WO2017057130A1 - 加熱接合用シート及びダイシングテープ付き加熱接合用シート - Google Patents

加熱接合用シート及びダイシングテープ付き加熱接合用シート Download PDF

Info

Publication number
WO2017057130A1
WO2017057130A1 PCT/JP2016/077838 JP2016077838W WO2017057130A1 WO 2017057130 A1 WO2017057130 A1 WO 2017057130A1 JP 2016077838 W JP2016077838 W JP 2016077838W WO 2017057130 A1 WO2017057130 A1 WO 2017057130A1
Authority
WO
WIPO (PCT)
Prior art keywords
bonding sheet
heat bonding
precursor layer
sheet
heat
Prior art date
Application number
PCT/JP2016/077838
Other languages
English (en)
French (fr)
Inventor
悠樹 菅生
菜穂 鎌倉
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=58423664&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2017057130(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to EP16851304.2A priority Critical patent/EP3358606A4/en
Priority to US15/763,406 priority patent/US20180315729A1/en
Priority to CN201680057844.7A priority patent/CN108207115B/zh
Publication of WO2017057130A1 publication Critical patent/WO2017057130A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/16Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer formed of particles, e.g. chips, powder or granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/35Heat-activated
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L24/80 - H01L24/90
    • H01L24/92Specific sequence of method steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/107Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing organic material comprising solvents, e.g. for slip casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/25Noble metals, i.e. Ag Au, Ir, Os, Pd, Pt, Rh, Ru
    • B22F2301/255Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/105Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2405/00Adhesive articles, e.g. adhesive tapes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/14Semiconductor wafers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0806Silver
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/085Copper
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2248Oxides; Hydroxides of metals of copper
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2286Oxides; Hydroxides of metals of silver
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/304Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive being heat-activatable, i.e. not tacky at temperatures inferior to 30°C
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/408Additional features of adhesives in the form of films or foils characterized by the presence of essential components additives as essential feature of the adhesive layer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2400/00Presence of inorganic and organic materials
    • C09J2400/10Presence of inorganic materials
    • C09J2400/12Ceramic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2400/00Presence of inorganic and organic materials
    • C09J2400/10Presence of inorganic materials
    • C09J2400/16Metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04026Bonding areas specifically adapted for layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05073Single internal layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/05166Titanium [Ti] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05639Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/27001Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate
    • H01L2224/27003Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate for holding or transferring the layer preform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/271Manufacture and pre-treatment of the layer connector preform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/274Manufacturing methods by blanket deposition of the material of the layer connector
    • H01L2224/2743Manufacturing methods by blanket deposition of the material of the layer connector in solid form
    • H01L2224/27436Lamination of a preform, e.g. foil, sheet or layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/29294Material of the matrix with a principal constituent of the material being a liquid not provided for in groups H01L2224/292 - H01L2224/29291
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29344Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29347Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/29386Base material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2224/29387Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/2939Base material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29499Shape or distribution of the fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/2954Coating
    • H01L2224/29599Material
    • H01L2224/29698Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29699Material of the matrix
    • H01L2224/297Material of the matrix with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29738Material of the matrix with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29739Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/2954Coating
    • H01L2224/29599Material
    • H01L2224/29698Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29699Material of the matrix
    • H01L2224/297Material of the matrix with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29738Material of the matrix with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29747Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/2954Coating
    • H01L2224/29599Material
    • H01L2224/29698Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29699Material of the matrix
    • H01L2224/29786Material of the matrix with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2224/29787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/83201Compression bonding
    • H01L2224/83203Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/83444Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/83447Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/8346Iron [Fe] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85203Thermocompression bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • H01L2224/85207Thermosonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/94Batch processes at wafer-level, i.e. with connecting carried out on a wafer comprising a plurality of undiced individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/94Batch processes at wafer-level, i.e. with connecting carried out on a wafer comprising a plurality of undiced individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2924/15738Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950 C and less than 1550 C
    • H01L2924/15747Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2924/15738Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950 C and less than 1550 C
    • H01L2924/1576Iron [Fe] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a heat bonding sheet and a heat bonding sheet with a dicing tape.
  • the method of adhering a semiconductor element to an adherend such as a metal lead frame has started with conventional gold-silicon eutectic, and has shifted to a method using solder and resin paste.
  • a conductive resin paste is sometimes used.
  • Si Insulated Gate Bipolar Transistor
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • a semiconductor using SiC or GaN has features such as a large band gap and a high dielectric breakdown electric field, and can operate at low loss, high speed, and high temperature.
  • High-temperature operation is advantageous in automobiles and small power conversion devices that have severe thermal environments.
  • Semiconductor devices for applications with severe thermal environments are expected to operate at a high temperature of about 250 ° C., and solder and conductive adhesives, which are conventional bonding / adhesive materials, have problems in thermal characteristics and reliability. Therefore, a paste material containing sintered metal particles has been proposed (for example, Patent Document 1).
  • the sintered metal particle-containing paste material contains nano-sized to micro-sized metal particles, and these metal particles are melted at a temperature lower than the normal melting point due to the nano-size effect, and sintering between the particles proceeds.
  • the paste material containing sintered metal particles is literally in a paste state, the thickness becomes non-uniform as in the case of the conductive resin paste, and as a result, uneven bonding occurs, resulting in a decrease in bonding reliability especially at high temperatures. There is a case.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to prevent bonding unevenness with a uniform thickness and to provide high-temperature bonding reliability, and a dicing tape having the heating bonding sheet. It is to provide a sheet for heat bonding.
  • the sheet for heat bonding according to one embodiment of the present invention has a precursor layer that becomes a sintered layer by heating,
  • the average thickness of the precursor layer is 5 ⁇ m to 200 ⁇ m, and the maximum thickness and the minimum thickness of the precursor layer are within a range of ⁇ 20% of the average thickness.
  • the heat-bonding sheet has a precursor layer that becomes a sintered layer by heating, and a sintered layer is obtained by performing heat treatment. Therefore, the heat-bonding sheet is used for bonding a power semiconductor device or the like in which the operating environment is high.
  • high bonding reliability can be exhibited.
  • the average thickness of the precursor layer is 5 ⁇ m to 200 ⁇ m, and the maximum thickness and the minimum thickness of the precursor layer are within a range of ⁇ 20% of the average thickness, the thickness uniformity is satisfied at a high level. Thus, uneven bonding can be prevented and high temperature bonding reliability can be improved.
  • the heat bonding sheet according to another embodiment of the present invention has a precursor layer that becomes a sintered layer by heating,
  • the average thickness of the precursor layer is 5 ⁇ m to 200 ⁇ m, and the surface roughness Sa when the surface of the precursor layer is measured with a confocal microscope in a field of view of 200 ⁇ m ⁇ 200 ⁇ m is 2 ⁇ m or less.
  • the heat-bonding sheet has a precursor layer that becomes a sintered layer by heating, and a sintered layer is obtained by heat treatment.
  • the average thickness of the precursor layer is 5 ⁇ m to 200 ⁇ m
  • the surface roughness Sa when the surface of the precursor layer is measured with a confocal microscope in a field of 200 ⁇ m ⁇ 200 ⁇ m is 2 ⁇ m or less.
  • unevenness in the thickness direction is suppressed, and uniformity of thickness is satisfied at a high level.
  • uneven bonding can be prevented and high-temperature bonding reliability can be improved.
  • the weight reduction rate ⁇ W obtained by the following formula was ⁇ 9%. It is preferably from ⁇ 3%.
  • ⁇ W (%) ⁇ (W 400 ⁇ W 23 ) / W 23 ⁇ ⁇ 100 (W 23 is the weight of the heat bonding sheet at 23 ° C., and W 400 is the weight of the heat bonding sheet at 400 ° C.)
  • the weight reduction rate during heating is in the above range, organic components and solvents that can be contained in the heat bonding sheet are sufficiently removed by heating when the precursor layer is converted into a sintered layer. It will be. Thereby, sintering of a precursor layer will fully advance and joining reliability can be improved. Further, when the weight reduction rate is in the above range, the thickness uniformity is good.
  • the precursor layer preferably includes a thermally decomposable binder that is solid at 23 ° C.
  • the precursor layer contains a solid thermally decomposable binder at 23 ° C., it is easy to maintain the sheet shape before the heat bonding step. Moreover, it is easy to thermally decompose at the time of a heat joining process.
  • the precursor layer includes fine metal particles, and the fine metal particles are at least one selected from the group consisting of silver, copper, silver oxide, and copper oxide.
  • the metal fine particles are contained, and the metal fine particles are at least one selected from the group consisting of silver, copper, silver oxide, and copper oxide, heat bonding can be more suitably performed.
  • the sheet for heat bonding with a dicing tape according to the present invention Dicing tape, And the heat bonding sheet laminated on the dicing tape.
  • the step of bonding to the dicing tape can be omitted.
  • seat for heat joining is provided, a joining nonuniformity can be prevented by thickness uniformity, and favorable joining reliability can be obtained.
  • the sintered layer obtained by heating the said precursor layer becomes firm, and can improve high temperature joining reliability.
  • FIG. 1 is a schematic cross-sectional view showing a heat bonding sheet with a dicing tape according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing another heat bonding sheet with dicing tape according to another embodiment of the present invention.
  • a heat bonding sheet 10 with a dicing tape has a configuration in which a heat bonding sheet 3 is laminated on a dicing tape 11.
  • the dicing tape 11 is configured by laminating the pressure-sensitive adhesive layer 2 on the substrate 1, and the heat bonding sheet 3 is provided on the pressure-sensitive adhesive layer 2.
  • seat for heat joining with a dicing tape of this invention may be the structure which formed sheet
  • the heat bonding sheets 3 and 3 ′ have a sheet shape. Since it is not a paste but a sheet, good thickness uniformity and handling properties can be obtained.
  • seats 3 and 3 ' which concern on this embodiment consist of the precursor layer 31 used as a sintered layer by heating.
  • the heat bonding sheet includes a single precursor layer that becomes a sintered layer by heating will be described, but the present invention is not limited to this example.
  • the precursor layer that becomes a sintered layer by heating may have a configuration in which a plurality of the precursor layers are laminated.
  • this embodiment demonstrates the case where the sheet
  • stacked the precursor layer which becomes a sintered layer by heating, and the other layer (layer which does not become a sintered layer by heating) may be sufficient. That is, the heat-bonding sheet in the present invention is not particularly limited as long as it has at least a precursor layer that becomes a sintered layer by heating.
  • the average thickness of the precursor layer 31 (hereinafter also simply referred to as “precursor layer 31”) that becomes a sintered layer by heating is 5 ⁇ m to 200 ⁇ m, preferably 10 ⁇ m to 150 ⁇ m, and more preferably 15 ⁇ m to 100 ⁇ m. By keeping the average thickness of the precursor layer 31 before heating in the above range, it is possible to ensure sheet shape maintenance and thickness uniformity.
  • the maximum thickness and the minimum thickness of the precursor layer 31 are within a range of ⁇ 20% of the average thickness, preferably within a range of ⁇ 17%, and more preferably within a range of ⁇ 15%.
  • the uniformity of the thickness is satisfied at a high level, thereby preventing uneven bonding and high-temperature bonding reliability. Can be improved.
  • the average thickness, maximum thickness, and minimum thickness can be measured by the methods described in the examples.
  • the precursor layer 31 has a tensile modulus obtained by the following tensile test method of preferably 10 MPa to 3000 MPa, more preferably 12 MPa to 2900 MPa, and further preferably 15 MPa to 2500 MPa.
  • Tensile test method (1) As a test sample, a heat bonding sheet (heat bonding sheet for tensile test) having a thickness of 200 ⁇ m, a width of 10 mm, and a length of 40 mm is prepared. (2) A tensile test was performed under the conditions of a distance between chucks of 10 mm, a tensile speed of 50 mm / min, and 23 ° C. (3) The slope of the straight line portion of the obtained stress-strain diagram is the tensile modulus.
  • the tensile elastic modulus of the precursor layer 31 is 10 MPa or more, it is possible to further suppress the constituent material of the heat bonding sheet from protruding or creeping up to the chip surface during die attachment. Further, when the tensile elastic modulus is 3000 MPa or less, for example, the semiconductor wafer can be fixed during dicing.
  • the precursor layer 31 has a carbon concentration of 15% by weight or less obtained by energy dispersive X-ray analysis after raising the temperature from 23 ° C. to 400 ° C. under a temperature raising rate of 10 ° C./min in an air atmosphere. Preferably, it is 12% by weight or less, more preferably 10% by weight or less. When the carbon concentration is 15% by weight or less, the precursor layer 31 contains almost no organic matter after being heated to 400 ° C. As a result, after the heat bonding step, the heat resistance is excellent, and high reliability and thermal characteristics are obtained even in a high temperature environment.
  • the precursor layer 31 preferably has a peak at 150 to 350 ° C. when a differential thermal analysis is performed from 23 ° C. to 500 ° C. under the conditions of a temperature increase rate of 10 ° C./min in an air atmosphere. More preferably, it is present at 180 ° C., more preferably 180-310 ° C. If the peak exists at 150 to 350 ° C., it can be said that the organic substance (for example, the resin component constituting the precursor layer 31) is thermally decomposed in this temperature region. As a result, the heat resistance after the heat bonding process is more excellent.
  • the precursor layer 31 preferably contains metal fine particles in the range of 60 to 98 wt% with respect to the entire precursor layer 31.
  • the content of the metal fine particles is more preferably in the range of 65 to 97% by weight, and further preferably in the range of 70 to 95% by weight.
  • the metal fine particles can be sintered or melted to join two objects (for example, a semiconductor chip and a lead frame).
  • Examples of the metal fine particles include sinterable metal particles.
  • the sinterable metal particles aggregates of metal fine particles can be suitably used.
  • the metal fine particles include fine particles made of metal.
  • the metal include gold, silver, copper, silver oxide, and copper oxide.
  • it is preferable that it is at least 1 sort (s) chosen from the group which consists of silver, copper, silver oxide, and copper oxide.
  • the metal fine particles are at least one selected from the group consisting of silver, copper, silver oxide, and copper oxide, heat bonding can be more suitably performed.
  • the average particle size of the sinterable metal particles is preferably 0.0005 ⁇ m or more, more preferably 0.001 ⁇ m or more.
  • Examples of the lower limit of the average particle diameter include 0.01 ⁇ m, 0.05 ⁇ m, and 0.1 ⁇ m.
  • the average particle size of the sinterable metal particles is preferably 30 ⁇ m or less, more preferably 25 ⁇ m or less.
  • Examples of the upper limit of the average particle diameter include 20 ⁇ m, 15 ⁇ m, 10 ⁇ m, and 5 ⁇ m.
  • the average particle size of the sinterable metal particles is measured by the following method. That is, the sinterable metal particles are observed with an SEM (scanning electron microscope), and the average particle diameter is measured.
  • the SEM observation is, for example, observing at a magnification of 5000 when the sinterable metal particles are in a micro size, observing at a magnification of 50000 in the case of a submicron size, and observing at a magnification of 300000 in the case of a nano size. preferable.
  • the shape of the sinterable metal particles is not particularly limited, and may be, for example, a spherical shape, a rod shape, a scale shape, or an indefinite shape.
  • the precursor layer 31 preferably contains a low boiling point binder.
  • the low boiling point binder is used to facilitate handling of the metal fine particles. Specifically, it can be used as a metal fine particle-containing paste in which the metal fine particles are dispersed in the low boiling point binder.
  • the low boiling point binder is liquid at 23 ° C.
  • “liquid” includes semi-liquid. Specifically, it means that the viscosity at 23 ° C. by viscosity measurement under the following conditions with a dynamic viscoelasticity measuring device (rheometer) is 100,000 Pa ⁇ sec or less.
  • rheometer dynamic viscoelasticity measuring device
  • the low boiling point binder include, for example, pentanol, hexanol, heptanol, octanol, 1-decanol, ethylene glycol, diethylene glycol, propylene glycol, butylene glycol, ⁇ -terpineol, 1,6-hexanediol, isobornyl.
  • Monovalent and polyhydric alcohols such as cyclohexanol (MTPH), ethylene glycol butyl ether, ethylene glycol phenyl ether, diethylene glycol methyl ether, diethylene glycol ethyl ether, diethylene glycol butyl ether, diethylene glycol isobutyl ether, diethylene glycol hexyl ether, triethylene glycol methyl ether, diethylene glycol Dimethyl ether, diethylene glycol Cole diethyl ether, diethylene glycol dibutyl ether, diethylene glycol butyl methyl ether, diethylene glycol isopropyl methyl ether, triethylene glycol dimethyl ether, triethylene glycol butyl methyl ether, propylene glycol propyl ether, dipropylene glycol methyl ether, dipropylene glycol ethyl ether, dipropylene glycol Ethers such as propyl ether, dipropylene glycol butyl ether, dipropy
  • the precursor layer 31 preferably contains a solid thermally decomposable binder at 23 ° C.
  • the thermally decomposable binder is contained, it is easy to maintain the sheet shape before the heat bonding step. Moreover, it is easy to thermally decompose at the time of a heat joining process.
  • solid specifically means that the viscosity at 23 ° C. measured by the rheometer is greater than 100,000 Pa ⁇ s.
  • the “thermally decomposable binder” refers to a binder that can be thermally decomposed in the heat bonding step. It is preferable that the thermally decomposable binder hardly remains in the sintered layer (precursor layer 31 after heating) after the heat bonding step.
