WO2015045207A1 - 半導体集積回路および半導体集積回路装置 - Google Patents

半導体集積回路および半導体集積回路装置 Download PDF

Info

Publication number
WO2015045207A1
WO2015045207A1 PCT/JP2014/002281 JP2014002281W WO2015045207A1 WO 2015045207 A1 WO2015045207 A1 WO 2015045207A1 JP 2014002281 W JP2014002281 W JP 2014002281W WO 2015045207 A1 WO2015045207 A1 WO 2015045207A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor integrated
transistor
integrated circuit
node
transistors
Prior art date
Application number
PCT/JP2014/002281
Other languages
English (en)
French (fr)
Inventor
剛 小池
泰宏 縣
山上 由展
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2015045207A1 publication Critical patent/WO2015045207A1/ja
Priority to US15/080,406 priority Critical patent/US9813062B2/en
Priority to US15/725,123 priority patent/US10033384B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/01Modifications for accelerating switching
    • H03K19/017Modifications for accelerating switching in field-effect transistor circuits
    • H03K19/01707Modifications for accelerating switching in field-effect transistor circuits in asynchronous circuits
    • H03K19/01721Modifications for accelerating switching in field-effect transistor circuits in asynchronous circuits by means of a pull-up or down element
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/12Modifications for increasing the maximum permissible switched current
    • H03K17/122Modifications for increasing the maximum permissible switched current in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/08Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices
    • H03K19/094Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/08Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices
    • H03K19/094Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors
    • H03K19/0952Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors using Schottky type FET MESFET

