WO2018042771A1 - 加熱接合用シート、及び、ダイシングテープ付き加熱接合用シート - Google Patents

加熱接合用シート、及び、ダイシングテープ付き加熱接合用シート Download PDF

Info

Publication number
WO2018042771A1
WO2018042771A1 PCT/JP2017/018681 JP2017018681W WO2018042771A1 WO 2018042771 A1 WO2018042771 A1 WO 2018042771A1 JP 2017018681 W JP2017018681 W JP 2017018681W WO 2018042771 A1 WO2018042771 A1 WO 2018042771A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
sheet
heat bonding
component
dicing tape
Prior art date
Application number
PCT/JP2017/018681
Other languages
English (en)
French (fr)
Inventor
哲士 本田
悠樹 菅生
麻由 下田
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN201780052888.5A priority Critical patent/CN109690745B/zh
Priority to US16/326,427 priority patent/US11390777B2/en
Priority to EP17845782.6A priority patent/EP3509092A4/en
Publication of WO2018042771A1 publication Critical patent/WO2018042771A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/082Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising vinyl resins; comprising acrylic resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/04Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B23/042Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/04Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B23/06Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of paper or cardboard
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/10Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/12Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose next to a particulate layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/10Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of paper or cardboard
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/14Layered products comprising a layer of synthetic resin next to a particulate layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/283Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/285Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/288Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyketones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/16Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer formed of particles, e.g. chips, powder or granules
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • C09J7/381Pressure-sensitive adhesives [PSA] based on macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C09J7/385Acrylic polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/44Number of layers variable across the laminate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/025Particulate layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/105Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2405/00Adhesive articles, e.g. adhesive tapes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/314Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive layer and/or the carrier being conductive
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/408Additional features of adhesives in the form of films or foils characterized by the presence of essential components additives as essential feature of the adhesive layer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/41Additional features of adhesives in the form of films or foils characterized by the presence of essential components additives as essential feature of the carrier layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a heat bonding sheet and a heat bonding sheet with a dicing tape.
  • the method of bonding a semiconductor element to an adherend such as a metal lead frame has started from the conventional gold-silicon eutectic, and has changed to a method using solder and resin paste. At present, a conductive resin paste is sometimes used.
  • the conductive adhesive used for the power semiconductor device has high heat dissipation and low electrical resistivity.
  • Si Insulated Gate Bipolar Transistors
  • MOSFETs Metal-Oxide-Semiconductor Field-Effect Transistors
  • a semiconductor using SiC or GaN has features such as a large band gap and a high dielectric breakdown electric field, and can operate at low loss, high speed, and high temperature. High-temperature operation is advantageous in automobiles and small power conversion devices that have severe thermal environments. Semiconductor devices used in severe thermal environments are expected to operate at a high temperature of around 250 ° C., and solder and conductive adhesives, which are conventional bonding / adhesive materials, have problems in thermal characteristics and reliability.
  • Patent Document 1 a die bond sheet composed of a porous sheet having a porosity of 15 to 50% by volume, containing silver and / or copper, and having a carbon content of 1.5% by mass or less has been proposed (for example, Patent Document 1).
  • the die bond sheet of Patent Document 1 has a carbon content of 1.5% by mass or less. Therefore, the die bond sheet of Patent Document 1 has a problem that workability at the time of sheet creation is low. Specifically, in Patent Document 1, after preparing a paste-like composition containing a large amount of metal components, it is once coated on a glass plate and heated to 200 ° C. to form a cured film. It peeled and obtained as a die bond sheet. Moreover, since the die bond sheet of patent document 1 has little carbon content, the adhesiveness in the stage before sintering is low. Therefore, there is a problem that it is difficult to temporarily fix the object to be bonded before sintering.
  • the present inventors have intensively studied. As a result, for example, when the heat bonding sheet is attached to another tape such as a dicing tape, a part of the components are transferred from the heat bonding sheet to the other tape, and the heat bonding sheet is used. I found out that the original performance cannot be achieved. Further, in some cases, a part of the components may be transferred from another tape to the heat bonding sheet, and in this case as well, it was found that the original performance cannot be exhibited as the heat bonding sheet.
  • the present invention has been made in view of the above problems, and its purpose is to provide a heat-bonding sheet capable of suppressing migration of components when bonded to another sheet, and the heat-bonding sheet. It is providing the sheet
  • the inventors of the present application have studied a heat-bonding sheet in order to solve the conventional problems. As a result, by adopting the following configuration, it was found that the migration of components can be suppressed when bonded to another sheet, and the present invention has been completed.
  • the heat bonding sheet according to the present invention is: It has the layer before sintering which becomes a sintered layer by heating, and a component transfer prevention layer, It is characterized by the above-mentioned.
  • the component migration preventing layer prevents the migration of the component if the component migration preventing layer is laminated and used in contact with the other sheet. As a result, it is possible to suppress the components of the pre-sintering layer from shifting to other sheets and the components of other sheets from shifting to the pre-sintering layer.
  • the pre-sintering layer includes metal fine particles and an organic binder
  • the component migration preventing layer preferably contains at least an organic binder.
  • the sintered layer can be formed by heating. Further, when the pre-sintering layer and the component migration preventing layer contain an organic binder, it is easy to handle as a sheet. Further, when the pre-sintering layer contains an organic binder, it is easy to control the adhesion at the stage before sintering. In addition, even if the pre-sintering layer contains an organic binder, a component migration preventing layer is present, so that the components of the pre-sintering layer are transferred to another sheet, or the components of the other sheet are pre-sintered. Transition to the layer can be suppressed.
  • the content of the metal fine particles contained in the pre-sintering layer is in the range of 30 to 70% by volume with respect to the whole pre-sintering layer
  • the content of the metal fine particles contained in the component migration preventing layer is preferably in the range of 0 to 30% by volume with respect to the whole component migration preventing layer.
  • the sintered layer can be suitably formed by heating.
  • the content of the metal fine particles contained in the component migration preventing layer is in the range of 0 to 30% by volume with respect to the entire component migration preventing layer, the components in the pre-sintering layer migrate to another sheet. You can reduce the number of roads to do. As a result, component migration can be further suppressed.
  • the organic binder contained in the pre-sintering layer includes a thermally decomposable binder
  • the organic binder contained in the component migration preventing layer preferably contains a thermally decomposable binder.
  • the thermally decomposable binder is thermally decomposed when the sintered layer is formed by heating.
  • a sintered layer can be formed more suitably.
  • the thermally decomposable binder tends to be difficult for low molecular weight components to pass through.
  • the organic binder contained in the said component transfer prevention layer contains a thermally decomposable binder, it can suppress suitably that the component of the layer before sintering transfers to another sheet
  • the organic binder contained in the pre-sintering layer contains 20 to 80% by weight of an organic component having a molecular weight of 500 or less based on the whole organic binder of the pre-sintering layer
  • the organic binder contained in the component migration preventing layer preferably contains 0 to 20% by weight of an organic component having a molecular weight of 500 or less based on the whole organic binder in the component migration preventing layer.
  • the organic component having a molecular weight of 500 or less can be easily dispersed when the metal fine particles are dispersed in the thermally decomposable binder. Therefore, when the organic binder contained in the pre-sintering layer contains 20 to 80% by weight of an organic component having a molecular weight of 500 or less, handling of the metal fine particles can be facilitated. Moreover, if an organic component having a molecular weight of 500 or less is used, it becomes easy to adjust arbitrary mechanical characteristics. On the other hand, an organic component having a molecular weight of 500 or less is a component that easily moves to another sheet because of its low molecular weight.
  • the organic binder contained in the component migration preventing layer contains an organic component having a molecular weight of 500 or less in the range of 0 to 20% by weight, it can be said that there are few components that easily migrate. Therefore, it can suppress that a component transfers from a component transfer prevention layer to a pre-sintering layer or another sheet.
  • the thickness of the pre-sintering layer is in the range of 5 to 100 ⁇ m
  • the thickness of the component migration preventing layer is preferably in the range of 2 to 10 ⁇ m.
  • the sintered layer can be more suitably formed.
  • the component migration preventing layer does not contain metal fine particles or the content is less than that of the pre-sintering layer. For this reason, if it is too thick, it interferes with joining by sintering. Therefore, when the thickness of the component migration preventing layer is in the range of 2 to 10 ⁇ m, it is possible to prevent a significant influence on the bonding by sintering.
  • the sheet for heat bonding with a dicing tape according to the present invention Dicing tape, The heating bonding sheet, and The heat bonding sheet is laminated on the dicing tape in such a manner that the dicing tape and the component migration preventing layer are in contact with each other.
  • the step of bonding to the dicing tape can be omitted.
  • the component transfer preventing layer is present, it is possible to suppress the components of the pre-sintering layer from being transferred to the dicing tape, and the dicing tape components from being transferred to the pre-sintering layer.
  • FIG. 1 is a schematic cross-sectional view showing a heat bonding sheet with a dicing tape according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing another heat bonding sheet with dicing tape according to another embodiment of the present invention.
  • a heat bonding sheet 10 with a dicing tape has a configuration in which a heat bonding sheet 3 is laminated on a dicing tape 11.
  • the dicing tape 11 is configured by laminating the pressure-sensitive adhesive layer 2 on the substrate 1, and the heat bonding sheet 3 is provided on the pressure-sensitive adhesive layer 2.
  • the heat bonding sheet with dicing tape of the present invention may have a structure in which the heat bonding sheet 3 ′ is formed only on the workpiece attaching portion, like the heat bonding sheet 12 with dicing tape shown in FIG. 2.
  • the heat bonding sheets 3 and 3 ′ have a sheet shape. Since it is not a paste but a sheet, it is possible to suppress the protrusion at the time of pasting and the creeping up to the surface of the pasting object.
  • the heat-bonding sheets 3 and 3 ′ include a pre-sintering layer 31 that becomes a sintered layer by heating, and a component migration preventing layer 32.
  • the heat bonding sheet 3 is laminated on the dicing tape 11 in such a manner that the dicing tape 11 and the component transfer preventing layer 32 are in contact with each other.
  • the pre-sintering layer may have a structure in which a plurality of layers that become a sintered layer by heating are laminated. That is, the heat-bonding sheet according to the present invention is not particularly limited as long as it has a pre-sintering layer and a component migration preventing layer.
  • the heat transfer bonding sheets 3 and 3 ′ are used because they have the component transition prevention layer 32.
  • the heat bonding sheets 3 and 3 ′ are not integrated with the dicing tape 11 and are used as a single sheet, since the component transfer prevention layer 32 is included, other components are used when bonded to other sheets.
  • the component transfer prevention layer 32 prevents the component from transferring. As a result, the components of the pre-sintering layer 31 are transferred to other sheets and the components of the other sheets are transferred to the pre-sintering layer 31 before being used after being bonded to other sheets. Can be suppressed.
  • the pre-sintering layer 31 is a layer that becomes a sintered layer by heating.
  • the pre-sintering layer 31 preferably contains fine metal particles and an organic binder.
  • a sintered layer can be formed by heating.
  • the pre-sintering layer 31 contains an organic binder, it is easy to handle as a sheet.
  • the pre-sintering layer 31 contains an organic binder, it is easy to control the adhesion in the stage before sintering.
  • the content of the metal fine particles contained in the pre-sintering layer 31 is preferably contained within a range of 30 to 70% by volume with respect to the whole pre-sintering layer 31.
  • the content of the metal fine particles is more preferably in the range of 35 to 65% by volume, and still more preferably in the range of 40 to 60% by volume.
  • a sintered layer can be suitably formed by heating.
  • two objects for example, a semiconductor chip and a lead frame
  • the content of the metal fine particles contained in the pre-sintering layer 31 is measured by the following method. In addition, content of the metal fine particle contained in the component transfer prevention layer 32 mentioned later is also measured by the same method.
  • the presintered layer is ion-polished in a cooling environment to expose the cross section.
  • the cross section is imaged using a field emission scanning electron microscope SU8020 (manufacturer: Hitachi High-Technologies). The imaging conditions are an acceleration voltage of 5 kV and a magnification of 50000 times, and a reflected electron image is obtained as image data.
  • Examples of the metal fine particles include sinterable metal particles.
  • the sinterable metal particles aggregates of metal fine particles can be suitably used.
  • the metal fine particles include fine particles made of metal.
  • the metal include gold, silver, copper, silver oxide, and copper oxide.
  • it is preferable that it is at least 1 sort (s) chosen from the group which consists of silver, copper, silver oxide, and copper oxide.
  • the metal fine particles are at least one selected from the group consisting of silver, copper, silver oxide, and copper oxide, heat bonding can be more suitably performed.
  • the average particle size of the sinterable metal particles is preferably 0.0005 ⁇ m or more, more preferably 0.001 ⁇ m or more.
  • Examples of the lower limit of the average particle diameter include 0.01 ⁇ m, 0.05 ⁇ m, and 0.1 ⁇ m.
  • the average particle size of the sinterable metal particles is preferably 30 ⁇ m or less, more preferably 25 ⁇ m or less.
  • Examples of the upper limit of the average particle diameter include 20 ⁇ m, 15 ⁇ m, 10 ⁇ m, and 5 ⁇ m.
  • the average particle size of the sinterable metal particles is measured by the following method. That is, the sinterable metal particles are observed with an SEM (scanning electron microscope), and the average particle diameter is measured.
  • the SEM observation is, for example, observing at a magnification of 5000 when the sinterable metal particles are in a micro size, observing at a magnification of 50000 in the case of a submicron size, and observing at a magnification of 300000 in the case of a nano size. preferable.
  • the shape of the sinterable metal particles is not particularly limited, and may be, for example, a spherical shape, a rod shape, a scale shape, or an indefinite shape.
  • the organic binder contained in the pre-sintering layer 31 preferably contains a thermally decomposable binder.
  • the thermally decomposable binder When the thermally decomposable binder is contained, the thermally decomposable binder is thermally decomposed when the sintered layer is formed by heating. As a result, a sintered layer can be formed more suitably.
  • the thermally decomposable binder is preferably solid at 23 ° C.
  • the term “solid” specifically means that the viscosity at 23 ° C. measured by the rheometer is greater than 100,000 Pa ⁇ s.
  • the thermally decomposable binder usually has a molecular weight greater than 500.
  • the “thermally decomposable binder” refers to a binder that can be thermally decomposed in the heat bonding step. It is preferable that the thermally decomposable binder hardly remains in the sintered layer (pre-sintering layer 31 after heating) after the heat bonding step.
  • the thermally decomposable binder for example, even if it is contained in the pre-sintering layer 31, the temperature after raising the temperature from 23 ° C. to 400 ° C. under the temperature rise rate of 10 ° C./min in the air atmosphere.
  • Examples thereof include materials whose carbon concentration obtained by energy dispersive X-ray analysis is 15% by weight or less.
  • the thermally decomposable binder For example, if a material that is more easily thermally decomposed is used as the thermally decomposable binder, even if the content is relatively increased, the sintered layer (pre-sintered layer 31 after heating) remains almost completely after the heat bonding step. You can avoid it.
  • thermally decomposable binder examples include polycarbonate, acrylic resin, ethyl cellulose, and polyvinyl alcohol. These materials can be used alone or in admixture of two or more. Of these, polycarbonate is preferable from the viewpoint of high thermal decomposability.
  • the polycarbonate is not particularly limited as long as it can be thermally decomposed in the heat bonding step, but an aromatic compound (for example, benzene) is interposed between the carbonate ester groups (—O—CO—O—) of the main chain.
  • aliphatic polycarbonate is preferable.
  • the aliphatic polycarbonate include polyethylene carbonate and polypropylene carbonate. Among these, polypropylene carbonate is preferable from the viewpoint of solubility in an organic solvent in producing a varnish for forming a sheet.
  • aromatic polycarbonate examples include those containing a bisphenol A structure in the main chain.
  • the polycarbonate preferably has a weight average molecular weight in the range of 10,000 to 1,000,000.
  • the weight average molecular weight is a value measured by GPC (gel permeation chromatography) and calculated in terms of polystyrene.
  • the acrylic resin is an ester of acrylic acid or methacrylic acid ester having a linear or branched alkyl group having 30 or less carbon atoms, particularly 4 to 18 carbon atoms, as long as it can be thermally decomposed in the heat bonding step.
  • Polymers (acrylic copolymers) containing seeds or two or more kinds as components are listed.
  • alkyl group examples include a methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, t-butyl group, isobutyl group, amyl group, isoamyl group, hexyl group, heptyl group, cyclohexyl group, 2- Examples include ethylhexyl group, octyl group, isooctyl group, nonyl group, isononyl group, decyl group, isodecyl group, undecyl group, lauryl group, tridecyl group, tetradecyl group, stearyl group, octadecyl group, and dodecyl group.
  • the other monomer forming the polymer is not particularly limited, and for example, acrylic acid, methacrylic acid, carboxyethyl acrylate, carboxypentyl acrylate, itaconic acid, maleic acid, fumaric acid Or a carboxyl group-containing monomer such as crotonic acid, an acid anhydride monomer such as maleic anhydride or itaconic anhydride, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, (meth ) 4-hydroxybutyl acrylate, 6-hydroxyhexyl (meth) acrylate, 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate or (4 -Hydroxymethyl cycle Hexyl) -hydroxyl group-containing monomers such as methyl acrylate, styrene sulfonic
  • acrylic resins those having a weight average molecular weight of 10,000 to 1,000,000 are more preferable, and those having a weight average molecular weight of 30,000 to 700,000 are more preferable. It is because it is excellent in the adhesiveness before a heat joining process and the thermal decomposability in the heat joining process as it is in the said numerical range.
  • the weight average molecular weight is a value measured by GPC (gel permeation chromatography) and calculated in terms of polystyrene.
  • acrylic resins acrylic resins that thermally decompose at 200 ° C. to 400 ° C. are preferable.
  • the organic binder contained in the pre-sintering layer 31 preferably contains 20 to 80% by weight of an organic component having a molecular weight of 500 or less with respect to the entire organic binder in the pre-sintering layer.
  • the content of the organic component having a molecular weight of 500 or less is more preferably 30 to 70% by weight, and further preferably 40 to 60% by weight.
  • the organic component having a molecular weight of 500 or less can be easily dispersed when the metal fine particles are dispersed in the thermally decomposable binder. Therefore, when the organic binder contained in the pre-sintering layer 31 contains 20 to 80% by weight of an organic component having a molecular weight of 500 or less, handling of the metal fine particles can be facilitated. Moreover, if an organic component having a molecular weight of 500 or less is used, it becomes easy to adjust arbitrary mechanical characteristics.