  • the thermally decomposable binder for example, even if it is contained in the precursor layer 31, energy dispersion after heating from 23 ° C. to 400 ° C. under an air atmosphere under a temperature rising rate of 10 ° C./min. Examples thereof include materials whose carbon concentration obtained by the type X-ray analysis is 15% by weight or less.
  • thermally decomposable binder For example, if a material that is more easily thermally decomposed is used as the thermally decomposable binder, even if the content is relatively increased, it hardly remains in the sintered layer (preheated precursor layer 31) after the heat bonding step. Can be.
  • thermally decomposable binder examples include polycarbonate, acrylic resin, ethyl cellulose, and polyvinyl alcohol. These materials can be used alone or in admixture of two or more. Of these, polycarbonate is preferable from the viewpoint of high thermal decomposability.
  • the polycarbonate is not particularly limited as long as it can be thermally decomposed in the heat bonding step, but an aromatic compound (for example, benzene) is interposed between the carbonic acid ester groups (—O—CO—O—) of the main chain.
  • an aromatic compound for example, benzene
  • an aliphatic polycarbonate having an aliphatic chain and an aromatic compound having an aromatic compound between carbonic acid ester groups (—O—CO—O—) of the main chain are preferable.
  • the aliphatic polycarbonate include polyethylene carbonate and polypropylene carbonate. Among these, polypropylene carbonate is preferable from the viewpoint of solubility in an organic solvent in producing a varnish for forming a sheet.
  • aromatic polycarbonate examples include those containing a bisphenol A structure in the main chain.
  • the polycarbonate preferably has a weight average molecular weight in the range of 10,000 to 1,000,000.
  • the weight average molecular weight is a value measured by GPC (gel permeation chromatography) and calculated in terms of polystyrene.
  • the acrylic resin is an ester of acrylic acid or methacrylic acid ester having a linear or branched alkyl group having 30 or less carbon atoms, particularly 4 to 18 carbon atoms, as long as it can be thermally decomposed in the heat bonding step.
  • Polymers (acrylic copolymers) containing seeds or two or more kinds as components are listed.
  • alkyl group examples include a methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, t-butyl group, isobutyl group, amyl group, isoamyl group, hexyl group, heptyl group, cyclohexyl group, 2- Examples include ethylhexyl group, octyl group, isooctyl group, nonyl group, isononyl group, decyl group, isodecyl group, undecyl group, lauryl group, tridecyl group, tetradecyl group, stearyl group, octadecyl group, and dodecyl group.
  • the other monomer forming the polymer is not particularly limited, and for example, acrylic acid, methacrylic acid, carboxyethyl acrylate, carboxypentyl acrylate, itaconic acid, maleic acid, fumaric acid Or a carboxyl group-containing monomer such as crotonic acid, an acid anhydride monomer such as maleic anhydride or itaconic anhydride, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, (meth ) 4-hydroxybutyl acrylate, 6-hydroxyhexyl (meth) acrylate, 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate or (4 -Hydroxymethyl cycle Hexyl) -hydroxyl group-containing monomers such as methyl acrylate, styrene sulfonic
  • acrylic resins those having a weight average molecular weight of 10,000 to 1,000,000 are more preferable, and those having a weight average molecular weight of 30,000 to 700,000 are more preferable. It is because it is excellent in the adhesiveness before a heat joining process and the thermal decomposability in the heat joining process as it is in the said numerical range.
  • the weight average molecular weight is a value measured by GPC (gel permeation chromatography) and calculated in terms of polystyrene.
  • acrylic resins acrylic resins that thermally decompose at 200 ° C. to 400 ° C. are preferable.
  • the weight reduction rate ⁇ W obtained by the following formula was It is preferably ⁇ 9% to ⁇ 3%, and more preferably ⁇ 8% to ⁇ 3.1%.
  • ⁇ W (%) ⁇ (W 400 ⁇ W 23 ) / W 23 ⁇ ⁇ 100 (W 23 is the weight of the heat bonding sheet at 23 ° C., and W 400 is the weight of the heat bonding sheet at 400 ° C.)
  • the weight reduction rate during heating is in the above range, so that organic components that can be included in the heat bonding sheet by heating when converting the precursor layer into the sintered layer (for example, the above-described The low boiling point binder, the thermally decomposable binder, etc.) and the solvent are sufficiently removed. Thereby, sintering of a precursor layer will fully advance and joining reliability can be improved. Further, when the weight reduction rate is in the above range, the thickness uniformity is good.
  • the precursor layer 31 may contain, for example, a plasticizer as appropriate in addition to the above components.
  • the heat bonding sheets 3, 3 ' can be manufactured by a usual method.
  • a varnish containing the above components for forming the precursor layer 31 is prepared, and the varnish is applied on the base separator so as to have a predetermined thickness to form a coating film, and then the coating film is dried. Thereby, the sheet
  • the solvent used in the varnish is not particularly limited, but an organic solvent or an alcohol solvent that can uniformly dissolve, knead, or disperse the above components is preferable.
  • the organic solvent include ketone solvents such as dimethylformamide, dimethylacetamide, N-methylpyrrolidone, acetone, methyl ethyl ketone, and cyclohexanone, toluene, xylene, and the like.
  • alcohol solvent examples include ethylene glycol, diethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2- Examples include butene-1,4-diol, 1,2,6-hexanetriol, glycerin, octanediol, 2-methyl-2,4-pentanediol, and terpineol.
  • the application method is not particularly limited.
  • the solvent coating method include a die coater, a gravure coater, a roll coater, a reverse coater, a comma coater, a pipe doctor coater, and screen printing.
  • a die coater is preferable in terms of high uniformity of coating thickness.
  • the drying conditions for the coating film are not particularly limited, and for example, the drying can be performed at a drying temperature of 70 to 160 ° C. and a drying time of 1 to 5 minutes. Even after the coating film is dried, depending on the type of solvent, the entire solvent may remain in the coating film without being vaporized.
  • the precursor layer 31 contains the low boiling point binder
  • a part of the low boiling point binder may volatilize depending on the drying conditions. Therefore, the ratio of each component constituting the precursor layer 31 changes according to the drying conditions. For example, even in the precursor layer 31 formed from the same varnish, the higher the drying temperature and the longer the drying time, the content of the metal fine particles in the entire precursor layer 31 and the content of the thermally decomposable binder Will be more. Therefore, it is preferable to set the drying conditions so that the content of the metal fine particles and the thermally decomposable binder in the precursor layer 31 is a desired amount.
  • polyethylene terephthalate (PET) polyethylene
  • polypropylene polypropylene
  • a release agent such as a fluorine-type release agent or a long-chain alkyl acrylate release agent
  • a method for producing the heat-bonding sheets 3 and 3 ′ for example, a method for producing the heat-bonding sheets 3 and 3 ′ by mixing the respective components with a mixer and press-molding the obtained mixture is also suitable. It is. A planetary mixer etc. are mentioned as a mixer.
  • the dicing tape 11 is configured by laminating an adhesive layer 2 on a substrate 1.
  • the base material 1 is a strength base of the heat bonding sheets 10 and 12 with a dicing tape, and preferably has ultraviolet transparency.
  • the substrate 1 include low density polyethylene, linear polyethylene, medium density polyethylene, high density polyethylene, ultra low density polyethylene, random copolymer polypropylene, block copolymer polypropylene, homopolyprolene, polybutene, polymethylpentene, and the like.
  • Polyolefin ethylene-vinyl acetate copolymer, ionomer resin, ethylene- (meth) acrylic acid copolymer, ethylene- (meth) acrylic acid ester (random, alternating) copolymer, ethylene-butene copolymer, ethylene -Hexene copolymer, Polyester such as polyurethane, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyimide, polyetheretherketone, polyetherimide, polyamide, wholly aromatic polyamide, polyphenyls Fuido, aramid (paper), glass, glass cloth, fluorine resin, polyvinyl chloride, polyvinylidene chloride, cellulose resin, silicone resin, metal (foil), paper, and the like.
  • Polyester such as polyurethane, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyimide, polyetheretherketone, polyetherimide, polyamide, wholly aromatic polyamide,
  • examples of the material of the substrate 1 include polymers such as a crosslinked body of the resin.
  • the plastic film may be used unstretched or may be uniaxially or biaxially stretched as necessary.
  • the adhesive area between the pressure-sensitive adhesive layer 2 and the heat bonding sheets 3 and 3 ′ is reduced by thermally shrinking the base material 1 after dicing, The collection of the semiconductor chip can be facilitated.
  • the surface of the substrate 1 is chemically treated by conventional surface treatments such as chromic acid treatment, ozone exposure, flame exposure, high piezoelectric impact exposure, ionizing radiation treatment, etc. in order to improve adhesion and retention with adjacent layers.
  • a physical treatment or a coating treatment with a primer for example, an adhesive substance described later can be performed.
  • the thickness of the substrate 1 is not particularly limited and can be appropriately determined, but is generally about 5 to 200 ⁇ m.
  • the pressure-sensitive adhesive used for forming the pressure-sensitive adhesive layer 2 is not particularly limited, and for example, a general pressure-sensitive adhesive such as an acrylic pressure-sensitive adhesive or a rubber-based pressure-sensitive adhesive can be used.
  • a general pressure-sensitive adhesive such as an acrylic pressure-sensitive adhesive or a rubber-based pressure-sensitive adhesive
  • an acrylic pressure-sensitive adhesive having an acrylic polymer as a base polymer from the viewpoint of cleanability with an organic solvent such as ultrapure water or alcohol of an electronic component that is difficult to contaminate a semiconductor wafer or glass Is preferred.
  • acrylic polymer examples include (meth) acrylic acid alkyl esters (for example, methyl ester, ethyl ester, propyl ester, isopropyl ester, butyl ester, isobutyl ester, s-butyl ester, t-butyl ester, pentyl ester, Isopentyl ester, hexyl ester, heptyl ester, octyl ester, 2-ethylhexyl ester, isooctyl ester, nonyl ester, decyl ester, isodecyl ester, undecyl ester, dodecyl ester, tridecyl ester, tetradecyl ester, hexadecyl ester , Octadecyl esters, eicosyl esters, etc., alkyl groups having 1 to 30 carbon atoms, especially 4 to 18 carbon atoms, such as
  • the acrylic polymer contains units corresponding to other monomer components copolymerizable with the (meth) acrylic acid alkyl ester or cycloalkyl ester, if necessary, for the purpose of modifying cohesive force, heat resistance and the like. You may go out.
  • Such monomer components include, for example, carboxyl group-containing monomers such as acrylic acid, methacrylic acid, carboxyethyl (meth) acrylate, carboxypentyl (meth) acrylate, itaconic acid, maleic acid, fumaric acid, and crotonic acid; maleic anhydride Acid anhydride monomers such as itaconic anhydride; 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate Hydroxyl group-containing monomers such as 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate, (4-hydroxymethylcyclohexyl) methyl (meth) acrylate; Styrene Contains sulfonic acid groups such as phonic acid, allyl sulf
  • a polyfunctional monomer or the like can be included as a monomer component for copolymerization as necessary.
  • examples of such polyfunctional monomers include hexanediol di (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, Pentaerythritol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, epoxy (meth) acrylate, polyester (meth) acrylate, urethane (meth) An acrylate etc. are mentioned. These polyfunctional monomers can also be used alone or in combination of two or more. The amount of the polyfunctional monomer used is preferably
  • the acrylic polymer can be obtained by subjecting a single monomer or a mixture of two or more monomers to polymerization.
  • the polymerization can be performed by any method such as solution polymerization, emulsion polymerization, bulk polymerization, suspension polymerization and the like.
  • the content of the low molecular weight substance is preferably small.
  • the number average molecular weight of the acrylic polymer is preferably 100,000 or more, more preferably about 200,000 to 3,000,000, and particularly preferably about 300,000 to 1,000,000.
  • an external cross-linking agent can be appropriately employed for the pressure-sensitive adhesive in order to increase the number average molecular weight of an acrylic polymer as a base polymer.
  • the external crosslinking method include a method of adding a so-called crosslinking agent such as a polyisocyanate compound, an epoxy compound, an aziridine compound, a melamine crosslinking agent, and reacting them.
  • a so-called crosslinking agent such as a polyisocyanate compound, an epoxy compound, an aziridine compound, a melamine crosslinking agent, and reacting them.
  • the amount used is appropriately determined depending on the balance with the base polymer to be cross-linked, and further depending on the intended use as an adhesive. In general, it is preferable to add about 5 parts by weight or less, and further 0.1 to 5 parts by weight with respect to 100 parts by weight of the base polymer.
  • additives such as conventionally well-known various tackifiers and anti-aging agent, other than the said component as needed to an adhesive.
  • the pressure-sensitive adhesive layer 2 can be formed of a radiation curable pressure-sensitive adhesive.
  • the radiation curable pressure-sensitive adhesive can increase the degree of cross-linking by irradiation with radiation such as ultraviolet rays, and can easily reduce its adhesive strength, and a portion 2a corresponding to the work pasting portion of the pressure-sensitive adhesive layer 2 shown in FIG.
  • the difference in adhesive strength with the other part 2b can be provided by irradiating only with radiation.
  • the portion 2 a having a significantly reduced adhesive force can be easily formed. Since the heat bonding sheet 3 ′ is attached to the portion 2 a that has been cured and has reduced adhesive strength, the interface between the portion 2 a of the pressure-sensitive adhesive layer 2 and the heat bonding sheet 3 ′ is easily peeled off during pick-up. Have. On the other hand, the portion not irradiated with radiation has a sufficient adhesive force, and forms the portion 2b. In addition, you may perform irradiation of the radiation to an adhesive layer after dicing and before pick-up.
  • the portion 2b formed of the uncured radiation-curing pressure-sensitive adhesive adheres to the heat bonding sheet 3, and dicing is performed. It is possible to secure a holding force when performing. In this way, the radiation curable pressure-sensitive adhesive can support the heat bonding sheet 3 for fixing a chip-like work (semiconductor chip or the like) to an adherend such as a substrate with a good balance of adhesion and peeling.
  • the portion 2b can fix the wafer ring.
  • the radiation curable pressure-sensitive adhesive those having a radiation curable functional group such as a carbon-carbon double bond and exhibiting adhesiveness can be used without particular limitation.
  • the radiation curable pressure sensitive adhesive for example, an addition type radiation curable pressure sensitive adhesive in which a radiation curable monomer component or an oligomer component is blended with a general pressure sensitive pressure sensitive adhesive such as an acrylic pressure sensitive adhesive or a rubber pressure sensitive adhesive. An agent can be illustrated.
  • Examples of the radiation curable monomer component to be blended include urethane oligomer, urethane (meth) acrylate, trimethylolpropane tri (meth) acrylate, tetramethylolmethane tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, and pentaerythritol.
  • Examples include stall tetra (meth) acrylate, dipentaerystol monohydroxypenta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, and 1,4-butanediol di (meth) acrylate.
  • the radiation curable oligomer component examples include urethane, polyether, polyester, polycarbonate, and polybutadiene oligomers, and those having a molecular weight in the range of about 100 to 30000 are suitable.
  • the compounding amount of the radiation-curable monomer component or oligomer component can be appropriately determined in accordance with the type of the pressure-sensitive adhesive layer, and the amount capable of reducing the adhesive strength of the pressure-sensitive adhesive layer. In general, the amount is, for example, about 5 to 500 parts by weight, preferably about 40 to 150 parts by weight with respect to 100 parts by weight of the base polymer such as an acrylic polymer constituting the pressure-sensitive adhesive.
  • the radiation-curable pressure-sensitive adhesive has a carbon-carbon double bond in the polymer side chain, main chain, or main chain terminal as a base polymer.
  • Intrinsic radiation curable pressure sensitive adhesives using Intrinsic radiation curable pressure-sensitive adhesive does not need to contain an oligomer component, which is a low-molecular component, or does not contain much, so that the oligomer component or the like does not move in the pressure-sensitive adhesive over time and is stable. Since the adhesive layer of a layer structure can be formed, it is preferable.
  • the base polymer having a carbon-carbon double bond those having a carbon-carbon double bond and having adhesiveness can be used without particular limitation.
  • those having an acrylic polymer as a basic skeleton are preferable.
  • the basic skeleton of the acrylic polymer include the acrylic polymers exemplified above.
  • the method for introducing the carbon-carbon double bond into the acrylic polymer is not particularly limited, and various methods can be adopted. However, it is easy in terms of molecular design to introduce the carbon-carbon double bond into the polymer side chain. It is. For example, after a monomer having a functional group is copolymerized in advance with an acrylic polymer, a compound having a functional group capable of reacting with the functional group and a carbon-carbon double bond is converted into a radiation-curable carbon-carbon double bond. A method of performing condensation or addition reaction while maintaining the above.
  • combinations of these functional groups include carboxylic acid groups and epoxy groups, carboxylic acid groups and aziridyl groups, hydroxyl groups and isocyanate groups, and the like.
  • a combination of a hydroxyl group and an isocyanate group is preferable because of easy tracking of the reaction.
  • the functional group may be on either side of the acrylic polymer and the compound as long as the combination of these functional groups generates an acrylic polymer having the carbon-carbon double bond.
  • it is preferable that the acrylic polymer has a hydroxyl group and the compound has an isocyanate group.
  • examples of the isocyanate compound having a carbon-carbon double bond include methacryloyl isocyanate, 2-methacryloyloxyethyl isocyanate, m-isopropenyl- ⁇ , ⁇ -dimethylbenzyl isocyanate, and the like.
  • the acrylic polymer a copolymer obtained by copolymerizing the above-mentioned exemplified hydroxy group-containing monomers, ether compounds of 2-hydroxyethyl vinyl ether, 4-hydroxybutyl vinyl ether, diethylene glycol monovinyl ether, or the like is used.
  • the base polymer (particularly acrylic polymer) having the carbon-carbon double bond can be used alone, but the radiation curable monomer does not deteriorate the characteristics.
  • Components and oligomer components can also be blended.
  • the radiation-curable oligomer component or the like is usually in the range of 30 parts by weight, preferably in the range of 0 to 10 parts by weight, with respect to 100 parts by weight of the base polymer.
  • the radiation curable pressure-sensitive adhesive contains a photopolymerization initiator when cured by ultraviolet rays or the like.
  • the photopolymerization initiator include 4- (2-hydroxyethoxy) phenyl (2-hydroxy-2-propyl) ketone, ⁇ -hydroxy- ⁇ , ⁇ '-dimethylacetophenone, 2-methyl-2-hydroxypropio ⁇ -ketol compounds such as phenone and 1-hydroxycyclohexyl phenyl ketone; methoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxyacetophenone, 2-methyl-1- [4- ( Acetophenone compounds such as methylthio) -phenyl] -2-morpholinopropane-1; benzoin ether compounds such as benzoin ethyl ether, benzoin isopropyl ether and anisoin methyl ether; ketal compounds such as benzyldimethyl ketal; 2-naphthalene
  • the radiation curable pressure-sensitive adhesive examples include photopolymerizable compounds such as an addition polymerizable compound having two or more unsaturated bonds and an alkoxysilane having an epoxy group disclosed in JP-A-60-196956. And a rubber-based pressure-sensitive adhesive and an acrylic pressure-sensitive adhesive containing a photopolymerization initiator such as a carbonyl compound, an organic sulfur compound, a peroxide, an amine, and an onium salt-based compound.