Definitions

  • the present invention relates to a semiconductor integrated circuit device using a fin type transistor having a fin structure.
  • the driving capability of a transistor can be adjusted by adjusting the gate width and gate length of the transistor or changing the number of transistors connected in parallel. .
  • Patent Document 1 discloses a semiconductor electronic circuit in which a plurality of transistors having different gate lengths or gate widths are arranged, a transistor according to necessity is selected and connected, and the drive capability can be adjusted. Has been.
  • FIG. 15 is a schematic diagram showing an outline of a fin-type transistor.
  • the source and drain have raised three-dimensional structures called fins.
  • the gate is arrange
  • the channel region is formed by three surfaces of the fin, so that the controllability of the channel is greatly improved as compared with the conventional structure. Therefore, effects such as reduction of leakage power, improvement of on-current, and reduction of operating voltage are obtained, and the performance of the semiconductor integrated circuit is improved.
  • the shape of the gate and diffusion layer of the transistor and the shape of the wiring pattern greatly affect the uniformity of device characteristics and the yield.
  • the gate width and gate length of the transistor are fixed values, for example, when the drive capability of the transistor is increased or decreased, it is conceivable to increase or decrease the number of parallel transistors.
  • the transistor drive capability value that can be taken in this case is limited to an integral multiple of the minimum capability transistor, and there is a problem in that the degree of freedom in design and the performance of the circuit are lowered.
  • This disclosure is intended to enable easy adjustment to a desired driving capability in a semiconductor integrated circuit using fin-type transistors.
  • the first conductivity configured by fin-type transistors having the same gate length and the same gate width.
  • the first transistor set having the transistor is provided in parallel with the first transistor set between the first node and the second node, and m (m And a second transistor set having an integer and m ⁇ 1 and m ⁇ n), wherein at least one of the n transistors of the first transistor set;
  • Oh At least one of the fine said second transistor pair of the m transistors has a gate, characterized in that it is connected to the input node.
  • a semiconductor integrated circuit device includes a plurality of semiconductor integrated circuits, and the plurality of semiconductor integrated circuits includes the first semiconductor integrated circuit that is the semiconductor integrated circuit according to the first aspect. It is characterized by being.
  • the semiconductor integrated circuit includes a first transistor set having n transistors connected in series, and a second transistor set having m transistors connected in series, and Connected in parallel.
  • the number of transistors connected in series differs between the first transistor group and the second transistor group, and the gate of at least one transistor is connected to the input node in each transistor group.
  • the on / off control of the two transistor sets can be performed in accordance with the input signal input from the input node. Therefore, a semiconductor integrated circuit having a desired driving capability can be realized by adjusting the number of transistors (n and m) in the first and second transistor groups.
  • the degree of freedom in designing the semiconductor integrated circuit and the semiconductor integrated circuit device including the semiconductor integrated circuit can be improved, and the performance thereof can be improved.
  • a semiconductor integrated circuit having a desired driving capability can be realized by connecting in parallel a transistor group having one or more transistors connected in series and varying the number of transistors in each transistor group.
  • FIG. 1 is a conceptual diagram illustrating a circuit configuration example of a semiconductor integrated circuit device according to a first embodiment.
  • FIG. 5 is a conceptual diagram illustrating another circuit configuration example of the semiconductor integrated circuit device according to the first embodiment. It is the figure which showed the structure of the drive circuit typically. It is the figure which showed an example of the drive circuit, and its drive capability.
  • FIG. 5 is a conceptual diagram illustrating another circuit configuration example of the semiconductor integrated circuit device according to the first embodiment.
  • FIG. 5 is a conceptual diagram illustrating another circuit configuration example of the semiconductor integrated circuit device according to the first embodiment.
  • FIG. 6 is a conceptual diagram illustrating a circuit configuration example of a semiconductor integrated circuit device according to a second embodiment.
  • FIG. 6 is a conceptual diagram illustrating a circuit configuration example of a semiconductor integrated circuit device according to a third embodiment.
  • FIG. 6 is a conceptual diagram illustrating a circuit configuration example of a semiconductor integrated circuit device according to a fourth embodiment.
  • FIG. 10 is a conceptual diagram illustrating another circuit configuration example of the semiconductor integrated circuit device according to the fourth embodiment.
  • FIG. 10 is a conceptual diagram illustrating another circuit configuration example of the semiconductor integrated circuit device according to the fourth embodiment. It is a conceptual diagram which shows the circuit structural example of the semiconductor integrated circuit device which concerns on other embodiment. It is a conceptual diagram which shows the other circuit structural example of the semiconductor integrated circuit device which concerns on other embodiment. It is a conceptual diagram which shows the other circuit structural example of the semiconductor integrated circuit device which concerns on other embodiment. It is a figure for demonstrating the structure of a fin type transistor.
  • the driving capability when k transistors (k ⁇ 1) having the same driving capability are connected in series is 1 / k times that of the transistor. Will be described. In an actual semiconductor integrated circuit, the driving capability may deviate from 1 / k times.
  • FIG. 1 is a conceptual diagram showing a circuit configuration example of a semiconductor integrated circuit device 1A according to the first embodiment.
  • the semiconductor integrated circuit device 1A is an inverter circuit including drive circuits 10 and 20 as semiconductor integrated circuits.
  • the drive circuit 10 is provided between a node n12 as a first node connected to the output node OUT and a node n13 as a second node connected to the ground, and the drive circuit 10 is connected in parallel.
  • Transistor sets G11, G12, and G13 are provided as the first or second transistor set.
  • the transistor set G11 includes an N-type transistor Tn11 connected between the node n12 and the node n13.
  • the gate of the N-type transistor Tn11 is connected to the input node n11 connected to the input node IN.
  • the transistor set G12 includes two N-type transistors Tn21 and Tn22 connected in series between the node n12 and the node n13.
  • the gates of the two N-type transistors Tn21 and Tn22 are both connected to the input node n11.
  • the transistor set G13 includes three N-type transistors Tn31, Tn32, and Tn33 connected in series between the node n12 and the node n13.
  • the gates of the three N-type transistors Tn31, Tn32, Tn33 are all connected to the input node n11.
  • the N-type transistors Tn11, Tn21, Tn22, and Tn31 to Tn33 are assumed to be transistors formed of fin-type transistors.
  • the gate length and the gate width of each fin-type transistor constituting each transistor are the same. That is, the driving capabilities of the N-type transistors Tn11, Tn21, Tn22, and Tn31 to Tn33 are assumed to be equal (the same applies to the other drawings).
  • the same means substantially the same, that is, includes some errors such as manufacturing errors.
  • “equal” means substantially equal, that is, includes some errors due to manufacturing errors and the like.
  • the drive circuit 20 includes a transistor set G21, G22, G23 as a first or second transistor set connected in parallel between a node n22 connected to the power source and a node n23 connected to the output node OUT. It has.
  • the transistor set G21 includes a P-type transistor Tp11 connected between the node n22 and the node n23.
  • the gate of the P-type transistor Tp11 is connected to the input node n21 connected to the input node IN.
  • the transistor set G22 includes two P-type transistors Tp21 and Tp22 connected in series between the node n22 and the node n23.
  • the gates of the two P-type transistors Tp21 and Tp22 are both connected to the input node n21.
  • the transistor set G23 includes three P-type transistors Tp31, Tp32, and Tp33 connected in series between the node n22 and the node n23.
  • the gates of the three P-type transistors Tp31, Tp32, Tp33 are all connected to the input node n21.
  • the P-type transistors Tp11, Tp21, Tp22, and Tp31 to Tp33 are transistors constituted by fin-type transistors.
  • the gate length and the gate width of each fin-type transistor constituting each transistor are the same. That is, the driving capabilities of the P-type transistors Tp11, Tp21, Tp22, Tp31 to Tp33 are assumed to be equal (the same applies to other drawings).
  • the drive capability is 1 ⁇ 2 of the transistor set G11.
  • the driving capability of the transistor set G13 is 1/3 that of the transistor set G11. Accordingly, the driving capability of the driving circuit 10 in which the three transistor groups G11, G12, and G13 are connected in parallel is approximately 1.8 (1 + 1/2 + 1/3) times that of the N-type transistor Tn11.
  • the drive capability of the drive circuit 20 in which the three transistor groups G21, G22, G23 are connected in parallel is about 1.8 times the drive capability of the P-type transistor Tp11.
  • a drive circuit semiconductor integrated circuit having a desired drive capability can be realized by connecting a plurality of transistor groups having different numbers of transistors connected in series in parallel.
  • the degree of freedom in design can be improved, and the performance of the drive circuit and the semiconductor integrated circuit device including the drive circuit can be improved.
  • the intermediate node n14 between the N-type transistor Tn21 and the N-type transistor Tn22 of the transistor set G12, the intermediate node n15 between the N-type transistors Tn31 and Tn32 of the transistor set G13, and / or the N-type transistor Tn32 Even if the intermediate node n16 between Tn33 and Tn33 is connected, the same effect can be obtained if the relationship in which the output node OUT is driven by the transistor sets having different numbers of series stages is maintained.
  • FIG. 1 shows an example in which each of the three transistor groups G11, G12, and G13 of the drive circuit 10 has a different number of transistors connected in series.
  • the transistor set G12 (second transistor set) may be connected in parallel.
  • each of the two transistor groups G11 and G11 includes an N-type transistor Tn11 connected between a node n12 and a node n13, and the gate of each N-type transistor Tn11 is Are connected to the input node n11.
