true WO2023127968A1 (ja) 2023-07-06

Family

ID=86999257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/048667 WO2023127968A1 (ja) 2021-12-28 2022-12-28 接合用シート、接合用シートの製造方法、及び接合体の製造方法

Country Status (3)

Country Link
JP (1) JP2023098495A (ja)
CN (1) CN118284484A (ja)
WO (1) WO2023127968A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248617A (ja) * 2009-03-26 2010-11-04 Nippon Handa Kk 多孔質銀製シート、金属製部材接合体の製造方法、金属製部材接合体、電気回路接続用バンプの製造方法および電気回路接続用バンプ
WO2015060346A1 (ja) * 2013-10-23 2015-04-30 日立化成株式会社 ダイボンドシート及び半導体装置の製造方法
JP2021116463A (ja) 2020-01-28 2021-08-10 三菱マテリアル株式会社 接合用シート
JP2021116450A (ja) * 2020-01-24 2021-08-10 大陽日酸株式会社 接合材、接合材の製造方法、及び接合体
JP2022029194A (ja) * 2020-08-04 2022-02-17 石原ケミカル株式会社 接合方法、銅焼結体及び銅ペースト

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248617A (ja) * 2009-03-26 2010-11-04 Nippon Handa Kk 多孔質銀製シート、金属製部材接合体の製造方法、金属製部材接合体、電気回路接続用バンプの製造方法および電気回路接続用バンプ
WO2015060346A1 (ja) * 2013-10-23 2015-04-30 日立化成株式会社 ダイボンドシート及び半導体装置の製造方法
JP2021116450A (ja) * 2020-01-24 2021-08-10 大陽日酸株式会社 接合材、接合材の製造方法、及び接合体
JP2021116463A (ja) 2020-01-28 2021-08-10 三菱マテリアル株式会社 接合用シート
JP2022029194A (ja) * 2020-08-04 2022-02-17 石原ケミカル株式会社 接合方法、銅焼結体及び銅ペースト

Also Published As

Publication number Publication date
CN118284484A (zh) 2024-07-02
JP2023098495A (ja) 2023-07-10

Similar Documents

Publication Publication Date Title
EP3722368B1 (en) Nitride ceramic resin composite body
TWI357788B (ja)
JP6319643B2 (ja) セラミックス−銅接合体およびその製造方法
US7948075B2 (en) Silicon nitride substrate, method of manufacturing the same, and silicon nitride circuit board and semiconductor module using the same
JP2013041884A (ja) 半導体装置
JP2019087607A (ja) ヒートシンク付パワーモジュール用基板およびヒートシンク付パワーモジュール用基板の製造方法
EP3229268A1 (en) Heat-dissipating substrate and method for manufacturing same
WO2021153560A1 (ja) 接合用シート
JP2020059914A (ja) 接合材料用粒子及びその製造方法、接合用ペースト及びその調製方法並びに接合体の製造方法
WO2023127968A1 (ja) 接合用シート、接合用シートの製造方法、及び接合体の製造方法
JP7317397B2 (ja) 酸化銅ペースト及び電子部品の製造方法
JP2022023954A (ja) セラミックス/アルミニウム接合体、絶縁回路基板、ledモジュール、セラミックス部材
WO2023127969A1 (ja) 接合用シート、及び接合体の製造方法
JP2023098496A (ja) 接合用シート、及び接合体の製造方法
JP2023098497A (ja) 接合体の製造方法
JP2023098500A (ja) 接合用シートの製造方法、及び接合体の製造方法
WO2017090422A1 (ja) セラミックス/アルミニウム接合体、絶縁回路基板、パワーモジュール、ledモジュール、熱電モジュール
JP2023098499A (ja) 接合用シート、及び接合体の製造方法
WO2021230328A1 (ja) 複合体及び積層体
JP5941006B2 (ja) 接合材、接合構造体およびその製造方法、並びに半導体モジュール
JP2022114900A (ja) 接合用シート
WO2022176926A1 (ja) 接合用ペースト、接合層、接合体及び接合体の製造方法
JP2022110947A (ja) 接合用シート
JP2022113002A (ja) 接合用シート
JP7080427B1 (ja) 複合シート、積層体、及び、複合シートの接着性を推定する評価方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22916190

Country of ref document: EP

Kind code of ref document: A1