  • photopolymerizable compounds such as an addition polymerizable compound having two or more unsaturated bonds and an alkoxysilane having an epoxy group disclosed in JP-A-60-196956.
  • a rubber-based pressure-sensitive adhesive and an acrylic pressure-sensitive adhesive containing a photopolymerization initiator such as a carbonyl compound, an organic sulfur compound, a peroxide, an amine, and an onium salt-based compound.
  • a compound that is colored by irradiation with radiation may be contained as necessary.
  • a compound to be colored in the pressure-sensitive adhesive layer 2 by irradiation with radiation only the irradiated portion can be colored. That is, the portion 2a corresponding to the workpiece pasting portion 3a shown in FIG. 1 can be colored. Accordingly, whether or not the pressure-sensitive adhesive layer 2 has been irradiated with radiation can be immediately determined by visual observation, the workpiece pasting portion 3a can be easily recognized, and workpieces can be easily pasted together.
  • the detection accuracy is increased, and no malfunction occurs when the semiconductor chip is picked up.
  • the compound that is colored by irradiation with radiation is a colorless or light color compound before irradiation with radiation, but becomes a color by irradiation with radiation, and examples thereof include leuco dyes.
  • the use ratio of the compound colored by radiation irradiation can be set as appropriate.
  • the thickness of the pressure-sensitive adhesive layer 2 is not particularly limited, but is preferably about 1 to 50 ⁇ m from the viewpoint of preventing chipping of the chip cut surface and compatibility of fixing and holding the heat bonding sheets 3 and 3 ′. .
  • the thickness is preferably 2 to 30 ⁇ m, more preferably 5 to 25 ⁇ m.
  • the dicing tape 11 is manufactured as follows, for example.
  • the base material 1 can be formed by a conventionally known film forming method.
  • the film forming method include a calendar film forming method, a casting method in an organic solvent, an inflation extrusion method in a closed system, a T-die extrusion method, a co-extrusion method, and a dry lamination method.
  • the coating film is dried under predetermined conditions (heat-crosslinked as necessary), and the pressure-sensitive adhesive layer 2 is formed.
  • a coating method For example, roll coating, screen coating, gravure coating, etc. are mentioned.
  • drying conditions for example, a drying temperature of 80 to 150 ° C. and a drying time of 0.5 to 5 minutes are performed.
  • the coating film may be dried on the said drying conditions, and the adhesive layer 2 may be formed. Then, the adhesive layer 2 is bonded together with the separator on the base material 1. Thereby, the dicing tape 11 is produced.
  • the heat bonding sheets 10 and 12 with a dicing tape can be manufactured by a usual method.
  • seat 10 for heat joining with a dicing tape can be manufactured by bonding the adhesive layer 2 of the dicing tape 11 and the sheet
  • the heat bonding sheet 10 with dicing tape the heat bonding sheet 3 is preferably covered with a separator.
  • the base separator laminated on the heat bonding sheet 3 is peeled off, and the front base separator is peeled off, followed by heat joining with the dicing tape.
  • the method of sticking a separator on the exposed surface of the heat bonding sheet 3 of the sheet 10 for use is mentioned. That is, it is preferable that the dicing tape 11, the heat bonding sheet 3, and the separator are stacked in this order.
  • the heat bonding sheet with dicing tape in which the dicing tape and the heat bonding sheet are laminated has been described.
  • the heat bonding sheet of the present invention may be provided in a state where it is not bonded to a dicing tape.
  • the heat bonding sheet is preferably a heat bonding sheet with a double-sided separator sandwiched between two separators. That is, it is preferable to use a heat bonding sheet with a double-sided separator in which the first separator, the heat bonding sheet, and the second separator are laminated in this order.
  • FIG. 3 is a schematic cross-sectional view showing an embodiment of a heat-bonding sheet with a double-sided separator.
  • the heat bonding sheet 30 with a double-sided separator shown in FIG. 3 has a configuration in which a first separator 32, a heat bonding sheet 3, and a second separator 34 are laminated in this order.
  • the 1st separator 32 and the 2nd separator 34 the same thing as the above-mentioned substrate separator can be used.
  • seat for heat joining may be the form on which the separator was laminated
  • the method of manufacturing a semiconductor device includes the step of preparing the heat bonding sheet; A heat bonding step of heat bonding the semiconductor chip onto the adherend via the heat bonding sheet (hereinafter also referred to as a first manufacturing method).
  • the method for manufacturing a semiconductor device includes the step of preparing the heat bonding sheet with dicing tape described above, A bonding step of bonding the heat bonding sheet of the heat bonding sheet with the dicing tape and the back surface of the semiconductor wafer; A dicing step of dicing the semiconductor wafer together with the heat bonding sheet to form a chip-like semiconductor chip; Picking up the semiconductor chip together with the heat bonding sheet from the heat bonding sheet with the dicing tape; A heat bonding step of heat bonding the semiconductor chip onto the adherend via the heat bonding sheet (hereinafter also referred to as a second manufacturing method).
  • the manufacturing method of the semiconductor device according to the first manufacturing method is the same as the manufacturing method of the semiconductor device according to the second manufacturing method, while the heating bonding sheet with dicing tape is used. Then, it differs in the point which uses the sheet
  • the manufacturing method of the semiconductor device according to the first manufacturing method after preparing the heat-bonding sheet, the step of bonding the sheet to the dicing tape is performed, and thereafter the same as the manufacturing method of the semiconductor device according to the second manufacturing method. can do. Therefore, hereinafter, a method for manufacturing a semiconductor device according to the second manufacturing method will be described.
  • the heat bonding sheets with dicing tape 10 and 12 are prepared (preparing step).
  • the dicing tape-attached heat bonding sheets 10 and 12 are used in the following manner by appropriately separating the separator arbitrarily provided on the heat bonding sheets 3 and 3 ′.
  • a case where the heat bonding sheet with dicing tape 10 is used will be described as an example with reference to FIG.
  • the semiconductor wafer 4 is pressure-bonded onto the semiconductor wafer bonding portion 3a of the heat bonding sheet 3 in the heat bonding sheet 10 with dicing tape, and this is bonded and held (fixing step). This step is performed while pressing with a pressing means such as a pressure roll.
  • the attaching temperature at the time of mounting is not particularly limited, and is preferably in the range of 23 ° C. to 90 ° C., for example.
  • the semiconductor wafer 4 is preferably one in which an electrode pad is formed on one surface and a silver thin film is formed on the outermost surface of the other surface (hereinafter also referred to as the back surface).
  • Examples of the thickness of the silver thin film include 10 nm to 1000 nm.
  • a titanium thin film may be further formed between the semiconductor wafer 4 and the silver thin film.
  • Examples of the thickness of the titanium thin film include 10 nm to 1000 nm. If the said silver thin film is formed, the semiconductor chip 5 and the sheet
  • the silver thin film and the titanium thin film can be formed by vapor deposition, for example.
  • the semiconductor wafer 4 is diced (dicing process). Thereby, the semiconductor wafer 4 is cut into a predetermined size and separated into individual pieces, and the semiconductor chip 5 is manufactured.
  • the method of dicing is not particularly limited, for example, the dicing is performed from the circuit surface side of the semiconductor wafer 4 according to a conventional method. Further, in this step, for example, a cutting method called full cut in which cutting is performed up to the heat bonding sheet with dicing tape 10 can be adopted. It does not specifically limit as a dicing apparatus used at this process, A conventionally well-known thing can be used. Further, since the semiconductor wafer 4 is bonded and fixed by the heat bonding sheet 10 with a dicing tape, chip chipping and chip jumping can be suppressed, and damage to the semiconductor wafer 4 can also be suppressed.
  • the semiconductor chip 5 is picked up in order to peel the semiconductor chip 5 adhered and fixed to the heat bonding sheet 10 with dicing tape (pickup process).
  • the pickup method is not particularly limited, and various conventionally known methods can be employed. For example, there is a method in which each semiconductor chip 5 is pushed up by a needle from the heating bonding sheet 10 with dicing tape, and the pushed-up semiconductor chip 5 is picked up by a pickup device.
  • the needle push-up speed is preferably 5 to 100 mm / sec, more preferably 5 to 10 mm / sec from the viewpoint of preventing chipping.
  • the pickup is performed after the pressure-sensitive adhesive layer 2 is irradiated with ultraviolet rays.
  • seat 3 for heat bonding of the adhesive layer 2 falls, and peeling of the semiconductor chip 5 becomes easy.
  • the pickup can be performed without damaging the semiconductor chip 5.
  • Conditions such as irradiation intensity and irradiation time at the time of ultraviolet irradiation are not particularly limited, and may be set as necessary.
  • a well-known thing can be used as a light source used for ultraviolet irradiation.
  • the adhesive layer is preliminarily irradiated with ultraviolet rays and cured, and the cured adhesive layer and the heat bonding sheet are bonded together, the ultraviolet irradiation here is not necessary.
  • the picked-up semiconductor chip 5 is die-attached (heat bonded) to the adherend 6 via the heat bonding sheet 3 (heat bonding process).
  • the adherend 6 include a lead frame, a TAB film, a substrate, and a separately manufactured semiconductor chip.
  • the adherend 6 may be, for example, a deformable adherend that can be easily deformed or a non-deformable adherend (such as a semiconductor wafer) that is difficult to deform.
  • the lead frame examples include metal lead frames such as a Cu lead frame and a 42 Alloy lead frame.
  • a conventionally well-known thing can be used as said board
  • examples thereof include organic substrates made of glass epoxy, BT (bismaleimide-triazine), polyimide, and the like.
  • BT bismaleimide-triazine
  • polyimide polyimide
  • the substrate may be an insulating circuit substrate in which a copper circuit substrate is laminated on an insulating substrate such as a ceramic plate. If an insulated circuit board is used, for example, a power semiconductor device that controls and supplies power can be manufactured.
  • the metal fine particles are sintered by heating, and the thermally decomposable binder is thermally decomposed as necessary. Further, the residual low boiling point binder that has not been volatilized by the drying step is volatilized.
  • the heating temperature is preferably 180 to 400 ° C, more preferably 190 to 370 ° C, and further preferably 200 to 350 ° C.
  • the heating time is preferably 0.3 to 300 minutes, more preferably 0.5 to 240 minutes, and still more preferably 1 to 180 minutes.
  • the pressurizing condition is preferably in the range of 1 to 500 kg / cm 2 , more preferably in the range of 5 to 400 kg / cm 2 .
  • the heat bonding under pressure can be performed with an apparatus capable of simultaneously performing heating and pressure, such as a flip chip bonder. Moreover, a parallel plate press may be used.
  • the tip of the terminal portion (inner lead) of the adherend 6 and an electrode pad (not shown) on the semiconductor chip 5 are electrically connected by a bonding wire 7.
  • a bonding wire 7 for example, a gold wire, an aluminum wire, a copper wire or the like is used.
  • the temperature for wire bonding is 23 to 300 ° C., preferably 23 to 250 ° C.
  • the heating time is several seconds to several minutes.
  • the connection is performed by a combination of vibration energy by ultrasonic waves and crimping energy by applying pressure while being heated so as to be within the temperature range.
  • the semiconductor chip 5 is sealed with a sealing resin 8 as shown in FIG. 4 (sealing step).
  • This step is performed to protect the semiconductor chip 5 and the bonding wire 7 mounted on the adherend 6.
  • This step can be performed by molding a sealing resin with a mold.
  • the sealing resin 8 for example, an epoxy resin is used.
  • the heating temperature at the time of resin sealing is usually 175 ° C. for 60 to 90 seconds, but the present invention is not limited to this. For example, it can be cured at 165 to 185 ° C. for several minutes. Thereby, the sealing resin 8 is cured.
  • a method of embedding the semiconductor chip 5 in a sheet-like sealing sheet (for example, see JP2013-7028A) can also be employed.
  • a gel sealing type in which silicone gel is poured into a case type container may be used.
  • heating is performed as necessary to completely cure the insufficiently cured sealing resin 8 in the sealing process (post-curing process).
  • the heating temperature in this step varies depending on the type of the sealing resin, but is in the range of 165 to 185 ° C., for example, and the heating time is about 0.5 to 8 hours.
  • seat for heat joining with a dicing tape can be used suitably also when laminating
  • the heat bonding sheet and the spacer may be stacked between the semiconductor chips, or only the heat bonding sheet may be stacked between the semiconductor chips without stacking the spacer. It can be changed as appropriate.
  • the heat bonding sheet and the heat bonding sheet with dicing tape of the present invention are not limited to the applications exemplified above, and can be used for heat bonding two things.
  • Second Embodiment >> In the heat-bonding sheet according to the first embodiment, the thickness uniformity was ensured by defining the ratio of the maximum thickness and the minimum thickness of the precursor layer sintered by heating to the average thickness. Or, together with this, thickness uniformity can be secured from the viewpoint of surface roughness. Hereinafter, only the points different from the first embodiment will be described for the heat bonding sheet according to the second embodiment.
  • the heat bonding sheet according to the present embodiment has a precursor layer that becomes a sintered layer by heating,
  • the average thickness of the precursor layer is 5 ⁇ m to 200 ⁇ m, and the surface roughness Sa when the surface of the precursor layer is measured with a confocal microscope in a field of view of 200 ⁇ m ⁇ 200 ⁇ m is 2 ⁇ m or less.
  • the heat-bonding sheet has a precursor layer that becomes a sintered layer by heating, and a sintered layer is obtained by heat treatment.
  • the average thickness of the precursor layer is 5 ⁇ m to 200 ⁇ m
  • the surface roughness Sa when the surface of the precursor layer is measured with a confocal microscope in a field of 200 ⁇ m ⁇ 200 ⁇ m is 2 ⁇ m or less.
  • unevenness in the thickness direction is suppressed, and uniformity of thickness is satisfied at a high level.
  • uneven bonding can be prevented and high-temperature bonding reliability can be improved.
  • the surface roughness Sa may be 2 ⁇ m or less, preferably 1.5 ⁇ m or less, and more preferably 1.0 ⁇ m or less.
  • Example 1 100 parts by weight of an agitating container appropriately adjusted in the amount of solvent for adjusting viscosity contained in ANP-1 (a paste in which nano-sized silver fine particles are dispersed) manufactured by Applied Nanoparticles Lab.
  • ANP-1 a paste in which nano-sized silver fine particles are dispersed
  • thermally decomposable binder A 1 part by weight of an acrylic resin (manufactured by Fujikura Kasei Co., Ltd., “MM-2002-1” (solid at 23 ° C.) and 35 parts by weight of a solvent (methyl ethyl ketone) was added, and a hybrid mixer (manufactured by Keyence, “HM- The resulting varnish was applied to a release treatment film (Mitsubishi Resin Co., Ltd., “MRA50”), and the coating film was applied at 150 ° C. for 5 minutes. It was made to dry and the sheet
  • MRA50 release treatment film
  • Example 2 Five sheets for heat bonding obtained in Example 1 were stacked and bonded at 80 ° C. with a laminator to obtain a heat bonding sheet having a thickness of 200 ⁇ m.
  • Example 3 100 parts by weight of an agitating container appropriately adjusted in the amount of solvent for adjusting viscosity contained in ANP-1 (a paste in which nano-sized silver fine particles are dispersed) manufactured by Applied Nanoparticles Lab.
  • ANP-1 a paste in which nano-sized silver fine particles are dispersed
  • thermally decomposable binder B 1 part by weight of polypropylene carbonate resin (Empower, “QPAC40” (solid at 23 ° C.)) and 35 parts by weight of a solvent (methyl ethyl ketone) were added, and a hybrid mixer (manufactured by Keyence, “HM-500”). And stirred for 3 minutes in a stirring mode.
  • the obtained varnish was applied to a release treatment film (manufactured by Mitsubishi Resin Co., Ltd., “MRA50”), and the coating film was dried at 150 ° C. for 5 minutes to obtain a heat bonding sheet having a thickness of 40 ⁇ m.
  • MRA50 Mitsubishi Resin Co., Ltd.
  • Example 4 Five sheets for heat bonding obtained in Example 3 were stacked and bonded at 80 ° C. with a laminator to obtain a heat bonding sheet having a thickness of 200 ⁇ m.
  • the measurement location was the center of a 1 cm ⁇ 1 cm area obtained by dividing the 1 cm ⁇ 10 cm area into 10 equal parts, and a total of 10 points were measured.
  • the average of 10 points is the average thickness ( ⁇ m), and the maximum value (maximum thickness) and the minimum value (minimum thickness) are within ⁇ 20% of the average thickness. The case where it deviates was evaluated as “ ⁇ ”.
  • the ratio of deviation from the average thickness of the maximum thickness or the minimum thickness was determined as a deviation rate (%).
  • the measurement location was divided into 12 equal areas of 1 cm ⁇ 12 cm, and the center of the 1 cm ⁇ 1 cm area excluding the 1 cm ⁇ 1 cm area at both ends was measured for a total of 10 points.
  • the average of 10 points is the average thickness ( ⁇ m), and the maximum value (maximum thickness) and the minimum value (minimum thickness) are within the range of the average thickness within ⁇ 20%. Cases were evaluated as “x”.
  • the ratio of deviation from the average thickness of the maximum thickness or the minimum thickness was determined as a deviation rate (%).
  • the surface roughness Sa in the area of 200 ⁇ m ⁇ 200 ⁇ m in the center of the sheet was measured as a measurement visual field.
  • the case where the surface roughness Sa was 2 ⁇ m or less was evaluated as “ ⁇ ”, and the case where the surface roughness Sa exceeded 2 ⁇ m was evaluated as “x”.
  • the surface roughness Sa in the area of 200 ⁇ m ⁇ 200 ⁇ m in the center of the sheet was measured as a measurement visual field.
  • the case where the surface roughness Sa was 2 ⁇ m or less was evaluated as “ ⁇ ”, and the case where the surface roughness Sa exceeded 2 ⁇ m was evaluated as “x”.
  • FIG. 5 shows SAT observation images of samples prepared using the sheet of Example 1 and the paste of Comparative Example 1, respectively. This is the place where the white part in the image is peeled off.
  • the sample for evaluation was put into a thermal shock tester (TSE-103ES manufactured by Espec Corp.) and subjected to 100 thermal shocks of ⁇ 40 ° C. to 200 ° C. (rise between ⁇ 40 ° C. and 200 ° C.).
  • the temperature and temperature drop time was about 10 minutes.
  • maintained for 15 minutes at each temperature of -40 degreeC and 200 degreeC.
  • SAT ultrasonic imaging device, manufactured by Hitachi Construction Machinery Finetech Co., Ltd., “FineSAT II”
  • the transducer (probe) used was PQ-50-13: WD [frequency 50 MHz].
  • the area (remaining area) of the portion where bonding remains in the obtained image was obtained, and the ratio of the remaining area to the area of the entire bonding surface (remaining bonding area ratio) was calculated. Further, the case where the residual bonding area ratio was 50% or more was evaluated as “ ⁇ ”, and the case where the remaining bonding area ratio was lower than 50% was evaluated as “X”. It should be noted that, as in the case of SAT image observation for evaluating the unevenness of bonding, the white portion in the image is peeled off (not shown).
  • both the thickness evaluation and the surface roughness Sa were good, and as a result, both the joint unevenness evaluation and the reliability evaluation were good results. Moreover, evaluation of a weight reduction rate is also favorable, and it is estimated that the organic component is almost removed by the heating to 400 degreeC which assumed the sintering process. On the other hand, in Comparative Example 1, both the thickness evaluation and the surface roughness Sa were out of the range, and due to this, both the bonding unevenness evaluation and the reliability evaluation were inferior results. This is presumed to be mainly due to an increase in the peeled area due to uneven thickness. In addition, the weight reduction rate is large, which is considered to affect the decrease in thickness uniformity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Dicing (AREA)
  • Adhesive Tapes (AREA)
  • Die Bonding (AREA)