  • the driving capability of the transistor set G12 is 1/2 that of the transistor set G11, as in FIG. Therefore, the drive capability of the drive circuit 10 in which the three transistor groups G11, G11, G12 are connected in parallel is 2.5 times the drive capability of the N-type transistor Tn11.
  • a drive circuit having a drive capability of 2.5 times the drive capability of the N-type transistor Tn11 can also be realized by connecting in parallel five transistor groups in which two N-type transistors Tn11 are connected in series.
  • the configuration of this aspect can be realized with a smaller area.
  • FIG. 3 is a diagram schematically showing the configuration of the drive circuit 10 according to this aspect.
  • the drive circuit 10 includes s (s ⁇ 1) transistor groups G11 having n (n ⁇ 1) N-type transistors connected in series, and s transistor groups G11. ,... Are connected in parallel between the node n12 and the node n13. Further, the drive circuit 10 includes t (t ⁇ 1) transistor sets G12 having m (m ⁇ 2 and m ⁇ n) N-type transistors connected in series, and the t transistor sets G12, Are connected in parallel between the node n12 and the node n13.
  • the drive circuit 10 includes y types (y ⁇ 2) of transistor sets (for example, transistor sets G11 and G12) having different numbers of transistors connected in series as described above. The nodes n12 and n13 are connected in parallel.
  • the drive circuit 10 having an N-type transistor as the same conductivity type has been described.
  • the drive circuit of the drive circuit 20 having the same conductivity type and a P-type transistor may be configured similarly. Is possible.
  • FIG. 4 is a diagram showing an example of specific drive circuits 10 and 20 configured based on FIG. 3 and the drive capability thereof.
  • the driving capabilities of the N-type transistors of the driving circuit 10 are all equal.
  • the driving capabilities of the P-type transistors of the driving circuit 20 are all equal.
  • the numerical value of the driving ability described in the table indicates how many times the driving ability is provided for one N-type transistor or one P-type transistor.
  • the driving ability is about 1.3 times.
  • a drive circuit semiconductor integrated circuit having a desired drive capability can be realized by appropriately changing the parameters shown in FIG. 3 to configure the drive circuits 10 and 20.
  • FIG. 4 shows an example in which the driving circuits 10 and 20 have a driving capability exceeding one time with respect to one N-type transistor or one P-type transistor, but n, s, m, t , Y can be changed to realize the driving circuits 10 and 20 having a driving capability of 1 times or less.
  • the drive circuits 10 and 20 shown in FIG. 4 may be formed into cells, and the drive circuits 10 and 20 formed into cells may be combined to form a semiconductor integrated circuit device.
  • design is improved and element arrangement (layout configuration) in the drive circuit can be grasped in advance, so that differences in layout between drive circuits with the same drive capability are limited, and variation in characteristics can be suppressed. become.
  • the inverter is configured by combining the drive circuits 10 and 20 according to this aspect has been described, but the present invention is not limited to this.
  • the drive circuit 10 according to this aspect may be combined with another semiconductor integrated circuit (drive circuit).
  • the semiconductor integrated circuit device 1A shown in FIG. 5 includes a drive circuit 21 instead of the drive circuit 20 of FIG.
  • the drive circuit 21 includes two P-type transistors Tp51 and Tp52 connected in parallel between the power supply and the output node OUT.
  • the gates of the P-type transistors Tp51 and Tp52 are connected to the input node IN.
  • the drive circuit 20 and a drive circuit other than the drive circuit 10 may be combined (not shown) as in FIG.
  • a semiconductor integrated circuit device 1A shown in FIG. 6 includes a drive circuit 21 instead of the drive circuit 20 of FIG. Further, the drive circuit 10 includes an N-type transistor Tn26 connected in parallel with the N-type transistor Tn22 in addition to the configuration of FIG. The gate of the N-type transistor Tn26 is connected to the input node n11.
  • the drive capability of the drive circuit 10 can be adjusted more finely.
  • the desired driving capability can be realized with a small area.
  • one N-type transistor Tn26 is connected in parallel to the N-type transistor Tn22.
  • the present invention is not limited to this.
  • N-type transistors connected in series may be connected in parallel with the N-type transistor Tn22.
  • the N-type transistor Tn26 may be connected in parallel with a plurality of N-type transistors connected in series. Specifically, for example, in FIG. 1, the N-type transistor Tn26 may be connected between the node n12 and the intermediate node n16 between the N-type transistors Tn32 and Tn33 (not shown). In this case, the N-type transistor Tn26 is connected in parallel with the N-type transistors Tn31 and Tn32.
  • a drive circuit using a P-type transistor for example, the drive circuit 20
  • the same transistor as described above can be connected in parallel, and the same effect can be obtained.
  • FIG. 7 is a conceptual diagram showing a circuit configuration example of the semiconductor integrated circuit device 2A according to the second embodiment.
  • a semiconductor integrated circuit device 2A shown in FIG. 7 includes a P-type precharge transistor Ts1 in the drive circuit 10 in addition to the semiconductor integrated circuit device 1A shown in FIG.
  • the precharge transistor Ts1 is connected between the power supply and the intermediate node n14 connecting the two N-type transistors Tn21 and Tn22 of the transistor set G12.
  • the gate of the precharge transistor Ts1 is connected to the input node n11.
  • the precharge transistor Ts1 when the input signal input from the input node IN (input node n11) is at a low level, that is, when the N-type transistors Tn21 and Tn22 are off, the precharge transistor Ts1 is turned on and the intermediate node n14 The voltage is precharged to the power supply voltage.
  • the precharge transistor Ts1 when the input signal input from the input node IN (input node n11) is at a high level, that is, when the N-type transistors Tn21 and Tn22 are on, the precharge transistor Ts1 is turned off and the precharge is released.
  • the voltage of the intermediate node n14 is precharged to the power supply voltage, so that the output signal is output to the output node OUT after receiving the input signal to the input node IN. It is possible to suppress delay variation until the signal is output.
  • connection destination of the precharge transistor Ts1 is not limited to the intermediate node n14.
  • it may be connected to an intermediate node n15 that connects two N-type transistors Tn31 and Tn32 in the transistor set G13 of the drive circuit 10.
  • the precharge transistor Ts1 may be connected to the intermediate node n16 that connects the two N-type transistors Tn32 and Tn33 of the transistor set G13.
  • the voltage to be precharged is not limited to the power supply, and may be another voltage higher than the ground and lower than the power supply.
  • leakage current can be suppressed by adjusting the gate width, gate length and / or the number of series stages of the precharge transistor to weaken the driving capability. Even in this case, the same effect as the semiconductor integrated circuit device 2A shown in FIG. 7 can be obtained.
  • connection destination of the precharge transistor is not limited to the intermediate node in the drive circuit 10.
  • it may be connected to an intermediate node n24 that connects two P-type transistors Tp21 and Tp22 in the transistor set G22 of the drive circuit 20.
  • an N-type transistor can be used as the precharge transistor.
  • the precharge transistor (N-type transistor) is connected between the intermediate node n24 and the ground, and the gate thereof is connected to the input node n21 (not shown). Even in this case, the same effect as the semiconductor integrated circuit device 2A shown in FIG. 7 can be obtained.
  • the precharge transistor (N-type transistor) may be connected to the intermediate node n25 connecting the two P-type transistors Tp31 and Tp32 of the transistor set G23, or the two P-type transistors Tp32, You may connect to the intermediate node n26 which connects Tp33.
  • FIG. 8 is a conceptual diagram showing a circuit configuration example of the semiconductor integrated circuit device 3A according to the third embodiment.
  • an intermediate node n25 connecting the P-type transistors Tp31 and Tp32 of the transistor set G23 of the drive circuit 20 is connected to a constant voltage power source. Connected as a power source.
  • the driving capability of the transistor set G23 is 1 ⁇ 2 that of the transistor set G21. Therefore, the drive capability of the drive circuit 20 is twice that of the P-type transistor Tp11.
  • the semiconductor integrated circuit device 3A shown in FIG. 8B includes an intermediate node n26 that connects the P-type transistors Tp32 and Tp33 of the transistor set G23 of the drive circuit 20 in addition to the semiconductor integrated circuit device 1A of FIG. It is connected to the node n23.
  • the driving capability of the transistor set G23 is 1 ⁇ 2 that of the transistor set G21. Therefore, the drive capability of the drive circuit 20 is twice that of the P-type transistor Tp11.
  • the drive capability of the drive circuit 10 can be adjusted in the same manner as described above.
  • the intermediate node n16 that connects the N-type transistors Tn32 and Tn33 of the transistor set G13 of the drive circuit 10 may be connected to a ground as a constant voltage power supply (not shown).
  • the driving capability of the driving circuit 10 is twice that of the N-type transistor Tn11.
  • the intermediate node n15 that connects the N-type transistors Tn31 and Tn32 of the transistor set G13 of the drive circuit 10 may be connected to the node n12.
  • the drive capability of the drive circuit 10 is twice that of the N-type transistor Tn11.
  • the drive capability can be adjusted while the number of elements of the N-type transistor of the drive circuit 10 and the P-type transistor of the drive circuit 20 are made the same. It becomes possible. This makes it possible to make the patterns of the gate and the diffusion layer uniform, and as a result, variations in the semiconductor integrated circuit device (drive circuit) and the device on which it is mounted can be suppressed.
  • a contact and a metal wiring that is not connected to any wiring may be provided in advance at an intermediate node that connects two transistors in the transistor set of the drive circuit.
  • the contact and the metal wiring are provided at the intermediate node n26 connecting the P-type transistors Tp32 and Tp33 of the transistor set G23. Then, when it is desired to adjust (increase) the drive capability of the drive circuit 20, mask correction for connecting the metal wiring to the power supply or the node n23 is performed. Further, for example, as an adjustment for reducing the driving capability, in FIG. 8A, a mask correction for cutting off the connection with the power source of the intermediate node n25 is possible.