  • the content of the organic component having a molecular weight of 500 or less contained in the pre-sintering layer 31 is measured by the following method.
  • content of the organic component of molecular weight 500 or less contained in the component transfer prevention layer 32 mentioned later is also measured by the same method.
  • the pre-sintered layer portion of the heat bonding sheet is collected, immersed in chloroform, and allowed to stand for 12 hours. This solution is filtered through a 0.45 ⁇ m membrane filter, and GPC fractionation is performed on the filtrate. Using HLC-8320GPC manufactured by TOSOH, fractionation is performed under the following conditions.
  • the weight ratio is determined by determining the dry weight of each component.
  • the molecular weight is calculated in terms of polystyrene.
  • the organic component having a molecular weight of 500 or less preferably contains a low boiling point binder.
  • the organic component having a molecular weight of 500 or less is a concept including a low boiling point binder and an organic component having a molecular weight of 500 or less other than the low boiling point binder.
  • Organic components having a molecular weight of 500 or less other than the low boiling point binder may or may not be contained in the pre-sintering layer 31.
  • the low boiling point binder is used to facilitate handling of the metal fine particles. Moreover, the said low boiling point binder is used also in order to adjust arbitrary mechanical physical properties. Specifically, it can be used as a metal fine particle-containing paste in which the metal fine particles are dispersed in the low boiling point binder.
  • the low boiling point binder is usually in a liquid state at 23 ° C.
  • “liquid” includes semi-liquid. Specifically, it means that the viscosity at 23 ° C. by viscosity measurement with a dynamic viscoelasticity measuring device (rheometer) is 100,000 Pa ⁇ s or less.
  • the conditions for measuring the viscosity are as follows.
  • Rheometer MER III manufactured by Thermo SCIENTFIC Jig: Parallel plate 20mm ⁇ , gap 100 ⁇ m, shear rate 1 / second)
  • the low-boiling point binder has a boiling point of 100 ° C. or higher and 400 ° C. or lower.
  • Specific examples of the low boiling point binder include, for example, pentanol, hexanol, heptanol, octanol, 1-decanol, ethylene glycol, diethylene glycol, propylene glycol, butylene glycol, ⁇ -terpineol, 1,6-hexanediol, isobornyl.
  • Monovalent and polyhydric alcohols such as cyclohexanol (MTPH), ethylene glycol butyl ether, ethylene glycol phenyl ether, diethylene glycol methyl ether, diethylene glycol ethyl ether, diethylene glycol butyl ether, diethylene glycol isobutyl ether, diethylene glycol hexyl ether, triethylene glycol methyl ether, diethylene glycol Dimethyl ether, diethylene glycol Ethyl ether, diethylene glycol dibutyl ether, diethylene glycol butyl methyl ether, diethylene glycol isopropyl methyl ether, triethylene glycol dimethyl ether, triethylene glycol butyl methyl ether, propylene glycol propyl ether, dipropylene glycol methyl ether, dipropylene glycol ethyl ether, dipropylene glycol propyl Ethers, ethers such as dipropylene glycol butyl ether, dipropy
  • the pre-sintering layer 31 may appropriately contain, for example, a plasticizer in addition to the above components.
  • the pre-sintering layer 31 has a carbon concentration of 15% by weight obtained by energy dispersive X-ray analysis after raising the temperature from 23 ° C. to 400 ° C. under an atmosphere atmosphere at a temperature rising rate of 10 ° C./min. Or less, more preferably 12% by weight or less, and further preferably 10% by weight or less.
  • the carbon concentration is 15% by weight or less
  • the pre-sintering layer 31 contains almost no organic matter after being heated up to 400 ° C.
  • the heat resistance is excellent, and high reliability and thermal characteristics are obtained even in a high temperature environment.
  • the pre-sintering layer 31 preferably has a peak at 150 to 350 ° C. when a differential thermal analysis is performed from 23 ° C. to 500 ° C. in an air atmosphere at a temperature rising rate of 10 ° C./min. More preferably, it is present at ⁇ 320 ° C., and even more preferably 180-310 ° C. If the peak exists at 150 to 350 ° C., it can be said that the organic substance (for example, the resin component constituting the pre-sintering layer 31) is thermally decomposed in this temperature region. As a result, the heat resistance after the heat bonding process is more excellent.
  • the thickness of the pre-sintering layer 31 is preferably in the range of 5 to 100 ⁇ m, more preferably in the range of 20 to 90 ⁇ m, and still more preferably in the range of 40 to 80 ⁇ m.
  • the sintered layer can be more suitably formed.
  • the thickness of the pre-sintering layer 31 is measured by the following method. In addition, the thickness of the component transfer prevention layer 32 described later is also measured by the same method. 1.
  • the presintered layer is ion-polished in a cooling environment to expose the cross section. 2.
  • the cross section is imaged using a field emission scanning electron microscope SU8020 (manufacturer: Hitachi High-Technologies). The imaging conditions are an acceleration voltage of 5 kV and a magnification of 2000 times, and a reflected electron image is obtained as image data. 3.
  • image analysis software Image J the thickness is measured from the obtained image data.
  • the component migration preventing layer 32 is a layer for suppressing the components of the pre-sintering layer 31 from being transferred to the dicing tape 11 and the components of the dicing tape 11 from being transferred to the pre-sintering layer 31.
  • the component transfer prevention layer 32 contains a large amount of components that are decomposed by heating, when the pre-sintering layer 31 is heated to form a sintered layer, it is substantially not decomposed.
  • the component migration preventing layer 32 preferably contains at least an organic binder.
  • the component migration preventing layer 32 contains an organic binder, it is easy to handle as a sheet. Even if the pre-sintering layer 31 contains an organic binder, the component transfer preventing layer 32 is present, so that the components of the pre-sintering layer 31 are transferred to the dicing tape 11 or the components of the dicing tape 11 are baked. The transition to the pre-binding layer 31 can be suppressed.
  • the organic binder contained in the component migration preventing layer 32 preferably contains a thermally decomposable binder. Thermally decomposable binders tend to be difficult for low molecular weight components to pass through. Therefore, when the organic binder contained in the component migration preventing layer 32 includes a thermally decomposable binder, the components of the pre-sintering layer 31 migrate to the dicing tape 11 or the components of the dicing tape 11 become the pre-sintering layer 31. It can suppress suitably that it transfers.
  • thermally decomposable binder the same one as used in the pre-sintering layer 31 can be adopted.
  • the content of the thermally decomposable binder is preferably 80 to 100% by weight and more preferably 90 to 100% by weight with respect to the entire component migration preventing layer 32.
  • the content of the thermally decomposable binder is 80 to 100% by weight with respect to the entire component migration preventing layer 32, the migration of components between the pre-sintering layer 31 and the dicing tape 11 is suitably suppressed. it can.
  • the organic binder contained in the component migration preventing layer 32 preferably contains 0 to 20% by weight of an organic component having a molecular weight of 500 or less with respect to the whole organic binder of the component migration preventing layer. That is, even if it does not contain or contains an organic component having a molecular weight of 500 or less, it is preferably 20% by weight or less.
  • the content of the organic component having a molecular weight of 500 or less is more preferably 0 to 15% by weight, and further preferably 0 to 10% by weight.
  • An organic component having a molecular weight of 500 or less is a component that easily moves to another sheet (the dicing tape 11 in the present embodiment) because the molecular weight is small.
  • the organic binder contained in the component migration preventing layer 32 contains an organic component having a molecular weight of 500 or less in the range of 0 to 20% by weight, it can be said that there are few components that are likely to migrate. Therefore, it can suppress that a component transfers from the component transfer prevention layer 32 to the pre-sintering layer 31 or the dicing tape 11.
  • the same organic component as that used in the pre-sintering layer 31 can be adopted.
  • the component migration preventing layer 32 does not contain or contain metal fine particles, it is preferably contained within a range of 30% by volume or less with respect to the entire component migration preventing layer. That is, the content of the metal fine particles contained in the component migration preventing layer 32 is preferably in the range of 0 to 30% by volume with respect to the entire component migration preventing layer.
  • the components of the pre-sintering layer 31 migrate to the dicing tape 11. Can reduce the number of roads. As a result, the migration of components can be further suppressed.
  • metal fine particles those similar to those used in the pre-sintering layer 31 can be adopted.
  • the thickness of the component migration preventing layer 32 is preferably in the range of 2 to 10 ⁇ m, more preferably in the range of 2.5 to 8 ⁇ m, and still more preferably in the range of 3 to 6 ⁇ m.
  • the component migration preventing layer 32 does not contain metal fine particles or the content is less than that of the pre-sintering layer. For this reason, if it is too thick, it interferes with joining by sintering. Therefore, when the thickness of the component migration preventing layer 32 is in the range of 2 to 10 ⁇ m, it is possible to prevent a significant influence on the bonding by sintering. In particular, when the thickness of the component migration preventing layer 32 is reduced within the numerical range, it is preferable that the metal fine particles are not included or the content is reduced within the numerical range.
  • the passage of low molecular components can be reduced.
  • the thickness of the component migration preventing layer 32 it is preferable to increase the content of the metal fine particles within the numerical range.
  • the bonding force of the portion where the component migration preventing layer 32 was present after sintering is weakened. Therefore, the joining force after sintering can be given by containing metal fine particles to some extent. If it is thick, it is easy to control the adhesive strength before sintering.
  • the heat bonding sheets 3 and 3 ′ can be manufactured by a usual method.
  • a varnish containing each of the above components for forming the pre-sintering layer 31 is prepared, and the coating film is formed by applying the varnish to the base separator so as to have a predetermined thickness. It is made to dry and the layer 31 before sintering is obtained.
  • a varnish containing each of the above components for forming the component migration preventing layer 32 was prepared, and the varnish was applied on the base separator so as to have a predetermined thickness to form a coating film. It is made to dry and the component transfer prevention layer 32 is obtained. Thereafter, the pre-sintering layer 31 and the component migration preventing layer 32 are bonded together, whereby the heat bonding sheets 3 and 3 ′ can be manufactured.
  • the solvent used in the varnish is not particularly limited, but an organic solvent or an alcohol solvent that can uniformly dissolve, knead, or disperse the above components is preferable.
  • the organic solvent include ketone solvents such as dimethylformamide, dimethylacetamide, N-methylpyrrolidone, acetone, methyl ethyl ketone, and cyclohexanone, toluene, and xylene.
  • alcohol solvent examples include ethylene glycol, diethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2- Examples include butene-1,4-diol, 1,2,6-hexanetriol, glycerin, octanediol, 2-methyl-2,4-pentanediol, and terpineol.
  • the application method is not particularly limited.
  • the solvent coating method include a die coater, a gravure coater, a roll coater, a reverse coater, a comma coater, a pipe doctor coater, and screen printing.
  • a die coater is preferable in terms of high uniformity of coating thickness.
  • the drying conditions for the coating film are not particularly limited, and for example, the drying can be performed at a drying temperature of 70 to 160 ° C. and a drying time of 1 to 5 minutes. Even after the coating film is dried, depending on the type of solvent, the entire solvent may remain in the coating film without being vaporized.
  • the pre-sintering layer 31 contains the low boiling point binder
  • a part of the low boiling point binder may volatilize depending on the drying conditions. Therefore, the ratio of each component constituting the pre-sintering layer 31 varies depending on the drying conditions. For example, even in the pre-sintering layer 31 formed from the same varnish, the higher the drying temperature and the longer the drying time, the content of metal fine particles in the entire pre-sintering layer 31 and the thermal decomposability. The binder content increases. Therefore, it is preferable to set the drying conditions such that the content of the metal fine particles and the thermally decomposable binder in the pre-sintering layer 31 is a desired amount. The same applies when the component migration preventing layer 32 contains the low boiling point binder.
  • polyethylene terephthalate (PET) polyethylene
  • polypropylene polypropylene
  • a release agent such as a fluorine-type release agent or a long-chain alkyl acrylate release agent
  • the respective components are mixed with a mixer, and the resulting mixture is press-molded to form a pre-sintering layer 31 and a component migration preventing layer 32. And a method of bonding them together.
  • a planetary mixer etc. are mentioned as a mixer.
  • the total thickness of the heat-bonding sheets 3, 3 ' is preferably 20 to 100 ⁇ m, more preferably 30 to 90 ⁇ m, at 23 ° C. before heating.
  • the dicing tape 11 is configured by laminating an adhesive layer 2 on a substrate 1.
  • the base material 1 is a strength base of the heat bonding sheets 10 and 12 with a dicing tape, and preferably has ultraviolet transparency.
  • the substrate 1 include low density polyethylene, linear polyethylene, medium density polyethylene, high density polyethylene, ultra low density polyethylene, random copolymer polypropylene, block copolymer polypropylene, homopolyprolene, polybutene, polymethylpentene, and the like.
  • Polyolefin ethylene-vinyl acetate copolymer, ionomer resin, ethylene- (meth) acrylic acid copolymer, ethylene- (meth) acrylic acid ester (random, alternating) copolymer, ethylene-butene copolymer, ethylene -Hexene copolymer, Polyester such as polyurethane, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyimide, polyetheretherketone, polyetherimide, polyamide, wholly aromatic polyamide, polyphenyls Fuido, aramid (paper), glass, glass cloth, fluorine resin, polyvinyl chloride, polyvinylidene chloride, cellulose resin, silicone resin, metal (foil), paper, and the like.
  • Polyester such as polyurethane, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyimide, polyetheretherketone, polyetherimide, polyamide, wholly aromatic polyamide,
  • examples of the material of the substrate 1 include polymers such as a crosslinked body of the resin.
  • the plastic film may be used unstretched or may be uniaxially or biaxially stretched as necessary.
  • the adhesive area between the pressure-sensitive adhesive layer 2 and the heat bonding sheets 3 and 3 ′ is reduced by thermally shrinking the base material 1 after dicing, The collection of the semiconductor chip can be facilitated.
  • the surface of the substrate 1 is chemically treated by conventional surface treatments such as chromic acid treatment, ozone exposure, flame exposure, high piezoelectric impact exposure, ionizing radiation treatment, etc. in order to improve adhesion and retention with adjacent layers.
  • a physical treatment or a coating treatment with a primer for example, an adhesive substance described later can be performed.
  • the thickness of the substrate 1 is not particularly limited and can be appropriately determined, but is generally about 5 to 200 ⁇ m.
  • the pressure-sensitive adhesive used for forming the pressure-sensitive adhesive layer 2 is not particularly limited, and for example, a general pressure-sensitive adhesive such as an acrylic pressure-sensitive adhesive or a rubber-based pressure-sensitive adhesive can be used.
  • a general pressure-sensitive adhesive such as an acrylic pressure-sensitive adhesive or a rubber-based pressure-sensitive adhesive
  • an acrylic pressure-sensitive adhesive having an acrylic polymer as a base polymer from the viewpoint of cleanability with an organic solvent such as ultrapure water or alcohol of an electronic component that is difficult to contaminate a semiconductor wafer or glass Is preferred.
  • acrylic polymer examples include (meth) acrylic acid alkyl esters (for example, methyl ester, ethyl ester, propyl ester, isopropyl ester, butyl ester, isobutyl ester, s-butyl ester, t-butyl ester, pentyl ester, Isopentyl ester, hexyl ester, heptyl ester, octyl ester, 2-ethylhexyl ester, isooctyl ester, nonyl ester, decyl ester, isodecyl ester, undecyl ester, dodecyl ester, tridecyl ester, tetradecyl ester, hexadecyl ester , Octadecyl esters, eicosyl esters, etc., alkyl groups having 1 to 30 carbon atoms, especially 4 to 18 carbon atoms, such as
  • the acrylic polymer contains units corresponding to other monomer components copolymerizable with the (meth) acrylic acid alkyl ester or cycloalkyl ester, if necessary, for the purpose of modifying cohesive force, heat resistance and the like. You may go out.
  • Such monomer components include, for example, carboxyl group-containing monomers such as acrylic acid, methacrylic acid, carboxyethyl (meth) acrylate, carboxypentyl (meth) acrylate, itaconic acid, maleic acid, fumaric acid, and crotonic acid; maleic anhydride Acid anhydride monomers such as itaconic anhydride; 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate Hydroxyl group-containing monomers such as 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate, (4-hydroxymethylcyclohexyl) methyl (meth) acrylate; Styrene Contains sulfonic acid groups such as phonic acid, allyl sulf
  • a polyfunctional monomer or the like can be included as a monomer component for copolymerization as necessary.
  • examples of such polyfunctional monomers include hexanediol di (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, Pentaerythritol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, epoxy (meth) acrylate, polyester (meth) acrylate, urethane (meth) An acrylate etc. are mentioned. These polyfunctional monomers can also be used alone or in combination of two or more. The amount of the polyfunctional monomer used is preferably
  • the acrylic polymer can be obtained by subjecting a single monomer or a mixture of two or more monomers to polymerization.
  • the polymerization can be performed by any method such as solution polymerization, emulsion polymerization, bulk polymerization, suspension polymerization and the like.
  • the content of the low molecular weight substance is preferably small.
  • the number average molecular weight of the acrylic polymer is preferably 100,000 or more, more preferably about 200,000 to 3,000,000, and particularly preferably about 300,000 to 1,000,000.
  • an external cross-linking agent can be appropriately employed for the pressure-sensitive adhesive in order to increase the number average molecular weight of an acrylic polymer as a base polymer.
  • the external crosslinking method include a method of adding a so-called crosslinking agent such as a polyisocyanate compound, an epoxy compound, an aziridine compound, a melamine crosslinking agent, and reacting them.
  • a so-called crosslinking agent such as a polyisocyanate compound, an epoxy compound, an aziridine compound, a melamine crosslinking agent, and reacting them.
  • the amount used is appropriately determined depending on the balance with the base polymer to be cross-linked, and further depending on the intended use as an adhesive. In general, it is preferable to add about 5 parts by weight or less, and further 0.1 to 5 parts by weight with respect to 100 parts by weight of the base polymer.
  • additives such as conventionally well-known various tackifiers and anti-aging agent, other than the said component as needed to an adhesive.
  • the pressure-sensitive adhesive layer 2 may be formed of a radiation curable pressure-sensitive adhesive.
  • the radiation-curable pressure-sensitive adhesive can control its adhesive strength by irradiation with radiation such as ultraviolet rays. For example, when an ultraviolet ray is irradiated in a state where the heat bonding sheet 3 is bonded, an anchor effect can be generated between the heat bonding sheet 3 and the heat bonding sheet 3. Thereby, the adhesiveness of the adhesive layer 2 and the sheet
  • the radiation curable pressure-sensitive adhesive those having a radiation curable functional group such as a carbon-carbon double bond and exhibiting adhesiveness can be used without particular limitation.
  • the radiation curable pressure sensitive adhesive for example, an addition type radiation curable pressure sensitive adhesive in which a radiation curable monomer component or an oligomer component is blended with a general pressure sensitive pressure sensitive adhesive such as an acrylic pressure sensitive adhesive or a rubber pressure sensitive adhesive. An agent can be illustrated.
  • Examples of the radiation curable monomer component to be blended include urethane oligomer, urethane (meth) acrylate, trimethylolpropane tri (meth) acrylate, tetramethylolmethane tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, and pentaerythritol.
  • Examples include stall tetra (meth) acrylate, dipentaerystol monohydroxypenta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, and 1,4-butanediol di (meth) acrylate.
  • the radiation curable oligomer component examples include urethane, polyether, polyester, polycarbonate, and polybutadiene oligomers, and those having a molecular weight in the range of about 100 to 30000 are suitable.
  • the compounding amount of the radiation-curable monomer component or oligomer component can be appropriately determined in accordance with the type of the pressure-sensitive adhesive layer, and the amount capable of reducing the adhesive strength of the pressure-sensitive adhesive layer. In general, the amount is, for example, about 5 to 500 parts by weight, preferably about 40 to 150 parts by weight with respect to 100 parts by weight of the base polymer such as an acrylic polymer constituting the pressure-sensitive adhesive.