Abstract

均一な厚みにより接合ムラを防止し、高温接合信頼性を付与可能な加熱接合シート、及び当該加熱接合用シートを有するダイシングテープ付き加熱接合用シートを提供する。加熱により焼結層となる前駆層を有し、前記前駆層の平均厚みが5μm~200μmであり、かつ前記前駆層の最大厚み及び最小厚みが前記平均厚みの±20%の範囲内である加熱接合用シート。加熱により焼結層となる前駆層を有し、前記前駆層の平均厚みが5μm~200μmであり、かつ前記前駆層の表面をコンフォーカル顕微鏡により200μm×200μmの視野で計測した際の表面粗さSaが2μm以下である加熱接合用シート。

Description

加熱接合用シート及びダイシングテープ付き加熱接合用シート
 本発明は、加熱接合用シート及びダイシングテープ付き加熱接合用シートに関する。
 半導体装置の製造において半導体素子を金属リードフレームなどの被着体に接着する方法(いわゆるダイボンディング法)は、従来の金-シリコン共晶に始まり、半田、樹脂ペーストによる方法に推移している。現在では、導電性の樹脂ペーストを使用することがある。
 しかし、導電性の樹脂ペーストを用いる方法では、ボイドの発生による導電性の低下およびペーストの厚さの不均一さ、はみ出しによるパッドの汚染等が生じる場合がある。
 他方、近年、電力の制御や供給を行うパワー半導体装置の普及が顕著となっている。パワー半導体装置には常に電流が流れるため、発熱量が大きい。それゆえ、パワー半導体装置に使用される導電性の接着剤は、高い放熱性と低い電気抵抗率を持つことが望ましい。
 パワー半導体装置には、低損失で高速動作が求められる。従来、パワー半導体装置にはIGBT(Insulated Gate Bipolar Transistor)やMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)などのSiを用いた半導体が用いられている。近年では、SiCやGaNなどの半導体を用いたものが開発され、今後拡大するものと予想されている。
 SiCやGaNを用いた半導体は、バンドギャップが大きい、絶縁破壊電界が高いなどの特徴があり、低損失、高速動作、高温動作が可能となる。高温動作は、熱環境が厳しい自動車や小型電力変換機器等においてメリットとなる。熱環境が厳しい用途の半導体装置は、250℃前後の高温動作が想定されており、これまでの接合・接着材料であるはんだや導電性接着剤では、熱特性、信頼性に問題が生じる。そこで、焼結金属粒子含有のペースト材が提案されている(例えば、特許文献1)。焼結金属粒子含有ペースト材は、ナノサイズからマイクロサイズの金属粒子を含み、これら金属粒子がナノサイズ効果で通常の融点よりも低い温度で融解し、粒子間の焼結が進行する。
特開2014-111800号公報
 しかしながら、焼結金属粒子含有のペースト材は、文字どおりペースト状態であるため、導電性の樹脂ペーストと同様に厚みが不均一となり、その結果、接合ムラが生じて特に高温での接合信頼性が低下する場合がある。
 本発明は前記問題点に鑑みなされたものであり、その目的は、均一な厚みにより接合ムラを防止し、高温接合信頼性を付与可能な加熱接合シート、及び当該加熱接合用シートを有するダイシングテープ付き加熱接合用シートを提供することにある。
 本願発明者らは、前記従来の問題点を解決すべく鋭意検討した結果、下記の構成を採用することにより、前記課題を解決し得ることを見出し、本発明を完成させるに至った。
 すなわち、本発明の一実施形態に係る加熱接合用シートは、加熱により焼結層となる前駆層を有し、
 前記前駆層の平均厚みが5μm~200μmであり、かつ
 前記前駆層の最大厚み及び最小厚みが前記平均厚みの±20%の範囲内である。
 当該加熱接合用シートは、加熱により焼結層となる前駆層を有しており、加熱処理を施すことで焼結層が得られるので、作動環境が高温となるパワー半導体装置等の接合に用いても高い接合信頼性を発揮することができる。また、前駆層の平均厚みが5μm~200μmであり、かつ前駆層の最大厚み及び最小厚みが平均厚みの±20%の範囲内であるので、厚みの均一性が高いレベルで満足されることになり、これにより接合ムラを防止して、高温接合信頼性を向上させることができる。
 本発明の他の実施形態に係る加熱接合用シートは、加熱により焼結層となる前駆層を有し、
 前記前駆層の平均厚みが5μm~200μmであり、かつ
 前記前駆層の表面をコンフォーカル顕微鏡により200μm×200μmの視野で計測した際の表面粗さSaが2μm以下である。
 当該加熱接合用シートは、加熱により焼結層となる前駆層を有しており、加熱処理を施すことで焼結層が得られるので、作動環境が高温となるパワー半導体装置等の接合に用いても高い接合信頼性を発揮することができる。また、前駆層の平均厚みが5μm~200μmであり、かつ前駆層の表面をコンフォーカル顕微鏡により200μm×200μmの視野で計測した際の表面粗さSaが2μm以下である。これにより、厚み方向での凹凸が抑制され、厚みの均一性が高いレベルで満足されることになり、その結果、接合ムラを防止して、高温接合信頼性を向上させることができる。
 当該加熱接合用シートについて、示差熱熱重量測定を大気雰囲気下にて23℃から400℃まで10℃/minの昇温速度で行った際、下記式で得られる重量減少率ΔWが-9%~-3%であることが好ましい。
   ΔW(%)={(W400-W23)/W23}×100
   (式中、W23は23℃における加熱接合用シートの重量であり、W400は400℃における加熱接合用シートの重量である。)
 前駆層の焼結時に多量の有機成分等が残存していると前駆層の焼結を阻害し、得られる焼結層の強度や熱特性が低下することがある。当該加熱接合用シートでは加熱時の重量減少率を上記範囲としているので、前駆層を焼結層に転化する際の加熱により加熱接合用シートに含まれ得る有機成分や溶媒等が十分除去されることになる。これにより前駆層の焼結が十分進行することになり、接合信頼性を向上させることができる。また、重量減少率が上記範囲であると、厚みの均一性が良好となる。
 前記構成において、前記前駆層層は、23℃で固形の熱分解性バインダーを含むことが好ましい。
 前記前駆層が23℃で固形の熱分解性バインダーを含有していると、加熱接合工程前は、シート形状を維持し易い。また、加熱接合工程時に熱分解させ易い。
 前記構成において、前記前駆層は、金属微粒子を含み、前記金属微粒子が、銀、銅、酸化銀及び酸化銅からなる群より選ばれる少なくとも1種であることが好ましい。
 金属微粒子を含み、前記金属微粒子が、銀、銅、酸化銀及び酸化銅からなる群より選ばれる少なくとも1種であると、より好適に加熱接合することができる。
 また、本発明に係るダイシングテープ付き加熱接合用シートは、
 ダイシングテープと、
 前記ダイシングテープ上に積層された前記加熱接合用シートと
 を有する。
 前記ダイシングテープ付き加熱接合用シートによれば、ダイシングテープと一体型であるため、ダイシングテープと貼り合わせる工程を省略することができる。また、当該加熱接合用シートを備えるため、厚み均一性により接合ムラを防止し、良好な接合信頼性を得ることができる。また、前記前駆層を有する加熱接合用シートを有するため、前記前駆層を加熱して得られる焼結層は強固なものとなり、高温接合信頼性を向上させることができる。
本発明の一実施形態に係るダイシングテープ付き加熱接合用シートを示す断面模式図である。 本発明の他の実施形態に係るダイシングテープ付き加熱接合用シートを示す断面模式図である。 両面セパレータ付き加熱接合用シートを示す断面模式図である。 本発明の一実施形態に係る半導体装置の製造方法を説明するための断面模式図である。 実施例1及び比較例1の接合評価のための超音波映像装置による観察画像である。
 本発明の加熱接合用シート及びダイシングテープ付き加熱接合用シートの実施形態について、図面を参照しながら以下に説明する。ただし、図の一部又は全部において、説明に不要な部分は省略し、また説明を容易にするために拡大または縮小等して図示した部分がある。上下等の位置関係を示す用語は、単に説明を容易にするために用いられており、本発明の構成を限定する意図は一切ない。
《第1実施形態》
 (ダイシングテープ付き加熱接合用シート)
 本実施形態に係る加熱接合用シートは、以下に説明するダイシングテープ付き加熱接合用シートにおいて、ダイシングテープが貼り合わせられていない状態のものを挙げることができる。従って、以下では、ダイシングテープ付き加熱接合用シートについて説明し、加熱接合用シートについては、その中で説明することとする。図1は、本発明の一実施形態に係るダイシングテープ付き加熱接合用シートを示す断面模式図である。図2は、本発明の他の実施形態に係る他のダイシングテープ付き加熱接合用シートを示す断面模式図である。
 図1に示すように、ダイシングテープ付き加熱接合用シート10は、ダイシングテープ11上に加熱接合用シート3が積層された構成を有する。ダイシングテープ11は基材1上に粘着剤層2を積層して構成されており、加熱接合用シート3は粘着剤層2上に設けられている。また本発明のダイシングテープ付き加熱接合用シートは、図2に示すダイシングテープ付き加熱接合用シート12のように、ワーク貼り付け部分にのみ加熱接合用シート3’を形成した構成であってもよい。
 (加熱接合用シート)
 加熱接合用シート3、3’は、シート状である。ペーストではなく、シートであるため、良好な厚さ均一性とハンドリング性とを得られる。
 本実施形態に係る加熱接合用シート3、3’は、加熱により焼結層となる前駆層31からなる。本実施形態では、加熱接合用シートが、加熱により焼結層となる前駆層が1層を含む場合について説明するが、本発明はこの例に限定されない。本発明における、加熱により焼結層となる前駆層は、当該前駆層を複数積層した構成であってもよい。
 また、本実施形態では、加熱接合用シートが、加熱により焼結層となる前駆層からなる場合について説明するが、本発明はこの例に限定されない。本発明の加熱接合用シートは、2層以上であってもよい。例えば、加熱により焼結層となる前駆層と、その他の層(加熱により焼結層とならない層)とが積層された構成であってもよい。
 すなわち、本発明における加熱接合用シートは、少なくとも加熱により焼結層となる前駆層を有していればよく、その他の構成は特に限定されない。
 (加熱により焼結層となる前駆層)
 加熱により焼結層となる前駆層31(以下、単に「前駆層31」ともいう)の平均厚みが5μm~200μmであり、好ましくは10μm~150μmであり、より好ましくは15μm~100μmである。加熱前の前駆層31の平均厚みを上記範囲とすることで、シート形状の維持と厚み均一性を確保することができる。
 前駆層31の最大厚み及び最小厚みは、前記平均厚みの±20%の範囲内であり、好ましくは±17%の範囲内であり、より好ましくは±15%の範囲内である。前駆層の最大厚み及び最小厚みを平均厚みに対して所定範囲内におさめることで、厚みの均一性が高いレベルで満足されることになり、これにより接合ムラを防止して、高温接合信頼性を向上させることができる。なお、平均厚み、最大厚み及び最小厚みは、実施例の記載の方法で測定することができる。
 前駆層31は、下記引張試験方法により得られる引張弾性率が10MPa~3000MPaであることが好ましく、12MPa~2900MPaであることがより好ましく、15MPa~2500MPaであることがさらに好ましい。
 引張試験方法:
(1)試験試料として、厚さ200μm、幅10mm、長さ40mmの加熱接合用シート(引張試験用加熱接合用シート)を準備し、
(2)チャック間距離10mm、引張速度50mm/分、23℃の条件で引張試験を行い、
(3)得られた応力-ひずみ線図の直線部分の傾きを引張弾性率とする。
 前駆層31の前記引張弾性率が10MPa以上であると、ダイアタッチ時に加熱接合用シートの構成材料がはみ出したり、チップ表面へ這い上がったりすることをより抑制できる。また、前記引張弾性率が3000MPa以下であると、例えば、ダイシング時に半導体ウェハを固定することができる。
 前駆層31は、大気雰囲気下、昇温速度10℃/分の条件で、23℃から400℃まで昇温を行った後のエネルギー分散型X線分析により得られる炭素濃度が15重量%以下であることが好ましく、12重量%以下であることがより好ましく、10重量%以下であることがさらに好ましい。前記炭素濃度が15重量%以下であると、前駆層31は、400℃まで昇温を行った後には有機物がほとんど存在しない。その結果、加熱接合工程後は、耐熱性に優れ、高温環境においても高い信頼性、熱特性が得られる。
 前駆層31は、大気雰囲気下、昇温速度10℃/分の条件で、23℃から500℃まで示差熱分析を行った際のピークが150~350℃に存在することが好ましく、170~320℃に存在することがより好ましく、180~310℃に存在することがさらに好ましい。前記ピークが150~350℃に存在すると、有機物(例えば、前駆層31を構成する樹脂成分)がこの温度領域で熱分解しているといえる。その結果、加熱接合工程後の耐熱性により優れる。
 前駆層31は、前駆層31全体に対して金属微粒子を60~98重量%の範囲内で含むことが好ましい。前記金属微粒子の含有量は、65~97重量%の範囲内であることがより好ましく、70~95重量%の範囲内であることがさらに好ましい。前記金属微粒子を60~98重量%の範囲内で含むと、金属微粒子を焼結、又は、溶融させて2つの物(例えば、半導体チップとリードフレーム)を接合させることができる。
 前記金属微粒子としては、焼結性金属粒子を挙げることができる。
 前記焼結性金属粒子としては、金属微粒子の凝集体を好適に使用できる。金属微粒子としては、金属からなる微粒子などが挙げられる。前記金属としては、金、銀、銅、酸化銀、酸化銅などが挙げられる。なかでも、銀、銅、酸化銀、酸化銅からなる群より選ばれる少なくとも1種であることが好ましい。前記金属微粒子が、銀、銅、酸化銀、酸化銅からなる群より選ばれる少なくとも1種であると、より好適に加熱接合することができる。
 前記焼結性金属粒子の平均粒径は、好ましくは0.0005μm以上、より好ましくは0.001μm以上である。平均粒径の下限として、0.01μm、0.05μm、0.1μmも例示できる。一方、焼結性金属粒子の平均粒径は、好ましくは30μm以下、より好ましくは25μm以下である。平均粒径の上限として、20μm、15μm、10μm、5μmも例示できる。
 前記焼結性金属粒子の平均粒径は、次の方法で測定する。すなわち、前記焼結性金属粒子をSEM(走査型電子顕微鏡)にて観察し、平均粒子径を計測する。なお、SEM観察は、例えば、焼結性金属粒子がマイクロサイズの場合、5000倍で観察し、サブミクロンサイズの場合、50000倍観察で観察し、ナノサイズの場合、300000倍で観察するのが好ましい。
 前記焼結性金属粒子の形状は特に限定されず、例えば、球状、棒状、鱗片状、不定形状である。
 前駆層31は、低沸点バインダーを含有することが好ましい。前記低沸点バインダーは、前記金属微粒子の取り扱いを容易とするために用いられる。具体的には、前記金属微粒子を前記低沸点バインダーに分散させた金属微粒子含有ペーストとして使用することができる。加えて、焼結層の前駆層を任意の機械的物性に調整するためにも含有することが好ましい。
 前記低沸点バインダーは、23℃で液状である。本明細書において、「液状」とは、半液状を含む。具体的には、動的粘弾性測定装置(レオメータ)による下記条件での粘度測定による23℃における粘度が100,000Pa・秒以下であることをいう。
 <粘度測定条件>
  レオメータ:Thermo SCIENTFIC社製、「MER III」
  治具:パラレルプレート20mmφ
  ギャップ:100μm
  せん断速度:1/sec
 前記低沸点バインダーの具体例としては、例えば、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、1-デカノール、エチレングリコール、ジエチレングリコール、プロピレングリコール、ブチレングリコール、α-テルピネオール、1,6-ヘキサンジオール、イソボルニルシクロヘキサノール(MTPH)等の一価及び多価アルコール類、エチレングリコールブチルエーテル、エチレングリコールフェニルエーテル、ジエチレングリコールメチルエーテル、ジエチレングリコールエチルエーテル、ジエチレングリコールブチルエーテル、ジエチレングリコールイソブチルエーテル、ジエチレングリコールヘキシルエーテル、トリエチレングリコールメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、ジエチレングリコールブチルメチルエーテル、ジエチレングリコールイソプロピルメチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールブチルメチルエーテル、プロピレングリコールプロピルエーテル、ジプロピレングリコールメチルエーテル、ジプロピレングリコールエチルエーテル、ジプロピレングリコールプロピルエーテル、ジプロピレングリコールブチルエーテル、ジプロピレングリコールジメチルエーテル、トリプロピレングリコールメチルエーテル、トリプロピレングリコールジメチルエーテル等のエーテル類、エチレングリコールエチルエーテルアセテート、エチレングリコールブチルエーテルアセテート、ジエチレングリコールエチルエーテルアセテート、ジエチレングリコールブチエーテルアセテート、ジプロピレングリコールメチルエーテルアセテート(DPMA)等を挙げることができる。これらは2種以上を併用してもよい。なかでも、沸点の異なる2種類を併用することが好ましい。沸点の異なる2種類を用いると、シート形状の維持の点で優れる。