  • FIG. 9 is a conceptual diagram showing a circuit configuration example of the semiconductor integrated circuit device 4A according to the fourth embodiment.
  • the connection destination of the gate of the N-type transistor Tn22 of the transistor set G12 is controlled from the input node n11.
  • the control node n17 is changed to supply the signal MODE1.
  • the connection destination of the gate of the N-type transistor Tn33 of the transistor set G13 is changed to the control node n18 that supplies the mode control signal MODE2 from the input node n11.
  • the mode control signal MODE1 is a control signal for controlling on / off of the N-type transistor Tn22
  • the mode control signal MODE2 is a control signal for controlling on / off of the N-type transistor Tn33.
  • the N-type transistors Tn22 and Tn33 are both controlled to be on and are both in a conductive state. Accordingly, the drive capability of the drive circuit 10 is about 1.8 times the drive capability of the N-type transistor Tn11, as in the drive circuit 10 of FIG.
  • the N-type transistor Tn22 is on-controlled while the N-type transistor Tn33 is off-controlled.
  • the transistor set G13 is turned off regardless of the input signal from the input node IN (input node n11). Therefore, the drive capability of the drive circuit 10 is 1.5 times the drive capability of the N-type transistor Tn11.
  • the drive capability of the drive circuit 10 is approximately 1.3 times the drive capability of the N-type transistor Tn11, and the mode control signals MODE1, When both MODE2 are at the low level, the drive capability of the drive circuit 10 is one time the drive capability of the N-type transistor Tn11.
  • the drive capability can be adjusted in the same manner as described above. Specifically, the drive capability can be adjusted by connecting a control node to a part of the gates of the transistors in each transistor set of the drive circuit 20 and supplying a mode control signal.
  • the drive capability of the drive circuit can be adjusted by the mode control signal.
  • the transistor is turned on by the mode control signal.
  • the transistor is turned off by the mode control signal and the leakage current is controlled. It is possible to control to reduce the amount. That is, a trade-off between the operation speed of the driving circuit and the leakage current can be achieved.
  • Such a circuit is useful, for example, as a drive circuit for a memory cell power supply when assisting memory operation.
  • the mode control signal MODE2 is connected to one N-type transistor Tn33 among the three N-type transistors Tn31, Tn32, and Tn33 connected in series in the transistor set G13. It is not limited to this.
  • the semiconductor integrated circuit device 4A even if the mode control signal MODE2 is connected to two N-type transistors Tn32, Tn33 among the three N-type transistors Tn31, Tn32, Tn33. Good. In this case, the same effect can be obtained.
  • the semiconductor integrated circuit device 4A in FIG. 10 can reduce the gate capacitance added to the input node n11 (input node IN) of the drive circuit 10 as compared with the semiconductor integrated circuit device in the other drawings.
  • power supplies may be connected to the N-type transistors to which the mode control signals MODE 1 and MODE 2 are given instead of the mode control signals MODE 1 and MODE 2.
  • the same effect as that of the circuit of FIG. 1 can be obtained, and the gate capacitance added to the input node n21 (input node IN) can be reduced.
  • an N-type transistor to which a mode control signal is given and an N-type transistor connected to the power source may be mixed.
  • the adjustment of the driving capability of the semiconductor integrated circuit device using the mode control signal is not limited to the adjustment of the driving capability in the driving circuit.
  • the driving capability may be adjusted using a mode control signal outside the driving circuit.
  • a semiconductor integrated circuit device 4B of FIG. 11 includes a drive circuit 21 connected between a power supply and an output node OUT, and three drive circuits 10A, 10B, connected in parallel between the output node OUT and the ground.
  • 10C is an inverter circuit.
  • a mode control transistor Tc1 is connected between the drive circuit 10B and the ground via a node n31.
  • a mode control transistor Tc2 is connected between the drive circuit 10C and the ground via a node n32.
  • the drive circuit 21 includes two P-type transistors Tp51 and Tp52 connected in parallel between the power supply and the output node OUT, and their gates are connected to the input node IN. ing.
  • the drive circuits 10A, 10B, and 10C include two transistor sets G11 and G12 connected in parallel.
  • the transistor sets G11 and G12 have the same configuration as that in FIG. 1, and detailed description thereof is omitted here.
  • the mode control transistor Tc1 switches the active state / inactive state of the drive circuit 10B based on the mode control signal MODE1.
  • the mode control transistor Tc2 switches the active state / inactive state of the drive circuit 10C based on the mode control signal MODE2.
  • the total drive capability (the number of active drive circuits) of the three drive circuits 10A, 10B, and 10C is changed by the mode control signals MODE1 and MODE2, and as a result, the drive capability of the semiconductor integrated circuit device 4B is adjusted. be able to.
  • the semiconductor integrated circuit device 4B includes three drive circuits 10A, 10B, and 10C connected in parallel between the output node OUT and the ground, but the power supply, the output node OUT, and In the meantime, a plurality of drive circuits having P-type transistors are connected in parallel, and a mode control transistor is connected to some or all of them to switch the active state / inactive state of these drive circuits. Good.
  • Embodiments 1 to 4 have been described as examples of the technology disclosed in the present application.
  • the technology in the present disclosure is not limited to this, and can be applied to embodiments in which combinations, changes, replacements, additions, omissions, and the like are appropriately performed.
  • the semiconductor integrated circuit device has been described as an inverter, but the present invention is not limited to this.
  • the semiconductor integrated circuit driving circuit
  • the semiconductor integrated circuit may be applied to another basic gate such as an AND circuit, a NAND circuit, an OR circuit, a NOR circuit, an EOR (Exclusive OR) circuit, an ENOR (Exclusive NOR) circuit, or a composite gate.
  • the semiconductor integrated circuit driving circuit
  • the semiconductor integrated circuit may be applied to other semiconductor integrated circuit devices such as memory cells and dynamic circuits.
  • FIG. 12 shows an example in which the drive circuits 10 and 20 according to the present disclosure are applied to a NAND circuit.
  • two semiconductor integrated circuit devices 5A NAND circuits
  • two drive circuits 20 and 20 connected in parallel between the output node OUT and the ground.
  • Drive circuits 10 and 10 connected to each other. That is, the node n22 of each drive circuit 20 is connected to the power supply, while the node n23 is connected to the output node OUT.
  • the node n12 of one drive circuit 10 (the drive circuit 10 on the upper side of the drawing) is connected to the output node OUT, while the node n13 is connected to the node n12 of the other drive circuit 10 (the drive circuit 10 on the lower side of the drawing). Has been.
  • the node n13 of the other drive circuit 10 is connected to the ground.
  • the input node n21 of one drive circuit 20 and the input node n11 of one drive circuit 10 are connected to one input node IN0 of the semiconductor integrated circuit device 5A, and the input node n21 of the other drive circuit 20 and The input node n11 of the other drive circuit 10 is connected to the other input node IN1 of the semiconductor integrated circuit device 5A.
  • Each drive circuit 10 includes two transistor sets G11 and G12 connected in parallel.
  • each drive circuit 20 includes two transistor sets G21 and G22 connected in parallel.
  • the transistor groups G11, G12, G21, and G22 have the same configuration as that in FIG. 1, and detailed description thereof is omitted here.
  • FIG. 13 shows another example in which the drive circuits 10 and 20 according to the present disclosure are applied to a NAND circuit.
  • a semiconductor integrated circuit device 5A of FIG. 13 includes a transistor set G13 in place of the transistor set G12 in the drive circuit 10 on the lower side of the drawing. Further, a drive circuit 21 similar to that shown in FIG. 5 is provided instead of the drive circuit 20 on the right side of the drawing.
  • the NAND circuit may be configured by combining drive circuits having different configurations.
  • the driving device may be applied to a bias adjustment circuit 5B as a semiconductor integrated circuit device for adjusting the bias.
  • the bias adjustment circuit 5B shown in FIG. 14 includes drive circuits 10 and 21 as in FIG.
  • the drive circuit 21 includes two P-type transistors Tp51 and Tp52 connected in parallel between the power supply and the output node OUT, and their gates are both connected to the ground.
  • the drive circuit 10 is a circuit having the same configuration as that in FIG. 5, and a detailed description thereof is omitted here.
  • the output node OUT Supplies the power supply voltage.
  • the input signal input from the input node IN input node n11
  • the N-type transistors Tn11, Tn21, Tn22, Tn31 to Tn33 are turned on, and the drive circuit 21 and the drive circuit 10 supply the power supply voltage. Is divided and output from the output node OUT.
  • the voltage level of the output signal output from the output node OUT can be adjusted by changing the driving capability of the driving circuit 10.
  • the bias adjustment circuit 5B shown in FIG. 14 can adjust the output signal output to the output node OUT to a desired voltage level. Therefore, it is useful for a semiconductor integrated circuit device or the like that requires fine adjustment of the bias voltage. Specifically, for example, it is useful when finely adjusting the voltage level of the memory cell when performing writing or reading assistance of the memory cell.
  • the same effect can be obtained by changing the P-type transistors Tp51 and Tp52 of the drive circuit 21 to N-type transistors and connecting their gates to a power source.
  • the drive circuit 21 including the P-type transistor is always on-controlled, but the present invention is not limited to this.
  • the same effect can be obtained by connecting the gates of the N-type transistors Tn11, Tn21, Tn22, and Tn31 to Tn33 of the drive circuit 10 to the power supply so that they are always on-controlled.
  • the same effect can be obtained by changing all of the N-type transistors Tn11, Tn21, Tn22, Tn31 to Tn33 of the drive circuit 10 to P-type transistors and connecting their gates to the ground.
  • the semiconductor integrated circuit according to the present disclosure can adjust the driving capability even when the gate width and the gate length are fixed values. Therefore, it is useful for a semiconductor integrated circuit device having a basic gate such as an inverter, NAND, OR, a memory cell, a dynamic circuit, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Power Engineering (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Logic Circuits (AREA)

Abstract

 駆動回路(10)は、ノード(n12)とノード(n13)との間に設けられており、N型トランジスタ(Tn11)を有するトランジスタ組(G11)と、トランジスタ組(G11)と並列に設けられており、2個直列に接続されたN型トランジスタ(Tn21,Tn22)を有するトランジスタ組(G12)とを備える。N型トランジスタ(Tn11)およびN型トランジスタ(Tn21,Tn22)の少なくともいずれか一方は、ゲートが、入力ノードに接続されている。

Description

半導体集積回路および半導体集積回路装置
 本発明は、フィン構造を有するフィン型トランジスタを用いた半導体集積回路装置に関する。
 従来の半導体集積回路の設計において、トランジスタの駆動能力は、そのトランジスタのゲート幅やゲート長を調整したり、並列接続するトランジスタ数を変更したりすることによって調整可能であることが知られている。
 特許文献1では、ゲート長またはゲート幅の異なる複数のトランジスタを配置し、それらのなかから必要に応じたトランジスタを選択して、接続することによって、駆動能力を調整可能にした半導体電子回路が開示されている。
 また近年、半導体デバイスの分野において、フィン構造のトランジスタ(以下、フィン型トランジスタと称する)の利用が提案されている。図15はフィン型トランジスタの概略を示す模式図である。二次元構造のMOSトランジスタと異なり、ソースおよびドレインはフィンと呼ばれる隆起した立体構造を持つ。そしてこのフィンを包むように、ゲートが配置されている。このフィン構造により、チャネル領域がフィンの3つの面で形成されるので、チャネルの制御性が従来よりも大幅に改善する。このため、リーク電力削減、オン電流の向上、さらには動作電圧の低減などの効果が得られ、半導体集積回路の性能が向上する。
特開平9-27554号公報
 半導体微細プロセスにおいて、トランジスタのゲートや拡散層の形状、配線パタンの形状は、デバイスの特性の均一化や歩留まりに大きく影響する。特に、フィン型トランジスタでは、フィンの幅がトランジスタの特性に大きな影響を及ぼすため、ゲート幅およびゲート長が均一なフィン型トランジスタを用いた設計を行うことが好ましい。
 一方で、半導体集積回路の設計において、トランジスタのゲート幅およびゲート長を固定値にした場合において、例えばトランジスタの駆動能力を増減させるとき、トランジスタの並列数を増減させることが考えられる。しかしながら、この場合に取りうるトランジスタの駆動能力値は、最小能力のトランジスタの整数倍に制約されてしまうため、設計の自由度や回路の性能を下げてしまうという課題がある。
 本開示は、フィン型トランジスタを用いた半導体集積回路において、所望の駆動能力に容易に調整可能にすることを目的とする。
 本開示の第1態様では、入力ノード、並びに、第1および第2のノードと接続された半導体集積回路において、同一のゲート長および同一のゲート幅を有するフィン型トランジスタによって構成された第1導電型のトランジスタを複数個有しており、前記第1のノードと前記第2のノードとの間に設けられており、直列に接続されたn(nは整数、かつ、n≧1)個の前記トランジスタを有する、第1のトランジスタ組と、前記第1のノードと前記第2のノードとの間に、前記第1のトランジスタ組と並列に設けられており、直列に接続されたm(mは整数、かつ、m≧1、かつ、m≠n)個の前記トランジスタを有する、第2のトランジスタ組とを備え、前記第1のトランジスタ組の前記n個のトランジスタのうちの少なくとも1個、および前記第2のトランジスタ組の前記m個のトランジスタのうちの少なくとも1個は、ゲートが、前記入力ノードに接続されていることを特徴とする。
 本開示の第2態様では、半導体集積回路装置は、複数個の半導体集積回路を備え、前記複数個の半導体集積回路は、第1態様記載の半導体集積回路である第1の半導体集積回路を含んでいることを特徴とする。
 この態様によると、半導体集積回路は、n個直列に接続されたトランジスタを有する第1のトランジスタ組と、m個直列に接続されたトランジスタを有する第2のトランジスタ組とを備えており、それらが並列に接続されている。そして、第1のトランジスタ組と第2のトランジスタ組とでは、直列接続されたトランジスタ数が異なっており、各トランジスタ組で少なくとも1個のトランジスタのゲートが入力ノードに接続されている。これにより、入力ノードから入力された入力信号に応じて、上記2つのトランジスタ組のオンオフ制御が可能となる。したがって、上記の第1および第2のトランジスタ組におけるトランジスタ数(nおよびm)を調整することによって、所望の駆動能力を有する半導体集積回路を実現することができる。さらに、半導体集積回路およびこれを備えた半導体集積回路装置の設計の自由度を向上させることが可能になるとともに、その性能を向上させることができる。
 本開示によると、1個以上直列接続されたトランジスタを有するトランジスタ組を並列接続し、各トランジスタ組のトランジスタ数を異ならせることによって、所望の駆動能力を有する半導体集積回路を実現することができる。
実施形態1に係る半導体集積回路装置の回路構成例を示す概念図である。 実施形態1に係る半導体集積回路装置の他の回路構成例を示す概念図である。 駆動回路の構成を模式的に示した図である。 駆動回路の一例およびその駆動能力を示した図である。 実施形態1に係る半導体集積回路装置の他の回路構成例を示す概念図である。 実施形態1に係る半導体集積回路装置の他の回路構成例を示す概念図である。 実施形態2に係る半導体集積回路装置の回路構成例を示す概念図である。 実施形態3に係る半導体集積回路装置の回路構成例を示す概念図である。 実施形態4に係る半導体集積回路装置の回路構成例を示す概念図である。 実施形態4に係る半導体集積回路装置の他の回路構成例を示す概念図である。 実施形態4に係る半導体集積回路装置の他の回路構成例を示す概念図である。 その他の実施形態に係る半導体集積回路装置の回路構成例を示す概念図である。 その他の実施形態に係る半導体集積回路装置の他の回路構成例を示す概念図である。 その他の実施形態に係る半導体集積回路装置の他の回路構成例を示す概念図である。 フィン型トランジスタの構造を説明するための図である。
 以下、本開示に係る実施形態について図面を参照して詳細に説明する。なお、以下の実施形態において、実質的に同一の構成に対する重複説明を省略する場合がある。また、本開示において、発明の理解を容易にするために、駆動能力が等しいトランジスタがk個(k≧1)直列に接続された場合における駆動能力は、そのトランジスタの1/k倍になるものとして説明を行う。実際の半導体集積回路において、その駆動能力は、1/k倍からずれる場合がある。
 [実施形態1]
 図1は実施形態1に係る半導体集積回路装置1Aの回路構成例を示す概念図である。
 図1に示すように、半導体集積回路装置1Aは、半導体集積回路としての駆動回路10,20を備えたインバータ回路である。
 駆動回路10は、出力ノードOUTに接続された第1のノードとしてのノードn12と、グランドに接続された第2のノードとしてのノードn13との間に設けられており、並列に接続された第1または第2のトランジスタ組としてのトランジスタ組G11,G12,G13を備えている。
 トランジスタ組G11は、ノードn12とノードn13との間に接続されたN型トランジスタTn11を備えている。N型トランジスタTn11のゲートは、入力ノードINに接続された入力ノードn11に接続されている。
 トランジスタ組G12は、ノードn12とノードn13との間において、直列に接続された2個のN型トランジスタTn21,Tn22を備えている。2個のN型トランジスタTn21,Tn22のゲートは、共に入力ノードn11に接続されている。
 トランジスタ組G13は、ノードn12とノードn13との間において、直列に接続された3個のN型トランジスタTn31,Tn32,Tn33を備えている。3個のN型トランジスタTn31,Tn32,Tn33のゲートは、共に入力ノードn11に接続されている。
 本態様において、N型トランジスタTn11,Tn21,Tn22,Tn31~Tn33は、フィン型トランジスタによって構成されたトランジスタであるものとする。また、各トランジスタを構成するそれぞれのフィン型トランジスタのゲート長およびゲート幅は、同一であるものとする。すなわち、各N型トランジスタTn11,Tn21,Tn22,Tn31~Tn33の駆動能力は等しいものとする(他の図においても同様とする)。
 なお、本開示において、同一とは、実質的に同一であることを指し、すなわち製造上の誤差等の多少の誤差を含んでいる。また、本開示において、等しいとは、実質的に等しいことを指し、すなわち製造上の誤差等に起因する多少の誤差を含んでいる。
 駆動回路20は、電源に接続されたノードn22と、出力ノードOUTに接続されたノードn23との間において、並列に接続された第1または第2のトランジスタ組としてのトランジスタ組G21,G22,G23を備えている。
 トランジスタ組G21は、ノードn22とノードn23との間に接続されたP型トランジスタTp11を備えている。P型トランジスタTp11のゲートは、入力ノードINに接続された入力ノードn21に接続されている。
 トランジスタ組G22は、ノードn22とノードn23との間において、直列に接続された2個のP型トランジスタTp21,Tp22を備えている。2個のP型トランジスタTp21,Tp22のゲートは、共に入力ノードn21に接続されている。
 トランジスタ組G23は、ノードn22とノードn23との間において、直列に接続された3個のP型トランジスタTp31,Tp32,Tp33を備えている。3個のP型トランジスタTp31,Tp32,Tp33のゲートは、共に入力ノードn21に接続されている。
 本態様において、P型トランジスタTp11,Tp21,Tp22,Tp31~Tp33は、フィン型トランジスタによって構成されたトランジスタであるものとする。また、各トランジスタを構成するそれぞれのフィン型トランジスタのゲート長およびゲート幅は、同一であるものとする。すなわち、各P型トランジスタTp11,Tp21,Tp22,Tp31~Tp33の駆動能力は等しいものとする(他の図においても同様とする)。
 駆動回路10のトランジスタ組G12では、N型トランジスタTn21,Tn22が2個直列に接続されているため、その駆動能力は、トランジスタ組G11の1/2である。同様に、トランジスタ組G13の駆動能力は、トランジスタ組G11の1/3である。したがって、3個のトランジスタ組G11,G12,G13が並列接続された駆動回路10の駆動能力は、N型トランジスタTn11の駆動能力の約1.8(1+1/2+1/3)倍となる。
 同様に、3個のトランジスタ組G21,G22,G23が並列接続された駆動回路20の駆動能力は、P型トランジスタTp11の駆動能力の約1.8倍となる。
 以上のように、本態様によると、直列接続されたトランジスタ数の異なる複数のトランジスタ組を並列に接続することによって、所望の駆動能力を有する駆動回路(半導体集積回路)を実現することができる。これにより、設計の自由度を向上させることが可能になるとともに、駆動回路およびその駆動回路を備える半導体集積回路装置の性能を向上させることができる。
 なお、図1において、トランジスタ組G12のN型トランジスタTn21とN型トランジスタTn22との間の中間ノードn14と、トランジスタ組G13のN型トランジスタTn31,Tn32間の中間ノードn15および/またはN型トランジスタTn32,Tn33間の中間ノードn16とが接続されていても、直列段数の異なるトランジスタ組によって出力ノードOUTが駆動される関係が保たれていれば、同様の効果が得られる。
 また、図1では、駆動回路10の3個のトランジスタ組G11,G12,G13は、それぞれ、直列接続された個数の異なるトランジスタを有する例を示しているが、例えば、図2に示すように、直列接続されたトランジスタ数が等しい複数個(図2では2個)のトランジスタ組G11,G11(第1および第3のトランジスタ組)と、そのトランジスタ組G11とは直列接続された個数の異なるトランジスタを有するトランジスタ組G12(第2のトランジスタ組)とを並列に接続してもかまわない。
 具体的には、図2に示すように、2個のトランジスタ組G11,G11は、それぞれノードn12とノードn13との間に接続されたN型トランジスタTn11を備え、各N型トランジスタTn11のゲートは、共に入力ノードn11に接続されている。
 トランジスタ組G12の駆動能力は、図1と同様に、トランジスタ組G11の1/2である。したがって、3個のトランジスタ組G11,G11,G12が並列接続された駆動回路10の駆動能力は、N型トランジスタTn11の駆動能力の2.5倍となる。
 なお、N型トランジスタTn11の駆動能力の2.5倍の駆動能力を有する駆動回路は、N型トランジスタTn11が2個直列接続されたトランジスタ組を5個並列に接続することによっても実現可能であるが、図2に示すように、本態様の構成の方が小面積で実現することができる。
 図3は、本態様に係る駆動回路10の構成を模式的に示した図である。
 図3に示すように、駆動回路10は、n(n≧1)個直列に接続されたN型トランジスタを有するトランジスタ組G11をs(s≧1)個備えており、s個のトランジスタ組G11,…は、ノードn12とノードn13との間において並列に接続されている。さらに、駆動回路10は、m(m≧2かつm≠n)個直列に接続されたN型トランジスタを有するトランジスタ組G12をt(t≧1)個備えており、t個のトランジスタ組G12,…は、ノードn12とノードn13との間において並列に接続されている。そして、駆動回路10は、上記のように直列接続された個数の異なるトランジスタを有するトランジスタ組(例えば、トランジスタ組G11およびG12)をy種類(y≧2)備えており、y種類のトランジスタ組は、ノードn12とノードn13との間において並列に接続されている。
 なお、図3では、同一導電型として、N型のトランジスタを有する駆動回路10について説明したが、同一導電型として、P型のトランジスタを有する駆動回路20についても同様にして駆動回路を構成することが可能である。
 図4は、図3に基づいて構成した具体的な駆動回路10,20の一例およびその駆動能力を示した図である。なお、表内において、駆動回路10のN型トランジスタの駆動能力はすべて等しいものとする。同様に、駆動回路20のP型トランジスタの駆動能力はすべて等しいものとする。また、表内に記載している駆動能力の数値は、1個のN型トランジスタまたは1個のP型トランジスタに対して、何倍の駆動能力を有するかを示している。
 図4に示すように、回路構成(A),(F)は、図3において、n=1、s=1、m=3、t=1、y=2の場合の回路構成例を示しており、駆動能力は約1.3倍である。
 同様に、回路構成(B),(G)は、n=1、s=1、m=2、t=1、y=2の場合の回路構成例を示しており、駆動能力は1.5倍である。回路構成(C),(H)は、n=1、s=1、m=3、t=2、y=2の場合の回路構成例を示しており、駆動能力は約1.6倍である。回路構成(D),(I)は、n=1、s=1、m=2、t=1、y=3の場合の回路構成例を示しており、駆動能力は約1.8倍である。具体的には、回路構成(D),(I)は、回路構成(B),(G)に加えて、3個のP型トランジスタ(図4(D))または3個のN型トランジスタ(図4(I))が直列に接続された3種類目のトランジスタ組が並列に接続されている。回路構成(E),(J)は、n=1、s=2、m=3、t=1、y=2の場合の回路構成例を示しており、駆動能力は約2.3倍である。
 以上のように、図3のパラメータを適宜変更して駆動回路10,20を構成することによって、所望の駆動能力を有する駆動回路(半導体集積回路)を実現することができる。
 なお、図4では、駆動回路10,20について、1個のN型トランジスタまたは1個のP型トランジスタに対して1倍を超える駆動能力を有する例について示したが、n,s,m,t,yの設定値を変えることによって、1倍以下の駆動能力を有する駆動回路10,20を実現することも可能である。
 また、図4の各駆動回路10,20について、セル化を行い、そのセル化した駆動回路10,20を組み合わせて半導体集積回路装置を形成してもよい。これにより、設計の容易性が向上するとともに、あらかじめ駆動回路内の素子配置(レイアウト構成)が把握できるため、駆動能力が同じ駆動回路間におけるレイアウトの違いが限定され、特性のばらつきの抑制が可能になる。
 また、図1および図2では、本態様に係る駆動回路10,20を組み合わせてインバータを構成する例について説明したが、これに限定されない。例えば、図5~図7に示すように、本態様に係る駆動回路10と、他の半導体集積回路(駆動回路)とを組み合わせてもよい。
 具体的には、図5に示す半導体集積回路装置1Aは、図1の駆動回路20に代えて駆動回路21を備えている。
 駆動回路21は、電源と出力ノードOUTとの間に並列に接続された2個のP型トランジスタTp51,Tp52を備えている。P型トランジスタTp51,Tp52のゲートは、入力ノードINに接続されている。
 なお、図1および図2において、図5と同様に、駆動回路20と、駆動回路10以外の他の駆動回路とを組み合わせてもかまわない(図示しない)。
 図6に示す半導体集積回路装置1Aは、図2の駆動回路20に代えて駆動回路21を備えている。また、駆動回路10は、図2の構成に加えて、N型トランジスタTn22と並列に接続されたN型トランジスタTn26を備えている。N型トランジスタTn26のゲートは、入力ノードn11に接続されている。
 これにより、駆動回路10の駆動能力の調整をより細かく実施することができる。また、所望の駆動能力を得るために必要なトランジスタ数を削減することが可能となるため、小面積で所望の駆動能力を実現することが可能になる。
 なお、図6では、N型トランジスタTn22と並列に1個のN型トランジスタTn26が接続されているものとしたが、これに限定されない。例えば、N型トランジスタTn22と並列に、q(q≧1)個直列に接続されたN型トランジスタが接続されていてもよい。
 また、N型トランジスタTn26は、直列接続された複数個のN型トランジスタと並列に接続されていてもよい。具体的には、例えば図1において、N型トランジスタTn26は、ノードn12と、N型トランジスタTn32,Tn33間の中間ノードn16との間に接続されていてもかまわない(図示しない)。この場合、N型トランジスタTn26は、N型トランジスタTn31,Tn32と並列に接続される。
 また、P型トランジスタを用いた駆動回路(例えば駆動回路20)においても、上記と同様のトランジスタの並列接続が可能であり、同様の効果が得られる。
 [実施形態2]
 図7は実施形態2に係る半導体集積回路装置2Aの回路構成例を示す概念図である。
 図7に示す半導体集積回路装置2Aは、図2の半導体集積回路装置1Aに加えて、駆動回路10にP型のプリチャージトランジスタTs1を備えている。
 具体的には、プリチャージトランジスタTs1は、電源と、トランジスタ組G12の2個のN型トランジスタTn21,Tn22を接続する中間ノードn14との間に接続されている。プリチャージトランジスタTs1のゲートは、入力ノードn11に接続されている。
 以下において、半導体集積回路装置2A(プリチャージトランジスタTs1)の動作について詳細に説明する。
 半導体集積回路装置2Aにおいて、入力ノードIN(入力ノードn11)から入力される入力信号がロウレベルのとき、すなわちN型トランジスタTn21,Tn22がオフのとき、プリチャージトランジスタTs1はオンとなり、中間ノードn14の電圧は電源電圧にプリチャージされる。一方で、入力ノードIN(入力ノードn11)から入力される入力信号がハイレベルのとき、すなわちN型トランジスタTn21,Tn22がオンのとき、プリチャージトランジスタTs1はオフとなり、プリチャージは解除される。
 このように、N型トランジスタTn21,Tn22がオフの場合においても、中間ノードn14の電圧は、電源電圧にプリチャージされているため、入力ノードINに入力信号を受けてから出力ノードOUTに出力信号が出力されるまでの遅延ばらつきを抑制することができる。
 なお、プリチャージトランジスタTs1の接続先は、中間ノードn14に限定されない。例えば、図1において、駆動回路10のトランジスタ組G13における2個のN型トランジスタTn31,Tn32を接続する中間ノードn15に接続してもよい。同様に、トランジスタ組G13の2個のN型トランジスタTn32,Tn33を接続する中間ノードn16にプリチャージトランジスタTs1を接続してもよい。
 また、プリチャージする電圧は、電源に限定されず、グランドより高く、かつ電源より低い他の電圧であってもかまわない。或いは、プリチャージトランジスタのゲート幅、ゲート長および/または直列段数を調整して駆動能力を弱めることで、リーク電流の抑制を図ることができる。この場合においても、図7に記載の半導体集積回路装置2Aと同様の効果が得られる。
 また、プリチャージトランジスタの接続先は、駆動回路10内の中間ノードに限定されない。例えば、図7において、駆動回路20のトランジスタ組G22における2個のP型トランジスタTp21,Tp22を接続する中間ノードn24に接続されていてもよい。この場合、プリチャージトランジスタは、例えば、N型トランジスタを用いることができる。具体的は、そのプリチャージトランジスタ(N型トランジスタ)は、中間ノードn24とグランドとの間に接続されるとともに、そのゲートは、入力ノードn21に接続される(図示しない)。この場合においても、図7に記載の半導体集積回路装置2Aと同様の効果が得られる。
 同様に、上記のプリチャージトランジスタ(N型トランジスタ)は、トランジスタ組G23の2個のP型トランジスタTp31,Tp32を接続する中間ノードn25に接続してもよいし、2個のP型トランジスタTp32,Tp33を接続する中間ノードn26に接続してもよい。
 [実施形態3]
 図8は実施形態3に係る半導体集積回路装置3Aの回路構成例を示す概念図である。
 図8(a)に示す半導体集積回路装置3Aは、図1の半導体集積回路装置1Aに加えて、駆動回路20のトランジスタ組G23のP型トランジスタTp31,Tp32を接続する中間ノードn25を定電圧電源としての電源に接続している。
 これにより、P型トランジスタTp31のソース-ドレイン間が実質的にショートされるため、トランジスタ組G23の駆動能力は、トランジスタ組G21の1/2となる。したがって、駆動回路20の駆動能力は、P型トランジスタTp11の駆動能力の2倍となる。
 同様に、図8(b)に示す半導体集積回路装置3Aは、図1の半導体集積回路装置1Aに加えて、駆動回路20のトランジスタ組G23のP型トランジスタTp32,Tp33を接続する中間ノードn26をノードn23に接続している。
 これにより、P型トランジスタTp33のソース-ドレイン間が実質的にショートされるため、トランジスタ組G23の駆動能力は、トランジスタ組G21の1/2となる。したがって、駆動回路20の駆動能力は、P型トランジスタTp11の駆動能力の2倍となる。
 駆動回路10においても、上記と同様にして駆動回路10の駆動能力の調整が可能である。具体的には、例えば、駆動回路10のトランジスタ組G13のN型トランジスタTn32,Tn33を接続する中間ノードn16を定電圧電源としてのグランドに接続してもよい(図示しない)。これにより、図8(a)と同様に、駆動回路10の駆動能力は、N型トランジスタTn11の駆動能力の2倍となる。
 また、駆動回路10のトランジスタ組G13のN型トランジスタTn31,Tn32を接続する中間ノードn15をノードn12に接続してもよい。これにより、図8(b)と同様に、駆動回路10の駆動能力は、N型トランジスタTn11の駆動能力の2倍となる。
 以上のように、本態様によると、半導体集積回路装置3Aにおいて、駆動回路10のN型トランジスタと駆動回路20のP型トランジスタとの素子数を同じにしつつ、それぞれの駆動能力を調整することが可能となる。これにより、ゲートと拡散層とのパタンを一様にすることが可能となり、その結果、半導体集積回路装置(駆動回路)およびそれを搭載したデバイスのばらつきを抑制することができる。
 なお、駆動回路のトランジスタ組における2個のトランジスタを接続する中間ノードに予めコンタクトといずれの配線にも接続しないメタル配線とを設けてもよい。これにより、マスク修正によって駆動能力を調整したい場合に、ゲート層や拡散層を変更することなく、メタル配線層の修正のみによって駆動能力の調整が可能となる。
 具体的には、例えば図8(a)において、トランジスタ組G23のP型トランジスタTp32,Tp33を接続する中間ノードn26に上記コンタクトと上記メタル配線とを設ける。そして、駆動回路20の駆動能力を調整(増加)したい場合に、このメタル配線を電源またはノードn23に接続するマスク修正を行う。また、例えば、駆動能力を減少させる調整として、図8(a)において、中間ノードn25の電源との接続を切断するマスク修正も可能である。
 なお、本態様では、中間ノードの接続の一例について説明したが、他のトランジスタ組、および他の中間ノードにおいても同様の接続が可能であり、本態様と同様の効果が得られる。
 [実施形態4]
 図9は実施形態4に係る半導体集積回路装置4Aの回路構成例を示す概念図である。
