WO2015050208A1 - 非鉄金属溶解炉及び非鉄金属溶解方法 - Google Patents

非鉄金属溶解炉及び非鉄金属溶解方法 Download PDF

Info

Publication number
WO2015050208A1
WO2015050208A1 PCT/JP2014/076411 JP2014076411W WO2015050208A1 WO 2015050208 A1 WO2015050208 A1 WO 2015050208A1 JP 2014076411 W JP2014076411 W JP 2014076411W WO 2015050208 A1 WO2015050208 A1 WO 2015050208A1
Authority
WO
WIPO (PCT)
Prior art keywords
ferrous metal
molten metal
shallow
container
metal melting
Prior art date
Application number
PCT/JP2014/076411
Other languages
English (en)
French (fr)
Inventor
真敏 寺西
藤田 健
奈保子 花岡
博俊 籔本
史 犬塚
Original Assignee
三建産業株式会社
中央精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三建産業株式会社, 中央精機株式会社 filed Critical 三建産業株式会社
Priority to CN201480053906.8A priority Critical patent/CN105593388B/zh
Priority to JP2015540545A priority patent/JP6085685B2/ja
Publication of WO2015050208A1 publication Critical patent/WO2015050208A1/ja
Priority to US15/084,551 priority patent/US10138532B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/0084Obtaining aluminium melting and handling molten aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/0084Obtaining aluminium melting and handling molten aluminium
    • C22B21/0092Remelting scrap, skimmings or any secondary source aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/001Dry processes
    • C22B7/003Dry processes only remelting, e.g. of chips, borings, turnings; apparatus used therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/04Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces of multiple-hearth type; of multiple-chamber type; Combinations of hearth-type furnaces
    • F27B3/045Multiple chambers, e.g. one of which is used for charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D27/00Stirring devices for molten material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D27/00Stirring devices for molten material
    • F27D27/005Pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/0025Charging or loading melting furnaces with material in the solid state
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/14Charging or discharging liquid or molten material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0001Heating elements or systems
    • F27D99/0033Heating elements or systems using burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/007Partitions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a non-ferrous metal melting furnace and a non-ferrous metal melting method for melting a non-ferrous metal such as an aluminum alloy to be used for manufacturing various cast products.
  • non-ferrous metal melting furnace for melting a non-ferrous metal such as an aluminum alloy to be used for manufacturing various cast products, for example, as shown in FIG. While circulating between the vortex chambers 23, the molten metal 10 is heated by the radiant flame F of the burner 25 provided in the temperature raising chamber 22, and the nonferrous metal is introduced into the vortex chamber 23 from the inlet of the charging chute 27. What is dissolved is known (for example, refer to Patent Document 1). Note that the molten metal 10 can be heated using an electric heater instead of the burner 25.
  • the briquette material contains oil and moisture. Therefore, there is a risk of causing a steam explosion if the briquette material is completely immersed and melted in the molten aluminum. Therefore, when the briquette material is melted by heating directly with a flame of a burner in a reflection furnace or the like, the briquette material is dispersed in the melting process to become a chip, and is directly heated and melted in a state where the surface area is large. There is a problem that the oxidation is promoted and the yield becomes very bad.
  • FIG. 7 there is a method in which the aluminum chips supplied from the storage hopper are dried in a state of the chips through a large drying device 29 such as a kiln dryer, but the oil content as a lubricant during compression molding is also available. Since it is also dried at the same time, it is extremely difficult to briquette the dried aluminum chips. Even if the briquette can be made, a large drying device 29 is required, so that the installation and maintenance of the briquette requires considerable costs.
  • a large drying device 29 such as a kiln dryer
  • an object of the present invention is to provide a non-ferrous metal melting furnace and a non-ferrous metal melting method that can be safely and efficiently dissolved, for example, even in the case of a massive non-ferrous metal material containing oil and moisture. .
  • a non-ferrous metal melting furnace includes a heating chamber (32) for heating and maintaining a temperature of a molten metal (10), and the heating chamber (32).
  • a vortex chamber (33) is provided that communicates and immerses and melts the charged nonferrous metal material by vortex, and the circulating pump (21) is used to transfer the molten metal (10) of the temperature raising chamber (32) to the vortex chamber ( 33) a non-ferrous metal melting furnace (30) configured to return the molten metal (10) supplied to and discharged from the vortex chamber (33) to the heating chamber (32),
  • the vortex chamber (33) An outer peripheral wall (331) which is installed in a state in which a flow path (34) to which the molten metal (10) is supplied from the temperature raising chamber (32) side is secured and a space (330) is formed inside;
  • a container (332) disposed at the inner center of the outer peripheral wall (331), the upper part being open and the lower part having a substantially inverted conical shape by a
  • Consisting of a weir (334)
  • the intrusion direction of the flow path (34) is communicated directly to the shallow portion (333) at a position shifted in the horizontal direction from the central axis (X) direction extending in the vertical direction of the container (332), and the molten metal (10) circulates in the shallow part (333), and part of it passes over the weir part (334) and enters the container (332) to form a vortex.
  • the invention according to claim 2 is characterized in that the flow path (34) is communicated in a tangential direction of the shallow portion (333).