 前駆層31は、23℃で固形の熱分解性バインダーを含有することが好ましい。前記熱分解性バインダーを含有すると、加熱接合工程前は、シート形状を維持し易い。また、加熱接合工程時に熱分解させ易い。
 本明細書において、「固形」とは、具体的に前記レオメータによる粘度測定による23℃における粘度が100,000Pa・sよりも大きいことをいう。
 本明細書において「熱分解性バインダー」とは、加熱接合工程において熱分解させることが可能なバインダーをいう。前記熱分解性バインダーは、加熱接合工程後には、焼結層(加熱後の前駆層31)に、ほとんど残存しないことが好ましい。前記熱分解性バインダーとしては、例えば、前駆層31に含有させたとしても、大気雰囲気下、昇温速度10℃/分の条件で、23℃から400℃まで昇温を行った後のエネルギー分散型X線分析により得られる炭素濃度が15重量%以下となるような材料が挙げられる。例えば、熱分解性バインダーとして、より熱分解させ易い材料を採用すれば、比較的含有量を多くしても、加熱接合工程後に、焼結層(加熱後の前駆層31)にほとんど残存させないようにすることができる。
 前記熱分解性バインダーとしては、ポリカーボネート、アクリル樹脂、エチルセルロース、ポリビニルアルコール等を挙げることができる。これらの材料は単独で、又は、2種以上を混合して使用できる。なかでも、熱分解性が高いという観点から、ポリカーボネートが好ましい。
 前記ポリカーボネートとしては、加熱接合工程において熱分解させることが可能なものであれば、特に限定されないが、主鎖の炭酸エステル基(-O-CO-O-)間に芳香族化合物(例えば、ベンゼン環など)を含まず、脂肪族鎖からなる脂肪族ポリカーボネートや、主鎖の炭酸エステル基(-O-CO-O-)間に芳香族化合物を含む芳香族ポリカーボネートを挙げることができる。なかでも、脂肪族ポリカーボネートが好ましい。
 前記脂肪族ポリカーボネートとしては、例えば、ポリエチレンカーボネート、ポリプロピレンカーボネート等が挙げられる。なかでも、シート形成のためのワニス作製における有機溶剤への溶解性の観点から、ポリプロピレンカーボネートが好ましい。
 前記芳香族ポリカーボネートとしては、例えば、主鎖にビスフェノールA構造を含むもの等が挙げられる。
 前記ポリカーボネートの重量平均分子量は、10,000~1,000,000の範囲内であることが好適である。なお、重量平均分子量は、GPC(ゲル・パーミエーション・クロマトグラフィー)により測定し、ポリスチレン換算により算出された値である。
 前記アクリル樹脂としては、加熱接合工程において熱分解させることが可能な範囲において、炭素数30以下、特に炭素数4~18の直鎖若しくは分岐のアルキル基を有するアクリル酸又はメタクリル酸のエステルの1種又は2種以上を成分とする重合体(アクリル共重合体)などが挙げられる。前記アルキル基としては、例えばメチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、t-ブチル基、イソブチル基、アミル基、イソアミル基、ヘキシル基、へプチル基、シクロヘキシル基、2-エチルヘキシル基、オクチル基、イソオクチル基、ノニル基、イソノニル基、デシル基、イソデシル基、ウンデシル基、ラウリル基、トリデシル基、テトラデシル基、ステアリル基、オクタデシル基、又はドデシル基などが挙げられる。
 また、重合体(アクリル共重合体)を形成する他のモノマーとしては、特に限定されるものではなく、例えばアクリル酸、メタクリル酸、カルボキシエチルアクリレート、カルボキシペンチルアクリレート、イタコン酸、マレイン酸、フマール酸若しくはクロトン酸などの様なカルボキシル基含有モノマー、無水マレイン酸若しくは無水イタコン酸などの様な酸無水物モノマー、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸6-ヒドロキシヘキシル、(メタ)アクリル酸8-ヒドロキシオクチル、(メタ)アクリル酸10-ヒドロキシデシル、(メタ)アクリル酸12-ヒドロキシラウリル若しくは(4-ヒドロキシメチルシクロヘキシル)-メチルアクリレートなどの様なヒドロキシル基含有モノマー、スチレンスルホン酸、アリルスルホン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、(メタ)アクリルアミドプロパンスルホン酸、スルホプロピル(メタ)アクリレート若しくは(メタ)アクリロイルオキシナフタレンスルホン酸などの様なスルホン酸基含有モノマー、又は2-ヒドロキシエチルアクリロイルホスフェートなどの様な燐酸基含有モノマーが挙げられる。
 アクリル樹脂のなかでも、重量平均分子量が1万~100万のものがより好ましく、3万~70万のものがさらに好ましい。上記数値範囲内であると、加熱接合工程前の接着性、及び、加熱接合工程時における熱分解性に優れるからである。なお、重量平均分子量は、GPC(ゲル・パーミエーション・クロマトグラフィー)により測定し、ポリスチレン換算により算出された値である。
 また、アクリル樹脂のなかでも、200℃~400℃で熱分解するアクリル樹脂が好ましい。
 加熱接合用シート3、3’について、示差熱熱重量測定を大気雰囲気下にて23℃から400℃まで10℃/minの昇温速度で行った際、下記式で得られる重量減少率ΔWが-9%~-3%であることが好ましく、-8%~-3.1%であることがより好ましい。
   ΔW(%)={(W400-W23)/W23}×100
   (式中、W23は23℃における加熱接合用シートの重量であり、W400は400℃における加熱接合用シートの重量である。)
 前駆層31の焼結時に多量の有機成分等が残存していると前駆層31の焼結を阻害し、得られる焼結層の強度や熱特性が低下することがある。加熱接合用シート3、3’では加熱時の重量減少率を上記範囲としているので、前駆層を焼結層に転化する際の加熱により加熱接合用シートに含まれ得る有機成分(例えば、上述の低沸点バインダーや熱分解性バインダー等)や溶媒等が十分除去されることになる。これにより前駆層の焼結が十分進行することになり、接合信頼性を向上させることができる。また、重量減少率が上記範囲であると、厚みの均一性が良好となる。
 なお、前駆層31には、前記成分以外にも、例えば、可塑剤などを適宜含有してよい。
 加熱接合用シート3、3’は、通常の方法で製造できる。例えば、前駆層31を形成するための前記各成分を含有するワニスを作製し、ワニスを基材セパレータ上に所定厚みとなる様に塗布して塗布膜を形成した後、該塗布膜を乾燥させることで、加熱接合用シート3、3’を製造できる。
 ワニスに用いる溶媒としては特に限定されないが、前記各成分を均一に溶解、混練又は分散できる有機溶剤やアルコール溶剤が好ましい。前記有機溶剤としては、例えば、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、アセトン、メチルエチルケトン、シクロヘキサノンなどのケトン系溶媒、トルエン、キシレンなどが挙げられる。また、前記アルコール溶剤としては、エチレングリコール、ジエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2-ブテン-1,4-ジオール、1,2,6-ヘキサントリオール、グリセリン、オクタンジオール、2-メチル-2,4-ペンタンジオール、テルピネオールが挙げられる。
 塗布方法は特に限定されない。溶剤塗工の方法としては、例えば、ダイコーター、グラビアコーター、ロールコーター、リバースコーター、コンマコーター、パイプドクターコーター、スクリーン印刷などが挙げられる。なかでも、塗布厚みの均一性が高いという点から、ダイコーターが好ましい。また、塗布膜の乾燥条件は特に限定されず、例えば、乾燥温度70~160℃、乾燥時間1~5分間で行うことができる。なお、塗布膜を乾燥させた後であっても溶剤の種類によって、溶剤の全部が気化せずに塗膜中に残る場合がある。
 前駆層31が前記低沸点バインダーを含有する場合、前記乾燥条件に応じて、前記低沸点バインダーの一部が揮発する場合がある。そのため、前記乾燥条件に応じて、前駆層31を構成する各成分の比率が変化する。例えば、同一のワニスから形成した前駆層31であっても、乾燥温度が高いほど、また、乾燥時間が長いほど、前駆層31全体に占める金属微粒子の含有量や、熱分解性バインダーの含有量は多くなる。従って、前駆層31中の金属微粒子や熱分解性バインダーの含有量が所望の量となるように、前記乾燥条件を設定することが好ましい。
 基材セパレータとしては、ポリエチレンテレフタレート(PET)、ポリエチレン、ポリプロピレンや、フッ素系剥離剤、長鎖アルキルアクリレート系剥離剤などの剥離剤により表面コートされたプラスチックフィルムや紙などが使用可能である。
 加熱接合用シート3、3’の製造方法としては、例えば、前記各成分をミキサーにて混合し、得られた混合物をプレス成形して加熱接合用シート3、3’を製造する方法なども好適である。ミキサーとしてはプラネタリーミキサーなどが挙げられる。
 (ダイシングテープ)
 ダイシングテープ11は基材1上に粘着剤層2を積層して構成されている。
 基材1は、ダイシングテープ付き加熱接合用シート10、12の強度母体となるものであり、紫外線透過性を有するものが好ましい。基材1としては、例えば、低密度ポリエチレン、直鎖状ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、超低密度ポリエチレン、ランダム共重合ポリプロピレン、ブロック共重合ポリプロピレン、ホモポリプロレン、ポリブテン、ポリメチルペンテン等のポリオレフィン、エチレン-酢酸ビニル共重合体、アイオノマー樹脂、エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸エステル(ランダム、交互)共重合体、エチレン-ブテン共重合体、エチレン-ヘキセン共重合体、ポリウレタン、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリカーボネート、ポリイミド、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリアミド、全芳香族ポリアミド、ポリフェニルスルフイド、アラミド(紙)、ガラス、ガラスクロス、フッ素樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、セルロース系樹脂、シリコーン樹脂、金属(箔)、紙等が挙げられる。
 また基材1の材料としては、前記樹脂の架橋体等のポリマーが挙げられる。前記プラスチックフィルムは、無延伸で用いてもよく、必要に応じて一軸又は二軸の延伸処理を施したものを用いてもよい。延伸処理等により熱収縮性を付与した樹脂シートによれば、ダイシング後にその基材1を熱収縮させることにより粘着剤層2と加熱接合用シート3、3’との接着面積を低下させて、半導体チップの回収の容易化を図ることができる。
 基材1の表面は、隣接する層との密着性、保持性等を高めるため、慣用の表面処理、例えば、クロム酸処理、オゾン暴露、火炎暴露、高圧電撃暴露、イオン化放射線処理等の化学的又は物理的処理、下塗剤(例えば、後述する粘着物質)によるコーティング処理を施すことができる。
 基材1の厚さは、特に制限されず適宜に決定できるが、一般的には5~200μm程度である。
 粘着剤層2の形成に用いる粘着剤としては特に制限されず、例えば、アクリル系粘着剤、ゴム系粘着剤等の一般的な感圧性接着剤を用いることができる。前記感圧性接着剤としては、半導体ウェハやガラス等の汚染をきらう電子部品の超純水やアルコール等の有機溶剤による清浄洗浄性等の点から、アクリル系ポリマーをベースポリマーとするアクリル系粘着剤が好ましい。
 前記アクリル系ポリマーとしては、例えば、(メタ)アクリル酸アルキルエステル(例えば、メチルエステル、エチルエステル、プロピルエステル、イソプロピルエステル、ブチルエステル、イソブチルエステル、s-ブチルエステル、t-ブチルエステル、ペンチルエステル、イソペンチルエステル、ヘキシルエステル、ヘプチルエステル、オクチルエステル、2-エチルヘキシルエステル、イソオクチルエステル、ノニルエステル、デシルエステル、イソデシルエステル、ウンデシルエステル、ドデシルエステル、トリデシルエステル、テトラデシルエステル、ヘキサデシルエステル、オクタデシルエステル、エイコシルエステル等のアルキル基の炭素数1~30、特に炭素数4~18の直鎖状又は分岐鎖状のアルキルエステル等)及び(メタ)アクリル酸シクロアルキルエステル(例えば、シクロペンチルエステル、シクロヘキシルエステル等)の1種又は2種以上を単量体成分として用いたアクリル系ポリマー等が挙げられる。なお、(メタ)アクリル酸エステルとはアクリル酸エステル及び/又はメタクリル酸エステルをいい、本発明の(メタ)とは全て同様の意味である。
 前記アクリル系ポリマーは、凝集力、耐熱性等の改質を目的として、必要に応じ、前記(メタ)アクリル酸アルキルエステル又はシクロアルキルエステルと共重合可能な他のモノマー成分に対応する単位を含んでいてもよい。この様なモノマー成分として、例えば、アクリル酸、メタクリル酸、カルボキシエチル(メタ)アクリレート、カルボキシペンチル(メタ)アクリレート、イタコン酸、マレイン酸、フマル酸、クロトン酸等のカルボキシル基含有モノマー;無水マレイン酸、無水イタコン酸等の酸無水物モノマー;(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸6-ヒドロキシヘキシル、(メタ)アクリル酸8-ヒドロキシオクチル、(メタ)アクリル酸10-ヒドロキシデシル、(メタ)アクリル酸12-ヒドロキシラウリル、(4-ヒドロキシメチルシクロヘキシル)メチル(メタ)アクリレート等のヒドロキシル基含有モノマー;スチレンスルホン酸、アリルスルホン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、(メタ)アクリルアミドプロパンスルホン酸、スルホプロピル(メタ)アクリレート、(メタ)アクリロイルオキシナフタレンスルホン酸等のスルホン酸基含有モノマー;2-ヒドロキシエチルアクリロイルホスフェート等のリン酸基含有モノマー;アクリルアミド、アクリロニトリル等が挙げられる。これら共重合可能なモノマー成分は、1種又は2種以上使用できる。これら共重合可能なモノマーの使用量は、全モノマー成分の40重量%以下が好ましい。
 さらに、前記アクリル系ポリマーは、架橋させるため、多官能性モノマー等も、必要に応じて共重合用モノマー成分として含むことができる。この様な多官能性モノマーとして、例えば、ヘキサンジオールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、エポキシ(メタ)アクリレート、ポリエステル(メタ)アクリレート、ウレタン(メタ)アクリレート等が挙げられる。これらの多官能性モノマーも1種又は2種以上用いることができる。多官能性モノマーの使用量は、粘着特性等の点から、全モノマー成分の30重量%以下が好ましい。
 前記アクリル系ポリマーは、単一モノマー又は2種以上のモノマー混合物を重合に付すことにより得られる。重合は、溶液重合、乳化重合、塊状重合、懸濁重合等の何れの方式で行うこともできる。清浄な被着体への汚染防止等の点から、低分子量物質の含有量が小さいのが好ましい。この点から、アクリル系ポリマーの数平均分子量は、好ましくは10万以上、さらに好ましくは20万~300万程度であり、特に好ましくは30万~100万程度である。
 また、前記粘着剤には、ベースポリマーであるアクリル系ポリマー等の数平均分子量を高めるため、外部架橋剤を適宜に採用することもできる。外部架橋方法の具体的手段としては、ポリイソシアネート化合物、エポキシ化合物、アジリジン化合物、メラミン系架橋剤等のいわゆる架橋剤を添加し反応させる方法が挙げられる。外部架橋剤を使用する場合、その使用量は、架橋すべきベースポリマーとのバランスにより、さらには、粘着剤としての使用用途によって適宜決定される。一般的には、前記ベースポリマー100重量部に対して、5重量部程度以下、さらには0.1~5重量部配合するのが好ましい。さらに、粘着剤には、必要により、前記成分のほかに、従来公知の各種の粘着付与剤、老化防止剤等の添加剤を用いてもよい。
 粘着剤層2は放射線硬化型粘着剤により形成することができる。放射線硬化型粘着剤は、紫外線等の放射線の照射により架橋度を増大させてその粘着力を容易に低下させることができ、図2に示す粘着剤層2のワーク貼り付け部分に対応する部分2aのみを放射線照射することにより他の部分2bとの粘着力の差を設けることができる。
 また、図2に示す加熱接合用シート3’に合わせて放射線硬化型の粘着剤層2を硬化させることにより、粘着力が著しく低下した前記部分2aを容易に形成できる。硬化し、粘着力の低下した前記部分2aに加熱接合用シート3’が貼付けられるため、粘着剤層2の前記部分2aと加熱接合用シート3’との界面は、ピックアップ時に容易に剥がれる性質を有する。一方、放射線を照射していない部分は十分な粘着力を有しており、前記部分2bを形成する。なお、粘着剤層への放射線の照射は、ダイシング後であってかつピックアップ前に行ってもよい。
 前述の通り、図1に示すダイシングテープ付き加熱接合用シート10の粘着剤層2において、未硬化の放射線硬化型粘着剤により形成されている前記部分2bは加熱接合用シート3と粘着し、ダイシングする際の保持力を確保できる。この様に放射線硬化型粘着剤は、チップ状ワーク(半導体チップ等)を基板等の被着体に固着するための加熱接合用シート3を、接着・剥離のバランスよく支持することができる。図2に示すダイシングテープ付き加熱接合用シート11の粘着剤層2においては、前記部分2bがウェハリングを固定することができる。
 放射線硬化型粘着剤は、炭素-炭素二重結合等の放射線硬化性の官能基を有し、かつ粘着性を示すものを特に制限なく使用することができる。放射線硬化型粘着剤としては、例えば、前記アクリル系粘着剤、ゴム系粘着剤等の一般的な感圧性粘着剤に、放射線硬化性のモノマー成分やオリゴマー成分を配合した添加型の放射線硬化型粘着剤を例示できる。
 配合する放射線硬化性のモノマー成分としては、例えば、ウレタンオリゴマー、ウレタン(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリストールテトラ(メタ)アクリレート、ジペンタエリストールモノヒドロキシペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート等が挙げられる。また放射線硬化性のオリゴマー成分はウレタン系、ポリエーテル系、ポリエステル系、ポリカーボネート系、ポリブタジエン系等種々のオリゴマーがあげられ、その分子量が100~30000程度の範囲のものが適当である。放射線硬化性のモノマー成分やオリゴマー成分の配合量は、前記粘着剤層の種類に応じて、粘着剤層の粘着力を低下できる量を、適宜に決定することができる。一般的には、粘着剤を構成するアクリル系ポリマー等のベースポリマー100重量部に対して、例えば5~500重量部、好ましくは40~150重量部程度である。
 また、放射線硬化型粘着剤としては、前記説明した添加型の放射線硬化型粘着剤のほかに、ベースポリマーとして、炭素-炭素二重結合をポリマー側鎖又は主鎖中もしくは主鎖末端に有するものを用いた内在型の放射線硬化型粘着剤が挙げられる。内在型の放射線硬化型粘着剤は、低分子成分であるオリゴマー成分等を含有する必要がなく、又は多くは含まないため、経時的にオリゴマー成分等が粘着剤中を移動することなく、安定した層構造の粘着剤層を形成することができるため好ましい。
 前記炭素-炭素二重結合を有するベースポリマーは、炭素-炭素二重結合を有し、かつ粘着性を有するものを特に制限なく使用できる。この様なベースポリマーとしては、アクリル系ポリマーを基本骨格とするものが好ましい。アクリル系ポリマーの基本骨格としては、前記例示したアクリル系ポリマーが挙げられる。
 前記アクリル系ポリマーへの炭素-炭素二重結合の導入法は特に制限されず、様々な方法を採用できるが、炭素-炭素二重結合はポリマー側鎖に導入するのが分子設計の点で容易である。例えば、予め、アクリル系ポリマーに官能基を有するモノマーを共重合した後、この官能基と反応しうる官能基及び炭素-炭素二重結合を有する化合物を、炭素-炭素二重結合の放射線硬化性を維持したまま縮合又は付加反応させる方法が挙げられる。
 これら官能基の組合せの例としては、カルボン酸基とエポキシ基、カルボン酸基とアジリジル基、ヒドロキシル基とイソシアネート基等が挙げられる。これら官能基の組合せのなかでも反応追跡の容易さから、ヒドロキシル基とイソシアネート基との組合せが好適である。また、これら官能基の組み合わせにより、前記炭素-炭素二重結合を有するアクリル系ポリマーを生成するような組合せであれば、官能基はアクリル系ポリマーと前記化合物のいずれの側にあってもよいが、前記の好ましい組み合わせでは、アクリル系ポリマーがヒドロキシル基を有し、前記化合物がイソシアネート基を有する場合が好適である。この場合、炭素-炭素二重結合を有するイソシアネート化合物としては、例えば、メタクリロイルイソシアネート、2-メタクリロイルオキシエチルイソシアネート、m-イソプロペニル-α,α-ジメチルベンジルイソシアネート等が挙げられる。また、アクリル系ポリマーとしては、前記例示のヒドロキシ基含有モノマーや2-ヒドロキシエチルビニルエーテル、4-ヒドロキシブチルビニルエーテル、ジエチレングリコールモノビニルエーテルのエーテル系化合物等を共重合したものが用いられる。
 前記内在型の放射線硬化型粘着剤は、前記炭素-炭素二重結合を有するベースポリマー(特にアクリル系ポリマー)を単独で使用することができるが、特性を悪化させない程度に前記放射線硬化性のモノマー成分やオリゴマー成分を配合することもできる。放射線硬化性のオリゴマー成分等は、通常ベースポリマー100重量部に対して30重量部の範囲内であり、好ましくは0~10重量部の範囲である。
 前記放射線硬化型粘着剤には、紫外線等により硬化させる場合には光重合開始剤を含有させる。光重合開始剤としては、例えば、4-(2-ヒドロキシエトキシ)フェニル(2-ヒドロキシ-2-プロピル)ケトン、α-ヒドロキシ-α,α’-ジメチルアセトフェノン、2-メチル-2-ヒドロキシプロピオフェノン、1-ヒドロキシシクロヘキシルフェニルケトン等のα-ケトール系化合物;メトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフエノン、2,2-ジエトキシアセトフェノン、2-メチル-1-[4-(メチルチオ)-フェニル]-2-モルホリノプロパン-1等のアセトフェノン系化合物;ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、アニソインメチルエーテル等のベンゾインエーテル系化合物;ベンジルジメチルケタール等のケタール系化合物;2-ナフタレンスルホニルクロリド等の芳香族スルホニルクロリド系化合物;1-フェノン-1,1―プロパンジオン-2-(o-エトキシカルボニル)オキシム等の光活性オキシム系化合物;ベンゾフェノン、ベンゾイル安息香酸、3,3’-ジメチル-4-メトキシベンゾフェノン等のベンゾフェノン系化合物;チオキサントン、2-クロロチオキサンソン、2-メチルチオキサンソン、2,4-ジメチルチオキサンソン、イソプロピルチオキサンソン、2,4-ジクロロチオキサンソン、2,4-ジエチルチオキサンソン、2,4-ジイソプロピルチオキサンソン等のチオキサンソン系化合物;カンファーキノン;ハロゲン化ケトン;アシルホスフィノキシド;アシルホスフォナート等が挙げられる。光重合開始剤の配合量は、粘着剤を構成するアクリル系ポリマー等のベースポリマー100重量部に対して、例えば0.05~20重量部程度である。
 また放射線硬化型粘着剤としては、例えば、特開昭60-196956号公報に開示されている、不飽和結合を2個以上有する付加重合性化合物、エポキシ基を有するアルコキシシラン等の光重合性化合物と、カルボニル化合物、有機硫黄化合物、過酸化物、アミン、オニウム塩系化合物等の光重合開始剤とを含有するゴム系粘着剤やアクリル系粘着剤等が挙げられる。
 前記放射線硬化型の粘着剤層2中には、必要に応じて、放射線照射により着色する化合物を含有させることもできる。放射線照射により、着色する化合物を粘着剤層2に含ませることによって、放射線照射された部分のみを着色することができる。すなわち、図1に示すワーク貼り付け部分3aに対応する部分2aを着色することができる。従って、粘着剤層2に放射線が照射されたか否かが目視により直ちに判明することができ、ワーク貼り付け部分3aを認識し易く、ワークの貼り合せが容易である。また光センサー等によって半導体チップを検出する際に、その検出精度が高まり、半導体チップのピックアップ時に誤動作が生ずることがない。放射線照射により着色する化合物は、放射線照射前には無色又は淡色であるが、放射線照射により有色となる化合物であり、例えば、ロイコ染料などが挙げられる。放射線照射により着色する化合物の使用割合は、適宜設定できる。
 粘着剤層2の厚さは、特に限定されないが、チップ切断面の欠け防止や加熱接合用シート3、3’の固定保持の両立性等の点よりは、1~50μm程度であるのが好ましい。好ましくは2~30μm、さらには5~25μmが好ましい。
 本実施の形態に係るダイシングテープ11は、例えば、次の通りにして作製される。
 まず、基材1は、従来公知の製膜方法により製膜することができる。当該製膜方法としては、例えばカレンダー製膜法、有機溶媒中でのキャスティング法、密閉系でのインフレーション押出法、Tダイ押出法、共押出し法、ドライラミネート法等が例示できる。
 次に、基材1上に粘着剤組成物溶液を塗布して塗布膜を形成した後、該塗布膜を所定条件下で乾燥させ(必要に応じて加熱架橋させて)、粘着剤層2を形成する。塗布方法としては特に限定されず、例えば、ロール塗工、スクリーン塗工、グラビア塗工等が挙げられる。また、乾燥条件としては、例えば乾燥温度80~150℃、乾燥時間0.5~5分間の範囲内で行われる。また、セパレータ上に粘着剤組成物を塗布して塗布膜を形成した後、前記乾燥条件で塗布膜を乾燥させて粘着剤層2を形成してもよい。その後、基材1上に粘着剤層2をセパレータと共に貼り合わせる。これにより、ダイシングテープ11が作製される。
 ダイシングテープ付き加熱接合用シート10、12は、通常の方法で製造できる。例えば、ダイシングテープ11の粘着剤層2と加熱接合用シート3とを貼り合わせることで、ダイシングテープ付き加熱接合用シート10を製造できる。
 ダイシングテープ付き加熱接合用シート10においては、加熱接合用シート3がセパレータで覆われていることが好ましい。例えば、ダイシングテープ11と加熱接合用シート3とを貼り合わせた後、加熱接合用シート3に積層されていた前記基材セパレータを剥離し、前基材セパレータを剥離した後のダイシングテープ付き加熱接合用シート10の加熱接合用シート3の露出面に、セパレータを貼り付ける方法が挙げられる。すなわち、ダイシングテープ11、加熱接合用シート3、及び、前記セパレータがこの順で積層された形態とすることが好ましい。
 上述した実施形態では、ダイシングテープと加熱接合用シートとが積層されたダイシングテープ付き加熱接合用シートについて説明した。しかしながら、本発明の加熱接合用シートは、ダイシングテープと貼り合わせない状態で提供されてもよい。
 加熱接合用シートは、ダイシングテープが貼り合わせられていない形態とする場合、2枚のセパレータに挟まれた両面セパレータ付き加熱接合用シートとすることが好ましい。すなわち、第1のセパレータ、加熱接合用シート、及び、第2のセパレータがこの順で積層された両面セパレータ付き加熱接合用シートとすることが好ましい。
 図3は、両面セパレータ付き加熱接合用シートの一実施形態を示す断面模式図である。
 図3に示す両面セパレータ付き加熱接合用シート30は、第1のセパレータ32、加熱接合用シート3、及び、第2のセパレータ34がこの順で積層された構成を有する。第1のセパレータ32、及び、第2のセパレータ34としては、前記基材セパレータと同一のものを使用することができる。
 なお、加熱接合用シートは、ダイシングテープが貼り合わせられていない形態とする場合、加熱接合用シートの一方の面にのみセパレータが積層された形態であってもよい。
 (半導体装置の製造方法)
 本実施形態に係る半導体装置の製造方法は、前記加熱接合用シートを準備する工程と、
 前記加熱接合用シートを介して、半導体チップを被着体上に加熱接合する加熱接合工程とを含む(以下、第1製法ともいう)。
 また、本実施形態に係る半導体装置の製造方法は、前記に記載のダイシングテープ付き加熱接合用シートを準備する工程と、
 前記ダイシングテープ付き加熱接合用シートの加熱接合用シートと、半導体ウェハの裏面とを貼り合わせる貼り合わせ工程と、
 前記半導体ウェハを前記加熱接合用シートと共にダイシングして、チップ状の半導体チップを形成するダイシング工程と、
 前記半導体チップを、前記ダイシングテープ付き加熱接合用シートから前記加熱接合用シートと共にピックアップするピックアップ工程と、
 前記加熱接合用シートを介して、前記半導体チップを被着体上に加熱接合する加熱接合工程とを含むものでもある(以下、第2製法ともいう)。
 第1製法に係る半導体装置の製造方法は、第2製法に係る半導体装置の製造方法が、ダイシングテープ付き加熱接合用シートを用いているのに対して、第1製法に係る半導体装置の製造方法では、加熱接合用シートを単体で用いている点で異なりその他の点で共通する。第1製法に係る半導体装置の製造方法においては、加熱接合用シートを準備した後、これをダイシングテープと貼り合わせる工程を行なえば、その後は、第2製法に係る半導体装置の製造方法と同様とすることができる。そこで、以下では、第2製法に係る半導体装置の製造方法について説明することとする。
 本実施形態に係る半導体装置の製造方法においては、まず、ダイシングテープ付き加熱接合用シート10、12を準備する(準備する工程)。ダイシングテープ付き加熱接合用シート10、12は、加熱接合用シート3、3’上に任意に設けられたセパレータを適宜に剥離して、次の様に使用される。以下では、図3を参照しながらダイシングテープ付き加熱接合用シート10を用いた場合を例にして説明する。
 まず、ダイシングテープ付き加熱接合用シート10における加熱接合用シート3の半導体ウェハ貼り付け部分3a上に半導体ウェハ4を圧着し、これを接着保持させて固定する(貼り合わせ工程)。本工程は、圧着ロール等の押圧手段により押圧しながら行う。マウントの際の貼り付け温度は特に限定されず、例えば23℃~90℃の範囲内であることが好ましい。
 半導体ウェハ4としては、一方の面に電極パッドが形成され、他方の面(以下、裏面ともいう)の最表面に銀薄膜が形成されているものが好ましい。前記銀薄膜の厚さとしては、例えば、10nm~1000nmが挙げられる。また、半導ウェハ4と前記銀薄膜との間に、さらに、チタン薄膜が形成されていてもよい。前記チタン薄膜の厚さとしては、例えば、10nm~1000nmが挙げられる。前記銀薄膜が形成されていると、後述する加熱接合工程において、半導体チップ5と加熱接合用シート3とを強固に加熱接合することができる。また、前記チタン薄膜が形成されていると電極の信頼性が向上する。前記銀薄膜、及び、前記チタン薄膜は、例えば、蒸着により形成することができる。
 次に、半導体ウェハ4のダイシングを行う(ダイシング工程)。これにより、半導体ウェハ4を所定のサイズに切断して個片化し、半導体チップ5を製造する。ダイシングの方法は特に限定されないが、例えば半導体ウェハ4の回路面側から常法に従い行われる。また、本工程では、例えばダイシングテープ付き加熱接合用シート10まで切込みを行なうフルカットと呼ばれる切断方式等を採用できる。本工程で用いるダイシング装置としては特に限定されず、従来公知のものを用いることができる。また、半導体ウェハ4は、ダイシングテープ付き加熱接合用シート10により接着固定されているので、チップ欠けやチップ飛びを抑制できると共に、半導体ウェハ4の破損も抑制できる。
 次に、ダイシングテープ付き加熱接合用シート10に接着固定された半導体チップ5を剥離するために、半導体チップ5のピックアップを行う(ピックアップ工程)。ピックアップの方法としては特に限定されず、従来公知の種々の方法を採用できる。例えば、個々の半導体チップ5をダイシングテープ付き加熱接合用シート10側からニードルによって突き上げ、突き上げられた半導体チップ5をピックアップ装置によってピックアップする方法等が挙げられる。
 ピックアップ条件としては、チッピング防止の点で、ニードル突き上げ速度を5~100mm/秒とすることが好ましく、5~10mm/秒とすることがより好ましい。
 ここでピックアップは、粘着剤層2が紫外線硬化型である場合、該粘着剤層2に紫外線を照射した後に行う。これにより、粘着剤層2の加熱接合用シート3に対する粘着力が低下し、半導体チップ5の剥離が容易になる。その結果、半導体チップ5を損傷させることなくピックアップが可能となる。紫外線照射の際の照射強度、照射時間等の条件は特に限定されず、適宜必要に応じて設定すればよい。また、紫外線照射に使用する光源としては、公知のものを使用することができる。なお、粘着剤層に予め紫外線照射し硬化させておき、この硬化した粘着剤層と加熱接合用シートとを貼り合わせている場合は、ここでの紫外線照射は不要である。
 次に、ピックアップした半導体チップ5を、加熱接合用シート3を介して被着体6にダイアタッチ(加熱接合)する(加熱接合工程)。被着体6としては、リードフレーム、TABフィルム、基板又は別途作製した半導体チップ等が挙げられる。被着体6は、例えば、容易に変形されるような変形型被着体であってもよく、変形することが困難である非変形型被着体(半導体ウェハ等)であってもよい。
 前記リードフレームとしては、Cuリードフレーム、42Alloyリードフレーム等の金属リードフレームを挙げることができる。また、前記基板としては、従来公知のものを使用することができる。例えば、ガラスエポキシ、BT(ビスマレイミド-トリアジン)、ポリイミド等からなる有機基板を挙げることができる。なかでも、金属リームフレームを用いれば、加熱接合により金属微粒子と一体化することができる。また、前記基板としては、セラミックプレート等の絶縁基板に、銅回路基板が積層された絶縁回路基板を挙げることができる。絶縁回路基板を用いれば、例えば、電力の制御や供給を行うパワー半導体装置を製造することができる。
 前記加熱接合工程では、加熱により金属微粒子を焼結するとともに、必要に応じて熱分解性バインダーを熱分解させる。また、乾燥工程により揮発しきらなかった残留低沸点バインダーを揮発させる。加熱温度は、好ましくは180~400℃、より好ましくは190~370℃、さらに好ましくは200~350℃で行うことができる。また、加熱時間は、好ましくは0.3~300分、より好ましくは0.5~240分、さらに好ましくは1~180分で行うことができる。また、加熱接合は、加圧条件下で行なってもよい。加圧条件としては、1~500kg/cmの範囲内が好ましく、5~400kg/cmの範囲内がより好ましい。加圧下での加熱接合は、例えば、フリップチップボンダーのような加熱と加圧とを同時に行える装置で実施ができる。また、平行平板プレスでもよい。
 次に、必要に応じて、図4に示すように、被着体6の端子部(インナーリード)の先端と半導体チップ5上の電極パッド(図示しない)とをボンディングワイヤー7で電気的に接続する(ワイヤーボンディング工程)。前記ボンディングワイヤー7としては、例えば金線、アルミニウム線又は銅線等が用いられる。ワイヤーボンディングを行う際の温度は、23~300℃、好ましくは23~250℃の範囲内で行われる。また、その加熱時間は数秒~数分間行われる。結線は、前記温度範囲内となる様に加熱された状態で、超音波による振動エネルギーと印加加圧による圧着工ネルギーの併用により行われる。
 次に、必要に応じて、図4に示すように、封止樹脂8により半導体チップ5を封止する(封止工程)。本工程は、被着体6に搭載された半導体チップ5やボンディングワイヤー7を保護するために行われる。本工程は、封止用の樹脂を金型で成型することにより行うことができる。封止樹脂8としては、例えばエポキシ系の樹脂を使用する。樹脂封止の際の加熱温度は、通常175℃で60~90秒間行われるが、本発明はこれに限定されず、例えば165~185℃で、数分間キュアすることができる。これにより、封止樹脂8を硬化させる。なお、本封止工程では、シート状の封止用シートに半導体チップ5を埋め込む方法(例えば、特開2013-7028号公報参照)を採用することもできる。また、金型による封止樹脂の成型以外にも、ケース型容器にシリコーンゲルを流し込むゲル封止型でもよい。
 次に、必要に応じて加熱を行い、前記封止工程で硬化不足の封止樹脂8を完全に硬化させる(後硬化工程)。本工程における加熱温度は、封止樹脂の種類により異なるが、例えば165~185℃の範囲内であり、加熱時間は0.5~8時間程度である。
 なお、本発明の加熱接合用シート、及び、ダイシングテープ付き加熱接合用シートは、複数の半導体チップを積層して3次元実装をする場合にも好適に用いることができる。このとき、半導体チップ間に加熱接合用シートとスペーサとを積層させてもよく、スペーサを積層することなく、加熱接合用シートのみを半導体チップ間に積層させてもよく、製造条件や用途等に応じて適宜変更可能である。
 また、本発明の加熱接合用シート、及び、ダイシングテープ付き加熱接合用シートは、上記に例示した用途に限定されず、2つのものを加熱接合するのに利用することができる。
《第2実施形態》
 第1実施形態に係る加熱接合用シートでは、加熱により焼結される前駆層の最大厚み及び最小厚みの平均厚みに対する割合を規定することで厚み均一性を担保していたが、これに代えて、又はこれとともに、厚み均一性を表面粗さの観点から担保することもできる。以下、第2実施形態に係る加熱接合用シートについて、第1実施形態と異なる点のみ説明する。
 本実施形態に係る加熱接合用シートは、加熱により焼結層となる前駆層を有し、
 前記前駆層の平均厚みが5μm~200μmであり、かつ
 前記前駆層の表面をコンフォーカル顕微鏡により200μm×200μmの視野で計測した際の表面粗さSaが2μm以下である。
 当該加熱接合用シートは、加熱により焼結層となる前駆層を有しており、加熱処理を施すことで焼結層が得られるので、作動環境が高温となるパワー半導体装置等の接合に用いても高い接合信頼性を発揮することができる。また、前駆層の平均厚みが5μm~200μmであり、かつ前駆層の表面をコンフォーカル顕微鏡により200μm×200μmの視野で計測した際の表面粗さSaが2μm以下である。これにより、厚み方向での凹凸が抑制され、厚みの均一性が高いレベルで満足されることになり、その結果、接合ムラを防止して、高温接合信頼性を向上させることができる。
 前記表面粗さSaは2μm以下であればよく、好ましくは1.5μm以下であり、より好ましくは1.0μm以下である。
 以下、本発明に関し実施例を用いて詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。
<実施例1>
 撹拌用容器に、金属微粒子含有ペーストとして応用ナノ粒子研究所製のANP-1(ナノサイズの銀微粒子が分散されたペースト)に含まれる粘度調整用の溶剤量を適宜調整したもの100重量部、熱分解性バインダーAとしてアクリル樹脂(藤倉化成社製、「MM-2002-1」(23℃で固形)1重量部及び溶媒(メチルエチルケトン)35重量部を入れ、ハイブリッドミキサー(キーエンス製、「HM-500」)を用いて攪拌モードで3分間攪拌、混合した。得られたワニスを、離型処理フィルム(三菱樹脂(株)製、「MRA50」)に塗布し、塗布膜を150℃で5分間乾燥させ、厚み40μmの加熱接合用シートを得た。
<実施例2>
 実施例1で得られた加熱接合用シートを5枚重ね、ラミネータで80℃にて貼り合わせ、厚み200μmの加熱接合用シートを得た。
<実施例3>
 撹拌用容器に、金属微粒子含有ペーストとして応用ナノ粒子研究所製のANP-1(ナノサイズの銀微粒子が分散されたペースト)に含まれる粘度調整用の溶剤量を適宜調整したもの100重量部、熱分解性バインダーBとしてポリプロピレンカーボネート樹脂(Empower社製、「QPAC40」(23℃で固形))1重量部及び溶媒(メチルエチルケトン)35重量部を入れ、ハイブリッドミキサー(キーエンス製、「HM-500」)を用いて攪拌モードで3分間攪拌、混合した。得られたワニスを、離型処理フィルム(三菱樹脂(株)製、「MRA50」)に塗布し、塗布膜を150℃で5分間乾燥させ、厚み40μmの加熱接合用シートを得た。
<実施例4>
 実施例3で得られた加熱接合用シートを5枚重ね、ラミネータで80℃にて貼り合わせ、厚み200μmの加熱接合用シートを得た。
<比較例1>
 実施例1と同じ金属微粒子含有ペーストをそのまま使用した。
《評価》
 以下の項目について、実施例及び比較例のサンプルを評価した。それぞれの結果を表1に示す。
 (厚み評価(加熱接合用シート))
 実施例1~4及び比較例2の加熱接合用シート(以下、単に「シート」ともいう。)については、裏面金属(Ti/Ag)シリコンウエハ(10cm×10cm)の裏面側に1cm×10cmのシートを貼り付けた。コンフォーカル顕微鏡(LaserTec(株)製、「H300」)を用い、シートを貼り付けたシリコンウェハ裏面(シリコンウェハ部分及びシート部分)について下記条件にて非接触計測を行い、高さを求めた。
  <非接触計測条件>
   対物レンズ:10倍
   スキャンタイム:60秒
   分解能:0.03μm
 シート高さh1からシリコンウェハ高さh2を減ずることにより、シート厚みTs(=h1-h2)とした。測定箇所は、1cm×10cmのエリアを10等分した1cm×1cmのエリアの中心部とし、合計10点測定した。10点の平均を平均厚み(μm)とし、最大値(最大厚み)と最小値(最小厚み)が平均厚みの±20%以内の範囲内にある場合を「○」、±20%までの範囲を外れる場合を「×」として評価した。最大厚み又は最小厚みの平均厚みからのズレの割合を乖離率(%)として求めた。
 (厚み評価(金属微粒子含有ペースト))
 比較例1の金属微粒子含有ペースト(以下、単に「ペースト」ともいう。)については、裏面金属(Ti/Ag)シリコンウェハの裏面側に、2本の長さ12cmの粘着テープ(No.31B、幅20mm、総厚0.05mm(=50μm))を1cm間隔で貼り付けた。粘着テープの間より露出しているシリコンウェハ部分へペーストを塗布し、130℃で1分間乾燥させて溶剤を除去し、乾燥ペースト膜を形成した。次いで、粘着テープを剥がした後、コンフォーカル顕微鏡(LaserTec(株)製、「H300」)を用い、乾燥ペースト膜を形成したシリコンウェハ裏面(シリコンウェハ部分及び乾燥ペースト膜部分)について、シートの場合と同じ条件にて非接触計測を行い、高さを求めた。
 乾燥ペースト膜高さh1´からシリコンウェハ高さh2´を減ずることにより、乾燥ペースト膜厚みTp(=h1´-h2´)とした。測定箇所は、1cm×12cmのエリアを12等分し、両端の1cm×1cmのエリアを除く1cm×1cmのエリアの中心部とし、合計10点測定した。10点の平均を平均厚み(μm)とし、最大値(最大厚み)と最小値(最小厚み)が平均厚み±20%以内の範囲内の場合を「○」、±20%までの範囲を外れる場合を「×」として評価した。最大厚み又は最小厚みの平均厚みからのズレの割合を乖離率(%)として求めた。
 (表面粗さSa評価(シート))
 80℃のラミネータで、裏面金属(Ti/Ag)シリコンウエハ(5cm×5cm)の裏面側に、1cm角以上のサイズでシートを貼り付けた。コンフォーカル顕微鏡(LaserTec(株)製、「H300」)を用いて、シート表面についての非接触計測を行い、表面粗さSaを測定した。
  <非接触計測条件>
   対物レンズ:10倍
   スキャンタイム:60秒
   分解能:0.03μm
 シートの中心部における200μm×200μmのエリアを測定視野とし、そのエリアでの表面粗さSaを計測した。表面粗さSaが2μm以下の場合を「○」、2μmを超えた場合を「×」として評価した。
 (表面粗さSa評価(ペースト))
 裏面金属(Ti/Ag)シリコンウエハ(5cm×5cm)の裏面側に、1cm角以上のサイズで乾燥後の厚みが50μmとなるようにペーストを塗布した。余分な溶剤を130℃で1分間乾燥させることで除去し、乾燥ペースト膜を形成した。コンフォーカル顕微鏡(LaserTec(株)製、「H300」)を用いて、乾燥ペースト膜表面についてシートの場合と同じ条件での非接触計測を行い、表面粗さSaを測定した。
 シートの中心部における200μm×200μmのエリアを測定視野とし、そのエリアでの表面粗さSaを計測した。表面粗さSaが2μm以下の場合を「○」、2μmを超えた場合を「×」として評価した。
 (接合ムラ評価(シート))
 5mm×5mmの裏面金属(Ti/Ag)シリコンチップの裏面全面に80℃でシートを貼り付け、このシート付きチップを銀メッキ銅板(20mm×20mm,厚み3mm)上に配置した。焼結装置((伯東)製、「HTM-3000」)にて、300℃で2.5分間、10MPaの圧力負荷を維持しながらシートを加熱し、これを焼結層とすることで、チップと銀メッキ銅板とを焼結層を介して接合させた。接合したサンプル5個について、SAT(超音波映像装置、日立建機ファインテック製、「FineSAT II」)の反射モード(トランスデューサータイプ:PQ-50-13:WD、周波数:50MHz)で観察し、チップと銀メッキ銅板との間での剥離の有無を確認した。5個のサンプルのそれぞれについて接合面全体に対する剥離した部分の面積の割合を求め、その平均値を平均剥離面積率(%)とした。平均剥離面積率が10%以下の場合を「○」、10%を超えた場合を「×」として評価した。
 (接合ムラ評価(ペースト))
 5mm×5mmの裏面金属(Ti/Ag)シリコンチップの裏面全面にペーストを厚み50μmとなるように塗布した。余分な溶剤を130℃で1分間乾燥させることで除去し、乾燥ペースト膜を形成した。この乾燥ペースト膜付きチップを銀メッキ銅板(20mm×20mm,厚み3mm)上に配置した。焼結装置((伯東)製、「HTM-3000」)にて、300℃で2.5分間、10MPaの圧力負荷を維持しながら、チップと銀メッキ銅板とを乾燥ペースト膜を介して接合させ、評価用のサンプルとした。接合したサンプル5個について、SAT(超音波映像装置、日立建機ファインテック製、「FineSAT II」)の反射モード(トランスデューサータイプ:PQ-50-13:WD、周波数:50MHz)で観察し、チップと銀メッキ銅板との間での剥離の有無を確認した。5個のサンプルのそれぞれについて接合面全体に対する剥離した部分の面積の割合を求め、その平均値を平均剥離面積率(%)とした。平均剥離面積率が10%以下の場合を「○」、10%を超えた場合を「×」として評価した。
 図5に、実施例1のシート及び比較例1のペーストを用いてそれぞれ作製したサンプルのSAT観察画像を示す。画像中の白い部分が剥離している箇所である。
 (信頼性評価-残存接合面積率)
 上述の接合ムラ評価と同様の方法で、実施例及び比較例に係る評価用サンプルを作製した。
 次に、評価用サンプルを冷熱衝撃試験機(エスペック社製のTSE-103ES)に投入し、-40℃~200℃の冷熱衝撃を100サイクル与えた(-40℃と200℃との間の昇温及び降温の時間は約10分であった。)。なお、このとき、-40℃及び200℃のそれぞれの温度で15分保持した。
 100サイクルの後、SAT(超音波映像装置、日立建機ファインテック製、「FineSAT II」)を用い、シリコンチップと銅板とが焼結層で接合されている部分を確認するために、撮像を行った。使用したトランスデューサー(プローブ)は、PQ-50-13:WD[周波数50MHz]であった。
 得られた像において接合が残っている部分の面積(残存面積)を求め、接合面全体の面積に対する残存面積の割合(残存接合面積率)を算出した。また、残存接合面積率が50%以上の場合を「○」、50%より低い場合を「×」として評価した。なお、接合ムラ評価のSAT画像観察と同様、画像中の白い部分が剥離している箇所である(図示せず)。
 (重量減少率の評価(シート))
 作製した加熱接合用シートから約10mgとなるように5mm×5mmのサイズで切り出し、測定サンプルとした。この測定サンプルについての示差熱熱重量測定を大気雰囲気下にて23℃から400℃まで10℃/minの昇温速度で行い、23℃における加熱接合用シートの重量W23及び400℃における加熱接合用シートの重量W400を読み取った。下記式で得られる重量減少率ΔWが-9%~-3%の範囲内であった場合を「○」、-9%を下回ったか、又は-3%を上回った場合を「×」として評価した。
   ΔW(%)={(W400-W23)/W23}×100
 (重量減少率の評価(ペースト))
 測定サンプルとして、金属微粒子含有ペーストを離型処理フィルム(三菱樹脂(株)製、「MRA50」)上に塗布して形成した厚み40μmの塗布液膜を用いたこと以外は、前記シートの重量減少率の測定と同様の手順で求めた。
Figure JPOXMLDOC01-appb-T000001
 実施例1~4では、厚み評価及び表面粗さSaともに良好であり、これに伴い接合ムラ評価及び信頼性評価のいずれも良好な結果であった。また、重量減少率の評価も良好であり、焼結工程を想定した400℃までの加熱により有機成分がほぼ除去されていると推測される。一方、比較例1では、厚み評価及び表面粗さSaともに範囲外であり、これに起因して接合ムラ評価及び信頼性評価のいずれも劣る結果であった。これは、厚みムラに起因して剥離面積が大きくなったことが主な原因であると推察される。また、重量減少率も大きく、厚みの均一性の低下に影響を及ぼすと考えられる。
    1  基材
    2  粘着剤層
    3、3’  加熱接合用シート
    4  半導体ウェハ
    5  半導体チップ
    6  被着体
    7  ボンディングワイヤー
    8  封止樹脂
   10、12  ダイシングテープ付き加熱接合用シート
   11  ダイシングテープ
   30  両面セパレータ付き加熱接合用シート
   31  加熱により焼結層となる前駆層
   32  第1のセパレータ
   34  第2のセパレータ

Claims (6)

  1.  加熱により焼結層となる前駆層を有し、
     前記前駆層の平均厚みが5μm~200μmであり、かつ
     前記前駆層の最大厚み及び最小厚みが前記平均厚みの±20%の範囲内である加熱接合用シート。
  2.  加熱により焼結層となる前駆層を有し、
     前記前駆層の平均厚みが5μm~200μmであり、かつ
     前記前駆層の表面をコンフォーカル顕微鏡により200μm×200μmの視野で計測した際の表面粗さSaが2μm以下である加熱接合用シート。
  3.  示差熱熱重量測定を大気雰囲気下にて23℃から400℃まで10℃/minの昇温速度で行った際、下記式で得られる重量減少率ΔWが-9%~-3%である請求項1又は2に記載の加熱接合用シート。
       ΔW(%)={(W400-W23)/W23}×100
       (式中、W23は23℃における加熱接合用シートの重量であり、W400は400℃における加熱接合用シートの重量である。)
  4.  前記前駆層は、23℃で固形の熱分解性バインダーを含む請求項1~3のいずれか1項に記載の加熱接合用シート。
  5.  前記前駆層は、金属微粒子を含み、
     前記金属微粒子が、銀、銅、酸化銀及び酸化銅からなる群より選ばれる少なくとも1種である請求項1~4のいずれか1項に記載の加熱接合用シート。
  6.  ダイシングテープと、
     前記ダイシングテープ上に積層された請求項1~5のいずれか1項に記載の加熱接合用シートと
     を有するダイシングテープ付き加熱接合用シート。
     
     
PCT/JP2016/077838 2015-09-30 2016-09-21 加熱接合用シート及びダイシングテープ付き加熱接合用シート WO2017057130A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16851304.2A EP3358606A4 (en) 2015-09-30 2016-09-21 Thermal bonding sheet, and thermal bonding sheet with dicing tape
US15/763,406 US20180315729A1 (en) 2015-09-30 2016-09-21 Thermal Bonding Sheet and Thermal Bonding Sheet with Dicing Tape
CN201680057844.7A CN108207115B (zh) 2015-09-30 2016-09-21 加热接合用片以及带有切割带的加热接合用片

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-194243 2015-09-30
JP2015194243A JP6505572B2 (ja) 2015-09-30 2015-09-30 加熱接合用シート及びダイシングテープ付き加熱接合用シート

Publications (1)

Publication Number Publication Date
WO2017057130A1 true WO2017057130A1 (ja) 2017-04-06

Family

ID=58423664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077838 WO2017057130A1 (ja) 2015-09-30 2016-09-21 加熱接合用シート及びダイシングテープ付き加熱接合用シート

Country Status (6)

Country Link
US (1) US20180315729A1 (ja)
EP (1) EP3358606A4 (ja)
JP (1) JP6505572B2 (ja)
CN (1) CN108207115B (ja)
TW (1) TWI688443B (ja)
WO (1) WO2017057130A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6682235B2 (ja) * 2014-12-24 2020-04-15 日東電工株式会社 加熱接合用シート、及び、ダイシングテープ付き加熱接合用シート
JP6967839B2 (ja) * 2016-03-23 2021-11-17 日東電工株式会社 加熱接合用シート、ダイシングテープ付き加熱接合用シート、及び、接合体の製造方法、パワー半導体装置
JP6815132B2 (ja) * 2016-08-31 2021-01-20 日東電工株式会社 加熱接合用シート、及び、ダイシングテープ付き加熱接合用シート
JP6815133B2 (ja) * 2016-08-31 2021-01-20 日東電工株式会社 加熱接合用シート、及び、ダイシングテープ付き加熱接合用シート
CN110574157B (zh) * 2017-04-28 2020-09-25 琳得科株式会社 膜状烧成材料及带支撑片的膜状烧成材料
WO2018198570A1 (ja) * 2017-04-28 2018-11-01 リンテック株式会社 フィルム状焼成材料、及び支持シート付フィルム状焼成材料
JP6555695B2 (ja) * 2017-10-02 2019-08-07 リンテック株式会社 フィルム状焼成材料、及び支持シート付フィルム状焼成材料
JP6555694B2 (ja) * 2017-04-28 2019-08-07 リンテック株式会社 フィルム状焼成材料、及び支持シート付フィルム状焼成材料
US10312218B1 (en) * 2018-07-20 2019-06-04 Mikro Mesa Technology Co., Ltd. Method for binding micro device to substrate
US10896840B2 (en) * 2018-09-19 2021-01-19 Semiconductor Components Industries, Llc Tape heating methods
KR20200133072A (ko) * 2019-05-16 2020-11-26 삼성전자주식회사 이미지 센서 패키지
US10910340B1 (en) * 2019-10-14 2021-02-02 Heraeus Deutschland GmbH & Co. KG Silver sintering preparation and the use thereof for the connecting of electronic components

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11232417A (ja) * 1998-02-19 1999-08-27 Sekisui Chem Co Ltd Icカードの製造方法
JP2010254763A (ja) * 2009-04-22 2010-11-11 Hitachi Chem Co Ltd 接着剤組成物、その製造方法、これを用いた接着シート、一体型シート、その製造方法、半導体装置及びその製造方法
JP2015079650A (ja) * 2013-10-17 2015-04-23 Dowaエレクトロニクス株式会社 接合用銀シートおよびその製造方法並びに電子部品接合方法
WO2015060346A1 (ja) * 2013-10-23 2015-04-30 日立化成株式会社 ダイボンドシート及び半導体装置の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1683592A4 (en) * 2003-10-20 2010-11-10 Harima Chemicals Inc FINE METAL PARTICLES AND FINE METAL OXIDE PARTICLES AS DRY POWDER, AND USE THEREOF
WO2009029738A1 (en) * 2007-08-31 2009-03-05 Ferro Corporation Layered contact structure for solar cells
EP2435248A2 (en) * 2009-05-26 2012-04-04 Purdue Research Foundation Thin films for photovoltaic cells
KR101609497B1 (ko) * 2012-01-20 2016-04-05 도와 일렉트로닉스 가부시키가이샤 접합재 및 그것을 이용한 접합 방법
US9583453B2 (en) * 2012-05-30 2017-02-28 Ormet Circuits, Inc. Semiconductor packaging containing sintering die-attach material
JP6542504B2 (ja) * 2013-02-20 2019-07-10 日東電工株式会社 フィルム状接着剤、フィルム状接着剤付きダイシングテープ、半導体装置の製造方法、及び半導体装置
US9190188B2 (en) * 2013-06-13 2015-11-17 E I Du Pont De Nemours And Company Photonic sintering of polymer thick film copper conductor compositions

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11232417A (ja) * 1998-02-19 1999-08-27 Sekisui Chem Co Ltd Icカードの製造方法
JP2010254763A (ja) * 2009-04-22 2010-11-11 Hitachi Chem Co Ltd 接着剤組成物、その製造方法、これを用いた接着シート、一体型シート、その製造方法、半導体装置及びその製造方法
JP2015079650A (ja) * 2013-10-17 2015-04-23 Dowaエレクトロニクス株式会社 接合用銀シートおよびその製造方法並びに電子部品接合方法
WO2015060346A1 (ja) * 2013-10-23 2015-04-30 日立化成株式会社 ダイボンドシート及び半導体装置の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3358606A4 *

Also Published As

Publication number Publication date
US20180315729A1 (en) 2018-11-01
EP3358606A4 (en) 2018-09-26
JP2017069422A (ja) 2017-04-06
CN108207115A (zh) 2018-06-26
TWI688443B (zh) 2020-03-21
CN108207115B (zh) 2021-04-20
TW201722580A (zh) 2017-07-01
JP6505572B2 (ja) 2019-04-24
EP3358606A1 (en) 2018-08-08

Similar Documents

Publication Publication Date Title
JP6870943B2 (ja) 加熱接合用シート、及び、ダイシングテープ付き加熱接合用シート
WO2017057130A1 (ja) 加熱接合用シート及びダイシングテープ付き加熱接合用シート
JP6682235B2 (ja) 加熱接合用シート、及び、ダイシングテープ付き加熱接合用シート
TWI751134B (zh) 加熱接合用片材、附切晶帶加熱接合用片材、以及、接合體之製造方法、電力半導體裝置
JP6858520B2 (ja) 加熱接合用シート、及び、ダイシングテープ付き加熱接合用シート
WO2017057128A1 (ja) 加熱接合用シート、及び、ダイシングテープ付き加熱接合用シート
WO2018042772A1 (ja) 加熱接合用シート、及び、ダイシングテープ付き加熱接合用シート
WO2018055889A1 (ja) 加熱接合用シート及びダイシングテープ付き加熱接合用シート
JP6864505B2 (ja) 加熱接合用シート及びダイシングテープ付き加熱接合用シート
TWI773672B (zh) 加熱接合用片材及附切晶帶加熱接合用片材
WO2018042771A1 (ja) 加熱接合用シート、及び、ダイシングテープ付き加熱接合用シート
WO2016104188A1 (ja) 加熱接合用シート、及び、ダイシングテープ付き加熱接合用シート
JP2017069559A (ja) パワー半導体装置の製造方法
JP6972216B2 (ja) 加熱接合用シート、ダイシングテープ付き加熱接合用シート、及び、接合体の製造方法、パワー半導体装置
JP2017069558A (ja) パワー半導体装置の製造方法
WO2017057428A1 (ja) 加熱接合用シート、及び、ダイシングテープ付き加熱接合用シート
WO2017221613A1 (ja) 加熱接合用シート及びダイシングテープ付き加熱接合用シート
WO2017057429A1 (ja) 加熱接合用シート、及び、ダイシングテープ付き加熱接合用シート

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851304

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15763406

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016851304

Country of ref document: EP