WO2015052945A1 - 車載充電器 - Google Patents

車載充電器 Download PDF

Info

Publication number
WO2015052945A1
WO2015052945A1 PCT/JP2014/056895 JP2014056895W WO2015052945A1 WO 2015052945 A1 WO2015052945 A1 WO 2015052945A1 JP 2014056895 W JP2014056895 W JP 2014056895W WO 2015052945 A1 WO2015052945 A1 WO 2015052945A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
diode
converter
vehicle
current
Prior art date
Application number
PCT/JP2014/056895
Other languages
English (en)
French (fr)
Inventor
真央 川村
加藤 正幸
瀧北 守
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US14/911,054 priority Critical patent/US9812895B2/en
Priority to EP14852887.0A priority patent/EP3057218B1/en
Priority to CN201480055606.3A priority patent/CN105637751B/zh
Publication of WO2015052945A1 publication Critical patent/WO2015052945A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/52Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by DC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • H02M7/066Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode particular circuits having a special characteristic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0051Diode reverse recovery losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/3353Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having at least two simultaneously operating switches on the input side, e.g. "double forward" or "double (switched) flyback" converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33538Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type
    • H02M3/33546Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type with automatic control of the output voltage or current
    • H02M3/33553Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type with automatic control of the output voltage or current with galvanic isolation between input and output of both the power stage and the feedback loop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to an in-vehicle charger for charging a battery that supplies electric power to an electric motor for an electric vehicle such as EV (electric vehicle) / PHEV (plug-in hybrid electric vehicle).
  • EV electric vehicle
  • PHEV plug-in hybrid electric vehicle
  • any type of electric vehicle has a battery as an electricity storage device for supplying electric power to the electric motor, and when the remaining capacity of the battery is reduced, it is necessary to charge the battery from the outside. Further, in a hybrid vehicle having an electric motor and an engine as drive sources, the battery is normally charged by driving the engine. However, the battery may be charged by supplying power from an external power source without driving the engine.
  • An electric vehicle having such an electric motor is equipped with an in-vehicle charger that boosts the commercial power source and converts it into DC power so that the battery can be charged using a commercial commercial power source as an external power source.
  • an in-vehicle charger that boosts the commercial power source and converts it into DC power so that the battery can be charged using a commercial commercial power source as an external power source.
  • the vehicle and the home environment are integrated because the battery in the electric vehicle is charged by the in-vehicle charger from the household commercial power supply via the public power network. Therefore, as electric vehicles become widespread, it is required to maintain reliability and quality in both environments of EMC (electromagnetic compatibility) tests of electric vehicles and EMC tests of consumer equipment related to public power supply networks. It becomes like this. Therefore, in such a case, the EMC regulation of the in-vehicle charger is stricter than general electric parts.
  • the on-vehicle charger is generally composed of an AC / DC converter and an insulated DC / DC converter (hereinafter referred to as an insulated DC / DC converter). Further, in order to reduce the size and cost of the on-vehicle charger, it is essential to reduce the size of magnetic parts such as a transformer and a reactor, and a higher switching frequency is desired. However, with high frequency driving, problems such as increased recovery loss of the diode or increased surge voltage occur. In particular, in the case of an in-vehicle charger, a high voltage battery is connected to the output side of the isolated DC / DC converter.
  • the surge voltage generated on the secondary side of the transformer becomes high, and there is a concern that the breakdown voltage of the element increases, the loss increases, and the EMC deteriorates. Therefore, it is required to suppress the surge voltage generated in the secondary side rectifier circuit of the isolated DC / DC converter.
  • a DC / DC converter that suppresses a surge voltage by providing an RCD snubber circuit for example, see Patent Document 1.
  • a DC / DC converter that suppresses a surge voltage without providing an RCD snubber circuit is known (see, for example, Patent Document 2).
  • a synchronous rectifier circuit system is used as a rectifier circuit of an isolated DC / DC converter.
  • this synchronous rectifier circuit method is applied to an isolated DC / DC converter circuit with a high voltage and a high power output provided in an in-vehicle charger, it is necessary that the switching element of the synchronous rectifier circuit is a high withstand voltage product. There was a problem that the size would increase. Further, unlike the diode rectifier circuit method, the synchronous rectifier circuit method drives the switching element, so that a drive power supply and a drive circuit are separately required. Therefore, there is a problem that not only the size increases but also the cost increases.
  • the present invention has been made in order to solve the above-described problems, and is simpler than a case where a conventional synchronous rectifier circuit system is employed, and a diode configuration with a circuit configuration that suppresses an increase in cost. It aims at obtaining the vehicle-mounted charger which can suppress a recovery surge voltage.
  • the on-vehicle charger boosts the DC voltage generated by an AC / DC converter that converts an AC voltage applied from an external power source into a DC voltage, and the AC / DC converter, and stores the boosted voltage in an electric motor for driving the vehicle.
  • An in-vehicle charger comprising: an isolated DC / DC converter that supplies power to a battery by applying a boosted DC voltage to a battery that supplies power, and the rectifier circuit included in the insulated DC / DC converter includes: Including a rectifying diode made of Si semiconductor connected in a full-bridge configuration, and a Schottky barrier diode made of a wide band gap semiconductor provided between the rectifying circuit and the smoothing circuit of the insulated DC / DC converter is rectified It is connected in parallel with the circuit.
  • a Si diode is used as a rectifier diode on the transformer secondary side of the isolated DC / DC converter, and a high-withstand voltage and wide band gap semiconductor is used as a return diode between the rectifier circuit and the smoothing reactor.
  • a Schottky barrier diode is used.
  • FIG. 1 is a circuit diagram of an in-vehicle charger using a general insulated DC / DC converter configured with a full-bridge semiconductor switching element and a diode for explaining the in-vehicle charger in Embodiment 1 of the present invention. .
  • FIG. 1 is a circuit diagram of an in-vehicle charger using a general insulated DC / DC converter configured with a full-bridge semiconductor switching element and a diode for explaining the in-vehicle charger in Embodiment 1 of the present invention. .
  • FIG. 5 is an explanatory diagram showing a current path when each semiconductor switching element in FIG. 4 is turned on / off.
  • FIG. 5 is an explanatory diagram showing temporal changes in current and voltage of the rectifying diode in FIG. 4. It is explanatory drawing which shows a current pathway when each semiconductor switching element of the vehicle-mounted charger in this Embodiment 1 is on / off. It is explanatory drawing which shows the time-dependent change of the electric current and voltage of the rectifier diode of the vehicle-mounted charger in this Embodiment 1.
  • FIG. 1 is a schematic configuration diagram of an in-vehicle charger 1 according to Embodiment 1 of the present invention.
  • an AC voltage power source 2 (hereinafter simply referred to as an AC power source 2) as an external power source (AC input power source) is connected to the input side of the in-vehicle charger 1.
  • a high-voltage battery 3 (hereinafter referred to as a high-voltage battery 3) as a load is connected to the output side of the in-vehicle charger 1.
  • the high voltage battery 3 supplies the stored power to an electric motor for driving the vehicle.
  • what is necessary is just to design the voltage of the high voltage battery 3 so that it may become 100 V or more, for example.
  • the on-vehicle charger 1 boosts an AC / DC converter 10 that converts an AC voltage into a DC voltage, a DC voltage generated by the AC / DC converter 10, and applies the boosted DC voltage to the high-voltage battery 3.
  • an insulated DC / DC converter 20 that supplies power to the high-voltage battery 3 is provided.
  • a capacitor 30 is connected between the AC / DC converter 10 and the insulated DC / DC converter 20.
  • the insulated DC / DC converter 20 includes four semiconductor switching elements Q1 to Q4, a transformer 21, a leakage inductance component of the transformer 21 (hereinafter referred to as an inductance component 22), four rectifying diodes D1 to D4, and a shot. It has a key barrier diode D5 and a smoothing circuit 25 composed of a smoothing reactor 23 and a smoothing capacitor 24.
  • semiconductor switching elements Q1 to Q4 are connected after the capacitor 30.
  • MOSFETs can be used as these semiconductor switching elements Q1 to Q4.
  • the drains of the semiconductor switching elements Q1 and Q3 are connected to the positive electrode side of the capacitor 30, and the sources of the semiconductor switching elements Q2 and Q4 are connected to the negative electrode side of the capacitor 30.
  • One end of the primary winding of the transformer 21 is connected to a connection point between the source of the semiconductor switching element Q1 and the drain of the semiconductor switching element Q2, and the other end is connected to the source of the semiconductor switching element Q3 and the drain of the semiconductor switching element Q4. Connected to the connection point.
  • Rectifier diodes D1 to D4 are connected to the secondary winding of the transformer 21 in a full bridge configuration. Further, as the rectifying diodes D1 to D4, diodes made of an inexpensive Si (silicon) semiconductor are used. Hereinafter, a diode made of a Si semiconductor is referred to as a Si diode.
  • the rectifier circuit which has Si diode connected by the full bridge structure is employ
  • a smoothing circuit 25 including a smoothing reactor 23 and a smoothing capacitor 24 is connected to the subsequent stage of the rectifying diodes D1 to D4. Further, a Schottky barrier diode D5 for circulation is connected between the rectifying diodes D1 to D4 and the smoothing circuit 25.
  • a Schottky barrier diode D5 for circulation is connected between the rectifying diodes D1 to D4 and the smoothing circuit 25.
  • a Schottky barrier diode D5 a Schottky barrier diode made of a SiC (silicon carbide) semiconductor, which is a wide band gap semiconductor with high breakdown voltage, good heat dissipation, and low recovery is used.
  • the Schottky barrier diode D5 made of a SiC semiconductor is referred to as a SiC Schottky barrier diode D5.
  • the isolated DC / DC converter 20 exemplified in the first embodiment is an isolated DC / DC converter having a general full bridge configuration, and adopts a switching system that is a hard switching system.
  • FIG. 2 is an explanatory diagram showing the operation of the semiconductor switching element of the isolated DC / DC converter according to Embodiment 1 of the present invention.
  • Tdc indicates a switching period
  • td indicates a dead time.
  • the current flowing to the primary winding side (primary side) of the transformer 21 is the capacitor 30, the semiconductor switching element Q1, the transformer 21 (primary side), and the semiconductor switching.
  • Each path flows in the order of the element Q4.
  • the transformer 21 transmits power from the primary side to the secondary side.
  • the current flowing to the secondary winding side (secondary side) of the transformer 21 is the order of the transformer 21 (secondary side), the rectifying diode D1, the smoothing reactor 23, the high voltage battery 3, and the rectifying diode D4. Flow through each path.
  • the semiconductor switching elements Q2 and Q3 are turned on, the current flowing to the primary side of the transformer 21 flows through each path in the order of the capacitor 30, the semiconductor switching element Q3, the transformer 21 (primary side), and the semiconductor switching element Q2. . Subsequently, the current that flows to the secondary winding side of the transformer 21 flows through each path in the order of the transformer 21 (secondary side), the rectifying diode D3, the smoothing reactor 23, the high-voltage battery 3, and the rectifying diode D2. .
  • FIG. 3 is an explanatory diagram showing voltage and current waveforms during the operation of the isolated DC / DC converter 20 according to Embodiment 1 of the present invention.
  • Vtr1 Primary voltage of the transformer 21
  • Itr1 Primary current of the transformer 21
  • Vtr2 Secondary voltage of the transformer 21
  • Iout Current flowing through the smoothing reactor 23
  • the inductance component 22 is a leakage inductance component of the transformer 21, but is not limited thereto, and a general reactor may be externally attached.
  • FIG. 4 is a vehicle-mounted charger using a general insulated DC / DC converter composed of a full-bridge semiconductor switching element and a diode for explaining the vehicle-mounted charger 1 according to Embodiment 1 of the present invention.
  • FIG. FIG. 5 is an explanatory diagram showing a current path when each of the semiconductor switching elements Q1 to Q4 in FIG. 4 is turned on / off. 5 (a) to 5 (e) show changes over time in the current path flowing through the circuit of the on-vehicle charger in FIG.
  • FIG. 6 is an explanatory diagram showing changes over time in the current ID3 and the voltage VD3 of the rectifying diode D3 in FIG.
  • the magnitude of the current ID3 (hereinafter simply referred to as current ID3) of the rectifying diode D3 is IF
  • the voltage VD3 of the rectifying diode D3 (hereinafter referred to as “current ID3”).
  • the magnitude of the voltage VD3 is simply VF.
  • the magnitude of the current ID3 is IF and the magnitude of the voltage VD3 is VF at time t2.
  • the current of the rectifying diodes D2 and D3 decreases, and the recovery current (or reverse recovery current) flows through the rectifying diodes D2 and D3 at the moment when the forward current becomes 0 A or less.
  • the path of the recovery current flowing through the rectifying diodes D2 and D3 is the path shown in FIG. Note that, in the rectifying diodes D2 and D3, there is a state in which energization can be performed by accumulated carriers even when a reverse bias is applied by changing a bias direction (polarity) from an on state in which a forward bias is applied. . In such a case, an excessive current flows on the secondary side of the transformer 21.
  • the inductance component 22 of the leakage inductance of the transformer 21 is sufficiently larger than the inductance such as the wiring or the pattern, in the first embodiment, the generation of the surge voltage VL is handled as the inductance component 22.
  • the SiC Schottky barrier diode is a unipolar device, unlike the bipolar device represented by the Si diode / FRD, there is no accumulation of minority carriers, and as a result, the reverse recovery time of the diode is faster than the FRD. This is because there is no temperature dependency.
  • SiC diodes are more expensive than general Si diodes. Therefore, if four SiC Schottky barrier diodes are used as the rectifying diodes D1 to D4, there arises a problem that the cost of the in-vehicle charger itself increases dramatically.
  • the rectifying diodes D1 to D4 are less expensive Si diodes than SiC diodes.
  • a SiC Schottky barrier diode D5 is used as a freewheeling diode newly provided between the rectifying diodes D1 to D4 and the smoothing circuit 25.
  • FIG. 7 is an explanatory diagram showing current paths when the semiconductor switching elements Q1 to Q4 of the in-vehicle charger 1 according to the first embodiment are on / off.
  • FIGS. 7A to 7E show changes over time in the current path flowing through the circuit of the on-vehicle charger 1.
  • FIG. 8 is an explanatory diagram showing temporal changes in the current ID3 and the voltage VD3 of the rectifying diode D3 of the in-vehicle charger 1 according to the first embodiment.
  • the time-dependent changes in the current ID3 and voltage VD3 of the rectifying diode D3 of the in-vehicle charger 1 are shown by solid lines, and for comparison, the in-vehicle charger in which the SiC Schottky barrier diode D5 is not provided.
  • the change with time of current ID3 and voltage VD3 of the rectifying diode D3 (FIG. 6) is also shown by a broken line.
  • the smoothing reactor 23 is equivalent to a constant current source because it tries to flow a current in a direction that has flowed immediately before (time t 1).
  • most of the current flowing through smoothing reactor 23 flows through SiC Schottky barrier diode D5 as shown in FIG. 7B.
  • the rectifying diode D1 and the rectifying diode D2 are connected in series, and the rectifying diode D3 and the rectifying diode D4 are connected in series.
  • the SiC Schottky barrier diode D5 is disposed between the smoothing reactor 23 and the rectifying diodes D1 to D4, the impedance of the wiring is low. From the above, most of the current flowing through the smoothing reactor 23 flows through the SiC Schottky barrier diode D5 having a sufficiently low impedance, and hardly flows through the rectifying diodes D1 to D4.
  • the secondary current of the transformer 21 flows through the rectifying diodes D1 and D4 as shown in FIGS. 7D and 7E after time t4. Further, since a reverse voltage is applied to the SiC Schottky barrier diode D5, the current flowing through the SiC Schottky barrier diode D5 decreases.
  • the forward current of the SiC Schottky barrier diode D5 is larger than the forward current of the rectifying diodes D2 and D3. Big enough.
  • the SiC Schottky barrier diode D5 does not accumulate minority carriers and hardly recovers.
  • the reason that the recovery hardly occurs is that, in actuality, only a current that charges and discharges the junction capacitance on the Schottky barrier diode surface transiently flows. Therefore, as shown in FIG. 8, the current ID3 and the voltage VD3 of the rectifying diode D3 have a time-varying characteristic as shown by a solid line.
  • a Si diode is used as a rectifier diode of a rectifier circuit of an isolated DC-DC converter that constitutes an in-vehicle charger, and a reflux diode provided between the rectifier circuit and the smoothing circuit.
  • An SiC Schottky barrier diode is used as the diode.
  • the on-vehicle charger mounted on the electric vehicle described in the first embodiment does not require a special snubber circuit, and only uses one additional Schottky barrier diode made of a wide band gap semiconductor.
  • the recovery surge voltage of the diode can be suppressed with a circuit configuration that is simple and suppresses an increase in cost as compared with the case where the conventional synchronous rectification circuit method is adopted.
  • a SiC Schottky barrier diode was used as a freewheeling diode
  • such a freewheeling diode is different from a SiC semiconductor, and has a large band gap compared with Si.
  • a Schottky barrier diode made of another wide band gap semiconductor may be used. Specifically, for example, if a gallium nitride material, diamond, or the like is used as the wide band gap semiconductor, the same effect as SiC can be obtained.
  • GaN (gallium nitride) -based materials can operate at a higher frequency than Si or SiC. This is because the GaN-based material can use a two-dimensional electron gas, has an electron concentration higher than that of Si or SiC, and has a higher carrier mobility. And since GaN-type material has a low heat conductivity compared with SiC, it is suitable to use it for a device with comparatively small power capacity. That is, in a vehicle-mounted charger driven at a high voltage and a high frequency, if the power capacity is relatively small, it is more effective to use a Schottky barrier diode made of a semiconductor of a GaN-based material as the reflux diode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Dc-Dc Converters (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Rectifiers (AREA)

