WO2015046465A1 - 画像処理装置、放射線画像撮影システム、画像処理プログラム、及び画像処理方法 - Google Patents

画像処理装置、放射線画像撮影システム、画像処理プログラム、及び画像処理方法 Download PDF

Info

Publication number
WO2015046465A1
WO2015046465A1 PCT/JP2014/075723 JP2014075723W WO2015046465A1 WO 2015046465 A1 WO2015046465 A1 WO 2015046465A1 JP 2014075723 W JP2014075723 W JP 2014075723W WO 2015046465 A1 WO2015046465 A1 WO 2015046465A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
tomographic image
tomographic
processing
projection
Prior art date
Application number
PCT/JP2014/075723
Other languages
English (en)
French (fr)
Inventor
航 福田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2015046465A1 publication Critical patent/WO2015046465A1/ja
Priority to US15/080,594 priority Critical patent/US9949706B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5229Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image
    • A61B6/5235Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from the same or different ionising radiation imaging techniques, e.g. PET and CT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/025Tomosynthesis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/46Arrangements for interfacing with the operator or the patient
    • A61B6/461Displaying means of special interest
    • A61B6/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/502Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of breast, i.e. mammography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5205Devices using data or image processing specially adapted for radiation diagnosis involving processing of raw data to produce diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5258Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems

Definitions

  • the present invention relates to an image processing apparatus, a radiographic image capturing system, an image processing program, and an image processing method, and in particular, an image processing apparatus that generates a tomographic image from a projected image captured by irradiating radiation at different incident angles, and radiation
  • the present invention relates to an image capturing system, an image processing program, and an image processing method.
  • a radiographic imaging apparatus that performs radiography for the purpose of medical diagnosis.
  • Examples of this type of radiographic imaging device include mammography that images a subject's breast for the purpose of early detection of breast cancer and the like.
  • mammography a technique for performing tomosynthesis imaging in which radiation is applied to a breast of a subject at different angles is known.
  • tomosynthesis imaging an object to be generated as a tomographic image located between a radiation detector and a radiation irradiating unit is incident on the normal direction of the tomographic plane of the tomographic image while moving the radiation irradiating unit (hereinafter simply referred to as “tomographic image”).
  • incident angle Incident angle
  • projected images a plurality of radiographic images (hereinafter, referred to as “projected images”), and predetermined slices. Generate tomographic images at intervals.
  • tomosynthesis imaging is being widely used in mammography diagnosis, but the tomographic image obtained by tomosynthesis imaging is a normal two-dimensional imaging in which the subject is irradiated with radiation from a fixed position without moving the radiation irradiation unit. In many cases, it is used as a function for assisting the radiographic image obtained by the above.
  • the reason for this is that the radiographic image obtained by normal two-dimensional imaging is familiar to doctors and the like, the concentration is different from that of the tomographic image, and the whole can be grasped at once.
  • an image corresponding to a radiographic image obtained by ordinary two-dimensional imaging can be obtained only by tomosynthesis imaging, because the radiation dose and imaging time during imaging can be greatly reduced.
  • Patent Document 1 discloses a chest of a patient. Obtaining a plurality of X-ray tomosynthesis projection images and combining at least one subset of the plurality of X-ray tomosynthesis projection images using at least one of an algebraic method or a maximum intensity projection method A method of synthesis is disclosed.
  • a two-dimensional image such as a two-dimensional mammogram generated by combining a plurality of tomographic images is hereinafter referred to as a “composite two-dimensional image”.
  • an FBP Frtered Back Projection
  • CT Computer Planar Tomography
  • the virtual image in the depth direction can be reduced to some extent, but in the case of tomosynthesis imaging, if the filtering process is performed uniformly, the density of the subject image of the tomographic image may be far from the projected image. .
  • the density of the subject image is far from the projected image even in the combined two-dimensional image.
  • a high-frequency enhancement filter (hereinafter referred to as “second filter”) that does not attenuate the low-frequency component shown in FIG.
  • second filter a high-frequency enhancement filter
  • the density of the subject image of the tomographic image can be brought close to the projected image, but since the low frequency component is not attenuated, a virtual image of a relatively large object (for example, fat, tumor, etc.) is likely to occur. Become. In this case, there is a problem that if a tomographic image including a virtual image is synthesized to generate a combined two-dimensional image, the virtual image is also captured in the combined two-dimensional image.
  • the present invention has been made to solve the above-described problems, and can generate a tomographic image suitable for both interpretation and generation of a synthesized two-dimensional image from a projection image obtained by tomosynthesis imaging. It is an object of the present invention to provide a processing apparatus, a radiographic image capturing system, an image processing method, and an image processing program.
  • the first invention provides a tomographic plane of a tomographic image while moving the radiation irradiating unit on a subject to be generated as a tomographic image located between the radiation detector and the radiation irradiating unit.
  • the incident frequency of the radiation with respect to the normal direction is different within a predetermined range, an acquisition means for acquiring a plurality of projection images taken at different incidence angles, and a spatial frequency based on the projection image acquired by the acquisition means
  • a second tomographic image generating unit that generates a second tomographic image emphasized in this manner, and a two-dimensional image generating unit that generates a combined two-dimensional image in which a plurality of second tomographic images generated by the second tomographic image generating unit are combined. It is provided with a means, a.
  • the first tomographic image generation unit generates a first tomographic image used for interpretation, which is emphasized according to the spatial frequency, based on the projection image acquired by the acquisition unit.
  • the second tomographic image generation unit generates a second tomographic image in which the degree of enhancement is different from that of the first tomographic image and is emphasized according to the spatial frequency based on the projection image. Is done.
  • the two-dimensional image generation unit generates a combined two-dimensional image obtained by combining the plurality of second tomographic images generated by the second tomographic image generation unit.
  • the same projection image (group) is not used as each tomographic image of the first tomographic image used for interpretation and the second tomographic image used for generation of the composite two-dimensional image, but the degree of emphasis is different. It is generated individually as a thing. Thereby, in the present invention, a tomographic image suitable for both interpretation and generation of a synthesized two-dimensional image is generated.
  • the first tomographic image used for interpretation is generated based on the projection image and is emphasized according to the spatial frequency, while the degree of enhancement is the first based on the projection image. Since the second tomographic image used for generating the synthesized two-dimensional image, which is different from the one tomographic image and is emphasized according to the spatial frequency, is generated, the interpretation and interpretation are performed from the projection image obtained by tomosynthesis imaging. A tomographic image suitable for both generation of a synthesized two-dimensional image can be generated.
  • the first tomographic image generation unit generates a tomographic image emphasized as the spatial frequency increases based on the projection image as the first tomographic image
  • the second tomographic image generation unit As the second tomographic image, based on the projection image, a tomographic image that is emphasized as the spatial frequency increases with the degree of enhancement being lower than that of the first tomographic image may be generated.
  • the first tomographic image used for interpretation is generated as being enhanced as the spatial frequency increases.
  • a tomographic image suitable for interpretation is generated according to the preference of a doctor or the like.
  • the second tomographic image used for generating the synthesized two-dimensional image is enhanced as the degree of enhancement is lower than that of the first tomographic image and the spatial frequency is increased. It is generated as a thing.
  • a tomographic image suitable for generating a composite two-dimensional image in which generation of a virtual image due to over-emphasis is suppressed is generated.
  • the first tomographic image that is emphasized as the spatial frequency becomes higher is generated.
  • the degree of enhancement is based on the projection image. Since the second tomographic image used for the generation of the synthesized two-dimensional image, which is emphasized as the spatial frequency becomes higher as compared with the image, is generated, the interpretation and synthesis of the second tomographic image are obtained from the projection image obtained by tomosynthesis imaging. A tomographic image suitable for both generation of a dimensional image can be generated.
  • the first tomographic image generating means performs the process of enhancing the projection image as the spatial frequency becomes higher, and then reconstructs the first tomographic image using the projection image subjected to the process of enhancing.
  • the second tomographic image generating means performs a process of enhancing the projection image by enhancing the degree of enhancement compared to the first tomographic image and increasing the spatial frequency, and then performing the enhancement process.
  • the second tomographic image may be generated by reconstruction using the projected image.
  • the first tomographic image generating unit generates a tomographic image by reconstruction using the projection image, and performs a process of enhancing the tomographic image as the spatial frequency becomes higher.
  • the second tomographic image generation unit generates a tomographic image by reconstruction using the projection image, and the degree of enhancement of the tomographic image is lower than that of the first tomographic image and the spatial frequency increases. You may produce
  • the first tomographic image generation unit and the second tomographic image generation unit may determine the spatial frequency range to be emphasized according to the size of the object of interest when the interpretation is performed. Good.
  • the first invention further includes a display unit that displays at least one of the first tomographic image generated by the first tomographic image generating unit and the synthesized two-dimensional image generated by the two-dimensional image generating unit. Good.
  • the degree of increase is increased as the incident angle increases, and a predetermined low frequency component in the spatial frequency of the projection image is relatively set to a high frequency component having a higher spatial frequency than the low frequency component.
  • the image processing apparatus further includes processing means for performing frequency processing to attenuate, wherein the first tomographic image generation means generates a first tomographic image based on the projection image subjected to frequency processing by the processing means, and the second tomographic image generation means A second tomographic image may be generated based on the projection image that has been subjected to frequency processing by the processing means.
  • the processing means may perform at least one of a process for attenuating the low frequency component of the projection image and a process for enhancing the high frequency component of the projection image as the frequency process.
  • a predetermined low frequency component at a spatial frequency of a projection image having an incident angle equal to or greater than a predetermined first threshold is relative to a high frequency component having a higher spatial frequency than the low frequency component.
  • a first tomographic image generation unit wherein the first tomographic image generation unit includes a projection image whose incident angle is less than a first threshold and a projection image on which the frequency processing has been performed by the processing unit.
  • the second tomographic image generation means may generate the second tomographic image based on the projection image whose incident angle is less than the first threshold and the projection image subjected to frequency processing by the processing means.
  • the processing unit attenuates a low-frequency component of a projection image whose incident angle is equal to or greater than a first threshold, and emphasizes a high-frequency component of the projection image whose incident angle is equal to or greater than a first threshold You may perform at least one of a process.
  • the processing means may increase the degree of relative attenuation of the low frequency component as the incident angle increases when performing the frequency processing.
  • At least one of the first tomographic image generation unit and the second tomographic image generation unit may generate the tomographic image based on the projection image weighted according to the incident angle.
  • the processing means further performs frequency processing to emphasize a low frequency component of a projection image whose incident angle is less than or equal to the first threshold value and less than the second threshold value relative to the high frequency component. May be.
  • the processing means when the processing means performs frequency processing for relatively enhancing low frequency components, the degree of relatively enhancing low frequency components as the incident angle decreases may be increased.
  • the two-dimensional image generation unit performs projection processing along a predetermined direction on a stacked image obtained by stacking a plurality of second tomographic images generated by the second tomographic image generation unit.
  • a combined two-dimensional image may be generated by performing addition processing for adding pixel values of corresponding pixels along a predetermined direction.
  • the second invention includes a radiation detector and a radiation irradiation unit, and is located between the radiation detector and the radiation irradiation unit.
  • Radiation imaging that shoots multiple projected images at different incidence angles by moving the radiation irradiation unit and irradiating the radiation with different radiation incident angles with respect to the normal direction of the tomographic plane of the tomographic image.
  • a computer is moved between a radiation detector and a radiation irradiating unit and a subject to be generated as a tomographic image is moved while the radiation irradiating unit is moved.
  • An acquisition means for acquiring a plurality of projection images taken at different incidence angles by varying an incident angle of radiation with respect to a normal direction of a tomographic plane of a tomographic image within a predetermined range, and a projection image acquired by the acquisition means
  • the degree of enhancement is different from that of the first tomographic image.
  • Second tomographic image generation means for generating a second tomographic image emphasized according to the spatial frequency and a composite two-dimensional image in which a plurality of second tomographic images generated by the second tomographic image generation means are combined.
  • a two-dimensional image generation means for generating for, is intended to function as a.
  • the fourth aspect of the invention provides a tomographic image of a tomographic image generation object that is located between a radiation detector and a radiation irradiation unit while moving the radiation irradiation unit.
  • the first tomographic image generating step for generating the first tomographic image used for interpretation which is emphasized according to the spatial frequency, and the degree of emphasis is different from the first tomographic image based on the projection image.
  • a second tomographic image generation step for generating a second tomographic image enhanced in accordance with the second tomographic image, and a secondary for generating a combined two-dimensional image in which a plurality of second tomographic images generated by the second tomographic image generation step are combined It includes an image generating step.
  • a tomographic image suitable for both interpretation and generation of a synthesized two-dimensional image can be generated from a projection image obtained by tomosynthesis imaging.
  • FIG. 1 It is a side view which shows an example of a structure of the radiographic imaging apparatus which concerns on embodiment. It is a front view which shows an example of the structure at the time of imaging
  • FIG. 6A shows a case where a tomographic image is reconstructed without performing frequency processing on any of the photographed projection images and stacked in the Z-axis direction (depth direction) corresponding to the slice position of each tomographic image. It is sectional drawing parallel to the XZ plane in the position 150 of the Y-axis direction. It is a figure which shows the tomographic image corresponding to slice position S1 and S2 of FIG. 6B. It is a schematic front view with which it uses for description of the reason which an artifact generate
  • the tomographic image corresponding to the position S1 in FIG. 8A parallel to the tomographic plane at the position in the depth direction where the object of interest exists, It is a figure which shows the combination with the image corresponding to the cross section S2 of FIG. 8A along the depth direction for every kind of frequency processing. It is a schematic front view with which it uses for description when not performing the frequency processing which concerns on embodiment. It is a schematic front view with which it uses for description when performing the frequency process which attenuates a low frequency component to a projection image with a large incident angle. It is a schematic front view with which it uses for description of the maximum value projection process which concerns on embodiment.
  • the radiographic imaging device 10 applies radiation (for example, X-rays) to the breast N of the subject W while the subject W is standing. ), And is called mammography, for example.
  • radiation for example, X-rays
  • the near side near the subject W when the subject W faces the radiographic imaging device 10 at the time of radiography is referred to as the front side of the radiographic imaging device 10
  • the radiographic imaging device 10 The far side away from the subject W when the subject W faces is the rear side of the radiographic imaging device 10, and the subject W when the subject W faces the radiographic imaging device 10
  • the left-right direction will be described as the apparatus left-right direction of the radiation image capturing apparatus 10 (see the arrows in FIGS. 1 and 2).
  • the imaging target of the radiographic image capturing apparatus 10 is not limited to the breast N, and may be, for example, another part of the body or an object.
  • the radiographic image capturing apparatus 10 may be an apparatus that captures the breast N of the subject W in a sitting position where the subject W is sitting on a chair (including a wheelchair). Any device may be used as long as the breast N of the subject W can be separately photographed while the upper body of the subject W is standing.
  • the radiographic image capturing apparatus 10 includes a measurement unit 12 having a substantially C-shaped side view provided on the front side of the apparatus, and a base unit 14 that supports the measurement unit 12 from the rear side of the apparatus. ing.
  • the measurement unit 12 compresses the breast N between the imaging surface 22 on which the planar imaging surface 20 that contacts the breast N of the subject W in the standing position is formed and the imaging surface 20 of the imaging table 22. And a holding portion 28 that supports the imaging table 22 and the compression plate 26. Note that a member that transmits radiation is used for the compression plate 26.
  • the measurement unit 12 is provided with a radiation source 30 such as a tube (see also FIG. 4), a radiation irradiation unit 24 that irradiates the radiation for inspection from the radiation source 30 toward the imaging surface 20, and a holding unit. 28 is provided with a support part 29 that is separated from the support part 28 and supports the radiation irradiation part 24.
  • a radiation source 30 such as a tube (see also FIG. 4)
  • a radiation irradiation unit 24 that irradiates the radiation for inspection from the radiation source 30 toward the imaging surface 20
  • a holding unit is provided with a support part 29 that is separated from the support part 28 and supports the radiation irradiation part 24.
  • the measuring unit 12 is provided with a rotating shaft 16 that is rotatably supported by the base unit 14.
  • the rotation shaft 16 is fixed with respect to the support portion 29, and the rotation shaft 16 and the support portion 29 rotate together.
  • the holding unit 28 can be switched between a state in which the rotating shaft 16 is connected and rotated integrally, and a state in which the rotating shaft 16 is separated and idled.
  • gears are provided on the rotating shaft 16 and the holding portion 28, respectively, and the meshing state and the non-meshing state of the gears are switched.
  • various mechanical elements can be used for switching between transmission / non-transmission of the rotational force of the rotating shaft 16.
  • the holding unit 28 supports the imaging table 22 and the radiation irradiation unit 24 so that the imaging surface 20 and the radiation irradiation unit 24 are separated from each other by a predetermined distance, and the interval between the compression plate 26 and the imaging surface 20 is variable.
  • the compression plate 26 is slidably held.
  • the imaging surface 20 with which the breast N abuts is made of, for example, carbon from the viewpoint of radiolucency and strength.
  • a radiation detector 42 for detecting radiation that is irradiated with radiation that has passed through the breast N and the imaging surface 20 is disposed inside the imaging table 22. The radiation detected by the radiation detector 42 is visualized and a radiation image is generated.
  • the radiographic image capturing apparatus 10 irradiates the breast N with different incident angles (changes) within a predetermined range, and performs imaging (tomosynthesis imaging) at different incident angles. It is an apparatus that can be used.
  • FIGS. 2 and 3 show the posture of the radiographic image capturing apparatus 10 at the time of tomosynthesis imaging.
  • the tomosynthesis imaging is performed by supporting the radiation irradiation unit 24 and inclining the support unit 29 that supports the imaging table 22 via the holding unit 28.
  • the breast N is irradiated with radiation while varying the incident angle within a predetermined range (for example, within a range of ⁇ 20 degrees).
  • a predetermined range for example, within a range of ⁇ 20 degrees.
  • the rotation shaft 16 rotates idly with respect to the holding unit 28, the imaging table 22 and the compression plate 26 do not move, and the support unit 29 rotates so that only the radiation irradiation unit 24 moves in an arc shape.
  • the position of the radiation irradiation unit 24 is moved from the angle ⁇ by a predetermined angle ⁇ , and imaging is performed at n positions P1 to Pn. .
  • the radiation is applied n times to the breast N of the subject W, so that the dose of radiation is reduced so that the exposure dose does not increase, for example, n
  • the radiation is irradiated so as to have a dose comparable to that of normal two-dimensional imaging (normal imaging in which the subject is irradiated with radiation from a fixed position without moving the radiation source 30).
  • both CC (Cranio & Caudal) imaging and MLO (Mediolateral-Oblique) imaging are performed on the breast N. It is supposed to be a device that can.
  • the posture of the holding unit 28 is adjusted so that the imaging surface 20 faces upward, and the support unit 29 is positioned so that the radiation irradiation unit 24 is positioned above the imaging surface 20.
  • the posture is adjusted. Thereby, radiation is irradiated from the radiation irradiation unit 24 to the breast N from the head side to the foot side of the subject W in the standing position, and CC imaging is performed.
  • the posture of the holding unit 28 is adjusted in a state where the imaging table 22 is rotated 45 ° or more and less than 90 ° compared to CC imaging, and the side wall angle of the imaging table 22 on the front side of the apparatus is adjusted. Positioning is performed so that the axilla of the subject W is applied to the part 22A. Thereby, radiation is irradiated from the radiation irradiation unit 24 to the breast N from the axial center side of the body of the subject W to the outside, and MLO imaging is performed.
  • a chest wall surface 25 is formed on the surface of the imaging table 22 on the front side of the apparatus so as to abut the chest portion below the breast N of the subject W during imaging.
  • the chest wall surface 25 according to the present embodiment is planar.
  • FIG. 4 shows an example of the configuration of the radiation image capturing system 5 according to the present embodiment.
  • the radiographic image capturing system 5 includes a radiographic image capturing device 10, an image processing device 50, and a display device 80.
  • the radiographic image capturing apparatus 10 includes the radiation irradiating unit 24 and the radiation detector 42 as described above, and includes an operation panel 44, an image capturing apparatus control unit 46, and a communication I / F unit 48.
  • the imaging apparatus control unit 46 has a function of controlling the overall operation of the radiographic imaging apparatus 10, and includes a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory). ) Including a non-volatile storage unit including a memory, an HDD (Hard Disk Drive), a flash memory, and the like.
  • the imaging device control unit 46 is connected to the radiation irradiation unit 24, the radiation detector 42, the operation panel 44, and the communication I / F unit 48.
  • the imaging apparatus control unit 46 When receiving an irradiation instruction from an operator via the operation panel 44 (for example, an exposure switch), the imaging apparatus control unit 46 follows the imaging menu (details will be described later) set based on the specified exposure condition.
  • the radiation plane 30 is irradiated with radiation from the radiation source 30.
  • the radiation source 30 emits cone beam radiation (conical X-ray beam as an example).
  • the radiation detector 42 receives image data carrying radiation and records the image information and outputs the recorded image information.
  • a radiation sensitive layer is arranged, and the radiation is converted into digital data. It is configured as an FPD (Flat Panel Detector) that converts and outputs.
  • the radiation sensitive layer can be disposed substantially parallel to the imaging surface 20.
  • the radiation detector 42 outputs image information indicating a radiation image to the imaging device controller 46.
  • the radiation detector 42 receives image radiation that has passed through the breast N to obtain image information indicating a radiation image.
  • the operation panel 44 has a function for setting various operation information including shooting conditions, various operation instructions, and the like.
  • the imaging conditions set on the operation panel 44 include information such as tube voltage, tube current, exposure conditions including irradiation time, and posture information.
  • the posture information specified on the operation panel 44 includes information indicating an imaging position (including the incident angle) when imaging is performed with radiation incident on the breast N at a plurality of incident angles. ing.
  • RIS Radiology Information System
  • a radiation information system a system that manages information such as medical treatment and diagnosis using radiation
  • the imaging device control unit 46 emits radiation from the radiation irradiation unit 24 according to the imaging menu set based on the set various types of information. N) is irradiated and a radiographic image is taken.
  • the imaging device control unit 46 adjusts the posture of the holding unit 28 so that the imaging surface 20 faces upward, and the radiation irradiation unit 24 applies to the imaging surface 20.
  • the posture of the support part 29 is adjusted to a state positioned above.
  • the imaging apparatus control unit 46 rotates the support unit 29 to move the radiation irradiation unit 24 in an arc shape from the angle ⁇ to the angle ⁇ based on the imaging conditions. Radiation is emitted from a radiation source 30 provided at 24. As a result, n radiation images having different radiation incident angles are obtained.
  • the communication I / F unit 48 has a function for transmitting and receiving a radiographic image and various information captured between the radiographic image capturing apparatus 10 and the image processing apparatus 50 via the network 49. Interface.
  • the image processing apparatus 50 has a function of generating a tomographic image reconstructed from the radiographic image acquired from the radiographic image capturing apparatus 10, and removes an object of interest such as a mass or calcification from the doctor.
  • a person who observes a captured radiographic image or generated tomographic image, diagnoses a tumor or the like, such as a doctor is referred to as a “user”, and the radiation detector 42 performs tomosynthesis imaging in the radiographic imaging apparatus 10.
  • a radiation image obtained by detecting radiation is referred to as a “projection image”.
  • the image processing apparatus 50 includes a CPU 52, a ROM 54, a RAM 56, an HDD 58, a communication I / F unit 60, an image display instruction unit 62, an instruction reception unit 64, a frequency processing unit 66, a tomographic image generation unit 68, a two-dimensional image generation unit 70, And a storage unit 74. These are connected to each other through a bus 75 such as a control bus or a data bus so that information can be exchanged.
  • a bus 75 such as a control bus or a data bus so that information can be exchanged.
  • the CPU 52 controls the image processing apparatus 50 as a whole. Specifically, the CPU 52 executes control by executing a program 55 (including a first image generation processing program described later) stored in the ROM 54. Is going.
  • the program 55 is stored in the ROM 54 in advance.
  • the present invention is not limited to this, and the program 55 is stored in a recording medium such as a CD-ROM or a removable disk, and the recording is performed. You may make it install in ROM54 etc. from a medium, and you may make it install in ROM54 etc. from an external device via communication lines, such as the internet.
  • the RAM 56 secures a work area when the CPU 52 executes the program 55. Further, the HDD 58 stores and holds various data.
  • the communication I / F unit 60 has a function for transmitting and receiving a radiographic image, various information, and the like captured between the image processing apparatus 50 and the radiographic image capturing apparatus 10 via the network 49. Interface.
  • the image display instruction unit 62 has a function of instructing a display 82 (to be described later) of the display device 80 to display a radiation image.
  • the display device 80 has a function of displaying a captured radiographic image, and includes a display 82 on which a radiographic image is displayed and an instruction input unit 84.
  • the instruction input unit 84 may be, for example, a touch panel display, a keyboard, a mouse, or the like.
  • the instruction input unit 84 allows the user to input an instruction regarding the display of the radiation image.
  • the instruction receiving unit 64 has a function of receiving an instruction from the user input by the instruction input unit 84 of the display device 80.
  • the frequency processing unit 66 performs frequency processing for emphasizing and attenuating a frequency component in a predetermined spatial frequency range according to an emphasis coefficient indicating the degree of emphasis on the projection image. .
  • the frequency processing unit 66 increases the degree of emphasizing the frequency component as the enhancement coefficient increases beyond a predetermined threshold (1.0 in the present embodiment). As the value becomes smaller than the threshold value, the degree of attenuation of the frequency component is increased.
  • the frequency processing unit 66 first performs a process of reducing the sharpness of the projected image by changing the degree of reducing the sharpness of the image, thereby lowering the sharpness of the projected image.
  • a plurality of images having different sharpness levels (hereinafter referred to as “non-sharp images”) are generated.
  • filter processing using a Gaussian filter is applied as processing for reducing the sharpness.
  • the present invention is not limited to this.
  • other processing such as filter processing using a moving average filter may be used.
  • a known method may be applied.
  • the frequency processing unit 66 uses the projection image and each non-sharp image to perform conversion using a predetermined conversion function on each difference between the images having the closest sharpness, and after the conversion An image obtained by integrating the differences is generated. Then, the frequency processing unit 66 adds an image obtained by adding the image obtained by performing enhancement and attenuation processing according to a preset enhancement coefficient to the image obtained by the integration and the projection image, to the frequency processing. Is generated as an image.
  • the frequency processing unit 66 As described above, the frequency processing unit 66 according to the present embodiment generates an image in which the frequency components in a predetermined spatial frequency range in the projection image are enhanced and attenuated according to the enhancement coefficient.
  • the spatial frequency range and the emphasis coefficient applied when the frequency processing unit 66 performs frequency processing on the projection image may be stored in advance in storage means such as the ROM 54, or the instruction input unit 84 may be used. Via the communication I / F unit 60 or by an external device or the like. Since the above frequency processing is a conventionally known technique, further detailed explanation is omitted.
  • the tomographic image generation unit 68 has a function of generating a tomographic image parallel to the imaging surface 20 at a predetermined slice interval by reconstruction using the projection image that has been subjected to frequency processing by the frequency processing unit 66.
  • parallel means parallelism within a range that allows an error caused by a change with time of the radiographic imaging apparatus 10 or a change in environmental conditions.
  • the tomographic image generation unit 68 moves the radiation irradiation unit 24 (radiation source 30), which has been subjected to frequency processing by the frequency processing unit 66, to positions P1, P2, P3,. A tomographic image is generated at a predetermined slice interval from a plurality of projection images photographed in this manner. Note that the position at which the object of interest is projected on the radiation image differs depending on the incident angle of the radiation. Therefore, the tomographic image generation unit 68 according to the present embodiment acquires imaging conditions when the radiographic image is captured from the radiographic image capturing apparatus 10.
  • the tomographic image generation unit 68 calculates the amount of movement of the object of interest between the plurality of radiographic images based on the incident angle of the radiation included in the acquired imaging conditions, and known methods such as back projection and shift addition The tomographic image is reconstructed based on the reconstruction method.
  • a conventionally known CT reconstruction method (for example, the FBP method described above) can be used in addition to the back projection method and the shift addition method.
  • the FBP method is a reconstruction method in which tomographic parallel plane tomographic scanning is regarded as part of cone beam CT scanning and the filter back projection method is extended.
  • an iterative reconstruction method described in JP2011-125698A can also be used.
  • This iterative reconstruction method is also a reconstruction method for CT, but can be applied to reconstruction at the time of tomosynthesis imaging as well as the FBP method.
  • the two-dimensional image generation unit 70 follows a predetermined direction with respect to a stacked image (three-dimensional image) in which a plurality of tomographic images generated by the tomographic image generation unit 68 are stacked.
  • a composite two-dimensional image is generated by performing a projection process.
  • a composite two-dimensional image is generated by performing the projection process described above, but the present invention is not limited to this.
  • the two-dimensional image generation unit 70 may generate a combined two-dimensional image by performing an addition process of adding corresponding pixel values along a predetermined direction.
  • Each of the frequency processing unit 66, the tomographic image generation unit 68, and the two-dimensional image generation unit 70 described above includes hardware, for example, a general electronic circuit, an ASIC (Application Specific Integrated Circuit), or an FPGA (Field Programmable Gate). It can be realized by hardware configured by (Array) or the like.
  • the storage unit 74 includes a projection image captured by the radiographic image capturing apparatus 10, a tomographic image generated by the tomographic image generation unit 68, and a combined two-dimensional image generated by the two-dimensional image generation unit 70. It has a function of storing image information representing each image, and is a large-capacity storage device such as a hard disk. In the present embodiment, the storage unit 74 also stores imaging conditions (such as an incident angle of radiation) when the radiographic image capturing apparatus 10 captures a radiographic image.
  • imaging conditions such as an incident angle of radiation
  • the radiographic image capturing apparatus 10 When performing radiographic image capturing, the radiographic image capturing apparatus 10 performs capturing according to the capturing menu when the capturing menu is set.
  • the radiographic image capturing apparatus 10 adjusts the posture of the holding unit 28 so that the imaging surface 20 faces upward as shown in FIG.
  • the attitude of the support portion 29 is adjusted to a state positioned above the imaging surface 20.
  • the subject W brings the breast N into contact with the imaging surface 20 of the radiographic imaging device 10.
  • the radiographic imaging device 10 moves the compression plate 26 toward the imaging surface 20 when an operation instruction is given to the operation panel 44 from the operator in this state.
  • the radiographic imaging device 10 when an instruction to perform tomosynthesis imaging is input to the operation panel 44, as shown in FIG.
  • the part 24 is moved arcuately from the angle ⁇ by a predetermined angle ⁇ , and the radiation irradiating part 24 is irradiated with radiation based on imaging conditions at n positions P1 to Pn.
  • the radiation individually irradiated from the radiation irradiation unit 24 reaches the radiation detector 42 after passing through the breast N.
  • the radiation detector 42 When the radiation detector 42 is irradiated with radiation, the radiation detector 42 outputs image information indicating a projected image by the irradiated radiation to the imaging device control unit 46, respectively. As described above, when radiation irradiation is performed at n positions P1 to Pn of the radiation irradiation unit 24, image information of n projection images is output to the imaging device control unit 46. .
  • the imaging device control unit 46 outputs the input image information to the image processing device 50. As described above, when the radiation irradiation unit 24 is irradiated with radiation at n positions P1 to Pn, the CPU of the imaging device control unit 46 obtains image information of n projection images. The image is output to the image processing apparatus 50.
  • the image processing apparatus 50 performs frequency processing on a projection image, and then reconstructs a tomographic image used for interpretation (hereinafter referred to as “first tomographic image”) to obtain a first tomographic image.
  • the image is displayed on the display device 80 via the image display instruction unit 62.
  • the image processing apparatus 50 reconstructs a tomographic image (hereinafter referred to as “second tomographic image”) used for generating a synthesized two-dimensional image after performing frequency processing on the projection image.
  • the image processing device 50 generates the above-described combined two-dimensional image from the second tomographic image, and displays the combined two-dimensional image on the display device 80 via the image display instruction unit 62.
  • the tomographic image enhanced by the frequency processing unit 66 and the tomographic image generation unit 68 as the first tomographic image, based on the projection image, as the spatial frequency increases. Is generated.
  • the frequency processing unit 66 and the tomographic image generation unit 68 compare the degree of enhancement with the first tomographic image based on the projection image as the second tomographic image. Thus, a tomographic image that is lowered and enhanced as the spatial frequency increases is generated.
  • FIG. 5 is a flowchart showing a flow of processing of the first image generation processing program executed by the CPU 52 of the image processing apparatus 50 according to the present embodiment.
  • step 100 of the figure the CPU 52 acquires image information of a plurality of (here, n) projection images from the radiation image capturing apparatus 10.
  • the CPU 52 controls the frequency processing unit 66 to perform frequency processing (hereinafter referred to as “original frequency processing”) corresponding to the incident angle on the projection image.
  • the frequency processing unit 66 performs frequency processing that attenuates the low-frequency component of the projection image whose incident angle at the time of shooting is a predetermined first threshold or more relative to the high-frequency component.
  • the enhancement coefficient for the high frequency component is set to 1.0 and the enhancement coefficient for the low frequency component is set to less than 1.0. It is assumed that processing for enhancing the low frequency component (hereinafter referred to as “low frequency component attenuation processing”) is performed without performing the processing for enhancing the high frequency component.
  • the spatial frequency range including an object larger than the size of the object of interest to be interpreted by the user is regarded as a low frequency region, and the object included in the low frequency region is regarded as a low frequency component.
  • a spatial frequency range higher than the upper limit value of the low frequency region is regarded as a high frequency region, and an object included in the high frequency region is regarded as a high frequency component.
  • a general size of calcification (for example, 300 ⁇ m) is applied as the size of the object of interest, but the present invention is not limited to this, and for example, a mass or the like Other sizes of interest may be applied.
  • FIG. 6A is a diagram schematically showing an example of tomosynthesis imaging.
  • the Z axis indicates coordinate values (distance from the detection surface) in a direction perpendicular to the detection surface of the radiation detector 42.
  • the radiation irradiation unit 24 is moved as shown in FIG. 6A to irradiate the four objects OB1 to OB4 from three places. Of the four objects, the object OB1 has the largest size and the object OB4 has the smallest size.
  • FIG. 6B the tomographic image is reconstructed without performing the original frequency processing on any of the photographed projection images, and is stacked in the depth direction (Z-axis direction) corresponding to the slice position of each tomographic image.
  • FIG. 6 is a cross-sectional view parallel to the XZ plane at the Y-axis position 150 (see also FIG. 6A).
  • FIG. 6C is a tomographic image corresponding to the slice positions S1 and S2 in FIG. 6B.
  • the slice position S1 corresponds to the position where the object OB1 actually exists, and the image of the object OB1 clearly appears in the tomographic image at the slice position S1.
  • the slice position S2 is originally a position where the object OB1 does not exist, the artifact of the object OB1 is reflected in the tomographic image at the slice position S2.
  • the larger the size of the object the greater the artifact in the depth direction.
  • an image of a large object is converted as a low frequency component
  • an image of a small (fine) object is converted as a high frequency component.
  • the artifacts are suppressed by performing reconstruction after uniformly performing a filtering process on a plurality of projection images. Yes.
  • these methods are applied to uniformly perform a filtering process on a projection image obtained by tomosynthesis imaging.
  • FIG. 8B shows a combination of the tomographic image corresponding to the slice position S1 parallel to the detection surface of the radiation detector 42 at the position in the depth direction where the object of interest exists and the image corresponding to the cross section S2 along the depth direction.
  • LPF low-frequency component transmission filter
  • HPF high-pass filter
  • the uniform frequency processing is not performed on all the projection images, but the low frequency component of the projection image whose incident angle is equal to or greater than the first threshold is applied to the high frequency component.
  • FIG. 9A is a schematic front view for explaining the case where the original frequency processing is not performed on each projection image
  • FIG. 9B is a schematic front view for explaining the case where the original frequency processing is performed on the projection image having a large incident angle.
  • the radiation irradiation unit 24 is moved to irradiate the subject from three locations (1), (2), and (3), and three projected images are taken.
  • (1) is a position where the incident angle is 0 degree
  • (2) and (3) are positions where the incident angle is equal to or more than the first threshold value.
  • the portion where the irradiation ranges of a plurality of radiations irradiated from different directions overlap is illustrated in such a manner that the density increases according to the overlapping state.
  • cone beam radiation is emitted.
  • parallel radiation is emitted from each position.
  • the subject image when the subject is irradiated with radiation from the position (1), the subject image is projected onto the area G1 of the projection image.
  • the subject image When the subject is irradiated with radiation from the position (2), the subject image is projected onto the area G2 of the projection image.
  • the subject image When the subject is irradiated with radiation from the position (3), the subject image is projected onto the area G3 of the projection image. Therefore, when a tomographic image corresponding to a slice position where the subject does not originally exist is reconstructed, an artifact is generated due to G2 and G3.
  • the projection range of the subject image is limited to the area of g2.
  • the projection range of the subject image is limited to the area g3. That is, as compared with G2 and G3 in FIG. 9A, only the contour portion of the subject image remains, and the inner density is attenuated.
  • frequency processing that attenuates the low frequency component relative to the high frequency component an example of performing the processing that attenuates the low frequency component without performing the processing that emphasizes the high frequency component has been described. It is not limited to this.
  • processing for enhancing high-frequency components hereinafter referred to as “high-frequency component enhancement processing” may be performed without performing processing for attenuating low-frequency components.
  • both processing for attenuating low-frequency components and processing for enhancing high-frequency components may be performed.
  • a process of attenuating both the low frequency component and the high frequency component is performed, and at this time, the degree of attenuation of the low frequency component is set as D1, and the degree of attenuation of the high frequency component is processed as D2 lower than the degree D1.
  • the processing for emphasizing both the low frequency component and the high frequency component is performed, and at this time, the enhancement degree of the low frequency component is set to D3, and the enhancement degree of the high frequency component is processed to D4 higher than the degree D3. Good.
  • the frequency processing for relatively attenuating the low-frequency component is performed on the projection image whose incident angle is equal to or greater than the first threshold.
  • the first threshold is, for example, the radiation irradiation unit 24 (radiation It can be set in advance according to the movement interval of the source 30).
  • the frequency processing unit 66 may perform frequency processing for attenuating each low frequency component on a projection image other than the projection image having the smallest incident angle. In this case, of the incident angles at the time of photographing a plurality of projection images, when the smallest incident angle is a1 and the second smallest incident angle is a2, the incident angle is larger than the incident angle a1 and smaller than the incident angle a2.
  • the first threshold value can be set within a range.
  • the position of the radiation source 30 at the time of tomosynthesis imaging is set in advance, instead of setting the first threshold value itself, the first of the plurality of positions of the radiation source 30 at the time of tomosynthesis imaging is used. You may make it set the position of the radiation source 30 used as the incident angle more than a threshold value. In this case, what is necessary is just to implement the process which attenuates a low frequency component to the projection image obtained by irradiating a radiation from the set position.
  • step 104 the CPU 52 controls the frequency processing unit 66 to increase the enhancement coefficient as the spatial frequency increases for the projection image that has undergone the above processing (hereinafter referred to as “processing target projection image”).
  • processing target projection image frequency processing for increasing the degree of emphasis
  • first frequency processing frequency processing for increasing the degree of emphasis
  • the low frequency component attenuated in the original frequency processing is emphasized from the state before attenuation. Apply values that are emphasized to the extent that they are not.
  • processing for increasing the degree of enhancement as the spatial frequency increases is applied to all the processing target projection images.
  • the present invention is not limited to this. .
  • the first frequency processing processing for increasing the degree of emphasis as the spatial frequency becomes higher with respect to components excluding the low frequency components targeted for attenuation in the original frequency processing, the incident angle being less than the first threshold value
  • Only a projection image, that is, a projection image that has not been subjected to the original frequency processing may be targeted, and a process of increasing the degree of enhancement as the spatial frequency increases may be applied.
  • a processing may be applied in which the degree of emphasis is increased as the spatial frequency is increased with respect to a predetermined frequency range on the high frequency side.
  • the reason why the upper limit is set in the range of the spatial frequency is to prevent an object smaller than the object of interest such as calcification (including noise generated at the time of generating a projection image) from being emphasized.
  • the frequency processing for emphasizing the processing target projection image as the spatial frequency increases is performed in order to prevent an overlook of a relatively small object of interest such as calcification, for example, during interpretation.
  • the enhancement coefficient used here uses the actual apparatus of the radiographic imaging apparatus 10 as a value that allows the object of interest to be visually recognized when the resulting tomographic image is interpreted according to the size of the object of interest. Values obtained in advance by experiments, computer simulations based on the design specifications of the radiographic imaging apparatus 10 can be applied.
  • step 106 the CPU 52 controls the tomographic image generation unit 68 to reconstruct the first tomographic image from the projection image on which the first frequency processing has been performed by the back projection method described above.
  • the first frequency process is not necessarily performed.
  • the process of the step 104 may not be performed.
  • a first tomographic image is generated using the processing target projection image obtained by the processing of step 102.
  • the degree of enhancement of the high frequency component when performing the original frequency processing is preferably a degree obtained in advance as a value that allows the object of interest to be visually recognized at the time of interpretation.
  • step 108 the CPU 52 outputs the image information of the reconstructed first tomographic image (for example, outputs it to the image display instruction unit 62).
  • step 110 the CPU 52 controls the frequency processing unit 66 to reduce the enhancement coefficient with respect to the processing target projection image as compared with the first frequency process, and increase the enhancement coefficient as the spatial frequency becomes higher.
  • the frequency processing (hereinafter referred to as “second frequency processing”) for increasing the degree of is executed.
  • a predetermined ratio for example, “first enhancement coefficient” of the enhancement coefficient applied in the first frequency process (hereinafter referred to as “first enhancement coefficient”) is used as the enhancement coefficient.
  • first enhancement coefficient By applying the value of 50%), the enhancement coefficient is made smaller than that of the first frequency processing, but the present invention is not limited to this.
  • the enhancement coefficient a value obtained by subtracting a constant greater than 0 and less than 1 from the first enhancement coefficient may be applied.
  • a different value for each predetermined range of the spatial frequency (for example, a larger value as the spatial frequency becomes higher) may be applied as the ratio and the constant.
  • the processing for executing the frequency processing for all the projected images is applied.
  • the present invention is not limited to this. .
  • the second frequency processing processing for executing frequency processing for components other than the low frequency components targeted for attenuation in the original frequency processing, a projection image whose incident angle is less than the first threshold, that is, original frequency processing It is also possible to apply a process that executes frequency processing only on a projected image that has not been subjected to.
  • a processing is applied to a predetermined high frequency side frequency range in which the degree of enhancement is lower than that in the first frequency processing and the degree of enhancement is increased as the spatial frequency is increased. It is good also as a form.
  • the frequency processing for performing the emphasis on the processing target projection image with a lower degree of emphasis than the first frequency processing and with increasing spatial frequency is the occurrence of artifacts due to over-emphasis. This is to reduce the above.
  • step 112 the CPU 52 controls the tomographic image generation unit 68 to reconstruct the second tomographic image from the projection image on which the second frequency processing has been performed by the back projection method described above.
  • step 114 the CPU 52 controls the two-dimensional image generation unit 70 to perform the above-described projection processing, thereby generating a synthesized two-dimensional image from the second tomographic image.
  • the two-dimensional image generation unit 70 firstly follows the arbitrary viewpoint direction with respect to the stacked image obtained by stacking the plurality of second tomographic images generated by the tomographic image generation unit 68. Projection processing is performed, and the maximum pixel value (luminance value) in the projection path is selected. This process is performed for each pixel to generate a synthesized two-dimensional image. Alternatively, a synthesized two-dimensional image may be generated by selecting the minimum pixel value in the projection path. Further, a composite two-dimensional image may be generated by performing addition processing for adding pixel values of corresponding pixels of each tomographic image along an arbitrary direction.
  • a method for generating a synthesized two-dimensional image may be a generally known method, and is not particularly limited.
  • step 116 the CPU 52 outputs the image information of the generated composite two-dimensional image (for example, outputs it to the image display instruction unit 62), and ends the first image generation processing program.
  • FIG. 11 is an example of a cross-sectional view of a stacked image obtained by stacking the second tomographic images.
  • OB region where the object of interest actually exists
  • A1 and A2 of FIG. If an artifact occurs in the oblique direction, the artifact causes blurring of the synthesized two-dimensional image.
  • the above artifacts are obtained by reconstructing a tomographic image after performing frequency processing that relatively attenuates a low frequency component with respect to a high frequency component on a projection image having an incident angle equal to or greater than a first threshold. Since a tomographic image in which is not conspicuous is generated, a synthesized two-dimensional image generated from the tomographic image is also an image in which artifacts are not conspicuous.
  • a decrease in the image density of the object of interest is suppressed by not performing the process of relatively attenuating the low frequency component on the projection image whose incident angle is less than the first threshold.
  • a slight artifact may remain in a region corresponding to the region OB at a slice position where the object of interest does not originally exist (a region directly above the region OB).
  • the artifact illustrated in A3 in FIG. 11 is an image of the synthesized two-dimensional image compared to the artifact illustrated in A1 and A2 in FIG. The effect on blur is small.
  • a first tomographic image that has been subjected to frequency processing that enhances the spatial frequency of the processing target projection image is generated, and the degree of enhancement is lower than that of the first tomographic image.
  • the second tomographic image is generated by performing frequency processing that emphasizes the higher the spatial frequency.
  • a first tomographic image in which a relatively small object such as calcification is more emphasized is generated, and a second tomographic image in which artifacts are reduced compared to the first tomographic image is generated. Therefore, a tomographic image suitable for both interpretation and generation of a synthesized two-dimensional image is generated.
  • FIG. 13 shows an example of a composite two-dimensional image generated when tomosynthesis imaging is performed on a plurality of objects having different sizes at different incident angles as shown in FIG.
  • FIG. 13 (1) is an example of a two-dimensional image obtained by normal radiography.
  • FIG. 13B is an example of a combined two-dimensional image generated using a tomographic image reconstructed from a projection image without performing the original frequency processing and the second frequency processing.
  • FIG. 13 (3) is an example of a composite two-dimensional image generated using a second tomographic image reconstructed from the projection image subjected to the original frequency processing and the second frequency processing.
  • the synthesized two-dimensional image shown in FIG. 13 (3) has a reduced artifact and emphasizes a small object compared to the synthesized two-dimensional image shown in FIG. 13 (2). It is an image.
  • the weighting of the second tomographic image corresponding to the slice position where the object of interest is present is made larger than the weighting of the other second tomographic images, etc. Processing may be performed while balancing the polymerization so that the change in density of the entire image does not deviate from the actual density.
  • the image processing apparatus 50 since the image processing apparatus 50 according to the present embodiment performs the original frequency processing corresponding to the incident angle on the projection image, the artifact is compared with the case where the frequency processing is uniformly performed. It is possible to achieve a good balance between the suppression of image density and the decrease in image density.
  • the image processing apparatus 50 according to the present embodiment performs first frequency processing on the processing target projection image to reconstruct the first tomographic image, and performs second frequency processing on the processing target projection image. Since the second tomographic image is reconstructed, a tomographic image suitable for both interpretation and generation of the synthesized two-dimensional image is generated as compared with the case where the first frequency processing and the second frequency processing are not performed. Can do.
  • the configuration of the radiographic imaging system 5 according to the present embodiment is different from the configuration of the radiographic imaging system 5 according to the first embodiment (see also FIG. 4) only in the function of the frequency processing unit 66. ing.
  • the frequency processing unit 66 according to the present embodiment performs the original frequency processing on the projection image in the same manner as in the first embodiment.
  • the frequency processing unit 66 according to the present embodiment performs the same first frequency processing and second frequency processing as those of the first embodiment on the tomographic image generation unit 68 instead of the projection image.
  • the image processing apparatus 50 generates a tomographic image from the projection image after performing the original frequency processing on the projection image. Furthermore, the image processing device 50 generates a first tomographic image by executing a first frequency process on the generated tomographic image. Then, the image processing device 50 generates a second tomographic image by executing the second frequency processing on the generated tomographic image, and generates a synthesized two-dimensional image from the second tomographic image.
  • FIG. 14 is a flowchart showing a flow of processing of the second image generation processing program executed by the CPU 52 of the image processing apparatus 50 according to the present embodiment.
  • step 200 in the figure the CPU 52 acquires image information of the projection image in the same manner as in step 100 of the first image generation processing program according to the first embodiment.
  • step 202 the CPU 52 controls the frequency processing unit 66 similarly to step 102 of the first image generation processing program according to the first embodiment, and executes the original frequency processing on the projection image.
  • step 204 the CPU 52 controls the tomographic image generation unit 68 to generate a tomographic image (hereinafter referred to as “processing target” from the processing target projection image similar to that of the first embodiment by the back projection method described above.
  • processing target a tomographic image
  • Tomographic image a tomographic image
  • step 206 the CPU 52 controls the frequency processing unit 66 to execute the first frequency processing on the processing target tomographic image.
  • the same value as the enhancement coefficient in the first frequency processing according to the first embodiment is applied as the enhancement coefficient.
  • processing for increasing the degree of emphasis as the spatial frequency increases is applied to all processing target tomographic images, but is not limited thereto. .
  • a process in which the degree of emphasis is increased as the spatial frequency becomes higher may be applied to the component excluding the low frequency component targeted for attenuation in the original frequency process.
  • a processing may be applied in which the degree of emphasis is increased as the spatial frequency is increased with respect to a predetermined frequency range on the high frequency side.
  • step 208 the CPU 52, like the step 108 of the first image generation processing program according to the first embodiment, the tomographic image (first tomographic image) on which the first frequency processing has been executed.
  • Information is output (for example, output to the image display instruction unit 62).
  • the image information of the processing target tomographic image obtained by the processing in step 204 is output.
  • the degree of enhancement of the high frequency component when performing the original frequency processing is preferably a degree obtained in advance as a value that allows the object of interest to be visually recognized at the time of interpretation.
  • step 210 the CPU 52 controls the frequency processing unit 66 to execute the second frequency processing on the processing target tomographic image.
  • the same value as the enhancement coefficient in the second frequency processing according to the first embodiment is applied as the enhancement coefficient.
  • the second frequency processing a form in which frequency processing is performed on components other than the low-frequency components targeted for attenuation in the original frequency processing may be applied.
  • a processing is applied to a predetermined high frequency side frequency range in which the degree of enhancement is lower than that in the first frequency processing and the degree of enhancement is increased as the spatial frequency is increased. It is good also as a form.
  • step 212 the CPU 52 controls the two-dimensional image generation unit 70 to execute the second frequency processing in the same manner as in step 114 of the first image generation processing program according to the first embodiment.
  • a synthesized two-dimensional image is generated from the tomographic image (second tomographic image).
  • step 214 the CPU 52 outputs image information of the generated combined two-dimensional image (for example, an image display instruction unit), as in step 116 of the first image generation processing program according to the first embodiment.
  • image information of the generated combined two-dimensional image for example, an image display instruction unit
  • the radiographic image capturing apparatus 10 captures a plurality of projection images by tomosynthesis imaging.
  • the image processing apparatus 50 acquires a plurality of photographed projection images, stores them in the storage unit 74, and executes original frequency processing corresponding to the incident angle on the acquired projection images. Reconstruction is performed using the projection image to generate and output a tomographic image. Furthermore, the image processing apparatus 50 performs a first frequency process on the reconstructed tomographic image to generate a first tomographic image. Then, the image processing device 50 performs second frequency processing on the reconstructed tomographic image to generate a second tomographic image, and generates a synthesized two-dimensional image from the second tomographic image.
  • the image processing apparatus 50 applies the first frequency processing and the second frequency processing performed on the processing target projection image in the first embodiment to the processing target tomographic image.
  • the radiographic image capturing system 5 according to the present embodiment, as a result, substantially the same effects as those of the first embodiment can be obtained.
  • each of the above embodiments does not limit the invention described in the claims, and all combinations of features described in each of the above embodiments are means for solving the invention. It is not always essential.
  • Each of the above embodiments includes inventions at various stages, and various inventions are extracted by combinations according to the situation in a plurality of disclosed constituent requirements. Even if some constituent requirements are deleted from all the constituent requirements shown in the above embodiments, the configuration from which these several constituent requirements are deleted is extracted as an invention as long as the effect is obtained.
  • the frequency processing unit 66 may increase the degree of relative attenuation of the low frequency component as the incident angle increases. For example, when low frequency component attenuation processing is performed on a projection image having an incident angle equal to or greater than a first threshold, the degree of attenuation of the low frequency component may be increased as the incident angle increases. Further, for example, when performing high frequency component enhancement processing on a projection image having an incident angle equal to or greater than the first threshold, the degree of enhancing the high frequency component may be increased as the incident angle increases. Accordingly, it is possible to achieve a better balance between the suppression of the decrease in the image density of the object of interest and the suppression of the artifact included in the tomographic image reconstructed from a plurality of projection images obtained by tomosynthesis imaging.
  • the frequency processing unit 66 may be configured to perform frequency processing that is relatively emphasized. For example, for a projection image whose incident angle is less than the second threshold, frequency processing for enhancing the low frequency component without reducing the high frequency component, frequency processing for reducing the high frequency component without enhancing the low frequency component, or Frequency processing that emphasizes low frequency components and attenuates high frequency components can be performed. Thereby, it is suppressed more that the density
  • the frequency processing unit 66 relatively emphasizes the low frequency component as the incident angle becomes smaller when performing frequency processing for relatively enhancing the low frequency component of the projection image whose incident angle is less than the second threshold. You may make it raise the degree to make.
  • the frequency processing unit 66 does not provide the first threshold value and the second threshold value, and increases the degree as the incident angle increases, so that the low frequency component in the spatial frequency of the projected image is relatively set with respect to the high frequency component. Frequency processing for attenuation may be performed.
  • the tomographic image generation unit 68 may perform reconstruction by assigning a weight according to the incident angle to the projection image at the time of reconstruction. For example, a projection image with an incident angle equal to or greater than a first threshold may be reconstructed with a lower weight than a projection image with an incident angle less than the first threshold. This makes the artifacts less noticeable.
  • reconstruction may be performed by assigning a smaller weight to a projection image having a larger incident angle.
  • each frequency processing of the original frequency processing performed in the frequency processing part 66, 1st frequency processing, and 2nd frequency processing is not specifically limited.
  • each frequency processing may be performed by performing convolution integration using a filter in which weighting coefficients are arranged one-dimensionally or two-dimensionally.
  • the image to be processed is converted into spatial frequency domain information by Fourier transform, and weighting is added to each frequency component according to the frequency range and enhancement factor to be processed by each frequency processing.
  • the frequency processing may be performed by performing inverse Fourier transform and returning to the real space region.
  • a multiresolution decomposition technique described in Japanese Patent Laid-Open No. 6-301766 may be used. Specifically, for example, the image is converted into an image having a plurality of resolutions by performing a smoothing process or the like, a difference image between the images for each resolution is obtained, and a weighting coefficient is added to the difference image for integration. Thus, an image in which a specific frequency component is attenuated or enhanced can be formed.
  • the weight balance of each frequency component is adjusted so as to suppress artifacts and image density fluctuations.
  • the frequency processing performed by decomposing into a plurality of frequency components can also be referred to as non-linear filter processing.
  • each frequency processing described above may be performed with an enhancement coefficient depending on contrast.
  • the height of contrast for each frequency component can be determined, and the weighting for each frequency component can be changed according to the height of contrast.
  • the degree of enhancement of high-frequency components may be suppressed to suppress over-emphasis artifacts.
  • an object with a small contrast such as a normal mammary gland or a tumor
  • the high frequency component may be positively emphasized for easy viewing.
  • a reconstruction method using a successive approximation method may be used. Specifically, the number of iterations of the iterative approximation method in which the degree of emphasis is lower than that in the first frequency processing is obtained. Then, the tomographic image with reduced artifacts is reconstructed by repeating the calculation by the successive approximation method as many times as the obtained iterative calculation.
  • the original frequency process executed in step 102 of the first image generation processing program according to the first embodiment is not an essential process, and the original frequency process may not be executed.
  • the image processing apparatus 50 executes the first frequency processing on the projection image in step 104 of the first image generation processing program according to the first embodiment, and the first embodiment is performed.
  • the second frequency processing is executed on the projection image.
  • the original frequency process executed in step 202 of the second image generation processing program according to the second embodiment is not an essential process, and the original frequency process may not be executed.
  • the image processing apparatus 50 reconstructs a tomographic image from the projection image in step 204 of the second image generation processing program according to the second embodiment.
  • both the first tomographic image and the synthesized two-dimensional image are displayed on the display device 80.
  • the present invention is not limited to this, and the first tomographic image and the synthesized two-dimensional image are displayed. It goes without saying that either one may be displayed on the display device 80.
  • the first tomographic image and the second tomographic image are generated from the projection image stored in the storage unit 74 of the image processing apparatus 50, but the present invention is not limited to this.
  • the first tomographic image and the second tomographic image may be generated from a projection image received from the outside via the network 49 or the like.
  • first frequency processing and the second frequency processing processing for emphasizing the image to be processed as the spatial frequency increases is performed, but the present invention is limited to this. It is not a thing.
  • an object having an intermediate size between a relatively small object such as calcification and a relatively large object such as a tumor may be an object of interest.
  • a predetermined spatial frequency range such as a spatial frequency range in which the intermediate size object is included is changed to other spatial frequency ranges. It is good also as a form which performs the process emphasized relatively.
  • the degree of emphasis is made lower than that of the first frequency processing, and the processing for emphasizing the image to be processed is performed. It is not limited.
  • a processing for emphasizing a predetermined spatial frequency range such as a spatial frequency range including an object having an intermediate size with a higher degree of emphasis than the first frequency processing. It is good also as a form which performs.
  • the target of the first frequency processing and the second frequency processing is a projection image.
  • the target of the first frequency processing and the second frequency processing is a tomographic image.
  • the present invention is not limited to this.
  • the target of the first frequency processing and the second frequency processing may be both a projection image and a tomographic image.
  • the first tomographic image and the second tomographic image obtained as a result are the same images as the first tomographic image and the second tomographic image obtained by the above-described embodiments. It is preferable to adjust the enhancement coefficient in the two-frequency processing.
  • the present invention is not limited to this.
  • a tomographic image of a projection image taken by another radiographic imaging device such as a so-called C-arm type radiographic imaging device that rotates while the positional relationship between the radiation source and the radiation detector is fixed. You may apply.
  • the radiation used for tomosynthesis imaging is not particularly limited, and X-rays, ⁇ -rays, and the like can be applied.
  • the configurations of the radiographic image capturing system 5, the radiographic image capturing device 10, the image processing device 50, and the display device 80 described in the above embodiments are merely examples, and the situation is within the scope of the present invention. Needless to say, it can be changed accordingly.
  • each of the frequency processing unit 66, the tomographic image generation unit 68, and the two-dimensional image generation unit 70 is configured by hardware (for example, a general electronic circuit, ASIC, FPGA, or the like). However, it may be realized by software using a computer by executing a program, or may be realized by a combination of hardware and software.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Optics & Photonics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Human Computer Interaction (AREA)
  • Pulmonology (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

 トモシンセシス撮影により得られた投影画像から、読影に用いる断層画像及び合成二次元画像の生成の双方に適した断層画像を生成することができる画像処理装置、放射線画像撮影システム、画像処理プログラム、及び画像処理方法を得る。周波数処理部及び断層画像生成部により、トモシンセシス撮影により得られた投影画像に基づいて、空間周波数に応じて強調された、読影に用いる第1断層画像を生成し、かつ投影画像に基づいて、強調の度合いが第1断層画像とは異なるものとされて空間周波数に応じて強調された第2断層画像を生成し、二次元画像生成部により、複数の第2断層画像が合成された合成二次元画像を生成する。

Description

画像処理装置、放射線画像撮影システム、画像処理プログラム、及び画像処理方法
 本発明は、画像処理装置、放射線画像撮影システム、画像処理プログラム、及び画像処理方法に係り、特に異なる入射角度で放射線を照射して撮影された投影画像から断層画像を生成する画像処理装置、放射線画像撮影システム、画像処理プログラム、及び画像処理方法に関する。
 従来、医療診断を目的とした放射線撮影を行う放射線画像撮影装置が知られている。この種の放射線画像撮影装置として、例えば、乳がんの早期発見等を目的として被検者の乳房を撮影するマンモグラフィが挙げられる。また、マンモグラフィにおいて、被検者の乳房に対して異なる角度で放射線を照射して撮影するトモシンセシス撮影を行う技術が知られている。トモシンセシス撮影では、放射線検出器と放射線照射部との間に位置する断層画像の生成対象とする被写体を、放射線照射部を移動させながら断層画像の断層面の法線方向に対する入射角度(以下、単に「入射角度」ともいう。)を所定範囲内で異ならせて、異なる入射角度毎に撮影し、撮影した複数の放射線画像(以下、「投影画像」という。)から再構成して、所定のスライス間隔で断層画像を生成する。
 一方、マンモグラフィ診断において、トモシンセシス撮影が広く用いられつつあるが、トモシンセシス撮影により得られた断層画像は、放射線照射部を移動させないで固定位置から放射線を被写体に照射して撮影する通常の二次元撮影により得られた放射線画像を補助する機能としての位置づけで使用されることが多い。この理由としては、通常の二次元撮影により得られた放射線画像は、医師等が見慣れている、濃度が断層画像とは異なる、全体を一度に把握できる、等が挙げられる。
 従って、従来は、二次元撮影を行うと共にトモシンセシス撮影も行って、二次元撮影による放射線画像と、トモシンセシス撮影による断層画像とを組み合わせて診断が行われることが多かった。
 しかしながら、トモシンセシス撮影のみで、通常の二次元撮影で得られる放射線画像に相当する画像も得ることができれば、撮影時の放射線の線量及び撮影時間を大幅に低減でき、好ましい。
 従来、トモシンセシス撮影による断層画像から通常の二次元撮影で得られる放射線画像に相当する画像を生成する技術として、米国特許出願公開第2010/0135558号明細書(特許文献1)には、患者の胸の複数のX線トモシンセシス投影画像を獲得し、代数方法または最大強度投影方法の少なくとも一つを使用し、複数のX線トモシンセシス投影画像の少なくとも一つのサブセットを組み合わせることによって二次元乳房X線写真を合成する方法が開示されている。
 なお、複数の断層画像が合成されることにより生成された二次元乳房X線写真等の二次元画像を、以下では「合成二次元画像」という。
 ところで、トモシンセシス撮影では、放射線を照射するときの入射角度が制限されている。そのため、例えば、逆投影法等により単純に投影画像を重ね合せて断層画像を再構成しても、本来は物体が存在しない領域に、本来は存在しない物体の虚像(以下、「アーチファクト」ともいう。)が写りこんでしまうことがある。この場合、虚像が目立ちすぎると、関心物の確認がしにくくなる。なお、断層画像の再構成を他の手法により実施する場合も同様の問題が生じる。
 これに対し、この問題を解決するために、CT(Computed Tomography)再構成法の代表的な手法であるFBP(Filtered Back Projection)法を適用して、一例として図15に示す、空間周波数領域における低周波成分を減弱する所謂Rampフィルタ(以下、「第1フィルタ」という。)等による処理によって一様にフィルタ処理を施した投影画像から逆投影して断層画像を再構成することも考えられる。
 しかしながら、この場合、深さ方向の虚像をある程度軽減することはできるが、トモシンセシス撮影の場合、一様にフィルタ処理を行うと、断層画像の被写体像の濃度が投影画像からかけ離れてしまうことがある。そして、この場合、断層画像を合成して合成二次元画像を生成すると、当該合成二次元画像でも被写体像の濃度が投影画像からかけ離れてしまうという問題点がある。
 これに対し、投影画像から断層画像を再構成する手法として、一例として図15に示す、上記低周波成分を減弱しない高周波強調フィルタ(以下、「第2フィルタ」という。)によって一様にフィルタ処理を施した投影画像から逆投影して断層画像を再構成する手法も知られている。
 しかしながら、この場合、断層画像の被写体像の濃度を投影画像に近付けることはできるが、低周波成分を減弱していないため、比較的大きな物体(例えば、脂肪、腫瘤等)の虚像が発生しやすくなる。そして、この場合、虚像が写った断層画像を合成して合成二次元画像を生成すると、当該合成二次元画像にも虚像が写ってしまうという問題点がある。
 なお、上記特許文献1に記載の技術では、上述した各問題点に関して考慮されていないため、断層画像の被写体像の濃度が投影画像からかけ離れている場合、合成二次元画像でも被写体像の濃度が投影画像からかけ離れてしまう。また、断層画像に虚像が発生した場合、合成二次元画像にも断層画像と同様に虚像が発生してしまう。
 本発明は、上記問題点を解決するためになされたものであり、トモシンセシス撮影により得られた投影画像から、読影及び合成二次元画像の生成の双方に適した断層画像を生成することができる画像処理装置、放射線画像撮影システム、画像処理方法、及び画像処理プログラムを提供することを目的とする。
 上記目的を達成するために、第1の発明は、放射線検出器と放射線照射部との間に位置する、断層画像の生成対象とする被写体を、放射線照射部を移動させながら断層画像の断層面の法線方向に対する放射線の入射角度を所定範囲内で異ならせて、異なる入射角度毎に撮影した複数の投影画像を取得する取得手段と、取得手段によって取得された投影画像に基づいて、空間周波数に応じて強調された、読影に用いる第1断層画像を生成する第1断層画像生成手段と、投影画像に基づいて、強調の度合いが第1断層画像とは異なるものとされて空間周波数に応じて強調された第2断層画像を生成する第2断層画像生成手段と、第2断層画像生成手段によって生成された複数の第2断層画像が合成された合成二次元画像を生成する二次元画像生成手段と、を備えている。
 本発明によれば、取得手段により、放射線検出器と放射線照射部との間に位置する、断層画像の生成対象とする被写体を、放射線照射部を移動させながら断層画像の断層面の法線方向に対する放射線の入射角度を所定範囲内で異ならせて、異なる入射角度毎に撮影した複数の投影画像が取得される。また、本発明では、第1断層画像生成手段により、取得手段によって取得された投影画像に基づいて、空間周波数に応じて強調された、読影に用いる第1断層画像が生成される。
 ここで、本発明では、第2断層画像生成手段により、投影画像に基づいて、強調の度合いが第1断層画像とは異なるものとされて空間周波数に応じて強調された第2断層画像が生成される。そして、本発明では、二次元画像生成手段により、第2断層画像生成手段によって生成された複数の第2断層画像が合成された合成二次元画像が生成される。
 すなわち、本発明では、読影に用いる第1断層画像及び合成二次元画像の生成に用いる第2断層画像の各断層画像として同一の投影画像(群)を用いるのではなく、各々強調の度合いが異なるものとして個別に生成している。これにより、本発明では、読影及び合成二次元画像の生成の双方に適した断層画像が生成される。
 このように、第1の発明によれば、投影画像に基づいて、空間周波数に応じて強調された、読影に用いる第1断層画像を生成する一方、投影画像に基づいて、強調の度合いが第1断層画像とは異なるものとされて空間周波数に応じて強調された、合成二次元画像の生成に用いる第2断層画像を生成しているので、トモシンセシス撮影により得られた投影画像から、読影及び合成二次元画像の生成の双方に適した断層画像を生成することができる。
 ところで、医師等がトモシンセシス撮影により得られた断層画像を読影する際には、通常の二次元撮影により得られた放射線画像よりも空間周波数領域における高周波成分が強調された画像が好まれる傾向にある。これは、医師等は、複数の断層面における各断層画像を高速に切り替えて動画のように表示して読影することが多く、この場合における、例えば石灰化等の比較的小さい物体の見落としを防ぐためである。
 しかしながら、投影画像から読影に用いられる断層画像を再構成する際に、投影画像に対して高周波成分の強調の度合いを高くしてフィルタ処理を行うと、断層画像に過強調による虚像が発生してしまうことがある。この場合、この断層画像を合成して合成二次元画像を生成すると、生成した合成二次元画像にも虚像が写ってしまう。
 そこで、上記第1の発明は、第1断層画像生成手段が、第1断層画像として、投影画像に基づいて、空間周波数が高くなるほど強調された断層画像を生成し、第2断層画像生成手段が、第2断層画像として、投影画像に基づいて、強調の度合いが第1断層画像に比較して低くされて空間周波数が高くなるほど強調された断層画像を生成してもよい。
 すなわち、本発明では、読影に用いる第1断層画像を、空間周波数が高くなるほど強調されたものとして生成している。これにより、本発明では、医師等の好みに応じた、読影に適した断層画像が生成される。また、本発明では、第1断層画像とは別に、合成二次元画像の生成に用いる第2断層画像を、強調の度合いが第1断層画像に比較して低くされて空間周波数が高くなるほど強調されたものとして生成している。これにより、本発明では、過強調による虚像の発生が抑制された、合成二次元画像の生成に適した断層画像が生成される。
 このように、本発明によれば、投影画像に基づいて、空間周波数が高くなるほど強調された、読影に用いる第1断層画像を生成する一方、投影画像に基づいて、強調の度合いが第1断層画像に比較して低くされて空間周波数が高くなるほど強調された、合成二次元画像の生成に用いる第2断層画像を生成しているので、トモシンセシス撮影により得られた投影画像から、読影及び合成二次元画像の生成の双方に適した断層画像を生成することができる。
 特に、本発明は、第1断層画像生成手段が、投影画像に対して空間周波数が高くなるほど強調する処理を行った後、強調する処理を行った投影画像を用いた再構成により第1断層画像を生成し、第2断層画像生成手段が、投影画像に対して強調の度合いを第1断層画像に比較して低くして空間周波数が高くなるほど強調する処理を行った後、強調する処理を行った投影画像を用いた再構成により第2断層画像を生成してもよい。
 また、本発明は、第1断層画像生成手段が、投影画像を用いた再構成により断層画像を生成し、断層画像に対して空間周波数が高くなるほど強調する処理を行うことにより第1断層画像を生成し、第2断層画像生成手段が、投影画像を用いた再構成により断層画像を生成し、断層画像に対して強調の度合いを第1断層画像に比較して低くして空間周波数が高くなるほど強調する処理を行うことにより第2断層画像を生成してもよい。
 また、上記第1の発明は、第1断層画像生成手段及び第2断層画像生成手段が、読影を行う際の関心物の大きさに応じて、強調を行う空間周波数の範囲を決定してもよい。
 また、上記第1の発明は、第1断層画像生成手段によって生成された第1断層画像及び二次元画像生成手段によって生成された合成二次元画像の少なくとも一方を表示する表示手段を更に備えてもよい。
 また、上記第1の発明は、入射角度が大きくなるほど度合いを高くして、投影画像の空間周波数における予め定められた低周波成分を低周波成分より空間周波数の高い高周波成分に対して相対的に減弱させる周波数処理を行う処理手段を更に備え、第1断層画像生成手段が、処理手段によって周波数処理が行われた投影画像に基づいて第1断層画像を生成し、第2断層画像生成手段が、処理手段によって周波数処理が行われた投影画像に基づいて第2断層画像を生成してもよい。
 特に、本発明は、処理手段が、周波数処理として、投影画像の低周波成分を減弱させる処理、及び投影画像の高周波成分を強調させる処理の少なくとも一方を行ってもよい。
 また、上記第1の発明は、入射角度が予め定められた第1閾値以上の投影画像の空間周波数における予め定められた低周波成分を低周波成分より空間周波数の高い高周波成分に対して相対的に減弱させる周波数処理を行う処理手段を更に備え、第1断層画像生成手段が、入射角度が第1閾値未満の投影画像及び処理手段によって周波数処理が行われた投影画像に基づいて第1断層画像を生成し、第2断層画像生成手段が、入射角度が第1閾値未満の投影画像及び処理手段によって周波数処理が行われた投影画像に基づいて第2断層画像を生成してもよい。
 特に、本発明は、処理手段が、周波数処理として、入射角度が第1閾値以上の投影画像の低周波成分を減弱させる処理、及び入射角度が第1閾値以上の投影画像の高周波成分を強調させる処理の少なくとも一方を行ってもよい。
 また、上記第1の発明は、処理手段が、周波数処理を行う際に、入射角度が大きくなるほど低周波成分を相対的に減弱させる度合いを高くしてもよい。
 また、上記第1の発明は、第1断層画像生成手段及び第2断層画像生成手段の少なくとも一方が、入射角度に応じて重み付けされた投影画像に基づいて断層画像の生成を行ってもよい。
 また、上記第1の発明は、処理手段が、更に、入射角度が第1閾値以下である第2閾値未満の投影画像の低周波成分を高周波成分に対して相対的に強調させる周波数処理を行ってもよい。
 特に、本発明は、処理手段が、低周波成分を相対的に強調させる周波数処理を行う際に、入射角度が小さくなるほど低周波成分を相対的に強調させる度合いを高くしてもよい。
 さらに、上記第1の発明は、二次元画像生成手段が、第2断層画像生成手段によって生成された複数の第2断層画像を積層した積層画像に対して予め定められた方向に沿って投影処理を行うか又は予め定められた方向に沿って対応する画素の画素値を加算する加算処理を行うことにより、合成二次元画像を生成してもよい。
 一方、上記目的を達成するために、第2の発明は、放射線検出器及び放射線照射部を備え、放射線検出器と放射線照射部との間に位置する、断層画像の生成対象とする被写体に、放射線照射部を移動させながら断層画像の断層面の法線方向に対する放射線の入射角度を所定範囲内で異ならせて放射線を照射して、異なる入射角度毎の複数の投影画像を撮影する放射線画像撮影装置と、放射線画像撮影装置で撮影された複数の投影画像から読影に用いる第1断層画像、合成二次元画像の生成に用いる第2断層画像、及び合成二次元画像を生成する画像処理装置と、を備えている。
 また、上記目的を達成するために、第3の発明は、コンピュータを、放射線検出器と放射線照射部との間に位置する、断層画像の生成対象とする被写体を、放射線照射部を移動させながら断層画像の断層面の法線方向に対する放射線の入射角度を所定範囲内で異ならせて、異なる入射角度毎に撮影した複数の投影画像を取得する取得手段と、取得手段によって取得された投影画像に基づいて、空間周波数に応じて強調された、読影に用いる第1断層画像を生成する第1断層画像生成手段と、投影画像に基づいて、強調の度合いが第1断層画像とは異なるものとされて空間周波数に応じて強調された第2断層画像を生成する第2断層画像生成手段と、第2断層画像生成手段によって生成された複数の第2断層画像が合成された合成二次元画像を生成する二次元画像生成手段と、として機能させるためのものである。
 さらに、上記目的を達成するために、第4の発明は、放射線検出器と放射線照射部との間に位置する、断層画像の生成対象とする被写体を、放射線照射部を移動させながら断層画像の断層面の法線方向に対する放射線の入射角度を所定範囲内で異ならせて、異なる入射角度毎に撮影した複数の投影画像を取得する取得工程と、取得工程によって取得された投影画像に基づいて、空間周波数に応じて強調された、読影に用いる第1断層画像を生成する第1断層画像生成工程と、投影画像に基づいて、強調の度合いが第1断層画像とは異なるものとされて空間周波数に応じて強調された第2断層画像を生成する第2断層画像生成工程と、第2断層画像生成工程によって生成された複数の第2断層画像が合成された合成二次元画像を生成する二次元画像生成工程と、を備えている。
 このような放射線画像撮影システム、画像処理プログラム、及び画像処理方法も、上記第1の発明と同様に作用するため、トモシンセシス撮影により得られた投影画像から、読影及び合成二次元画像の生成の双方に適した断層画像を生成することができる。
 以上説明したように、本発明によれば、トモシンセシス撮影により得られた投影画像から、読影及び合成二次元画像の生成の双方に適した断層画像を生成することができる、という効果が得られる。
実施の形態に係る放射線画像撮影装置の構成の一例を示す側面図である。 実施の形態に係る放射線画像撮影装置の撮影時における構成の一例を示す正面図である。 実施の形態に係る放射線画像撮影装置の撮影時の説明に供する概略正面図である。 実施の形態に係る放射線画像撮影システムの構成の一例を示すブロック図である。 第1の実施の形態に係る第1画像生成処理プログラムの処理の流れを示すフローチャートである。 実施の形態に係るトモシンセシス撮影の一例を模式的に示す図である。 撮影された投影画像の何れにも周波数処理を実施せずに、断層画像を再構成し、各断層画像のスライス位置に対応させてZ軸方向(深さ方向)に積層したときの、図6AのY軸方向の位置150におけるX-Z平面に平行な断面図である。 図6Bのスライス位置S1及びS2に対応する断層画像を示す図である。 アーチファクトが発生する理由の説明に供する概略正面図である。 図8Bに示す各画像の位置を模式的に示す斜視図である。 再構成した断層画像を各スライス位置に対応させて深さ方向に積層した場合に、関心物が存在する深さ方向の位置における断層面に平行な図8Aの位置S1に対応する断層画像と、深さ方向に沿った図8Aの断面S2に対応する画像との組み合わせを周波数処理の種類毎に示す図である。 実施の形態に係る周波数処理を施さない場合の説明に供する概略正面図である。 入射角度が大きい投影画像に低周波成分を減弱させる周波数処理を施す場合の説明に供する概略正面図である。 実施の形態に係る最大値投影処理の説明に供する概略正面図である。 アーチファクトの合成二次元画像への影響の説明に供する図である。 実施の形態に係る合成二次元画像の生成状態の説明に供する図である。 実施の形態に係る合成二次元画像の生成結果の一例を示す図である。 第2の実施の形態に係る第2画像生成処理プログラムの処理の流れを示すフローチャートである。 第1フィルタ及び第2フィルタの各々のフィルタ特性の一例を示すグラフである。
 以下、図面を参照して本発明の実施の形態を詳細に説明する。なお、本実施の形態は本発明を限定するものではない。
 [第1の実施の形態]
 図1~図3に示すように、本実施の形態に係る放射線画像撮影装置10は、被検者Wが立った立位状態において、当該被検者Wの乳房Nを放射線(例えば、X線)により撮影する装置であり、例えば、マンモグラフィと称される。なお、以下では、撮影の際に放射線画像撮影装置10に被検者Wが対面した場合の被検者Wに近い手前側を放射線画像撮影装置10の装置前方側とし、放射線画像撮影装置10に被検者Wが対面した場合の被検者Wから離れた奥側を放射線画像撮影装置10の装置後方側とし、放射線画像撮影装置10に被検者Wが対面した場合の被検者Wの左右方向を放射線画像撮影装置10の装置左右方向として説明する(図1及び図2の各矢印参照)。
 また、放射線画像撮影装置10の撮影対象は、乳房Nに限らず、例えば、身体の他の部位、物体であってもよい。また、放射線画像撮影装置10としては、被検者Wがイス(車イスを含む。)等に座った座位状態において、その被検者Wの乳房Nを撮影する装置であってもよく、少なくとも被検者Wの上半身が立位した状態でその被検者Wの乳房Nが左右別個に撮影可能な装置であればよい。
 放射線画像撮影装置10は、図1に示すように、装置前方側に設けられた側面視略C字状の測定部12と、測定部12を装置後方側から支える基台部14と、を備えている。
 測定部12は、立位状態にある被検者Wの乳房Nと当接する平面状の撮影面20が形成された撮影台22と、乳房Nを撮影台22の撮影面20との間で圧迫するための圧迫板26と、撮影台22及び圧迫板26を支持する保持部28と、を備えて構成されている。なお、圧迫板26には、放射線を透過する部材が用いられる。
 また、測定部12は、管球などの放射線源30(図4も参照。)が設けられ、放射線源30から撮影面20に向けて検査用の放射線を照射する放射線照射部24と、保持部28とは分離され放射線照射部24を支持する支持部29とを備えている。
 さらに、測定部12には、基台部14に回動可能に支えられている回動軸16が設けられている。回動軸16は、支持部29に対して固定されており、回動軸16と支持部29は一体に回動するようになっている。
 一方、保持部28に対しては、回動軸16が連結されて一体に回動する状態と、回動軸16が分離されて空転する状態とに切り替え可能とされている。具体的には、回動軸16及び保持部28にそれぞれギアが設けられ、このギア同士の噛合状態・非噛合状態を切替えるようになっている。
 なお、回動軸16の回動力の伝達・非伝達の切り替えは、種々の機械要素を用いることができる。
 また、保持部28は、撮影面20と放射線照射部24とが所定間隔離れるように撮影台22と放射線照射部24とを支持すると共に、圧迫板26と撮影面20との間隔が可変であるように圧迫板26をスライド移動可能に保持している。
 乳房Nが当接する撮影面20は、放射線透過性や強度の観点から、例えば、カーボンで形成されている。撮影台22の内部には、乳房N及び撮影面20を通過した放射線が照射され、その放射線を検出する放射線検出器42が配置されている。放射線検出器42が検出した放射線が可視化されて放射線画像が生成される。
 本実施の形態に係る放射線画像撮影装置10は、乳房Nに対して、入射角度を所定範囲内で異ならせて(変化させて)放射線を照射し、異なる入射角度毎の撮影(トモシンセシス撮影)を行うことができる装置とされている。
 図2、図3は、それぞれ、トモシンセシス撮影時における放射線画像撮影装置10の姿勢を示している。図2及び図3に示すように、当該トモシンセシス撮影は、放射線照射部24を支持すると共に、保持部28を介して撮影台22を支持する支持部29を傾けて撮影を行うものである。
 本実施の形態に係る放射線画像撮影装置10では、図3に示すように、乳房Nに対して、入射角度を所定範囲内(例えば、±20度の範囲内)で異ならせて放射線を照射して撮影を行う場合、保持部28に対して回動軸16が空転して撮影台22と圧迫板26が動かず、支持部29が回動することにより放射線照射部24のみが円弧状に移動する。なお、本実施の形態では、図3に示すように角度αから所定角度θずつ放射線照射部24の位置を移動させて、放射線照射部24の位置がP1~Pnのn箇所で撮影が行われる。
 なお、一般に、トモシンセシス撮影を行う場合、被検者Wの乳房Nに対してn回放射線を照射するため、被曝量が多くならないように、1回分の放射線の線量を低くして、例えば、n回の総合で通常の二次元撮影(放射線源30を移動させないで固定位置から放射線を被写体に照射して撮影する通常の撮影)と同じ程度の線量になるように放射線が照射される。
 また、本実施の形態に係る放射線画像撮影装置10では、乳房Nに対して、CC(Cranio & Caudal:頭尾方向)撮影とMLO(Mediolateral-Oblique:内外斜位方向)撮影との両者を行うことができる装置とされている。なお、CC撮影時においては、撮影面20が上方を向いた状態に保持部28の姿勢が調整されると共に、放射線照射部24が撮影面20に対して上方に位置する状態に支持部29の姿勢が調整される。これにより、立位状態の被検者Wの頭側から足側に向かって、放射線照射部24から乳房Nへ放射線が照射されて、CC撮影がなされる。また、MLO撮影時では、一般的に、CC撮影時に比べて撮影台22を45°以上90°未満回転させた状態に保持部28の姿勢が調整され、撮影台22の装置前方側の側壁角部22Aに被検者Wの腋窩をあてるようにポジショニングされる。これにより、被検者Wの胴体の軸中心側から外側へ向かって、放射線照射部24から乳房Nへ放射線が照射されて、MLO撮影がなされる。
 なお、撮影台22の装置前方側の面には、撮影時において、被検者Wの乳房Nよりも下方の胸部分を当接させる胸壁面25が形成されている。本実施の形態に係る胸壁面25は平面状とされている。
 図4には、本実施の形態に係る放射線画像撮影システム5の構成の一例が示されている。
 同図に示すように、本実施の形態に係る放射線画像撮影システム5は、放射線画像撮影装置10、画像処理装置50、及び表示装置80を備えて構成されている。
 放射線画像撮影装置10は、上述したように放射線照射部24、及び放射線検出器42を含むと共に、操作パネル44、撮影装置制御部46、及び通信I/F部48を含んで構成されている。
 本実施の形態に係る撮影装置制御部46は、放射線画像撮影装置10全体の動作を制御する機能を有するものであり、CPU(Central Processing Unit)、ROM(Read Only Memory)及びRAM(Random Access Memory)を含むメモリ、HDD(Hard Disk Drive)やフラッシュメモリ等から成る不揮発性の記憶部を備えて構成されている。また、撮影装置制御部46は、放射線照射部24、放射線検出器42、操作パネル44、及び通信I/F部48と接続されている。
 撮影装置制御部46は、操作パネル44(一例として曝射スイッチ)によりオペレータから照射指示を受け付けると、指定された曝射条件に基づいて設定された撮影メニュー(詳細後述)に従って、放射線照射部24に設けられた放射線源30から撮影面20に対して放射線を照射させる。なお、本実施の形態において、放射線源30は、コーンビームの放射線(一例として円錐状のX線ビーム)を照射する。
 一方、放射線検出器42は、画像情報を担持する放射線の照射を受けて画像情報を記録し、記録した画像情報を出力するものであり、例えば、放射線感応層が配置され、放射線をデジタルデータに変換して出力するFPD(Flat Panel Detector)として構成されている。放射線感応層は撮影面20に略平行に配置することができる。放射線検出器42は、放射線が照射されると、放射線画像を示す画像情報を撮影装置制御部46へ出力する。本実施の形態では、放射線検出器42によって、乳房Nを透過した放射線の照射を受けて放射線画像を示す画像情報が得られる。
 また、操作パネル44は、撮影条件を含む各種の操作情報、各種の操作指示等が設定される機能を有するものである。
 なお、操作パネル44で設定される撮影条件には、管電圧、管電流、照射時間を含む曝射条件、及び姿勢情報等の情報が含まれている。また、操作パネル44で指定される姿勢情報には、乳房Nに対して複数の入射角度で放射線を入射させて撮影を行う場合の撮影位置(当該入射角度を含む。)を表す情報が含まれている。
 なお、これらの曝射条件、姿勢情報等の各種の操作情報及び各種の操作指示等は、操作パネル44によりオペレータが設定するようにしてもよいし、他の制御装置(RIS:Radiology Information System、放射線情報システム(放射線を用いた、診療、診断等の情報の管理を行うシステム))等から得るようにしてもよいし、予め記憶部に記憶させておいてもよい。
 操作パネル44から各種情報が設定されると、撮影装置制御部46は、設定された各種情報に基づいて設定された撮影メニューに従って、放射線照射部24から放射線を被検者Wの撮影部位(乳房N)に照射させて放射線画像の撮影を実行する。撮影装置制御部46は、乳房Nに対してトモシンセシス撮影を行う場合には、撮影面20が上方を向いた状態に保持部28の姿勢を調整すると共に放射線照射部24が撮影面20に対して上方に位置する状態に支持部29の姿勢を調整する。そして、撮影装置制御部46は、図3に示すように、撮影条件に基づいて、支持部29を回動させて放射線照射部24を円弧状に角度αから角度θずつ移動させ、放射線照射部24に設けられた放射線源30から放射線を照射させる。これにより放射線の入射角度が各々異なるn枚の放射線画像が得られる。
 さらに、通信I/F部48は、放射線画像撮影装置10と、画像処理装置50と、の間で撮影された放射線画像や各種情報等を、ネットワーク49を介して送受信するための機能を有する通信インターフェイスである。
 一方、本実施の形態に係る画像処理装置50は、放射線画像撮影装置10から取得した放射線画像から再構成した断層画像を生成する機能を有しており、腫瘤や石灰化等の関心物を医師等が観察するための画像処理を放射線画像に対して行う機能を有している。なお、以下では、医師等、撮影された放射線画像や生成された断層画像の観察や腫瘍等の診断等を行う者を「ユーザ」といい、放射線画像撮影装置10においてトモシンセシス撮影により放射線検出器42が放射線を検出することで得られた放射線画像を「投影画像」という。
 画像処理装置50は、CPU52、ROM54、RAM56、HDD58、通信I/F部60、画像表示指示部62、指示受付部64、周波数処理部66、断層画像生成部68、二次元画像生成部70、及び記憶部74を備えて構成されている。これらは、コントロールバスやデータバス等のバス75を介して互いに情報等の授受が可能に接続されている。
 CPU52は、画像処理装置50全体の制御等を行うものであり、具体的には、ROM54に格納されているプログラム55(後述する第1画像生成処理プログラムを含む。)を実行することにより制御を行っている。なお、本実施の形態では、プログラム55は、予めROM54に格納されている構成としているが、これに限らず、プログラム55をCD-ROMやリムーバブルディスク等の記録媒体に記憶しておき、当該記録媒体からROM54等にインストールするようにしてもよいし、インターネット等の通信回線を介して、外部装置からROM54等にインストールするようにしてもよい。また、RAM56は、CPU52でプログラム55を実行する際の作業用の領域を確保するものである。さらに、HDD58は、各種データを記憶して保持するものである。
 一方、通信I/F部60は、画像処理装置50と、放射線画像撮影装置10と、の間で撮影された放射線画像や各種情報等を、ネットワーク49を介して送受信するための機能を有する通信インターフェイスである。
 また、画像表示指示部62は、放射線画像を表示させるように表示装置80の後述するディスプレイ82に指示する機能を有するものである。
 本実施の形態に係る表示装置80は、撮影された放射線画像の表示を行う機能を有するものであり、放射線画像が表示されるディスプレイ82及び指示入力部84を備えて構成されている。指示入力部84は、例えば、タッチパネルディスプレイや、キーボード、マウス等であってもよい。指示入力部84により、ユーザが、放射線画像の表示に関する指示を入力することができる。これに対し、指示受付部64は、表示装置80の指示入力部84により入力されたユーザからの指示を受け付ける機能を有するものである。
 一方、本実施の形態に係る周波数処理部66は、投影画像に対し、予め定められた空間周波数の範囲の周波数成分を、強調する度合いを示す強調係数に応じて強調及び減弱させる周波数処理を行う。
 ここで、本実施の形態に係る周波数処理部66は、強調係数が、予め定められた閾値(本実施の形態では、1.0)を超えて大きくなるほど、周波数成分を強調する度合いが高くなり、当該閾値を下回って小さくなるほど、周波数成分を減弱する度合いが高くなるものとされている。
 上記周波数処理として、例えば、特開平10-63838号公報に開示されている技術を適用する。具体的には、周波数処理部66は、まず、投影画像に対し、画像の鮮鋭度を低くする度合いを変えて、当該鮮鋭度を低くする処理を行うことにより、投影画像より鮮鋭度が低く、かつ鮮鋭度が互いに異なる複数の画像(以下、「非鮮鋭画像」という。)を生成する。なお、本実施の形態では、上記鮮鋭度を低くする処理として、ガウシアンフィルタによるフィルタ処理を適用しているが、これに限定されるものではなく、例えば、移動平均フィルタによるフィルタ処理等、他の公知の手法を適用してもよい。
 次に、周波数処理部66は、投影画像及び各非鮮鋭画像を用いて、上記鮮鋭度が最も近い画像同士の差分の各々に対し、予め定められた変換関数による変換を行うと共に、当該変換後の各差分を積算した画像を生成する。そして、周波数処理部66は、当該積算により得られた画像に対して、予め設定された強調係数に応じて強調及び減弱させる処理を行った画像と投影画像とを加算した画像を、上記周波数処理が行われた画像として生成する。
 以上説明したように、本実施の形態に係る周波数処理部66は、投影画像における予め定められた空間周波数の範囲の周波数成分を、強調係数に応じて強調及び減弱させた画像を生成する。ここで、周波数処理部66が投影画像に対して周波数処理を行う際に適用する空間周波数の範囲及び強調係数は、ROM54等の記憶手段に予め記憶されていてもよいし、指示入力部84を介してユーザにより入力されてもよいし、通信I/F部60を介して外部装置等により入力されてもよい。なお、以上の周波数処理については、従来既知の技術であるので、これ以上の詳細な説明は省略する。
 一方、断層画像生成部68は、周波数処理部66により周波数処理が行われた投影画像を用いた再構成により、所定のスライス間隔で撮影面20に平行な断層画像を生成する機能を有する。なお、ここで言う「平行」とは、放射線画像撮影装置10の経時変化や環境条件の変化等に起因して生じる誤差を許容した範囲内での平行を意味する。
 本実施の形態に係る断層画像生成部68は、周波数処理部66により周波数処理が行われた、放射線照射部24(放射線源30)をP1、P2、P3、・・・、Pnの位置に移動して撮影された複数の投影画像から所定のスライス間隔で断層画像を生成する。なお、放射線の入射角度によって、関心物が放射線画像上に投影される位置が異なる。そこで、本実施の形態に係る断層画像生成部68は、放射線画像撮影装置10から当該放射線画像を撮影した際の撮影条件を取得する。そして、断層画像生成部68は、取得した撮影条件に含まれる放射線の入射角度に基づいて、複数の放射線画像間における関心物の移動量を算出して、逆投影法やシフト加算法等、公知の再構成法に基づいて断層画像の再構成を行う。
 なお、再構成法としては、逆投影法やシフト加算法の他、従来公知のCT再構成法(一例として、上述したFBP法)を用いることができる。FBP法は、断層撮影の平行平面式断層走査をコーンビームCT走査の一部として捉え、フィルタ逆投影法を拡張した再構成法である。また、再構成法として、特開2011-125698号公報に記載の反復再構成法を用いることもできる。この反復再構成法もCT用の再構成法ではあるが、FBP法と同様に、トモシンセシス撮影時の再構成にも適用できる。
 一方、本実施の形態に係る二次元画像生成部70は、断層画像生成部68により生成された複数の断層画像を積層した積層画像(三次元画像)に対して予め定められた方向に沿った投影処理を行うことにより合成二次元画像を生成する。なお、本実施の形態に係る二次元画像生成部70では、上記投影処理を行うことにより合成二次元画像を生成しているが、これに限定されるものではない。例えば、二次元画像生成部70は、予め定められた方向に沿って対応する画素値を加算する加算処理を行うことにより合成二次元画像を生成してもよい。
 以上の周波数処理部66、断層画像生成部68、及び二次元画像生成部70の各々は、ハードウェア、例えば、一般的な電子回路や、ASIC(Application Specific Integrated Circuit)、或いはFPGA(Field Programmable Gate Array)等により構成されたハードウェア等により実現することができる。
 さらに、本実施の形態に係る記憶部74は、放射線画像撮影装置10で撮影された投影画像、断層画像生成部68で生成された断層画像、二次元画像生成部70で生成された合成二次元画像の各々を表わす画像情報等を記憶する機能を有するものであり、例えば、ハードディスク等の大容量記憶装置である。また、本実施の形態では、記憶部74に、放射線画像撮影装置10で放射線画像の撮影を行った際の撮影条件(放射線の入射角度等)も記憶される。
 次に、本実施の形態に係る放射線画像撮影システム5の作用について図面を参照して説明する。
 放射線画像の撮影を行う場合、放射線画像撮影装置10は、撮影メニューが設定されると、撮影メニューに従って撮影が実行される。
 放射線画像撮影装置10は、トモシンセシス撮影を行う撮影指示が入力された場合、図2に示すように、撮影面20が上方を向いた状態に保持部28の姿勢を調整すると共に放射線照射部24が撮影面20に対して上方に位置する状態に支持部29の姿勢を調整する。
 被検者Wは、放射線画像撮影装置10の撮影面20に乳房Nを当接させる。放射線画像撮影装置10は、この状態でオペレータから操作パネル44に対して圧迫開始の操作指示が行われると、圧迫板26が撮影面20に向けて移動する。
 本実施の形態に係る放射線画像撮影装置10は、この状態で操作パネル44に、トモシンセシス撮影の実行指示が入力された場合、図3に示すように、支持部29のみを回動させて放射線照射部24を円弧状に角度αから所定角度θずつ移動させ、放射線照射部24の位置がP1~Pnのn箇所で各々撮影条件に基づいた放射線の照射を行う。放射線照射部24から個別に照射された放射線は、それぞれ乳房Nを透過した後に放射線検出器42に到達する。
 放射線検出器42は、放射線が照射されると、照射された放射線による投影画像を示す画像情報をそれぞれ撮影装置制御部46へ出力する。上記のように、放射線照射部24の位置がP1~Pnのn箇所で放射線の照射が行われた場合には、n枚の投影画像の画像情報を撮影装置制御部46へ出力することとなる。
 撮影装置制御部46は、入力された各画像情報を画像処理装置50へ出力する。なお、上記のように、放射線照射部24の位置がP1~Pnのn箇所で放射線の照射が行われた場合には、撮影装置制御部46のCPUは、n枚の投影画像の画像情報を画像処理装置50へ出力する。
 本実施の形態に係る画像処理装置50は、投影画像に対して周波数処理を行った後に、読影に用いる断層画像(以下、「第1断層画像」という。)を再構成して、第1断層画像を、画像表示指示部62を介して表示装置80に表示する。さらに、画像処理装置50は、投影画像に対して周波数処理を行った後に、合成二次元画像の生成に用いる断層画像(以下、「第2断層画像」という。)を再構成する。そして、画像処理装置50は、第2断層画像から上述した合成二次元画像を生成して、当該合成二次元画像を、画像表示指示部62を介して表示装置80に表示する。
 ここで、本実施の形態に係る画像処理装置50では、周波数処理部66及び断層画像生成部68により、上記第1断層画像として、投影画像に基づいて、空間周波数が高くなるほど強調された断層画像を生成する。また、本実施の形態に係る画像処理装置50では、周波数処理部66及び断層画像生成部68により、上記第2断層画像として、投影画像に基づいて、強調の度合いが上記第1断層画像に比較して低くされて空間周波数が高くなるほど強調された断層画像を生成する。
 図5は、本実施の形態に係る画像処理装置50のCPU52が実行する、第1画像生成処理プログラムの処理の流れを示すフローチャートである。
 同図のステップ100において、CPU52は、放射線画像撮影装置10から複数の(ここではn枚の)投影画像の画像情報を取得する。
 ステップ102において、CPU52は、周波数処理部66を制御して、投影画像に対し、入射角度に応じた周波数処理(以下、「原周波数処理」という)を実行させる。ここで、本実施の形態に係る周波数処理部66は、撮影時の入射角度が予め定められた第1閾値以上の投影画像の低周波成分を高周波成分に対して相対的に減弱させる周波数処理を行う。ここでは、低周波成分を高周波成分に対して相対的に減弱させる周波数処理の一例として、高周波成分に対する強調係数を1.0とし、かつ低周波成分に対する強調係数を1.0未満とすることにより、高周波成分を強調させる処理は行わずに低周波成分を減弱させる処理(以下、「低周波成分減弱処理」という。)を行うものとする。
 なお、本実施の形態では、ユーザによる読影の対象とする関心物の大きさより大きい物体が含まれる空間周波数の範囲を低周波領域として、当該低周波領域に含まれる物体を低周波成分とみなしている。また、本実施の形態では、当該低周波領域の上限値より高い空間周波数の範囲を高周波領域として、当該高周波領域に含まれる物体を高周波成分とみなしている。さらに、本実施の形態では、上記関心物の大きさとして、石灰化の一般的な大きさ(例えば、300μm)を適用しているが、これに限定されるものではなく、例えば、腫瘤等の他の関心物の大きさを適用してもよい。
 ここで、本ステップ102の処理により、周波数処理部66で行われる処理について詳細に説明する。
 図6Aは、トモシンセシス撮影の一例を模式的に示す図である。Z軸は、放射線検出器42の検出面に垂直な方向の座標値(検出面からの距離)を示す。放射線検出器42の検出面がZ=0の面である。なお、ここでは、図6Aに図示するように放射線照射部24を移動させて、3カ所から4つの物体OB1~OB4に対して放射線を照射する場合で説明する。4つの物体のうち、物体OB1が最もサイズが大きく、物体OB4が最もサイズが小さい。
 図6Bは、撮影された投影画像の何れにも原周波数処理を実施せずに、断層画像を再構成し、各断層画像のスライス位置に対応させて深さ方向(Z軸方向)に積層したときの、Y軸位置150におけるX-Z平面に平行な断面図である(図6Aも参照。)。また、図6Cは、図6Bのスライス位置S1及びS2に対応する断層画像である。
 図6Bに示すように、スライス位置S1は実際に物体OB1が存在する位置に対応し、スライス位置S1の断層画像には物体OB1の画像が明確に表われている。しかし、スライス位置S2は、本来物体OB1が存在しない位置であるにも拘わらず、スライス位置S2の断層画像には物体OB1のアーチファクトが写りこんでしまっている。そして、図6B及び図6Cから明らかなように、物体のサイズが大きくなるほど、深さ方向に大きなアーチファクトが生じている。ここで、画像を空間周波数領域に変換すると、大きいサイズの物体の画像は低周波成分として変換され、サイズの小さな(細かい)物体の画像は高周波成分として変換されるが、このように空間周波数領域で画像を表わした場合、低周波数成分の物体ほど深さ方向のアーチファクトは大きくなり、高周波成分の物体ほど深さ方向のアーチファクトは小さくなることがわかる。
 図7に示すように、物体のサイズが大きいほど、放射線が照射される面積が大きくなり、物体を透過した放射線が検出面で検出されて投影画像に写り込むサイズも大きくなる。そして、入射角度が大きくなるほど、物体が現実に存在する領域から離れた領域への写り込みが大きくなり、このような投影画像から再構成された断層画像を積層すると、深さ方向において放射線の各照射領域が重なる範囲で、物体が深さ方向に伸びたようなアーチファクトが発生してしまう。従って、物体が大きくなるほど、深さ方向のアーチファクトも大きくなる。
 上述した第1フィルタを用いるFBP法や第2フィルタを用いて断層画像を再構成する手法等では、複数の投影画像に一律にフィルタ処理を施してから再構成することで、アーチファクトを抑制している。これらの手法を適用して、トモシンセシス撮影で得られた投影画像に一律にフィルタ処理を施した場合について説明する。
 図8Bに、関心物が存在する深さ方向の位置における放射線検出器42の検出面に平行なスライス位置S1に対応する断層画像と、深さ方向に沿った断面S2に対応する画像との組み合わせを示す(図8Aも参照)。ここでは、(1)から(3)まで、3つのパターンの組み合わせを示した。図8Bの(1)は、本来投影されるべき理想的な画像の組み合わせである。(2)は、全ての投影画像に対して一律に低周波成分透過フィルタ(LPF:ローパスフィルタ)によりフィルタ処理を施して再構成したときの画像の組み合わせである。(3)は、全ての投影画像に対して高周波成分透過フィルタ(HPF:ハイパスフィルタ)によりフィルタ処理を施して再構成したときの画像の組み合わせである。
 図8Bの(2)に示すように、一律に低周波成分を抽出して高周波成分を減弱させると、深さ方向にアーチファクトが発生する。また、上述したように、物体が大きいほどアーチファクトが大きくなる。
 一方、図8Bの(3)に示すように、一律に高周波成分を抽出して低周波成分を減弱させると、アーチファクトは小さく(目立たなく)なるが、大きな物体においては、物体の輪郭だけが残り、物体内部の低周波成分の情報、すなわち濃度情報が消失してしまう。これは、HPFにより、濃度が大きく変化する部分だけが抽出され、濃度の変化が少ない低周波成分の領域は抽出されずに、消失してしまうためである。
 マンモグラフィにより乳房の放射線画像を読影する場合、読影の対象(関心物)とされる脂肪、乳腺、病変(腫瘤)等は、ある程度サイズが大きな低周波成分に分類される。従って、本実施の形態に係る原周波数処理では、全ての投影画像に対して一律な周波数処理を施すのではなく、入射角度が上記第1閾値以上の投影画像の低周波成分を高周波成分に対して相対的に減弱させる周波数処理を行うことで、関心物の画像濃度が極端に低下することを抑制しつつ、関心物が本来存在しない断層画像のアーチファクトを目立たなくする。
 この原理について図9A及び図9Bの模式図を参照して説明する。図9Aは、各投影画像に原周波数処理を施さない場合の説明に供する概略正面図であり、図9Bは、入射角度が大きい投影画像に対し、原周波数処理を施す場合の説明に供する概略正面図である。
 図9A及び図9Bの何れにも、放射線照射部24を移動させて(1)、(2)及び(3)の3カ所から被写体に向かって放射線を照射し、3枚の投影画像を撮影する様子が示されている。(1)は、入射角度が0度の位置であり、(2)及び(3)は、入射角度が上記第1閾値以上となる位置である。異なる方向から照射された複数の放射線の照射範囲が重なる部分は、その重なり状態に応じて濃度が濃くなるよう図示した。なお、実際のトモシンセシス撮影ではコーンビームの放射線が照射されるが、ここでは、周波数処理の理解を容易にするため、各位置から平行な放射線が照射されるものとして図示した。
 図9Aに示すように、(1)の位置から被写体に放射線が照射されると、投影画像のG1のエリアに被写体画像が投影される。(2)の位置から被写体に放射線が照射されると、投影画像のG2のエリアに被写体画像が投影される。(3)の位置から被写体に放射線が照射されると、投影画像のG3のエリアに被写体画像が投影される。従って、本来被写体が存在しないスライス位置に対応する断層画像を再構成した場合、G2及びG3によりアーチファクトが発生してしまう。
 一方、図9Bに示すように、(2)の位置から被写体に放射線を照射して撮影した投影画像に低周波成分減弱処理を施すと、被写体画像の投影範囲はg2のエリアに限定される。同様に、(3)の位置から被写体に放射線を照射して撮影した投影画像に低周波成分減弱処理を施すと、被写体画像の投影範囲はg3のエリアに限定される。すなわち、図9AのG2及びG3と比較して、被写体の画像の輪郭部分だけが残り、内側の濃度が減弱される。従って、これら投影画像から、本来被写体が存在しないスライス位置に対応する断層画像を再構成しても、上記低周波成分の減弱によりアーチファクトの濃度が薄まる。なお、(1)の位置から被写体に放射線を照射して撮影した投影画像には、低周波成分減弱処理は施さないため、再構成される断層画像において被写体の濃度が極端に低下することが抑制される。
 なお、ここでは、低周波成分を高周波成分に対して相対的に減弱させる周波数処理の一例として、高周波成分を強調させる処理は行わずに低周波成分を減弱させる処理を行う例について説明したが、これに限定されない。上記周波数処理として、例えば、低周波成分を減弱させる処理は行わずに高周波成分を強調させる処理(以下、「高周波成分強調処理」という。)を行ってもよい。また、上記周波数処理として、低周波成分を減弱させる処理及び高周波成分を強調させる処理の双方を行うようにしてもよい。また、例えば、低周波成分及び高周波成分の双方を減弱させる処理を行い、その際、低周波成分の減弱の度合いをD1とし、高周波成分の減弱の度合いを度合いD1より低いD2として処理してもよい。また、例えば、低周波成分及び高周波成分の双方を強調させる処理を行い、その際、低周波成分の強調の度合いをD3とし、高周波成分の強調の度合いを度合いD3より高いD4として処理してもよい。
 また、ここでは、低周波成分を相対的に減弱させる周波数処理を、入射角度が上記第1閾値以上の投影画像に対して実施するが、当該第1閾値は、例えば、放射線照射部24(放射線源30)の移動間隔等に応じて予め設定しておくことができる。また、周波数処理部66は、入射角度が最小の投影画像以外の投影画像に対して各々の低周波成分を減弱させる周波数処理を実施するようにしてもよい。この場合には、複数の投影画像の撮影時の入射角度のうち、最も小さい入射角度をa1とし、2番目に小さい入射角度をa2としたときに、入射角度a1より大きく、入射角度a2以下の範囲内で上記第1閾値を設定することができる。なお、トモシンセシス撮影の際の放射線源30の位置は、予め設定されているため、上記第1閾値そのものを設定する代わりに、トモシンセシス撮影の際の放射線源30の複数の位置のうち、上記第1閾値以上の入射角度となる放射線源30の位置を設定しておくようにしてもよい。この場合、設定された位置から放射線を照射して得られた投影画像に低周波成分を減弱させる処理を実施すればよい。
 次に、ステップ104において、CPU52は、周波数処理部66を制御して、以上の処理を経た投影画像(以下、「処理対象投影画像」という。)に対し、空間周波数が高くなるほど強調係数を大きくして強調の度合いを高くする周波数処理(以下、「第1周波数処理」という。)を実行させる。なお、ここでいう「処理対象投影画像」は、上記ステップ102の処理により原周波数処理が行われた投影画像及び入射角度が上記第1閾値未満の投影画像の双方である。
 ここで、本実施の形態に係る第1周波数処理では、上記原周波数処理が行われた投影画像に対する上記強調係数として、当該原周波数処理において減弱した低周波成分が、減弱する前の状態より強調されない範囲内で強調される値を適用する。
 このように、本実施の形態では、上記第1周波数処理として、全ての処理対象投影画像に対して、空間周波数が高くなるほど強調の度合いを高くする処理を適用しているが、これに限らない。
 例えば、第1周波数処理として、上記原周波数処理において減弱の対象とした低周波成分を除く成分に対して、空間周波数が高くなるほど強調の度合いを高くする処理、入射角度が上記第1閾値未満の投影画像、すなわち原周波数処理が施されていない投影画像のみを対象として、空間周波数が高くなるほど強調の度合いを高くする処理等を適用する形態としてもよい。
 また、第1周波数処理として、予め定められた高周波数側の周波数の範囲に対し、空間周波数が高くなるほど強調の度合いを高くする処理を適用する形態としてもよい。ここで、空間周波数の範囲に上限値を設けているのは、例えば石灰化等の関心物より小さい物体(投影画像の生成時に生じる雑音を含む。)が強調されることを防ぐためである。
 なお、本ステップ104において、処理対象投影画像に対し、空間周波数が高くなるほど強調する周波数処理を行っているのは、読影の際に、例えば石灰化等の比較的小さい関心物の見落としを防ぐためである。従って、ここで用いる強調係数は、当該関心物の大きさに応じて、結果的に得られる断層画像を読影した際に、当該関心物が視認できる値として、放射線画像撮影装置10の実機を用いた実験や、放射線画像撮影装置10の設計仕様に基づくコンピュータ・シミュレーション等により予め得られた値を適用することができる。
 次に、ステップ106において、CPU52は、断層画像生成部68を制御して、第1周波数処理が行われた投影画像から、上述した逆投影法により第1断層画像を再構成させる。
 なお、上記ステップ102において、上記原周波数処理として高周波成分を強調する処理を行う場合、必ずしも第1周波数処理を行う必要はなく、この場合は上記ステップ104の処理を実行しない形態としてもよい。この場合、本ステップ106では、上記ステップ102の処理により得られた処理対象投影画像を用いて第1断層画像を生成することになる。この場合、原周波数処理を行う際の高周波成分の強調の度合いを、読影の際に関心物が視認できる値として予め得られた度合いとすることが好ましいことは言うまでもない。
 次に、ステップ108において、CPU52は、再構成された第1断層画像の画像情報を出力(例えば、画像表示指示部62に出力)する。
 次に、ステップ110において、CPU52は、周波数処理部66を制御して、処理対象投影画像に対し、第1周波数処理より強調係数を小さくし、かつ空間周波数が高くなるほど強調係数を大きくして強調の度合いを高くする周波数処理(以下、「第2周波数処理」という。)を実行させる。
 なお、本実施の形態に係る第2周波数処理では、上記強調係数として、第1周波数処理で適用した強調係数(以下、「第1強調係数」という。)の予め定められた割合(一例として、50%)の値を適用することにより、上記強調係数を第1周波数処理より小さくしているが、これに限らない。例えば、強調係数として、第1強調係数から0を超え、かつ1未満の定数を減算して得られた値を適用する形態等としてもよい。
 さらに、これらの形態において、上記割合および上記定数として、空間周波数の予め定められた範囲毎に異なる値(一例として、空間周波数が高くなるほど大きな値)を適用する形態としてもよい。
 このように、本実施の形態では、上記第2周波数処理としても、上記第1周波数処理と同様、全ての投影画像を対象として周波数処理を実行する処理を適用しているが、これに限らない。
 例えば、第2周波数処理として、上記原周波数処理において減弱の対象とした低周波成分を除く成分を対象として周波数処理を実行する処理、入射角度が上記第1閾値未満の投影画像、すなわち原周波数処理が施されていない投影画像のみを対象として周波数処理を実行する処理等を適用する形態としてもよい。
 また、第2周波数処理として、予め定められた高周波数側の周波数の範囲に対し、第1周波数処理より強調の度合いを低くし、かつ空間周波数が高くなるほど強調の度合いを高くする処理を適用する形態としてもよい。
 ここで、本ステップ110において、処理対象投影画像に対し、第1周波数処理より強調の度合いを低くし、かつ空間周波数が高くなるほど強調する周波数処理を行っているのは、過強調によるアーチファクトの発生を低減するためである。
 次に、ステップ112において、CPU52は、断層画像生成部68を制御して、第2周波数処理が行われた投影画像から、上述した逆投影法により第2断層画像を再構成させる。
 次に、ステップ114において、CPU52は、二次元画像生成部70を制御して、上述した投影処理を行うことにより、第2断層画像から合成二次元画像を生成させる。
 ここで、二次元画像生成部70は、図10に示すように、まず、断層画像生成部68により生成された複数の第2断層画像を積層した積層画像に対して任意の視点方向に沿って投影処理を行い、投影経路中の最大の画素値(輝度値)を選択する。この処理を画素毎に行って、合成二次元画像を生成する。或いは投影経路中の最小の画素値を選択して合成二次元画像を生成してもよい。また、任意の方向に沿って各断層画像の対応する画素の画素値を加算する加算処理を行うことにより、合成二次元画像を生成するようにしてもよい。また、米国特許出願公開第2010/0135558号明細書に示される合成二次元画像生成方法を採用してもよい。このように、合成二次元画像の生成方法は、一般的に知られている手法を用いればよく、特に限定されない。
 次に、ステップ116において、CPU52は、生成された合成二次元画像の画像情報を出力(例えば、画像表示指示部62に出力)し、本第1画像生成処理プログラムを終了する。
 ところで、上述したように、二次元画像生成部70は、第2断層画像から合成二次元画像を生成するため、第2断層画像に生じたアーチファクトによっては、当該合成二次元画像にも当該アーチファクトの影響が及び、画像ボケが生じてしまうことがある。図11は、第2断層画像を積層した積層画像の断面図の一例であるが、実際に関心物が存在する領域をOBとしたときに、例えば図11のA1、A2に示すように領域OBの斜め方向にアーチファクトが生じると、当該アーチファクトが合成二次元画像の画像ボケの原因となってしまう。
 しかしながら、本実施の形態では、入射角度が第1閾値以上の投影画像に低周波成分を高周波成分に対して相対的に減弱させる周波数処理を施してから断層画像を再構成することにより、上記アーチファクトが目立たない断層画像が生成されるため、当該断層画像から生成した合成二次元画像もアーチファクトが目立たない画像となる。
 なお、入射角度が第1閾値未満の投影画像に対して低周波成分を相対的に減弱させる処理を実施しないことで、関心物の画像濃度の低下が抑制されるが、これにより、例えば図11のA3に示すように、関心物が本来存在しないスライス位置の上記領域OBに対応する領域(領域OBの真上方向の領域)に、多少のアーチファクトが残ることがある。しかしながら、合成二次元画像は上述した加算処理或いは投影処理により生成されることから、図11のA3に例示したアーチファクトは、図11のA1、A2に例示したアーチファクトに比べて合成二次元画像の画像ボケに対する影響度は小さい。
 さらに、本実施の形態では、処理対象投影画像に対して空間周波数が高くなるほど強調する周波数処理を行った第1断層画像が生成されると共に、強調の度合いを第1断層画像に比較して低くして空間周波数が高くなるほど強調する周波数処理を行って第2断層画像が生成される。これにより、読影に用いる第1断層画像と比較してアーチファクトが目立たない第2断層画像が生成されるため、当該第1断層画像から合成二次元画像を生成した場合と比較して、当該第2断層画像から生成された合成二次元画像もアーチファクトが目立たない画像となる。
 すなわち、本実施の形態では、石灰化等の比較的小さい物体がより強調された第1断層画像が生成されると共に、第1断層画像と比較してアーチファクトが低減された第2断層画像が生成されるので、読影及び合成二次元画像の生成の双方に適した断層画像が生成される。
 図13には、図12に示すように異なる入射角度で異なる大きさの複数の物体をトモシンセシス撮影した場合に生成される合成二次元画像の例を示す。
 図13(1)は、通常の放射線撮影により得られる二次元画像の一例である。図13(2)は、上記原周波数処理及び第2周波数処理を行わず、投影画像から再構成した断層画像を用いて生成した合成二次元画像の一例である。図13(3)は、上記原周波数処理及び第2周波数処理を行った投影画像から再構成した第2断層画像を用いて生成した合成二次元画像の一例である。同図に示すように、図13(3)に示す合成二次元画像は、図13(2)に示す合成二次元画像に比較して、アーチファクトが低減され、小さい物体が強調された合成二次元画像となっている。
 なお、上記加算処理を行って合成二次元画像を生成する場合に、関心物が存在するスライス位置に対応する第2断層画像の重み付けを、他の第2断層画像の重み付けよりも大きくする等、画像全体の濃度の変化が実際の濃度と乖離しないように重合のバランスをとりながら処理してもよい。
 以上、説明したように、本実施の形態に係る画像処理装置50は、投影画像に対して入射角度に応じた原周波数処理を行っているので、一律に周波数処理を行う場合に比べて、アーチファクトの抑制と画像濃度の低下の抑制とをバランスよく実現することができる。また、本実施の形態に係る画像処理装置50は、処理対象投影画像に対して第1周波数処理を行って第1断層画像を再構成し、処理対象投影画像に対して第2周波数処理を行って第2断層画像を再構成しているので、第1周波数処理及び第2周波数処理を行わない場合に比較して、読影及び合成二次元画像の生成の双方に適した断層画像を生成することができる。
 [第2の実施の形態]
 次に、本発明の第2の実施の形態について詳細に説明する。なお、本実施の形態に係る放射線画像撮影装置10の構成は、図1~図3に示した上記第1の実施の形態に係る放射線画像撮影装置10と同様であるので、ここでの説明は省略する。
 まず、本実施の形態に係る放射線画像撮影システム5の構成について説明する。なお、本実施の形態に係る放射線画像撮影システム5の構成は、上記第1の実施の形態に係る放射線画像撮影システム5の構成(図4も参照。)と周波数処理部66の機能のみが異なっている。
 すなわち、本実施の形態に係る周波数処理部66は、上記原周波数処理を、上記第1の実施の形態と同様に投影画像に対して行う。これに対し、本実施の形態に係る周波数処理部66は、上記第1の実施の形態と同様の第1周波数処理及び第2周波数処理を、投影画像に対してではなく、断層画像生成部68により生成された断層画像に対して行う。
 次に、本実施の形態に係る放射線画像撮影システム5の作用について説明する。なお、本実施の形態に係る放射線画像撮影装置10及び表示装置80の作用は、上記第1の実施の形態と同様であるので、ここでの説明は省略する。
 本実施の形態に係る画像処理装置50は、投影画像に対して原周波数処理を行った後に、当該投影画像から断層画像を生成する。さらに、画像処理装置50は、生成した断層画像に対して第1周波数処理を実行することにより第1断層画像を生成する。そして、画像処理装置50は、上記生成した断層画像に対して第2周波数処理を実行することにより第2断層画像を生成し、当該第2断層画像から合成二次元画像を生成する。
 次に、本実施の形態に係る画像処理装置50の作用について図面を参照して詳細に説明する。図14は、本実施の形態に係る画像処理装置50のCPU52が実行する、第2画像生成処理プログラムの処理の流れを示すフローチャートである。
 まず、同図のステップ200において、CPU52は、上記第1の実施の形態に係る第1画像生成処理プログラムのステップ100と同様に投影画像の画像情報を取得する。次に、ステップ202において、CPU52は、上記第1の実施の形態に係る第1画像生成処理プログラムのステップ102と同様に周波数処理部66を制御して、投影画像に対して原周波数処理を実行させる。
 次に、ステップ204において、CPU52は、断層画像生成部68を制御して、上記第1の実施の形態と同様の処理対象投影画像から、上述した逆投影法により断層画像(以下、「処理対象断層画像」という。)を再構成させる。
 次に、ステップ206において、CPU52は、周波数処理部66を制御して、処理対象断層画像に対して上記第1周波数処理を実行させる。ここで、本実施の形態に係る第1周波数処理では、強調係数として、上記第1の実施の形態に係る第1周波数処理における強調係数と同様の値を適用する。
 このように、本実施の形態では、上記第1周波数処理として、全ての処理対象断層画像に対して、空間周波数が高くなるほど強調の度合いを高くする処理を適用しているが、これに限らない。
 例えば、第1周波数処理として、上記原周波数処理において減弱の対象とした低周波成分を除く成分に対して、空間周波数が高くなるほど強調の度合いを高くする処理を適用する形態としてもよい。
 また、第1周波数処理として、予め定められた高周波数側の周波数の範囲に対し、空間周波数が高くなるほど強調の度合いを高くする処理を適用する形態としてもよい。
 次に、ステップ208において、CPU52は、上記第1の実施の形態に係る第1画像生成処理プログラムのステップ108と同様に、第1周波数処理が実行された断層画像(第1断層画像)の画像情報を出力(例えば画像表示指示部62に出力)する。
 なお、上記ステップ202において、上記原周波数処理として高周波成分を強調する処理を行う場合、必ずしも第1周波数処理を行う必要はなく、この場合は上記ステップ206の処理を実行しない形態としてもよい。この場合、本ステップ208では、上記ステップ204の処理により得られた処理対象断層画像の画像情報を出力することになる。この場合、原周波数処理を行う際の高周波成分の強調の度合いを、読影の際に関心物が視認できる値として予め得られた度合いとすることが好ましいことは言うまでもない。
 次に、ステップ210において、CPU52は、周波数処理部66を制御して、処理対象断層画像に対して上記第2周波数処理を実行させる。ここで、本実施の形態に係る第2周波数処理では、強調係数として、上記第1の実施の形態に係る第2周波数処理における強調係数と同様の値を適用する。
 このように、本実施の形態では、上記第2周波数処理として、全ての処理対象断層画像を対象として周波数処理を実行する処理を適用しているが、これに限らない。
 例えば、第2周波数処理として、上記原周波数処理において減弱の対象とした低周波成分を除く成分を対象として周波数処理を実行する処理を適用する形態としてもよい。
 また、第2周波数処理として、予め定められた高周波数側の周波数の範囲に対し、第1周波数処理より強調の度合いを低くして、空間周波数が高くなるほど強調の度合いを高くする処理を適用する形態としてもよい。
 次に、ステップ212において、CPU52は、二次元画像生成部70を制御して、上記第1の実施の形態に係る第1画像生成処理プログラムのステップ114と同様に、第2周波数処理が実行された断層画像(第2断層画像)から合成二次元画像を生成させる。
 次に、ステップ214において、CPU52は、上記第1の実施の形態に係る第1画像生成処理プログラムのステップ116と同様に、生成された合成二次元画像の画像情報を出力(例えば画像表示指示部62に出力)し、本第2画像生成処理プログラムを終了する。
 以上、説明したように本実施の形態に係る放射線画像撮影システム5では、放射線画像撮影装置10が、トモシンセシス撮影により複数の投影画像を撮影する。本実施の形態に係る画像処理装置50は、撮影された複数の投影画像を取得して記憶部74に記憶し、取得した投影画像に対して入射角度に応じた原周波数処理を実行した後、当該投影画像により再構成を行って断層画像を生成し、出力する。さらに、画像処理装置50は、再構成した断層画像に対して第1周波数処理を実行して第1断層画像を生成する。そして、画像処理装置50は、再構成した断層画像に対して第2周波数処理を実行して第2断層画像を生成し、当該第2断層画像から合成二次元画像を生成する。
 このように、本実施の形態に係る画像処理装置50は、上記第1の実施の形態で処理対象投影画像に対して行っている第1周波数処理及び第2周波数処理を、処理対象断層画像に対して行っているので、本実施の形態に係る放射線画像撮影システム5によれば、結果的に上記第1の実施の形態と略同様の効果を奏することができる。
 以上、本発明を上記各実施の形態を用いて説明したが、本発明の技術的範囲は上記各実施の形態に記載の範囲には限定されない。発明の主旨を逸脱しない範囲で上記各実施の形態に多様な変更または改良を加えてもよく、当該変更または改良を加えた形態も本発明の技術的範囲に含まれる。
 また、上記各実施の形態は、特許請求の範囲に記載された発明を限定するものではなく、また、上記各実施の形態に係る中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。上記各実施の形態には種々の段階の発明が含まれており、開示される複数の構成要件における状況に応じた組み合わせにより種々の発明が抽出される。上記各実施の形態に示される全構成要件から幾つかの構成要件が削除されても、効果が得られる限りにおいて、この幾つかの構成要件が削除された構成が発明として抽出される。
 例えば、周波数処理部66は、原周波数処理を行う際に、入射角度が大きくなるにしたがって低周波成分を相対的に減弱させる度合いを高くするようにしてもよい。例えば、入射角度が第1閾値以上の投影画像に低周波成分減弱処理を行う場合には、入射角度が大きくなるにしたがって低周波成分を減弱させる度合いを高くするようにしてもよい。また、例えば、入射角度が第1閾値以上の投影画像に高周波成分強調処理を行う場合には、入射角度が大きくなるにしたがって高周波成分を強調する度合いを高くするようにしてもよい。これにより、トモシンセシス撮影により得られた複数の投影画像から再構成される断層画像に含まれる関心物の画像濃度の低下の抑制とアーチファクトの抑制とを、よりバランスよく実現できる。
 また、周波数処理部66で行われる入射角度に応じた原周波数処理として、上記例示した処理に加えて、入射角度が第1閾値以下である第2閾値未満の投影画像の低周波成分を高周波成分に対して相対的に強調させる周波数処理が行われるように周波数処理部66を構成してもよい。例えば、入射角度が第2閾値未満の投影画像に対し、高周波成分は減弱させずに低周波成分を強調させる周波数処理か、低周波成分を強調させずに高周波成分を減弱させる周波数処理か、或いは低周波成分を強調し且つ高周波成分を減弱させる周波数処理を行うことができる。これにより、関心物の濃度がアーチファクトの濃度に対して相対的に低下することがより抑制される。
 また、周波数処理部66は、入射角度が第2閾値未満の投影画像の低周波成分を相対的に強調させる周波数処理を行う際に、入射角度が小さくなるにしたがって低周波成分を相対的に強調させる度合いを高くするようにしてもよい。
 また、周波数処理部66は、上記第1閾値及び第2閾値を設けずに、入射角度が大きくなるほど度合いを高くして、投影画像の空間周波数における低周波成分を高周波成分に対して相対的に減弱させる周波数処理を行ってもよい。
 また、断層画像生成部68は、再構成の際に、入射角度に応じた重み付けを投影画像に付与して再構成するようにしてもよい。例えば、入射角度が第1閾値以上の投影画像に対しては、入射角度が第1閾値未満の投影画像より重み付けを小さくして再構成するようにしてもよい。これにより、アーチファクトがより目立たなくなる。また、入射角度が大きい投影画像ほど小さな重み付けを付与して再構成を行うようにしてもよい。
 なお、周波数処理部66で行われる原周波数処理、第1周波数処理、及び第2周波数処理の各周波数処理の手法は、特に限定されない。例えば、重み付け係数を一次元或いは二次元状に配置したフィルタを用い、畳み込み積分を行うことにより上記各周波数処理を行うようにしてもよい。
 また、処理対象とする画像をフーリエ変換により空間周波数領域の情報に変換し、上記各周波数処理の処理対象とする周波数の範囲及び強調係数に応じて、周波数成分毎に重み付けを付与して加算し、逆フーリエ変換を行って、実空間領域に戻すことにより、上記各周波数処理を行うようにしてもよい。
 また、特開平6-301766号公報等に記載の多重解像度分解の手法を用いてもよい。具体的には、例えば、平滑化処理等を行って画像を複数の解像度の画像に変換し、解像度毎の画像間の差分画像を求め、当該差分画像に対して重み付け係数を付与して積分することにより、特定の周波数成分が減弱或いは強調された画像を形成することができる。
 フーリエ変換や多重解像度分解等により画像を複数の周波数成分に分解して上記各周波数処理を行う場合、アーチファクト及び画像の濃度の変動が抑制されるように、各周波数成分の重み付けのバランスを調整して処理するとよい。このように、重み付けのバランスを自由に(非線形で)調整できるため、複数の周波数成分に分解して行う周波数処理を非線形フィルタ処理と呼称することもできる。
 また、コントラストに依存した強調係数で上記各周波数処理を実施してもよい。具体的には、非線形フィルタ処理を実施する場合、周波数成分毎のコントラストの高さを判定して、上記周波数成分毎の重み付けをコントラストの高さに応じて変更することができる。コントラストが高い物体(人工物や石灰化等の高吸収体等)が存在する場合には、高周波成分の強調の度合いを抑制し過強調によるアーチファクトを抑制するようにしてもよい。また、通常乳腺や腫瘤のようにコントラストが小さい物体が存在する場合には、低周波成分を減弱するだけでなく、高周波成分を積極的に強調して見やすくするようにしてもよい。このようにコントラストに依存して周波数処理を行うことにより、より診断しやすい断層画像を再構成することができる。
 さらに、第2断層画像を生成する際に、逐次近似法による再構成の手法を用いてもよい。具体的には、第1周波数処理より強調の度合いが低くなる逐次近似法の反復演算回数を求める。そして、求めた反復演算回数だけ逐次近似法による演算を繰り返すことにより、アーチファクトが低減された断層画像が再構成される。
 また、上記第1の実施の形態に係る第1画像生成処理プログラムのステップ102において実行した原周波数処理は必須の処理ではなく、当該原周波数処理を実行しない形態としてもよい。この場合、画像処理装置50は、上記第1の実施の形態に係る第1画像生成処理プログラムのステップ104において、投影画像に対して第1周波数処理を実行し、上記第1の実施の形態に係る第1画像生成処理プログラムのステップ110において、投影画像に対して第2周波数処理を実行する。
 同様に、上記第2の実施の形態に係る第2画像生成処理プログラムのステップ202において実行した原周波数処理も必須の処理ではなく、当該原周波数処理を実行しない形態としてもよい。この場合、画像処理装置50は、上記第2の実施の形態に係る第2画像生成処理プログラムのステップ204において、投影画像から断層画像を再構成する。
 また、上記各実施の形態では、第1断層画像及び合成二次元画像の双方を表示装置80に表示しているが、これに限定されるものではなく、第1断層画像及び合成二次元画像の何れか一方を表示装置80に表示する形態としてもよいことは言うまでもない。
 また、上記各実施の形態では、画像処理装置50の記憶部74に記憶されている投影画像から第1断層画像及び第2断層画像を生成しているが、これに限定されるものではない。例えば、ネットワーク49等を介して外部から受信した投影画像から第1断層画像及び第2断層画像を生成する形態としてもよい。
 また、上記各実施の形態では、第1周波数処理及び第2周波数処理として、処理対象とする画像に対して空間周波数が高くなるほど強調する処理を行っているが、本発明はこれに限定されるものではない。例えば、石灰化等の比較的小さい物体と腫瘤等の比較的大きな物体との間の中間的な大きさの物体を特に注目する関心物とする場合がある。この場合等には、第1周波数処理及び第2周波数処理として、当該中間的な大きさの物体が含まれる空間周波数の範囲等の予め定められた空間周波数の範囲を、その他の空間周波数の範囲に対して相対的に強調する処理を行う形態としてもよい。
 また、上記各実施の形態では、第2周波数処理として、第1周波数処理より強調の度合いを低くして、処理対象とする画像に対して強調する処理を行っているが、本発明はこれに限定されるものではない。例えば、第2周波数処理として、上記中間的な大きさの物体が含まれる空間周波数の範囲等の予め定められた空間周波数の範囲を、第1周波数処理より強調の度合いを高くして強調する処理を行う形態としてもよい。
 また、上記第1の実施の形態では、第1周波数処理及び第2周波数処理の対象を投影画像とし、上記第2の実施の形態では、第1周波数処理及び第2周波数処理の対象を断層画像としたが、これに限定されるものではない。例えば、第1周波数処理及び第2周波数処理の対象を投影画像及び断層画像の双方としてもよい。この場合、結果的に得られる第1断層画像及び第2断層画像が、上記各実施の形態により得られる第1断層画像及び第2断層画像と同様の画像になるように第1周波数処理及び第2周波数処理における強調係数を調整することが好ましい。
 また、上記各実施の形態では、マンモグラフィにより撮影された投影画像の断層画像の生成に画像処理装置を適用した場合について説明したが、本発明はこれに限定されるものではない。例えば、放射線源と放射線検出器との位置関係が固定された状態で回動する所謂Cアーム型の放射線画像撮影装置等の他の放射線画像撮影装置により撮影された投影画像の断層画像の生成に適用してもよい。
 また、トモシンセシス撮影に用いられる放射線は、特に限定されるものではなく、X線やγ線等を適用することができる。
 その他、上記各実施の形態で説明した放射線画像撮影システム5、放射線画像撮影装置10、画像処理装置50、及び表示装置80の構成は一例であり、本発明の主旨を逸脱しない範囲内において状況に応じて変更可能であることは言うまでもない。
 また、上記各実施の形態では、周波数処理部66、断層画像生成部68、及び二次元画像生成部70の各々を、ハードウェア(例えば、一般的な電子回路や、ASIC、或いはFPGA等により構成されたハードウェア)により実現する例について説明したが、プログラムを実行することにより、コンピュータを利用してソフトウェアにより実現してもよいし、ハードウェアとソフトウェアの組み合わせによって実現してもよい。
 さらに、上記各実施の形態で説明した各画像生成処理プログラムの処理の流れ(図5、図14参照。)も一例であり、主旨を逸脱しない範囲内において不要なステップを削除したり、新たなステップを追加したり、処理順序を入れ替えたりしてもよいことは言うまでもない。
 日本出願特願2013-205479号の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (18)

  1.  放射線検出器と放射線照射部との間に位置する、断層画像の生成対象とする被写体を、前記放射線照射部を移動させながら前記断層画像の断層面の法線方向に対する放射線の入射角度を所定範囲内で異ならせて、異なる入射角度毎に撮影した複数の投影画像を取得する取得手段と、
     前記取得手段によって取得された投影画像に基づいて、空間周波数に応じて強調された、読影に用いる第1断層画像を生成する第1断層画像生成手段と、
     前記投影画像に基づいて、強調の度合いが前記第1断層画像とは異なるものとされて空間周波数に応じて強調された第2断層画像を生成する第2断層画像生成手段と、
     前記第2断層画像生成手段によって生成された複数の前記第2断層画像が合成された合成二次元画像を生成する二次元画像生成手段と、
     を備えた画像処理装置。
  2.  前記第1断層画像生成手段は、前記第1断層画像として、前記投影画像に基づいて、空間周波数が高くなるほど強調された断層画像を生成し、
     前記第2断層画像生成手段は、前記第2断層画像として、前記投影画像に基づいて、強調の度合いが前記第1断層画像に比較して低くされて空間周波数が高くなるほど強調された断層画像を生成する
     請求項1に記載の画像処理装置。
  3.  前記第1断層画像生成手段は、前記投影画像に対して空間周波数が高くなるほど強調する処理を行った後、当該投影画像を用いた再構成により前記第1断層画像を生成し、
     前記第2断層画像生成手段は、前記投影画像に対して強調の度合いを前記第1断層画像に比較して低くして空間周波数が高くなるほど強調する処理を行った後、当該投影画像を用いた再構成により前記第2断層画像を生成する
     請求項2に記載の画像処理装置。
  4.  前記第1断層画像生成手段は、前記投影画像を用いた再構成により断層画像を生成し、当該断層画像に対して空間周波数が高くなるほど強調する処理を行うことにより前記第1断層画像を生成し、
     前記第2断層画像生成手段は、前記投影画像を用いた再構成により断層画像を生成し、当該断層画像に対して強調の度合いを前記第1断層画像に比較して低くして空間周波数が高くなるほど強調する処理を行うことにより前記第2断層画像を生成する
     請求項2に記載の画像処理装置。
  5.  前記第1断層画像生成手段及び前記第2断層画像生成手段は、前記読影を行う際の関心物の大きさに応じて、前記強調を行う空間周波数の範囲を決定する
     請求項1~請求項4の何れか1項記載の画像処理装置。
  6.  前記第1断層画像生成手段によって生成された第1断層画像及び前記二次元画像生成手段によって生成された合成二次元画像の少なくとも一方を表示する表示手段
     を更に備えた請求項1~請求項5の何れか1項記載の画像処理装置。
  7.  前記入射角度が大きくなるほど度合いを高くして、前記投影画像の空間周波数における予め定められた低周波成分を当該低周波成分より空間周波数の高い高周波成分に対して相対的に減弱させる周波数処理を行う処理手段を更に備え、
     前記第1断層画像生成手段は、前記処理手段によって前記周波数処理が行われた投影画像に基づいて前記第1断層画像を生成し、
     前記第2断層画像生成手段は、前記処理手段によって前記周波数処理が行われた投影画像に基づいて前記第2断層画像を生成する
     請求項1~請求項6の何れか1項記載の画像処理装置。
  8.  前記処理手段は、前記周波数処理として、前記投影画像の前記低周波成分を減弱させる処理、及び前記投影画像の前記高周波成分を強調させる処理の少なくとも一方を行う
     請求項7に記載の画像処理装置。
  9.  前記入射角度が予め定められた第1閾値以上の投影画像の空間周波数における予め定められた低周波成分を当該低周波成分より空間周波数の高い高周波成分に対して相対的に減弱させる周波数処理を行う処理手段を更に備え、
     前記第1断層画像生成手段は、前記入射角度が前記第1閾値未満の投影画像及び前記処理手段によって前記周波数処理が行われた投影画像に基づいて前記第1断層画像を生成し、
     前記第2断層画像生成手段は、前記入射角度が前記第1閾値未満の投影画像及び前記処理手段によって前記周波数処理が行われた投影画像に基づいて前記第2断層画像を生成する
     請求項1~請求項6の何れか1項記載の画像処理装置。
  10.  前記処理手段は、前記周波数処理として、前記入射角度が前記第1閾値以上の投影画像の前記低周波成分を減弱させる処理、及び前記入射角度が前記第1閾値以上の投影画像の前記高周波成分を強調させる処理の少なくとも一方を行う
     請求項9に記載の画像処理装置。
  11.  前記処理手段は、前記周波数処理を行う際に、前記入射角度が大きくなるほど前記低周波成分を相対的に減弱させる度合いを高くする
     請求項9又は請求項10に記載の画像処理装置。
  12.  前記第1断層画像生成手段及び前記第2断層画像生成手段の少なくとも一方は、前記入射角度に応じて重み付けされた前記投影画像に基づいて前記生成を行う
     請求項9~請求項11の何れか1項記載の画像処理装置。
  13.  前記処理手段は、更に、前記入射角度が前記第1閾値以下である第2閾値未満の投影画像の前記低周波成分を前記高周波成分に対して相対的に強調させる周波数処理を行う
     請求項9~請求項12の何れか1項記載の画像処理装置。
  14.  前記処理手段は、前記低周波成分を相対的に強調させる周波数処理を行う際に、前記入射角度が小さくなるほど低周波成分を相対的に強調させる度合いを高くする
     請求項13に記載の画像処理装置。
  15.  前記二次元画像生成手段は、前記第2断層画像生成手段によって生成された複数の前記第2断層画像を積層した積層画像に対して予め定められた方向に沿って投影処理を行うか又は予め定められた方向に沿って対応する画素の画素値を加算する加算処理を行うことにより、前記合成二次元画像を生成する
     請求項1~請求項14の何れか1項記載の画像処理装置。
  16.  放射線検出器及び放射線照射部を備え、前記放射線検出器と前記放射線照射部との間に位置する、断層画像の生成対象とする被写体に、前記放射線照射部を移動させながら前記断層画像の断層面の法線方向に対する放射線の入射角度を所定範囲内で異ならせて放射線を照射して、異なる入射角度毎の複数の投影画像を撮影する放射線画像撮影装置と、
     前記放射線画像撮影装置で撮影された複数の投影画像から読影に用いる第1断層画像、合成二次元画像の生成に用いる第2断層画像、及び当該合成二次元画像を生成する請求項1~請求項15の何れか1項に記載の画像処理装置と、
     を備えた放射線画像撮影システム。
  17.  コンピュータを、
     放射線検出器と放射線照射部との間に位置する、断層画像の生成対象とする被写体を、前記放射線照射部を移動させながら前記断層画像の断層面の法線方向に対する放射線の入射角度を所定範囲内で異ならせて、異なる入射角度毎に撮影した複数の投影画像を取得する取得手段と、
     前記取得手段によって取得された投影画像に基づいて、空間周波数に応じて強調された、読影に用いる第1断層画像を生成する第1断層画像生成手段と、
     前記投影画像に基づいて、強調の度合いが前記第1断層画像とは異なるものとされて空間周波数に応じて強調された第2断層画像を生成する第2断層画像生成手段と、
     前記第2断層画像生成手段によって生成された複数の前記第2断層画像が合成された合成二次元画像を生成する二次元画像生成手段と、
     として機能させるための画像処理プログラム。
  18.  放射線検出器と放射線照射部との間に位置する、断層画像の生成対象とする被写体を、前記放射線照射部を移動させながら前記断層画像の断層面の法線方向に対する放射線の入射角度を所定範囲内で異ならせて、異なる入射角度毎に撮影した複数の投影画像を取得する取得工程と、
     前記取得工程によって取得された投影画像に基づいて、空間周波数に応じて強調された、読影に用いる第1断層画像を生成する第1断層画像生成工程と、
     前記投影画像に基づいて、強調の度合いが前記第1断層画像とは異なるものとされて空間周波数に応じて強調された第2断層画像を生成する第2断層画像生成工程と、
     前記第2断層画像生成工程によって生成された複数の前記第2断層画像が合成された合成二次元画像を生成する二次元画像生成工程と、
     を備えた画像処理方法。
PCT/JP2014/075723 2013-09-30 2014-09-26 画像処理装置、放射線画像撮影システム、画像処理プログラム、及び画像処理方法 WO2015046465A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/080,594 US9949706B2 (en) 2013-09-30 2016-03-25 Image-processing device, radiographic imaging system, image-processing program, and image-processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013205479A JP6012577B2 (ja) 2013-09-30 2013-09-30 画像処理装置、放射線画像撮影システム、画像処理プログラム、及び画像処理方法
JP2013-205479 2013-09-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/080,594 Continuation US9949706B2 (en) 2013-09-30 2016-03-25 Image-processing device, radiographic imaging system, image-processing program, and image-processing method

Publications (1)

Publication Number Publication Date
WO2015046465A1 true WO2015046465A1 (ja) 2015-04-02

Family

ID=52743590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075723 WO2015046465A1 (ja) 2013-09-30 2014-09-26 画像処理装置、放射線画像撮影システム、画像処理プログラム、及び画像処理方法

Country Status (3)

Country Link
US (1) US9949706B2 (ja)
JP (1) JP6012577B2 (ja)
WO (1) WO2015046465A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10278660B2 (en) 2013-06-21 2019-05-07 Fujifilm Corporation Medical imaging apparatus and method for displaying a selected region of interest
JP2022106930A (ja) * 2016-05-09 2022-07-20 サラウンド メディカル システムズ インコーポレイテッド 3次元歯科用イメージングのための固定式口腔内トモシンセシスイメージングシステム、方法、およびコンピュータ可読媒体

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3161785B1 (en) 2014-09-22 2019-08-28 Shanghai United Imaging Healthcare Co., Ltd. System and method for image composition
JP6280851B2 (ja) * 2014-09-30 2018-02-14 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 放射線断層撮影装置及びプログラム
JP6126058B2 (ja) * 2014-09-30 2017-05-10 富士フイルム株式会社 画像表示装置、画像処理装置、放射線画像撮影システム、断層画像表示方法、及び断層画像表示プログラム。
JP6502509B2 (ja) * 2015-09-10 2019-04-17 富士フイルム株式会社 画像処理装置、放射線画像撮影システム、画像処理方法、及び画像処理プログラム
JP6370280B2 (ja) * 2015-09-16 2018-08-08 富士フイルム株式会社 断層画像生成装置、方法およびプログラム
JP6639357B2 (ja) * 2016-08-24 2020-02-05 富士フイルム株式会社 画像処理装置、方法およびプログラム
US10198812B2 (en) * 2016-09-30 2019-02-05 Toshiba Medical Systems Corporation Data fidelity weight design for iterative reconstruction
US10830712B2 (en) * 2017-03-27 2020-11-10 KUB Technologies, Inc. System and method for cabinet x-ray systems with camera
JP6945462B2 (ja) * 2018-01-17 2021-10-06 富士フイルム株式会社 画像処理装置、画像処理方法、及び画像処理プログラム
JP6917913B2 (ja) 2018-01-17 2021-08-11 富士フイルム株式会社 画像処理装置、画像処理方法、及び画像処理プログラム
KR102555465B1 (ko) * 2018-06-11 2023-07-17 삼성전자주식회사 단층 영상의 생성 방법 및 그에 따른 엑스선 영상 장치
EP3854306A4 (en) * 2018-09-18 2021-10-20 FUJIFILM Corporation IMAGE PROCESSING DEVICE, METHOD AND PROGRAM
JP7129880B2 (ja) * 2018-10-29 2022-09-02 富士フイルム株式会社 画像表示装置、放射線画像撮影表示システム、画像表示方法、および画像表示プログラム
JP7177678B2 (ja) * 2018-12-11 2022-11-24 富士フイルムヘルスケア株式会社 X線トモシンセシス装置、および、画像生成装置
JP7221825B2 (ja) * 2019-07-26 2023-02-14 富士フイルム株式会社 トモシンセシス撮影制御装置、トモシンセシス撮影制御装置の作動方法、トモシンセシス撮影制御装置の作動プログラム
WO2022070570A1 (ja) * 2020-09-30 2022-04-07 富士フイルム株式会社 画像処理装置、画像処理方法、及び画像処理プログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008043757A (ja) * 2006-08-11 2008-02-28 General Electric Co <Ge> 撮像データを処理するシステム及び方法
JP2012245060A (ja) * 2011-05-25 2012-12-13 Fujifilm Corp 画像処理装置、放射線画像撮影システム、画像処理プログラム、及び画像処理方法
WO2013002326A1 (ja) * 2011-06-30 2013-01-03 富士フイルム株式会社 放射線画像撮影システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8571289B2 (en) 2002-11-27 2013-10-29 Hologic, Inc. System and method for generating a 2D image from a tomosynthesis data set
JP5287778B2 (ja) * 2010-03-26 2013-09-11 株式会社島津製作所 画像処理方法およびそれを用いた放射線撮影装置
DE102010022306A1 (de) * 2010-06-01 2011-12-01 Siemens Aktiengesellschaft Iterative CT-Bildrekonstruktion in Kombination mit einem vierdimensionalen Rauschfilter
JP5942216B2 (ja) * 2011-10-12 2016-06-29 東芝メディカルシステムズ株式会社 X線ct装置及び画像処理装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008043757A (ja) * 2006-08-11 2008-02-28 General Electric Co <Ge> 撮像データを処理するシステム及び方法
JP2012245060A (ja) * 2011-05-25 2012-12-13 Fujifilm Corp 画像処理装置、放射線画像撮影システム、画像処理プログラム、及び画像処理方法
WO2013002326A1 (ja) * 2011-06-30 2013-01-03 富士フイルム株式会社 放射線画像撮影システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10278660B2 (en) 2013-06-21 2019-05-07 Fujifilm Corporation Medical imaging apparatus and method for displaying a selected region of interest
JP2022106930A (ja) * 2016-05-09 2022-07-20 サラウンド メディカル システムズ インコーポレイテッド 3次元歯科用イメージングのための固定式口腔内トモシンセシスイメージングシステム、方法、およびコンピュータ可読媒体
JP7382042B2 (ja) 2016-05-09 2023-11-16 サラウンド メディカル システムズ インコーポレイテッド 3次元歯科用イメージングのための固定式口腔内トモシンセシスイメージングシステム、方法、およびコンピュータ可読媒体

Also Published As

Publication number Publication date
JP6012577B2 (ja) 2016-10-25
US20160206268A1 (en) 2016-07-21
JP2015066344A (ja) 2015-04-13
US9949706B2 (en) 2018-04-24

Similar Documents

Publication Publication Date Title
JP6012577B2 (ja) 画像処理装置、放射線画像撮影システム、画像処理プログラム、及び画像処理方法
JP5952251B2 (ja) 画像処理装置、放射線画像撮影システム、画像処理プログラム、及び画像処理方法
JP6122269B2 (ja) 画像処理装置、画像処理方法、及びプログラム
JP2017143943A (ja) 放射線画像処理装置、方法およびプログラム
US10631810B2 (en) Image processing device, radiation imaging system, image processing method, and image processing program
JP2006150080A (ja) 回転血管撮影のための血管撮影x線診断装置
KR20170025096A (ko) 단층 영상 복원 장치 및 그에 따른 단층 영상 복원 방법
JP6556005B2 (ja) 断層画像生成装置、方法およびプログラム
US10219758B2 (en) Image processing apparatus, method, and program
JP7080025B2 (ja) 情報処理装置、情報処理方法およびプログラム
JP3987024B2 (ja) 横方向のフィルタリング処理を用いたトモシンセシス画像を強調する方法及びシステム
JP6824133B2 (ja) 画像処理装置、画像処理方法、及び画像処理プログラム
JP5669799B2 (ja) 画像処理装置、放射線画像撮影システム、画像処理プログラム、及び画像処理方法
US20180211420A1 (en) Tomographic device and tomographic image processing method according to same
KR101783964B1 (ko) 단층 촬영 장치 및 그에 따른 단층 영상 복원 방법
EP3349655B1 (en) Tomography apparatus and controlling method for the same
WO2020142404A1 (en) Improved method of acquiring a radiographic scan of a region-of-interest in a metal containing object
JP2009106759A (ja) コンピュータ断層撮影装置、その処理方法及び記録媒体
CN107809954B (zh) 计算机断层切片图像相对于要被成像的对象的深度位置的显示
KR20190140345A (ko) 단층 영상의 생성 방법 및 그에 따른 엑스선 영상 장치
WO2018116791A1 (ja) 医用画像処理装置及びそれを備えたx線ct装置、医用画像処理方法
JP2013138803A (ja) X線ct撮影装置及びその画像処理方法
JP2013138802A (ja) X線ct撮影装置及びその画像処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14847395

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14847395

Country of ref document: EP

Kind code of ref document: A1