 図9に示す半導体集積回路装置4Aでは、図1の半導体集積回路装置1Aと比較して、駆動回路10において、トランジスタ組G12のN型トランジスタTn22のゲートの接続先が、入力ノードn11からモード制御信号MODE1を供給する制御ノードn17に変更されている。同様に、トランジスタ組G13のN型トランジスタTn33のゲートの接続先が、入力ノードn11からモード制御信号MODE2を供給する制御ノードn18に変更されている。モード制御信号MODE1は、N型トランジスタTn22をオンオフ制御する制御信号であり、モード制御信号MODE2は、N型トランジスタTn33をオンオフ制御する制御信号である。
 以下において、モード制御信号MODE1,MODE2による駆動回路10の駆動能力の調整について詳細に説明する。
 モード制御信号MODE1,MODE2が共にハイレベルのとき、N型トランジスタTn22およびTn33は、共にオン制御され、共に導通状態となる。したがって、駆動回路10の駆動能力は、図1の駆動回路10と同様に、N型トランジスタTn11の駆動能力の約1.8倍となる。
 一方で、モード制御信号MODE1がハイレベルであり、モード制御信号MODE2がロウレベルのとき、N型トランジスタTn22はオン制御される一方、N型トランジスタTn33はオフ制御される。その結果、入力ノードIN(入力ノードn11)からの入力信号によらず、トランジスタ組G13は非導通状態となる。したがって、駆動回路10の駆動能力は、N型トランジスタTn11の駆動能力の1.5倍となる。同様に、モード制御信号MODE1がロウレベルであり、モード制御信号MODE2がハイレベルのとき、駆動回路10の駆動能力は、N型トランジスタTn11の駆動能力の約1.3倍となり、モード制御信号MODE1,MODE2が共にロウレベルのとき、駆動回路10の駆動能力は、N型トランジスタTn11の駆動能力の1倍となる。
 駆動回路20においても、上記と同様にして、駆動能力の調整が可能である。具体的には、駆動回路20の各トランジスタ組内におけるトランジスタの一部のゲートに制御ノードを接続して、モード制御信号を与えることによって、駆動能力を調整することができる。
 以上のように、本態様では、モード制御信号によって駆動回路の駆動能力の調整ができる。これにより、例えば、駆動回路を高速動作させたい場合には、モード制御信号によってトランジスタをオン制御する一方、駆動回路が低速動作でもよい場合には、モード制御信号によってトランジスタをオフ制御してリーク電流を削減するという制御が可能となる。すなわち、駆動回路の動作速度と、リーク電流のトレードオフを図ることができる。このような回路は、例えば、メモリの動作補助を行う際のメモリセル電源の駆動回路などで有用である。
 なお、図9では、モード制御信号MODE2は、トランジスタ組G13の直列接続された3個のN型トランジスタTn31,Tn32,Tn33のうちの1個のN型トランジスタTn33に接続されるものとしたが、これに限定されない。例えば、図10に示すように、半導体集積回路装置4Aにおいて、モード制御信号MODE2が3個のN型トランジスタTn31,Tn32,Tn33のうちの2個のN型トランジスタTn32,Tn33に接続されていてもよい。この場合においても、同様の効果が得られる。さらに、図10における半導体集積回路装置4Aは、他図における半導体集積回路装置と比較して、駆動回路10の入力ノードn11(入力ノードIN)に付加されるゲート容量を削減することができる。
 また、図9,図10において、モード制御信号MODE1,MODE2が与えられたN型トランジスタについて、モード制御信号MODE1,MODE2に代えて、電源が接続されていてもよい。これにより、図1の回路と同様の効果を得るとともに、入力ノードn21(入力ノードIN)に付加されるゲート容量を削減することができる。
 また、駆動回路において、モード制御信号が与えられたN型トランジスタと、上記電源に接続されたN型トランジスタとが混在してもかまわない。
 また、モード制御信号を用いた半導体集積回路装置の駆動能力の調整は、駆動回路内における駆動能力の調整に限定されない。例えば、図11に示すように、駆動回路の外部において、モード制御信号を用いて駆動能力の調整を行ってもよい。
 図11の半導体集積回路装置4Bは、電源と出力ノードOUTとの間に接続された駆動回路21と、出力ノードOUTとグランドとの間において、3個並列に接続された駆動回路10A,10B,10Cとを備えたインバータ回路である。そして、駆動回路10Bとグランドとの間には、ノードn31を介してモード制御トランジスタTc1が接続されている。同様に、駆動回路10Cとグランドとの間には、ノードn32を介してモード制御トランジスタTc2が接続されている。
 駆動回路21は、図5と同様に、電源と出力ノードOUTとの間に並列に接続された2個のP型トランジスタTp51,Tp52を備えており、それらのゲートは、入力ノードINに接続されている。
 駆動回路10A,10B,10Cは、並列に接続された2個のトランジスタ組G11,G12を備えている。トランジスタ組G11およびG12は、図1と同一構成でありここではその詳細説明を省略する。
 モード制御トランジスタTc1は、モード制御信号MODE1に基づいて、駆動回路10Bのアクティブ状態/非アクティブ状態を切り替える。同様に、モード制御トランジスタTc2は、モード制御信号MODE2に基づいて、駆動回路10Cのアクティブ状態/非アクティブ状態を切り替える。これにより、モード制御信号MODE1,MODE2によって、3つの駆動回路10A,10B,10Cの合計の駆動能力(アクティブな駆動回路の数)が変わるため、結果として半導体集積回路装置4Bの駆動能力を調整することができる。
 なお、図11では、半導体集積回路装置4Bは、出力ノードOUTとグランドとの間において、3個並列に接続された駆動回路10A,10B,10Cとを備えていたが、電源と出力ノードOUTとの間において、P型トランジスタを有する駆動回路を複数個並列接続し、そのうちの一部または全部にモード制御トランジスタを接続して、これらの駆動回路のアクティブ状態/非アクティブ状態を切り替えるようにしてもよい。
 [その他の実施形態]
 以上、本出願において開示する技術の例示として、実施形態1~4を説明した。しかしながら本開示における技術はこれに限定されず、適宜、組み合わせ、変更、置き換え、付加、省略などを行った実施形態にも適用可能である。
 例えば、図1~図11において、半導体集積回路装置はインバータであるものとして説明したが、これに限定されない。例えば、半導体集積回路(駆動回路)を、AND回路、NAND回路、OR回路、NOR回路、EOR(Exclusive OR)回路、ENOR(Exclusive NOR)回路、複合ゲートなどの他の基本ゲートに適用してもよい。また、半導体集積回路(駆動回路)をメモリセルやダイナミック回路等の他の半導体集積回路装置に適用してもよい。
 図12は本開示に係る駆動回路10,20をNAND回路に適用した例を示している。図12において、半導体集積回路装置5A(NAND回路)は、電源と出力ノードOUTとの間に2個並列に接続された駆動回路20,20と、出力ノードOUTとグランドとの間に2個直列に接続された駆動回路10,10とを備えている。すなわち、各駆動回路20のノードn22は電源に接続される一方、ノードn23は出力ノードOUTに接続されている。また、一方の駆動回路10(図面上側の駆動回路10)のノードn12は出力ノードOUTに接続される一方、ノードn13は他方の駆動回路10(図面下側の駆動回路10)のノードn12に接続されている。他方の駆動回路10のノードn13はグランドに接続されている。
 また、一方の駆動回路20の入力ノードn21および一方の駆動回路10の入力ノードn11は、半導体集積回路装置5Aの一方の入力ノードIN0が接続されており、他方の駆動回路20の入力ノードn21および他方の駆動回路10の入力ノードn11は、半導体集積回路装置5Aの他方の入力ノードIN1に接続されている。
 各駆動回路10は、並列接続された2個のトランジスタ組G11,G12を備えている。同様に、各駆動回路20は、並列接続された2個のトランジスタ組G21,G22を備えている。なお、トランジスタ組G11,G12,G21,G22は図1と同様の構成であり、ここではその詳細な説明を省略する。
 図13は本開示に係る駆動回路10,20をNAND回路に適用した他の例を示している。図13の半導体集積回路装置5Aは、図面下側の駆動回路10において、トランジスタ組G12に代えて、トランジスタ組G13を備えている。また、図面右側の駆動回路20に代えて、図5と同様の駆動回路21を備えている。このように、インバータと同様に、異なる構成の駆動回路を組み合わせてNAND回路を構成してもよい。
 また、例えば、図14に示すように、バイアスの調整を行う半導体集積回路装置としてのバイアス調整回路5Bに本態様に係る駆動装置を適用してもかまわない。
 具体的には、図14に示すバイアス調整回路5Bは、図5と同様に、駆動回路10,21を備えている。駆動回路21は、電源と出力ノードOUTとの間に並列に接続された2個のP型トランジスタTp51,Tp52を備えており、それらのゲートは、共にグランドに接続されている。駆動回路10については、図5と同じ構成の回路であり、ここではその詳細な説明を省略する。
 以下において、バイアス調整回路5Bの動作について詳細に説明する。
 バイアス調整回路5Bにおいて、入力ノードIN(入力ノードn11)から入力される入力信号がロウレベルのとき、すなわち駆動回路10のN型トランジスタTn11,Tn21,Tn22,Tn31~Tn33がオフのとき、出力ノードOUTから電源電圧が出力される。一方で、入力ノードIN(入力ノードn11)から入力される入力信号がハイレベルのとき、N型トランジスタTn11,Tn21,Tn22,Tn31~Tn33はオンとなり、駆動回路21と駆動回路10とによって電源電圧が分圧されて、出力ノードOUTから出力される。そして、駆動回路10の駆動能力を変えることによって、出力ノードOUTから出力される出力信号の電圧レベルを調整することができる。
 以上のように、図14に示すバイアス調整回路5Bは、出力ノードOUTに出力される出力信号を所望の電圧レベルに調整することが可能である。したがって、バイアス電圧の微調整が要求される半導体集積回路装置等に有用である。具体的には、例えば、メモリセルの書き込みや読み出し補助を行う際に、メモリセルの電圧レベルを微調整するときなどに有用である。
 なお、図14において、駆動回路21のP型トランジスタTp51,Tp52をN型トランジスタに変更し、そのゲートを電源に接続しても同様の効果が得られる。
 また、図14では、P型トランジスタを含む駆動回路21を常にオン制御するものとしたが、これに限定されない。例えば、図1において、駆動回路10のN型トランジスタTn11,Tn21,Tn22,Tn31~Tn33のゲートを電源に接続し、常にオン制御するようにしても、同様の効果が得られる。
 また、図1の回路において、駆動回路10のN型トランジスタTn11,Tn21,Tn22,Tn31~Tn33をすべてP型トランジスタに変更し、それらのゲートをグランドに接続しても同様の効果が得られる。
 本開示に係る半導体集積回路は、ゲート幅およびゲート長を固定値にした場合においても、その駆動能力を調整することが可能である。したがって、インバータ、NAND、OR等の基本ゲート、メモリセル、ダイナミック回路等を有する半導体集積回路装置等に有用である。
 1A,2A、3A,4A,4B,5A 半導体集積回路装置
 5B バイアス調整回路(半導体集積回路装置)
 10,10A,10B,10C,20 駆動回路(半導体集積回路)
 G11,G12,G13 トランジスタ組(第1のトランジスタ組、第2のトランジスタ組)
 G21,G22,G23 トランジスタ組(第1のトランジスタ組、第2のトランジスタ組)
 Tn11,Tn21,Tn22,Tn31,Tn32,Tn33 N型トランジスタ(トランジスタ)
 Tn26 N型トランジスタ(トランジスタ)
 Tp11,Tp21,Tp22,Tp31,Tp32,Tp33 P型トランジスタ(トランジスタ)
 Ts1 プリチャージトランジスタ
 Tc1,Tc2 モード制御トランジスタ(制御トランジスタ)
 n11 入力ノード
 n12 ノード(第1のノード)
 n13 ノード(第2のノード)
 n14,n15,n16 中間ノード
 n21 入力ノード
 n22 ノード(第1のノード)
 n23 ノード(第2のノード)
 n24,n25,n26 中間ノード
 MODE1,MODE2 モード制御信号
 

Claims (13)

  1.  入力ノード、並びに、第1および第2のノードと接続された半導体集積回路であって、
     同一のゲート長および同一のゲート幅を有するフィン型トランジスタによって構成された第1導電型のトランジスタを複数個有しており、
     前記第1のノードと前記第2のノードとの間に設けられており、直列に接続されたn(nは整数、かつ、n≧1)個の前記トランジスタを有する、第1のトランジスタ組と、
     前記第1のノードと前記第2のノードとの間に、前記第1のトランジスタ組と並列に設けられており、直列に接続されたm(mは整数、かつ、m≧1、かつ、m≠n)個の前記トランジスタを有する、第2のトランジスタ組とを備え、
     前記第1のトランジスタ組の前記n個のトランジスタのうちの少なくとも1個、および前記第2のトランジスタ組の前記m個のトランジスタのうちの少なくとも1個は、ゲートが、前記入力ノードに接続されている
    ことを特徴とする半導体集積回路。
  2.  請求項1記載の半導体集積回路において、
     前記第1のノードと前記第2のノードとの間に、前記第1のトランジスタ組と並列に設けられており、直列に接続されたn個の前記第1導電型のトランジスタを有する、第3のトランジスタ組をさらに備えている
    ことを特徴とする半導体集積回路。
  3.  請求項1記載の半導体集積回路において、
     前記第2のトランジスタ組は、前記m(ただし、m≧2)個のトランジスタに加えて、前記m個のトランジスタの一部に並列に接続された前記第1導電型のトランジスタをさらに有している
    ことを特徴とする半導体集積回路。
  4.  請求項1記載の半導体集積回路において、
     前記第2のトランジスタ組は、前記m(ただし、m≧2)個のトランジスタにおける、トランジスタ同士を接続する中間ノードのうちの少なくともいずれか1つに接続され、かつ、ゲートが前記入力ノードに接続されたトランジスタがオフのとき、前記中間ノードを所定の電圧にプリチャージするプリチャージトランジスタをさらに備えている
    ことを特徴とする半導体集積回路。
  5.  請求項1記載の半導体集積回路において、
     前記第2のトランジスタ組は、前記m(ただし、m≧2)個のトランジスタにおける、トランジスタ同士を接続する中間ノードのうちの少なくともいずれか1つに、定電圧電源、または前記第1もしくは第2のノードが接続されている
    ことを特徴とする半導体集積回路。
  6.  請求項1記載の半導体集積回路において、
     前記第2のトランジスタ組において、前記m(ただし、m≧2)個のトランジスタにおける、ゲートが前記入力ノードに接続されていないトランジスタの少なくとも1個のゲートに、当該トランジスタをオンオフ制御するモード制御信号が与えられている
    ことを特徴とする半導体集積回路。
  7.  請求項1記載の半導体集積回路において、
     前記第2のトランジスタ組において、前記m(ただし、m≧2)個のトランジスタにおける、ゲートが前記入力ノードに接続されていないトランジスタの少なくとも1個のゲートに、当該トランジスタを常時オンさせる定電圧が与えられている
    ことを特徴とする半導体集積回路。
  8.  複数個の半導体集積回路を備え、
     前記複数個の半導体集積回路は、請求項1記載の半導体集積回路である第1の半導体集積回路を含んでいる
    ことを特徴とする半導体集積回路装置。
  9.  請求項8に記載の半導体集積回路装置において、
     前記複数個の半導体集積回路は、基本ゲートを構成する
    ことを特徴とする半導体集積回路装置。
  10.  請求項8に記載の半導体集積回路装置において、
     前記複数個の半導体集積回路は、メモリセルを構成する
    ことを特徴とする半導体集積回路装置。
  11.  請求項8に記載の半導体集積回路装置において、
     前記複数個の半導体集積回路は、ダイナミック回路を構成する
    ことを特徴とする半導体集積回路装置。
  12.  請求項9から11のうちいずれか1項に記載の半導体集積回路装置において、
     前記複数個の半導体集積回路は、構成が互いに異なる複数の前記第1の半導体集積回路を備えている
    ことを特徴とする半導体集積回路装置。
  13.  請求項9から11のうちいずれか1項に記載の半導体集積回路装置において、
     前記第1の半導体集積回路と前記第1または第2のノードとの間に接続された制御トランジスタをさらに備え、
     前記制御トランジスタのゲートに、当該制御トランジスタをオンオフ制御するモード制御信号が与えられている
    ことを特徴とする半導体集積回路装置。
     
     
PCT/JP2014/002281 2013-09-27 2014-04-23 半導体集積回路および半導体集積回路装置 WO2015045207A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/080,406 US9813062B2 (en) 2013-09-27 2016-03-24 Finfet based driver circuit
US15/725,123 US10033384B2 (en) 2013-09-27 2017-10-04 FINFET based driver circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-201060 2013-09-27
JP2013201060 2013-09-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/080,406 Continuation US9813062B2 (en) 2013-09-27 2016-03-24 Finfet based driver circuit

Publications (1)

Publication Number Publication Date
WO2015045207A1 true WO2015045207A1 (ja) 2015-04-02

Family

ID=52742391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002281 WO2015045207A1 (ja) 2013-09-27 2014-04-23 半導体集積回路および半導体集積回路装置

Country Status (2)

Country Link
US (2) US9813062B2 (ja)
WO (1) WO2015045207A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10073943B2 (en) * 2015-09-25 2018-09-11 Nxp Usa, Inc. Gate length upsizing for low leakage standard cells

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04371023A (ja) * 1991-06-19 1992-12-24 Fujitsu Ltd 可変バッファゲート
JP2001127593A (ja) * 1999-10-28 2001-05-11 Sharp Corp ゲートアレイに於ける入力シュミットバッファ回路の設計方法、及び入力シュミットバッファ回路
JP2005064459A (ja) * 2003-07-31 2005-03-10 Toshiba Corp 半導体装置およびその製造方法
JP2007235037A (ja) * 2006-03-03 2007-09-13 Fujitsu Ltd 半導体装置の製造方法及び半導体記憶装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3232843C2 (de) * 1981-09-03 1986-07-03 Tokyo Shibaura Denki K.K., Kawasaki, Kanagawa MOS-Logikschaltung
US4612466A (en) * 1984-08-31 1986-09-16 Rca Corporation High-speed output driver
US5059835A (en) * 1987-06-04 1991-10-22 Ncr Corporation Cmos circuit with programmable input threshold
JP3586467B2 (ja) * 1994-03-25 2004-11-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Vcc補償されたダイナミック閥値を備えたCMOS入力
JPH0927554A (ja) 1995-07-12 1997-01-28 Sanyo Electric Co Ltd 半導体電子回路
US5801548A (en) * 1996-04-11 1998-09-01 Xilinx Inc Configurable performance-optimized programmable logic device
US5732027A (en) * 1996-12-30 1998-03-24 Cypress Semiconductor Corporation Memory having selectable output strength
US6147513A (en) * 1998-05-01 2000-11-14 Winbond Electronics Corporation Method and circuit for logic input buffer
US6642090B1 (en) * 2002-06-03 2003-11-04 International Business Machines Corporation Fin FET devices from bulk semiconductor and method for forming
US7557618B1 (en) * 2006-09-25 2009-07-07 Wik Thomas R Conditioning logic technology
KR100890384B1 (ko) * 2007-12-26 2009-03-25 주식회사 하이닉스반도체 온도에 따라 슬루율을 조절하는 반도체장치 및 이의 데이터출력방법
CN104660248B (zh) * 2013-11-19 2018-06-01 中芯国际集成电路制造(上海)有限公司 上拉电阻电路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04371023A (ja) * 1991-06-19 1992-12-24 Fujitsu Ltd 可変バッファゲート
JP2001127593A (ja) * 1999-10-28 2001-05-11 Sharp Corp ゲートアレイに於ける入力シュミットバッファ回路の設計方法、及び入力シュミットバッファ回路
JP2005064459A (ja) * 2003-07-31 2005-03-10 Toshiba Corp 半導体装置およびその製造方法
JP2007235037A (ja) * 2006-03-03 2007-09-13 Fujitsu Ltd 半導体装置の製造方法及び半導体記憶装置

Also Published As

Publication number Publication date
US10033384B2 (en) 2018-07-24
US20180041212A1 (en) 2018-02-08
US9813062B2 (en) 2017-11-07
US20160211839A1 (en) 2016-07-21

Similar Documents

Publication Publication Date Title
US8338864B2 (en) Semiconductor device
US7282959B2 (en) CMOS circuit including double-insulated-gate field-effect transistors
US8049214B2 (en) Degradation correction for finFET circuits
JP5329673B2 (ja) 半導体集積回路装置
JP2010087518A (ja) インバータ及びその動作方法並びにインバータを含む論理回路
JP6443336B2 (ja) 半導体集積回路および論理回路
TWI533612B (zh) 延遲線電路及半導體積體電路
JP2006042136A (ja) 終端回路、半導体装置、及び電子機器
WO2015045207A1 (ja) 半導体集積回路および半導体集積回路装置
JP2011049315A (ja) 半導体集積回路
JP2015222607A (ja) 半導体装置
TW201334415A (zh) 三態閘
JP5132891B2 (ja) 半導体集積回路
JP2009193981A (ja) 半導体集積回路装置
JP2017079266A (ja) 半導体装置及びそれを用いた半導体集積回路
JP2004120373A (ja) 半導体集積回路
US20060181313A1 (en) Transistor logic circuit
JP2016213644A (ja) 半導体装置
JP2011015017A (ja) 差動増幅回路
JP2008022329A (ja) 出力制御回路
EP3149771B1 (en) Multiple state electrostatically formed nanowire transistors
KR100599449B1 (ko) Cmos 가변 이득 증폭기
JP2011086813A (ja) バイアス回路
Tanoi et al. A 3-mW/Gbps 1.8-V Operated Current-Reuse Low-Voltage Differential Signaling Driver Using Vertical Metal–Oxide–Semiconductor Field-Effect Transistors
JP2014027499A (ja) 半導体論理回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14849350

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14849350

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP