WO2015045769A1 - ガラス繊維強化熱可塑性樹脂成形体およびその製法 - Google Patents

ガラス繊維強化熱可塑性樹脂成形体およびその製法 Download PDF

Info

Publication number
WO2015045769A1
WO2015045769A1 PCT/JP2014/073273 JP2014073273W WO2015045769A1 WO 2015045769 A1 WO2015045769 A1 WO 2015045769A1 JP 2014073273 W JP2014073273 W JP 2014073273W WO 2015045769 A1 WO2015045769 A1 WO 2015045769A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass fiber
thermoplastic resin
reinforced thermoplastic
fiber reinforced
resin molded
Prior art date
Application number
PCT/JP2014/073273
Other languages
English (en)
French (fr)
Inventor
正義 中野
鈴木 淳一朗
日比野 委茂
圭 奥村
和佳子 道山
小宮 康宏
Original Assignee
住友理工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友理工株式会社 filed Critical 住友理工株式会社
Priority to DE112014001601.2T priority Critical patent/DE112014001601B4/de
Priority to MX2015009243A priority patent/MX2015009243A/es
Priority to CN201480042083.9A priority patent/CN105408400B/zh
Publication of WO2015045769A1 publication Critical patent/WO2015045769A1/ja
Priority to US14/729,540 priority patent/US10351693B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0001Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/043Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2309/00Use of inorganic materials not provided for in groups B29K2303/00 - B29K2307/00, as reinforcement
    • B29K2309/08Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/04Bearings
    • B29L2031/045Bushes therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/06Rods, e.g. connecting rods, rails, stakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/772Articles characterised by their shape and not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/342Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing only carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K

Definitions

  • the present invention relates to a glass fiber reinforced thermoplastic resin molded body in which strength is improved by dispersing glass fibers, and a method for producing the same, and more specifically, as a molded body having an annular structure such as a mount, a bush, and a torque rod.
  • the present invention relates to a glass fiber reinforced thermoplastic resin molded article that exhibits excellent performance and a method for producing the same.
  • Parts used in the engine room of automobiles are required to have properties such as strength under high-temperature and high-humidity conditions, water resistance, heat resistance, and calcium chloride resistance (because calcium chloride is used as a snow melting agent).
  • Such parts are generally made of metal, but in recent years, automotive parts using fiber reinforced resin (FRP) have been studied as an alternative to metal because of the need for weight reduction.
  • FRP fiber reinforced resin
  • the glass fiber reinforced thermoplastic resin obtained by dispersing glass fiber in a thermoplastic resin is excellent in versatility, processability, moldability, etc., and is excellent in cost. Application to is expected.
  • a molded body made of a glass fiber reinforced thermoplastic resin is usually produced by melting and kneading a thermoplastic resin and glass fiber to form a pellet, remelting it, and injection molding (for example, Patent Document 1). To 3).
  • the glass fiber breaks due to shear stress in the melt kneader at the time of pellet production, and the glass fiber is refined (fiber length is 0.5 mm or less), and further receiving shear stress during injection molding, the glass fiber is further refined. Therefore, there is a problem that the glass fiber in the molded body obtained in this way becomes too fine and the effect of improving the strength of the molded body is small.
  • the molded article having the annular structure made of the conventional glass fiber reinforced thermoplastic resin as described above has a problem that the mechanical strength particularly in a high temperature atmosphere or at the time of water absorption is lowered when it is molded into a thin wall.
  • the problem has been solved by forming a thick wall conventionally, but if this is done, there will be a problem that the effect of reducing the weight is small.
  • the present invention has been made in view of such circumstances, and is required for a molded article having excellent mechanical strength in a high-temperature atmosphere or at the time of water absorption and having an annular structure without taking measures such as forming a thick wall.
  • An object of the present invention is to provide a glass fiber reinforced thermoplastic resin molded article having sufficient strength such as strain resistance and a method for producing the same.
  • the present invention provides a glass fiber reinforced thermoplastic resin molded article having an annular structure, wherein glass fibers having fiber lengths shown in the following (A) to (D) are contained in the molded article.
  • a glass fiber reinforced thermoplastic resin molded article characterized by being dispersed at a ratio shown in the following (A) to (D) (ratio to the total number of fibrous fillers) is a first gist.
  • C 1.0 mm or more and less than 3.0 mm: 5 to 30%.
  • the present invention is a method for producing a glass fiber reinforced thermoplastic resin molded article according to the first aspect, wherein glass fiber and a thermoplastic resin are directly put into an injection molding machine, respectively, and by injection molding,
  • a second gist is a method for producing a glass fiber reinforced thermoplastic resin molded product, which obtains a target glass fiber reinforced thermoplastic resin molded product.
  • the present inventors have conducted intensive research to solve the above problems.
  • the present inventors pay attention to the length of the reinforcing fiber in the molded body in the glass fiber reinforced thermoplastic resin molded body having an annular structure, and as shown in the above (A) to (D),
  • the present invention has been reached by ascertaining that it will be provided.
  • the glass fiber reinforced thermoplastic resin molded article of the present invention has an annular structure, and has a fiber length as shown in the above (A) to (D) as a fibrous filler in the thermoplastic resin.
  • the fibers are dispersed in the proportions shown in the above (A) to (D). Therefore, without taking measures such as a thick wall design, it is excellent in mechanical strength in a high temperature atmosphere or at the time of water absorption, and can sufficiently have strength such as strain resistance required for a molded body having an annular structure.
  • the said molded object can exhibit the outstanding performance by setting it as bearing parts for motor vehicles, such as an engine mount, a bush, a torque rod, for example.
  • the glass fiber and the thermoplastic resin are directly put into an injection molding machine, respectively, and the glass fiber reinforced thermoplastic resin molded body of the present invention is obtained by the injection molding, and the above-mentioned (A) to As shown to (D), the glass fiber reinforced thermoplastic resin molding of this invention which has specific glass fiber length distribution can be manufactured favorably.
  • test piece produced in the Example (a) is a top view, (b) shows a side view.
  • the glass fiber reinforced thermoplastic resin molded body of the present invention has an annular structure.
  • “having an annular structure” may mean that a part of the molded body has an annular structure, or the entire molded body may exhibit an annular structure.
  • the term “annular” may be other than an annular shape, such as a pentagonal or hexagonal annular shape.
  • the glass fiber reinforced thermoplastic resin molded article of the present invention has a ratio (fiber) of glass fibers having fiber lengths shown in the following (A) to (D) shown in the following (A) to (D).
  • the ratio of the total number of the fillers is dispersed). By adjusting in this way, the residual stress due to the difference in fiber length is reduced. If many glass fibers having a fiber length of 3.0 mm or more (D) remain, the toughness required for the molded article having an annular structure is lost, stress concentration occurs, and the fracture strength decreases. Moreover, when there are too many ratios of fiber length 0.05 or more and less than 0.5 mm (A), the predominance by fiber reinforcement will be lost.
  • the ratio of the fiber length of 0.5 mm or more and less than 1.0 mm (B) and the ratio of the fiber length of 1.0 mm or more and less than 3.0 mm (C) are included in the ranges shown below. In this way, the effect of fiber reinforcement is great even in a high-temperature atmosphere or at the time of water absorption, and the strength of the molded body is improved.
  • A 0.05 mm or more and less than 0.5 mm: 40 to 80%.
  • B 0.5 mm or more and less than 1.0 mm: 15 to 40%.
  • C 1.0 mm or more and less than 3.0 mm: 5 to 30%.
  • D 3.0 mm to 1%.
  • the ratio of the glass fiber having the fiber length shown in the above (A) is 50 to 70%, and the ratio of the glass fiber having the fiber length shown in the above (B) is It is preferable that the ratio of the glass fiber having the fiber length shown in (C) is 20 to 40%, the ratio of the glass fiber having the fiber length shown in (D) is 1% or less.
  • the ratio of the glass fibers shown in the above (A) to (D) is the ratio to the total number of fibrous fillers as described above. For example, it is measured according to the glass fiber length distribution measuring method disclosed in JP-A-2002-5924. can do. That is, the molded body is ashed at a temperature of 500 to 700 ° C., and uniformly dispersed in water having a weight of 1000 times or more the weight of the glass fiber after ashing, and the weight of the glass fiber is 0 from the uniform dispersion.
  • the glass fiber in the molded body is taken out by dissolving the solvent with a solvent.
  • the glass fiber length distributions shown in the above (A) to (D) are distributed in the material (resin composition) of the molded body. It shows not the state of distribution but the distribution state in the said molded object (resin hardening body). The fiber length and the number of fibers are measured based on, for example, an image taken with a microscope.
  • the content ratio of all glass fibers in the glass fiber reinforced thermoplastic resin molding of the present invention is preferably in the range of 25 to 60% by weight, more preferably in the range of 40 to 55% by weight. That is, by setting in this way, a desired reinforcing effect can be obtained. This ratio can be measured at the stage of the molded body material because the fiber length is not related.
  • the weight average fiber length of the glass fiber dispersed in the glass fiber reinforced thermoplastic resin molded body is longer than the weight average fiber length of the glass fiber dispersed in the surface layer portion of the glass fiber reinforced thermoplastic resin molded body of the present invention. It is preferable that the length is longer and the difference is 0.1 mm or more. That is, by doing in this way, toughness is obtained in the surface layer portion (skin layer) with large displacement, the rigidity inside the molded body (core layer) that eventually breaks can be increased, and high fracture strength is obtained. Because it becomes like this.
  • the surface layer portion refers to a portion having a depth of up to 15% of the thickness of the molded body in the thickness direction from the surface of the molded body, and the inside of the molded body (core layer) The deeper part.
  • skin layer refers to a portion having a depth of up to 15% of the thickness of the molded body in the thickness direction from the surface of the molded body, and the inside of the molded body (core layer) The deeper part.
  • the weight average fiber length of the glass fibers dispersed in the surface layer portion of the glass fiber reinforced thermoplastic resin molded product is in the range of 0.4 to 1.5 mm, and the glass fiber reinforced thermoplastic resin molded product
  • the weight average fiber length of the glass fibers dispersed inside is preferably in the range of 0.5 to 2.8 mm, and more preferably the weight average fiber length of the glass fibers dispersed in the surface layer portion is 0.5.
  • the glass fiber dispersed in the molded body has a weight average fiber length in the range of 0.6 to 1.5 mm.
  • the weight average fiber length of the glass fiber of the said skin layer and core layer is measured as follows, for example. That is, about 3 g of samples from each layer were collected, heat-treated at a temperature of 500 to 700 ° C., incinerated, fibers were randomly selected from the residual fiber mass, and photographed with a microscope. Based on the above, the weight average fiber length of each layer is measured according to the following formula (1). Note that unclear fibers (less than 0.05 mm) and fibers cut from the image are excluded from the measurement.
  • the number average molecular weight (Mn) of the glass fiber reinforced thermoplastic resin molding of the present invention is preferably in the range of 18000 to 27000, more preferably in the range of 22000 to 25000.
  • the number average molecular weight (Mn) after molding is, for example, 0.1% by weight obtained by dissolving the molded body with 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP).
  • the resin solution can be determined by measuring with a gel permeation chromatography (GPC) measuring instrument.
  • the number average molecular weight (Mn) of the thermoplastic resin used in the glass fiber reinforced thermoplastic resin molding of the present invention is preferably in the range of 19000 to 28000, more preferably in the range of 22000 to 26000. That is, since there is a correlation between the molecular weight of the resin and the toughness, a minimum molecular weight is required for a cyclic product having a large influence of toughness. Further, the molecular weight has a correlation with the melt viscosity. If the molecular weight is too high, the fluidity is poor, and the molding stability of the annular portion in the molded article is deteriorated. Furthermore, if the molecular weight is too high, there is a concern that the reactivity between the resin and the fiber is reduced in direct molding.
  • thermoplastic resin used in the glass fiber reinforced thermoplastic resin molding of the present invention examples include polyamide resin, polypropylene resin, polystyrene resin, polycarbonate resin, acrylonitrile butadiene styrene copolymer resin (ABS resin), polyethylene terephthalate resin, and And polybutylene terephthalate resin.
  • ABS resin acrylonitrile butadiene styrene copolymer resin
  • polyethylene terephthalate resin polyethylene terephthalate resin
  • polybutylene terephthalate resin examples include polyamide resin, polypropylene resin, polystyrene resin, polycarbonate resin, acrylonitrile butadiene styrene copolymer resin (ABS resin), polyethylene terephthalate resin, and And polybutylene terephthalate resin.
  • polyamide resins are preferred from the viewpoints of strength, elasticity, melt viscosity and the like in a high temperature atmosphere.
  • polyamide resin examples include polyamide 6, polyamide 46, polyamide 66, polyamide 610, polyamide 612, polyamide 11, polyamide 12, polyamide 92, polyamide 99, polyamide 912, polyamide 1010, polyamide 6I, polyamide 6T, polyamide 9T, Polyamide 10T, Polyamide 11T, Polyamide MXD6, Polyamide 6T / 6I, Polyamide 6 / 6I, Polyamide 66 / 6T, Polyamide 66 / 6I, and components having different structures in at least two of the polyamide components constituting these polyamides A polyamide copolymer containing is used.
  • glass fiber used for the glass fiber reinforced thermoplastic resin molding of the present invention E glass (Electrical glass), C glass (Chemical glass), A glass (Alkali glass), S glass (High glass strength), And filamentary fibers obtained by melt spinning glass such as alkali-resistant glass.
  • the fiber diameter of the glass fiber is preferably 3 to 25 ⁇ m, more preferably 8 to 20 ⁇ m.
  • fibrous fillers such as an aramid fiber (AF) and a carbon fiber (CF) other than glass fiber, can also be contained.
  • AF aramid fiber
  • CF carbon fiber
  • the ratio is limited to the range excluding the glass fibers shown in the above (A) to (D) from the total number of fibrous fillers.
  • the material of the glass fiber reinforced thermoplastic resin molding of the present invention preferably further contains terpene phenol.
  • terpene phenol has high polarity, and is taken in by hydrogen bonding, especially in the amide group of polyamide resin, so that the molecular chain of the resin spreads and the viscosity decreases, improving moldability during injection molding (fiber length This is because miniaturization is prevented and a specific fiber length distribution as shown in the above (A) to (D) is easily obtained.
  • terpene phenol can reduce the reaction amount of the amide group of a polyamide resin and water, while suppressing the water absorption of a molded object, calcium chloride resistance comes to improve.
  • the content of terpene phenol is set to 1 to 10% by weight of the entire composition, thereby improving the moldability improvement effect during injection molding as described above and the resistance of the molded body.
  • the effect of improving water absorption and calcium chloride resistance can be obtained more.
  • the material of the glass fiber reinforced thermoplastic resin molding of the present invention includes, as necessary, a thermal stabilizer, an antioxidant, an inorganic filler, a crystal nucleating agent, a pigment, a weathering material, a plasticizer, a lubricant, and the like. May be added as appropriate.
  • the glass fiber reinforced thermoplastic resin molding of the present invention is produced, for example, as follows.
  • the required amount of glass fiber and thermoplastic resin can be directly injected into an injection molding machine for each shot, and the desired glass fiber reinforced thermoplastic resin molding can be obtained by injection molding. it can.
  • a specific glass fiber length distribution as in the present invention is obtained. Is very difficult. That is, since the direct molding as described above omits the kneading step, the fiber length of the glass fiber is prevented from being refined, and a specific fiber length distribution as shown in the above (A) to (D) is easily obtained. Because it can.
  • the heat history is less than that of the conventional pellet manufacturing method, the decrease in molecular weight at the time of molding is small, which can greatly contribute to the improvement of the strength of the obtained annular product.
  • the terpene phenol is directly added to the injection molding machine, and injection molding improves the moldability during injection molding due to a decrease in viscosity. preferable.
  • the fiber length of the glass fiber used in the production method of the present invention is usually 2 to 6 mm, and preferably 3 mm.
  • the glass fiber reinforced thermoplastic resin molded article of the present invention obtained as described above is excellent in mechanical strength in a high temperature atmosphere or at the time of water absorption without taking measures such as forming a thick wall, and has an annular structure.
  • it is preferably used as a bearing component for automobiles because it has sufficient strength such as strain resistance required for the molded product.
  • the bearing parts for automobiles include those used for supporting shafts and those used for bearings of rotating shafts.
  • mission mounts body mounts, cab mounts, member mounts, differential mounts, connecting rods, torque rods, torsional dampers, steering rubber couplings, tension rod bushings, bushings, bound stoppers, FFs for vehicles such as automobiles It is preferably used as a bearing component for automobiles having an annular structure such as an engine roll stopper, a muffler hanger, a stabilizer link rod, a radiator support, a control arm, and a suspension arm.
  • annular structure such as an engine roll stopper, a muffler hanger, a stabilizer link rod, a radiator support, a control arm, and a suspension arm.
  • PA (i) Polyamide 66 (PA66) pellets with a number average molecular weight (Mn) of 25000 (Leona 1402S manufactured by Asahi Kasei Chemicals)
  • PA (ii) Polyamide 66 (PA66) pellets having a number average molecular weight (Mn) of 21000 (Amilan CM3007, manufactured by Toray Industries, Inc.)
  • [GF (i)] A glass roving with a diameter of 17 ⁇ m (T-429N, manufactured by Nippon Electric Glass Co., Ltd.) cut to a length of 3 mm.
  • [GF (ii)] A glass roving with a diameter of 17 ⁇ m (T-429N, manufactured by Nippon Electric Glass Co., Ltd.) cut to a length of 10 mm.
  • Short fiber reinforced PA Short fiber reinforced PA66GF50 (Mn: 25000) (manufactured by Asahi Kasei Chemicals, Leona 14G50B)
  • Long fiber reinforced PA Long fiber reinforced PA66GF50 (Mn: 18500) (manufactured by Daicel Polymer Co., Ltd., Plastron PA66-GF50-01)
  • Short fiber reinforced PP Short fiber reinforced PP66GF50 (manufactured by Sumitomo Chemical Co., Ltd., Smithtran PG5003)
  • Long fiber reinforced PP Long fiber reinforced PPGF50 (Daicel Polymer, Plastron PP-GF50-02)
  • Examples 1 to 4, Comparative Examples 1 to 6 Each of the above materials is directly charged into an injection molding machine in the proportions shown in Table 1 and Table 2 below, and injection molded under the molding conditions shown below.
  • a top view (a) and a side view (b) in FIG. A test piece (torque rod) having the shape and dimensions shown in FIG. "Molding condition"
  • Cylinder temperature 310 °C ⁇ 10 °C ⁇ Mold temperature: 80 °C ⁇ 20 °C ⁇
  • Injection speed 39 ⁇ 5 cm 2 / sec -Holding pressure: 80 MPa
  • Screw back pressure 5MPa
  • the test piece was heat-treated at 600 ° C. for 3 hours in an electric furnace (manufactured by Yamato Kagaku Co., Ltd., MuffleFurnaceFO810) to be incinerated. Then, fibers are randomly selected from the residual fiber lump and photographed with a microscope (manufactured by KEYENCE, VHW-1000) at a magnification of 50 to 100 (number of photographed images is 3 to 5 and the total number of fibers is 300 to 300). The total length of the glass fibers was measured, and the ratio (%) of those corresponding to the following (A) to (D) was determined with respect to the total number.
  • fibers are randomly selected from the residual fiber lump and photographed with a microscope (manufactured by KEYENCE, VHW-1000) at a magnification of 50 to 100 (number of photographed images is 3 to 5 and the total number of fibers is 300 to 300). 500 were observed), and the weight average fiber length of the skin layer and the core layer was measured according to the following formula (1) based on the image. Note that unclear fibers (less than 0.05 mm) and fibers cut from the image were excluded from the measurement.
  • a 0.1 wt% resin solution obtained by dissolving the test piece with 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) was added to a GPC measuring instrument (manufactured by TOSOH: EcoSEC).
  • the number average molecular weight (Mn) of the test piece was determined by measuring with HLC-8320GPC.
  • test pieces of Examples 1 to 3 have higher fracture strength than normal test pieces of Comparative Examples 1 to 4 even at room temperature and in a high temperature atmosphere.
  • test piece of Example 4 also has higher fracture strength at room temperature and in a higher temperature atmosphere than the test pieces of Comparative Examples 5 and 6.
  • the glass fiber reinforced thermoplastic resin molded article of the present invention has excellent mechanical strength in a high-temperature atmosphere or at the time of water absorption without taking measures such as forming a thick wall, and is required to have a strain resistance required for a molded article having an annular structure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

 環状構造を有するガラス繊維強化熱可塑性樹脂成形体であって、上記成形体中に、下記(A)~(D)に示す繊維長のガラス繊維が下記(A)~(D)に示す割合(繊維状フィラー全体数に対する割合)で分散されている。このため、厚肉に成形する等の対処を行わなくとも、高温雰囲気中や吸水時の機械的強度に優れ、環状構造を有する成形体に求められる歪み耐性等の強度を充分に備えた、ガラス繊維強化熱可塑性樹脂成形体およびその製法を提供することができる。 (A)0.05mm以上0.5mm未満:40~80%。 (B)0.5mm以上1.0mm未満:15~40%。 (C)1.0mm以上3.0mm未満:5~30%。 (D)3.0mm以上:1%以下。

Description

ガラス繊維強化熱可塑性樹脂成形体およびその製法
 本発明は、ガラス繊維を分散させて強度を向上させたガラス繊維強化熱可塑性樹脂成形体およびその製法に関するものであり、詳しくは、マウント,ブッシュ,トルクロッド等の、環状構造を有する成形体として優れた性能を発揮するガラス繊維強化熱可塑性樹脂成形体およびその製法に関するものである。
 自動車のエンジンルーム内に使用される部品には、高温多湿条件下での強度、耐水性、耐熱性、耐塩化カルシウム性(塩化カルシウムが融雪剤に使用されているため)などの特性が求められる。このような部品は、従来、金属製のものが一般的であったが、近年、軽量化のニーズから、金属に代替するものとして繊維強化樹脂(FRP)を用いた自動車用部品が検討されている。なかでも、熱可塑性樹脂にガラス繊維を分散させてなるガラス繊維強化熱可塑性樹脂は、汎用性、加工性、成形性等に優れており、コスト面でも優れていることから、上記のような用途への適用が期待されている。ガラス繊維強化熱可塑性樹脂からなる成形体は、通常、熱可塑性樹脂とガラス繊維とを溶融混練してペレット化し、それを再溶融して射出成形等することにより製造される(例えば、特許文献1~3参照)。
特開2012-25844号公報 特開2003-285323号公報 特開2010-189637号公報 WO2012/124060号公報
 しかしながら、上記のように一旦ペレット化して目的とする成形体を作製する場合、そのペレット作製時に際して溶融混練機内でガラス繊維がせん断応力を受けて折損し、上記ガラス繊維が微細化(繊維長は0.5mm以下)し、さらに、射出成形時のせん断応力を受けて、上記ガラス繊維がより微細化する。そのため、このようにして得られた成形体内のガラス繊維は微細になり過ぎて、成形体の強度向上効果が小さいといった問題がある。
 そこで、長繊維強化樹脂ペレット(引抜き製法で作製した繊維長の長いガラス繊維を含有するペレット)を用いることが検討されている。しかしながら、このようにすると、成形性に悪影響をおよぼし、さらに、マウント,ブッシュ,トルクロッド等の、環状構造を有する成形体を製造する場合、その長い繊維による残留応力が大きくなり、さらに樹脂のガラス繊維への浸透性を高めるため分子量の低い樹脂を使用しなければならなくなることから、成形体に充分な強度が得られないといった問題がある。また、先の特許文献2,3のように、長繊維強化樹脂ペレットと短繊維強化樹脂ペレットを混合して成形する方法も提案されているが、そのようにすると、成形性は改善されるものの、繊維長分布が二極化するため、残留応力の解決には至っていない。
 また、上記のような従来のガラス繊維強化熱可塑性樹脂からなる環状構造を有する成形体は、薄肉に成形した際、特に高温雰囲気中や吸水時の機械的強度が低下する問題がある。このような場合、従来、厚肉に成形してその問題を解消してきたが、このようにすると、軽量化効果が小さいといった問題が生じる。
 また、特許文献4のように、繊維強化樹脂からなるスキン層とコア層とを、双方の曲げ弾性率が異なるようそれぞれの材料を調整し、サンドイッチ成形により、目的とする成形体を得、上記問題を解消する方法も提案されている。しかしながら、サンドイッチ成形体には層界面が存在するため、充分な強度が得られない懸念がある。また、サンドイッチ成形を行うには、専用の成形機も必要であるため、製造コストの増大も懸念される。
 本発明は、このような事情に鑑みなされたもので、厚肉に成形する等の対処を行わなくとも、高温雰囲気中や吸水時の機械的強度に優れ、環状構造を有する成形体に求められる歪み耐性等の強度を充分に備えた、ガラス繊維強化熱可塑性樹脂成形体およびその製法の提供をその目的とする。
 上記の目的を達成するため、本発明は、環状構造を有するガラス繊維強化熱可塑性樹脂成形体であって、上記成形体中に、下記(A)~(D)に示す繊維長のガラス繊維が下記(A)~(D)に示す割合(繊維状フィラー全体数に対する割合)で分散されていることを特徴とするガラス繊維強化熱可塑性樹脂成形体を第一の要旨とする。
(A)0.05mm以上0.5mm未満:40~80%。
(B)0.5mm以上1.0mm未満:15~40%。
(C)1.0mm以上3.0mm未満:5~30%。
(D)3.0mm以上:1%以下。
 また、本発明は、上記第一の要旨のガラス繊維強化熱可塑性樹脂成形体の製法であって、ガラス繊維と、熱可塑性樹脂とを、射出成形機にそれぞれ直接投入し、その射出成形により、目的とするガラス繊維強化熱可塑性樹脂成形体を得る、ガラス繊維強化熱可塑性樹脂成形体の製法を第二の要旨とする。
 すなわち、本発明者らは、前記課題を解決するため鋭意研究を重ねた。その結果、本発明者らは、環状構造を有するガラス繊維強化熱可塑性樹脂成形体において、成形体中の強化繊維の長さに注目し、上記(A)~(D)に示すように特定のガラス繊維長分布を持つことで、厚肉設計等の対処を行わなくとも、高温雰囲気中や吸水時の機械的強度に優れ、環状構造を有する成形体に求められる歪み耐性等の強度を充分に備えるようになることを突き止め、本発明に到達した。
 なお、ガラス繊維と熱可塑性樹脂との混合物を一旦ペレット化したものを材料として射出成形等を行い、成形体を得るといった従来の方法では、上記のような特定のガラス繊維長分布を得ることは困難である。そこで、ガラス繊維と、熱可塑性樹脂とを、射出成形機にそれぞれ直接投入し、その射出成形により、目的とするガラス繊維強化熱可塑性樹脂成形体を得る製法を適用したところ、上記(A)~(D)に示すように特定のガラス繊維長分布を持つ成形体を製造することが容易になることを、本発明者らは突き止めた。
 以上のように、本発明のガラス繊維強化熱可塑性樹脂成形体は、環状構造を有しており、熱可塑性樹脂中の繊維状フィラーとして、前記(A)~(D)に示す繊維長のガラス繊維が前記(A)~(D)に示す割合で分散されている。そのため、厚肉設計等の対処を行わなくとも、高温雰囲気中や吸水時の機械的強度に優れ、環状構造を有する成形体に求められる歪み耐性等の強度を充分に備えることができる。そして、上記成形体は、例えば、エンジンマウント,ブッシュ,トルクロッド等の自動車用軸受け部品とすることにより、優れた性能を発揮することができる。
 また、ガラス繊維と、熱可塑性樹脂とを、射出成形機にそれぞれ直接投入し、その射出成形により、本発明のガラス繊維強化熱可塑性樹脂成形体を得るといった特殊な製法により、前記(A)~(D)に示すように特定のガラス繊維長分布を持つ本発明のガラス繊維強化熱可塑性樹脂成形体を、良好に製造することができる。
実施例で作製したテストピースの構造図であり、(a)は上面図、(b)は側面図を示す。
 つぎに、本発明の実施の形態を詳しく説明する。
 本発明のガラス繊維強化熱可塑性樹脂成形体は、環状構造を有している。ここで、「環状構造を有する」とは、その成形体の一部に環状構造を有するものであっても、その成形体全体が環状構造を示すものであってもよい。さらに、環状とは、円環状以外にも、五角形や六角形等の角形の環状のものであってもよい。
 そして、本発明のガラス繊維強化熱可塑性樹脂成形体は、その成形体中に、下記(A)~(D)に示す繊維長のガラス繊維が下記(A)~(D)に示す割合(繊維状フィラー全体数に対する割合)で分散されている。このように調整することで、繊維長の差による残留応力が小さくなる。なお、繊維長3.0mm以上(D)のガラス繊維が多く残存すると、環状構造を有する成形体に必要とされる靭性が失われると共に応力集中が起こり、破壊強度が低下する。また、繊維長0.05以上0.5mm未満(A)の割合が多すぎると、繊維強化による優位性がなくなる。残留応力を抑えるためには、繊維長0.5mm以上1.0mm未満(B)の割合と、繊維長1.0mm以上3.0mm未満(C)の割合とが、下記に示す範囲で含むことが最適であり、このようにすることにより、高温雰囲気中や吸水時においても繊維強化の効果が大きく、成形体の強度が向上するようになる。
(A)0.05mm以上0.5mm未満:40~80%。
(B)0.5mm以上1.0mm未満:15~40%。
(C)1.0mm以上3.0mm未満:5~30%。
(D)3.0mm以上:1%以下。
 特に、高温雰囲気中や吸水時の機械的強度により優れることから、上記(A)に示す繊維長のガラス繊維の割合が50~70%、上記(B)に示す繊維長のガラス繊維の割合が20~40%、上記(C)に示す繊維長のガラス繊維の割合が10~30%、上記(D)に示す繊維長のガラス繊維の割合が1%以下であることが好ましい。
 上記(A)~(D)に示すガラス繊維の割合は、上記のように繊維状フィラー全体数に対する割合であり、例えば、特開2002-5924号公報に開示のガラス繊維長分布測定方法に従い測定することができる。すなわち、上記成形体を、500~700℃の温度で灰化させ、灰化後のガラス繊維の重量の1000倍以上の重量の水中に均一分散させ、その均一分散液からガラス繊維の重量が0.1~2mgの範囲になるように均一分散液の一部を取り出し、ろ過または乾燥により上記均一分散液の一部からガラス繊維を取り出し、ガラス繊維の全数について繊維長を測定し、その全数に対し、上記(A)~(D)に該当するものの割合(%)が求められる。なお、上記のように水中に分散させずに、灰化させた残渣の繊維塊からランダムに繊維を選び、それをもとに上記測定を行ってもよい。また、上記公報に開示のガラス繊維長分布測定方法では、成形体のポリマーである熱可塑性樹脂を高温で溶融・灰化させて、成形体中のガラス繊維を取り出しているが、上記熱可塑性樹脂を溶剤で溶かして、成形体中のガラス繊維を取り出すといった方法をとってもよい。なお、上記公報に開示のガラス繊維長分布測定方法からも明らかなように、上記(A)~(D)に示すガラス繊維長分布は、上記成形体の材料(樹脂組成物)中の分布状態を示すものではなく、上記成形体(樹脂硬化体)中の分布状態を示すものである。また、上記繊維長や繊維数の測定は、例えば、マイクロスコープにて撮影した画像をもとに行われる。
 一方、本発明のガラス繊維強化熱可塑性樹脂成形体中の全てのガラス繊維の含有割合は、25~60重量%の範囲であることが好ましく、より好ましくは40~55重量%の範囲である。すなわち、このように設定することにより、所望の補強効果が得られるからである。なお、この割合は、繊維長は関係ないため、成形体材料の段階で測定することができる。
 また、本発明のガラス繊維強化熱可塑性樹脂成形体の表層部に分散されたガラス繊維の重量平均繊維長よりも、ガラス繊維強化熱可塑性樹脂成形体の内部に分散されたガラス繊維の重量平均繊維長の方が長く、その差が0.1mm以上であることが好ましい。すなわち、このようにすることにより、変位が大きい表層部(スキン層)では靭性が得られ、最終的に破壊する成形体内部(コア層)の剛性を上げることができ、高い破壊強度が得られるようになるからである。ここで、表層部(スキン層)とは、成形体表面から厚み方向に、その箇所の成形体厚みの15%までの深さの部分のことをいい、成形体内部(コア層)とは、それより深い部分のことをいう。なお、上記成形体を、射出成形により成形し、かつ前記(A)~(D)に示すような特定のガラス繊維長分布を持つことで、このような構造になりやすくなる。
 そして、上記観点から、ガラス繊維強化熱可塑性樹脂成形体の表層部に分散されたガラス繊維の重量平均繊維長が0.4~1.5mmの範囲であり、ガラス繊維強化熱可塑性樹脂成形体の内部に分散されたガラス繊維の重量平均繊維長が0.5~2.8mmの範囲であることが好ましく、より好ましくは、上記表層部に分散されたガラス繊維の重量平均繊維長が0.5~1.0mmの範囲であり、上記成形体内部に分散されたガラス繊維の重量平均繊維長が0.6~1.5mmの範囲である。このようにすることにより、変位が大きい表層部(スキン層)ではより靭性が得られ、最終的に破壊する成形体内部(コア層)の剛性をより上げることができ、より高い破壊強度が得られるようになる。
 なお、上記スキン層およびコア層のガラス繊維の重量平均繊維長は、例えば、次のようにして測定される。すなわち、各層からのサンプル3g程度を採取し、それを、500~700℃の温度で熱処理し、灰化させ、その残渣の繊維塊からランダムに繊維を選び、マイクロスコープにて撮影し、その画像をもとに、下記の式(1)に従い、各層の重量平均繊維長を測定する。なお、不鮮明な繊維(0.05mm未満)や、画像から切れている繊維は測定から除外する。
Figure JPOXMLDOC01-appb-M000001
 本発明のガラス繊維強化熱可塑性樹脂成形体の数平均分子量(Mn)は、18000~27000の範囲であることが好ましく、より好ましくは22000~25000の範囲である。成形後の数平均分子量(Mn)は、例えば、その成形体を1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール(HFIP)により溶解させて得られた0.1重量%の樹脂溶液を、ゲル浸透クロマトグラフィー(GPC)測定器により測定し、求めることができる。
 本発明のガラス繊維強化熱可塑性樹脂成形体に用いられる熱可塑性樹脂としては、その数平均分子量(Mn)が19000~28000の範囲であることが好ましく、より好ましくは22000~26000の範囲である。すなわち、樹脂の分子量と靭性には相関があるため、靭性の影響が大きい環状製品では最低限の分子量が必要だからである。また、分子量は溶融粘度とも相関があり、分子量が高すぎると流動性が悪く、上記成形体における環状部の成形安定性が悪くなる。さらに、分子量が高すぎると、直接成形において、樹脂と繊維との反応性が低下する懸念がある。
 本発明のガラス繊維強化熱可塑性樹脂成形体に用いられる熱可塑性樹脂としては、例えば、ポリアミド樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ポリカーボネート樹脂、アクリロニトリルブタジエンスチレン共重合樹脂(ABS樹脂)、ポリエチレンテレフタレート樹脂、およびポリブチレンテレフタレート樹脂等があげられる。なかでも、高温雰囲気中での強度、弾性、溶融粘度等の観点から、ポリアミド樹脂が好ましい。
 上記ポリアミド樹脂としては、例えば、ポリアミド6、ポリアミド46、ポリアミド66、ポリアミド610、ポリアミド612、ポリアミド11、ポリアミド12、ポリアミド92、ポリアミド99、ポリアミド912、ポリアミド1010、ポリアミド6I、ポリアミド6T、ポリアミド9T、ポリアミド10T、ポリアミド11T、ポリアミドMXD6、ポリアミド6T/6I、ポリアミド6/6I、ポリアミド66/6T、ポリアミド66/6I、およびこれらのポリアミドを構成するポリアミド成分の内の少なくとも2種類の構造が異なった成分を含むポリアミド共重合体が用いられる。
 また、本発明のガラス繊維強化熱可塑性樹脂成形体に用いられるガラス繊維としては、Eガラス(Electrical glass)、Cガラス(Chemical glass)、Aガラス(Alkali glass)、Sガラス(High strength glass)、及び耐アルカリガラス等のガラスを溶融紡糸して得られるフィラメント状の繊維があげられる。ガラス繊維の繊維径は、好ましくは3~25μm、より好ましくは8~20μmである。
 なお、上記成形体中には、ガラス繊維の他、アラミド繊維(AF)、カーボン繊維(CF)等の繊維状フィラーを含有させることもできる。但し、その割合は、繊維状フィラー全体数から前記(A)~(D)に示すガラス繊維を除いた範囲内に限られる。
 また、本発明のガラス繊維強化熱可塑性樹脂成形体の材料には、その他、テルペンフェノールを含有することが好ましい。すなわち、テルペンフェノールは極性が高く、特にポリアミド樹脂のアミド基中に水素結合によって取り込まれるため、樹脂の分子鎖が広がり、粘度が低下するようになり、射出成形時の成形性改善(繊維長の微細化を防ぎ、前記(A)~(D)に示すような特定の繊維長分布を得やすくする)に寄与するようになるからである。また、テルペンフェノールは、ポリアミド樹脂のアミド基と水との反応量を低下させることができるため、成形体の吸水性が抑えられるとともに、耐塩化カルシウム性が向上するようになる。
 熱可塑性樹脂にポリアミド樹脂を用いる場合、テルペンフェノールの含有量を、組成物全体の1~10重量%とすることにより、上記のような、射出成形時の成形性改善効果や、成形体の耐吸水性、耐塩化カルシウム性の改善効果が、より得られるようになる。
 なお、本発明のガラス繊維強化熱可塑性樹脂成形体の材料には、必要に応じて、熱安定剤、酸化防止剤、無機充填剤、結晶核剤、顔料、耐候材、可塑剤、潤滑材等を適宜添加してもよい。
 つぎに、本発明のガラス繊維強化熱可塑性樹脂成形体は、例えば以下のようにして作製される。
 すなわち、ガラス繊維と、熱可塑性樹脂とを、1ショット毎に、その必要量を射出成形機にそれぞれ直接投入し、その射出成形により、目的とするガラス繊維強化熱可塑性樹脂成形体を得ることができる。なお、ガラス繊維と熱可塑性樹脂との混合物を一旦ペレット化したものを材料として射出成形等を行い、成形体を得るといった従来の方法では、本発明のような特定のガラス繊維長分布を得ることは非常に困難である。つまり、上記のような直接成形は、混練工程を省略することから、ガラス繊維の繊維長の微細化を防ぎ、前記(A)~(D)に示すような特定の繊維長分布を得やすくすることができるからである。また、この製法では、従来のペレット製法に比べ、熱履歴が1回少ないことから、成形時の分子量低下が小さく、得られる環状製品の強度向上に大きく寄与することができる。
 特に、上記の本発明の製法において、その射出成形機に、さらにテルペンフェノールを直接投入し、射出成形することが、粘度の低下による射出成形時の成形性改善がよりなされるようになるため、好ましい。
 上記の本発明の製法に用いられるガラス繊維の繊維長は、通常、2~6mmのものが用いられ、3mmの繊維長のものが好ましい。
 上記のようにして得られた本発明のガラス繊維強化熱可塑性樹脂成形体は、厚肉に成形する等の対処を行わなくとも、高温雰囲気中や吸水時の機械的強度に優れ、環状構造を有する成形体に求められる歪み耐性等の強度を充分に備えていることから、例えば、自動車用軸受け部品として好ましく用いられる。自動車用軸受け部品とは、支軸用途に用いるものや、回転軸の軸受け用途に用いるものがあげられる。具体的には、自動車等の車両用のミッションマウント、ボディマウント、キャブマウント、メンバーマウント、デフマウント、コンロッド、トルクロッド、トーショナルダンパー、ステアリングラバーカップリング、テンションロッドブッシュ、ブッシュ、バウンドストッパー、FFエンジンロールストッパー、マフラーハンガー、スタビライザーリンクロッド、ラジエーターサポート、コントロールアーム、サスペンションアームといった、環状構造を有する自動車用軸受け部品として好ましく用いられる。
 つぎに、実施例について比較例と併せて説明する。ただし、本発明は、その要旨を超えない限り、これら実施例に限定されるものではない。
 まず、実施例および比較例に先立ち、下記に示す材料を準備した。
〔PA(i)〕
 数平均分子量(Mn)が25000のポリアミド66(PA66)ペレット(旭化成ケミカルズ社製、レオナ1402S)
〔PA(ii)〕
 数平均分子量(Mn)が21000のポリアミド66(PA66)ペレット(東レ社製、アミランCM3007)
〔PP(i)〕
 ポリプロピレン(PP)ペレット(住友化学社製、住友ノーブレンAZ564)
〔GF(i)〕
 φ17μmのガラスロービング(日本電気硝子社製、T-429N)をカット長3mmにカットしたもの。
〔GF(ii)〕
 φ17μmのガラスロービング(日本電気硝子社製、T-429N)をカット長10mmにカットしたもの。
〔GF(iii)〕
 カット長3mmにカットされた、φ13μmのガラスチョップドスラント(日本電気硝子社製、T-480)
〔短繊維強化PA〕
 短繊維強化PA66GF50(Mn:25000)(旭化成ケミカルズ社製、レオナ14G50B)
〔長繊維強化PA〕
 長繊維強化PA66GF50(Mn:18500)(ダイセルポリマー社製、プラストロンPA66-GF50-01)
〔短繊維強化PP〕
 短繊維強化PP66GF50(住友化学社製、スミストランPG5003)
〔長繊維強化PP〕
 長繊維強化PPGF50(ダイセルポリマー社製、プラストロンPP-GF50-02)
〔テルペンフェノール〕
 ヤスハラケミカル社製、Y′SポリスターK125
〔実施例1~4、比較例1~6〕
 上記各材料を、後記の表1および表2に示す割合で、射出成形機にそれぞれ直接投入し、下記に示す成形条件で射出成形し、図1の上面図(a)および側面図(b)に示される形状および寸法のテストピース(トルクロッド)を得た。
《成形条件》
 ・射出成形機:東洋精機社製、TM-280HW(φ68mm)
 ・シリンダー温度:310℃±10℃
 ・金型温度:80℃±20℃
 ・射出速度:39±5cm2/sec
 ・保圧:80MPa
 ・スクリュー背圧:5MPa
 上記のようにして得られた実施例および比較例のテストピースに関し、下記の基準に従い、各特性の評価を行った。これらの結果を、後記の表1および表2に併せて示した。
〔繊維長分布〕
 テストピースを、電気炉(ヤマト科学社製、MuffleFurnaceFO810)にて600℃で3時間熱処理し、灰化させた。そして、その残渣の繊維塊からランダムに繊維を選び、マイクロスコープ(KEYENCE社製、VHW-1000)にて、50~100倍率で撮影し(撮影枚数は3~5枚、合計繊維本数は300~500本観察されている)、そのガラス繊維の全数について繊維長を測定し、その全数に対し、下記の(A)~(D)に該当するものの割合(%)を求めた。なお、不鮮明な繊維(0.05mm未満)や、画像から切れている繊維は測定から除外した。
(A)0.05mm以上0.5mm未満
(B)0.5mm以上1.0mm未満
(C)1.0mm以上3.0mm未満
(D)3.0mm以上
〔重量平均繊維長〕
 テストピースのスキン層(テストピース表面から厚み方向に、その箇所の成形体厚みの15%までの部分)およびコア層(テストピース表面から厚み方向に、その箇所の成形体厚みの15~85%の内部部分)から、3g程度を採取し、電気炉(ヤマト科学社製、MuffleFurnaceFO810)にて600℃で3時間熱処理し、灰化させた。そして、その残渣の繊維塊からランダムに繊維を選び、マイクロスコープ(KEYENCE社製、VHW-1000)にて、50~100倍率で撮影し(撮影枚数は3~5枚、合計繊維本数は300~500本観察されている)、その画像をもとに、下記の式(1)に従い、スキン層およびコア層の重量平均繊維長を測定した。なお、不鮮明な繊維(0.05mm未満)や、画像から切れている繊維は測定から除外した。
Figure JPOXMLDOC01-appb-M000002
〔成形後の平均分子量〕
 テストピースを1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール(HFIP)により溶解させて得られた0.1重量%の樹脂溶液を、GPC測定器(TOSOH社製:EcoSEC HLC-8320GPC)により測定し、テストピースの数平均分子量(Mn)を求めた。
〔破壊強度〕
 テストピースの両端の環状部分(図1に示すαおよびβ)に、内径20mm、外径25mm、長さ45mmの管状パイプが中央に入ったゴム製の冶具をそれぞれ取り付けた後、引張り試験機(島津製作所社製、オートグラフAG-IS)を、上記管状パイプの穴に固定し、5mm/minで引張り試験を行い、テストピースの破壊強度(kN)を測定した。上記測定は、常温中(25℃)または高温雰囲気中(100℃)で行った。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 上記結果より、実施例1~3のテストピースは、比較例1~4のテストピースに比べ、常温中でも、高温雰囲気中でも、破壊強度が高いことがわかる。同じく、実施例4のテストピースも、比較例5,6のテストピースに比べ、常温中でも、高温雰囲気中でも、破壊強度が高いことがわかる。
 なお、上記実施例においては、本発明における具体的な形態について示したが、上記実施例は単なる例示にすぎず、限定的に解釈されるものではない。当業者に明らかな様々な変形は、本発明の範囲内であることが企図されている。
 本発明のガラス繊維強化熱可塑性樹脂成形体は、厚肉に成形する等の対処を行わなくとも、高温雰囲気中や吸水時の機械的強度に優れ、環状構造を有する成形体に求められる歪み耐性等の強度を充分に備えていることから、例えば、自動車等の車両用のミッションマウント、ボディマウント、キャブマウント、メンバーマウント、デフマウント、コンロッド、トルクロッド、トーショナルダンパー、ステアリングラバーカップリング、テンションロッドブッシュ、ブッシュ、バウンドストッパー、FFエンジンロールストッパー、マフラーハンガー、スタビライザーリンクロッド、ラジエーターサポート、コントロールアーム、サスペンションアームといった、環状構造を有する自動車用軸受け部品として好適に用いられる。

Claims (9)

  1.  環状構造を有するガラス繊維強化熱可塑性樹脂成形体であって、上記成形体中に、下記(A)~(D)に示す繊維長のガラス繊維が下記(A)~(D)に示す割合(繊維状フィラー全体数に対する割合)で分散されていることを特徴とするガラス繊維強化熱可塑性樹脂成形体。
    (A)0.05mm以上0.5mm未満:40~80%。
    (B)0.5mm以上1.0mm未満:15~40%。
    (C)1.0mm以上3.0mm未満:5~30%。
    (D)3.0mm以上:1%以下。
  2.  ガラス繊維強化熱可塑性樹脂成形体中の全てのガラス繊維の含有割合が25~60重量%の範囲である請求項1記載のガラス繊維強化熱可塑性樹脂成形体。
  3.  ガラス繊維強化熱可塑性樹脂成形体の表層部に分散されたガラス繊維の重量平均繊維長よりも、ガラス繊維強化熱可塑性樹脂成形体の内部に分散されたガラス繊維の重量平均繊維長の方が長く、その差が0.1mm以上である請求項1または2記載のガラス繊維強化熱可塑性樹脂成形体。
  4.  ガラス繊維強化熱可塑性樹脂成形体の表層部に分散されたガラス繊維の重量平均繊維長が0.4~1.5mmの範囲であり、ガラス繊維強化熱可塑性樹脂成形体の内部に分散されたガラス繊維の重量平均繊維長が0.5~2.8mmの範囲である請求項3記載のガラス繊維強化熱可塑性樹脂成形体。
  5.  上記熱可塑性樹脂が、ポリアミド樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ポリカーボネート樹脂、アクリロニトリルブタジエンスチレン共重合樹脂、ポリエチレンテレフタレート樹脂、およびポリブチレンテレフタレート樹脂からなる群から選ばれた少なくとも一つである請求項1~4のいずれか一項に記載のガラス繊維強化熱可塑性樹脂成形体。
  6.  上記ガラス繊維強化樹脂の材料中に、テルペンフェノールを含有する請求項1~5のいずれか一項に記載のガラス繊維強化熱可塑性樹脂成形体。
  7.  自動車用軸受け部品である、請求項1~6のいずれか一項に記載のガラス繊維強化熱可塑性樹脂成形体。
  8.  請求項1~7のいずれか一項に記載のガラス繊維強化熱可塑性樹脂成形体の製法であって、ガラス繊維と、熱可塑性樹脂とを、射出成形機にそれぞれ直接投入し、その射出成形により、目的とするガラス繊維強化熱可塑性樹脂成形体を得ることを特徴とするガラス繊維強化熱可塑性樹脂成形体の製法。
  9.  上記射出成形機に、さらにテルペンフェノールを直接投入し、射出成形する請求項8記載のガラス繊維強化熱可塑性樹脂成形体の製法。
PCT/JP2014/073273 2013-09-27 2014-09-04 ガラス繊維強化熱可塑性樹脂成形体およびその製法 WO2015045769A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112014001601.2T DE112014001601B4 (de) 2013-09-27 2014-09-04 Glasfaserverstärktes thermoplastisches Harz-Formprodukt und Verfahren zu dessen Herstellung
MX2015009243A MX2015009243A (es) 2013-09-27 2014-09-04 Producto de moldeo de una resina termoplastica reforzada con fibra de vidrio y metodo de produccion del mismo.
CN201480042083.9A CN105408400B (zh) 2013-09-27 2014-09-04 玻璃纤维强化热塑性树脂成型体及其制法
US14/729,540 US10351693B2 (en) 2013-09-27 2015-06-03 Glass-fiber-reinforced thermoplastic resin molding product, and production method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013201860A JP5738374B2 (ja) 2013-09-27 2013-09-27 ガラス繊維強化熱可塑性樹脂成形体およびその製法
JP2013-201860 2013-09-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/729,540 Continuation US10351693B2 (en) 2013-09-27 2015-06-03 Glass-fiber-reinforced thermoplastic resin molding product, and production method therefor

Publications (1)

Publication Number Publication Date
WO2015045769A1 true WO2015045769A1 (ja) 2015-04-02

Family

ID=52742916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073273 WO2015045769A1 (ja) 2013-09-27 2014-09-04 ガラス繊維強化熱可塑性樹脂成形体およびその製法

Country Status (6)

Country Link
US (1) US10351693B2 (ja)
JP (1) JP5738374B2 (ja)
CN (1) CN105408400B (ja)
DE (1) DE112014001601B4 (ja)
MX (1) MX2015009243A (ja)
WO (1) WO2015045769A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111163954A (zh) * 2017-10-03 2020-05-15 株式会社普利司通 机动车用臂和机动车用臂的制造方法
CN113402856A (zh) * 2020-03-17 2021-09-17 广东美芝精密制造有限公司 树脂组合物、消音器、压缩机和制冷装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5738374B2 (ja) 2013-09-27 2015-06-24 住友理工株式会社 ガラス繊維強化熱可塑性樹脂成形体およびその製法
JP6067767B2 (ja) 2015-03-26 2017-01-25 住友理工株式会社 ガラス繊維強化熱可塑性樹脂成形体およびその製法
JP6895292B2 (ja) 2017-03-31 2021-06-30 住友理工株式会社 ガラス繊維強化熱可塑性樹脂成形体の製法、およびそれにより得られたガラス繊維強化熱可塑性樹脂成形体
DE102017207164A1 (de) * 2017-04-28 2018-10-31 Zf Friedrichshafen Ag Achsstrebe und Verfahren zur Herstellung einer Achsstrebe
DE102018208282A1 (de) * 2018-05-25 2019-11-28 Zf Friedrichshafen Ag Fahrwerklenker für ein Kraftfahrzeug
DE102018213321A1 (de) * 2018-08-08 2020-02-13 Zf Friedrichshafen Ag Mehrpunktlenker für ein Fahrwerk eines Kraftfahrzeugs
CN112060495B (zh) * 2019-06-11 2024-09-10 大赛璐塑料株式会社 注塑成型体及其制造方法
CN111500009A (zh) * 2020-04-13 2020-08-07 金发科技股份有限公司 一种增强聚丙烯材料及其制备方法
CN111534037A (zh) * 2020-04-20 2020-08-14 金发科技股份有限公司 一种增强聚丙烯材料及其制备方法
CN112724510B (zh) * 2020-12-18 2022-08-09 金发科技股份有限公司 一种增强聚丙烯材料及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001179738A (ja) * 1999-12-28 2001-07-03 Itoki Crebio Corp ガラス繊維強化合成樹脂成形品
JP2002003691A (ja) * 2000-06-19 2002-01-09 Asahi Kasei Corp 高強度・高剛性ポリオレフィン系熱可塑性樹脂組成物
JP2005298664A (ja) * 2004-04-12 2005-10-27 Asahi Kasei Chemicals Corp 樹脂製自動車外装部品
JP2005298663A (ja) * 2004-04-12 2005-10-27 Asahi Kasei Chemicals Corp 樹脂製自動車内装部品

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1392175A (en) 1971-03-19 1975-04-30 Austin C Injection moulding machines
JPS5146357A (ja) 1974-10-17 1976-04-20 Teijin Ltd Garasusenikyokanetsukasoseijushino seikeihoho
US4238266A (en) 1979-01-08 1980-12-09 Allied Chemical Corporation Process of forming a glass fiber reinforced, stampable thermoplastic laminate
JPS62268612A (ja) 1986-05-19 1987-11-21 Nitto Boseki Co Ltd ガラス繊維強化樹脂成型体
JP3456301B2 (ja) 1995-03-30 2003-10-14 チッソ株式会社 繊維および特定のカーボンブラックを均一に含有する繊維強化熱可塑性複合体
JP3586995B2 (ja) * 1996-10-08 2004-11-10 株式会社カネカ 難燃静電防止性ポリエステル系樹脂組成物
US6579926B2 (en) * 1999-11-15 2003-06-17 General Electric Company Fire retardant polyphenylene ether-organoclay composition and method of making same
DE10084451T1 (de) * 2000-02-14 2002-09-26 Asahi Chemical Ind Formkörper aus thermoplastischem Harz mit hoher Steifigkeit und hoher Festigkeit
JP2002005924A (ja) 2000-06-21 2002-01-09 Sumitomo Chem Co Ltd ガラス繊維長分布測定方法および測定装置
JP2002053711A (ja) 2000-08-07 2002-02-19 Toyo Ink Mfg Co Ltd 着色剤組成物およびその成形品
AU2002301429B2 (en) 2000-11-17 2003-05-29 Licotec Pty Ltd A Reinforcing Fibre, a Process For Making a Reinforcing Fibre, A Process For Making A Curable Composite, A Curable Composite, A Cured Composite, A Method Of Applying A Composite and A Method Of Moulding A Composite
JP2003285323A (ja) 2002-03-28 2003-10-07 Sumitomo Chem Co Ltd 繊維強化熱可塑性樹脂ペレット、ペレットの可塑化方法および成形体の製造方法
DE10232485A1 (de) 2002-07-19 2004-01-29 Bayer Ag Glasfaserverstärkte thermoplastische Kunststoffe
US7341785B2 (en) * 2002-08-01 2008-03-11 General Motors Corporation Low shrink low density laminate formulation
WO2005032817A1 (ja) * 2003-10-03 2005-04-14 Daicel-Degussa Ltd. 複合成形体及びその製造方法、並びに接合用樹脂
JP2005297338A (ja) 2004-04-12 2005-10-27 Asahi Kasei Chemicals Corp 樹脂製自動車機構部品
JP4439361B2 (ja) * 2004-09-14 2010-03-24 三菱エンジニアリングプラスチックス株式会社 長繊維強化熱可塑性樹脂製外装成形体
WO2006105656A1 (en) * 2005-04-08 2006-10-12 Litens Automotive Partnership Tensioner with molded arm
KR100921332B1 (ko) 2007-08-31 2009-10-13 지에스칼텍스 주식회사 착색 장섬유 강화 펠렛 및 이를 이용하여 제조된 착색 수지성형품
JP2010189637A (ja) 2009-01-26 2010-09-02 Unitika Ltd ガラス繊維強化ポリアミド樹脂ペレットおよびそれを用いた成形方法
JP5466057B2 (ja) 2009-03-23 2014-04-09 ユニチカ株式会社 強化ポリアミド樹脂組成物、およびその製造方法
JP6081687B2 (ja) 2010-07-23 2017-02-15 東洋紡株式会社 ガラス繊維強化ポリアミド樹脂組成物
JP5719780B2 (ja) 2011-03-15 2015-05-20 住友理工株式会社 防振装置
JP5738374B2 (ja) 2013-09-27 2015-06-24 住友理工株式会社 ガラス繊維強化熱可塑性樹脂成形体およびその製法
JP2016166276A (ja) 2015-03-09 2016-09-15 旭化成株式会社 ポリアミド樹脂中空成形体
CN108350598B (zh) 2015-10-30 2021-03-30 苹果公司 具有增强特征的阳极膜

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001179738A (ja) * 1999-12-28 2001-07-03 Itoki Crebio Corp ガラス繊維強化合成樹脂成形品
JP2002003691A (ja) * 2000-06-19 2002-01-09 Asahi Kasei Corp 高強度・高剛性ポリオレフィン系熱可塑性樹脂組成物
JP2005298664A (ja) * 2004-04-12 2005-10-27 Asahi Kasei Chemicals Corp 樹脂製自動車外装部品
JP2005298663A (ja) * 2004-04-12 2005-10-27 Asahi Kasei Chemicals Corp 樹脂製自動車内装部品

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111163954A (zh) * 2017-10-03 2020-05-15 株式会社普利司通 机动车用臂和机动车用臂的制造方法
CN113402856A (zh) * 2020-03-17 2021-09-17 广东美芝精密制造有限公司 树脂组合物、消音器、压缩机和制冷装置

Also Published As

Publication number Publication date
US10351693B2 (en) 2019-07-16
CN105408400A (zh) 2016-03-16
CN105408400B (zh) 2017-10-20
JP2015067685A (ja) 2015-04-13
DE112014001601B4 (de) 2018-05-09
US20150259511A1 (en) 2015-09-17
DE112014001601T5 (de) 2016-01-21
MX2015009243A (es) 2015-10-15
JP5738374B2 (ja) 2015-06-24

Similar Documents

Publication Publication Date Title
JP5738374B2 (ja) ガラス繊維強化熱可塑性樹脂成形体およびその製法
Arao et al. Strength improvement in injection-molded jute-fiber-reinforced polylactide green-composites
JP6067767B2 (ja) ガラス繊維強化熱可塑性樹脂成形体およびその製法
US10472475B2 (en) Method of producing glass-fiber-reinforced thermoplastic resin molded object and glass-fiber-reinforced thermoplastic resin molded object obtained by the method
Sang et al. Crystallization and mechanical properties of basalt fiber-reinforced polypropylene composites with different elastomers
CN101062993A (zh) 碳纤维复合树脂材料及其制造方法
JP5126940B2 (ja) 脂肪族ポリエステル系樹脂組成物およびその成形体
JP2018024871A (ja) ポリアミド66とポリアミド610、ポリアミド1010およびポリアミド1012からなる群から選ばれるポリアミドとを含む組成物
EP3209713A1 (en) Reinforced polymer molding composition
JP2016525586A5 (ja)
JP2016525586A (ja) ポリプロピレン系樹脂及び炭素長繊維を含む輸送手段用複合材料
KR101526690B1 (ko) 고내열 내충격성 폴리유산 복합재료 조성물
Cui et al. Thermoplastic vulcanizates with an integration of good mechanical performance and excellent resistance to high temperature and oil based on HNBR/TPEE
Song et al. Enhancing mechanical properties of high‐density polyethylene/polydopamine‐modified basalt fiber composites via synergistic compatibilizers
Ünal et al. Determination of mechanical performance of glass fiber reinforced and elastomer filled polyamide 6 composites
KR20180137984A (ko) 섬유강화 복합재 및 그 제조 방법
Faiz et al. Studies on thermal, mechanical, morphological, and viscoelastic properties of polybenzimidazole fiber reinforced high density polyethylene composites
Wang et al. Effect of blending sequence on the morphology and properties of polyamide 6/EPDM‐g‐MA/epoxy blends
KR101621000B1 (ko) 폴리아마이드 수지 조성물, 이를 이용한 성형품 및 그 제조방법
KR101795675B1 (ko) 고리형 화합물이 첨가된 폴리아미드계 고분자 조성물 및 이를 이용한 폴리아미드계 복합소재
KR102163898B1 (ko) 섬유 강화 복합재 및 이의 제조방법
JP2019178267A (ja) 複合体及びその製造方法
JP7373504B2 (ja) 高耐熱性熱可塑性樹脂組成物及び、その成形物
JP2013253331A (ja) 樹脂強化用有機繊維および有機繊維強化熱可塑性樹脂
JP3443965B2 (ja) 高分子複合体およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480042083.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14848116

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/009243

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1120140016012

Country of ref document: DE

Ref document number: 112014001601

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14848116

Country of ref document: EP

Kind code of ref document: A1