  • the radiation-curable pressure-sensitive adhesive has a carbon-carbon double bond in the polymer side chain, main chain, or main chain terminal as a base polymer.
  • Intrinsic radiation curable pressure sensitive adhesives using Intrinsic radiation curable pressure-sensitive adhesive does not need to contain an oligomer component, which is a low-molecular component, or does not contain much, so that the oligomer component or the like does not move in the pressure-sensitive adhesive over time and is stable. Since the adhesive layer of a layer structure can be formed, it is preferable.
  • the base polymer having a carbon-carbon double bond those having a carbon-carbon double bond and having adhesiveness can be used without particular limitation.
  • those having an acrylic polymer as a basic skeleton are preferable.
  • the basic skeleton of the acrylic polymer include the acrylic polymers exemplified above.
  • the method for introducing the carbon-carbon double bond into the acrylic polymer is not particularly limited, and various methods can be adopted. However, it is easy in terms of molecular design to introduce the carbon-carbon double bond into the polymer side chain. It is. For example, after a monomer having a functional group is copolymerized in advance with an acrylic polymer, a compound having a functional group capable of reacting with the functional group and a carbon-carbon double bond is converted into a radiation-curable carbon-carbon double bond. A method of performing condensation or addition reaction while maintaining the above.
  • combinations of these functional groups include carboxylic acid groups and epoxy groups, carboxylic acid groups and aziridyl groups, hydroxyl groups and isocyanate groups, and the like.
  • a combination of a hydroxyl group and an isocyanate group is preferable because of easy tracking of the reaction.
  • the functional group may be on either side of the acrylic polymer and the compound as long as the combination of these functional groups generates an acrylic polymer having the carbon-carbon double bond.
  • it is preferable that the acrylic polymer has a hydroxyl group and the compound has an isocyanate group.
  • examples of the isocyanate compound having a carbon-carbon double bond include methacryloyl isocyanate, 2-methacryloyloxyethyl isocyanate, m-isopropenyl- ⁇ , ⁇ -dimethylbenzyl isocyanate, and the like.
  • the acrylic polymer a copolymer obtained by copolymerizing the above-mentioned exemplified hydroxy group-containing monomers, ether compounds of 2-hydroxyethyl vinyl ether, 4-hydroxybutyl vinyl ether, diethylene glycol monovinyl ether, or the like is used.
  • the base polymer (particularly acrylic polymer) having the carbon-carbon double bond can be used alone, but the radiation curable monomer does not deteriorate the characteristics.
  • Components and oligomer components can also be blended.
  • the radiation-curable oligomer component or the like is usually in the range of 30 parts by weight, preferably in the range of 0 to 10 parts by weight, with respect to 100 parts by weight of the base polymer.
  • the radiation curable pressure-sensitive adhesive contains a photopolymerization initiator when cured by ultraviolet rays or the like.
  • the photopolymerization initiator include 4- (2-hydroxyethoxy) phenyl (2-hydroxy-2-propyl) ketone, ⁇ -hydroxy- ⁇ , ⁇ '-dimethylacetophenone, 2-methyl-2-hydroxypropio ⁇ -ketol compounds such as phenone and 1-hydroxycyclohexyl phenyl ketone; methoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxyacetophenone, 2-methyl-1- [4- ( Acetophenone compounds such as methylthio) -phenyl] -2-morpholinopropane-1; benzoin ether compounds such as benzoin ethyl ether, benzoin isopropyl ether and anisoin methyl ether; ketal compounds such as benzyldimethyl ketal; 2-naphthalene
  • the radiation curable pressure-sensitive adhesive examples include photopolymerizable compounds such as an addition polymerizable compound having two or more unsaturated bonds and an alkoxysilane having an epoxy group disclosed in JP-A-60-196956. And a rubber-based pressure-sensitive adhesive and an acrylic pressure-sensitive adhesive containing a photopolymerization initiator such as a carbonyl compound, an organic sulfur compound, a peroxide, an amine, and an onium salt-based compound.
  • photopolymerizable compounds such as an addition polymerizable compound having two or more unsaturated bonds and an alkoxysilane having an epoxy group disclosed in JP-A-60-196956.
  • a rubber-based pressure-sensitive adhesive and an acrylic pressure-sensitive adhesive containing a photopolymerization initiator such as a carbonyl compound, an organic sulfur compound, a peroxide, an amine, and an onium salt-based compound.
  • a compound that is colored by irradiation with radiation may be contained as necessary.
  • a compound to be colored in the pressure-sensitive adhesive layer 2 by irradiation with radiation only the irradiated portion can be colored. That is, the portion 2a corresponding to the workpiece pasting portion 3a shown in FIG. 1 can be colored. Accordingly, whether or not the pressure-sensitive adhesive layer 2 has been irradiated with radiation can be immediately determined by visual observation, the workpiece pasting portion 3a can be easily recognized, and workpieces can be easily pasted together.
  • the detection accuracy is increased, and no malfunction occurs when the semiconductor chip is picked up.
  • the compound that is colored by irradiation with radiation is a colorless or light color compound before irradiation with radiation, but becomes a color by irradiation with radiation, and examples thereof include leuco dyes.
  • the use ratio of the compound colored by radiation irradiation can be set as appropriate.
  • the thickness of the pressure-sensitive adhesive layer 2 is not particularly limited, but is preferably about 1 to 50 ⁇ m from the viewpoint of preventing chipping of the chip cut surface and compatibility of fixing and holding the heat bonding sheets 3 and 3 ′. .
  • the thickness is preferably 2 to 30 ⁇ m, more preferably 5 to 25 ⁇ m.
  • the dicing tape 11 is manufactured as follows, for example.
  • the base material 1 can be formed by a conventionally known film forming method.
  • the film forming method include a calendar film forming method, a casting method in an organic solvent, an inflation extrusion method in a closed system, a T-die extrusion method, a co-extrusion method, and a dry lamination method.
  • the coating film is dried under predetermined conditions (heat-crosslinked as necessary), and the pressure-sensitive adhesive layer 2 is formed.
  • a coating method For example, roll coating, screen coating, gravure coating, etc. are mentioned.
  • drying conditions for example, a drying temperature of 80 to 150 ° C. and a drying time of 0.5 to 5 minutes are performed.
  • the coating film may be dried on the said drying conditions, and the adhesive layer 2 may be formed. Then, the adhesive layer 2 is bonded together with the separator on the base material 1. Thereby, the dicing tape 11 is produced.
  • the heat bonding sheets 10 and 12 with a dicing tape can be manufactured by a usual method.
  • seat 10 for heat joining with a dicing tape can be manufactured by bonding the adhesive layer 2 of the dicing tape 11 and the sheet
  • the heat bonding sheet 10 with dicing tape the heat bonding sheet 3 is preferably covered with a separator.
  • the base separator laminated on the heat bonding sheet 3 is peeled off, and the front base separator is peeled off, followed by heat joining with the dicing tape.
  • the method of sticking a separator on the exposed surface of the heat bonding sheet 3 of the sheet 10 for use is mentioned. That is, it is preferable that the dicing tape 11, the heat bonding sheet 3, and the separator are stacked in this order.
  • the heat bonding sheet with dicing tape in which the dicing tape and the heat bonding sheet are laminated has been described.
  • the heat bonding sheet of the present invention may be provided in a state where it is not bonded to a dicing tape.
  • the heat bonding sheet is preferably a heat bonding sheet with a double-sided separator sandwiched between two separators. That is, it is preferable to use a heat bonding sheet with a double-sided separator in which the first separator, the heat bonding sheet, and the second separator are laminated in this order.
  • seat for heat joining may be the form on which the separator was laminated
  • the method of manufacturing a semiconductor device includes the step of preparing the heat bonding sheet; Bonding the dicing tape to the heat bonding sheet to obtain a heat bonding sheet with a dicing tape; and A bonding step of bonding the heat bonding sheet of the heat bonding sheet with the dicing tape and the back surface of the semiconductor wafer; A dicing step of dicing the semiconductor wafer together with the heat bonding sheet to form a chip-like semiconductor chip; Picking up the semiconductor chip together with the heat bonding sheet from the heat bonding sheet with the dicing tape; A heat bonding step of heat bonding the semiconductor chip onto the adherend via the heat bonding sheet (hereinafter also referred to as a first embodiment).
  • the method for manufacturing a semiconductor device includes the step of preparing the heat bonding sheet with dicing tape described above, A bonding step of bonding the heat bonding sheet of the heat bonding sheet with the dicing tape and the back surface of the semiconductor wafer; A dicing step of dicing the semiconductor wafer together with the heat bonding sheet to form a chip-like semiconductor chip; Picking up the semiconductor chip together with the heat bonding sheet from the heat bonding sheet with the dicing tape; A heat bonding step of heat bonding the semiconductor chip onto the adherend via the heat bonding sheet (hereinafter also referred to as a second embodiment).
  • the semiconductor device manufacturing method according to the first embodiment is different from the semiconductor device manufacturing method according to the second embodiment in that the semiconductor device according to the first embodiment uses a heat bonding sheet with dicing tape.
  • the manufacturing method of the apparatus is different in that the heat bonding sheet is used alone, and is common in other points.
  • the step of bonding the sheet to the dicing tape is performed.
  • the manufacturing method of the semiconductor device according to the second embodiment is performed. And can be similar. Therefore, hereinafter, a method for manufacturing a semiconductor device according to the second embodiment will be described.
  • the heat bonding sheets with dicing tape 10 and 12 are prepared (preparing step).
  • the heat bonding sheet 3, 3 ′ has a pre-sintering layer 31 and a component migration preventing layer 32. Since it has the component transfer prevention layer 32, it prevents that the component of the layer 31 before sintering transfers to the dicing tape 11, and the component of the dicing tape transfers to the layer 31 before sintering before using. it can.
  • the dicing tape-attached heat-bonding sheets 10 and 12 are used as follows after appropriately separating the separator provided arbitrarily on the heat-bonding sheets 3 and 3 '. Below, the case where the heating joining sheet
  • the semiconductor wafer 4 is pressure-bonded onto the semiconductor wafer bonding portion 3a of the heat bonding sheet 3 in the heat bonding sheet 10 with dicing tape, and this is bonded and held (fixing step). This step is performed while pressing with a pressing means such as a pressure roll.
  • the attaching temperature at the time of mounting is not particularly limited and is preferably in the range of 23 to 90 ° C., for example.
  • the semiconductor wafer 4 is preferably one in which an electrode pad is formed on one surface and a silver thin film is formed on the outermost surface of the other surface (hereinafter also referred to as the back surface).
  • Examples of the thickness of the silver thin film include 10 nm to 1000 nm.
  • a titanium thin film may be further formed between the semiconductor wafer 4 and the silver thin film.
  • Examples of the thickness of the titanium thin film include 10 nm to 1000 nm. If the said silver thin film is formed, the semiconductor chip 5 and the sheet
  • the silver thin film and the titanium thin film can be formed by vapor deposition, for example.
  • the semiconductor wafer 4 is diced (dicing process). Thereby, the semiconductor wafer 4 is cut into a predetermined size and separated into individual pieces, and the semiconductor chip 5 is manufactured.
  • the method of dicing is not particularly limited, for example, the dicing is performed from the circuit surface side of the semiconductor wafer 4 according to a conventional method. Further, in this step, for example, a cutting method called full cut in which cutting is performed up to the heat bonding sheet with dicing tape 10 can be adopted. It does not specifically limit as a dicing apparatus used at this process, A conventionally well-known thing can be used. Further, since the semiconductor wafer 4 is bonded and fixed by the heat bonding sheet 10 with a dicing tape, chip chipping and chip jumping can be suppressed, and damage to the semiconductor wafer 4 can also be suppressed.
  • the semiconductor chip 5 is picked up in order to peel the semiconductor chip 5 adhered and fixed to the heat bonding sheet 10 with dicing tape (pickup process).
  • the pickup method is not particularly limited, and various conventionally known methods can be employed. For example, there is a method in which each semiconductor chip 5 is pushed up by a needle from the heating bonding sheet 10 with dicing tape, and the pushed-up semiconductor chip 5 is picked up by a pickup device.
  • the needle push-up speed is preferably 5 to 100 mm / sec, more preferably 5 to 10 mm / sec from the viewpoint of preventing chipping.
  • the pickup may be performed after the pressure-sensitive adhesive layer 2 is irradiated with ultraviolet rays.
  • seat 3 for heat bonding of the adhesive layer 2 falls, and peeling of the semiconductor chip 5 becomes easy.
  • the pickup can be performed without damaging the semiconductor chip 5.
  • Conditions such as irradiation intensity and irradiation time at the time of ultraviolet irradiation are not particularly limited, and may be set as necessary.
  • a well-known thing can be used as a light source used for ultraviolet irradiation.
  • the adhesive layer is preliminarily irradiated and cured and the cured adhesive layer and the heat bonding sheet are bonded together, or after the pressure sensitive adhesive layer and the heat bonding sheet are bonded together, radiation is applied.
  • the ultraviolet irradiation here may not be performed.
  • the picked-up semiconductor chip 5 is die-attached (heat bonded) to the adherend 6 via the heat bonding sheet 3 (heat bonding process).
  • the adherend 6 include a lead frame, a TAB film, a substrate, and a separately manufactured semiconductor chip.
  • the adherend 6 may be, for example, a deformable adherend that can be easily deformed or a non-deformable adherend (such as a semiconductor wafer) that is difficult to deform.
  • the lead frame examples include metal lead frames such as a Cu lead frame and a 42 Alloy lead frame.
  • a conventionally well-known thing can be used as said board
  • examples thereof include organic substrates made of glass epoxy, BT (bismaleimide-triazine), polyimide, and the like.
  • BT bismaleimide-triazine
  • polyimide polyimide
  • the substrate may be an insulating circuit substrate in which a copper circuit substrate is laminated on an insulating substrate such as a ceramic plate. If an insulated circuit board is used, for example, a power semiconductor device that controls and supplies power can be manufactured.
  • the metal fine particles are sintered by heating, and the thermally decomposable binder is thermally decomposed as necessary. Further, the residual low boiling point binder that has not been volatilized by the drying step is volatilized.
  • the heating temperature is preferably 180 to 400 ° C, more preferably 190 to 370 ° C, and further preferably 200 to 350 ° C.
  • the heating time is preferably 0.3 to 300 minutes, more preferably 0.5 to 240 minutes, and still more preferably 1 to 180 minutes.
  • the pressurizing condition is preferably in the range of 1 to 500 kg / cm 2 , more preferably in the range of 5 to 400 kg / cm 2 .
  • the heat bonding under pressure can be performed with an apparatus capable of simultaneously performing heating and pressure, such as a flip chip bonder. Moreover, a parallel plate press may be used.
  • the tip of the terminal portion (inner lead) of the adherend 6 and an electrode pad (not shown) on the semiconductor chip 5 are electrically connected by a bonding wire 7.
  • a bonding wire 7 for example, a gold wire, an aluminum wire, a copper wire or the like is used.
  • the temperature for wire bonding is 23 to 300 ° C., preferably 23 to 250 ° C.
  • the heating time is several seconds to several minutes.
  • the connection is performed by a combination of vibration energy by ultrasonic waves and crimping energy by applying pressure while being heated so as to be within the temperature range.
  • the semiconductor chip 5 is sealed with a sealing resin 8 as shown in FIG. 3 (sealing step).
  • This step is performed to protect the semiconductor chip 5 and the bonding wire 7 mounted on the adherend 6.
  • This step can be performed by molding a sealing resin with a mold.
  • the sealing resin 8 for example, an epoxy resin is used.
  • the heating temperature at the time of resin sealing is usually 175 ° C. for 60 to 90 seconds, but the present invention is not limited to this. For example, it can be cured at 165 to 185 ° C. for several minutes. Thereby, the sealing resin 8 is cured.
  • a method of embedding the semiconductor chip 5 in a sheet-like sealing sheet (for example, see JP2013-7028A) can also be employed.
  • a gel sealing type in which silicone gel is poured into a case type container may be used.
  • heating is performed as necessary to completely cure the insufficiently cured sealing resin 8 in the sealing process (post-curing process).
  • the heating temperature in this step varies depending on the type of the sealing resin, but is in the range of 165 to 185 ° C., for example, and the heating time is about 0.5 to 8 hours.
  • seat for heat joining with a dicing tape can be used suitably also when laminating
  • the heat bonding sheet and the spacer may be stacked between the semiconductor chips, or only the heat bonding sheet may be stacked between the semiconductor chips without stacking the spacer. It can be changed as appropriate.
  • the heat bonding sheet and the heat bonding sheet with dicing tape of the present invention are not limited to the applications exemplified above, and can be used for heat bonding two things.
  • Thermally decomposable binder A polypropylene carbonate resin
  • QPAC 40 manufactured by Empower, solid at 23 ° C.
  • Low boiling point binder A isobornylcyclohexanol
  • Tersolve MTPH manufactured by Nippon Terpene Chemical Co., Ltd.
  • Liquid metal fine particles A at 23 ° C. Copper fine particles with an average particle diameter of 200 nm manufactured by Mitsui Mining & Smelting Co., Ltd.
  • Organic solvent A Methyl ethyl ketone (MEK)
  • Example 1 ⁇ Preparation of pre-sintering layer> A solution (12% by weight) in which pyrolyzable binder A is previously dissolved in MEK at a weight ratio of 1: 1 (12% by weight), low boiling point binder A (4% by weight), metal fine particles A (60% by weight), and organic solvent A (24 wt%) was placed in a stirring vessel of a hybrid mixer (Keyence HM-500) and stirred and mixed in 3 minutes in the stirring mode. The obtained varnish was applied to and dried on a release treatment film (MRA38 manufactured by Mitsubishi Resin Co., Ltd.) so that the thickness after drying was 70 ⁇ m to obtain a pre-sintering layer A. The drying condition was 80 ° C. for 2 minutes.
  • a release treatment film MRA38 manufactured by Mitsubishi Resin Co., Ltd.
  • ⁇ Preparation of component migration prevention layer> A solution (50% by weight) in which the thermally decomposable binder A was previously dissolved in MEK at a weight ratio of 1: 1 and an organic solvent A (50% by weight) were stirred in a hybrid mixer (Keyence HM-500). The mixture was stirred and mixed in a stirring mode for 3 minutes. The obtained varnish was applied to and dried on a release treatment film (MRA38 manufactured by Mitsubishi Resin Co., Ltd.) so that the thickness after drying was 3 ⁇ m, to obtain a component migration preventing layer A. The drying condition was 80 ° C. for 2 minutes.
  • Example 2 ⁇ Preparation of component migration prevention layer> Using the varnish for the component transfer layer A of Example 1, the component transfer prevention layer B was obtained by applying and drying so that the thickness after drying was 6 ⁇ m.
  • a polyisocyanate compound (trade name “Coronate L”, manufactured by Nippon Polyurethane Co., Ltd.) and a photopolymerization initiator (trade name “Irgacure 184”), 3 parts of Ciba Specialty Chemicals Co., Ltd.) was added to prepare an adhesive solution (also referred to as “adhesive solution A”).
  • the pressure-sensitive adhesive solution A prepared above was applied onto the silicone-treated surface of the PET release liner, and dried by heating at 120 ° C. for 2 minutes to form a pressure-sensitive adhesive layer A having a thickness of 10 ⁇ m.
  • a 125 ⁇ m thick Gunze EVA film (ethylene / vinyl acetate copolymer film) was bonded to the exposed surface of the pressure-sensitive adhesive layer A, and stored at 23 ° C. for 72 hours to obtain a dicing tape A.
  • UV irradiation Condition: Ultraviolet (UV) irradiation device (trade name “UM-810” (manufactured by Nitto Seiki Co., Ltd.)) was used for UV irradiation integrated light quantity: 300 mJ / cm 2 for UV irradiation) It was. Thereafter, a heat treatment was further performed at 70 ° C. for 10 minutes. Next, the dicing tape A was peeled off. Note that the UV irradiation and heat treatment here are for so-called acceleration tests, and are different from actual use conditions.
  • the heating rate is 90 under a nitrogen atmosphere.
  • Thermogravimetric analysis was performed from 23 ° C to 500 ° C under the conditions of ° C / min.
  • a TG-DTA simultaneous measurement apparatus (differential thermal-thermogravimetric simultaneous measurement apparatus), more specifically, a differential type differential thermal balance TG-DTA TG8120 manufactured by Rigaku Corporation was used.
  • the weight loss at 23 ° C. was 0%. In this analysis, when the weight is less than the weight at 23 ° C., the value becomes a negative value.
  • the value at 500 ° C. (weight loss (%)) was taken as Y.
  • thermogravimetric analysis was performed as it was without sticking on the dicing tape with respect to the heat bonding sheet of Example (sheet having a two-layer structure of the pre-sintering layer A and the component migration preventing layer A).
  • the thermogravimetric analysis method was the same as described above.
  • the value at 500 ° C. (weight loss (%)) was defined as Y0.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Dicing (AREA)
  • Die Bonding (AREA)
  • Adhesive Tapes (AREA)

Abstract

加熱により焼結層となる焼結前層と、成分移行防止層とを有する加熱接合用シート。

Description

加熱接合用シート、及び、ダイシングテープ付き加熱接合用シート
 本発明は、加熱接合用シート、及び、ダイシングテープ付き加熱接合用シートに関する。
 半導体装置の製造において半導体素子を金属リードフレームなどの被着体に接着する方法(いわゆるダイボンディング法)は、従来の金-シリコン共晶に始まり、半田、樹脂ペーストによる方法に推移してきた。現在では、導電性の樹脂ペーストを使用することがある。
 近年、電力の制御や供給を行うパワー半導体装置の普及が顕著となっている。パワー半導体装置には常に電流が流れるため、発熱量が大きい。それゆえ、パワー半導体装置に使用される導電性の接着剤は、高い放熱性と低い電気抵抗率を持つことが望ましい。
 パワー半導体装置には、低損失で高速動作が求められる。従来、パワー半導体装置にはIGBT(Insulated Gate Bipolar Transistor)やMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)などのSiを用いた半導体が用いられていた。近年では、SiCやGaNなどの半導体を用いたものが開発され、今後拡大するものと予想されている。
 SiCやGaNを用いた半導体は、バンドギャップが大きい、絶縁破壊電界が高いなどの特徴があり、低損失、高速動作、高温動作が可能となる。高温動作は、熱環境が厳しい自動車や小型電力変換機器等においてメリットとなる。熱環境が厳しい用途の半導体装置は、250℃前後の高温動作が想定されており、従来の接合・接着材料であるはんだや導電性接着剤では、熱特性、信頼性に問題が生じる。
 そこで、従来、空孔率が15~50体積%であり、銀及び/又は銅を含み、炭素分が1.5質量%以下である多孔質シートからなるダイボンドシートが提案されている(例えば、特許文献1参照)。
国際公開第2015/060346号
 しかしながら、特許文献1のダイボンドシートは、炭素分が1.5質量%以下である。そのため、特許文献1のダイボンドシートは、シート作成時の作業性が低いといった問題がある。具体的に、特許文献1では、金属成分が多量に含まれているペースト状組成物を作成した後、いったん、ガラス板上に塗布して200℃に加熱して硬化膜とし、さらに、これを剥離してダイボンドシートとして得ている。
 また、特許文献1のダイボンドシートは、炭素分が少ないために、焼結前の段階での密着性が低い。そのため、焼結前の段階で接合対象物との間で仮止めしにくいといった問題がある。
 一方で、本発明者らが検討したところ、加熱接合用シートに有機成分を少し多めに含有させて、シート作成時の作業性や、焼結前の仮接着時の接着力を向上させようとしても、本来の性能が発揮できない場合があった。
 この点について、本発明者らは鋭意検討を行った。その結果、例えば、加熱接合用シートをダイシングテープ等の他のテープに貼り付けて使用した場合に、加熱接合用シートから他のテープに成分の一部が移行してしまい、加熱接合用シートとして本来の性能が発揮できなくなることを突き止めた。また、他のテープから加熱接合用シートに成分の一部が移行する場合もあり、この場合も同様に、加熱接合用シートとして本来の性能が発揮できなくなることを突き止めた。
 本発明は前記問題点に鑑みなされたものであり、その目的は、他のシートと貼り合わせた際に、成分の移行を抑制することが可能な加熱接合用シート、及び、当該加熱接合用シートを有するダイシングテープ付き加熱接合用シートを提供することにある。
 本願発明者等は、前記従来の問題点を解決すべく、加熱接合用シートについて検討した。その結果、下記の構成を採用することにより、他のシートと貼り合わせた際に、成分の移行を抑制することが可能であることを見出し、本発明を完成するに至った。
 すなわち、本発明に係る加熱接合用シートは、
 加熱により焼結層となる焼結前層と、成分移行防止層とを有することを特徴とする。
 前記構成によれば、焼結前層と成分移行防止層とを有する。従って、他のシートと貼り合わせて使用する際に、他のシートに成分移行防止層が接触する態様で積層させて使用すれば、成分移行防止層が成分の移行を防止する。その結果、焼結前層の成分が他のシートに移行することや、他のシートの成分が焼結前層に移行することを抑制することができる。
 前記構成において、前記焼結前層は、金属微粒子と、有機バインダーとを含み、
 前記成分移行防止層は、少なくとも有機バインダーを含むことが好ましい。
 前記焼結前層が金属微粒子を含むと、加熱により焼結層を形成することができる。また、前記焼結前層、及び、前記成分移行防止層が有機バインダーを含むと、シートとして扱い易い。また、前記焼結前層が有機バインダーを含むと、焼結前の段階での密着性をコントロールしやすい。
 また、前記焼結前層が有機バインダーを含んでいても、成分移行防止層が存在するため、焼結前層の成分が他のシートに移行することや、他のシートの成分が焼結前層に移行することを抑制することができる。
 前記構成において、前記焼結前層に含まれる金属微粒子の含有量は、焼結前層全体に対して、30~70体積%の範囲内であり、
 前記成分移行防止層に含まれる金属微粒子の含有量は、成分移行防止層全体に対して、0~30体積%の範囲内であることが好ましい。
 前記焼結前層に含まれる金属微粒子の含有量が、焼結前層全体に対して、30~70体積%の範囲内であると、加熱により、好適に焼結層を形成することができる。
 また、前記成分移行防止層に含まれる金属微粒子の含有量が、成分移行防止層全体に対して、0~30体積%の範囲内であると、焼結前層の成分が他のシートへ移行するための通り道を少なくすることができる。その結果、成分の移行をより抑制することができる。
 前記構成において、前記焼結前層に含まれる有機バインダーは、熱分解性バインダーを含み、
 前記成分移行防止層に含まれる有機バインダーは、熱分解性バインダーを含むことが好ましい。
 前記焼結前層に含まれる有機バインダーが熱分解性バインダーを含むと、加熱により焼結層とした際に、熱分解性バインダーが熱分解される。その結果、より好適に焼結層を形成することができる。
 また、熱分解性バインダーは、低分子量成分が通り抜けにくい傾向にある。そこで、前記成分移行防止層に含まれる有機バインダーが、熱分解性バインダーを含むと、焼結前層の成分が他のシートへ移行することを好適に抑制することができる。
 前記構成において、前記焼結前層に含まれる有機バインダーは、焼結前層の有機バインダー全体に対して、分子量500以下の有機成分を20~80重量%含み、
 前記成分移行防止層に含まれる有機バインダーは、成分移行防止層の有機バインダー全体に対して、分子量500以下の有機成分を0~20重量%含むことが好ましい。
 分子量500以下の有機成分は、金属微粒子を熱分解性バインダーに分散させる際に、分散させやすくすることができる。そこで、前記焼結前層に含まれる有機バインダーが、分子量500以下の有機成分を20~80重量%含むと、金属微粒子の取り扱いを容易とすることができる。また、分子量500以下の有機成分を用いれば、任意の機械的特性を調整することが容易となる。
 一方、分子量500以下の有機成分は、分子量が小さいため、他のシートに移行しやすい成分である。そこで、前記成分移行防止層に含まれる有機バインダーが、分子量500以下の有機成分を0~20重量%の範囲内で含むと、移行しやすい成分は少ないといえる。従って、成分移行防止層から焼結前層や他のシートに成分が移行することを抑制できる。
 前記構成において、前記焼結前層の厚さが、5~100μmの範囲内であり、
 前記成分移行防止層の厚さが、2~10μmの範囲内であることが好ましい。
 前記焼結前層の厚さが、5~100μmの範囲内であると、より好適に焼結層を形成することができる。
 また、成分移行防止層は、金属微粒子を含まないか、含有量は焼結前層よりも少ない。そのため、厚すぎると焼結による接合に支障をきたす。そこで、前記成分移行防止層の厚さが、2~10μmの範囲内であると、焼結による結合に大きな影響を与えることを防止できる。
 また、本発明に係るダイシングテープ付き加熱接合用シートは、
 ダイシングテープと、
 前記加熱接合用シートと
 を有し、
 前記加熱接合用シートは、前記ダイシングテープと前記成分移行防止層とが接触する態様で前記ダイシングテープ上に積層されていることを特徴とする。
 前記ダイシングテープ付き加熱接合用シートによれば、ダイシングテープと一体型であるため、ダイシングテープと貼り合わせる工程を省略することができる。また、成分移行防止層が存在するため、焼結前層の成分がダイシングテープに移行することや、ダイシングテープの成分が焼結前層に移行することを抑制することができる。
本発明の一実施形態に係るダイシングテープ付き加熱接合用シートを示す断面模式図である。 本発明の他の実施形態に係るダイシングテープ付き加熱接合用シートを示す断面模式図である。 本実施形態に係る半導体装置の一製造方法を説明するための断面模式図である。
 (ダイシングテープ付き加熱接合用シート)
 本発明の一実施形態に係る加熱接合用シート、及び、ダイシングテープ付き加熱接合用シートについて、以下に説明する。本実施形態に係る加熱接合用シートは、以下に説明するダイシングテープ付き加熱接合用シートにおいて、ダイシングテープが貼り合わせられていない状態のものを挙げることができる。従って、以下では、ダイシングテープ付き加熱接合用シートについて説明し、加熱接合用シートについては、その中で説明することとする。図1は、本発明の一実施形態に係るダイシングテープ付き加熱接合用シートを示す断面模式図である。図2は、本発明の他の実施形態に係る他のダイシングテープ付き加熱接合用シートを示す断面模式図である。
 図1に示すように、ダイシングテープ付き加熱接合用シート10は、ダイシングテープ11上に加熱接合用シート3が積層された構成を有する。ダイシングテープ11は基材1上に粘着剤層2を積層して構成されており、加熱接合用シート3は粘着剤層2上に設けられている。
 本発明のダイシングテープ付き加熱接合用シートは、図2に示すダイシングテープ付き加熱接合用シート12のように、ワーク貼り付け部分にのみ加熱接合用シート3’を形成した構成であってもよい。
 (加熱接合用シート)
 加熱接合用シート3、3’は、シート状である。ペーストではなく、シートであるため、貼り付け時のはみ出しや貼り付け対象物表面への這い上がりを抑制できる。
 本実施形態に係る加熱接合用シート3、3’は、加熱により焼結層となる焼結前層31と、成分移行防止層32とを有する。加熱接合用シート3は、ダイシングテープ11と成分移行防止層32とが接触する態様でダイシングテープ11上に積層されている。
 本実施形態では、加熱接合用シート3が、焼結前層31と成分移行防止層32との2層で構成されている場合について説明するが、本発明の趣旨に反しない限りにおいて、さらに他の層を有していてもよい。また、本発明における、焼結前層は、加熱により焼結層となる層を複数積層した構成であってもよい。
 すなわち、本発明における加熱接合用シートは、焼結前層と、成分移行防止層とを有していればよく、その構成は特に限定されない。
 加熱接合用シート3、3’を、ダイシングテープ11と貼り合わせた形態とする場合、すなわち、ダイシングテープ付き加熱接合用シート10、12とする場合、成分移行防止層32を有するため、使用に供するまでの間に、ダイシングテープ11に焼結前層31の成分が移行することや、焼結前層31にダイシングテープ11の成分が移行することを防止できる。
 また、加熱接合用シート3、3’を、ダイシングテープ11と一体化させないで、単体のシートとする場合、成分移行防止層32を有するため、他のシートと貼り合わせて使用する際に、他のシートに成分移行防止層32が接触する態様で積層させて使用すれば、成分移行防止層32が成分の移行を防止する。その結果、他のシートと貼り合わせた後、使用に供するまでの間に、焼結前層31の成分が他のシートに移行することや、他のシートの成分が焼結前層31に移行することを抑制することができる。
 (焼結前層)
 焼結前層31は、加熱により焼結層となる層である。
 焼結前層31は、金属微粒子と、有機バインダーとを含むことが好ましい。焼結前層31が金属微粒子を含むと、加熱により焼結層を形成することができる。また、焼結前層31が有機バインダーを含むと、シートとして扱い易い。また、焼結前層31が有機バインダーを含むと、焼結前の段階での密着性をコントロールしやすい。
 焼結前層31に含まれる金属微粒子の含有量は、焼結前層31全体に対して30~70体積%の範囲内で含むことが好ましい。前記金属微粒子の含有量は、35~65体積%の範囲内であることがより好ましく、40~60体積%の範囲内であることがさらに好ましい。前記金属微粒子を30~70体積%の範囲内で含むと、加熱により、好適に焼結層を形成することができる。その結果、金属微粒子を焼結、又は、溶融させて2つの物(例えば、半導体チップとリードフレーム)を接合させることができる。
 焼結前層31に含まれる金属微粒子の含有量は、次の方法で測定する。なお、後述する成分移行防止層32に含まれる金属微粒子の含有量も、同様の方法で測定する。
  1.焼結前層を冷却環境でイオンポリッシングし、断面を露出させる。
  2.断面を、電界放出形走査電子顕微鏡 SU8020(メーカー:日立ハイテクノロジーズ)を用いて撮像する。撮像条件は、加速電圧5kV、倍率50000倍とし、反射電子像を画像データとして得る。
  3.画像解析ソフト Image Jを用い、得られた画像データを自動2値化処理してから、全体に対する金属微粒子由来の明部の面積により算出する。このとき、一般的には観察した断面に垂直な方向において、金属微粒子由来の明部の面積は均一であるため、体積%はここで得られた面積%と同じであるとする。
 前記金属微粒子としては、焼結性金属粒子を挙げることができる。
 前記焼結性金属粒子としては、金属微粒子の凝集体を好適に使用できる。金属微粒子としては、金属からなる微粒子などが挙げられる。前記金属としては、金、銀、銅、酸化銀、酸化銅などが挙げられる。なかでも、銀、銅、酸化銀、酸化銅からなる群より選ばれる少なくとも1種であることが好ましい。前記金属微粒子が、銀、銅、酸化銀、酸化銅からなる群より選ばれる少なくとも1種であると、より好適に加熱接合することができる。
 前記焼結性金属粒子の平均粒径は、好ましくは0.0005μm以上、より好ましくは0.001μm以上である。平均粒径の下限として、0.01μm、0.05μm、0.1μmも例示できる。一方、焼結性金属粒子の平均粒径は、好ましくは30μm以下、より好ましくは25μm以下である。平均粒径の上限として、20μm、15μm、10μm、5μmも例示できる。
 前記焼結性金属粒子の平均粒径は、次の方法で測定する。すなわち、前記焼結性金属粒子をSEM(走査型電子顕微鏡)にて観察し、平均粒子径を計測する。なお、SEM観察は、例えば、焼結性金属粒子がマイクロサイズの場合、5000倍で観察し、サブミクロンサイズの場合、50000倍観察で観察し、ナノサイズの場合、300000倍で観察するのが好ましい。
 前記焼結性金属粒子の形状は特に限定されず、例えば、球状、棒状、鱗片状、不定形状である。
 焼結前層31に含まれる有機バインダーは、熱分解性バインダーを含むことが好ましい。
 前記熱分解性バインダーを含有すると、加熱により焼結層とした際に、熱分解性バインダーが熱分解される。その結果、より好適に焼結層を形成することができる。
 前記熱分解性バインダーは、23℃で固形であることが好ましい。本明細書において、「固形」とは、具体的に前記レオメータによる粘度測定による23℃における粘度が100,000Pa・sよりも大きいことをいう。前記熱分解性バインダーが、23℃で固形であると、常温(23℃)にて加熱接合用シートをフィルム状に形成しやすくなり、ハンドリング性が向上する。
 前記熱分解性バインダーは、通常、分子量500よりも大きい。
 本明細書において「熱分解性バインダー」とは、加熱接合工程において熱分解させることが可能なバインダーをいう。前記熱分解性バインダーは、加熱接合工程後には、焼結層(加熱後の焼結前層31)に、ほとんど残存しないことが好ましい。前記熱分解性バインダーとしては、例えば、焼結前層31に含有させたとしても、大気雰囲気下、昇温速度10℃/分の条件で、23℃から400℃まで昇温を行った後のエネルギー分散型X線分析により得られる炭素濃度が15重量%以下となるような材料が挙げられる。例えば、熱分解性バインダーとして、より熱分解させ易い材料を採用すれば、比較的含有量を多くしても、加熱接合工程後に、焼結層(加熱後の焼結前層31)にほとんど残存させないようにすることができる。
 前記熱分解性バインダーとしては、ポリカーボネート、アクリル樹脂、エチルセルロース、ポリビニルアルコール等を挙げることができる。これらの材料は単独で、又は、2種以上を混合して使用できる。なかでも、熱分解性が高いという観点から、ポリカーボネートが好ましい。
 前記ポリカーボネートとしては、加熱接合工程において熱分解させることが可能なものであれば、特に限定されないが、主鎖の炭酸エステル基(-O-CO-O-)間に芳香族化合物(例えば、ベンゼン環など)を含まず、脂肪族鎖からなる脂肪族ポリカーボネートや、主鎖の炭酸エステル基(-O-CO-O-)間に芳香族化合物を含む芳香族ポリカーボネートを挙げることができる。なかでも、脂肪族ポリカーボネートか好ましい。
 前記脂肪族ポリカーボネートとしては、ポリエチレンカーボネート、ポリプロピレンカーボネート等が挙げられる。なかでもシート形成のためのワニス作製における有機溶剤への溶解性の観点から、ポリプロピレンカーボネートが好ましい。
 前記芳香族ポリカーボネートとしては、主鎖にビスフェノールA構造を含むもの等が挙げられる。
 前記ポリカーボネートの重量平均分子量は、10,000~1,000,000の範囲内であることが好適である。なお、重量平均分子量は、GPC(ゲル・パーミエーション・クロマトグラフィー)により測定し、ポリスチレン換算により算出された値である。
 前記アクリル樹脂としては、加熱接合工程において熱分解させることが可能な範囲において、炭素数30以下、特に炭素数4~18の直鎖若しくは分岐のアルキル基を有するアクリル酸又はメタクリル酸のエステルの1種又は2種以上を成分とする重合体(アクリル共重合体)などが挙げられる。前記アルキル基としては、例えばメチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、t-ブチル基、イソブチル基、アミル基、イソアミル基、ヘキシル基、へプチル基、シクロヘキシル基、2-エチルヘキシル基、オクチル基、イソオクチル基、ノニル基、イソノニル基、デシル基、イソデシル基、ウンデシル基、ラウリル基、トリデシル基、テトラデシル基、ステアリル基、オクタデシル基、又はドデシル基などが挙げられる。
 また、重合体(アクリル共重合体)を形成する他のモノマーとしては、特に限定されるものではなく、例えばアクリル酸、メタクリル酸、カルボキシエチルアクリレート、カルボキシペンチルアクリレート、イタコン酸、マレイン酸、フマール酸若しくはクロトン酸などの様なカルボキシル基含有モノマー、無水マレイン酸若しくは無水イタコン酸などの様な酸無水物モノマー、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸6-ヒドロキシヘキシル、(メタ)アクリル酸8-ヒドロキシオクチル、(メタ)アクリル酸10-ヒドロキシデシル、(メタ)アクリル酸12-ヒドロキシラウリル若しくは(4-ヒドロキシメチルシクロヘキシル)-メチルアクリレートなどの様なヒドロキシル基含有モノマー、スチレンスルホン酸、アリルスルホン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、(メタ)アクリルアミドプロパンスルホン酸、スルホプロピル(メタ)アクリレート若しくは(メタ)アクリロイルオキシナフタレンスルホン酸などの様なスルホン酸基含有モノマー、又は2-ヒドロキシエチルアクリロイルホスフェートなどの様な燐酸基含有モノマーが挙げられる。
 アクリル樹脂のなかでも、重量平均分子量が1万~100万のものがより好ましく、3万~70万のものがさらに好ましい。上記数値範囲内であると、加熱接合工程前の接着性、及び、加熱接合工程時における熱分解性に優れるからである。なお、重量平均分子量は、GPC(ゲル・パーミエーション・クロマトグラフィー)により測定し、ポリスチレン換算により算出された値である。
 また、アクリル樹脂のなかでも、200℃~400℃で熱分解するアクリル樹脂が好ましい。
 焼結前層31に含まれる有機バインダーは、焼結前層の有機バインダー全体に対して、分子量500以下の有機成分を20~80重量%含むことが好ましい。前記分子量500以下の有機成分の含有量は、30~70重量%であることがより好ましく、40~60重量%であることがさらに好ましい。
 分子量500以下の有機成分は、金属微粒子を熱分解性バインダーに分散させる際に、分散させやすくすることができる。そこで、焼結前層31に含まれる有機バインダーが、分子量500以下の有機成分を20~80重量%含むと、金属微粒子の取り扱いを容易とすることができる。また、分子量500以下の有機成分を用いれば、任意の機械的特性を調整することが容易となる。
 焼結前層31に含まれる分子量500以下の有機成分の含有量は、次の方法で測定する。なお、後述する成分移行防止層32に含まれる分子量500以下の有機成分の含有量も、同様の方法で測定する。
 加熱接合用シートの焼結前層部分を採取し、クロロホルムに浸し、12時間静置する。この溶液を0.45μmメンブレンフィルターでろ過し、ろ液についてGPC分取を行う。TOSOH社製HLC-8320GPCを用い、以下の条件で分取を行い、分子量500以下の成分と分子量500より大きい成分を分離・回収したのちに各々乾燥重量を求めることで重量比を求める。
カラム:Shodex  H2003/H2002/H2001
溶離液:クロロホルム
流量:4mL/min
検出器:RI
カラム温度:室温(23℃)
注入量:3000μL
 分子量はポリスチレン換算で算出する。
 分子量500以下の有機成分は、低沸点バインダーを含むことが好ましい。なお、本明細書において、分子量500以下の有機成分とは、低沸点バインダーと、低沸点バインダー以外の分子量500以下の有機成分とを含む概念である。低沸点バインダー以外の分子量500以下の有機成分は、焼結前層31に含まれていてもよく、含まれていなくてもよい。
 前記低沸点バインダーは、前記金属微粒子の取り扱いを容易とするために用いられる。また、前記低沸点バインダーは、任意の機械的物性を調整するためにも用いられる。具体的には、前記金属微粒子を前記低沸点バインダーに分散させた金属微粒子含有ペーストとして使用することができる。
 前記低沸点バインダーは、通常、23℃で液状である。本明細書において、「液状」とは、半液状を含む。具体的に、動的粘弾性測定装置(レオメーター)による粘度測定による23℃における粘度が100,000Pa・s以下であることをいう。
 粘度測定の条件は、下記の通りである。
   レオメータ:Thermo SCIENTFIC社製 MER III
   治具:パラレルプレート20mmφ、ギャップ100μm、せん断速度 1/秒)
 前記低沸点バインダーは、沸点100℃以上400℃以下である。前記低沸点バインダーの具体例としては、例えば、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、1-デカノール、エチレングリコール、ジエチレングリコール、プロピレングリコール、ブチレングリコール、α-テルピネオール、1,6-ヘキサンジオール、イソボルニルシクロヘキサノール(MTPH)等の一価及び多価アルコール類、エチレングリコールブチルエーテル、エチレングリコールフェニルエーテル、ジエチレングリコールメチルエーテル、ジエチレングリコールエチルエーテル、ジエチレングリコールブチルエーテル、ジエチレングリコールイソブチルエーテル、ジエチレングリコールヘキシルエーテル、トリエチレングリコールメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、ジエチレングリコールブチルメチルエーテル、ジエチレングリコールイソプロピルメチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールブチルメチルエーテル、プロピレングリコールプロピルエーテル、ジプロピレングリコールメチルエーテル、ジプロピレングリコールエチルエーテル、ジプロピレングリコールプロピルエーテル、ジプロピレングリコールブチルエーテル、ジプロピレングリコールジメチルエーテル、トリプロピレングリコールメチルエーテル、トリプロピレングリコールジメチルエーテル等のエーテル類、エチレングリコールエチルエーテルアセテート、エチレングリコールブチルエーテルアセテート、ジエチレングリコールエチルエーテルアセテート、ジエチレングリコールブチエーテルアセテート、ジプロピレングリコールメチルエーテルアセテート(DPMA)等を挙げることができる。これらは2種以上を併用してもよい。なかでも、沸点の異なる2種類を併用することが好ましい。沸点の異なる2種類を用いると、シート形状の維持の点で優れる。
 なお、焼結前層31には、前記成分以外にも、例えば、可塑剤などを適宜含有してよい。
 焼結前層31は、大気雰囲気下、昇温速度10℃/分の条件で、23℃から400℃まで昇温を行った後のエネルギー分散型X線分析により得られる炭素濃度が15重量%以下であることが好ましく、12重量%以下であることがより好ましく、10重量%以下であることがさらに好ましい。前記炭素濃度が15重量%以下であると、焼結前層31は、400℃まで昇温を行った後には有機物がほとんど存在しない。その結果、加熱接合工程後は、耐熱性に優れ、高温環境においても高い信頼性、熱特性が得られる。
 焼結前層31は、大気雰囲気下、昇温速度10℃/分の条件で、23℃から500℃まで示差熱分析を行った際のピークが150~350℃に存在することが好ましく、170~320℃に存在することがより好ましく、180~310℃に存在することがさらに好ましい。前記ピークが150~350℃に存在すると、有機物(例えば、焼結前層31を構成する樹脂成分)がこの温度領域で熱分解しているといえる。その結果、加熱接合工程後の耐熱性により優れる。
 焼結前層31の厚さは、5~100μmの範囲内であることが好ましく、より好ましくは、20~90μmの範囲内であり、さらに好ましくは、40~80μmの範囲内である。焼結前層31の厚さが、5~100μmの範囲内であると、より好適に焼結層を形成することができる。
 焼結前層31の厚さは、次の方法で測定する。なお、後述する成分移行防止層32の厚さも、同様の方法で測定する。
  1.焼結前層を冷却環境でイオンポリッシングし、断面を露出させる。
  2.断面を、電界放出形走査電子顕微鏡 SU8020(メーカー:日立ハイテクノロジーズ)を用いて撮像する。撮像条件は、加速電圧5kV、倍率2000倍とし、反射電子像を画像データとして得る。
  3.画像解析ソフト Image Jを用い、得られた画像データから厚さを測定する。
 (成分移行防止層)
 成分移行防止層32は、焼結前層31の成分がダイシングテープ11に移行することや、ダイシングテープ11の成分が焼結前層31に移行することを抑制するための層である。
 なお、成分移行防止層32は、加熱により分解される成分を多量に含むため、焼結前層31を加熱して焼結層とした際には、ほぼ分解されてなくなる。
 成分移行防止層32は、少なくとも有機バインダーを含むことが好ましい。成分移行防止層32が有機バインダーを含むと、シートとして扱い易い。また、焼結前層31が有機バインダーを含んでいても、成分移行防止層32が存在するため、焼結前層31の成分がダイシングテープ11に移行することや、ダイシングテープ11の成分が焼結前層31に移行することを抑制することができる。
 成分移行防止層32に含まれる有機バインダーは、熱分解性バインダーを含むことが好ましい。熱分解性バインダーは、低分子量成分が通り抜けにくい傾向にある。そこで、成分移行防止層32に含まれる有機バインダーが、熱分解性バインダーを含むと、焼結前層31の成分がダイシングテープ11へ移行することやダイシングテープ11の成分が焼結前層31に移行することを好適に抑制することができる。
 前記熱分解性バインダーとしては、焼結前層31で用いるものと同様のものを採用できる。
 前記熱分解性バインダーの含有量は、成分移行防止層32全体に対して、80~100重量%であることが好ましく、90~100重量%であることがより好ましい。前記熱分解性バインダーの含有量が、成分移行防止層32全体に対して、80~100重量%であると、焼結前層31とダイシングテープ11との間での成分の移行を好適に抑制できる。
 成分移行防止層32に含まれる有機バインダーは、成分移行防止層の有機バインダー全体に対して、分子量500以下の有機成分を0~20重量%含むことが好ましい。すなわち、分子量500以下の有機成分を含まないか、含むとしても、20重量%以下であることが好ましい。前記分子量500以下の有機成分の含有量は、0~15重量%であることがより好ましく、0~10重量%であることがさらに好ましい。
 分子量500以下の有機成分は、分子量が小さいため、他のシート(本実施形態では、ダイシングテープ11)に移行しやすい成分である。そこで、成分移行防止層32に含まれる有機バインダーが、分子量500以下の有機成分を0~20重量%の範囲内で含むと、移行しやすい成分は少ないといえる。従って、成分移行防止層32から焼結前層31やダイシングテープ11に成分が移行することを抑制できる。
 前記分子量500以下の有機成分としては、焼結前層31で用いるものと同様のものを採用できる。
 成分移行防止層32は、金属微粒子を含まないか、含むとしても、成分移行防止層全体に対して30体積%以下の範囲内で含むことが好ましい。すなわち、成分移行防止層32に含まれる金属微粒子の含有量は、成分移行防止層全体に対して、0~30体積%の範囲内であることが好ましい。成分移行防止層32に含まれる金属微粒子の含有量が、成分移行防止層全体に対して、0~30体積%の範囲内であると、焼結前層31の成分がダイシングテープ11へ移行するための通り道を少なくすることができる。その結果、成分の移行をより抑制することかできる。
 前記金属微粒子としては、焼結前層31で用いるものと同様のものを採用できる。
 成分移行防止層32の厚さは、2~10μmの範囲内であることが好ましく、より好ましくは、2.5~8μmの範囲内であり、さらに好ましくは、3~6μmの範囲内である。成分移行防止層32は、金属微粒子を含まないか、含有量は焼結前層よりも少ない。そのため、厚すぎると焼結による接合に支障をきたす。そこで、成分移行防止層32の厚さが、2~10μmの範囲内であると、焼結による結合に大きな影響を与えることを防止できる。
 特に、成分移行防止層32の厚さを前記数値範囲内において薄くする場合は、金属微粒子を含まないか、前記数値範囲内において、含有量を少なくすることが好ましい。低分子成分の通り道を少なくすることができるからである。
 一方で、成分移行防止層32の厚さを前記数値範囲内において厚くする場合は、金属微粒子を前記数値範囲内において、含有量を多くすることが好ましい。厚さがある場合は、焼結後に成分移行防止層32が存在していた部分の接合力が弱くなる可能性がある。そのため、ある程度金属微粒子を含有させておくことにより焼結後の接合力を持たせることができる。なお、厚くすれば、焼結前の粘着力をコントロールしやすい。
 加熱接合用シート3、3’は、通常の方法で製造できる。例えば、焼結前層31を形成するための前記各成分を含有するワニスを作製し、ワニスを基材セパレータ上に所定厚みとなる様に塗布して塗布膜を形成した後、該塗布膜を乾燥させ、焼結前層31を得る。
 一方、成分移行防止層32を形成するための前記各成分を含有するワニスを作製し、ワニスを基材セパレータ上に所定厚みとなる様に塗布して塗布膜を形成した後、該塗布膜を乾燥させ、成分移行防止層32を得る。
 その後、焼結前層31と成分移行防止層32とを貼り合わせることで、加熱接合用シート3、3’を製造できる。
 ワニスに用いる溶媒としては特に限定されないが、前記各成分を均一に溶解、混練又は分散できる有機溶剤やアルコール溶剤が好ましい。前記有機溶剤としては、例えば、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、アセトン、メチルエチルケトン、シクロヘキサノンなどのケトン系溶媒、トルエン、キシレンなどが挙げられる。また、前記アルコール溶剤としては、エチレングリコール、ジエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2-ブテン-1,4-ジオール、1,2,6-ヘキサントリオール、グリセリン、オクタンジオール、2-メチル-2,4-ペンタンジオール、テルピネオールが挙げられる。
 塗布方法は特に限定されない。溶剤塗工の方法としては、例えば、ダイコーター、グラビアコーター、ロールコーター、リバースコーター、コンマコーター、パイプドクターコーター、スクリーン印刷などが挙げられる。なかでも、塗布厚みの均一性が高いという点から、ダイコーターが好ましい。また、塗布膜の乾燥条件は特に限定されず、例えば、乾燥温度70~160℃、乾燥時間1~5分間で行うことができる。なお、塗布膜を乾燥させた後であっても溶剤の種類によって、溶剤の全部が気化せずに塗膜中に残る場合がある。
 焼結前層31が前記低沸点バインダーを含有する場合、前記乾燥条件に応じて、前記低沸点バインダーの一部が揮発する場合がある。そのため、前記乾燥条件に応じて、焼結前層31を構成する各成分の比率が変化する。例えば、同一のワニスから形成した焼結前層31であっても、乾燥温度が高いほど、また、乾燥時間が長いほど、焼結前層31全体に占める金属微粒子の含有量や、熱分解性バインダーの含有量は多くなる。従って、焼結前層31中の金属微粒子や熱分解性バインダーの含有量が所望の量となるように、前記乾燥条件を設定することが好ましい。
 成分移行防止層32が前記低沸点バインダーを含有する場合も同様である。
 基材セパレータとしては、ポリエチレンテレフタレート(PET)、ポリエチレン、ポリプロピレンや、フッ素系剥離剤、長鎖アルキルアクリレート系剥離剤などの剥離剤により表面コートされたプラスチックフィルムや紙などが使用可能である。
 加熱接合用シート3、3’の他の製造方法としては、例えば、前記各成分をミキサーにて混合し、得られた混合物をプレス成形して焼結前層31、成分移行防止層32を作成し、これらを貼り合わせる方法が挙げられる。ミキサーとしてはプラネタリーミキサーなどが挙げられる。
 加熱接合用シート3、3’の全体の厚さは、加熱前における23℃での厚さが、20~100μmであることが好ましく、30~90μmであることがより好ましい。
 (ダイシングテープ)
 ダイシングテープ11は基材1上に粘着剤層2を積層して構成されている。
 基材1は、ダイシングテープ付き加熱接合用シート10、12の強度母体となるものであり、紫外線透過性を有するものが好ましい。基材1としては、例えば、低密度ポリエチレン、直鎖状ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、超低密度ポリエチレン、ランダム共重合ポリプロピレン、ブロック共重合ポリプロピレン、ホモポリプロレン、ポリブテン、ポリメチルペンテン等のポリオレフィン、エチレン-酢酸ビニル共重合体、アイオノマー樹脂、エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸エステル(ランダム、交互)共重合体、エチレン-ブテン共重合体、エチレン-ヘキセン共重合体、ポリウレタン、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリカーボネート、ポリイミド、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリアミド、全芳香族ポリアミド、ポリフェニルスルフイド、アラミド(紙)、ガラス、ガラスクロス、フッ素樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、セルロース系樹脂、シリコーン樹脂、金属(箔)、紙等が挙げられる。
 また基材1の材料としては、前記樹脂の架橋体等のポリマーが挙げられる。前記プラスチックフィルムは、無延伸で用いてもよく、必要に応じて一軸又は二軸の延伸処理を施したものを用いてもよい。延伸処理等により熱収縮性を付与した樹脂シートによれば、ダイシング後にその基材1を熱収縮させることにより粘着剤層2と加熱接合用シート3、3’との接着面積を低下させて、半導体チップの回収の容易化を図ることができる。
 基材1の表面は、隣接する層との密着性、保持性等を高めるため、慣用の表面処理、例えば、クロム酸処理、オゾン暴露、火炎暴露、高圧電撃暴露、イオン化放射線処理等の化学的又は物理的処理、下塗剤(例えば、後述する粘着物質)によるコーティング処理を施すことができる。
 基材1の厚さは、特に制限されず適宜に決定できるが、一般的には5~200μm程度である。
 粘着剤層2の形成に用いる粘着剤としては特に制限されず、例えば、アクリル系粘着剤、ゴム系粘着剤等の一般的な感圧性接着剤を用いることができる。前記感圧性接着剤としては、半導体ウェハやガラス等の汚染をきらう電子部品の超純水やアルコール等の有機溶剤による清浄洗浄性等の点から、アクリル系ポリマーをベースポリマーとするアクリル系粘着剤が好ましい。
 前記アクリル系ポリマーとしては、例えば、(メタ)アクリル酸アルキルエステル(例えば、メチルエステル、エチルエステル、プロピルエステル、イソプロピルエステル、ブチルエステル、イソブチルエステル、s-ブチルエステル、t-ブチルエステル、ペンチルエステル、イソペンチルエステル、ヘキシルエステル、ヘプチルエステル、オクチルエステル、2-エチルヘキシルエステル、イソオクチルエステル、ノニルエステル、デシルエステル、イソデシルエステル、ウンデシルエステル、ドデシルエステル、トリデシルエステル、テトラデシルエステル、ヘキサデシルエステル、オクタデシルエステル、エイコシルエステル等のアルキル基の炭素数1~30、特に炭素数4~18の直鎖状又は分岐鎖状のアルキルエステル等)及び(メタ)アクリル酸シクロアルキルエステル(例えば、シクロペンチルエステル、シクロヘキシルエステル等)の1種又は2種以上を単量体成分として用いたアクリル系ポリマー等が挙げられる。なお、(メタ)アクリル酸エステルとはアクリル酸エステル及び/又はメタクリル酸エステルをいい、本発明の(メタ)とは全て同様の意味である。
 前記アクリル系ポリマーは、凝集力、耐熱性等の改質を目的として、必要に応じ、前記(メタ)アクリル酸アルキルエステル又はシクロアルキルエステルと共重合可能な他のモノマー成分に対応する単位を含んでいてもよい。この様なモノマー成分として、例えば、アクリル酸、メタクリル酸、カルボキシエチル(メタ)アクリレート、カルボキシペンチル(メタ)アクリレート、イタコン酸、マレイン酸、フマル酸、クロトン酸等のカルボキシル基含有モノマー;無水マレイン酸、無水イタコン酸等の酸無水物モノマー;(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸6-ヒドロキシヘキシル、(メタ)アクリル酸8-ヒドロキシオクチル、(メタ)アクリル酸10-ヒドロキシデシル、(メタ)アクリル酸12-ヒドロキシラウリル、(4-ヒドロキシメチルシクロヘキシル)メチル(メタ)アクリレート等のヒドロキシル基含有モノマー;スチレンスルホン酸、アリルスルホン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、(メタ)アクリルアミドプロパンスルホン酸、スルホプロピル(メタ)アクリレート、(メタ)アクリロイルオキシナフタレンスルホン酸等のスルホン酸基含有モノマー;2-ヒドロキシエチルアクリロイルホスフェート等のリン酸基含有モノマー;アクリルアミド、アクリロニトリル等が挙げられる。これら共重合可能なモノマー成分は、1種又は2種以上使用できる。これら共重合可能なモノマーの使用量は、全モノマー成分の40重量%以下が好ましい。
 さらに、前記アクリル系ポリマーは、架橋させるため、多官能性モノマー等も、必要に応じて共重合用モノマー成分として含むことができる。この様な多官能性モノマーとして、例えば、ヘキサンジオールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、エポキシ(メタ)アクリレート、ポリエステル(メタ)アクリレート、ウレタン(メタ)アクリレート等が挙げられる。これらの多官能性モノマーも1種又は2種以上用いることができる。多官能性モノマーの使用量は、粘着特性等の点から、全モノマー成分の30重量%以下が好ましい。
 前記アクリル系ポリマーは、単一モノマー又は2種以上のモノマー混合物を重合に付すことにより得られる。重合は、溶液重合、乳化重合、塊状重合、懸濁重合等の何れの方式で行うこともできる。清浄な被着体への汚染防止等の点から、低分子量物質の含有量が小さいのが好ましい。この点から、アクリル系ポリマーの数平均分子量は、好ましくは10万以上、さらに好ましくは20万~300万程度であり、特に好ましくは30万~100万程度である。
 また、前記粘着剤には、ベースポリマーであるアクリル系ポリマー等の数平均分子量を高めるため、外部架橋剤を適宜に採用することもできる。外部架橋方法の具体的手段としては、ポリイソシアネート化合物、エポキシ化合物、アジリジン化合物、メラミン系架橋剤等のいわゆる架橋剤を添加し反応させる方法が挙げられる。外部架橋剤を使用する場合、その使用量は、架橋すべきベースポリマーとのバランスにより、さらには、粘着剤としての使用用途によって適宜決定される。一般的には、前記ベースポリマー100重量部に対して、5重量部程度以下、さらには0.1~5重量部配合するのが好ましい。さらに、粘着剤には、必要により、前記成分のほかに、従来公知の各種の粘着付与剤、老化防止剤等の添加剤を用いてもよい。
 粘着剤層2は、放射線硬化型粘着剤により形成してもよい。放射線硬化型粘着剤は、紫外線等の放射線の照射によりその粘着力をコントロールすることができる。例えば、加熱接合用シート3が貼り合わせられた状態で紫外線を照射すると、加熱接合用シート3との間でアンカー効果を生じさせることができる。これにより、粘着剤層2と加熱接合用シート3との密着性を向上させることができる。また、加熱接合用シートを貼り合わせる前に、放射線を照射することにより、粘着剤層2と加熱接合用シート3との粘着力を低下させることができる。
 放射線硬化型粘着剤は、炭素-炭素二重結合等の放射線硬化性の官能基を有し、かつ粘着性を示すものを特に制限なく使用することができる。放射線硬化型粘着剤としては、例えば、前記アクリル系粘着剤、ゴム系粘着剤等の一般的な感圧性粘着剤に、放射線硬化性のモノマー成分やオリゴマー成分を配合した添加型の放射線硬化型粘着剤を例示できる。
 配合する放射線硬化性のモノマー成分としては、例えば、ウレタンオリゴマー、ウレタン(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリストールテトラ(メタ)アクリレート、ジペンタエリストールモノヒドロキシペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート等が挙げられる。また放射線硬化性のオリゴマー成分はウレタン系、ポリエーテル系、ポリエステル系、ポリカーボネート系、ポリブタジエン系等種々のオリゴマーがあげられ、その分子量が100~30000程度の範囲のものが適当である。放射線硬化性のモノマー成分やオリゴマー成分の配合量は、前記粘着剤層の種類に応じて、粘着剤層の粘着力を低下できる量を、適宜に決定することができる。一般的には、粘着剤を構成するアクリル系ポリマー等のベースポリマー100重量部に対して、例えば5~500重量部、好ましくは40~150重量部程度である。
 また、放射線硬化型粘着剤としては、前記説明した添加型の放射線硬化型粘着剤のほかに、ベースポリマーとして、炭素-炭素二重結合をポリマー側鎖又は主鎖中もしくは主鎖末端に有するものを用いた内在型の放射線硬化型粘着剤が挙げられる。内在型の放射線硬化型粘着剤は、低分子成分であるオリゴマー成分等を含有する必要がなく、又は多くは含まないため、経時的にオリゴマー成分等が粘着剤中を移動することなく、安定した層構造の粘着剤層を形成することができるため好ましい。
 前記炭素-炭素二重結合を有するベースポリマーは、炭素-炭素二重結合を有し、かつ粘着性を有するものを特に制限なく使用できる。この様なベースポリマーとしては、アクリル系ポリマーを基本骨格とするものが好ましい。アクリル系ポリマーの基本骨格としては、前記例示したアクリル系ポリマーが挙げられる。
 前記アクリル系ポリマーへの炭素-炭素二重結合の導入法は特に制限されず、様々な方法を採用できるが、炭素-炭素二重結合はポリマー側鎖に導入するのが分子設計の点で容易である。例えば、予め、アクリル系ポリマーに官能基を有するモノマーを共重合した後、この官能基と反応しうる官能基及び炭素-炭素二重結合を有する化合物を、炭素-炭素二重結合の放射線硬化性を維持したまま縮合又は付加反応させる方法が挙げられる。
 これら官能基の組合せの例としては、カルボン酸基とエポキシ基、カルボン酸基とアジリジル基、ヒドロキシル基とイソシアネート基等が挙げられる。これら官能基の組合せのなかでも反応追跡の容易さから、ヒドロキシル基とイソシアネート基との組合せが好適である。また、これら官能基の組み合わせにより、前記炭素-炭素二重結合を有するアクリル系ポリマーを生成するような組合せであれば、官能基はアクリル系ポリマーと前記化合物のいずれの側にあってもよいが、前記の好ましい組み合わせでは、アクリル系ポリマーがヒドロキシル基を有し、前記化合物がイソシアネート基を有する場合が好適である。この場合、炭素-炭素二重結合を有するイソシアネート化合物としては、例えば、メタクリロイルイソシアネート、2-メタクリロイルオキシエチルイソシアネート、m-イソプロペニル-α,α-ジメチルベンジルイソシアネート等が挙げられる。また、アクリル系ポリマーとしては、前記例示のヒドロキシ基含有モノマーや2-ヒドロキシエチルビニルエーテル、4-ヒドロキシブチルビニルエーテル、ジエチレングリコールモノビニルエーテルのエーテル系化合物等を共重合したものが用いられる。
 前記内在型の放射線硬化型粘着剤は、前記炭素-炭素二重結合を有するベースポリマー(特にアクリル系ポリマー)を単独で使用することができるが、特性を悪化させない程度に前記放射線硬化性のモノマー成分やオリゴマー成分を配合することもできる。放射線硬化性のオリゴマー成分等は、通常ベースポリマー100重量部に対して30重量部の範囲内であり、好ましくは0~10重量部の範囲である。
 前記放射線硬化型粘着剤には、紫外線等により硬化させる場合には光重合開始剤を含有させる。光重合開始剤としては、例えば、4-(2-ヒドロキシエトキシ)フェニル(2-ヒドロキシ-2-プロピル)ケトン、α-ヒドロキシ-α,α’-ジメチルアセトフェノン、2-メチル-2-ヒドロキシプロピオフェノン、1-ヒドロキシシクロヘキシルフェニルケトン等のα-ケトール系化合物;メトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフエノン、2,2-ジエトキシアセトフェノン、2-メチル-1-[4-(メチルチオ)-フェニル]-2-モルホリノプロパン-1等のアセトフェノン系化合物;ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、アニソインメチルエーテル等のベンゾインエーテル系化合物;ベンジルジメチルケタール等のケタール系化合物;2-ナフタレンスルホニルクロリド等の芳香族スルホニルクロリド系化合物;1-フェノン-1,1―プロパンジオン-2-(o-エトキシカルボニル)オキシム等の光活性オキシム系化合物;ベンゾフェノン、ベンゾイル安息香酸、3,3’-ジメチル-4-メトキシベンゾフェノン等のベンゾフェノン系化合物;チオキサントン、2-クロロチオキサンソン、2-メチルチオキサンソン、2,4-ジメチルチオキサンソン、イソプロピルチオキサンソン、2,4-ジクロロチオキサンソン、2,4-ジエチルチオキサンソン、2,4-ジイソプロピルチオキサンソン等のチオキサンソン系化合物;カンファーキノン;ハロゲン化ケトン;アシルホスフィノキシド;アシルホスフォナート等が挙げられる。光重合開始剤の配合量は、粘着剤を構成するアクリル系ポリマー等のベースポリマー100重量部に対して、例えば0.05~20重量部程度である。
 また放射線硬化型粘着剤としては、例えば、特開昭60-196956号公報に開示されている、不飽和結合を2個以上有する付加重合性化合物、エポキシ基を有するアルコキシシラン等の光重合性化合物と、カルボニル化合物、有機硫黄化合物、過酸化物、アミン、オニウム塩系化合物等の光重合開始剤とを含有するゴム系粘着剤やアクリル系粘着剤等が挙げられる。
 前記放射線硬化型の粘着剤層2中には、必要に応じて、放射線照射により着色する化合物を含有させることもできる。放射線照射により、着色する化合物を粘着剤層2に含ませることによって、放射線照射された部分のみを着色することができる。すなわち、図1に示すワーク貼り付け部分3aに対応する部分2aを着色することができる。従って、粘着剤層2に放射線が照射されたか否かが目視により直ちに判明することができ、ワーク貼り付け部分3aを認識し易く、ワークの貼り合せが容易である。また光センサー等によって半導体チップを検出する際に、その検出精度が高まり、半導体チップのピックアップ時に誤動作が生ずることがない。放射線照射により着色する化合物は、放射線照射前には無色又は淡色であるが、放射線照射により有色となる化合物であり、例えば、ロイコ染料などが挙げられる。放射線照射により着色する化合物の使用割合は、適宜設定できる。
 粘着剤層2の厚さは、特に限定されないが、チップ切断面の欠け防止や加熱接合用シート3、3’の固定保持の両立性等の点よりは、1~50μm程度であるのが好ましい。好ましくは2~30μm、さらには5~25μmが好ましい。
 本実施の形態に係るダイシングテープ11は、例えば、次の通りにして作製される。
 まず、基材1は、従来公知の製膜方法により製膜することができる。当該製膜方法としては、例えばカレンダー製膜法、有機溶媒中でのキャスティング法、密閉系でのインフレーション押出法、Tダイ押出法、共押出し法、ドライラミネート法等が例示できる。
 次に、基材1上に粘着剤組成物溶液を塗布して塗布膜を形成した後、該塗布膜を所定条件下で乾燥させ(必要に応じて加熱架橋させて)、粘着剤層2を形成する。塗布方法としては特に限定されず、例えば、ロール塗工、スクリーン塗工、グラビア塗工等が挙げられる。また、乾燥条件としては、例えば乾燥温度80~150℃、乾燥時間0.5~5分間の範囲内で行われる。また、セパレータ上に粘着剤組成物を塗布して塗布膜を形成した後、前記乾燥条件で塗布膜を乾燥させて粘着剤層2を形成してもよい。その後、基材1上に粘着剤層2をセパレータと共に貼り合わせる。これにより、ダイシングテープ11が作製される。
 ダイシングテープ付き加熱接合用シート10、12は、通常の方法で製造できる。例えば、ダイシングテープ11の粘着剤層2と加熱接合用シート3とを貼り合わせることで、ダイシングテープ付き加熱接合用シート10を製造できる。
 ダイシングテープ付き加熱接合用シート10においては、加熱接合用シート3がセパレータで覆われていることが好ましい。例えば、ダイシングテープ11と加熱接合用シート3とを貼り合わせた後、加熱接合用シート3に積層されていた前記基材セパレータを剥離し、前基材セパレータを剥離した後のダイシングテープ付き加熱接合用シート10の加熱接合用シート3の露出面に、セパレータを貼り付ける方法が挙げられる。すなわち、ダイシングテープ11、加熱接合用シート3、及び、前記セパレータがこの順で積層された形態とすることが好ましい。
 上述した実施形態では、ダイシングテープと加熱接合用シートとが積層されたダイシングテープ付き加熱接合用シートについて説明した。しかしながら、本発明の加熱接合用シートは、ダイシングテープと貼り合わせない状態で提供されてもよい。
 加熱接合用シートは、ダイシングテープが貼り合わせられていない形態とする場合、2枚のセパレータに挟まれた両面セパレータ付き加熱接合用シートとすることが好ましい。すなわち、第1のセパレータ、加熱接合用シート、及び、第2のセパレータがこの順で積層された両面セパレータ付き加熱接合用シートとすることが好ましい。
 なお、加熱接合用シートは、ダイシングテープが貼り合わせられていない形態とする場合、加熱接合用シートの一方の面にのみセパレータが積層された形態であってもよい。
 (半導体装置の製造方法)
 本実施形態に係る半導体装置の製造方法は、前記加熱接合用シートを準備する工程と、
 前記加熱接合用シートに、ダイシングテープを貼り合わせてダイシングテープ付き加熱接合用シートを得る工程と、
 前記ダイシングテープ付き加熱接合用シートの加熱接合用シートと、半導体ウェハの裏面とを貼り合わせる貼り合わせ工程と、
 前記半導体ウェハを前記加熱接合用シートと共にダイシングして、チップ状の半導体チップを形成するダイシング工程と、
 前記半導体チップを、前記ダイシングテープ付き加熱接合用シートから前記加熱接合用シートと共にピックアップするピックアップ工程と、
 前記加熱接合用シートを介して、前記半導体チップを被着体上に加熱接合する加熱接合工程とを含む(以下、第1実施形態ともいう)。
 また、本実施形態に係る半導体装置の製造方法は、前記に記載のダイシングテープ付き加熱接合用シートを準備する工程と、
 前記ダイシングテープ付き加熱接合用シートの加熱接合用シートと、半導体ウェハの裏面とを貼り合わせる貼り合わせ工程と、
 前記半導体ウェハを前記加熱接合用シートと共にダイシングして、チップ状の半導体チップを形成するダイシング工程と、
 前記半導体チップを、前記ダイシングテープ付き加熱接合用シートから前記加熱接合用シートと共にピックアップするピックアップ工程と、
 前記加熱接合用シートを介して、前記半導体チップを被着体上に加熱接合する加熱接合工程とを含むものでもある(以下、第2実施形態ともいう)。
 第1実施形態に係る半導体装置の製造方法は、第2の実施形態に係る半導体装置の製造方法が、ダイシングテープ付き加熱接合用シートを用いているのに対して、第1実施形態に係る半導体装置の製造方法では、加熱接合用シートを単体で用いている点で異なりその他の点で共通する。第1の実施形態に係る半導体装置の製造方法においては、加熱接合用シートを準備した後、これをダイシングテープと貼り合わせる工程を行なえば、その後は、第2実施形態に係る半導体装置の製造方法と同様とすることができる。そこで、以下では、第2実施形態に係る半導体装置の製造方法について説明することとする。
 本実施形態に係る半導体装置の製造方法においては、まず、ダイシングテープ付き加熱接合用シート10、12を準備する(準備する工程)。
 加熱接合用シート3、3’は、焼結前層31と、成分移行防止層32とを有する。成分移行防止層32を有するため、使用に供するまでの間に、ダイシングテープ11に焼結前層31の成分が移行することや、焼結前層31にダイシングテープの成分が移行することを防止できる。
 ダイシングテープ付き加熱接合用シート10、12は、加熱接合用シート3、3’上に任意に設けられたセパレータを適宜に剥離して、次の様に使用される。以下では、図1、図3を参照しながらダイシングテープ付き加熱接合用シート10を用いた場合を例にして説明する。
 まず、ダイシングテープ付き加熱接合用シート10における加熱接合用シート3の半導体ウェハ貼り付け部分3a上に半導体ウェハ4を圧着し、これを接着保持させて固定する(貼り合わせ工程)。本工程は、圧着ロール等の押圧手段により押圧しながら行う。マウントの際の貼り付け温度は特に限定されず、例えば23~90℃の範囲内であることが好ましい。
 半導体ウェハ4としては、一方の面に電極パッドが形成され、他方の面(以下、裏面ともいう)の最表面に銀薄膜が形成されているものが好ましい。前記銀薄膜の厚さとしては、例えば、10nm~1000nmが挙げられる。また、半導体ウェハ4と前記銀薄膜との間に、さらに、チタン薄膜が形成されていてもよい。前記チタン薄膜の厚さとしては、例えば、10nm~1000nmが挙げられる。前記銀薄膜が形成されていると、後述する加熱接合工程において、半導体チップ5と加熱接合用シート3とを強固に加熱接合することができる。また、前記チタン薄膜が形成されていると電極の信頼性が向上する。前記銀薄膜、及び、前記チタン薄膜は、例えば、蒸着により形成することができる。
 次に、半導体ウェハ4のダイシングを行う(ダイシング工程)。これにより、半導体ウェハ4を所定のサイズに切断して個片化し、半導体チップ5を製造する。ダイシングの方法は特に限定されないが、例えば半導体ウェハ4の回路面側から常法に従い行われる。また、本工程では、例えばダイシングテープ付き加熱接合用シート10まで切込みを行なうフルカットと呼ばれる切断方式等を採用できる。本工程で用いるダイシング装置としては特に限定されず、従来公知のものを用いることができる。また、半導体ウェハ4は、ダイシングテープ付き加熱接合用シート10により接着固定されているので、チップ欠けやチップ飛びを抑制できると共に、半導体ウェハ4の破損も抑制できる。
 次に、ダイシングテープ付き加熱接合用シート10に接着固定された半導体チップ5を剥離するために、半導体チップ5のピックアップを行う(ピックアップ工程)。ピックアップの方法としては特に限定されず、従来公知の種々の方法を採用できる。例えば、個々の半導体チップ5をダイシングテープ付き加熱接合用シート10側からニードルによって突き上げ、突き上げられた半導体チップ5をピックアップ装置によってピックアップする方法等が挙げられる。
 ピックアップ条件としては、チッピング防止の点で、ニードル突き上げ速度を5~100mm/秒とすることが好ましく、5~10mm/秒とすることがより好ましい。
 ここでピックアップは、粘着剤層2が紫外線硬化型である場合、該粘着剤層2に紫外線を照射した後に行ってもよい。これにより、粘着剤層2の加熱接合用シート3に対する粘着力が低下し、半導体チップ5の剥離が容易になる。その結果、半導体チップ5を損傷させることなくピックアップが可能となる。紫外線照射の際の照射強度、照射時間等の条件は特に限定されず、適宜必要に応じて設定すればよい。また、紫外線照射に使用する光源としては、公知のものを使用することができる。なお、粘着剤層に予め紫外線照射し硬化させておき、この硬化した粘着剤層と加熱接合用シートとを貼り合わせている場合や、粘着剤層と加熱接合用シートを貼り合わせた後に放射線を照射している場合は、ここでの紫外線照射は行わなくてもよい。
 次に、ピックアップした半導体チップ5を、加熱接合用シート3を介して被着体6にダイアタッチ(加熱接合)する(加熱接合工程)。被着体6としては、リードフレーム、TABフィルム、基板又は別途作製した半導体チップ等が挙げられる。被着体6は、例えば、容易に変形されるような変形型被着体であってもよく、変形することが困難である非変形型被着体(半導体ウェハ等)であってもよい。
 前記リードフレームとしては、Cuリードフレーム、42Alloyリードフレーム等の金属リードフレームを挙げることができる。また、前記基板としては、従来公知のものを使用することができる。例えば、ガラスエポキシ、BT(ビスマレイミド-トリアジン)、ポリイミド等からなる有機基板を挙げることができる。なかでも、金属リームフレームを用いれば、加熱接合により金属微粒子と一体化することができる。また、前記基板としては、セラミックプレート等の絶縁基板に、銅回路基板が積層された絶縁回路基板を挙げることができる。絶縁回路基板を用いれば、例えば、電力の制御や供給を行うパワー半導体装置を製造することができる。
 前記加熱接合工程では、加熱により金属微粒子を焼結するとともに、必要に応じて熱分解性バインダーを熱分解させる。また、乾燥工程により揮発しきらなかった残留低沸点バインダーを揮発させる。加熱温度は、好ましくは180~400℃、より好ましくは190~370℃、さらに好ましくは200~350℃で行うことができる。また、加熱時間は、好ましくは0.3~300分、より好ましくは0.5~240分、さらに好ましくは1~180分で行うことができる。また、加熱接合は、加圧条件下で行なってもよい。加圧条件としては、1~500kg/cmの範囲内が好ましく、5~400kg/cmの範囲内がより好ましい。加圧下での加熱接合は、例えば、フリップチップボンダーのような加熱と加圧とを同時に行える装置で実施ができる。また、平行平板プレスでもよい。
 次に、必要に応じて、図3に示すように、被着体6の端子部(インナーリード)の先端と半導体チップ5上の電極パッド(図示しない)とをボンディングワイヤー7で電気的に接続する(ワイヤーボンディング工程)。前記ボンディングワイヤー7としては、例えば金線、アルミニウム線又は銅線等が用いられる。ワイヤーボンディングを行う際の温度は、23~300℃、好ましくは23~250℃の範囲内で行われる。また、その加熱時間は数秒~数分間行われる。結線は、前記温度範囲内となる様に加熱された状態で、超音波による振動エネルギーと印加加圧による圧着工ネルギーの併用により行われる。
 次に、必要に応じて、図3に示すように、封止樹脂8により半導体チップ5を封止する(封止工程)。本工程は、被着体6に搭載された半導体チップ5やボンディングワイヤー7を保護するために行われる。本工程は、封止用の樹脂を金型で成型することにより行うことができる。封止樹脂8としては、例えばエポキシ系の樹脂を使用する。樹脂封止の際の加熱温度は、通常175℃で60~90秒間行われるが、本発明はこれに限定されず、例えば165~185℃で、数分間キュアすることができる。これにより、封止樹脂8を硬化させる。なお、本封止工程では、シート状の封止用シートに半導体チップ5を埋め込む方法(例えば、特開2013-7028号公報参照)を採用することもできる。また、金型による封止樹脂の成型以外にも、ケース型容器にシリコーンゲルを流し込むゲル封止型でもよい。
 次に、必要に応じて加熱を行い、前記封止工程で硬化不足の封止樹脂8を完全に硬化させる(後硬化工程)。本工程における加熱温度は、封止樹脂の種類により異なるが、例えば165~185℃の範囲内であり、加熱時間は0.5~8時間程度である。
 なお、本発明の加熱接合用シート、及び、ダイシングテープ付き加熱接合用シートは、複数の半導体チップを積層して3次元実装をする場合にも好適に用いることができる。このとき、半導体チップ間に加熱接合用シートとスペーサとを積層させてもよく、スペーサを積層することなく、加熱接合用シートのみを半導体チップ間に積層させてもよく、製造条件や用途等に応じて適宜変更可能である。
 また、本発明の加熱接合用シート、及び、ダイシングテープ付き加熱接合用シートは、上記に例示した用途に限定されず、2つのものを加熱接合するのに利用することができる。
 以下、本発明に関し実施例を用いて詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。
 実施例で使用した成分について説明する。
 熱分解性バインダーA(ポリプロピレンカーボネート樹脂):Empower社製のQPAC40、23℃で固形
 低沸点バインダーA(イソボルニルシクロヘキサノール):日本テルペン化学株式会社製のテルソルブMTPH、23℃で液状
 金属微粒子A:三井金属鉱業株式会社製の平均粒径200nmの銅微粒子
 有機溶剤A:メチルエチルケトン(MEK)
 (実施例1)
  <焼結前層の作製>
 熱分解性バインダーAをMEKにあらかじめ重量比で1:1で溶解させた溶液(12重量%)、低沸点バインダーA(4重量%)、金属微粒子A(60重量%)、及び、有機溶剤A(24重量%)を、ハイブリッドミキサー(キーエンス製 HM-500)の攪拌釜に入れ、攪拌モード、3分で攪拌・混合した。
 得られたワニスを、離型処理フィルム(三菱樹脂(株)製のMRA38)に乾燥後の厚みが70μmとなるように、塗布・乾燥させて焼結前層Aを得た。乾燥条件は、80℃2分間とした。
  <成分移行防止層の作製>
 熱分解性バインダーAをMEKにあらかじめ重量比で1:1で溶解させた溶液(50重量%)、及び、有機溶剤A(50重量%)を、ハイブリッドミキサー(キーエンス製 HM-500)の攪拌釜に入れ、攪拌モード、3分で攪拌・混合した。
 得られたワニスを、離型処理フィルム(三菱樹脂(株)製のMRA38)に乾燥後の厚みが3μmとなるように、塗布・乾燥させて成分移行防止層Aを得た。乾燥条件は、80℃2分間とした。
  <加熱接合用シートの作製>
 焼結前層Aと成分移行防止層Aとの塗布乾燥表面同士を対面させ、油圧式ラミネータ―にて70℃で貼り合わせることで、加熱接合用シートAを得た。
 (実施例2)
  <成分移行防止層の作製>
 実施例1の成分移行層A用のワニスを用い、乾燥後の厚みが6μmとなるように、塗布・乾燥させて成分移行防止層Bを得た。
  <加熱接合用シートの作製>
 焼結前層Aと成分移行防止層Bとの塗布乾燥表面同士を対面させ、油圧式ラミネータ―にて70℃で貼り合わせることで、加熱接合用シートBを得た。
 [成分移行抑制評価]
  <ダイシングテープの作製>
 冷却管、窒素導入管、温度計、及び、撹拌装置を備えた反応容器に、アクリル酸2-エチルヘキシル100部、アクリル酸-2-ヒドロキシエチル19部、過酸化ベンゾイル0.4部、及び、トルエン80部を入れ、窒素気流中で60℃にて10時間重合処理をし、アクリル系ポリマーAを得た。
 このアクリル系ポリマーAに2-メタクリロイルオキシエチルイソシアネート1.2部を加え、空気気流中で50℃にて60時間、付加反応処理をし、アクリル系ポリマーA’を得た。
 次に、アクリル系ポリマーA’100部に対し、ポリイソシアネート化合物(商品名「コロネートL」、日本ポリウレタン(株)製)1.3部、及び、光重合開始剤(商品名「イルガキュア184」、チバ・スペシャルティー・ケミカルズ社製)3部を加えて、粘着剤溶液(「粘着剤溶液A」ともいう)を作製した。
 前記で調製した粘着剤溶液Aを、PET剥離ライナーのシリコーン処理を施した面上に塗布し、120℃で2分間加熱乾燥し、厚さ10μmの粘着剤層Aを形成した。次いで、粘着剤層Aの露出面に、厚さ125μmのグンゼ社製EVAフィルム(エチレン・酢酸ビニル共重合体フィルム)を貼り合わせ、23℃にて72時間保存し、ダイシングテープAを得た。
 <評価>
 実施例の加熱接合用シートを、それぞれ作製したダイシングテープAに室温(23℃)で貼り付けた。次に、UV照射(条件:紫外線(UV)照射装置(商品名「UM-810」(日東精機株式会社製))を用いて、紫外線照射積算光量:300mJ/cmにて紫外線照射)を行った。その後、さらに、70℃で10分間加熱処理を行った。次に、ダイシングテープAを剥離した。なお、ここでのUV照射、及び、加熱処理は、いわゆる加速試験のためであり、実際の使用条件とは異なる。
 ダイシングテープAを剥離した後の加熱接合用シート(焼結前層Aと成分移行防止層Aとの2層構成のシート)を約10mg切り出したサンプルに対して、窒素雰囲気下、昇温速度90℃/分の条件で、23℃から500℃まで熱重量分析を行った。測定には、TG-DTA同時測定装置(示差熱-熱重量同時測定装置)、より具体的には、理学電機(株)製の差動型示差熱天秤 TG-DTA TG8120を用いた。23℃での重量減少量を0%とした。なお、この分析では、重量が23℃での重量よりも減少すると、値がマイナスの値となる。500℃での値(重量減少量(%))をYとした。
 実施例の加熱接合用シート(焼結前層Aと成分移行防止層Aとの2層構成のシート)に対して、ダイシングテープに貼り付けることなくそのまま、熱重量分析を行った。熱重量分析の方法は、上記と同様とした。500℃での値(重量減少量(%))をY0とした。
 [[(Y-Y0)/Y0]×100]の絶対値が5より大きい場合、成分移行が充分起こっているとみなし、「×」と判定した。[[(Y-Y0)/Y0]×100]の絶対値が0~5の範囲にある場合、成分移行は抑制されているとみなし、「○」と判定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
    1  基材
    2  粘着剤層
    3、3’  加熱接合用シート
    4  半導体ウェハ
    5  半導体チップ
    6  被着体
    7  ボンディングワイヤー
    8  封止樹脂
   10、12  ダイシングテープ付き加熱接合用シート
   11  ダイシングテープ
   31  焼結前層
   32  成分移行防止層

Claims (7)

  1.  加熱により焼結層となる焼結前層と、成分移行防止層とを有することを特徴とする加熱接合用シート。
  2.  前記焼結前層は、金属微粒子と、有機バインダーとを含み、
     前記成分移行防止層は、少なくとも有機バインダーを含む
     ことを特徴とする請求項1に記載の加熱接合用シート。
  3.  前記焼結前層に含まれる金属微粒子の含有量は、焼結前層全体に対して、30~70体積%の範囲内であり、
     前記成分移行防止層に含まれる金属微粒子の含有量は、成分移行防止層全体に対して、0~30体積%の範囲内である
     ことを特徴とする請求項2に記載の加熱接合用シート。
  4.  前記焼結前層に含まれる有機バインダーは、熱分解性バインダーを含み、
     前記成分移行防止層に含まれる有機バインダーは、熱分解性バインダーを含む
     ことを特徴とする請求項2又は3に記載の加熱接合用シート。
  5.  前記焼結前層に含まれる有機バインダーは、焼結前層の有機バインダー全体に対して、分子量500以下の有機成分を20~80重量%含み、
     前記成分移行防止層に含まれる有機バインダーは、成分移行防止層の有機バインダー全体に対して、分子量500以下の有機成分を0~20重量%含む
     ことを特徴とする請求項2~4のいずれか1に記載の加熱接合用シート。
  6.  前記焼結前層の厚さが、5~100μmの範囲内であり、
     前記成分移行防止層の厚さが、2~10μmの範囲内である
     ことを特徴とする請求項1~5のいずれか1に記載の加熱接合用シート。
  7.  ダイシングテープと、
     請求項1~6のいずれか1に記載の加熱接合用シートと
     を有し、
     前記加熱接合用シートは、前記ダイシングテープと前記成分移行防止層とが接触する態様で前記ダイシングテープ上に積層されていることを特徴とするダイシングテープ付き加熱接合用シート。
     
PCT/JP2017/018681 2016-08-31 2017-05-18 加熱接合用シート、及び、ダイシングテープ付き加熱接合用シート WO2018042771A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780052888.5A CN109690745B (zh) 2016-08-31 2017-05-18 加热接合用片材、及带有切割带的加热接合用片材
US16/326,427 US11390777B2 (en) 2016-08-31 2017-05-18 Sheet for heat bonding and sheet for heat bonding having dicing tape
EP17845782.6A EP3509092A4 (en) 2016-08-31 2017-05-18 THERMAL BONDING SHEET, AND THERMAL BONDING SHEET PROVIDED WITH A DIE CUTTING RIBBON

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-170115 2016-08-31
JP2016170115A JP6815132B2 (ja) 2016-08-31 2016-08-31 加熱接合用シート、及び、ダイシングテープ付き加熱接合用シート

Publications (1)

Publication Number Publication Date
WO2018042771A1 true WO2018042771A1 (ja) 2018-03-08

Family

ID=61300481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018681 WO2018042771A1 (ja) 2016-08-31 2017-05-18 加熱接合用シート、及び、ダイシングテープ付き加熱接合用シート

Country Status (6)

Country Link
US (1) US11390777B2 (ja)
EP (1) EP3509092A4 (ja)
JP (1) JP6815132B2 (ja)
CN (1) CN109690745B (ja)
TW (1) TWI740984B (ja)
WO (1) WO2018042771A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3709347A1 (en) * 2019-03-15 2020-09-16 Nitto Denko Corporation Sheet for sintering bonding with base material and semiconductor chip with layer for sintering bonding derived therefrom
EP3709351A1 (en) * 2019-03-15 2020-09-16 Nitto Denko Corporation Sheet for sintering bonding with base material
EP3709350A1 (en) * 2019-03-15 2020-09-16 Nitto Denko Corporation Sheet for sintering bonding with base material
EP3709348A1 (en) * 2019-03-15 2020-09-16 Nitto Denko Corporation Wound body of sheet for sintering bonding with base material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102413907B1 (ko) * 2017-03-29 2022-06-29 닛토덴코 가부시키가이샤 가열 접합용 시트 및 가열 접합용 시트를 구비한 다이싱 테이프

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012223904A (ja) * 2011-04-15 2012-11-15 Nitto Denko Corp 粘着剤層付き透明樹脂フィルム、積層フィルムおよびタッチパネル
JP2016121329A (ja) * 2014-12-24 2016-07-07 日東電工株式会社 加熱接合用シート、及び、ダイシングテープ付き加熱接合用シート
JP5989928B1 (ja) * 2016-02-10 2016-09-07 古河電気工業株式会社 導電性接着フィルムおよびこれを用いたダイシング・ダイボンディングフィルム

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08229695A (ja) * 1995-02-28 1996-09-10 Nitto Denko Corp 金属部材の接合材およびそれを用いた金属部材の接合方法
JP4561989B2 (ja) * 2005-04-22 2010-10-13 信越化学工業株式会社 熱圧着用複層ゴムシート
JP4781185B2 (ja) * 2006-07-18 2011-09-28 日東電工株式会社 耐熱ダイシングテープ又はシート
US8368205B2 (en) * 2010-12-17 2013-02-05 Oracle America, Inc. Metallic thermal joint for high power density chips
US9583453B2 (en) * 2012-05-30 2017-02-28 Ormet Circuits, Inc. Semiconductor packaging containing sintering die-attach material
JP6542504B2 (ja) * 2013-02-20 2019-07-10 日東電工株式会社 フィルム状接着剤、フィルム状接着剤付きダイシングテープ、半導体装置の製造方法、及び半導体装置
JP6486369B2 (ja) * 2013-09-05 2019-03-20 ヘンケル アイピー アンド ホールディング ゲゼルシャフト ミット ベシュレンクテル ハフツング 金属焼結フィルム組成物
WO2015060346A1 (ja) 2013-10-23 2015-04-30 日立化成株式会社 ダイボンドシート及び半導体装置の製造方法
WO2016031551A1 (ja) * 2014-08-29 2016-03-03 古河電気工業株式会社 導電性接着フィルム
JP6396189B2 (ja) * 2014-11-27 2018-09-26 日東電工株式会社 導電性フィルム状接着剤、フィルム状接着剤付きダイシングテープ及び半導体装置の製造方法
WO2016104188A1 (ja) * 2014-12-24 2016-06-30 日東電工株式会社 加熱接合用シート、及び、ダイシングテープ付き加熱接合用シート
JP2017066485A (ja) 2015-09-30 2017-04-06 日東電工株式会社 シートおよび複合シート
JP6505572B2 (ja) 2015-09-30 2019-04-24 日東電工株式会社 加熱接合用シート及びダイシングテープ付き加熱接合用シート
JP6505571B2 (ja) 2015-09-30 2019-04-24 日東電工株式会社 加熱接合用シート、及び、ダイシングテープ付き加熱接合用シート
JP6967839B2 (ja) 2016-03-23 2021-11-17 日東電工株式会社 加熱接合用シート、ダイシングテープ付き加熱接合用シート、及び、接合体の製造方法、パワー半導体装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012223904A (ja) * 2011-04-15 2012-11-15 Nitto Denko Corp 粘着剤層付き透明樹脂フィルム、積層フィルムおよびタッチパネル
JP2016121329A (ja) * 2014-12-24 2016-07-07 日東電工株式会社 加熱接合用シート、及び、ダイシングテープ付き加熱接合用シート
JP5989928B1 (ja) * 2016-02-10 2016-09-07 古河電気工業株式会社 導電性接着フィルムおよびこれを用いたダイシング・ダイボンディングフィルム

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3709347A1 (en) * 2019-03-15 2020-09-16 Nitto Denko Corporation Sheet for sintering bonding with base material and semiconductor chip with layer for sintering bonding derived therefrom
EP3709351A1 (en) * 2019-03-15 2020-09-16 Nitto Denko Corporation Sheet for sintering bonding with base material
EP3709350A1 (en) * 2019-03-15 2020-09-16 Nitto Denko Corporation Sheet for sintering bonding with base material
EP3709348A1 (en) * 2019-03-15 2020-09-16 Nitto Denko Corporation Wound body of sheet for sintering bonding with base material
JP2020147706A (ja) * 2019-03-15 2020-09-17 日東電工株式会社 基材付き焼結接合用シートの巻回体
US11697567B2 (en) 2019-03-15 2023-07-11 Nitto Denko Corporation Wound body of sheet for sintering bonding with base material

Also Published As

Publication number Publication date
EP3509092A1 (en) 2019-07-10
EP3509092A4 (en) 2019-07-10
TW201811948A (zh) 2018-04-01
CN109690745B (zh) 2023-10-13
CN109690745A (zh) 2019-04-26
US20210198526A1 (en) 2021-07-01
US11390777B2 (en) 2022-07-19
TWI740984B (zh) 2021-10-01
JP2018037547A (ja) 2018-03-08
JP6815132B2 (ja) 2021-01-20

Similar Documents

Publication Publication Date Title
JP6870943B2 (ja) 加熱接合用シート、及び、ダイシングテープ付き加熱接合用シート
JP6682235B2 (ja) 加熱接合用シート、及び、ダイシングテープ付き加熱接合用シート
TWI751134B (zh) 加熱接合用片材、附切晶帶加熱接合用片材、以及、接合體之製造方法、電力半導體裝置
WO2018042772A1 (ja) 加熱接合用シート、及び、ダイシングテープ付き加熱接合用シート
JP6505572B2 (ja) 加熱接合用シート及びダイシングテープ付き加熱接合用シート
JP6858520B2 (ja) 加熱接合用シート、及び、ダイシングテープ付き加熱接合用シート
JP6505571B2 (ja) 加熱接合用シート、及び、ダイシングテープ付き加熱接合用シート
WO2018055889A1 (ja) 加熱接合用シート及びダイシングテープ付き加熱接合用シート
WO2018042771A1 (ja) 加熱接合用シート、及び、ダイシングテープ付き加熱接合用シート
JP6864505B2 (ja) 加熱接合用シート及びダイシングテープ付き加熱接合用シート
WO2017221614A1 (ja) 加熱接合用シート及びダイシングテープ付き加熱接合用シート
WO2016104188A1 (ja) 加熱接合用シート、及び、ダイシングテープ付き加熱接合用シート
JP2017069559A (ja) パワー半導体装置の製造方法
JP6972216B2 (ja) 加熱接合用シート、ダイシングテープ付き加熱接合用シート、及び、接合体の製造方法、パワー半導体装置
JP2017069558A (ja) パワー半導体装置の製造方法
WO2017057428A1 (ja) 加熱接合用シート、及び、ダイシングテープ付き加熱接合用シート
WO2017221613A1 (ja) 加熱接合用シート及びダイシングテープ付き加熱接合用シート
WO2017057429A1 (ja) 加熱接合用シート、及び、ダイシングテープ付き加熱接合用シート

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17845782

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017845782

Country of ref document: EP

Effective date: 20190401