Abstract

 絶縁DC/DCコンバータのトランス二次側の整流用ダイオードにはSiダイオードを使用し、整流回路と平滑用リアクトルとの間に還流用ダイオードとして高耐圧でワイドバンドギャップ半導体からなるショットキーバリアダイオードを使用することで、従来の同期整流回路方式を採用する場合と比較して、簡単であり、コストの増加を抑えた回路構成でダイオードのリカバリサージ電圧を抑制することのできる車載充電器を得ることができる。

Description

車載充電器
 本発明は、EV(電気自動車)/PHEV(プラグインハイブリッド電気自動車)等の電動車両用の電動モータに対して電力を供給するバッテリを充電するための車載充電器に関するものである。
 電動車両のタイプとしては、駆動源として電動モータのみを有する車両と、駆動源として電動モータとエンジンとを有するハイブリッド車両とがある。いずれのタイプの電動車両においても、電動モータに電力を供給するために蓄電デバイスとしてのバッテリを有しており、バッテリの残存容量が低下した場合には、外部からバッテリを充電する必要がある。また、駆動源として電動モータとエンジンとを有するハイブリッド車両においては、通常では、エンジンが駆動することでバッテリを充電することになる。ただし、エンジンが駆動することなく、外部電源から電力を供給することでバッテリを充電することもある。
 このような電動モータを有する電動車両には、外部電源として家庭用の商用電源を用いてバッテリを充電することができるように、商用電源を昇圧して直流電力に変換する車載充電器が搭載される。そして、近年、EV/PHEV等の電動車両が普及した結果、車載充電器に関して、カーメーカーからは小型化・低コスト化が望まれ、ユーザーからはバッテリの充電時間短縮のために充電の高効率化が望まれている。
 また、公共電源網を介して家庭用の商用電源から電動車両内のバッテリが車載充電器によって充電されるので、車両と家庭環境とが一体化されているということがいえる。そのため、電動車両が普及するにつれて、電動車両のEMC(electromagnetic compatibility:電磁両立性)試験と、公共電源網に関連した民生機器のEMC試験との両環境での信頼性および品質維持が要求されるようになる。したがって、このような場合、車載充電器のEMC規制は、一般的な電装部品よりも厳しいものとなる。
 ここで、車載充電器は、一般的にAC/DCコンバータと絶縁型DC/DCコンバータ(以下、絶縁DC/DCコンバータと称す)とで構成される。また、車載充電器の小型化、低コスト化のためには、トランス、リアクトル等の磁性部品の小型化が必須であり、スイッチング周波数の高周波化が望まれる。しかしながら、高周波駆動に伴い、ダイオードのリカバリ損失の増大、あるいはサージ電圧の増大等の問題が生じる。特に、車載充電器の場合、絶縁DC/DCコンバータの出力側に高電圧のバッテリが接続される。そのため、トランス二次側に発生するサージ電圧が高くなるので、素子の耐圧増加、損失増加、およびEMC悪化が懸念される。したがって、絶縁DC/DCコンバータの二次側整流回路に発生するサージ電圧を抑制することが求められる。
 そこで、第1の従来技術として、RCDスナバ回路を備えることで、サージ電圧を抑制するDC/DCコンバータが知られている(例えば、特許文献1参照)。また、第2の従来技術として、RCDスナバ回路を備えることなく、サージ電圧を抑制するDC/DCコンバータが知られている(例えば、特許文献2参照)。
特開2008-79403号公報 特開2000-166243号公報
 しかしながら、従来技術には以下のような課題がある。
 特許文献1に記載の従来技術では、車載充電器に具備される高電圧・大電力出力の絶縁DC/DCコンバータ回路に適用した場合、RCDスナバ回路に使用されているスナバ抵抗の損失および発熱が増大するので、スナバ抵抗の定格自体を大きくする必要がある。このような場合、スナバ抵抗のサイズが大型化するので、コストが高くなってしまうという問題があった。また、スナバ抵抗の発熱を抑制するために、冷却能力の向上が求められ、車載充電器の筐体自体のサイズが大型化してしまうという問題があった。したがって、サイズの小型化および電力変換効率の高効率化が求められている車載充電器においては、RCDスナバ回路を使用することが敬遠されている。
 特許文献2に記載の従来技術では、絶縁DC/DCコンバータの整流回路として同期整流回路方式が使用されている。しかしながら、この同期整流回路方式を車載充電器に具備される高電圧・大電力出力の絶縁DC/DCコンバータ回路に適用した場合、同期整流回路のスイッチング素子が高耐圧品であることを要するので、サイズが大型化してしまうという問題があった。また、ダイオード整流回路方式と異なり、同期整流回路方式ではスイッチング素子を駆動することとなるので、駆動電源および駆動回路が別途必要となる。したがって、サイズが大型化するだけでなく、コストが増加してしまうという問題があった。
 本発明は、前記のような課題を解決するためになされたものであり、従来の同期整流回路方式を採用する場合と比較して、簡単であり、コストの増加を抑えた回路構成でダイオードのリカバリサージ電圧を抑制することのできる車載充電器を得ることを目的とする。
 本発明における車載充電器は、外部電源から印加された交流電圧を直流電圧に変換するAC/DCコンバータと、AC/DCコンバータが生成した直流電圧を昇圧し、車両駆動用の電動モータに蓄えた電力を供給するバッテリに対して昇圧後の直流電圧を印加することでバッテリに電力を供給する絶縁DC/DCコンバータと、を備える車載充電器であって、絶縁DC/DCコンバータが有する整流回路は、フルブリッジ構成で接続されたSi半導体からなる整流用ダイオードを含み、整流回路と、絶縁DC/DCコンバータが有する平滑回路との間に設けられたワイドバンドギャップ半導体からなるショットキーバリアダイオードが整流回路と並列に接続されているものである。
 本発明によれば、絶縁DC/DCコンバータのトランス二次側の整流用ダイオードにはSiダイオードを使用し、整流回路と平滑用リアクトルとの間に還流用ダイオードとして高耐圧でワイドバンドギャップ半導体からなるショットキーバリアダイオードを使用する。これにより、従来の同期整流回路方式を採用する場合と比較して、簡単であり、コストの増加を抑えた回路構成でダイオードのリカバリサージ電圧を抑制することのできる車載充電器を得ることができる。
本発明の実施の形態1における車載充電器の概略構成図である。 本発明の実施の形態1における絶縁DC/DCコンバータの半導体スイッチング素子の動作を示す説明図である。 本発明の実施の形態1における絶縁DC/DCコンバータの動作時における各電圧電流波形を示す説明図である。 本発明の実施の形態1における車載充電器を説明するための、フルブリッジ構成の半導体スイッチング素子とダイオードとで構成された一般的な絶縁DC/DCコンバータを使用した車載充電器の回路図である。 図4における各半導体スイッチング素子がオン/オフしているときの電流経路を示す説明図である。 図4における整流用ダイオードの電流および電圧の経時変化を示す説明図である。 本実施の形態1における車載充電器の各半導体スイッチング素子がオン/オフしているときの電流経路を示す説明図である。 本実施の形態1における車載充電器の整流用ダイオードの電流および電圧の経時変化を示す説明図である。
 以下、本発明による車載充電器を、好適な実施の形態にしたがって図面を用いて説明する。なお、図面の説明においては、同一要素には同一符号を付し、重複する説明を省略する。
 実施の形態1.
 図1は、本発明の実施の形態1における車載充電器1の概略構成図である。図1に示すように、車載充電器1の入力側には、外部電源(交流入力電源)としての交流電圧電源2(以下、単に交流電源2と称す)が接続される。また、車載充電器1の出力側には、負荷としての高電圧のバッテリ3(以下、高電圧バッテリ3と称す)が接続される。この高電圧バッテリ3は、車両駆動用の電動モータに、蓄えた電力を供給する。なお、高電圧バッテリ3の電圧は、例えば、100V以上になるように設計すればよい。
 車載充電器1は、交流電圧を直流電圧に変換するAC/DCコンバータ10と、AC/DCコンバータ10が生成した直流電圧を昇圧し、高電圧バッテリ3に対して昇圧後の直流電圧を印加することで高電圧バッテリ3に電力を供給する絶縁DC/DCコンバータ20とを備える。また、AC/DCコンバータ10と絶縁DC/DCコンバータ20との間には、コンデンサ30が接続される。
 絶縁DC/DCコンバータ20は、4つの半導体スイッチング素子Q1~Q4と、トランス21と、トランス21の漏れインダクタンス成分(以下、インダクタンス成分22と称す)と、4つの整流用ダイオードD1~D4と、ショットキーバリアダイオードD5と、平滑用リアクトル23および平滑用コンデンサ24で構成される平滑回路25とを有する。
 コンデンサ30の後段には、4つの半導体スイッチング素子Q1~Q4が接続されており、例えば、これらの半導体スイッチング素子Q1~Q4として、MOSFETを用いることができる。また、半導体スイッチング素子Q1,Q3のドレインは、コンデンサ30の正極側に接続され、半導体スイッチング素子Q2,Q4のソースは、コンデンサ30の負極側に接続される。
 トランス21の一次巻線の一端は、半導体スイッチング素子Q1のソースと半導体スイッチング素子Q2のドレインとの接続点に接続され、他端は、半導体スイッチング素子Q3のソースと半導体スイッチング素子Q4のドレインとの接続点に接続される。
 トランス21の二次巻線には、整流用ダイオードD1~D4がフルブリッジ構成で接続されている。また、整流用ダイオードD1~D4として、安価なSi(シリコン)半導体からなるダイオードが使用される。なお、以下では、Si半導体からなるダイオードをSiダイオードと称す。
 ここで、同期整流方式を採用すると、高耐圧の半導体スイッチング素子と、これらスイッチング素子を駆動させるドライバ回路と、電源とが必要になるので、コストが増加してしまう。また、整流用ダイオードとして、Siダイオードでなく、耐圧の高いダイオードを用いれば、コストが飛躍的に増加してしまう。したがって、本実施の形態1では、高電圧の絶縁DC/DCコンバータの整流回路として、フルブリッジ構成で接続されたSiダイオードを有する整流回路を採用している。
 整流用ダイオードD1~D4の後段には、平滑用リアクトル23と平滑用コンデンサ24とで構成される平滑回路25が接続される。また、整流用ダイオードD1~D4と平滑回路25との間には、環流用のショットキーバリアダイオードD5が接続される。また、ショットキーバリアダイオードD5として、高耐圧で放熱性も良く、リカバリの小さいワイドバンドギャップ半導体であるSiC(シリコンカーバイド)半導体からなるショットキーバリアダイオードが使用される。なお、以下では、SiC半導体からなるショットキーバリアダイオードD5をSiCショットキーバリアダイオードD5と称す。
 次に、絶縁DC/DCコンバータ20の基本的な動作について、図2および図3を参照しながら説明する。なお、本実施の形態1において例示する絶縁DC/DCコンバータ20は、一般的なフルブリッジ構成の絶縁DC/DCコンバータであり、スイッチング方式がハードスイッチング方式であるものを採用している。
 図2は、本発明の実施の形態1における絶縁DC/DCコンバータの半導体スイッチング素子の動作を示す説明図である。なお、図2中のTdcは、スイッチング周期を示しており、tdは、デッドタイムを示している。
 図2に示すように半導体スイッチング素子Q1,Q4をオンする場合、トランス21の一次巻線側(一次側)に流れる電流は、コンデンサ30、半導体スイッチング素子Q1、トランス21(一次側)、半導体スイッチング素子Q4の順番に各経路を流れる。また、トランス21は、一次側から二次側に電力を伝達する。続いて、トランス21の二次巻線側(二次側)に流れる電流は、トランス21(二次側)、整流用ダイオードD1、平滑用リアクトル23、高電圧バッテリ3、整流用ダイオードD4の順番に各経路を流れる。
 同様に、半導体スイッチング素子Q2,Q3をオンする場合、トランス21の一次側に流れる電流は、コンデンサ30、半導体スイッチング素子Q3、トランス21(一次側)、半導体スイッチング素子Q2の順番に各経路を流れる。続いて、トランス21の二次巻線側に流れる電流は、トランス21(二次側)、整流用ダイオードD3、平滑用リアクトル23、高電圧バッテリ3、整流用ダイオードD2の順番に各経路を流れる。
 図3は、本発明の実施の形態1における絶縁DC/DCコンバータ20の動作時における各電圧電流波形を示す説明図である。ここで、図3中の記号を次のように定義する。
  Vtr1:トランス21の一次側電圧
  Itr1:トランス21の一次側電流
  Vtr2:トランス21の二次側電圧
  Itr2:トランス21の二次側電流
  Iout:平滑用リアクトル23に流れる電流
 また、図2にも示しているように、短絡防止のため、デッドタイムtdを設けている。なお、インダクタンス成分22は、トランス21の漏れインダクタンス成分としたが、これに限るものではなく、一般的なリアクトルを外付けしてもよい。
 次に、ダイオードのリカバリによるサージが発生するメカニズムについて、図4~図6を参照しながら説明する。図4は、本発明の実施の形態1における車載充電器1を説明するための、フルブリッジ構成の半導体スイッチング素子とダイオードとで構成された一般的な絶縁DC/DCコンバータを使用した車載充電器の回路図である。図5は、図4における各半導体スイッチング素子Q1~Q4がオン/オフしているときの電流経路を示す説明図である。また、図5(a)~図5(e)は、図4における車載充電器の回路を流れる電流経路の経時変化を示す。図6は、図4における整流用ダイオードD3の電流ID3および電圧VD3の経時変化を示す説明図である。
 時刻t0において、半導体スイッチング素子Q2、Q3がオン、半導体スイッチング素子Q1,Q4がオフであるとき、トランス21の一次側および二次側に流れる各電流の経路は、図5(a)に示す経路となる。
 時刻t1において、半導体スイッチング素子Q1~Q4が全てオフになったとき、トランス21の一次側には電流が流れない。一方、トランス21の二次側には、平滑用リアクトル23が直前(時刻t1以前)まで流れていた向きに電流を流そうとするので、電流が流れる。これは、コイルで磁束の変化が発生すると、その磁束の変化を妨げるような方向に磁束が発生して誘導起電力が生じるというレンツの法則によるものである。したがって、半導体スイッチング素子Q1~Q4が全てオフの瞬間においては、平滑用リアクトル23は、定電流源に相当すると考えられる。また、半導体スイッチング素子Q1~Q4が全てオフであり、トランス21の一次側には電圧が発生しないので、トランス21の二次側にも電圧が発生しない。そのため、平滑用リアクトル23を流れる電流の経路は、図5(b)に示す経路となる。
 また、図6に示すように、時刻t=t1において、整流用ダイオードD3の電流ID3(以下では、単に電流ID3と称す)の大きさがIFであり、整流用ダイオードD3の電圧VD3(以下では単に電圧VD3と称す)の大きさがVFである。
 時刻t2において、半導体スイッチング素子Q1,Q4がオンになったとき、トランス21の一次側に電圧が発生するので、トランス21の二次側にも電圧が発生しようとする。しかしながら、平滑用リアクトル23を流れる電流は、整流用ダイオードD1~D4に流れている(図5(c)中の破線矢印に相当)ので、トランス21の二次側では事実上短絡されることとなる。このような場合、トランス21の二次側に流れる電流の経路は、図5(c)に示す実線矢印の経路となる。なお、図5(c)において、時刻t2から時間が経過するにしたがって、整流用ダイオードD1,D4に流れる電流が徐々に増加していく一方、整流用ダイオードD2,D3に流れる電流が減少していく。
 また、図6に示すように、時刻t2において、時刻t1と同様に、電流ID3の大きさがIFであり、電圧VD3の大きさがVFである。
 時刻t3において、整流用ダイオードD2,D3の電流が減少し、順方向電流が0A以下となった瞬間、整流用ダイオードD2,D3には、リカバリ電流(または逆回復電流)が流れる。そして、整流用ダイオードD2,D3に流れるリカバリ電流の経路は、図5(d)に示す経路となる。なお、整流用ダイオードD2,D3において、順バイアスが与えられているオン状態から、バイアス方向(極性)が変化して逆バイアスが与えられても、蓄積されたキャリアによって通電が可能な状態がある。このような場合、トランス21の二次側には、過大な電流が流れる。
 また、図6に示すように、時刻t2から時間が経過するにしたがって、電流ID3の大きさがIFから減少していき、0となる。このような場合、リカバリ電流が流れるので、電流ID3の大きさが0となった時刻から時間が経過するにしたがって、この大きさが0から増加していき、時刻t3では最大となる。さらに、時刻t2から時間が経過するにしたがって、電圧VD3の大きさがVFから減少していき、時刻t3では0となる。
 ここで、整流用ダイオードD2,D3において、リカバリ動作過程では、蓄積されたキャリアが減少してPN接合の逆耐圧が回復するにつれて、リカバリ電流が減少していき、最終的に流れなくなる。しかしながら、このリカバリ電流の減少率(=di/dt)とインダクタンス成分22(=L)によって、サージ電圧VL(=L×di/dt)が発生する。
 例えば、時刻t4において、整流用ダイオードD3の両端には、図5(e)に示すように、トランス21の二次側電圧Vtr2とインダクタンス成分22のサージ電圧VLとを合計した合計電圧VD(=VL+Vtr2)が印加される。なお、トランス21の漏れインダクタンスのインダクタンス成分22が配線あるいはパターンなどのインダクタンスに比べて十分大きいので、本実施の形態1では、サージ電圧VLの発生がインダクタンス成分22によるものとして扱っている。
 また、図6に示すように、時刻t3から時間が経過するにしたがって、電流ID3の大きさが減少していき、時刻t4以降で最終的に0となる。さらに、時刻t3から時間が経過するにしたがって、電圧VD3の大きさが0から増加していき、時刻t4ではサージ電圧VLの大きさが最大となるので、電圧VD3の大きさが最大となる。そして、時刻t4以降で、電圧VD3の大きさが減少していき、最終的にトランス二次側電圧Vtr2の大きさと同等となる。
 このように、高電圧、高周波駆動の絶縁DC/DCコンバータ20の整流用ダイオードD1~D4には、過大なサージ電圧VLが発生するので、一般的には、サージ電圧VLを抑制する回路が必要となる。しかしながら、前述したように、車載充電器にスナバ回路を使用するのは困難である。
 ここで、整流用ダイオードD1~D4として、4つのSiCショットキーバリアダイオードを使用すれば、ダイオードリカバリによるサージ電圧も大幅に減少し、スナバ回路レスのコンバータ回路が実現可能となる。なぜなら、SiCショットキーバリアダイオードは、ユニポーラデバイスであり、Siダイオード・FRDを代表とするようなバイポーラデバイスと異なり、少数キャリアの蓄積がなく、この結果、ダイオードの逆回復時間がFRDよりも速く、さらに温度依存性がないからである。
 しかしながら、SiCダイオードは、一般的なSiダイオードと比べると高価である。したがって、整流用ダイオードD1~D4として、4つのSiCショットキーバリアダイオードを使用すれば、車載充電器自体のコストが飛躍的に増加するという問題が発生してしまう。
 そこで、先の図1に示すように、本実施の形態1における車載充電器1の絶縁DC/DCコンバータ20においては、整流用ダイオードD1~D4としては、SiCダイオードと比較して安価なSiダイオードを使用する一方で、整流用ダイオードD1~D4と平滑回路25との間に新たに設けられた還流用のダイオードとしては、SiCショットキーバリアダイオードD5を使用している。絶縁DC/DCコンバータ20をこのように構成することで、整流用ダイオードD1~D4として、4つのSiCショットキーバリアダイオードを使用した場合とほぼ同等のサージ抑制効果を発揮することが可能となる。
 次に、本発明の実施の形態1における車載充電器1の絶縁DC/DCコンバータ20において、サージが抑制されるメカニズムについて、図7および図8を参照しながら説明する。図7は、本実施の形態1における車載充電器1の各半導体スイッチング素子Q1~Q4がオン/オフしているときの電流経路を示す説明図である。また、図7(a)~図7(e)は、車載充電器1の回路を流れる電流経路の経時変化を示す。
 図8は、本実施の形態1における車載充電器1の整流用ダイオードD3の電流ID3および電圧VD3の経時変化を示す説明図である。なお、図8においては、車載充電器1の整流用ダイオードD3の電流ID3および電圧VD3の経時変化を実線で示すとともに、比較のために、SiCショットキーバリアダイオードD5が設けられていない車載充電器の整流用ダイオードD3の電流ID3および電圧VD3の経時変化(先の図6)も破線で併せて示している。
 時刻t0において、半導体スイッチング素子Q2,Q3がオン、半導体スイッチング素子Q1,Q4がオフであるとき、トランス21の一次側および二次側に流れる各電流の経路は、図7(a)に示す経路となる。なお、この電流経路は、上記で説明した先の図5(a)に示す電流経路と同じである。
 時刻t1において、半導体スイッチング素子Q1~Q4が全てオフになったとき、トランス21の一次側には電流が流れない。一方、トランス21の二次側には、平滑用リアクトル23は、直前(時刻t1以前)まで流れていた向きに電流を流そうとするので、定電流源に相当する。このとき、本発明の実施の形態1における車載充電器1では、平滑用リアクトル23を流れる電流の大半は、図7(b)に示すように、SiCショットキーバリアダイオードD5を流れる。
 ここで、整流用ダイオードD1と整流用ダイオードD2とが直列に接続され、整流用ダイオードD3と整流用ダイオードD4とが直列に接続されている。そして、平滑用リアクトル23を流れる電流が整流用ダイオードD1~D4を流れると、ダイオード2素子分の順方向電圧降下(=2Vf)が発生してしまうことに対して、SiCショットキーバリアダイオードD5では1素子分の順方向電圧降下(=Vf)しか発生しない。また、SiCショットキーバリアダイオードD5は、平滑用リアクトル23と整流用ダイオードD1~D4との間に配置されているので、配線のインピーダンスが低い。以上から、平滑用リアクトル23を流れる電流の大半は、インピーダンスが十分低いSiCショットキーバリアダイオードD5を流れることになり、整流用ダイオードD1~D4にはほとんど流れないこととなる。
 時刻t2において、半導体スイッチング素子Q1,Q4がオンになったとき、整流用ダイオードD2,D3には順方向電流が直前までほとんど流れていないので、図7(c)に示すようにリカバリもほとんど発生しない。したがって、図8に示すように、サージ電圧VLが大幅に減少する。
 整流用ダイオードD2,D3のリカバリが終了すると、時刻t4以降においてトランス21の二次側電流は、図7(d)、(e)に示すように、整流用ダイオードD1,D4を流れる。また、SiCショットキーバリアダイオードD5には逆方向電圧が印加されるので、SiCショットキーバリアダイオードD5に流れる電流が減少する。
 ここで、SiCショットキーバリアダイオードD5には平滑用リアクトル23を流れる電流の大半が流れていたので、SiCショットキーバリアダイオードD5の順方向電流は、整流用ダイオードD2,D3の順方向電流に比べ十分大きい。
 しかしながら、上記で述べたように、SiCショットキーバリアダイオードD5は少数キャリアの蓄積がなく、リカバリがほとんど発生しない。なお、リカバリがほとんど発生しないと説明したのは、実際には、過渡的にショットキーバリアダイオード面の接合容量を充放電する電流だけ流れるためである。したがって、図8に示すように、整流用ダイオードD3の電流ID3、電圧VD3は、実線で示すような経時変化特性が得られる。
 以上、本実施の形態1によれば、車載充電器を構成する絶縁DC-DCコンバータの整流回路の整流用ダイオードにはSiダイオードを使用し、整流回路と平滑回路との間に設けられる還流用ダイオードにはSiCショットキーバリアダイオードを使用する。これにより、整流用ダイオードにはリカバリ直前の順方向電流がほとんど流れないので、リカバリが大幅に減少する。一方、半導体スイッチング素子が全てオフ時に大半の電流が流れる還流用ダイオードにはSiCショットキーバリアダイオードを使用しているので、リカバリがほとんど発生しない。
 換言すると、車載充電器を構成する絶縁DC-DCコンバータの整流用ダイオードとして4つのSiダイオードを使用するとともに還流用ダイオードとして1つのSiCショットキーバリアダイオードを使用することで、整流用ダイオードとして4つのSiCショットキーバリアダイオードを使用したときと同様の効果が得られる。したがって、本実施の形態1で説明した電動車両に搭載される車載充電器は、特別なスナバ回路を必要とせず、ワイドバンドギャップ半導体からなるショットキーバリアダイオードを1つ追加して使用するだけでよく、従来の同期整流回路方式を採用する場合と比較して、簡単であり、コストの増加を抑えた回路構成でダイオードのリカバリサージ電圧を抑制することができる。
 なお、本実施の形態1では、還流用ダイオードとしてSiCショットキーバリアダイオードを使用する場合を例示したが、このような還流用ダイオードとしては、SiC半導体とは異なる、Siに比べてバンドギャップが大きい他のワイドバンドギャップ半導体からなるショットキーバリアダイオードを使用してもよい。具体的には、ワイドバンドギャップ半導体として、例えば、窒化ガリウム系材料、またはダイヤモンド等を使用すればSiCと同様の効果が得られる。
 特に、GaN(窒化ガリウム)系材料は、SiあるいはSiCに比べて高周波動作が可能である。これは、GaN系材料は、2次元電子ガスを利用でき、SiあるいはSiCよりも電子濃度が高く、キャリア移動度も高いためである。そして、GaN系材料は、SiCに比べて熱伝導率が低いので、比較的、電力容量が小さいデバイスに使用することが適している。すなわち、高電圧、高周波で駆動する車載充電器において、電力容量が比較的小さければ、還流用ダイオードとして、GaN系材料の半導体からなるショットキーバリアダイオードを使用した方が、より効果を奏する。

Claims (4)

  1.  外部電源から印加された交流電圧を直流電圧に変換するAC/DCコンバータと、
     前記AC/DCコンバータが生成した前記直流電圧を昇圧し、車両駆動用の電動モータに自身が蓄えた電力を供給するバッテリに対して昇圧後の直流電圧を印加することで、前記バッテリに電力を供給する絶縁DC/DCコンバータと、
     を備える車載充電器であって、
     前記絶縁DC/DCコンバータが有する整流回路は、フルブリッジ構成で接続されたSi半導体からなる整流用ダイオードを含み、
     前記整流回路と、前記絶縁DC/DCコンバータが有する平滑回路との間に設けられたワイドバンドギャップ半導体からなるショットキーバリアダイオードが前記整流回路と並列に接続されている
     車載充電器。
  2.  請求項1に記載の車載充電器において、
     前記ワイドバンドギャップ半導体は、シリコンカーバイド、窒化ガリウム系材料、またはダイヤモンドのうちのいずれかである
     車載充電器。
  3.  請求項1または2に記載の車載充電器において、
     前記絶縁DC/DCコンバータのスイッチング方式は、ハードスイッチング方式である
     車載充電器。
  4.  請求項1から3のいずれか1項に記載の車載充電器において、
     前記バッテリの電圧は、100V以上である
     車載充電器。
PCT/JP2014/056895 2013-10-09 2014-03-14 車載充電器 WO2015052945A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/911,054 US9812895B2 (en) 2013-10-09 2014-03-14 In-vehicle charger
EP14852887.0A EP3057218B1 (en) 2013-10-09 2014-03-14 In-vehicle charger
CN201480055606.3A CN105637751B (zh) 2013-10-09 2014-03-14 车载充电器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-211487 2013-10-09
JP2013211487A JP5642245B1 (ja) 2013-10-09 2013-10-09 車載充電器

Publications (1)

Publication Number Publication Date
WO2015052945A1 true WO2015052945A1 (ja) 2015-04-16

Family

ID=52139136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056895 WO2015052945A1 (ja) 2013-10-09 2014-03-14 車載充電器

Country Status (5)

Country Link
US (1) US9812895B2 (ja)
EP (1) EP3057218B1 (ja)
JP (1) JP5642245B1 (ja)
CN (1) CN105637751B (ja)
WO (1) WO2015052945A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016045722A1 (de) * 2014-09-24 2016-03-31 Siemens Aktiengesellschaft Elektrische anordnung und verfahren zum erzeugen eines gleichstromes
KR101704181B1 (ko) * 2015-04-02 2017-02-07 현대자동차주식회사 차량용 충전기
JP6129244B2 (ja) * 2015-07-01 2017-05-17 三菱電機株式会社 Dc/dcコンバータ
CN107925356B (zh) * 2015-08-06 2020-11-10 日立汽车系统株式会社 Dcdc转换器一体型充电器
JP6288133B2 (ja) * 2016-03-22 2018-03-07 トヨタ自動車株式会社 自動車
JP6610406B2 (ja) * 2016-04-19 2019-11-27 株式会社デンソー 電力変換装置
US10622823B2 (en) * 2017-03-28 2020-04-14 The Government Of The United States, As Represented By The Secretary Of The Army Battery charging and discharging without interface removal
JP6948918B2 (ja) 2017-11-10 2021-10-13 株式会社Soken 電力変換装置の制御装置
DE102018210579A1 (de) * 2018-06-28 2020-01-02 Continental Automotive Gmbh Fahrzeugseitige Ladeschaltung
CN109633276B (zh) * 2018-12-28 2021-04-13 蜂巢能源科技有限公司 基于全桥绝缘检测电路的绝缘电阻检测方法和装置
CN110011549A (zh) * 2019-01-21 2019-07-12 关键禾芯科技股份有限公司 调压整流电路系统
JP6906566B2 (ja) * 2019-06-20 2021-07-21 三菱電機株式会社 電力変換装置
CN114342209A (zh) 2019-09-13 2022-04-12 米沃奇电动工具公司 具有宽带隙半导体的功率转换器
CN116142000B (zh) * 2022-12-31 2023-10-27 上海大学 一种电动汽车用GaN充电器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01295675A (ja) * 1988-05-19 1989-11-29 Fuji Electric Co Ltd 直流電源装置用スナバ回路
JPH04368464A (ja) * 1991-06-12 1992-12-21 Sanyo Denki Co Ltd 直流電源装置
JP2000166243A (ja) 1998-11-19 2000-06-16 Nec Corp 高速ターンオフ同期整流回路及びdc−dcコンバータ
JP2008079403A (ja) 2006-09-20 2008-04-03 Kawamura Electric Inc 低損失コンバータ
JP2011014738A (ja) * 2009-07-02 2011-01-20 Mitsumi Electric Co Ltd 半導体集積回路
JP2012213260A (ja) * 2011-03-31 2012-11-01 Denso Corp スイッチング電源装置
JP2013027162A (ja) * 2011-07-21 2013-02-04 Hitachi Ltd 直流電源装置
JP2013093970A (ja) * 2011-10-25 2013-05-16 Fujitsu Ltd 制御回路及びそれを用いた電子機器
JP2013207950A (ja) * 2012-03-29 2013-10-07 Denso Corp スイッチング電源

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2380666A1 (fr) 1977-02-14 1978-09-08 Cii Honeywell Bull Systeme de commande de decoupage pour convertisseur dans une alimentation electrique continue
US4359679A (en) * 1978-01-16 1982-11-16 Wescom Switching, Inc. Switching d-c. regulator and load-sharing system for multiple regulators
FR2631902B1 (fr) * 1988-05-31 1990-09-07 Andruet Jean Claude Vehicule automobile a propulsion electrique
US5838558A (en) * 1997-05-19 1998-11-17 Trw Inc. Phase staggered full-bridge converter with soft-PWM switching
CN100338864C (zh) * 2003-10-20 2007-09-19 艾默生网络能源有限公司 Dc/dc变换器同步整流电路
JP4091595B2 (ja) * 2004-12-09 2008-05-28 株式会社東芝 半導体装置
CN1794553A (zh) * 2005-11-28 2006-06-28 广州电器科学研究院 数字化高频软开关电镀电源
US8022474B2 (en) * 2008-09-30 2011-09-20 Infineon Technologies Austria Ag Semiconductor device
JP2010187521A (ja) * 2009-01-16 2010-08-26 Mitsubishi Electric Corp モーター駆動制御装置、圧縮機、送風機、空気調和機及び冷蔵庫又は冷凍庫
CN201499093U (zh) * 2009-04-28 2010-06-02 北京华浩森科技发展有限责任公司 一种高频开关电源
CN102696169B (zh) * 2010-01-05 2015-06-10 株式会社日立制作所 Ac-dc变换器及其控制方法
CN101783594B (zh) * 2010-02-26 2012-05-23 东南大学 一种隔离式高轻载效率的低输出电压大电流开关电源
JP5569388B2 (ja) * 2010-12-28 2014-08-13 新日鐵住金株式会社 電力変換システム
JP5658051B2 (ja) * 2011-02-03 2015-01-21 新電元工業株式会社 ダブルフォワード型dc/dcコンバータ
JP5689712B2 (ja) * 2011-03-07 2015-03-25 株式会社日立製作所 半導体装置およびその製造方法
KR101203882B1 (ko) * 2011-12-06 2012-11-23 이정표 절연형 양방향 충전 시스템

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01295675A (ja) * 1988-05-19 1989-11-29 Fuji Electric Co Ltd 直流電源装置用スナバ回路
JPH04368464A (ja) * 1991-06-12 1992-12-21 Sanyo Denki Co Ltd 直流電源装置
JP2000166243A (ja) 1998-11-19 2000-06-16 Nec Corp 高速ターンオフ同期整流回路及びdc−dcコンバータ
JP2008079403A (ja) 2006-09-20 2008-04-03 Kawamura Electric Inc 低損失コンバータ
JP2011014738A (ja) * 2009-07-02 2011-01-20 Mitsumi Electric Co Ltd 半導体集積回路
JP2012213260A (ja) * 2011-03-31 2012-11-01 Denso Corp スイッチング電源装置
JP2013027162A (ja) * 2011-07-21 2013-02-04 Hitachi Ltd 直流電源装置
JP2013093970A (ja) * 2011-10-25 2013-05-16 Fujitsu Ltd 制御回路及びそれを用いた電子機器
JP2013207950A (ja) * 2012-03-29 2013-10-07 Denso Corp スイッチング電源

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3057218A4

Also Published As

Publication number Publication date
CN105637751B (zh) 2018-10-09
EP3057218B1 (en) 2019-06-26
JP5642245B1 (ja) 2014-12-17
US9812895B2 (en) 2017-11-07
CN105637751A (zh) 2016-06-01
JP2015076972A (ja) 2015-04-20
EP3057218A4 (en) 2017-07-26
US20160204648A1 (en) 2016-07-14
EP3057218A1 (en) 2016-08-17

Similar Documents

Publication Publication Date Title
JP5642245B1 (ja) 車載充電器
US10086711B2 (en) In-vehicle charger and surge-suppression method in in-vehicle charger
US11309716B2 (en) High efficiency power converting apparatus
KR101241221B1 (ko) 마일드 하이브리드 차량용 충전 장치
WO2012144249A1 (ja) 電力変換装置およびそれを備えた車載電源装置
JP2016019463A (ja) パルス幅変調共振コンバータおよびこれを利用した車両用充電器
US10574144B1 (en) System and method for a magnetically coupled inductor boost and multiphase buck converter with split duty cycle
CN103636113A (zh) 升降压型ac/dc转换器
KR20160122441A (ko) 차량용 충전 장치
WO2019229847A1 (ja) 電力変換装置
JP6305492B1 (ja) Dc−dcコンバータ
KR101558770B1 (ko) 차량용 충전 장치
JP6293242B1 (ja) 電力変換装置
JP2015139312A (ja) スイッチング電源装置、電力変換装置
Chu et al. A novel high frequency ZVS-PWM boost DC-DC converter with auxiliary resonant snubber
JP2014003827A (ja) 充放電システム
WO2005020331A1 (ja) 電力変換装置
Dargahi et al. Proof-of-concept gallium-nitride power electronic converter design for HEV energy management application
Choudhury A 2.2 kW SiC based high frequency battery charger for substation backup power supply
Machtinger et al. The potential of SiC semiconductors for high power electric vehicle charging stations
KR101665085B1 (ko) 양방향 전력변환 컨버터용 무손실 스너버 회로
JP6145073B2 (ja) 電力変換装置
CN115956336A (zh) 基于氮化物的ac-dc转换器
JP2021103923A (ja) 電圧抑制回路および直流−直流変換回路
Kuwabara et al. Bilateral chopper of resonant converter employing zero current switch with saturable inductor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14852887

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14911054

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014852887

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014852887

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE