WO2015046411A1 - 多孔質膜、多孔質膜を内蔵する血液浄化用モジュールおよび多孔質膜の製造方法 - Google Patents

多孔質膜、多孔質膜を内蔵する血液浄化用モジュールおよび多孔質膜の製造方法 Download PDF

Info

Publication number
WO2015046411A1
WO2015046411A1 PCT/JP2014/075591 JP2014075591W WO2015046411A1 WO 2015046411 A1 WO2015046411 A1 WO 2015046411A1 JP 2014075591 W JP2014075591 W JP 2014075591W WO 2015046411 A1 WO2015046411 A1 WO 2015046411A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous membrane
film
membrane
stock solution
polymer
Prior art date
Application number
PCT/JP2014/075591
Other languages
English (en)
French (fr)
Inventor
林昭浩
野坂史朗
上野良之
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2014561622A priority Critical patent/JP6565187B2/ja
Priority to KR1020157035368A priority patent/KR102230435B1/ko
Priority to CN201480052712.6A priority patent/CN105579077B/zh
Priority to US14/913,919 priority patent/US9993777B2/en
Priority to CA2921827A priority patent/CA2921827C/en
Priority to EP14848452.0A priority patent/EP3053614B1/en
Priority to RU2016116946A priority patent/RU2667068C2/ru
Publication of WO2015046411A1 publication Critical patent/WO2015046411A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/021Manufacturing thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • A61M1/1621Constructional aspects thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0013Casting processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0016Coagulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/38Polyalkenylalcohols; Polyalkenylesters; Polyalkenylethers; Polyalkenylaldehydes; Polyalkenylketones; Polyalkenylacetals; Polyalkenylketals
    • B01D71/381Polyvinylalcohol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/44Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of groups B01D71/26-B01D71/42
    • B01D71/441Polyvinylpyrrolidone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/52Polyethers
    • B01D71/521Aliphatic polyethers
    • B01D71/5211Polyethylene glycol or polyethyleneoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/08Addition of substances to the spinning solution or to the melt for forming hollow filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/02Hydrophilization
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/218Additive materials
    • B01D2323/2182Organic additives
    • B01D2323/21839Polymeric additives
    • B01D2323/2187Polyvinylpyrolidone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/028321-10 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/02833Pore size more than 10 and up to 100 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/02834Pore size more than 0.1 and up to 1 µm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/36Hydrophilic membranes

Definitions

  • the present invention relates to a porous membrane, a blood purification module incorporating the porous membrane, and a method for producing the porous membrane.
  • a porous membrane used for artificial kidney applications relates to a porous membrane used for artificial kidney applications.
  • Porous membranes are suitable for membrane separation in which substances in liquids are sieved according to the size of the pores, and are widely used in medical applications such as hemodialysis and blood filtration, and water treatment applications such as household water purifiers and water purification treatments. Used in a range.
  • a separation membrane having high fractionation performance is required such that only unnecessary small and medium molecular weight substances permeate into blood, and necessary large molecular weight substances do not permeate.
  • Representative small molecular weight substances include uremic toxins urea, creatinine, phosphorus and the like.
  • dialysis since these substances are dominantly removed by diffusion, a highly permeable separation membrane is required.
  • a typical medium molecular weight substance is ⁇ 2 -microglobulin.
  • ⁇ 2 -microglobulin is a protein having a molecular weight of about 12000 and is considered as a causative substance of dialysis amyloidosis, and is required to be removed during dialysis.
  • albumin which is a protein having a molecular weight of about 66000, is a protein necessary for blood that has various functions such as osmotic pressure retention and substance retention / transport, and it is necessary to suppress loss during dialysis.
  • a substance to be removed also exists in a region having a molecular weight of about 30000 typified by ⁇ 1 -microglobulin.
  • a porous membrane having high water permeability and high protein fractionation performance is required for a separation membrane used in dialysis.
  • the hemodiafiltration method that has been attracting attention in recent years is a treatment method that concentrates blood by filtration through blood that has been diluted with dialysate, and is therefore expensive for separation membranes used for hemodiafiltration. Water permeability is required.
  • high protein fractionation performance with high removal performance of ⁇ 1 -microglobulin having the above high molecular weight and low loss of albumin.
  • Patent Document 1 A porous membrane produced by stretching is disclosed in Patent Document 1 and Patent Document 2.
  • Patent Documents 3 and 4 disclose porous membranes manufactured by drafting.
  • Patent Document 5 and Patent Document 6 describe porous films in which pores on the inner surface are extended by adjusting the composition of the film-forming solution and the film-forming temperature and controlling the growth and solidification of the holes by phase separation. Has been.
  • JP-A-64-75015 JP 59-64055 A International Publication No. 2010/029908 JP-A-6-165926 JP 58-114702
  • Patent Document 1 describes a porous film in which the major axis of the pores on the surface is 1.5 times or more the minor axis by stretching.
  • the minor axis of the pore is as large as 3 to 30 ⁇ m, and protein fractionation cannot be performed. Further, there is no description or suggestion about the variation in the long diameter.
  • Patent Document 2 has a description of a porous membrane for blood treatment in which the major axis of the surface pores is 1.5 to 20 times the minor axis by stretching.
  • the range of the minor diameter of the pores on the surface there is no description about the variation of the major axis and the minor axis contributing to the fractionation performance.
  • Patent Document 3 describes a hollow fiber membrane for a water purifier having a large ratio of the short diameter and long diameter of the surface holes produced by drafting and a large open area ratio.
  • the minor diameter of the pores on the surface is as large as 1 ⁇ m, protein fractionation cannot be performed, and it is considered that the variation in pore diameter is relatively large, but there is no description on the improvement.
  • Patent Document 4 describes a porous membrane in which the minor diameter of surface pores is 1 nm to 50 nm, and describes that spinning is performed at a sufficiently high draft ratio.
  • Patent Document 5 describes a hollow fiber membrane in which the average value of the minor axis of the inner surface is 50 nm or less and the ratio of the major axis to the minor axis is 3 times or more.
  • the minor axis of the hole there is a description that it is preferable to make the minor axis of the hole as uniform as possible, but there is no description about a specific achievement means, and at least there is no description about stretching or drafting for extending the surface hole, so Precise control of variation cannot be realized, and high fractionation performance cannot be expected.
  • the hole diameter of an outer surface is a little small, permeation resistance becomes large and it is difficult to improve water permeability.
  • Patent Document 6 describes a porous membrane in which the major axis of the pores on the surface is twice or more, preferably three or more times the minor axis, and the lower limit of the minor axis of the pores is 20 nm.
  • the average width is less than 0.02 ⁇ m, the water permeation rate is reduced, the ultrafiltration rate during blood filtration is reduced, and clogging is likely to occur over time.
  • Urine poisons such as urea and creatinine
  • the more preferable lower limit of the average width is 0.04 ⁇ m ”, and it does not take into consideration the hole length ratio in the range of the hole short diameter and the hole diameter variation in the present invention. .
  • the short diameter of the surface pores is preferably uniform in order to obtain stable fractionation characteristics, there is no description about a specific means of realization. Since there is no description regarding stretching and drafting, there is a high possibility that variations in the major and minor diameters of the holes cannot be precisely controlled.
  • An object of the present invention is to provide a porous membrane having both high water permeability and high fractionation performance.
  • the present invention has the following configuration in order to solve the above problems.
  • the content of the hydrophilic polymer in the membrane is 0.5 wt% or more and 4 wt% or less, and the pores formed on one surface are the following (A) and (B)
  • a porous membrane used for blood purification is provided.
  • the average value of the ratio of the major axis to the minor axis of the hole is 3 or more.
  • the minor axis has an average value of 5 nm to 20 nm, and its standard deviation is 4 nm or less. Street, According to the preferable form of this invention, the hole formed in one surface satisfy
  • the average value of the ratio of the major axis to the minor axis of the hole is 1.5 or more.
  • the porous membrane is a hollow fiber membrane, but according to a more preferred embodiment, in the hollow fiber membrane, the surface satisfying (A) and (B) is the inner surface, The surface satisfying the above (C) and (D) is the outer surface.
  • blood passes through the inside of the membrane, and unnecessary substances in the blood are removed from the inner surface having pores with a smaller pore size toward the outer surface having pores with a relatively larger pore size.
  • the hole area ratio of the surface having the holes satisfying the above (A) and (B) is 1% or more and 10% or less.
  • the main component material of the porous membrane is an amorphous polymer, and according to a more preferred embodiment, the amorphous polymer is a polysulfone polymer.
  • a main component is a component which shows the largest weight ratio in a film
  • a blood purification module incorporating the porous membrane is provided.
  • a porous membrane having both high water permeability and fractionation performance For example, when applied to a hollow fiber membrane for blood purification, particularly for an artificial kidney, it is excellent in the removal performance of small molecular weight substances such as uremic toxins and permeates small molecular weight proteins such as ⁇ 2 -microglobulin, but albumin etc.
  • a module having a high fractionation performance such that no medium molecular weight protein permeates can be obtained.
  • FIG. 2 is a scanning electron microscope (SEM) photograph of the surface of a porous membrane produced by the method of Example 1.
  • SEM scanning electron microscope
  • a porous membrane screens a substance to be removed according to the size of the pores on the surface. Therefore, when the pores on the surface of the membrane are elliptical and have a major axis direction and a minor axis direction, the fractionation performance is Depends on the minor axis of the hole.
  • the porous membrane is a hollow fiber membrane
  • the stock solution being solidified is stretched in the longitudinal direction at the time of spinning, so that the pores are elongated in the longitudinal direction.
  • the major axis is the major axis
  • the diameter perpendicular to the longitudinal direction is the minor axis.
  • the removal substance is apparently larger than the actual size due to the influence of Brownian motion or the like, so the surface pore diameter must be larger than the size of the removal substance.
  • the molecular size of ⁇ 2 -microglobulin which is a substance to be removed, is about 3 nm.
  • the average value of the minor diameters of the pores on one surface of the membrane is 5 nm or more, preferably 7 nm.
  • the thickness is 10 nm or more. If the minor diameter of the pores on the surface is less than 5 nm, the water permeability performance is remarkably lowered, which is not desirable. On the other hand, since the molecular size of albumin that is not preferably removed by dialysis is about 8 nm, in order not to allow albumin to permeate, the average value of the minor diameters of the pores on the surface is 20 nm or less, preferably 18 nm or less, More preferably, it is 15 nm or less, and further preferably 12 nm or less. Thus, by controlling the short diameter of the holes as described above, it is possible to improve the separation performance of the protein to be removed and the protein to be not removed.
  • the standard deviation indicating variations in the minor diameter of the surface pores is 4 nm or less, preferably 3.8 nm or less, and more preferably 3.5 nm or less.
  • the standard deviation is 2 nm or more, and it is easier to realize the standard deviation is 2.5 nm or more.
  • a circular hole is extended by extending the hollow fiber in the longitudinal direction, and the hole becomes elliptical.
  • variations in the short diameter of the hole are suppressed.
  • the surface hole is stretched in the direction of the major axis, the larger the minor axis of the hole, the easier it is to deform, so the minor axis of the larger hole becomes smaller, the minor axis of the smaller hole does not change much, and as a result Variations are reduced.
  • the fractionation performance will be described later, it can be calculated from the absolute value of the slope of the fraction curve in which the value of the dextran sieving coefficient for each molecular weight is plotted.
  • the water permeation resistance can be reduced while maintaining the fractionation performance, and the water permeation performance is improved.
  • the higher the water permeability of the membrane the better the diffusion performance of the small molecular weight substance and the better the removal performance. That is, the larger the average value of the ratio of the major axis to the minor axis (major axis / minor axis), the greater the water permeation performance with respect to the fractionation performance. Therefore, the average value of the ratios needs to be 3 or more, and more preferably 3.5 or more.
  • the average value of the ratio is preferably 6 or less, and more preferably 4 or less.
  • a method of stretching the pores is effective, but more specifically, a stretching method of stretching after the porous film is solidified.
  • a method in which the draft ratio is increased and the porous film is stretched before solidifying there is a method in which the draft ratio is increased and the porous film is stretched before solidifying.
  • the method of increasing the draft ratio is preferable because it can be widely applied without being limited by the manufacturing method and materials of the porous membrane.
  • the stretching method cannot be applied unless the strength of the porous membrane is strong, it is limited to the case where the membrane material is a crystalline polymer or the like.
  • the draft ratio is a value obtained by dividing the take-up speed of the porous film by the discharge linear speed from the slit for discharging the film forming stock solution.
  • the discharge linear velocity is a value obtained by dividing the discharge flow rate by the cross-sectional area of the slit, which is the portion where the stock solution of the die is discharged. Therefore, in order to increase the draft ratio, a method of increasing the take-up speed is usually used. However, in the present invention, it is preferable to adopt a method of increasing the cross-sectional area of the discharge portion of the slit. This method of increasing the sectional area of the slit is preferable because it is easy to increase the draft ratio without changing the shape of the porous membrane.
  • the cross-sectional area of the porous membrane decreases, so there is a concern about the decrease in the physical strength of the porous membrane, and when the take-up speed is simply increased, until the membrane enters the coagulation bath. Therefore, the polymer may coagulate in the coagulation bath before the pores extend sufficiently in the longitudinal direction of the membrane. In this case, it is difficult to sufficiently extend the pores even if the draft ratio is increased.
  • the cross-sectional area of the slit for discharging the film-forming stock solution formed on the die and the film thickness portion of each solidified porous film
  • the ratio of the slit cross-sectional area to the cross-sectional area of the film thickness portion of the porous membrane is preferably 3 times or more, more preferably 5 times or more, and further preferably 10 times or more.
  • the cross-sectional area ratio is preferably 30 times or less, and more preferably 20 times or less.
  • the surface ratio is improved by improving the draft ratio by increasing the slit cross-sectional area of the die. Can be efficiently extended, and variations in the hole diameter can be reduced.
  • the major axis of the hole on the surface satisfying the above requirements mainly contributes to water permeability.
  • the average value of the major axis of the holes is preferably 25 nm or more, more preferably 30 nm or more, and further preferably 35 nm or more.
  • the average value of the major axis of the holes is preferably 100 nm or less, preferably 70 nm or less, and more preferably 50 nm or less.
  • the long diameter of the holes is formed by extending the holes of various sizes formed during the phase separation, the variation in the long diameters of the holes becomes large. From the viewpoint of water permeability, it is better that the variation in the major diameter of the hole is larger.
  • the standard deviation of the major axis of the hole is preferably 10 nm or more, preferably 13 nm or more, and more preferably 15 nm or more.
  • the standard deviation of the major axis of the hole is preferably 100 nm or less, preferably 70 nm or less, and more preferably 50 nm or less.
  • the hole having a large variation in the hole diameter may be extended.
  • the larger the hole the easier it is to deform. Therefore, when the amount of deformation is increased, the major axis of the larger hole becomes larger, the major axis of the smaller hole does not change much, and the variation of the major axis increases.
  • the weight-average molecular weight distribution of the hydrophilic polymer added to the film-forming stock solution as a pore-forming agent is increased to make the phase separation non-uniform or to promote the phase separation. It is effective to promote this growth of the surface.
  • the holes grow due to the fusion of the holes, so that the growth of the holes is biased depending on the probability of collision, and the size of the formed holes becomes non-uniform.
  • the composition of the film forming solution, the composition of the coagulation bath, the temperature of the phase separation process, the time until solidification, etc. may be adjusted.
  • a hydrophilic polymer to the membrane forming stock solution is also effective as a factor for controlling phase separation.
  • a hydrophilic polymer By adding a hydrophilic polymer to the film-forming stock solution, the solidification rate when contacted with the poor solvent of the main component constituting the stock solution is suppressed, so that the pores can be sufficiently extended in the state where the phase separation has progressed. It is possible to reduce the variation in the short diameter of the hole.
  • the weight average molecular weight of the hydrophilic polymer to be added is too large, the compatibility with the film-forming stock solution is lowered, so it is preferably 1.5 million or less, more preferably 1.2 million or less.
  • the weight average molecular weight of the hydrophilic polymer added to the film-forming stock solution is small, there is a concern about elution from the film. Therefore, the weight average molecular weight of the hydrophilic polymer is preferably 20,000 or more, more preferably 40,000 or more.
  • the weight average molecular weight of the hydrophilic polymer contained in the porous membrane can be measured, for example, by the following method.
  • the porous membrane is dissolved with a solvent, and the hydrophilic polymer is extracted using a solvent in which the solubility of the hydrophilic polymer is high and the solubility of the polymer that forms the porous membrane structure is low.
  • the weight average molecular weight of the hydrophilic polymer in the extract is measured by gel filtration chromatography or the like.
  • the extraction conditions and the like at this time may be changed as appropriate depending on the combination of the polymer that forms the porous membrane structure and the hydrophilic polymer, but by increasing the extraction rate of the hydrophilic polymer, a more accurate weight can be obtained.
  • the average molecular weight can be measured.
  • the main component polymer constituting the film-forming stock solution is the polymer having the largest weight ratio among the polymers constituting the film-forming stock solution.
  • the optimum range varies depending on the composition of the film-forming stock solution and the type of the poor solvent, but when water is used as the poor solvent, the content of water in the film-forming stock solution is preferably 0.5% by weight or more, 0.8% % Or more is more preferable.
  • the amount of the poor solvent in the film-forming stock solution is large, the film-forming stock solution is solidified, so the water content is preferably 3% by weight or less.
  • the major axis and minor axis of the holes formed on the surface can be measured from an image obtained by observing the surface with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the minor axis is the longest diameter in the minor axis direction
  • the major axis is the longest diameter in the major axis direction.
  • all holes in an arbitrary 1 ⁇ m ⁇ 1 ⁇ m range are measured for holes that can be confirmed at a magnification of 50000 times. If the total number of measured holes is less than 50, data in the range of 1 ⁇ m ⁇ 1 ⁇ m is repeated until the total number of measured holes reaches 50 or more, and data is added. From the measurement results, the arithmetic mean value and the standard deviation are calculated by rounding off the second decimal place. The standard deviation at this time is a standard deviation predicted based on the sample (sample standard deviation), and is calculated by the following equation.
  • the porous membrane is a hollow fiber membrane and has an inner surface with fine pores
  • the average value of the ratio of the major axis to the minor axis of the hole is preferably 1.5 or more from the viewpoint of improving the water permeability.
  • the average value of the ratio is preferably 4 or less, and more preferably 3 or less.
  • the pores formed on the outer surface preferably have an average value of the minor axis of 0.2 ⁇ m or more from the viewpoints of performance such as water permeability and friction generated when forming a yarn bundle, and more preferably 0 .3 ⁇ m or more is preferable.
  • the average value of the minor axis of the hole is preferably 0.6 ⁇ m or less.
  • the pore diameter of the outer surface will be described later, it can be adjusted according to the conditions of the dry part after discharging the stock solution.
  • the porosity of the porous membrane surface is preferably 1% or more, more preferably 3% or more. On the other hand, the porosity is preferably less than 10%, more preferably 8% or less.
  • the surface porosity can be measured from an image obtained by observing the surface of the porous membrane with an SEM. An image observed at a magnification of 50000 times is image-processed for an arbitrary range of 1 ⁇ m ⁇ 1 ⁇ m, binarization is performed on the structure portion and the hole portion of the film, and the area percentage of the hole portion relative to the measured area is calculated and opened. The porosity.
  • the structure of the cross section in the film thickness direction of the porous membrane is different from the symmetrical membrane structure in which the pore diameter does not change substantially, and the pore diameter changes continuously or discontinuously, and the pore diameter differs on one surface, inside, and the other surface. It is roughly divided into asymmetric membranes.
  • the asymmetric membrane has a small layer having a small pore size that contributes to size exclusion, and therefore has a low water permeation resistance and a high water permeation performance. Therefore, the structure of the cross section in the film thickness direction is preferably an asymmetric structure.
  • the surface on only one side of the film is usually the surface satisfying the above (A) and (B).
  • the average value of the minor axis of one surface is preferably 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more.
  • the average value of the minor axis of the surface is preferably 0.6 ⁇ m or less, and more preferably 0.5 ⁇ m or less.
  • the “one surface” referred to here is a surface on the opposite side to the surface having pores that satisfy the above (A) and (B). That is, the membrane exhibits asymmetry, one surface has pores with a minute pore size satisfying (A) and (B), and the other surface has pores with a pore size in the above range.
  • the ratio of the major axis to the minor axis of the pores on the surface is 1.5 times or more and preferably 3 times or less.
  • an amorphous polymer is preferably used as the main component material constituting the porous film.
  • the non-crystalline polymer is a polymer that does not crystallize, and is a polymer that does not have an exothermic peak due to crystallization as measured by a differential scanning calorimeter.
  • An amorphous polymer is likely to undergo structural deformation and therefore has a higher effect of stretching the pores. Further, the structure control in the film thickness direction becomes easy.
  • a porous membrane made of an amorphous polymer can be obtained by inducing phase separation of a stock solution prepared by dissolving an amorphous polymer in a solvent by heat or a poor solvent and removing the solvent component. can get.
  • the amorphous polymer dissolved in the solvent has high mobility, and aggregates during phase separation to increase the concentration and form a dense structure.
  • non-crystalline polymer used as the material for the porous membrane examples include acrylic polymers, vinyl acetate polymers, and polysulfone polymers. Among these, a polysulfone polymer is preferably used because it easily controls the pore diameter.
  • the polysulfone polymer referred to in the present invention has an aromatic ring, a sulfonyl group and an ether group in the main chain.
  • polysulfone polymers represented by the chemical formulas of the following formulas (1) and (2) are preferably used. However, the present invention is not limited to these.
  • N in the formula is an integer such as 50 to 80.
  • polysulfone examples include Udel (registered trademark) Polysulfone P-1700, P-3500 (manufactured by Solvay), Ultrason (registered trademark) S3010, S6010 (manufactured by BASF), Victrex (registered trademark) (Sumitomo Chemical) And polysulfone such as Radel (registered trademark) A (manufactured by Solvay).
  • the polysulfone used in the present invention is preferably a polymer composed only of the repeating unit represented by the above formula (1) and / or (2), but with other monomers as long as the effects of the present invention are not hindered. It may be copolymerized. Although it does not specifically limit, it is preferable that another copolymerization monomer is 10 weight% or less.
  • the hydrophilic polymer By adding a hydrophilic polymer to the membrane forming stock solution, the hydrophilic polymer is contained in the porous membrane, the water wettability is improved, and the water permeability is increased. In addition, even if the draft ratio and the sectional area ratio of the slit and the membrane are increased as described above, if the hydrophilic polymer is not present in the stock solution, the effect of extending the pores is insufficient. Furthermore, there is an effect of improving biocompatibility by imparting hydrophilicity. Accordingly, it is preferable that the porous polymer contains 0.5% by weight or more of the hydrophilic polymer, and more preferably 1% by weight or more.
  • the hydrophilic polymer amount is preferably 8% by weight or less, more preferably 6% by weight or less, and further 4 % By weight or less is preferred.
  • the content of the hydrophilic polymer needs to be selected by a method such as elemental analysis although it is necessary to select a measurement method depending on the type of polymer.
  • hydrophilicity When hydrophilicity is imparted to the surface of the porous membrane, hydrophilicity can be selectively imparted to the surface by a method of adding a hydrophilic polymer to the coagulation liquid or a method of coating the surface after film formation.
  • the hydrophilic polymer is added to the injection solution at the time of discharge, so that the membrane-forming stock solution and the injection solution come into contact with each other to cause phase separation and solidify. This is because the hydrophilic polymer is taken in by diffusing into the surface.
  • the porosity introduced into the membrane surface is increased by the effect of hydrophobic interaction by using a hydrophilic polymer containing a hydrophobic unit. be able to.
  • hydrophilic polymer examples include polyethylene glycol, polyvinyl pyrrolidone, polyethylene imine, polyvinyl alcohol, and derivatives thereof. Moreover, you may superpose
  • the hydrophilic polymer may be appropriately selected depending on the affinity for the material of the porous membrane and the solvent. Although there is no particular limitation, in the case of a polysulfone polymer, polyvinyl pyrrolidone is preferably used because of its high compatibility.
  • the hydrophilic high molecular weight on the surface in contact with blood is preferably 20% by weight or more, more preferably 22% by weight, and further preferably 25% by weight or more.
  • the hydrophilic high molecular weight on the surface is preferably 45% by weight or less, and preferably 42% by weight or less.
  • the hydrophilic high molecular weight on the surface of the porous membrane can be measured using X-ray electron spectroscopy (XPS).
  • XPS X-ray electron spectroscopy
  • a value measured at 90 ° is used as the measurement angle.
  • the measurement angle is 90 °, a region having a depth of about 10 nm from the surface is detected.
  • the value uses the average value of three places.
  • the hydrophobic polymer is polysulfone and the hydrophilic polymer is polyvinyl pyrrolidone
  • d number of nitrogen
  • sulfur e (number of atoms)
  • Polyvinylpyrrolidone content (f) 100 ⁇ (d ⁇ 111) / (d ⁇ 111 + e ⁇ 442)
  • the melting temperature is preferably 30 ° C. or higher and 120 ° C. or lower. However, these optimum ranges may differ depending on the type of polymer and additive used.
  • the form of the porous membrane may be appropriately selected from a flat membrane, a tubular membrane, a hollow fiber membrane and the like according to the use.
  • a hollow fiber membrane that can increase the membrane area per volume and accommodate a large-area membrane in a compact manner is preferable.
  • the hollow fiber membrane is produced by flowing an injection solution or injection gas from an inner circular tube into a double tube cap and discharging a membrane forming raw solution from an outer slit.
  • the structure of the inner surface of the hollow fiber membrane can be controlled by changing the poor solvent concentration of the injection solution, changing the temperature, or adding an additive. Therefore, it is preferable to control the minor axis of the hole on the inner surface of the hollow fiber membrane.
  • the porous membrane of the present invention is not particularly limited, but can be obtained by a production method having a step of discharging a film-forming stock solution from a slit formed in a die, and a step of solidifying in a coagulation bath after passing through a dry part consisting of a gas phase. It is done.
  • a production method having a step of discharging a film-forming stock solution from a slit formed in a die, and a step of solidifying in a coagulation bath after passing through a dry part consisting of a gas phase. It is done.
  • inducing phase separation by heat after cooling in the dry part, it is rapidly cooled in a coagulation bath and solidified.
  • it is discharged in contact with a coagulation liquid containing a poor solvent of the main component constituting the film-forming stock solution, and further solidified in a coagulation bath made of the poor solvent of the main component.
  • the coagulating liquid containing the poor solvent and the film forming stock solution are in contact with each other in the dry part.
  • the concentration is adjusted by using the coagulation liquid as a mixture of a poor solvent and a good solvent, the coagulation property can be changed and the surface pore diameter can be changed.
  • the poor solvent is a solvent that does not dissolve the main component polymer constituting the film forming stock solution at the film forming temperature.
  • the poor solvent is not particularly limited, but water is suitably used as a solvent that hardly dissolves the polysulfone polymer.
  • the good solvent is not particularly limited, but N, N-dimethylacetamide is preferably used.
  • the preferred range of the composition of the coagulation liquid varies depending on conditions such as the composition of the film-forming stock solution and the type of poor solvent and good solvent, but if the concentration of the good solvent is too low, the coagulation rate increases, and the pore size becomes smaller. It becomes difficult to obtain the effect of stretching. Therefore, the concentration of the good solvent in the coagulation liquid is preferably 40% by weight or more, and more preferably 50% by weight. On the other hand, if the concentration of the good solvent is too high, the film-forming stock solution is less likely to coagulate and the spinnability is lowered. Therefore, the concentration of the good solvent is preferably 80% by weight or less, more preferably 70% by weight or less. .
  • the major axis of the surface can be made longer than the minor axis by increasing the draft ratio and extending it before solidification. Since the undiluted solution is stretched before solidification, the problem of breakage and cracking, which is a problem in the stretching method, does not occur.
  • the draft ratio is 1.5 or more, preferably 2 or more, and more preferably 2.5 or more. On the other hand, if the draft ratio is too large, yarn breakage will occur, so the draft ratio needs to be 10 or less, preferably 9 or less.
  • the passage time of the dry part is preferably 0.3 seconds or more, more preferably 0.5 seconds or more. On the other hand, 1.5 seconds or less is preferable, and 1 second or less is more preferable.
  • the humidity of the wet air is preferably 50% or more, more preferably It is preferably 60% or more, more preferably 70% or more.
  • the temperature is preferably 10 ° C or higher, and more preferably 20 ° C or higher.
  • the spinnability may be lowered, so 60 ° C. or lower is preferable, and 40 ° C. or lower is more preferable.
  • the viscosity of the film-forming stock solution In order to increase the viscosity of the film-forming stock solution, an increase in the amount of the main polymer and / or hydrophilic polymer constituting the film-forming stock solution and / or a thickener may be added, and the discharge temperature may be lowered. If the viscosity of the film-forming stock solution is too low, the stretching stress is small, and it becomes difficult to obtain a stretching effect. Therefore, the viscosity of the film-forming stock solution is preferably 0.5 Pa ⁇ s or more at the discharge temperature, and 1.0 Pa ⁇ s or more. More preferred. On the other hand, if the viscosity of the film-forming stock solution is too high, the discharge pressure increases and spinning becomes unstable, so 20 Pa ⁇ s or less is preferable, and 15 Pa ⁇ s or less is more preferable.
  • the concentration of the hydrophilic polymer in the membrane forming stock solution is preferably 70% by weight or less, more preferably 60% by weight or less of the concentration of the main component polymer constituting the porous membrane.
  • the concentration of the hydrophilic polymer in the film forming stock solution is preferably 10% by weight or more, and 20% by weight or more. More preferred.
  • the temperature of the die during discharge affects the viscosity and phase separation behavior of the film-forming stock solution. In general, the higher the temperature of the die, the greater the water permeability and the molecular weight cut off of the resulting porous membrane. However, if the temperature is too high, the discharge becomes unstable due to a decrease in the viscosity of the film-forming stock solution and a decrease in the coagulation property, and the spinnability decreases. On the other hand, when the temperature of the base is low, moisture may adhere to the double pipe base due to condensation. Therefore, the temperature of the die is preferably 20 ° C. or higher, while 90 ° C. or lower is preferable.
  • the temperature of the coagulation bath is preferably in the range of 20 to 90 ° C.
  • the composition is preferably in the range of 60 to 100% of water and 40 to 0% of the good solvent used in the film-forming stock solution.
  • the membrane after passing through the coagulation bath is preferably passed through a washing bath in order to remove residual solvent and the like.
  • the temperature of the washing bath is preferably in the range of 60 to 90 ° C. because the higher the washing efficiency, the higher the washing efficiency.
  • the formed porous membrane may be dried.
  • Examples of the drying method include drying with hot air, drying with microwaves, and drying under reduced pressure, and drying with hot air is preferably used.
  • the porous membrane is a hollow fiber membrane
  • the crimp pitch is preferably in the range of 5 to 30 mm, and the amplitude is preferably in the range of 0.2 to 3 mm.
  • the film thickness of the porous film may be appropriately determined from the viewpoint of pressure in use and diffusion performance. If the film thickness is thin, it may not be able to withstand the working pressure, so the film thickness is preferably 20 ⁇ m or more, more preferably 25 ⁇ m or more. On the other hand, if the film thickness is thick, the permeation resistance of water increases and the water permeation performance decreases, so the film thickness is preferably 50 ⁇ m or less, and more preferably 45 ⁇ m or less.
  • the pressure resistance correlates with the ratio of the film thickness to the inner diameter, and the pressure resistance becomes higher when the ratio of the film thickness to the inner diameter is large. If the inner diameter is reduced, the module can be miniaturized and the pressure resistance is improved. However, in order to reduce the inner diameter, it is necessary to narrow down at the time of film formation, and a star-shaped yarn having a wrinkled inner diameter tends to occur. In star-shaped yarns, the phase separation becomes non-uniform, resulting in large variations in pore diameter and lower fractionation performance.
  • the inner diameter of the hollow fiber membrane is preferably 80 ⁇ m or more, more preferably 100 ⁇ m, still more preferably 120 ⁇ m or more, while 250 ⁇ m or less is preferable, more preferably 200 ⁇ m or less, still more preferably 160 ⁇ m or less.
  • the inner diameter of the hollow fiber membrane is determined by measuring the film thickness of 16 randomly selected hollow fiber membranes with a 1000 ⁇ lens (VH-Z100; KEYENCE, Inc.) of a microwatcher, and obtaining an average value a. The value calculated from the equation.
  • the hollow fiber membrane outer diameter means an average value obtained by measuring the outer diameters of 16 randomly selected hollow fiber membranes with a laser displacement meter (for example, LS5040T; KEYENCE Inc.).
  • Hollow fiber membrane inner diameter ( ⁇ m) hollow fiber membrane outer diameter ⁇ 2 ⁇ film thickness
  • the water permeability of the porous membrane is preferably 200 mL / hr / m 2 / mmHg or more, more preferably 500 mL / hr / m 2 / mmHg. In addition, more preferably 800 mL / hr / m 2 / mmHg or more. In addition, if it is too high, internal filtration is likely to occur, and the solute removal performance is improved. However, in the case of blood treatment, the stimulation given to the blood cells is also increased, so 2500 mL / hr / m 2 / mmHg or less is preferable, and more preferable.
  • UFR water permeability
  • the dextran sieving coefficient is a ratio of dextran permeating through the membrane when a dextran aqueous solution is filtered through a hollow fiber membrane, and is a value obtained for each weight average molecular weight.
  • the dextran sieving coefficient is obtained by the following equation.
  • SC 2Cf / (Ci + Co)
  • SC is the dextran sieving coefficient
  • Ci is the concentration of the aqueous solution supplied to the separation membrane
  • Co is the concentration of the aqueous solution remaining on the supply side after filtration
  • Cf is the concentration of the filtrate.
  • the dextran concentration of each molecular weight can be measured by a method such as gel filtration chromatography. In measurement, a calibration curve of molecular weight and concentration may be obtained from a dextran solution having a known molecular weight and concentration.
  • the absolute value of the slope of the fraction curve in which the value of the dextran sieving coefficient for each molecular weight is plotted particularly, the higher the absolute value of the slope of the fraction curve in the portion where the sieving coefficient is 0.45 to 0.55, the higher the separation performance. It can be said that it is a hollow fiber membrane.
  • the absolute value of the slope of the fraction curve is a value obtained by rounding off the third decimal place.
  • the absolute value of the slope of the fraction curve is preferably 1.35 or more, more preferably 1.40 or more, and further preferably 1.45 or more. Moreover, let the molecular weight from which a dextran sieving coefficient becomes 0.1 be a fraction molecular weight.
  • the method for incorporating the porous membrane according to the present invention into the module is not particularly limited, but an example of the case where the porous membrane is a hollow fiber membrane is as follows. First, the hollow fiber membrane is cut into a required length, bundled in the required number, and then put into a cylindrical case. Then, a temporary cap is put on both ends, and a potting agent is put on both ends of the hollow fiber membrane. At this time, the method of putting the potting agent while rotating the module with a centrifuge is a preferable method because the potting agent can be filled uniformly. After the potting agent has solidified. Both ends are cut so that both ends of the hollow fiber membrane are open.
  • a hollow fiber membrane module is obtained by attaching headers to both ends of the case and plugging the header and the nozzle part of the case.
  • the filling rate of the hollow fiber membrane module is preferably in the range of 30 to 70%, more preferably in the range of 40 to 60% from the viewpoint of making the dialysis fluid flow uniform.
  • a polymer or the like may be applied to the surface within a range that does not change the membrane performance.
  • a method of covering the membrane surface with a polymer to improve the biocompatibility of the hollow fiber membrane a method of adding to a hollow fiber membrane stock solution, a method of adding a polymer to an injection solution at the time of hollow fiber membrane production
  • a method of coating the surface of the membrane with a polymer after forming the hollow fiber membrane can be mentioned.
  • water is preferably used as the solution used for coating.
  • the membrane surface as used herein refers to the surface that comes into contact with the liquid to be treated, such as a dialysis membrane.
  • the porous membrane is a hydrophobic polymer and the polymer used for coating is a hydrophilic polymer
  • the adsorption equilibrium constant of the hydrophobic polymer and the hydrophilic polymer in the coating solution A higher value can uniformly cover the surface of the porous membrane. Therefore, it is preferable that the hydrophilic polymer used for coating contains a hydrophobic group.
  • the polymer contains an ester group because the presence of an ester group on the membrane surface suppresses the adhesion of proteins and platelets.
  • the polymers used for coating are carboxylic acid vinyl esters such as vinyl acetate, acrylic acid esters such as methyl acrylate and methoxyethyl acrylate, methacrylic acid esters such as methyl methacrylate, ethyl methacrylate, and hydroxyethyl methacrylate, and saponification.
  • Polyvinyl alcohol having a degree of less than 99%, vinyl pyrrolidone / vinyl acetate copolymer, vinyl pyrrolidone / vinyl caprolactam copolymer, vinyl pyrrolidone / vinyl alcohol copolymer, and the like are exemplified, but not limited thereto. Of these, vinylpyrrolidone / vinyl acetate copolymer is preferable.
  • the amount of VA64 in the film forming stock solution is 1 to 10% by weight.
  • the base temperature is preferably 20 to 60 ° C.
  • the dry part temperature is 10 to 60 ° C.
  • the relative humidity is 70 to 95% RH.
  • the composition ratio of the injection solution, the injection solution temperature, the composition of the film-forming stock solution, and the like have an effect.
  • the addition amount to the injection solution is 0.001 to 10% by weight
  • the injection solution temperature is 10 to 60 ° C.
  • the composition of the membrane forming stock solution is 14 to 25% by weight
  • polyvinyl pyrrolidone it is preferably 2 to 10% by weight.
  • the polysulfone-based polymer preferably has a small weight average molecular weight, and preferably 100,000 or less, more preferably 50,000 or less.
  • the VA64 concentration is preferably 1 to 5000 ppm
  • the contact time is 10 seconds or more
  • the temperature is 10 to 80 ° C.
  • the higher the flow rate of the VA64 aqueous solution the more uniformly it can be coated, but if it is too fast, a sufficient amount cannot be coated, so 200 to 1000 mL / min is preferable. It is a range.
  • the polymer coated on the film surface is preferably immobilized by radiation, heat treatment or chemical reaction.
  • the amount of ester groups present on the film surface can be measured by X-ray electron spectroscopy (hereinafter sometimes referred to as ESCA), and the percentage of carbon peak area derived from ester groups is 0.1 (number of atoms%) or more. , Preferably 0.5 (atomic%) or higher, more preferably 1 (atomic%) or higher. On the other hand, if the amount of the ester group is too large, the film performance may be deteriorated. Therefore, it is 10 (number of atoms%) or less, and 5 (number of atoms%) or less is preferable.
  • ESCA X-ray electron spectroscopy
  • the ESCA measurement method uses a value measured at 90 ° as the measurement angle.
  • the measurement angle is 90 °, a region having a depth of about 10 nm from the surface is detected. Moreover, the average value of three places is used for a measurement place.
  • the peak of the carbon derived from the ester group (COO) can be obtained by dividing the peak appearing at +4.0 to 4.2 eV from the main peak derived from C1s CH or C—C. By calculating the ratio of the peak area with respect to all elements, the carbon amount (number of atoms%) derived from the ester group can be obtained.
  • C O-derived component and COO-derived component. Therefore, peak splitting is performed with five components.
  • the COO-derived component is a peak appearing at +4.0 to 4.2 eV from the main peak of CHx or C—C (around 285 eV).
  • the peak area ratio of each component is calculated by rounding off the second digit of the decimal point. It can obtain
  • a porous membrane having an ester group on the membrane surface in contact with the liquid to be treated can also suppress protein fouling, and can suppress a decrease in removal performance and an increase in TMP. is there.
  • the change with time in the albumin sieving coefficient (Sc-Alb) was measured.
  • Albumin is one of the proteins useful for the living body, and in recent hollow fiber membrane modules, excessive penetration of albumin with the increase in the pore size of the membrane to remove uremic protein (also called low molecular weight protein).
  • uremic protein also called low molecular weight protein
  • the sieving coefficient of albumin is a representative index for measuring the separation performance of a membrane. That is, by measuring the change over time in the albumin sieving coefficient, the stability over time of the performance of the hollow fiber membrane module can be known.
  • ⁇ Change of albumin sieving coefficient with time is as follows.
  • the bovine blood to which sodium citrate was added was adjusted to have a hematocrit of 30%, a total protein concentration of 6.5 g / d l, 37 ° C., and 2 L.
  • As a dialysis machine TR2000S manufactured by Toray Medical Co., Ltd. was used.
  • the water removal rate of the water permeable device is set to 10 ml / (min ⁇ m 2 ). Place the Bi circuit inlet in the circulating beaker containing 2 L of cattle blood (37 ° C) adjusted as described above, start the Bi pump (flow rate 200 mL / min), and discharge the liquid discharged from the Bo circuit outlet for 90 seconds. Immediately after disposal, the Bo circuit outlet and the Do circuit outlet are placed in a circulating beaker to be in a circulating state.
  • the water removal pump of the dialyzer is started, and sampling is performed from Bi, Bo, and Do over time.
  • the albumin concentration for each elapsed time is measured, and the albumin sieving coefficient for each elapsed time is calculated by the following formula.
  • CDo albumin concentration at the outlet of the Do circuit (g / ml)
  • CBo albumin concentration at the outlet of the Bo circuit (g / ml)
  • CBi albumin concentration at the inlet of the Bi circuit (g / ml)
  • bovine blood obtained by adding 1.8 L of physiological saline to 2.2 L of bovine blood having a hematocrit of 30% and a total protein concentration of 6.0 g / dl is used.
  • the same operation as described above is performed at 450 mL / mi and a water removal rate of 200 mL / min.
  • Porous membranes used in blood purification applications such as artificial kidneys need to be sterilized, and radiation sterilization is frequently used from the viewpoint of low residual toxicity and simplicity.
  • radiation to be used ⁇ rays, ⁇ rays, ⁇ rays, X rays, ultraviolet rays, electron beams, and the like are used.
  • ⁇ rays and electron beams are preferably used from the viewpoint of little residual toxicity and simplicity.
  • it is preferable to irradiate the hydrophilic polymer taken into the porous membrane since it can be fixed by causing cross-linking with the membrane material by irradiation with radiation, and also leads to reduction of the eluate. When the radiation dose is low, the sterilization effect is low.
  • the irradiation dose is preferably 15 kGy or more, and preferably 100 kGy or less.
  • hollow fiber membranes are filled into a housing of about 5 mm in diameter and 17 cm in length, and both ends are potted with an epoxy resin chemical reaction type adhesive “Quick Mender” (registered trademark) manufactured by Konishi Co., Ltd. and cut.
  • the hollow fiber membrane module was produced by opening. Next, the hollow fiber membrane of the module and the inside of the module were washed with distilled water for 30 minutes. A water pressure of 100 mmHg was applied to the inside of the hollow fiber membrane, and the amount of filtration per unit time flowing out to the outside of the hollow fiber membrane was measured. Water permeability (UFR) was calculated by the following formula.
  • UFR (mL / hr / mmHg / m 2 ) Qw / (P ⁇ T ⁇ A)
  • Qw filtration amount (mL)
  • T outflow time (hr)
  • P pressure (mmHg)
  • A inner surface area of hollow fiber membrane (m 2 )
  • Measuring method of dextran sieving coefficient An example of measurement when the porous membrane is a hollow fiber membrane is shown.
  • the hollow fiber membrane module used in the measurement of (1) was used.
  • Dextran average molecular weight -1500 (No. 31394), average molecular weight 6000 (No. 31388), average molecular weight 15000-20000 (No. 31387), average molecular weight -40000 (No. 31389), average molecular weight -60000 (manufactured by FULKA) No. 31397) and an average molecular weight of ⁇ 200000 (No. 31398) were each dissolved in distilled water so as to be 0.5 m / mL (3.0 mg / mL in the whole solute) to prepare a dextran aqueous solution (stock solution).
  • the stock solution was poured inside the hollow fiber membrane and filtered outside.
  • the temperature of the stock solution was 37 ° C., and the flow rate was adjusted so that the stock solution flow rate was 15 mL / min and the filtration flow rate was 0.36 mL / min.
  • the module stock solution inlet solution, outlet solution, and filtrate solution were collected 15 to 23 minutes after passing the stock solution, and the concentration was measured by GPC.
  • a sampled aqueous solution is filtered through a filter having a pore diameter of 0.45 ⁇ m, the filtrate is used as a GPC column (Tosoh TSK-gel-G3000PWXL), the column temperature is 40 ° C., distilled water for liquid chromatography is used as a mobile phase, and the flow rate is The analysis was performed at 1 mL / min and the sample injection amount of 100 ⁇ L, and measurement was performed with a differential refractometer (RI-8020, manufactured by Tosoh Corporation) at a sampling rate of 0.01 min and a base-line-range of 4.5 to 11.0 min.
  • RI-8020 differential refractometer
  • the calibration curve for the dextran weight average molecular weight was performed using monodispersed dextran (dextran standard No. 31416, No. 31417, No. 31418, No. 31420, No. 31422, manufactured by FULKA) immediately before the measurement.
  • the sieving coefficient (SC) of each weight average molecular weight was calculated by the following equation from the dextran concentration (Ci) of the module stock solution inlet solution, the dextran concentration (Co) of the outlet solution, and the dextran concentration (Cf) of the filtrate.
  • SC 2Cf / (Ci + Co)
  • the absolute value of the slope (s) of the fraction curve is calculated based on the weight average molecular weight (MW 0.45 ) with SC of 0.45 and the weight average molecular weight (MW 0.55 ) with SC of 0.55.
  • the following formula was used for calculation. The larger the absolute value of s, the higher the separation performance. As the value of s, a value obtained by rounding off the third decimal place was used.
  • the measurement sample was subjected to analysis after freeze-pulverizing the porous membrane and drying under reduced pressure at room temperature for 2 hours. Measuring equipment and conditions are as follows.
  • Measuring device Trace nitrogen analyzer ND-100 type (Mitsubishi Chemical Corporation) Electric furnace temperature (horizontal reactor) Thermal decomposition part: 800 ° C Catalyst part: 900 ° C Main O 2 flow rate: 300 mL / min O 2 flow rate: 300 mL / min Ar flow rate: 400 mL / min Sens: Low The average value of the results of three measurements is taken as the measurement value (N), and the effective number is two digits.
  • N measurement value
  • the amount of polyvinyl pyrrolidone in the porous membrane can be calculated by the following formula.
  • Polyvinylpyrrolidone amount (% by weight) 100 ⁇ (N ⁇ 111) / 14 (4) Measurement of surface pore diameter An example in which the porous membrane is a hollow fiber membrane and the inner surface is a dense layer is shown.
  • the hollow fiber membrane was cut into a semi-cylindrical shape so that the inner surface was exposed.
  • the inner surface of the hollow fiber membrane was observed at 50000 times with a scanning electron microscope (SEM) (S-5500, manufactured by Hitachi High-Technologies Corporation), and the image was taken into a computer.
  • SEM scanning electron microscope
  • the short diameter of the hole was the longest diameter in the short axis direction, and the long diameter was the longest diameter in the long axis direction.
  • All holes present in an arbitrarily selected range of 1 ⁇ m ⁇ 1 ⁇ m were analyzed with image processing software (ImageJ, developer National Institutes of Health).
  • ImageJ developer National Institutes of Health
  • the SEM image was binarized to obtain an image in which the hole portion was black and the structure portion was white. If the pores and the structural part cannot be binarized cleanly due to the difference in contrast in the analysis image, the pores are painted black and image processing is performed. From these values, the average value and the standard deviation were calculated. At this time, in order to cut noise, holes having an area of 0.0001 ⁇ m 2 or less were excluded from the data.
  • the major axis / minor axis ratio was determined for each hole, and the average value of the major axis / minor axis ratio was calculated.
  • the porous membrane is a hollow fiber membrane and the outer surface is dense, the same measurement is performed on the outer surface of the hollow fiber. In the case of a flat membrane, the same measurement is performed on the surface having the smaller pore diameter.
  • the type and magnification of the microscope may be changed as appropriate depending on the size of the hole.
  • the outer surface of the hollow fiber membrane was observed with a SEM (S-800 field emission scanning electron microscope FE-SEM, manufactured by Hitachi, Ltd.) at a magnification of 3000, and the image was taken into a computer. All holes existing in the range of 20 ⁇ m ⁇ 20 ⁇ m arbitrarily selected in the SEM image were analyzed with image processing software (ImageJ, formerly the National Institutes of Health, USA). The SEM image was binarized to obtain an image in which the hole portion was black and the structure portion was white. If the holes and structures cannot be binarized cleanly due to the contrast difference in the analysis image, the holes are blacked out and image processing is performed. The average value was calculated from the value of the major axis.
  • the porous membrane is a hollow fiber membrane and the outer surface is dense
  • the same measurement is performed on the inner surface of the hollow fiber.
  • the same measurement is performed on the surface having the larger pore diameter.
  • the type and magnification of the microscope may be changed as appropriate depending on the size of the hole.
  • Example 1 Polysulfone ("Udel” (registered trademark) P-3500 made by Solvay) 16% by weight, polyvinylpyrrolidone (made by International Special Products Co .; hereinafter referred to as ISP K30) 4% by weight, and polyvinylpyrrolidone (K90 made by ISP) 2
  • ISP K30 polyvinylpyrrolidone
  • K90 made by ISP 2 In addition to a mixed solvent of 5% by weight, 77% by weight of N, N-dimethylacetamide and 1% by weight of water, it was dissolved by heating at 90 ° C. for 6 hours to obtain a film forming stock solution.
  • This film-forming stock solution was discharged from an annular slit of a double-tube cylindrical die.
  • the outer diameter of the annular slit was 0.5 mm, and the inner diameter was 0.25 mm.
  • As an injection solution a solution composed of 63% by weight of N, N-dimethylacetamide and 37% by weight of water was discharged from the inner tube.
  • the base was kept at 50 ° C.
  • the discharged film forming stock solution passes through a dry part 350 mm having a dew point of 26 ° C. (temperature 30 ° C., humidity 80%) in 0.7 seconds, and is then solidified after being guided to a 40 ° C. water bath (coagulation bath).
  • the film was taken up at a speed of 30 m / min with a first roller outside the bath, washed with a water bath at 60 ° C., and then wound up with a casserole.
  • a hollow fiber membrane-like porous membrane having a yarn diameter of 198 ⁇ m and a film thickness of 40.5 ⁇ m was obtained by adjusting the discharge amount of the stock solution and the discharge amount of the injection solution.
  • the draft ratio was 2.7, and the ratio of the slit cross-sectional area to the hollow fiber membrane cross-sectional area was 4.9.
  • This porous membrane had high water permeability and high fractionation performance.
  • Example 2 The same experiment as in Example 1 was performed except that the outer diameter of the annular slit of the base was 0.73 mm and the inner diameter was 0.23 mm.
  • the hollow fiber membrane-like porous membrane thus obtained had an inner diameter of 198 ⁇ m and a film thickness of 39 ⁇ m.
  • the draft ratio was 7.6, and the ratio of the slit cross-sectional area to the hollow fiber membrane cross-sectional area was 13.0.
  • Example 2 As in Example 1, the average value and standard deviation of the minor axis were small, and the porous membrane was excellent in water permeability and fractionation performance.
  • Example 3 The same experiment as in Example 2 was performed except that a solution composed of 60% by weight of N, N-dimethylacetamide and 40% by weight of water was used as the injection solution.
  • the obtained hollow fiber membrane-like porous membrane had an inner diameter of 203 ⁇ m and a film thickness of 40 ⁇ m.
  • the draft ratio was 7.6, and the ratio of the slit cross-sectional area to the hollow fiber membrane cross-sectional area was 12.5.
  • Example 2 As in Example 1, the average value and standard deviation of the minor axis were small, and the porous membrane was excellent in water permeability and fractionation performance.
  • Example 4 The same experiment as in Example 1 was performed except that the outer diameter of the cap annular slit was 0.6 mm and the inner diameter was 0.25 mm.
  • the obtained hollow fiber membrane-like porous membrane had an inner diameter of 185 ⁇ m and a film thickness of 40 ⁇ m.
  • the draft ratio was 5.4, and the ratio of the slit cross-sectional area to the hollow fiber membrane cross-sectional area was 8.4.
  • Example 5 The same experiment as in Example 1 was performed except that the outer diameter of the cap annular slit was 0.6 mm and the inner diameter was 0.35 mm.
  • the obtained hollow fiber membrane-like porous membrane had an inner diameter of 200 ⁇ m and a film thickness of 40 ⁇ m.
  • the draft ratio was 3.1, and the ratio of the slit cross-sectional area to the hollow fiber membrane cross-sectional area was 6.2.
  • Example 6 The composition of the membrane forming stock solution was 15% by weight of polysulfone (“Udel” (registered trademark) P-3500 manufactured by Solvay), 5% by weight of polyvinylpyrrolidone (K90 manufactured by ISP), 80% by weight of N, N-dimethylacetamide, water The same experiment as in Example 1 was performed except that the amount was 1% by weight.
  • the obtained hollow fiber membrane-like porous membrane had an inner diameter of 200 ⁇ m and a film thickness of 40 ⁇ m. The draft ratio was 2.9, and the ratio of the slit cross-sectional area to the hollow fiber membrane cross-sectional area was 4.9. Water permeability performance measurement, dextran sieving coefficient measurement, surface pore diameter measurement, and elemental analysis were performed, and the results are shown in Table 1.
  • Example 1 The same experiment as in Example 1 was performed except that the outer diameter of the cap annular slit was 0.35 mm and the inner diameter was 0.25 mm.
  • the obtained hollow fiber membrane-like porous membrane had an inner diameter of 197 ⁇ m and a film thickness of 41 ⁇ m.
  • the draft ratio was 0.76, and the ratio of the slit cross-sectional area to the hollow fiber membrane cross-sectional area was 1.5.
  • Comparative Example 2 The same experiment as Comparative Example 1 was performed except that the stock solution discharge amount and the injection solution discharge amount were adjusted and the hollow fiber membrane-shaped porous membrane had an inner diameter of 130 ⁇ m and a film thickness of 26 ⁇ m. The draft ratio was 1.3, and the ratio of the slit cross-sectional area to the hollow fiber membrane cross-sectional area was 3.1.
  • the slit cross-sectional area and the cross-sectional area ratio of the hollow fiber membrane are large, but the draft ratio is low because the discharge amount is small. Therefore, the pore stretching effect is insufficient, the standard deviation of the short diameter is large, and the porous membrane has a low fractionation performance.
  • Example 3 The composition of the membrane forming stock solution was the same as in Example 1 except that the composition of the polysulfone (“Udel” (registered trademark) P-3500 manufactured by Solvay) was 18 wt%, N, N-dimethylacetamide was 82 wt%, and water was 1 wt%. The experiment was conducted. The obtained hollow fiber membrane-like porous membrane had an inner diameter of 199 ⁇ m and a film thickness of 40 ⁇ m. The draft ratio was 2.65, and the ratio of the slit cross-sectional area to the hollow fiber membrane cross-sectional area was 12.9.
  • the membrane forming stock solution does not contain a hydrophilic polymer, the effect of extending the hole is insufficient even if the draft ratio or the cross-sectional area ratio is increased, and the standard deviation of the short diameter is large. Accordingly, it was a porous membrane with low fractionation performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Urology & Nephrology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Public Health (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Anesthesiology (AREA)
  • Veterinary Medicine (AREA)
  • Vascular Medicine (AREA)
  • Emergency Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Pest Control & Pesticides (AREA)
  • Artificial Filaments (AREA)
  • Insects & Arthropods (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • External Artificial Organs (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

本発明の目的は、透水性能とタンパク質分画性能を両立した多孔質膜を提供することにある。本発明は、口金に形成されたスリットから親水性高分子を含有する製膜原液を吐出する工程、吐出された上記製膜原液が乾式部を通過した後に凝固浴において多孔質膜として固化させる工程を含む多孔質膜の製造方法において、上記スリットの断面積が、固化された上記多孔質膜の断面積の3倍以上30倍以下である、多孔質膜の製造方法を提供する。

Description

多孔質膜、多孔質膜を内蔵する血液浄化用モジュールおよび多孔質膜の製造方法
 本発明は、多孔質膜、多孔質膜を内蔵する血液浄化用モジュールおよび多孔質膜の製造方法に関する。特に、人工腎臓用途に用いられる多孔質膜に関する。
 多孔質膜は、孔の大きさによって液体中の物質の篩い分けを行う膜分離に適しており、血液透析や血液ろ過などの医療用途、家庭用浄水器や浄水処理などの水処理用途など広い範囲で用いられている。
 なかでも、血液透析などの血液浄化の分野においては、血中に不要な小・中分子量物質のみを透過し、必要な大分子量物質は透過しないといった、高い分画性能を有する分離膜が求められている。代表的な小分子量物質としては、尿毒素である尿素、クレアチニン、リンなどが挙げられる。透析において、これらの物質は拡散による除去が支配的であるため、透水性の高い分離膜が要求される。また代表的な中分子量物質としては、β-ミクログロブリンが挙げられる。β-ミクログロブリンは分子量が約12000のタンパク質であり、透析アミロイドーシスの原因物質とされており、透析時に除去することが求められる。一方で、分子量が約66000のタンパク質であるアルブミンは、浸透圧の保持や物質の保持・運搬など様々な機能を担う血中に必要なタンパク質であり、透析時における損失を押さえる必要がある。また、近年ではα-ミクログロブリンに代表される分子量30000程度の領域にも、除去の対象となる物質が存在すると考えられている。
 すなわち、透析で用いられる分離膜において、高い透水性能と高いタンパク質分画性能を有する多孔質膜が求められている。特に、近年注目されている血液透析ろ過法は、透析液で希釈した血液を分離膜を介して、ろ過により血液を濃縮する治療方法であるため、血液透析ろ過に使用される分離膜には高い透水性が要求される。また、上記の高い分子量を有するα-ミクログロブリンの除去性能が高く、アルブミンの損失が少ない、高いタンパク質分画性能が要求されている。
 アルブミンの損失を抑えるために、多孔質膜の孔径を小さくすると透水性能が低下し、尿毒素などの小分子量物質の除去性能が低下する。一方で、β-ミクログロブリンの除去性能向上のために、孔径を大きくすると透水性は向上するが、アルブミンの損失量が増大するといった問題がある。このように、透水性とタンパク質分画性能は、多孔質膜の表面の孔径の影響を大きく受け、透水性能とタンパク質分画性能の両立は困難である。
 多孔質膜の透水性能と分画性能を向上させるために、表面の孔を引き延ばして孔の長径を短径に対して大きくする技術がある。多孔質膜の表面の孔を引き延ばす方法として、多孔質膜が固化した後に延伸をかける方法と、多孔質膜が固化する前にドラフトをかける方法がある。
 延伸をかけて製造された多孔質膜が特許文献1、特許文献2に開示されている。ドラフトをかけて製造された多孔質膜が特許文献3、特許文献4に開示されている。製膜原液の組成や製膜温度を調整し、相分離による孔の成長と凝固を制御することで、内表面の孔を引き延ばした形状にした多孔質膜が特許文献5、特許文献6に記載されている。
特開昭64-75015号公報 特開昭59-64055号公報 国際公開第2010/029908号 特開平6-165926号公報 特開昭58-114702号公報 特開平9-308685号公報
 特許文献1には、延伸によって表面の孔の長径を短径の1.5倍以上にした多孔質膜に関する記載がある。しかしながら、孔の短径が3μmから30μmと大きく、タンパク質の分画を行うことができない。また、長径のバラツキについては記載も示唆もされていない。特許文献2には、延伸によって表面の孔の長径を短径の1.5から20倍にした血液処理用の多孔質膜に関する記載がある。しかしながら、表面の孔の短径の範囲の記載がなく、分画性能に寄与する長径、短径のバラツキに関する記載もない。
 特許文献3には、ドラフトをかけて製造した表面の孔の短径と長径の比および開孔率が大きい浄水器用の中空糸膜に関する記載がある。しかしながら、表面の孔の短径が1μmと大きいため、タンパク質の分画を行うことができず、また、孔径のバラツキも比較的大きくなると考えられるところ、その改善について記載がない。さらに、透水性および生体適合性の向上に必要な親水性高分子の残存量についても記載がない。特許文献4には、表面の孔の短径を1nmから50nmとした多孔質膜に関する記載があり、十分高いドラフト比で紡糸することが記載されている。しかしながら、長径と短径の比率に関する記載がなく、後述するように、ドラフト比を上げたからといって、必ずしも長径の短径に対する比率が高くなるわけではない。また、分画性能に寄与する孔径のバラツキに関しても特に明記されていない。なお、表面の孔の長径について記載がない。
 特許文献5には、内表面の短径の平均値が50nm以下であり、長径と短径の比率が3倍以上である中空糸膜に関する記載がある。また、孔の短径をできるだけ均一にすることが好ましい旨の記載があるが、具体的な達成手段について記載が無く、少なくとも表面の孔を引き延ばすための延伸やドラフトに関する記載すらないため、孔径のバラツキの精密な制御は実現できてなく、高い分画性能は期待できない。なお、外表面の孔径がやや小さいため、透過抵抗が大きくなり、透水性の向上が難しい。特許文献6には、表面の孔の長径が短径の2倍以上、好ましくは3倍以上で、孔の短径の下限が20nmの多孔質膜に関する記載がある。この文献では「平均巾が0.02μm未満であると、透水速度が小さくなり血液濾過時の限外濾過速度が小さくなり、また、経時的に目詰まりを起こしやすくなり、尿素、クレアチニン等の尿毒性物質の透過率が低下する。より好ましい平均巾の下限は、0.04μmである。」とあり、本発明における孔の短径の範囲における孔の長短比、孔径のバラツキを考慮していない。なお、表面の孔の短径について、安定した分画特性を得るために、均一であることが好ましいことが記載されているが、具体的な実現の手段について記載がなく、例えば表面の孔を引き伸ばす延伸やドラフトに関する記載がないことから、孔の長径と短径のバラツキを精密に制御できていない可能性が高い。
 本発明の目的は、高い透水性能と高い分画性能を両立した多孔質膜を提供することにある。
 本発明は上記課題を解決するために、以下の構成を有する。
 すなわち、本発明によれば、膜における親水性高分子の含有量が0.5重量%以上、4重量%以下であって、一方の表面に形成された孔が以下(A)及び(B)を満たす、血液浄化用途に用いられる多孔質膜が提供される。
(A)孔の長径の短径に対する比の平均値が3以上
(B)上記短径は平均値が5nm以上20nm以下であり、その標準偏差が4nm以下
 ここで、孔径の測定方法は後述する通りであるが、
本発明の好ましい形態によれば、一方の表面に形成された孔が以下(C)及び(D)を満たす。
(C)孔の長径の短径に対する比の平均値が1.5以上
(D)短径は平均値が0.2μm以上0.6μm以下
 すなわち、一方の表面に形成された孔は上記(A)及び(B)を満たし、その反対側の表面に形成された孔は上記(C)及び(D)を満たす。本発明のより好ましい形態によれば、上記多孔質膜が中空糸膜であるが、さらに好ましい形態によれば、中空糸膜において、(A)及び(B)を満たす表面が内表面であり、上記(C)及び(D)を満たす表面が外表面である。血液浄化用途に用いる場合、血液は膜の内側を通り、血液中の不要物質はより微小の孔径の孔がある内表面から、比較的大きな孔径の孔がある外表面に向けて除去される。
 別の本発明の好ましい形態によれば、上記(A)及び(B)を満たす孔がある表面の開孔率は、1%以上、10%以下である。
 本発明の好ましい形態によれば、多孔質膜の主成分の素材が非結晶性高分子であり、さらに好ましい形態によれば、上記非結晶性高分子がポリスルホン系高分子である。主成分とは膜において最も多い重量割合を示す成分である。
 本発明の別の形態によれば、上記多孔質膜を内蔵する血液浄化用モジュールが提供される。
 本発明によれば、高い透水性能と分画性能を両立した多孔質膜を提供することができる。例えば、血液浄化用、特に人工腎臓用の中空糸膜に応用すれば、尿毒素などの小分子量物質の除去性能に優れ、かつβ-ミクログロブリンなどの小分子量タンパク質は透過するが、アルブミンなどの中分子量タンパク質は透過しないといった高い分画性能を有するモジュールを得ることができる。
実施例1の方法により製造した多孔質膜の表面の走査型電子顕微鏡(SEM)写真である。 図1のSEM画像を2値化処理後の画像である。 デキストラン分画曲線のグラフである。
 一般に、多孔質膜は、除去対象物質を表面の孔の大きさによって篩い分けを行うため、膜の表面の孔が楕円形で、長径方向と短径方向を有する場合、分画性能は表面の孔の短径に依存する。例えば、多孔質膜が中空糸膜であるとき、紡糸時に、固化しつつある原液を長手方向に引き延ばすことから、孔は長手方向に引き延ばされるため、通常は中空糸膜の長手方向が孔の長径であり、長手方向と直交する方向の径が短径となる。孔によるサイズ篩いにおいては、除去物質はブラウン運動などの影響により実際のサイズよりも見かけ上大きくなるため、表面の孔径は除去物質のサイズよりも大きな孔径にする必要がある。このことを考慮すると、本発明に係る多孔質膜を血液浄化用途、例えば中空糸膜として透析に用いる場合、除去対象物質であるβ-ミクログロブリンの分子サイズは3nm程度であることから、β-ミクログロブリンを除去するためには、膜の一方の表面(分画作用を有する面、中空糸膜の場合、通常は内表面)の孔の短径の平均値を5nm以上、好ましくは7nm以上、さらには10nm以上とすることが好ましい。かかる表面の孔の短径が5nm未満となると透水性能も著しく低下することから、望ましくない。一方で、透析において除去することが好ましくないアルブミンの分子サイズは、8nm程度であるため、アルブミンを透過させないためには、上記表面の孔の短径の平均値を20nm以下、好ましくは18nm以下、より好ましくは15nm以下、さらには、12nm以下であることが好ましい。このように、孔の短径を上記の様にコントロールすることによって、除去対象となるタンパク質と非除去対象となるタンパク質の分離性能を向上させることが可能である。
 タンパク質の分画性能を向上させるためには、上記表面の孔の短径において平均値だけで無く、バラツキについても考慮する必要がある。本発明において、上記表面の孔の短径のバラツキを示す標準偏差は4nm以下であり、好ましくは3.8nm以下、さらに好ましくは3.5nm以下である。一方で、孔径の制御が困難になることから、標準偏差は2nm以上が妥当であり、2.5nm以上であると実現がより容易となる。表面の孔径のバラツキを小さくするには、表面の孔を長径の方向に引き延ばすことが有効である。例えば、中空糸膜である場合、中空糸を長手方向に引き延ばすことで円形の孔が引き延ばされ、孔が楕円形となり、結果として孔の短径のバラツキが抑制される。表面の孔を長径の方向に引き延ばすと、孔の短径の大きいものほど変形しやすいため、大きい孔の短径はより小さくなり、小さい孔の短径はあまり変化せず、結果として短径のバラツキが低減する。分画性能については後述するが、各分子量に対するデキストラン篩い係数の値をプロットした分画曲線の傾きの絶対値により算出することができる。
 表面の孔の短径の変化を極力抑えたまま長径を大きくすることで、分画性能を維持したまま水の透過抵抗を減少でき、透水性能が向上する。透析において、膜の透水性能が高いほど小分子量物質の拡散性能が向上し、除去性能も向上する。すなわち、孔の長径の短径に対する比(長径/短径)の平均値が大きいほど、分画性能に対する透水性能が大きくなる。したがって、上記比の平均値が3以上であることが必要であり、3.5以上がより好ましい。しかしながら一方で、膜構造の強度の観点から、上記比の平均値が6以下であることが好ましく、4以下がより好ましい。
 上記の通り、表面の孔の長径の短径に対する比の平均値を大きくする方法としては、孔を引き延ばす方法が有効であるが、より具体的には、多孔質膜が固化した後に引き延ばす延伸法や、ドラフト比を大きくして多孔質膜が固化する前に引き延ばす方法がある。この内、ドラフト比を大きくする方法が、多孔質膜の製造方法や素材の限定を受けること無く、広範に適用可能なため、好ましい。一方、延伸法は、多孔質膜の強度が強くないと適用できないため、膜素材が結晶性高分子などである場合に限定される。
 ドラフト比とは、多孔質膜の引き取り速度を、製膜原液を吐出するスリットからの吐出線速度で除した値である。吐出線速度は、吐出流量を口金の原液が吐出される部分であるスリットの断面積で除した値である。したがって、ドラフト比を上げるためには、通常、引き取り速度を高くする方法が用いられるが、本発明においては、スリットの吐出部分の断面積を大きくする方法を採ることが好ましい。このスリットの断面積を大きくする方法は、多孔質膜の形状を変えることなくドラフト比を上げることが容易であることから、好ましい。引き取り速度を高くする方法の場合、多孔質膜の断面積が減少するため、多孔質膜の物理的強度の低下が懸念され、また、単に引き取り速度を高くする場合、膜が凝固浴に入るまでの時間がより短くなることから、孔が膜の長手方向に十分延びる前に凝固浴にてポリマーが凝固することがあり、この場合ドラフト比が上がっても孔を十分に引き延ばすことが難しい。
 本発明では、同一の膜厚の多孔質膜を製膜する場合、口金に形成された製膜原液の吐出のためのスリットの断面積と、固化された個々の多孔質膜の膜厚部の断面積の比を大きくすることで、吐出線速度を低下させ、巻き取り速度を変化させることなくドラフト比を大きくすることができ、表面の孔を引き延ばすことが可能であることを見いだした。スリット断面積と多孔質膜の膜厚部の断面積の比は3倍以上が好ましく、より好ましくは5倍以上、さらには、10倍以上が好ましい。一方で、断面積の比が大きすぎる場合、吐出の制御が難しく、糸切れ等が発生してしまうため、断面積比は30倍以下が好ましく、20倍以下がより好ましい。
 これは、多孔質膜が中空糸膜である場合は勿論のこと、平膜や中実糸などの場合も同様に、口金のスリット断面積を大きくすることによるドラフト比の向上により、表面の孔を効率良く引き延ばすことができ、孔径のバラツキを低減することができる。
 上記要件を満たす表面(以下、(A)及び(B)を満たす孔がある表面ともいう。)の孔の長径は、主に透水性能に寄与している。孔を引き延ばすことで、孔面積が拡大し、透水性能が向上する。そのため、孔の長径の平均値は25nm以上が良く、より好ましくは30nm以上、さらには35nm以上が好ましい。一方で、長径の平均値が大きくなりすぎると、膜の構造強度が低下する。そのため、孔の長径の平均値は、100nm以下が良く、好ましくは70nm以下、さらには50nm以下が好ましい。
 また、孔の長径は相分離時に形成した様々な大きさの孔が引き延ばされることによって形成されるため、孔の長径のバラツキは大きくなる。透水性能の観点から、孔の長径のバラツキは大きい方が良い。孔の長径の標準偏差は10nm以上が良く、好ましくは13nm以上、さらには15nm以上が好ましい。一方で、膜の構造強度の観点から、孔の長径の標準偏差は100nm以下が良く、好ましくは70nm以下、さらには50nm以下が好ましい。
 表面の孔の長径のバラツキを大きくするには、孔径のバラツキの大きい孔を引き延ばせばよい。表面の孔を引き延ばすと、孔の大きいものほど変形しやすいため、変形量を大きくすると大きい孔の長径はより大きくなり、小さい孔の長径はあまり変わらず、長径のバラツキが大きくなる。引き延ばす前の孔径のバラツキを大きくするには、造孔剤として製膜原液に添加する親水性高分子の重量平均分子量分布を大きくして相分離を不均一にすることや、相分離を進行させて表面のこの成長を促進することが有効である。相分離が進行すると孔同士の融合によって孔が成長するため、孔の成長が衝突の確率によって偏り、形成される孔の大きさが不均一となる。相分離を進行させるには、製膜原液の組成、凝固浴の組成、相分離過程の温度、固化までの時間などを調整すればよい。
 製膜原液に親水性高分子を添加することは、相分離を制御する因子としても有効である。製膜原液に親水性高分子を添加することにより、原液を構成する主成分の貧溶媒と接触した際の固化速度が抑制されるため、相分離が進行した状態で十分に孔を引き延ばすことができ、孔の短径のバラツキを小さくすることができる。特に限定はしないが、添加する親水性高分子の重量平均分子量が大きすぎると製膜原液との相溶性が低下することから、150万以下がよく、より好ましくは120万以下である。一方で、製膜原液に添加する親水性高分子の重量平均分子量が小さいと、膜中からの溶出が懸念される。そのため、親水性高分子の重量平均分子量は2万以上が好ましく、より好ましくは4万以上である。
 多孔質膜に含まれる親水性高分子の重量平均分子量は、例えば次の方法で測定可能である。多孔質膜を溶媒で溶解し、親水性高分子の溶解度が高く、多孔質膜の構造体となる高分子の溶解度が低い溶媒を用いて、親水性高分子を抽出する。抽出液中の親水性高分子の重量平均分子量をゲル濾過クロマトグラフィなどで測定する。このときの抽出条件などは、多孔質膜の構造体となる高分子と親水性高分子の組み合わせによって適宜変更すればよいが、親水性高分子の抽出率を高くすることで、より正確な重量平均分子量を測定できる。
 製膜原液を構成する主成分の高分子の貧溶媒について、この貧溶媒を添加することで、相分離の進行が促進され、孔を引き延ばす効果が大きくなる。製膜原液を構成する主成分の高分子とは、製膜原液を構成する高分子の内、最も重量の割合が多いものである。製膜原液の組成や貧溶媒の種類によって最適な範囲は異なるが、貧溶媒として水を用いる場合、製膜原液中の水の含有量は、0.5重量%以上が好ましく、0.8重量%以上がより好ましい。一方で、製膜原液中の貧溶媒の量が多いと、製膜原液が固化してしまうため、水の含有量は3重量%以下が好ましい。
 本発明において、表面に形成された孔の長径および短径は、表面を走査型電子顕微鏡(SEM)で観察した像から測定することができる。短径は短軸方向に最も長い直径であり、長径は長軸方向に最も長い直径である。SEMの観察において、倍率50000倍で確認できる孔について、任意の1μm×1μmの範囲の全ての孔について計測する。計測した孔の総数が50個未満の場合は、計測した孔の総数が50個以上になるまで1μm×1μmの範囲の計測を繰り返して、データを追加する。計測結果から、小数点以下第2位を四捨五入することで相加平均値および標準偏差を算出する。このときの標準偏差は、標本に基づいて予測した標準偏差(標本標準偏差)であり、次式で計算される。
 標準偏差={Σ(a-b)/(c-1)}1/2
ここで、a:孔径の平均値、b:測定した孔径、c:測定した孔径の数
 また、もう一方の表面、例えば多孔質膜が中空糸膜であり、内表面に微細孔を有する場合、分画性能に影響を与えない外表面に形成される孔については、透水性能の向上の観点から孔の長径の短径に対する比の平均値が1.5以上であることが好ましい。一方で、上記比の平均値が大き過ぎると、膜構造がもろくなり、強度が低下する恐れがあるので、上記比の平均値は4以下が好ましく、さらには3以下が好ましい。また、外表面に形成される孔は、透水性などの性能や、糸束にした際に発生する摩擦の観点から、短径の平均値が0.2μm以上であることが好ましく、さらには0.3μm以上が好ましい。一方で、糸強度の観点から、孔の短径の平均値は0.6μm以下が好ましい。
 外表面の孔径は、後述するが原液を吐出後の乾式部の条件によって調整することが可能である。
 多孔質膜の表面の開孔率が高いほど、水の流路が増えるので、透水性能が高くなる。一方で、開孔率を低くすると、表面の構造強度が上がる。そのため、多孔質膜の表面の開孔率は1%以上が好ましく、3%以上がより好ましい。一方で、開孔率は10%未満が好ましく、8%以下がより好ましい。
 開孔率を高くするには、製膜原液に添加する親水性高分子の量を増やすことが有効である。
 表面の開孔率は、多孔質膜表面をSEMで観察した像から測定できる。倍率50000倍で観察した像を任意の1μm×1μmの範囲について画像処理し、膜の構造部分と孔の部分に二値化を行い、その測定面積に対する孔の部分の面積百分率を算出して開孔率とする。
 多孔質膜の膜厚方向断面の構造は、孔径が実質的に変化しない対称膜構造と、孔径が連続的あるいは、不連続的に変化し、一方の表面、内部、他方の表面で孔径が異なっている非対称膜に大別される。このうち、非対称膜は、サイズ排除に寄与する孔径の小さい層が薄いために、水の透過抵抗が小さく透水性能が高くなる。そのため、膜厚方向断面の構造は非対称構造が好ましい。この場合、通常、膜の片側のみの表面が上記(A)及び(B)を満たす表面となる。
 非対称性が高いほど、透水性能は有利になる。特に限定するものではないが、血液浄化用途に用いられる多孔質膜のより好ましい形態としては、一方の表面の短径の平均値は0.1μm以上が好ましく、より好ましくは0.2μm以上である。一方、膜の構造強度の観点から、かかる表面の短径の平均値は0.6μm以下が好ましく、より好ましくは0.5μm以下である。ここでいう「一方の表面」とは、上記(A)及び(B)を満たす孔のある表面とは反対側の表面である。すなわち、膜が非対称性を示し、一方の表面は(A)及び(B)を満たす微小の孔径の孔を有し、他方の表面は上記範囲の孔径の孔を有する。
 また、膜の構造強度の観点から、かかる表面の孔の長径短径比は1.5倍以上であり、3倍以下であることが好ましい。
 多孔質膜を構成する主成分の素材としては、非結晶性高分子が好適に用いられる。非結晶性高分子とは、結晶化しない高分子であり、示差走査熱量計の測定で結晶化による発熱ピークがない高分子である。
 非結晶性高分子は、構造変形を起こしやすいため、孔を引き延ばす効果が高くなる。また、膜厚方向の構造制御が容易になる。非結晶性高分子を素材とした多孔質膜は、非結晶性高分子を溶媒に溶解して調整した製膜原液を、熱や貧溶媒によって相分離を誘起し、溶媒成分を除去することで得られる。溶媒に溶解している非結晶性高分子は運動性が高く、相分離時に凝集して、濃度が高まり緻密な構造を形成する。膜厚方向で相分離の速度を変化させることで、膜厚方向に対して孔径が異なる非対称構造の膜を得ることができる。
 多孔質膜の素材となる非結晶性高分子の例としては、アクリル系高分子、酢酸ビニル系高分子、ポリスルホン系高分子が挙げられる。中でもポリスルホン系高分子が孔径を制御しやすいことから好適に用いられる。本発明でいうポリスルホン系高分子は、主鎖に芳香環、スルフォニル基およびエーテル基を有するもので、例えば次式(1)、(2)の化学式で示されるポリスルホン系高分子が好適に使用されるが、本発明ではこれらに限定されない。式中のnは,例えば50~80の如き整数である。
Figure JPOXMLDOC01-appb-C000001
 ポリスルホンの具体例としては、ユーデル(登録商標)ポリスルホンP-1700、P-3500(ソルベイ社製)、ウルトラゾーン(登録商標)S3010、S6010(BASF社製)、ビクトレックス(登録商標)(住友化学)、レーデル(登録商標)A(ソルベイ社製)などのポリスルホンが挙げられる。また、本発明で用いられるポリスルホンとしては上述式(1)及び/または(2)で表される繰り返し単位のみからなるポリマーが好適であるが、本発明の効果を妨げない範囲で他のモノマーと共重合していても良い。特に限定するものではないが、他の共重合モノマーは10重量%以下であることが好ましい。
 製膜原液に親水性高分子を添加することで、多孔質膜に親水性高分子が含有され、水濡れ性が向上し透水性能が高くなる。それのみでなく、上記の通りドラフト比やスリットと膜の断面積比を大きくしても、原液中に親水性高分子が存在しない場合は、孔の引き延ばし効果が不十分となる。さらには、親水性が付与されることで、生体適合性も向上する効果もある。したがって、多孔質膜中に親水性高分子が0.5重量%以上含有されていることが好ましく、1重量%以上がより好ましい。一方で、多孔質膜中の親水性高分子の含有量が多すぎると、溶出物が増加するため、親水性高分子量は8重量%以下が好ましく、より好ましくは6重量%以下、さらには4重量%以下が好ましい。
 親水性高分子の含有量は、ポリマーの種類によって測定方法を選定する必要があるが、元素分析等の方法で測定することができる。
 多孔質膜の表面に親水性を付与する場合、凝固液に親水性高分子を添加する方法や、製膜後に表面をコーティングする方法により表面に選択的に親水性を付与することができる。特に、中空糸膜の場合、吐出時の注入液に親水性高分子を添加することにより、製膜原液と注入液が接触し相分離を起こし、凝固する過程で、親水性高分子が原液側に拡散することによって親水性高分子が取り込まれるためである。多孔質膜を主に構成する高分子が疎水性高分子である場合、疎水性ユニットを含有する親水性高分子を用いることで、疎水性相互作用の効果によって膜表面への導入孔率を高めることができる。
 特に限定はしないが、親水性高分子の具体例としては、ポリエチレングリコール、ポリビニルピロリドン、ポリエチレンイミン、ポリビニルアルコール、およびそれらの誘導体などが挙げられる。また、他のモノマーと重合していても良い。
 多孔質膜の素材や溶媒との親和性によって、親水性高分子を適宜選択すればよい。特に限定はしないが、ポリスルホン系高分子の場合、相溶性が高いことからポリビニルピロリドンが好適に用いられる。
 血液浄化用途に用いられる多孔質膜である場合、血液と接触する表面、本発明でおける上記(A)及び(B)を満たす孔のある表面(中空糸膜では内表面が好ましい)における親水性高分子量が重要となる。かかる表面の親水性高分子量が少ないと血液適合性が悪化し、血液の凝固が発生しやすくなる。そのため、血液と接触する表面における親水性高分子量は20重量%以上が良く、より好ましくは22重量%、さらには25重量%以上が好ましい。一方で、親水性高分子量が多いと血液中に溶出する親水性高分子量が増加し、該溶出した高分子によって副作用や、合併症を引き起こす原因となる可能性がある。そのため、表面の親水性高分子量は45重量%以下が良く、好ましくは42重量%以下である。
 多孔質膜の表面の親水性高分子量はX線電子分光法(XPS)を用いて測定することができる。測定角としては90°で測定した値を用いる。測定角90°は表面からの深さが約10nmまでの領域が検出される。また、値は3箇所の平均値を用いる。例えば、疎水性高分子がポリスルホンであり、親水性高分子がポリビニルピロリドンである場合、窒素量(d(原子数%))と硫黄量の測定値(e(原子数%))から、次の式により表面でのポリビニルピロリドンの含有率を算出することができる。
ポリビニルピロリドン含有率(f)=100×(d×111)/(d×111+e×442)
 製膜原液を調整する際は、高温で溶解することが溶解性向上のために好ましいが、熱による高分子の変性や溶媒の蒸発による組成変化の懸念がある。そのため、溶解温度は30℃以上、120℃以下が好ましい。ただし、使用する高分子および添加剤の種類によってこれらの最適範囲はことなることがある。
 多孔質膜の形態としては、用途に応じて平膜、管状膜、中空糸膜などから適宜選択すればよい。特に限定はしないが、体積当たりの膜面積が大きくなり大面積の膜をコンパクトに収納できることが可能である中空糸膜が好ましい。中空糸膜は、二重管口金に内側の円管から注入液または注入気体を流し、外側のスリットから製膜原液を吐出することで作られる。この際に、注入液の貧溶媒濃度、温度の変更や添加剤を加えることで中空糸膜の内表面の構造を制御することができる。そのため、中空糸膜内表面において孔の短径を制御することが好ましい。
 本発明の多孔質膜は、特に限定はしないが、口金に形成されたスリットから製膜原液を吐出する工程、気相からなる乾式部を通過後に凝固浴で固化させる工程を有する製造方法により得られる。熱で相分離を誘起する場合は、乾式部で冷却をした後に凝固浴で急冷して固化させる。貧溶媒で相分離を誘起する場合は、製膜原液を構成する主成分の貧溶媒を含有する凝固液と接触させて吐出し、さらに、主成分の貧溶媒からなる凝固浴で固化させる。貧溶媒で相分離を誘起する方法では、膜厚方向に貧溶媒は拡散によって供給されるため、膜厚方向で貧溶媒の濃度差が生じるため、非対称構造となりやすい。そのため、乾式部において貧溶媒を含有する凝固液と製膜原液が接触することが好ましい。
 凝固液を貧溶媒と良溶媒の混合液として濃度を調整すれば、凝固性が変化し、表面の孔径を変えることができる。
 貧溶媒とは、製膜温度において、製膜原液を構成する主成分の高分子を溶解しない溶媒である。貧溶媒としては、特に限定はしないが、水がポリスルホン系高分子を溶解し難い溶媒として好適に用いられる。良溶媒としては、特に限定はしないが、N,N-ジメチルアセトアミドが好適に用いられる。
 凝固液の組成の好適な範囲は、製膜原液の組成や貧溶媒と良溶媒の種類など条件によって変わるが、良溶媒の濃度が低すぎると凝固速度が速くなるため、孔径が小さくなることや、引き延ばす効果が得られにくくなる。そのため、凝固液の良溶媒の濃度は40重量%以上が好ましく、50重量%がより好ましい。一方で、良溶媒の濃度が高すぎると、製膜原液の凝固が起こりにくくなり、紡糸性が低下するため、良溶媒の濃度は80重量%以下が好ましく、より好ましくは70重量%以下である。
 上記説明したようにドラフト比を上げて固化前に引き延ばすことで、表面の長径を短径に対して長くすることができる。原液が固化する前に引き延ばすため、延伸法で問題となる破断や亀裂の問題が発生しない。ドラフト比は、1.5以上、好ましくは2以上、さらには2.5以上が好ましい。一方で、ドラフト比が大きすぎると、糸切れの発生につながるため、ドラフト比は10以下にすることが必要であり、9以下が好ましい。
 原液の粘度が高いと延伸応力が増し、表面の孔を引き延ばす効果が増して孔の短径に対して長径を長くすることができる。相分離の進行とともに粘度が上昇するため、乾式部の通過時間を延ばして相分離が進行する時間を延長することで、粘度を増した状態で引き伸ばすことができる。製膜原液の組成や温度などの相分離の進行に影響する条件にもよるが、乾式部の通過時間は0.3秒以上が好ましく、0.5秒以上がより好ましい。一方で、1.5秒以下が好ましく、1秒以下がより好ましい。さらに、中空糸である場合は、乾式部において湿潤空気を当てることで、外表面側の相分離を誘起することが可能である、そのため、湿潤空気の湿度は50%以上が好ましく、より好ましくは60%以上、さらには70%以上が好ましい。湿潤空気の温度が低いと、相分離が進行しにくくなるので、10℃以上が好ましく、さらには20℃以上が好ましい。一方で、温度が高すぎると紡糸性が低下することがあるので60℃以下が好ましく、さらには40℃以下が好ましい。
 製膜原液の粘度を上げるためには、製膜原液を構成する主成分の高分子および/または親水性高分子の増量や増粘剤を添加してもよく、吐出温度を下げてもよい。製膜原液の粘度が低すぎると、延伸応力が小さいため、引き延ばし効果が得られにくくなるので、製膜原液粘度は、吐出温度で0.5Pa・s以上が好ましく、1.0Pa・s以上がより好ましい。一方で、製膜原液の粘度が高すぎると、吐出圧が上がり、紡糸が不安定となるため、20Pa・s以下が好ましく、15Pa・s以下がより好ましい。
 製膜原液に添加する親水性高分子量が多いと、多孔質膜の孔の形成過程において、孔と構造の界面の親水性高分子量が増し、構造中の高分子の分子鎖のからみつきが増して孔の変形が抑制される。一方で、親水性高分子の量を増やすことで、孔の数が増えて多孔質膜の表面の開孔率が上がる。そのため、製膜原液中の親水性高分子の濃度が、多孔質膜を構成する主成分の高分子の濃度の70重量%以下が好ましく、60重量%以下がより好ましい。一方で、親水性高分子の濃度を上げることで、表面の開孔率が増加するため、製膜原液を構成する主成分の高分子の濃度の10重量%以上が好ましく、20重量%以上がより好ましい。
 吐出時の口金の温度は、製膜原液の粘度、相分離挙動に影響を与える。一般的に、口金の温度が高いほど、得られる多孔質膜の透水性と分画分子量は大きくなる。ただし、温度が高すぎると製膜原液の粘度の低下や凝固性の低下により、吐出が不安定となり、紡糸性が低下する。一方で、口金の温度が低いと、結露によって二重管口金に水分が付着することがある。そのため、口金の温度は20℃以上が好ましく、一方で90℃以下が好ましい。
 製膜原液を口金から吐出した後、凝固浴を通過させ、膜の構造を固定化することが好ましい。凝固浴の温度としては、20~90℃の範囲が好ましい。組成としては、水60~100%、製膜原液に使用した良溶媒40~0%の範囲が好ましい。
 凝固浴を通過後の膜については、残留した溶媒などを除去するため水洗浴を通過させることが好ましい。水洗浴の温度は、高い方が洗浄効率が上昇するため、60~90℃の範囲が好ましい。
 製膜した多孔質膜は乾燥させてもよい。乾燥方法としては、熱風による乾燥、マイクロ波による乾燥、減圧乾燥などの方法が挙げられるが、熱風による乾燥が好適に用いられる。
 さらに、多孔質膜が中空糸膜である場合は、クリンプを付与することで、モジュール化した際の透析液流れが良くなるため、有用である。クリンプのピッチは5~30mmの範囲がよく、振幅は0.2~3mmの範囲が好ましい。
 多孔質膜の膜厚は使用用途における圧力や拡散性能の観点から適宜決めれば良い。膜厚が薄いと使用圧力に耐えられないことがあるので、膜厚は20μm以上が好ましく、25μm以上がより好ましい。一方で、膜厚が厚いと水の透過抵抗が上がり透水性能が低下するため、膜厚は50μm以下が好ましく、45μm以下がより好ましい。
 多孔質膜が中空糸膜である場合、耐圧性は膜厚と内径の比に相関し、膜厚と内径の比が大きいと、耐圧性が高くなる。内径を小さくすると、モジュールが小型化でき、耐圧性も向上する。しかし、内径を小さくするには、製膜時に絞り込む必要があり、内径にしわがよった星形糸が発生しやすくなる。星形糸では、相分離が不均一になるため、孔径のバラツキが大きくなり、分画性能が低下する。そのため、中空糸膜の内径は、80μm以上が好ましく、より好ましくは100μm、さらに好ましくは120μm以上であり、一方、250μm以下が好ましく、より好ましくは200μm以下、さらに好ましくは160μm以下である。
 上記中空糸膜内径とは、ランダムに選別した16本の中空糸膜の膜厚をマイクロウォッチャーの1000倍レンズ(VH-Z100;株式会社KEYENCE)でそれぞれ測定して平均値aを求め、以下の式より算出した値をいう。なお、中空糸膜外径とは、ランダムに選別した16本の中空糸膜の外径をレーザー変位計(例えば、LS5040T;株式会社KEYENCE)でそれぞれ測定して求めた平均値をいう。
 中空糸膜内径(μm)=中空糸膜外径-2×膜厚
多孔質膜の透水性としては、200mL/hr/m/mmHg以上が好ましく、より好ましくは500mL/hr/m/mmHg以上、さらには800mL/hr/m/mmHg以上が好ましい。また、高すぎた場合、内部濾過が起こりやすく、溶質除去性能は高くなるが、血液処理用途の場合、血球に与える刺激も大きくなるので、2500mL/hr/m/mmHg以下が好ましく、より好ましくは2200mL/hr/m/mmHg以下、さらには2000mL/hr/m2/mmHg以下が好ましい。透水性能(UFR)は下記の式で算出する。
UFR(mL/hr/m/mmHg)=Qw/(P×T×A)
ここで、Qw:濾過量(mL)、T:流出時間(hr)、 P:圧力(mmHg)、A:中空糸膜の内表面積(m
 中空糸膜において、分画性能の指標として、デキストラン篩い係数がある。デキストラン篩い係数とは、デキストラン水溶液を中空糸膜で濾過した際に、デキストランが膜を透過する割合であり、重量平均分子量毎に得られる値である。デキストラン篩い係数は次式で求められる。
 SC=2Cf/(Ci+Co)
ここで、SCはデキストラン篩い係数、Ciは分離膜に供給する水溶液の濃度、Coは濾過後に供給側に残った水溶液の濃度、Cfは濾液の濃度である。各分子量のデキストラン濃度は、ゲル濾過クロマトグラフィ法などの方法で測定できる。測定の際は、分子量と濃度の検量線を、分子量および濃度が既知のデキストラン溶液から得れば良い。各分子量に対するデキストラン篩い係数の値をプロットした分画曲線の傾きの絶対値、特に篩い係数が0.45から0.55の部分の分画曲線の傾きの絶対値が大きいほど、分離性能の高い中空糸膜と言える。分画曲線の傾きの絶対値は小数点第3位を四捨五入した値を用いる。分画曲線の傾きの絶対値は1.35以上が好ましく、より好ましくは1.40以上、さらには1.45以上であることが好ましい。また、デキストラン篩い係数が0.1となる分子量を分画分子量とする。
 本発明に係る多孔質膜をモジュールに内蔵する方法としては、特に限定されないが、多孔質膜が中空糸膜である場合について一例を示すと次の通りである。まず、中空糸膜を必要な長さに切断し、必要本数を束ねた後、筒状のケースに入れる。その後、両端に仮のキャップをし、中空糸膜両端部にポッティング剤を入れる。このとき遠心機でモジュールを回転させながらポッティング剤を入れる方法は、ポッティング剤が均一に充填できるため好ましい方法である。ポッティング剤が固化した後。中空糸膜の両端が開口するように両端部を切断する。ケースの両端にヘッダーを取り付け、ヘッダーおよびケースのノズル部分に栓をすることで中空糸膜モジュールを得る。中空糸膜モジュールの充填率は、透析液の流れを均一にするという観点から30~70%の範囲が好ましく、さらには40~60%の範囲が好ましい。
 多孔質膜の生体適合性やタンパク質のファウリングを抑制するために、膜の性能を変化させない範囲で、高分子などを表面に付与してもよい。例えば、膜表面を高分子で覆って中空糸膜の生体適合性を向上させる方法としては、中空糸製膜原液に添加する方法、中空糸膜製膜時の注入液に高分子を添加する方法や、中空糸膜製膜後に膜表面に高分子をコーティングする方法が挙げられる。特に限定はしないが、コーティングに使用する溶液としては水が好適に用いられる。ここでいう膜表面とは被処理液、例えば透析膜で言えば血液が接触する表面である。
 特にコーティングする際には、多孔質膜が疎水性高分子であり、コーティングに使用する高分子が親水性高分子である場合、疎水性高分子とコーティング液中の親水性高分子の吸着平衡定数が高い方が、多孔質膜の表面を一様に覆うことができる。したがって、コーティングに使用する親水性高分子は疎水性基を含有していることが好ましい。
 また、詳細は不明であるが、エステル基が膜表面に存在することで、タンパク質や血小板の付着が抑制されることから、高分子はエステル基を含有していることが好ましい。上記の観点からコーティングに使用する高分子は、酢酸ビニルなどのカルボン酸ビニルエステル、メチルアクリレート、メトキシエチルアクリレートなどのアクリル酸エステル、メチルメタクリレート、エチルメタクリレート、ヒドロキシエチルメタクリレートなどのメタクリル酸エステル、ケン化度が99%未満のポリビニルアルコールやビニルピロリドン・酢酸ビニル共重合体、ビニルピロリドン・ビニルカプロラクタム共重合体、ビニルピロリドン・ビニルアルコール共重合体などが挙げられるが、これらに限定されるものではない。中でも、ビニルピロリドン・酢酸ビニル共重合体が好ましい。
 例えば、エステル基含有高分子としてビニルピロリドンと酢酸ビニルの共重合体(6/4)であるコリドンVA64(BASF社)を用いた場合には、製膜原液中のVA64量は1~10重量%、口金温度としては20~60℃、乾式部の温度は10~60℃で相対湿度は70~95%RHが好適な範囲である。また、注入液にエステル基含有ポリマーを添加する場合には、注入液の組成比、注入液温度、製膜原液の組成などが影響を及ぼす。例えば、VA64の場合、注入液への添加量としては0.001~10重量%、注入液温度としては10~60℃、製膜原液の組成としてポリスルホン系ポリマー濃度は14~25重量%、またポリビニルピロリドンを用いる場合には2~10重量%が好ましい。VA64が膜内に拡散しないために、ポリスルホン系ポリマーの重量平均分子量は小さいほうが好ましく、10万以下、さらには5万以下のものが好適に用いられる。ポリスルホン系ポリマーにコーティング等の後処理をする場合には、コーティング液におけるエステル基含有ポリマーの濃度や、接触時間、コーティング時の温度が影響を及ぼす。例えば、VA64水溶液でコーティングする場合には、VA64濃度は1~5000ppm、接触時間は10秒以上、温度は10~80℃が好適である。また、コーティングをバッチ式ではなく連続的に行う場合には、VA64水溶液の流速は速いほうが均一にコーティング可能であるが、速すぎると十分な量をコーティングできないので、200~1000mL/minが好適な範囲である。 さらに、膜表面にコーティングした高分子は、放射線や熱処理、化学反応によって固定化することが好ましい。
 膜表面に存在するエステル基量はX線電子分光法(以下ESCAと記すことがある)により測定することが可能であり、エステル基由来の炭素ピーク面積百分率が0.1(原子数%)以上、好ましくは0.5(原子数%)以上、さらには1(原子数%)以上が好ましい。一方で、エステル基量が多すぎると膜性能の低下が見られることがあるので、10(原子数%)以下であり、5(原子数%)以下が好ましい。
 ESCAの測定方法は、測定角としては90°で測った値を用いる。測定角90°は表面からの深さが約10nmまでの領域が検出される。また、測定個所は3箇所の平均値を用いる。エステル基(COO)由来の炭素のピークはC1sのCHやC-C由来のメインピークから+4.0~4.2eVに現れるピークをピーク分割することによって求めることができる。全元素に対する該ピーク面積の割合を算出することで、エステル基由来の炭素量(原子数%)が求まる。より具体的には、C1sには、主にCHx,C-C,C=C,C-S由来の成分、主にC-O,C-N由来の成分、π-π*サテライト由来の成分、C=O由来の成分、COO由来の成分の5つの成分から構成される。従って、5つ成分でピーク分割を行う。COO由来の成分は、CHxやC-Cのメインピーク(285eV付近)から+4.0~4.2eVに現れるピークである。この各成分のピーク面積比は、小数点第2桁目を四捨五入し、算出する。C1sの炭素量(原子数%)から、COO由来の成分のピーク面積比を乗じることで求めることができる。ピーク分割の結果、0.4%以下であれば、検出限界以下とする。
 血液透析ろ過に使用する透析膜では、大量の液をろ過するため膜表面にタンパク質が堆積(ファウリング)し、除去性能の低下や膜間圧力差(TMP)の上昇が問題となる場合がある。上記のように、被処理液が接触する膜表面にエステル基を有する多孔質膜はタンパク質のファウリングも抑制することが可能であり、除去性能の低下やTMPの上昇を抑制できるため、好適である。
中空糸膜の使用時の経時的な膜性能安定性の指標として、アルブミンふるい係数(Sc-Alb)の経時変化を測定した。アルブミンは、生体に有用なタンパク質のひとつであり、近年の中空糸膜モジュールにおいては尿毒症蛋白質(低分子量蛋白質とも称される)を除去するための膜の大孔径化に伴いアルブミンの過剰な透過またはロスを抑制しつつそれより分子量の小さい低分子量蛋白質を透過させるような分画性を求められており、アルブミンのふるい係数が膜の分離性能を測るための代表的な指標となっている。すなわち、アルブミンふるい係数の経時的な変化を測定することによって、中空糸膜モジュールの性能の経時的な安定性を知ることができる。
 アルブミンふるい係数の経時的変化は以下のように実施する。クエン酸ナトリウムを添加した牛血液について、ヘマトクリット30%、総タンパク濃度6.5g/d l、37℃、2Lとなるよう調整した。透析装置としては、東レメディカル株式会社製 TR2000Sを用いた。
 透水装置の除水速度を10ml/(min・m)に設定する。Bi回路入口部を上記で調整した牛血液2L(37℃)の入った循環用ビーカーに入れ、Biポンプをスタート(流量200mL/min)し、Bo回路出口部から排出される液体を90秒間分を廃棄後、ただちにBo回路出口部および、Do回路出口部を循環用ビーカーに入れて循環状態とする。
 続いて透析装置の除水ポンプをスタートし、経時的にBiとBoおよびDoからそれぞれサンプリングを行う。経過時間ごとのアルブミン濃度を測定し、経過時間ごとのアルブミンふるい係数を下記式によって算出する。
   Sc-Alb(%)=CDo/(CBi+CBo)
 上式において、CDo=Do回路出口部のアルブミン濃度(g/ml)、CBo=Bo回路出口部のアルブミン濃度(g/ml)、CBi=Bi回路入口部のアルブミン濃度(g/ml)
 導血後5~10分後の値Aと60~240分の値Bの比率B/Aが大きい方がファウリング抑制能が高く、0.4以上が好ましく、より好ましくは0.5以上、さらに好ましくは0.6以上である。
 また、血液透析ろ過の前希釈条件で行う場合は、ヘマトクリット30%、総タンパク質濃度6.0g/dlの牛血液2.2Lに生理食塩水1.8Lを加えた牛血液を使用し、血液流量450mL/mi、除水速度200mL/minとし、上記と同様の操作を実施する。
 人工腎臓などの血液浄化用途で用いられる多孔質膜は滅菌することが必要であり、残留毒性の少なさや簡便さの点から、放射線滅菌法が多用されている。使用する放射線としては、α線、β線、γ線、X線、紫外線、電子線などが用いられる。中でも残留毒性の少なさや簡便さの点から、γ線や電子線が好適に用いられる。また、多孔質膜に取り込まれた親水性高分子は放射線の照射によって膜素材と架橋を起こすことで固定化でき、溶出物の低減にも繋がるため、放射線を照射することが好ましい。放射線の照射線量が低いと滅菌効果が低くなる、一方、照射線量が高いと親水性基含有ポリマーや膜素材などの分解が起き、生体適合性が低下する。そのため、照射線量は15kGy以上が好ましく、100kGy以下が好ましい。
(1)透水性能の測定
 多孔質膜が中空糸膜である場合の測定例を示す。
 中空糸膜40本を、直径約5mm、長さ17cmのハウジングに充填し、両端をコニシ(株)製エポキシ樹脂系化学反応形接着剤“クイックメンダー”(登録商標)でポッティングし、カットして開口することによって、中空糸膜モジュールを作製した。次いで、該モジュールの中空糸膜およびモジュール内部を蒸留水にて30分間洗浄した。中空糸膜内側に水圧100mmHgをかけ、中空糸膜外側に流出してくる単位時間当たりの濾過量を測定した。透水性(UFR)は下記式で算出した。
 UFR(mL/hr/mmHg/m)=Qw/(P×T×A)
ここで、Qw:濾過量(mL)、T:流出時間(hr)、P:圧力(mmHg)、A:中空糸膜の内表面積(m
(2)デキストラン篩い係数の測定方法
 多孔質膜が中空糸膜である場合の測定例を示す。
 (1)の測定で用いた中空糸膜モジュールを用いた。FULKA社製デキストラン平均分子量~1500(No.31394)、平均分子量~6000(No.31388)、平均分子量15000~20000(No.31387)、平均分子量~40000(No.31389)、平均分子量~60000(No.31397)、平均分子量~200000(No.31398)を各々0.5m/mL(溶質全体では3.0mg/mL)になるように蒸留水で溶解し、デキストラン水溶液(原液)を調製した。モジュールに対して、中空糸膜の内側に原液を流し、外側に濾過をかけた。原液の温度は37℃とし、原液流量が15mL/min、濾過流量が0.36mL/minとなるように流速を調整した。原液を通液してから15分後から23分後の、モジュール原液入り口液、出口液、および濾過液を採取し、GPCで濃度測定を行った。GPCは、サンプリングした水溶液を細孔径0.45μmのフィルターで濾過し、その濾液をGPC用カラム(東ソーTSK-gel-G3000PWXL)、カラム温度40℃、移動相として液体クロマトグラフィ用蒸留水を用い、流速1mL/min、サンプル打ち込み量100μLで分析を行い、示差屈折率計(東ソー社製、RI-8020)にてサンプリングレート0.01min、base-line-range4.5~11.0minで測定した。デキストラン重量平均分子量の検量線は、測定直前に単分散のデキストラン(FULKA社製デキストランスタンダードNo.31416、No.31417、No.31418、No.31420、No.31422)を用いて行った。各重量平均分子量の篩い係数(SC)は、モジュール原液入り口液のデキストラン濃度(Ci)、出口液のデキストラン濃度(Co)、濾過液のデキストラン濃度(Cf)から、下記式で算出した。
 SC = 2Cf/(Ci+Co)
 分離性能の指標として、分画曲線の傾き(s)の絶対値をSCが0.45の重量平均分子量(MW0.45)とSCが0.55の重量平均分子量(MW0.55)から次式で算出した。sの絶対値が大きいほど、分離性能が高い。sの値は小数点第3位を四捨五入した値を用いた。
 s = (0.45-0.55)/(logMW0.45-logMW0.55
 また、SCが0.1となる重量平均分子量を分画分子量とした。
(3)微量窒素分析法
 多孔質膜を主として構成する非結晶性高分子がポリスルホンであり、親水性高分子がポリビニルピロリドンである場合の例を示す。
 測定サンプルは多孔質膜を凍結粉砕後、常温で2時間減圧乾燥した後、分析に供した。測定装置、条件は以下の通り。
 測定装置: 微量窒素分析装置ND-100型(三菱化学株式会社製)
 電気炉温度(横型反応炉)
   熱分解部分:800℃
   触媒部分 :900℃
 メインO流量:300mL/min
 O流量:300mL/min
 Ar流量:400mL/min
 Sens:Low
 3回測定を行った結果の平均値を測定値(N)とし、有効数字は2桁とする。
 ポリスルホンは窒素原子を含有しないため、検出された窒素は全てポリビニルピロリドン由来となる。そのため、多孔質膜中のポリビニルピロリドン量は下記式にて算出できる。
 ポリビニルピロリドン量(重量%)=100×(N×111)/14
 (4)表面孔径の測定
 多孔質膜が中空糸膜であり、内表面が緻密層である場合の例を示す。
 中空糸膜を半筒状に切断し、内表面が露出している状態とした。中空糸膜内表面を走査型電子顕微鏡(SEM)(S-5500、株式会社日立ハイテクノロジー社製)にて50000倍で観察し、像をコンピュータに取り込んだ。
 孔の短径は、短軸方向に最も長い直径、長径は長軸方向に最も長い直径とした。任意に選んだ1μm×1μmの範囲に存在する全ての孔について画像処理ソフト(ImageJ、開発元 アメリカ国立衛生研究所)にて解析を行った。SEM画像を二値化処理し、空孔部が黒、構造部分が白となった画像を得た。解析画像内のコントラストの差によって、空孔部と構造部分をきれいに二値化できない場合は、空孔部を黒く塗りつぶしてから画像処理を行い、得られた解析範囲内の孔の短径および長径の値から、平均値、標準偏差を算出した。この際、ノイズをカットするために0.0001μm以下の面積の孔をデータから除外した。また、各孔において長径短径比を求め、長径短径比の平均値を算出した。多孔質膜が中空糸膜であり、外表面が緻密である場合は、中空糸外表面で同様の測定を行う。また、平膜の場合は孔径の小さい側の表面において同様の測定を行う。ただし、孔の大きさにより、顕微鏡の種類、倍率を適宜変更してよい。
 (5)表面の開孔率の測定
 (4)と同様の方法で多孔質膜の表面の観察を行い、得られたSEM像において任意に選んだ1μm×1μmの範囲に存在する全ての孔について二値化を行い、解析を行った。孔部分の総面積を読み取り、解析範囲の面積に対する百分率を算出して、開孔率とした。3カ所で同じ測定を行い、平均値を算出した。
 (6)反対側表面孔径の測定
 多孔質膜が中空糸膜であり、内表面が緻密層である場合の例を示す。
 中空糸膜外表面をSEM(日立社製 S-800型電界放出型走査電子顕微鏡FE-SEM)にて3000倍で観察し、像をコンピュータに取り込んだ。SEM画像において任意に選んだ20μm×20μmの範囲に存在する全て孔について画像処理ソフト(ImageJ、開発元 アメリカ国立衛生研究所)にて解析を行った。SEM画像を二値化処理し、空孔部が黒、構造部分が白となった画像を得た。解析画像解析画像内のコントラストの差によって、空孔部と構造部分をきれいに二値化できない場合は、空孔部を黒く塗りつぶしてから画像処理を行い、得られた解析範囲内の孔の短径および長径の値から、平均値を算出した。多孔質膜が中空糸膜であり、外表面が緻密である場合は、中空糸内表面で同様の測定を行う。また、平膜の場合は孔径の大きい側の表面において同様の測定を行う。ただし、孔の大きさにより、顕微鏡の種類、倍率を適宜変更してよい。
 [実施例1]
 ポリスルホン(ソルベイ社製“ユーデル”(登録商標)P-3500)16重量%、ポリビニルピロリドン(インターナショナルスペシャルプロダクツ社製;以下ISP社と略す K30)4重量%およびポリビニルピロリドン(ISP社製 K90)を2重量%、N,N-ジメチルアセトアミド77重量%、水1重量%の混合溶媒に加え、90℃で6時間加熱溶解し、製膜原液を得た。この製膜原液を二重管円筒型口金の環状スリットから吐出した。環状スリットの外径は0.5mm、内径は0.25mmとした。注入液として、N,N-ジメチルアセトアミド63重量%、水37重量%からなる溶液を内側の管より吐出した。口金は50℃に保温した。吐出された製膜原液は、露点26℃(温度30℃、湿度80%)の乾式部350mmを0.7秒で通過した後、40℃の水浴(凝固浴)に導き固化させた後に、凝固浴外の第1ローラーで30m/minの速度で引き取り、60℃の水浴で水洗した後、カセで巻き取った。原液の吐出量と注入液の吐出量を調整することで、糸径が内径198μm、膜厚40.5μmの中空糸膜状の多孔質膜を得た。ドラフト比は2.7、スリット断面積の中空糸膜断面積に対する比は4.9であった。
 透水性能測定、デキストラン篩い係数測定、表面の孔径測定、元素分析を行い、結果を表1に示した。本実施例の方法により製造した多孔質膜の表面の走査型電子顕微鏡(SEM)画像を図1に示した。
 表面の孔の短径の平均値および標準偏差が小さく、孔の短径に対して長径が大きい、非対称構造の多孔質膜が得られた。この多孔質膜は、透水性能が高く、かつ分画性能も高かった。
 [実施例2]
 口金の環状スリットの外径を0.73mm、内径を0.23mmにした以外は実施例1と同様の実験を行った。得られた中空糸膜状の多孔質膜の糸径は内径198μm、膜厚39μmであった。ドラフト比は7.6、スリット断面積の中空糸膜断面積に対する比は13.0であった。
 透水性能測定、デキストラン篩い係数測定、表面の孔径測定、元素分析を行い、結果を表1に示した。
 実施例1と同様に短径の平均値および標準偏差が小さく、透水性能、分画性能に優れた多孔質膜であった。
 [実施例3]
 注入液にN,N-ジメチルアセトアミド60重量%、水40重量%からなる溶液を用いた以外は、実施例2と同様の実験を行った。得られた中空糸膜状の多孔質膜は内径203μm、膜厚40μmであった。ドラフト比は7.6、スリット断面積の中空糸膜断面積に対する比は12.5であった。
 透水性能測定、デキストラン篩い係数測定、表面の孔径測定、元素分析を行い、結果を表1に示した。
 実施例1と同様に短径の平均値および標準偏差が小さく、透水性能、分画性能に優れた多孔質膜であった。
 [実施例4]
 口金環状スリットの外径を0.6mm、内径を0.25mmにした以外は実施例1と同様の実験を行った。得られた中空糸膜状の多孔質膜は内径185μm、膜厚40μmであった。ドラフト比は5.4、スリット断面積の中空糸膜断面積に対する比は8.4であった。
 透水性能測定、デキストラン篩い係数測定、表面の孔径測定、元素分析を行い、結果を表1に示した。
 口金環状スリットの内径が大きい場合、開孔率が低いため透水性はやや低めであるが、分画性能に優れた多孔質膜であった。
 [実施例5]
口金環状スリットの外径を0.6mm、内径を0.35mmにした以外は実施例1と同様の実験を行った。得られた中空糸膜状の多孔質膜は内径200μm、膜厚40μmであった。ドラフト比は3.1、スリット断面積の中空糸膜断面積に対する比は6.2であった。
 透水性能測定、デキストラン篩い係数測定、表面の孔径測定、元素分析を行い、結果を表1に示した。
 [実施例6]
 製膜原液の組成をポリスルホン(ソルベイ社製“ユーデル” (登録商標)P-3500)15重量%、ポリビニルピロリドン(ISP社製 K90)を5重量%、N,N-ジメチルアセトアミド80重量%、水1重量%とした以外は、実施例1と同様の実験を行った。得られた中空糸膜状の多孔質膜は内径200μm、膜厚40μmであった。ドラフト比は2.9、スリット断面積の中空糸膜断面積に対する比は4.9であった。透水性能測定、デキストラン篩い係数測定、表面の孔径測定、元素分析を行い、結果を表1に示した。
 [比較例1]
 口金環状スリットの外径を0.35mm、内径を0.25mmにした以外は、実施例1と同様の実験を行った。得られた中空糸膜状の多孔質膜は内径197μm、膜厚41μmであった。ドラフト比は0.76、スリット断面積の中空糸膜断面積に対する比は1.5であった。
 透水性能測定、デキストラン篩い係数測定、表面の孔径測定、元素分析を行い、結果を表1に示した。
 ドラフト比が小さく、スリット断面積比の中空糸膜断面積に対する比も小さいため、孔が十分に引き伸ばされていないため、透水性能がやや低く、短径の標準偏差が大きいため、分画性能も低い多孔質膜であった。
 [比較例2]
 原液吐出量と注入液吐出量を調整し、中空糸膜状の多孔質膜の内径を130μm、膜厚を26μmとした以外は、比較例1と同様の実験を行った。ドラフト比は1.3、スリット断面積の中空糸膜断面積に対する比は3.1であった。
 透水性能測定、デキストラン篩い係数測定、表面の孔径測定、元素分析を行い、結果を表1に示した。
 スリット断面積と中空糸膜の断面積比は大きいが吐出量を少なくしているためドラフト比が低くなっている。そのため、孔の引き伸ばし効果が不十分であり、短径の標準偏差が大きく、分画性能が低い多孔質膜であった。
 [比較例3]
 製膜原液の組成をポリスルホン(ソルベイ社製“ユーデル” (登録商標)P-3500)18重量%、N,N-ジメチルアセトアミド82重量%、水1重量%とした以外は、実施例1と同様の実験を行った。得られた中空糸膜状の多孔質膜は内径199μm、膜厚40μmであった。ドラフト比は2.65、スリット断面積の中空糸膜断面積に対する比は12.9であった。
 透水性能測定、デキストラン篩い係数測定、表面の孔径測定、元素分析を行い、結果を表1に示した。
 製膜原液に親水性高分子が含まれていないため、ドラフト比や断面積比を大きくしても孔の引き延ばし効果が不十分であり、短径の標準偏差が大きくなっている。それに伴い、分画性能も低い多孔質膜であった。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003

Claims (14)

  1.  親水性高分子の含有量が0.5重量%以上8重量%以下であり、
     一方の表面に形成された孔が以下の(A)及び(B)を満たす、血液浄化用途に用いられる多孔質膜。
    (A)孔の長径の短径に対する比の平均値が3以上
    (B)孔の短径の平均値が5nm以上20nm以下であり、その標準偏差が4nm以下
  2.  一方の表面に形成された孔が以下の(C)及び(D)を満たす、請求項1記載の多孔質膜。
    (C)孔の長径の短径に対する比の平均値が1.5以上
    (D)孔の短径の平均値が0.2μm以上0.6μm以下
  3.  前記(A)及び(B)を満たす孔のある表面の開孔率は、1%以上10%未満である、請求項1又は2記載の多孔質膜。
  4.  主成分の素材が非結晶性高分子である、請求項1~3のいずれか一項記載の多孔質膜。
  5.  前記非結晶性高分子は、ポリスルホン系高分子である、請求項4記載の多孔質膜。
  6.  前記親水性高分子がポリビニルピロリドン、ポリビニルアルコール、ポリエチレングリコールまたは、それらの共重合体である、請求項1~5のいずれかに記載の多孔質膜。
  7.  前記親水性高分子がポリビニルピロリドンまたはポリビニルピロリドンの共重合体である、請求項6に記載の多孔質膜。
  8.  前記多孔質膜のデキストラン分画曲線の傾きの絶対値が1.35以上である、請求項1~7のいずれかに記載の多孔質膜。
  9.  中空糸膜である、請求項1~8のいずれか一項記載の多孔質膜。
  10.  前記(A)及び(B)を満たす孔のある表面が内表面である、請求項9記載の多孔質膜。
  11.  請求項1~10のいずれか一項記載の多孔質膜が内蔵されてなる、血液浄化用モジュール。
  12.  口金に形成されたスリットから親水性高分子を含有する製膜原液を吐出する工程と、吐出された前記製膜原液が乾式部を通過した後に凝固浴において多孔質膜として固化させる工程と、を有する多孔質膜の製造方法において、
     前記スリットの断面積が、固化された前記多孔質膜の断面積の3倍以上30倍以下である、多孔質膜の製造方法。
  13.  前記製膜原液は、乾式部においても凝固作用を有する液体と接触し、
     前記液体は、前記製膜原液を構成する主成分の貧溶媒を含有している、請求項12に記載の多孔質膜の製造方法。
  14.  前記製膜原液に含有される親水性高分子の濃度は、前記製膜原液を構成する主成分の高分子の濃度の10重量%以上70重量%以下である、請求項12又は13に記載の多孔質膜の製造方法。
     
PCT/JP2014/075591 2013-09-30 2014-09-26 多孔質膜、多孔質膜を内蔵する血液浄化用モジュールおよび多孔質膜の製造方法 WO2015046411A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2014561622A JP6565187B2 (ja) 2013-09-30 2014-09-26 多孔質膜、多孔質膜を内蔵する血液浄化用モジュールおよび多孔質膜の製造方法
KR1020157035368A KR102230435B1 (ko) 2013-09-30 2014-09-26 다공질막, 다공질막을 내장하는 혈액 정화용 모듈 및 다공질막의 제조 방법
CN201480052712.6A CN105579077B (zh) 2013-09-30 2014-09-26 多孔膜、内置多孔膜的血液净化用模块以及多孔膜的制造方法
US14/913,919 US9993777B2 (en) 2013-09-30 2014-09-26 Porous membrane, blood purifying module incorporating porous membrane, and method for producing porous membrane
CA2921827A CA2921827C (en) 2013-09-30 2014-09-26 Porous membrane, blood purifying module incorporating porous membrane, and method for producing porous membrane
EP14848452.0A EP3053614B1 (en) 2013-09-30 2014-09-26 Porous membrane, blood purifying module incorporating porous membrane, and method for producing porous membrane
RU2016116946A RU2667068C2 (ru) 2013-09-30 2014-09-26 Пористая мембрана, модуль очистки крови, содержащий пористую мембрану, и способ получения пористой мембраны

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-203827 2013-09-30
JP2013203827 2013-09-30

Publications (1)

Publication Number Publication Date
WO2015046411A1 true WO2015046411A1 (ja) 2015-04-02

Family

ID=52743537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075591 WO2015046411A1 (ja) 2013-09-30 2014-09-26 多孔質膜、多孔質膜を内蔵する血液浄化用モジュールおよび多孔質膜の製造方法

Country Status (9)

Country Link
US (1) US9993777B2 (ja)
EP (1) EP3053614B1 (ja)
JP (1) JP6565187B2 (ja)
KR (1) KR102230435B1 (ja)
CN (1) CN105579077B (ja)
CA (1) CA2921827C (ja)
RU (1) RU2667068C2 (ja)
TW (1) TWI667048B (ja)
WO (1) WO2015046411A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017086264A1 (ja) * 2015-11-18 2017-05-26 三菱重工環境・化学エンジニアリング株式会社 膜モジュール、膜モジュールの製造方法、及び水処理システム
WO2017217446A1 (ja) * 2016-06-17 2017-12-21 旭化成株式会社 多孔質膜、及び多孔質膜の製造方法
EP3315190A4 (en) * 2015-06-23 2018-05-02 Asahi Kasei Medical Co., Ltd. Separation membrane for blood treatment, and blood treatment device incorporating separation membrane
CN109070011A (zh) * 2016-03-22 2018-12-21 东丽株式会社 中空丝膜

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2017307699B2 (en) * 2016-08-05 2022-03-24 Toray Industries, Inc. Biological component adhesion-suppressing material
CA3031075C (en) * 2016-08-05 2024-04-30 Toray Industries, Inc. Copolymer, and separation membrane, medical device, and blood purifier using the copolymer
RU2747972C2 (ru) * 2016-09-30 2021-05-18 Торэй Индастриз, Инк. Модуль разделительной мембраны
JPWO2020158451A1 (ja) * 2019-01-29 2020-08-06

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58114702A (ja) 1981-12-28 1983-07-08 Kuraray Co Ltd ポリスルホン中空繊維膜
JPS5964055A (ja) 1982-08-30 1984-04-11 三菱レイヨン株式会社 血液処理装置
JPS6193801A (ja) * 1984-07-17 1986-05-12 フレゼニウス アクチエンゲゼルシヤフト 非対称微孔性中空繊維の製造方法
JPS6475015A (en) 1987-09-18 1989-03-20 Terumo Corp Filter for separating leukocytes
JPH06165926A (ja) 1992-04-29 1994-06-14 Kuraray Co Ltd ポリスルホン系中空繊維膜とその製造方法
JPH09308685A (ja) 1996-03-21 1997-12-02 Kanegafuchi Chem Ind Co Ltd 血液浄化用中空糸膜及び血液浄化器
JP2005349093A (ja) * 2004-06-14 2005-12-22 Toyobo Co Ltd ポリスルホン系選択透過性中空糸膜
WO2010029908A1 (ja) 2008-09-10 2010-03-18 東レ株式会社 中空糸膜及び中空糸膜の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0247596B1 (en) * 1986-05-30 1992-08-12 Mitsubishi Rayon Co., Ltd. Porous membrane
RU2086296C1 (ru) * 1991-04-12 1997-08-10 Миннтек Корпорейшн Способ получения асимметричного микропористого полого волокна и асимметричное микропористое полое волокно
JP4211168B2 (ja) * 1999-12-21 2009-01-21 東レ株式会社 透析器の製造方法および滅菌法
ATE466649T1 (de) * 2001-07-24 2010-05-15 Asahi Kasei Kuraray Medical Co Hohlfasermembran zur reinigung von blut
MY145009A (en) * 2006-04-19 2011-12-15 Asahi Kasei Chemicals Corp Highly durable porous pvdf film, method of producing the same, and washing method and filtering method using the same
RU2440181C2 (ru) * 2006-08-10 2012-01-20 Курарэй Ко., Лтд. Пористая мембрана из винилиденфторидной смолы и способ ее получения
PL2332638T3 (pl) * 2008-09-26 2017-06-30 Asahi Kasei Kabushiki Kaisha Membrana porowata z pustego włókna do filtracji wgłębnej
JP5249737B2 (ja) * 2008-12-10 2013-07-31 旭化成メディカル株式会社 血液からウイルス及びサイトカインを除去するシステム
JP2011050881A (ja) * 2009-09-02 2011-03-17 Toyobo Co Ltd 中空糸膜の紡糸方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58114702A (ja) 1981-12-28 1983-07-08 Kuraray Co Ltd ポリスルホン中空繊維膜
JPS5964055A (ja) 1982-08-30 1984-04-11 三菱レイヨン株式会社 血液処理装置
JPS6193801A (ja) * 1984-07-17 1986-05-12 フレゼニウス アクチエンゲゼルシヤフト 非対称微孔性中空繊維の製造方法
JPS6475015A (en) 1987-09-18 1989-03-20 Terumo Corp Filter for separating leukocytes
JPH06165926A (ja) 1992-04-29 1994-06-14 Kuraray Co Ltd ポリスルホン系中空繊維膜とその製造方法
JPH09308685A (ja) 1996-03-21 1997-12-02 Kanegafuchi Chem Ind Co Ltd 血液浄化用中空糸膜及び血液浄化器
JP2005349093A (ja) * 2004-06-14 2005-12-22 Toyobo Co Ltd ポリスルホン系選択透過性中空糸膜
WO2010029908A1 (ja) 2008-09-10 2010-03-18 東レ株式会社 中空糸膜及び中空糸膜の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3053614A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3315190A4 (en) * 2015-06-23 2018-05-02 Asahi Kasei Medical Co., Ltd. Separation membrane for blood treatment, and blood treatment device incorporating separation membrane
WO2017086264A1 (ja) * 2015-11-18 2017-05-26 三菱重工環境・化学エンジニアリング株式会社 膜モジュール、膜モジュールの製造方法、及び水処理システム
JP2017094230A (ja) * 2015-11-18 2017-06-01 三菱重工環境・化学エンジニアリング株式会社 膜モジュール、膜モジュールの製造方法、及び水処理システム
KR20180067617A (ko) * 2015-11-18 2018-06-20 미츠비시 쥬코 칸쿄 카가쿠 엔지니어링 가부시키가이샤 막 모듈, 막 모듈의 제조 방법, 및 수처리 시스템
KR102010202B1 (ko) 2015-11-18 2019-08-12 미츠비시 쥬코 칸쿄 카가쿠 엔지니어링 가부시키가이샤 막 모듈, 막 모듈의 제조 방법, 및 수처리 시스템
CN109070011A (zh) * 2016-03-22 2018-12-21 东丽株式会社 中空丝膜
CN109070011B (zh) * 2016-03-22 2021-05-11 东丽株式会社 中空丝膜
WO2017217446A1 (ja) * 2016-06-17 2017-12-21 旭化成株式会社 多孔質膜、及び多孔質膜の製造方法
JPWO2017217446A1 (ja) * 2016-06-17 2019-03-14 旭化成株式会社 多孔質膜、及び多孔質膜の製造方法
US10974204B2 (en) 2016-06-17 2021-04-13 Asahi Kasei Kabushiki Kaisha Porous membrane and process for producing porous membrane
JP7014714B2 (ja) 2016-06-17 2022-02-01 旭化成株式会社 多孔質膜、及び多孔質膜の製造方法

Also Published As

Publication number Publication date
CN105579077B (zh) 2018-11-30
TWI667048B (zh) 2019-08-01
US20160220965A1 (en) 2016-08-04
CA2921827C (en) 2021-07-13
CA2921827A1 (en) 2015-04-02
US9993777B2 (en) 2018-06-12
CN105579077A (zh) 2016-05-11
TW201529109A (zh) 2015-08-01
EP3053614A4 (en) 2017-06-14
KR102230435B1 (ko) 2021-03-22
EP3053614B1 (en) 2023-09-06
RU2016116946A (ru) 2017-11-10
EP3053614A1 (en) 2016-08-10
KR20160065047A (ko) 2016-06-08
JPWO2015046411A1 (ja) 2017-03-09
JP6565187B2 (ja) 2019-08-28
RU2667068C2 (ru) 2018-09-14

Similar Documents

Publication Publication Date Title
JP6565187B2 (ja) 多孔質膜、多孔質膜を内蔵する血液浄化用モジュールおよび多孔質膜の製造方法
KR102144703B1 (ko) 중공사막 모듈, 중공사막의 제조 방법 및 중공사막 모듈의 제조 방법
CN100457242C (zh) 改良的除去中分子的透析膜
JP6036882B2 (ja) 分離膜および分離膜モジュール並びに分離膜の製造方法および分離膜モジュールの製造方法
JP6538058B2 (ja) 選択透過性非対称膜
JP2008534274A (ja) 濾過膜
JPWO2002009857A1 (ja) 改質された中空糸膜
JP5857407B2 (ja) 中空糸膜および中空糸膜の製造方法
TWI683933B (zh) 中空絲膜模組及其製造方法
WO2010133612A1 (en) Membranes having improved performance
US10888823B2 (en) Membrane with improved permeability and selectivity
JP3366040B2 (ja) ポリスルホン系半透膜およびその製造方法
JP3617194B2 (ja) 選択透過性分離膜及びその製造方法
JP2011092928A (ja) 分離膜および分離膜モジュール
JP3934340B2 (ja) 血液浄化器
JPH10230148A (ja) 半透膜
JP2012019891A (ja) 血液処理用の中空糸膜の製造方法
JP2017185221A (ja) 吸着カラム
JP5062773B2 (ja) 血液浄化器
JP6547518B2 (ja) 中空糸膜モジュール及びその製造方法
JP3334705B2 (ja) ポリスルホン系選択透過性中空糸膜
JP5226587B2 (ja) 高性能血液浄化器
JP2023008851A (ja) 分離膜モジュール
JP2003154240A (ja) ポリスルホン系血液浄化膜の製造方法およびポリスルホン系血液浄化膜
JP2009202134A (ja) 分離膜の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480052712.6

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2014561622

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14848452

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157035368

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014848452

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014848452

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2921827

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14913919

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016116946

Country of ref document: RU

Kind code of ref document: A