  • the nonferrous metal melting method according to claim 3 is a nonferrous metal melting method using the nonferrous metal melting furnace (30) according to claim 1 or 2, As the non-ferrous metal material, an undried massive non-ferrous metal material having a size that is not completely immersed in the shallow portion (333) through which the molten metal (10) circulates is used.
  • the massive non-ferrous metal material is an aluminum briquette material (M) obtained by compressing and solidifying aluminum chips, and the molten metal (10) is a molten aluminum. It is characterized by.
  • the distance (T) from the bottom of the shallow portion (333) to the upper surface of the molten metal (10) is smaller than the height (S) of the briquette material (M).
  • the circulation pump (21) is controlled.
  • the annular shallow shallow portion is a weir portion so as to surround the outer periphery of the mortar-shaped container in the vortex chamber, that is, the upper part is opened and the lower part is formed in a substantially inverted conical shape by the tapered wall. Since the molten metal circulates in the shallow part and part of the molten metal enters the container beyond the weir part and forms a vortex, a non-ferrous metal material such as an aluminum alloy is formed, for example, When introduced into the shallow water channel or the flow path to which the molten metal is supplied, the non-ferrous metal material is melted while circling the shallow water region, and is fed into the container over the weir and stirred.
  • an undried massive non-ferrous metal material such as an aluminum briquette material that has been compressed and solidified from aluminum chips is exposed from the molten metal, that is, a massive mass that is not completely immersed in the shallow water.
  • the non-ferrous metal material is gradually melted by the molten metal circulating in the shallow part and the volume is reduced.
  • the massive non-ferrous metal material becomes small pieces and powder of non-ferrous metal and is melted while being sent into the container over the weir part together with the molten metal.
  • the massive non-ferrous metal material since it is not necessary to dry the bulk nonferrous metal material before it is added, no extra cost or labor is required, and the yield is not deteriorated.
  • the massive non-ferrous metal material for example, it may be introduced into a shallow portion or a flow path in the state of chips like aluminum chips and fed into the container while circulating. It is also possible to put a chip in the state of chips directly into the container from above the container.
  • the non-ferrous metal melting furnace of the present invention since the flow path of the molten metal supplied to the shallow section is communicated in the tangential direction of the shallow section, the molten metal is circulated at a large flow rate in the shallow section. Therefore, the nonferrous metal can be efficiently dissolved and circulated in the shallow portion.
  • Non-dried massive non-ferrous metal material that does not completely immerse in the shallow part where the molten metal circulates, for example, aluminum briquette material that is solidified by compressing aluminum chips, for example, the shallow part or molten metal
  • the oil and water are dried using the heat of the molten metal directly into the supply channel, and gradually melted down to reduce the volume.
  • annular shallow portion is provided across the weir portion so as to surround the outer periphery of the container whose upper portion is open and whose lower portion is substantially inverted conical by a tapered wall. What efficiently dissolved is not described in the above-mentioned patent document.
  • FIG. 3 is a sectional view taken along line AA in FIG. 2.
  • FIG. 3 is a sectional view taken along line BB in FIG.
  • FIG. 3 is a cross-sectional view when the position of the inlet is changed in the vortex chamber shown in FIG.
  • FIG. 3 is a schematic plan view which shows the nonferrous metal melting furnace which concerns on a prior art example.
  • This non-ferrous metal melting furnace 30 is a melting that can be immersed and melted by directly putting in a non-dried lump-like non-ferrous metal material such as an aluminum briquette material M obtained by compressing and solidifying aluminum chips.
  • This is a furnace and is connected to the temperature raising chamber 32 for heating and keeping the temperature of the molten metal 10 circulated by using the circulation pump 31, and the temperature rising chamber 32, and the charged briquette material M is immersed and melted by vortex.
  • the vortex chamber 33 is provided.
  • a burner 35 using fossil fuel such as petroleum is attached to the temperature raising chamber 32, and the molten aluminum 10 is heated by the radiant flame F of the burner 35.
  • an electric heater may be immersed in the molten aluminum 10 to directly heat the molten metal 10.
  • the molten metal 10 heated in the temperature raising chamber 32 is raised to the level of the molten metal 10 by the circulation pump 31 and supplied to the vortex chamber 33. Then, the briquette material M charged from the charging chute 37 is melted in the vortex chamber 33. Further, the molten metal 10 discharged from the vortex chamber 33 is returned to the temperature raising chamber 32, and thus the molten metal 10 is circulated in the non-ferrous metal melting furnace 30.
  • the vortex chamber 33 stands up on the outer peripheral wall 331 that surrounds the whole, the container 332 formed inside thereof, the shallow portion 333 provided so as to surround the outer periphery of the container 332, and the outer periphery of the upper surface of the container 332.
  • the dam portion 334 is provided.
  • the outer peripheral wall 331 has a cylindrical shape in which a hollow cylindrical space 330 is formed on the inner side, and the flow path 34 is provided so as to secure the flow path 34 through which the molten metal 10 is supplied inward from the temperature raising chamber 32 side. It is installed avoiding.
  • a hole is formed in the outer peripheral wall 331 to form the flow path 34, but any mode may be used as long as the flow path 34 is secured.
  • the outer shape of the outer peripheral wall 331 is substantially rectangular, but it may be any shape.
  • the inner shape may be any shape as long as the container 332 and the shallow portion 333 can be provided inward, but in a circular shape as in the present embodiment.
  • the space 330 can be formed into a hollow substantially columnar shape such as a hexagonal column shape or an octagonal column shape, and the inner shape can be formed into a substantially circular shape.
  • the container 332 is a mortar shape that is open at the top and has a substantially inverted conical shape at the bottom, and is disposed at an inner center position with respect to the outer peripheral wall 331.
  • the depth of the container used here is 300 mm. Then, the molten metal 10 is dropped in an oblique direction from above so that a vortex is generated. In addition, you may make it easy to generate a vortex
  • the shallow portion 333 is annularly provided between the outer peripheral wall 331 so as to surround the outer periphery of the container 332, and is partitioned from the container 332 by a dam portion 334 provided so as to stand on the outer periphery of the upper surface of the container 332.
  • the dam portion 334 is provided in a strip shape lower than the outer peripheral wall 331.
  • the upper surface of the dam portion 334 is made higher than the position of the bottom of the shallow portion 333.
  • the depth D of the shallow portion 333 that is, the distance D between the bottom of the shallow portion 333 and the upper surface of the dam portion 334 is set to 30 mm.
  • the weir portion 334 can be arbitrarily designed depending on the height S of the briquette material M.
  • the shallow portion 333 is directed to the charging port of the charging chute 37 into which the briquette material M is directly input.
  • the flow path 34 guided from the temperature raising chamber 32 side to the inside of the outer peripheral wall 331 is directly connected to the shallow portion 333.
  • the entrance direction of the flow path 34 is communicated in a tangential direction with respect to a position shifted in the horizontal direction from the central axis X direction extending in the vertical direction of the container 332, here, the annular shallow portion 333.
  • the molten metal 10 supplied from the temperature raising chamber 32 side through the flow path 34 by the function of the circulation pump 31 circulates in the shallow portion 333 and part of the molten metal 10 enters the container 332 beyond the dam portion 334. Is formed.
  • the depth of the vortex is about 120 to 200 mm.
  • the molten metal 10 is circulated from the flow path 34 through the shallow portion 333 and a part of the molten metal 10 exceeds the weir portion 334, and between the upper surface of the molten metal 10 in the shallow portion 333 and the bottom of the shallow portion 333.
  • the distance T is set to 50 mm, which is lower than the height S (usually 80 mm) of the briquette material M to be input. The distance T can be changed by the actual height S of the briquette material M.
  • the circulation pump 31 changes the output via the control unit according to the amount of the molten metal 10 held in the temperature raising chamber 32, thereby making the distance T between the upper surface of the molten metal 10 and the bottom of the shallow portion 333 constant in the shallow portion 333. In addition, it is controlled so as to be smaller than the height S of the briquette material M.
  • a return port 335 for returning the molten metal 10 to the circulating pump 31 side is provided as shown in FIG.
  • the undried briquette material M is sized so as not to be completely immersed in the shallow portion 333 in which the molten metal 10 circulates. Is charged directly from the charging chute 37.
  • the briquette material M is placed in a state where a part of the briquette material M is exposed from the shallow portion 333, but the portion immersed in the molten metal 10 is dissolved by the circulating molten metal 10, so that the volume of the briquette material M gradually decreases.
  • the water vapor including oil
  • the briquette material M is not likely to explode with water vapor.
  • the released water vapor (including oil) is burned and harmless by the burner 36 (installed on the outer peripheral wall 331 at the upper part of the space 330 by a burner different from the burner 35 provided in the heating chamber 32).
  • the air is exhausted from the upper part of the space 330.
  • the briquette material M becomes a small piece and powder of aluminum and is dropped into the container 332 over the weir portion 334 while circling the shallow portion 333 together with the molten metal 10 and is immersed and melted by vortex.
  • the aluminum briquette material M which is formed by compressing and solidifying the aluminum chips, is introduced into the melting furnace 30, but the size is such that a part of the aluminum briquette M is exposed from the molten metal 10 when it is introduced into the shallow portion 333.
  • Any other non-ferrous metal material may be used.
  • the massive non-ferrous metal material not only the massive non-ferrous metal material but also, for example, it may be put into the shallow portion 333 in the state of chips like aluminum chips and fed into the container 332 while circling.
  • the briquette material M is directly input to the shallow portion 333, but may be directly input to the flow path 34 to which the molten metal is supplied. Further, as indicated by a dotted line in FIG. 5, an input port of the input chute 37 can be provided on the container 332, and a chip-shaped one can be directly input from the container 332 into the container 332.
  • the non-ferrous metal melting furnace 30 including at least the temperature raising chamber 32 and the vortex chamber 33 has been described as an example.
  • a hot water discharge chamber, a removal chamber, a sedation chamber, and the like may be provided. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Furnace Details (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

【課題】油水分を含む塊状非鉄金属材であっても安全かつ効率的に溶解させる。 【解決手段】渦室33を外周壁331と略逆円錐状の容器332とその容器332の外周を取り囲むように外周壁331との間に設けられた環状の浅瀬部333と、容器332の上面外周に起立するように設けられ浅瀬部333との間を仕切る堰部334から構成して、溶湯10が循環する浅瀬部333に対して完全に浸漬しない大きさで未乾燥の塊状非鉄金属材Mを、浅瀬部333において体積が小さくなるように徐々に溶解し、小さくした非鉄金属の小片及び粉を、溶湯10とともに浅瀬部333を循環させながら堰部334を越えさせて容器332内に落下させ渦流によって浸漬溶解する。

Description

非鉄金属溶解炉及び非鉄金属溶解方法
 本発明は、アルミニウム合金等の非鉄金属を各種鋳造製品の製造に使用すべく溶解するための非鉄金属溶解炉及び非鉄金属溶解方法に関するものである。
 従来、アルミニウム合金等の非鉄金属を各種鋳造製品の製造に使用すべく溶解するための非鉄金属溶解炉としては、例えば、図6に示すように、溶湯10を、循環ポンプ21によって昇温室22と渦室23間を循環させるとともに、昇温室22に設けたバーナ25の放射火炎Fによって溶湯10を加熱し、そして、投入シュート27の投入口から非鉄金属を渦室23に投入して非鉄金属を溶解させるものが知られている(例えば、特許文献1参照)。なお、バーナ25にかえて電気ヒーターを利用して溶湯10を加熱させることもできる。
特許第2554510号公報
 しかしながら、例えば、アルミニウムの切粉を圧縮して固形化したアルミのブリケット材のような塊状非鉄金属材を未乾燥の状態で溶湯に浸漬して溶解させる場合、ブリケット材は油水分を含んでいるためアルミの溶湯に対してブリケット材を完全に浸漬させて溶解すると水蒸気爆発を起こす危険性がある。
 そこで、ブリケット材を反射炉等で直接バーナの火炎によって加熱することで溶解した場合、溶解の過程でブリケット材が分散して切粉の状態となり、表面積が多い状態で直接加熱溶解されるため、酸化が促進され歩留りが非常に悪くなるといった問題がある。
 また、図7に示すように、貯蔵ホッパーから供給されたアルミ切粉をその切粉の状態でキルンドライアなどの大型の乾燥装置29にかけて乾燥させる方法もあるが、圧縮成形時の潤滑材としての油分も同時に乾燥されるため乾燥したアルミ切粉をブリケットにすることは極めて困難である。
 なお、仮にブリケットにすることができたとしても大型の乾燥装置29を必要とするためその設置や保守には相当の費用がかかる。
 そこで、本発明の目的とするところは、例えば、油水分を含む塊状非鉄金属材であっても安全かつ効率的に溶解させることのできる非鉄金属溶解炉及び非鉄金属溶解方法を提供することにある。
 上記の目的を達成するために、本発明の請求項1に記載の非鉄金属溶解炉は、溶湯(10)を加熱し昇温及び保温する昇温室(32)と、前記昇温室(32)に連通されるとともに、投入された非鉄金属材を渦流によって浸漬溶解する渦室(33)を備え、循環ポンプ(21)を利用して前記昇温室(32)の溶湯(10)を前記渦室(33)に供給し前記渦室(33)から排出された溶湯(10)を前記昇温室(32)に戻すようにした非鉄金属溶解炉(30)であって、
 前記渦室(33)は、
 前記昇温室(32)側から溶湯(10)が供給される流路(34)を確保した状態で設置されるとともに内方には空間(330)が形成されてなる外周壁(331)と、
 前記外周壁(331)の内方中央に配置され、上方が開放し下方はテーパー壁によって略逆円錐状にされた容器(332)と、
 該容器(332)と前記外周壁(331)との間に、該容器(332)の外周を取り囲むように環状に設けられた浅瀬部(333)と、
 前記容器(332)と前記浅瀬部(333)との間を仕切ると共に上面が前記浅瀬部(333)の底の位置よりも高くなるよう前記容器(332)の上面外周に起立するように設けられた堰部(334)からなり、
 前記流路(34)の進入方向を、前記容器(332)の上下方向に延びる中心軸(X)方向から水平方向にズラした位置でかつ前記浅瀬部(333)に直接連通させて、前記溶湯(10)が前記浅瀬部(333)を循環するとともにその一部が前記堰部(334)を越えて前記容器(332)内に入り込み渦流が形成されるようにしたことを特徴とする。
 また、請求項2に記載の発明は、前記流路(34)は、前記浅瀬部(333)の接線方向に連通されてなることを特徴とする。
 また、請求項3に記載の非鉄金属溶解方法は、前記請求項1又は2に記載の非鉄金属溶解炉(30)を利用した非鉄金属溶解方法であって、
 前記非鉄金属材として前記溶湯(10)が循環する前記浅瀬部(333)に対して完全に浸漬しない大きさで未乾燥の塊状非鉄金属材を用いることを特徴とする。
 また、請求項4に記載の発明は、前記塊状非鉄金属材は、アルミ切粉を圧縮して固形化したアルミのブリケット材(M)であり、前記溶湯(10)はアルミの溶湯であることを特徴とする。
 また、請求項5に記載の発明は、前記ブリケット材(M)の高さ(S)よりも前記浅瀬部(333)の底から溶湯(10)上面までの距離(T)が小さくなるように前記循環ポンプ(21)を制御することを特徴とする。
 なお、括弧内の記号は、図面および後述する発明を実施するための形態に掲載された対応要素または対応事項を示す。
 本発明の非鉄金属溶解炉によれば、渦室ではすり鉢状の容器、すなわち上方が開放し下方はテーパー壁によって略逆円錐状にされた容器の外周を取り囲むように環状の浅瀬部が堰部を隔てて設けられ、溶湯は浅瀬部を循環するとともにその一部が堰部を越えて容器内に入り込み渦流が形成されるように構成されているので、アルミニウム合金などの非鉄金属材を例えば、浅瀬部や溶湯が供給される流路に投入すると、非鉄金属材は浅瀬部を周回しつつ溶解し堰部を越えて容器内に送り込まれて撹拌される。
 よって、例えば、アルミ切粉を圧縮して固形化したアルミのブリケット材のような未乾燥の塊状非鉄金属材を溶湯から露出するように、つまり浅瀬部において完全に浸漬しない程度の大きさの塊状非鉄金属材は、浅瀬部を循環する溶湯によって徐々に溶解して体積が小さくなる。このとき、溶湯から露出した塊状非鉄金属材の部分からは水蒸気が放出されるので塊状非鉄金属材が水蒸気爆発する恐れはない。そして、塊状非鉄金属材は非鉄金属の小片及び粉となり溶湯とともに堰部を越えて容器内に送られつつ溶解される。
 これによれば、塊状非鉄金属材を投入する前に乾燥処理させる必要がないので余分なコストや手間がかからないし、歩留りを悪化させることもない。
 なお、塊状非鉄金属材だけでなく、例えば、アルミ切粉のように切粉の状態で浅瀬部や流路に投入し周回しつつ容器に送り込むようにしてもよい。また、切粉の状態のものを容器上から直接容器内に投入させることもできる。
 本発明の非鉄金属溶解炉によれば、浅瀬部側に供給される溶湯の流路を浅瀬部の接線方向に連通するようにしたので浅瀬部において溶湯は大きな流速で循環させられる。よって、浅瀬部においては非鉄金属を効率的に溶解及び周回させることができる。
 本発明の非鉄金属溶解方法によれば、略逆円錐状にされた容器の外周を取り囲むように環状の浅瀬部が堰部を隔てて設けられるように構成された非鉄金属溶解炉を利用して、溶湯が循環する浅瀬部に対して完全に浸漬しない大きさで未乾燥の塊状非鉄金属材、例えば、アルミ切粉を圧縮して固形化したアルミのブリケット材を、例えば、浅瀬部や溶湯が供給される流路に直接投入して油水分を溶湯の熱を利用して乾燥させながら、体積が小さくなるように徐々に溶解し、小さくした非鉄金属の小片及び粉を、溶湯とともに浅瀬部を循環させながら堰部を越えさせて容器内に落下させ渦流によって浸漬溶解するようにしたので、未乾燥の塊状非鉄金属材を投入しても水蒸気爆発させることなく確実に溶解させることができる。
 これによれば、特に大がかりな装置を必要とするものではなく容器の外周に環状の浅瀬部を設けるようにするだけで安全性が高まり効率的に未乾燥の塊状非鉄金属材を連続して溶解することができる。
 なお、本発明のように、上方が開放し下方はテーパー壁によって略逆円錐状にされた容器の外周を取り囲むように環状の浅瀬部が堰部を隔てて設けられ、その浅瀬部において非鉄金属を効率的に溶解させたものは、上述した特許文献には全く記載されていない。
本発明の実施形態に係る非鉄金属溶解炉を示す概略平面図である。 図1に示す渦室の横断面図である。 図2のA-A線断面図である。 図2のB-B線断面図である。 図1に示す渦室において投入口の位置をかえた場合の横断面図である。 従来例に係る非鉄金属溶解炉を示す概略平面図である。 従来例に係る非鉄金属の投入前処理を示す側面図である。
 図1乃至図4を参照して、本発明の実施形態に係る非鉄金属溶解炉30を説明する。
 この非鉄金属溶解炉30は、アルミ切粉を圧縮して固形化したアルミのブリケット材Mのような塊状非鉄金属材であってしかも未乾燥のものを直接投入して浸漬溶解することのできる溶解炉であり、循環ポンプ31を利用することで循環させられる溶湯10を加熱し昇温及び保温する昇温室32と、昇温室32に連通されるとともに、投入されたブリケット材Mを渦流によって浸漬溶解する渦室33を備えている。
 昇温室32には、石油などの化石燃料を用いたバーナ35が取付けられていてバーナ35の放射火炎Fによってアルミニウムの溶湯10を加熱している。
 なお、バーナ35にかえて電気ヒーターをアルミニウムの溶湯10中に浸漬して溶湯10を直接加熱するようにしてもよい。
 昇温室32で加熱された溶湯10は循環ポンプ31によって溶湯10のレベルが上げられ渦室33に供給される。そして、渦室33において投入シュート37から投入されたブリケット材Mが溶融される。また、渦室33から排出された溶湯10は昇温室32に戻され、このようにして溶湯10は非鉄金属溶解炉30内において循環させられる。
 渦室33は、全体を囲む外周壁331と、その内方に形成された容器332と、容器332の外周を取り囲むように設けられた浅瀬部333と、容器332の上面外周に起立するように設けられた堰部334からなる。
 外周壁331は、内方に中空円柱状の空間330が形成された筒状であり、昇温室32側から内方に溶湯10が供給される流路34が確保されるように流路34を避けて設置されている。ここでは、外周壁331に穴を形成して流路34を形成しているが流路34が確保されればどのような態様であってよい。また、外周壁331の断面形状において外形は略矩形状であるがどのような形状であってもよい。また、外周壁331の断面形状において内形も内方に容器332と浅瀬部333を設けることができるものであればどのような形状であってもよいが、本実施形態のように円状であることが好ましい。また、空間330を例えば六角柱状や八角柱状にするなど中空略円柱状にして内形を略円状にすることもできる。
 また容器332は、上方が開放し下方はテーパー壁によって略逆円錐状にされたすり鉢状で外周壁331に対して内方中央の位置に配置されている。容器の深さはここでは300mmのものを使用した。そして、溶湯10が上方から斜め方向に落下させられることで渦流が生じるようにしている。なお、容器の内面に斜めの溝を形成して渦流を発生させ易くしてもよい。
 また浅瀬部333は、容器332の外周を取り囲むように外周壁331との間に設けられた環状で容器332とは、容器332の上面外周に起立するように設けられた堰部334によって仕切られている。ここで堰部334は外周壁331よりも低く帯状に設けられている。また、堰部334の上面は浅瀬部333の底の位置よりも高くなるようにしてある。浅瀬部333の深さ、すなわち浅瀬部333の底と堰部334の上面間の距離Dは、30mmに設定されている。なお、堰部334はブリケット材Mの高さSにより任意に設計することができる。また、浅瀬部333にはブリケット材Mが直接投入される投入シュート37の投入口が向けられている。
 また昇温室32側から外周壁331の内方に導かれる流路34は浅瀬部333に直接連通されている。この流路34の進入方向は容器332の上下方向に延びる中心軸X方向から水平方向にズラした位置、ここでは環状の浅瀬部333に対してその接線方向に連通されている。
 これにより、循環ポンプ31のはたらきによって流路34を介して昇温室32側から供給された溶湯10は、浅瀬部333を循環するとともにその一部が堰部334を越えて容器332内に入り込み渦流が形成される。渦流の深さは120~200mm程度である。
 このとき、流路34からは浅瀬部333を循環するとともにその一部が堰部334を越える程度の量の溶湯10が供給され、浅瀬部333における溶湯10の上面と浅瀬部333の底間の距離Tは、投入されるブリケット材Mの高さS(通常80mm)よりも低い50mmに設定されている。なお、実際のブリケット材Mの高さSにより距離Tは変更できる。
 また、循環ポンプ31は、昇温室32の溶湯10の保持量により制御部を介して出力を変化させることによって、浅瀬部333における溶湯10の上面と浅瀬部333の底間の距離Tを一定でしかもブリケット材Mの高さSよりも小さくなるように制御している。また、距離Tを一定に安定した状態で保つため、図3に示すように、循環ポンプ31側に溶湯10を戻す戻し口335が設けられている。
 このように構成された非鉄金属溶解炉30を利用してブリケット材Mを溶解させるには、溶湯10が循環している浅瀬部333に対して完全に浸漬しない大きさで未乾燥のブリケット材Mを投入シュート37から直接投入する。
 ブリケット材Mは浅瀬部333からその一部が露出した状態でおかれるが溶湯10に浸漬した部分は循環する溶湯10によって溶解するためブリケット材Mはその体積が徐々に小さくなる。このとき、溶湯10から露出したブリケット材Mの部分からは水蒸気(油分を含む)が放出されるのでブリケット材Mが水蒸気爆発する恐れはない。なお、放出された水蒸気(油分を含む)はバーナ36(昇温室32に設けられたバーナ35とは別のバーナで空間330の上部で外周壁331に設置されている)によって燃焼され無害の状態で空間330の上部から外に排気される。
 その後、ブリケット材Mはアルミの小片及び粉となり溶湯10とともに浅瀬部333を周回しつつ堰部334を越えて容器332内に落下させられ渦流によって浸漬溶解される。
 なお、本実施形態では、アルミの溶湯内にカーボンが入ると、フラックス処理や,不活性ガスのバブリング処理では除去できなく、溶湯品質を劣化させるため、ブリケット材Mに付着したクーラント分を完全乾燥させてから溶湯内へブリケット材Mを引き込むようにしている。また、外周壁331に設置されたバーナ36の温度を調整してその周りの温度を750℃にすることにより、仮にカーボンが発生したとしても燃焼させることができ、それに加えてダイオキシンの分解も可能である。
 これによれば、ブリケット材Mを投入する前に乾燥処理させる必要がないので余分なコストや手間がかからないし、歩留りを悪化させることもない。
 なお、図5に示すように、投入シュート37の投入口を一層浅瀬部333側に設けるようにしてもよい。
 また、本実施形態ではアルミ切粉を圧縮して固形化したアルミのブリケット材Mを溶解炉30に投入したが、浅瀬部333に投入した際に一部が溶湯10から露出する大きさのものであればその他の塊状非鉄金属材であってもよい。
 また塊状非鉄金属材だけでなく、例えば、アルミ切粉のように切粉の状態で浅瀬部333に投入し周回しつつ容器332に送り込むようにしてもよい。
 また、本実施形態では浅瀬部333に対してブリケット材Mを直接投入するようにしたが、溶湯が供給される流路34に対して直接投入するようにしてもよい。
 さらに、図5に点線で示したように、投入シュート37の投入口を容器332上に設け、切粉の状態のものを容器332上から直接容器332内に投入させることもできる。
 また、本実施形態では少なくとも昇温室32と渦室33を備える非鉄金属溶解炉30を例にして説明したが、これらに出湯室,除滓室,鎮静室などを設けたものであってもよい。
 10   溶湯
 20   非鉄金属溶解炉
 21   循環ポンプ
 22   昇温室
 23   渦室
 25   バーナ
 27   投入シュート
 29   乾燥装置
 30   非鉄金属溶解炉
 31   循環ポンプ
 32   昇温室
 33   渦室
 34   流路
 35   バーナ
 36   バーナ
 37   投入シュート
330   空間
331   外周壁
332   容器
333   浅瀬部
334   堰部
335   戻し口
  D   浅瀬部の底と堰部の上面間の距離
  F   火炎
  M   ブリケット材(塊状非鉄金属材)
  S   ブリケット材の高さ
  T   浅瀬部における溶湯の上面と浅瀬部の底間の距離
  X   中心軸

Claims (5)

  1.  溶湯を加熱し昇温及び保温する昇温室と、前記昇温室に連通されるとともに、投入された非鉄金属材を渦流によって浸漬溶解する渦室を備え、循環ポンプを利用して前記昇温室の溶湯を前記渦室に供給し前記渦室から排出された溶湯を前記昇温室に戻すようにした非鉄金属溶解炉であって、
     前記渦室は、
     前記昇温室側から溶湯が供給される流路を確保した状態で設置されるとともに内方には空間が形成されてなる外周壁と、
     前記外周壁の内方中央に配置され、上方が開放し下方はテーパー壁によって略逆円錐状にされた容器と、
     該容器と前記外周壁との間に、該容器の外周を取り囲むように環状に設けられた浅瀬部と、
     前記容器と前記浅瀬部との間を仕切ると共に上面が前記浅瀬部の底の位置よりも高くなるよう前記容器の上面外周に起立するように設けられた堰部からなり、
     前記流路の進入方向を、前記容器の上下方向に延びる中心軸方向から水平方向にズラした位置でかつ前記浅瀬部に直接連通させて、前記溶湯が前記浅瀬部を循環するとともにその一部が前記堰部を越えて前記容器内に入り込み渦流が形成されるようにしたことを特徴とする非鉄金属溶解炉。
  2.  前記流路は、前記浅瀬部の接線方向に連通されてなることを特徴とする請求項1に記載の非鉄金属溶解炉。
  3.  前記請求項1又は2に記載の非鉄金属溶解炉を利用した非鉄金属溶解方法であって、
     前記非鉄金属材として前記溶湯が循環する前記浅瀬部に対して完全に浸漬しない大きさで未乾燥の塊状非鉄金属材を用いることを特徴とする非鉄金属溶解方法。
  4.  前記塊状非鉄金属材は、アルミ切粉を圧縮して固形化したアルミのブリケット材であり、前記溶湯はアルミの溶湯であることを特徴とする請求項3に記載の非鉄金属溶解方法。
  5.  前記ブリケット材の高さよりも前記浅瀬部の底から溶湯上面までの距離が小さくなるように前記循環ポンプを制御することを特徴とする請求項4に記載の非鉄金属溶解方法。
PCT/JP2014/076411 2013-10-04 2014-10-02 非鉄金属溶解炉及び非鉄金属溶解方法 WO2015050208A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480053906.8A CN105593388B (zh) 2013-10-04 2014-10-02 非铁金属熔解方法
JP2015540545A JP6085685B2 (ja) 2013-10-04 2014-10-02 非鉄金属溶解炉及び非鉄金属溶解方法
US15/084,551 US10138532B2 (en) 2013-10-04 2016-03-30 Nonferrous metal melting furnace and method for melting nonferrous metal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-208782 2013-10-04
JP2013208782 2013-10-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/084,551 Continuation US10138532B2 (en) 2013-10-04 2016-03-30 Nonferrous metal melting furnace and method for melting nonferrous metal

Publications (1)

Publication Number Publication Date
WO2015050208A1 true WO2015050208A1 (ja) 2015-04-09

Family

ID=52778792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076411 WO2015050208A1 (ja) 2013-10-04 2014-10-02 非鉄金属溶解炉及び非鉄金属溶解方法

Country Status (4)

Country Link
US (1) US10138532B2 (ja)
JP (1) JP6085685B2 (ja)
CN (1) CN105593388B (ja)
WO (1) WO2015050208A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017089921A (ja) * 2015-11-04 2017-05-25 株式会社宮本工業所 溶解炉の渦室
KR20190038943A (ko) * 2016-08-29 2019-04-09 파이로텍, 인크. 스크랩 침지 장치

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9156087B2 (en) 2007-06-21 2015-10-13 Molten Metal Equipment Innovations, Llc Molten metal transfer system and rotor
US9903383B2 (en) 2013-03-13 2018-02-27 Molten Metal Equipment Innovations, Llc Molten metal rotor with hardened top
US10465688B2 (en) 2014-07-02 2019-11-05 Molten Metal Equipment Innovations, Llc Coupling and rotor shaft for molten metal devices
US10947980B2 (en) 2015-02-02 2021-03-16 Molten Metal Equipment Innovations, Llc Molten metal rotor with hardened blade tips
US10267314B2 (en) 2016-01-13 2019-04-23 Molten Metal Equipment Innovations, Llc Tensioned support shaft and other molten metal devices
US11149747B2 (en) 2017-11-17 2021-10-19 Molten Metal Equipment Innovations, Llc Tensioned support post and other molten metal devices
US11471938B2 (en) * 2019-05-17 2022-10-18 Molten Metal Equipment Innovations, Llc Smart molten metal pump
US11873845B2 (en) 2021-05-28 2024-01-16 Molten Metal Equipment Innovations, Llc Molten metal transfer device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06207230A (ja) * 1993-10-27 1994-07-26 Toyota Motor Corp アルミ切粉溶解装置
US20030197313A1 (en) * 2001-09-07 2003-10-23 Areaux Larry D. Elevated discharge gas lift bubble pump and furnace for use therewith
JP2004149815A (ja) * 2002-10-28 2004-05-27 Sanken Sangyo Co Ltd 非鉄金属屑溶解炉
WO2005054521A1 (en) * 2003-11-26 2005-06-16 Metaullics Systems Co., L.P. Metal scrap submergence apparatus
WO2013006852A2 (en) * 2011-07-07 2013-01-10 Pyrotek, Inc. Scrap submergence system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2554510B2 (ja) 1987-11-17 1996-11-13 三建産業 株式会社 非鉄金属の切粉溶解装置
JP3485086B2 (ja) * 2000-11-15 2004-01-13 日本軽金属株式会社 アルミニウムまたはアルミニウム合金の精製方法および装置
JP4198434B2 (ja) * 2002-10-09 2008-12-17 勝敏 小野 金属チタンの製錬方法
JP3871646B2 (ja) 2003-02-04 2007-01-24 三建産業株式会社 非鉄金属溶解方法
WO2006132309A1 (ja) * 2005-06-09 2006-12-14 Nippon Crucible Co., Ltd. 坩堝式連続溶解炉
JP4995234B2 (ja) * 2008-12-26 2012-08-08 株式会社ヂーマグ 非鉄金属溶湯ポンプ及びそれを用いた非鉄金属溶解炉

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06207230A (ja) * 1993-10-27 1994-07-26 Toyota Motor Corp アルミ切粉溶解装置
US20030197313A1 (en) * 2001-09-07 2003-10-23 Areaux Larry D. Elevated discharge gas lift bubble pump and furnace for use therewith
JP2004149815A (ja) * 2002-10-28 2004-05-27 Sanken Sangyo Co Ltd 非鉄金属屑溶解炉
WO2005054521A1 (en) * 2003-11-26 2005-06-16 Metaullics Systems Co., L.P. Metal scrap submergence apparatus
WO2013006852A2 (en) * 2011-07-07 2013-01-10 Pyrotek, Inc. Scrap submergence system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017089921A (ja) * 2015-11-04 2017-05-25 株式会社宮本工業所 溶解炉の渦室
KR20190038943A (ko) * 2016-08-29 2019-04-09 파이로텍, 인크. 스크랩 침지 장치
KR102449671B1 (ko) * 2016-08-29 2022-09-30 파이로텍, 인크. 스크랩 침지 장치

Also Published As

Publication number Publication date
US20170130298A1 (en) 2017-05-11
JP6085685B2 (ja) 2017-02-22
CN105593388B (zh) 2021-01-12
US10138532B2 (en) 2018-11-27
JPWO2015050208A1 (ja) 2017-03-09
CN105593388A (zh) 2016-05-18

Similar Documents

Publication Publication Date Title
JP6085685B2 (ja) 非鉄金属溶解炉及び非鉄金属溶解方法
JP6452182B2 (ja) アルミニウム切粉溶解装置及び溶解方法
HRP20192115T1 (hr) Postupak lijevanja odljevaka
RU2013139535A (ru) Способ и устройство для обработки биомассы
JP2009192184A (ja) アルミニウム溶解炉,熱処理装置,鋳造システム
CN107262671B (zh) 脱蜡铸造工艺用脱蜡设备及方法
RU2600156C2 (ru) Способ извлечения оловянно-свинцовых припоев из лома электронных печатных плат и устройство для его осуществления
RU2015149935A (ru) Способ плавления металлического материала в плавильной установке и плавильная установка
KR101913405B1 (ko) 용해로 내화물 축조용 포머 및 이를 이용한 용해로 내화물의 건조방법
RU2629275C1 (ru) Способ расснаряжения боеприпасов, снаряженных желтым фосфором
CN108463680B (zh) 金属熔化装置
KR20170010629A (ko) 대나무 숯과 활성탄 생산을 위한 가열로 및 이를 이용한 대나무 활성탄의 제조방법
FR2472729A1 (fr) Four et procede de fusion pour metaux granules
JP5308255B2 (ja) 鋳造材料の再利用方法
RU2336125C1 (ru) Способ непрерывного производства торфоминерального гидрофобного нефтяного сорбента
JP2019523385A (ja) 高炉のバードネスト除去装置
US2299043A (en) Method of treating light metal scrap
WO2014054007A1 (en) Disposal of munitions
CN211823812U (zh) 一种脱脂炉
US20170113270A1 (en) Melting unit for melting down casting materials and method for producing molten material for castings
RU2509160C2 (ru) Способ производства ферросилиция
JP2014196550A (ja) リサイクル原料の転炉への装入方法
CA2638966C (en) Method and device for particulate scrubbing and conditioning
US8119073B2 (en) Method and device for particulate scrubbing and conditioning
RU2645134C1 (ru) Устройство для гранулирования жидкой серы

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14850771

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015540545

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201602236

Country of ref document: ID

122 Ep: pct application non-entry in european phase

Ref document number: 14850771

Country of ref document: EP

Kind code of ref document: A1