WO2015040855A1 - 緑色蛍光体及びその製造方法、蛍光体シート、並びに、照明装置 - Google Patents
緑色蛍光体及びその製造方法、蛍光体シート、並びに、照明装置 Download PDFInfo
- Publication number
- WO2015040855A1 WO2015040855A1 PCT/JP2014/004757 JP2014004757W WO2015040855A1 WO 2015040855 A1 WO2015040855 A1 WO 2015040855A1 JP 2014004757 W JP2014004757 W JP 2014004757W WO 2015040855 A1 WO2015040855 A1 WO 2015040855A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phosphor
- compound
- peak
- green phosphor
- green
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7728—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
- C09K11/7729—Chalcogenides
- C09K11/7731—Chalcogenides with alkaline earth metals
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133614—Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light
Definitions
- the present invention relates to a green phosphor, a method for producing the same, a phosphor sheet, and a lighting device, and in particular, a green phosphor represented by SrGa 2 S 4 : Eu, a method for producing the same, and a fluorescence containing the green phosphor.
- the present invention relates to a body sheet and a lighting device including the phosphor sheet.
- SGS phosphors are attracting attention as green light emitting phosphors for exciting blue LEDs because they are excited by light in the near ultraviolet to blue region. SGS phosphors are characterized by high color purity and high luminous efficiency. Further, by replacing the Sr site of the SGS phosphor with Ca, the wavelength can be increased up to about 560 nm (see, for example, Non-Patent Document 1).
- Patent Document 1 a powder containing europium and strontium is obtained from a solution containing a europium compound and a strontium compound, and then the powder and the powder gallium compound are mixed and fired to obtain (Sr, Ba , Ca) 1-x Ga 2 S 4: Eu x ( where, 0.10 ⁇ x ⁇ 0.20, preferably, 0.10 ⁇ x ⁇ 0.18) and the value of (internal quantum efficiency / absorption efficiency) It is disclosed that a green light-emitting phosphor having an A of 0.7 or more can be obtained.
- Patent Document 2 discloses an XRD pattern using CuK ⁇ rays in a phosphor that is a base crystal containing Ca, Ga, and S.
- the above-described conventional phosphor does not have sufficient conversion efficiency as a green light emitting phosphor for blue LED excitation, and a green phosphor having higher conversion efficiency is desired.
- JP 2011-236310 A WO2011 / 033830 publication
- the present invention solves the above-described problems in the prior art, and an object thereof is to provide a green phosphor having high conversion efficiency.
- the green phosphor according to the present invention (Sr 1-y Ca y ) 1-x Ga 2 S 4: Eu x (0.03 ⁇ x ⁇ 0.20,0 ⁇ y ⁇ 1) and the half width of the diffraction peak on the (422) plane of the XRD pattern is less than 0.18.
- the phosphor sheet according to the present invention includes a water vapor barrier film and a phosphor layer sandwiched between the water vapor barrier films, and the phosphor layer is (Sr 1-y Ca y ) 1-x Ga 2.
- S 4 represented by a composition formula of Eu x (0.03 ⁇ x ⁇ 0.20, 0 ⁇ y ⁇ 1), and the half width of the diffraction peak on the (422) plane of the XRD pattern is less than 0.18 It contains a green phosphor and a red phosphor.
- an illumination device is characterized by including the above-described phosphor sheet.
- a mixed solution containing a europium compound, a strontium compound, and a calcium compound is dropped into a sulfite solution to which a powdered gallium compound is added, and Eu, Sr, Ca, and after obtaining a powder mixture of sulfite containing Ga, and fired the powder mixture, (Sr 1-y Ca y ) 1-x Ga 2 S 4: Eu x (0.03 ⁇ x ⁇ 0.20 , 0 ⁇ y ⁇ 1), a green phosphor represented by a composition formula is obtained.
- the half width of the diffraction peak of the XRD pattern (422) plane is less than 0.18 and the crystallinity is good, so that high conversion efficiency can be obtained.
- the half width of the diffraction peak of the (422) plane of the XRD pattern is less than 0.18.
- the conversion efficiency of the phosphor is the efficiency of absorbing the excitation light (absorption rate), the efficiency of changing the absorbed excitation light to fluorescence (internal quantum efficiency), and converting the excitation light that is the product of them into fluorescence Efficiency (external quantum efficiency).
- the half width of the diffraction peak of the (422) plane of the XRD pattern is not particularly limited as long as it is less than 0.18, but is preferably less than 0.16, and more preferably less than 0.15. is there.
- the green phosphor preferably has a PL peak half-width of 46 nm to 51 nm. Thereby, high color purity can be obtained.
- the green phosphor preferably has a PL peak wavelength of 530 nm to 570 nm, and more preferably 540 nm to 550 nm. Thereby, green with good color purity can be obtained.
- the green phosphor preferably satisfies 0.05 ⁇ x ⁇ 0.18 and 0.25 ⁇ y ⁇ 0.50 in the above composition formula. Thereby, it is possible to obtain green with good color purity and to obtain high conversion efficiency.
- the green phosphor is a sulfite powder containing Sr, Ca, Eu and Ga by dropping a mixed solution containing a europium compound, a strontium compound and a calcium compound into a sulfite solution to which a powdered gallium compound is added. After obtaining the mixture, the powder mixture is preferably fired. Thereby, while having favorable crystallinity, high conversion efficiency can be obtained.
- europium compounds include europium nitrate [Eu (NO 3 ) 3 ⁇ xH 2 O], europium oxalate [Eu 2 (C 2 O 4 ) 3 ⁇ xH 2 O], and europium carbonate [Eu 2 (CO 3 ) 3 ⁇ xH.
- Eu 2 O europium sulfate [Eu 2 (SO 4 ) 3 ] europium chloride [EuCl 3 ⁇ xH 2 O], europium fluoride [EuF 3 ], europium hydride [EuH x ], europium sulfide [EuS], tri -I-propoxy europium [Eu (Oi-C 3 H 7 ) 3 ], europium acetate [Eu (O—CO—CH 3 ) 3 ] and the like can be used.
- strontium compounds include strontium nitrate [Sr (NO 3 ) 2 ], strontium oxide [SrO], strontium bromide [SrBr 2 ⁇ xH 2 O], strontium chloride [SrCl 2 ⁇ xH 2 O], and strontium carbonate [SrCO 3.
- Examples of calcium compounds include calcium nitrate [Ca (NO 3 ) 2 ], calcium oxide [CaO], calcium bromide [CaBr 2 .xH 2 O], calcium chloride [CaCl 2 .xH 2 O], calcium carbonate [CaCO 3. ], Calcium oxalate [CaC 2 O 4 ⁇ H 2 O], calcium fluoride [CaF 2 ], calcium iodide [CaI 2 ⁇ xH 2 O], calcium sulfate [CaSO 4 ], calcium hydroxide [Ca (OH)] 2 ], calcium sulfide [CaS] and the like can be used.
- a solvent for obtaining a mixed solution containing a europium compound, a strontium compound and a calcium compound pure water, nitric acid aqueous solution, ammonia aqueous solution, hydrochloric acid aqueous solution, sodium hydroxide aqueous solution, or a mixed aqueous solution thereof can be used.
- Examples of powdered gallium compounds include gallium oxide [Ga 2 O 3 ], gallium sulfate [Ga 2 (SO 4 ) 3 .xH 2 O], gallium nitrate [Ga (NO 3 ) 3 .xH 2 O], odor Gallium iodide [GaBr 3 ], Gallium chloride [GaCl 3 ], Gallium iodide [GaI 3 ], Gallium sulfide (II) [GaS], Gallium sulfide (III) [Ga 2 S 3 ], Gallium oxyhydroxide [GaOOH] Etc. can be used.
- ammonium sulfite, sodium sulfite, or potassium sulfite can be used as the sulfite to which the powdered gallium compound is added.
- carbonates specifically, sodium carbonate, potassium carbonate, magnesium carbonate
- sodium carbonate, potassium carbonate, magnesium carbonate can also be used.
- a powder gallium compound is added to the mixed solution containing a europium compound, a strontium compound, and a calcium compound, and the mixed solution containing Eu, Sr, Ca, and Ga is dripped in a sulfite solution.
- a powder mixture of sulfite containing Ca and Ga is dripped in a sulfite solution.
- a green phosphor represented by a composition formula of 03 ⁇ x ⁇ 0.20, 0 ⁇ y ⁇ 1) may be obtained.
- the phosphor sheet according to the present embodiment includes a water vapor barrier film and a phosphor layer sandwiched between the water vapor barrier films, and the phosphor layer is (Sr 1-y Ca y ) 1-x Ga 2 S 4.
- the half width of the diffraction peak of the (422) plane of the XRD pattern is not particularly limited as long as it is less than 0.18, but is preferably less than 0.16, and more preferably less than 0.15. is there.
- FIG. 1 is a schematic cross-sectional view showing a configuration example of the phosphor sheet end.
- the phosphor layer 11 is sandwiched between a first water vapor barrier film 12 and a second water vapor barrier film 13.
- the phosphor layer 11 includes a green phosphor that emits green fluorescence with a wavelength of 530 to 570 nm, preferably 540 to 550 nm when irradiated with blue excitation light, and a red fluorescence that emits red fluorescence with a wavelength of 620 to 660 nm when irradiated with blue excitation light. And converts irradiated blue light into white light.
- (Sr 1-y Ca y ) 1-x Ga 2 S 4 is represented by a composition formula of Eu x (0.03 ⁇ x ⁇ 0.20,0 ⁇ y ⁇ 1), the XRD pattern Those having a half-width of the diffraction peak of (422) plane of less than 0.18, preferably less than 0.16, and more preferably less than 0.15 are used.
- the green phosphor preferably has 0.05 ⁇ x ⁇ 0.18 and 0.25 ⁇ y ⁇ 0.50 in the above composition formula. Thereby, it is possible to obtain green with good color purity and to obtain high conversion efficiency.
- the red phosphor is not particularly limited, and the phosphor type, absorption band, emission band, etc. from sulfide phosphor, oxide phosphor, nitride phosphor, fluoride phosphor, etc. Depending on, one kind or a combination of two or more kinds can be used.
- red phosphor examples include (ME: Eu) S, (M: Sm) x (Si, Al) 12 (O, N) 16 , ME 2 Si 5 N 8 : Eu, (ME: Eu) SiN. 2 , (ME: Eu) AlSiN 3 , (ME: Eu) 3 SiO 5 , (Ca: Eu) SiN 2 , (Ca: Eu) AlSiN 3 , Y 2 O 3 : Eu, YVO 4 : Eu, Y (P , V) O 4 : Eu, 3.5MgO ⁇ 0.5MgF 2 ⁇ Ge 2 : Mn, CaSiO 3 : Pb, Mn, Mg 6 AsO 11 : Mn, (Sr, Mg) 3 (PO 4 ) 3 : Sn, La 2 O 2 S: Eu, Y 2 O 2 S: Eu and the like can be mentioned.
- CaS: Eu or (Ba, Sr) 3 SiO 5 : Eu that can realize a wide color gamut is preferably used.
- M means at least one atom selected from the group consisting of Ca, Sr and Ba
- M means at least one type selected from the group consisting of Li, Mg and Ca. Means an atom.
- the parenthesis is shown before “:”, and the activator is shown after “:”.
- the surfaces of the green phosphor and the red phosphor are coated. Thereby, deterioration of the characteristics of the phosphor can be prevented.
- the compound used for coating the surface include oxides such as silicon oxide, yttrium oxide, aluminum oxide, and lanthanum oxide. These may be used alone or in combination of two or more.
- the phosphor layer 11 is formed by forming a resin composition containing a powdery green phosphor and a red phosphor.
- the resin composition forming the phosphor layer 11 preferably contains a resin component of either a polyolefin copolymer component or a photocurable (meth) acrylic resin component.
- Examples of the polyolefin copolymer include a styrene copolymer or a hydrogenated product thereof.
- Preferred examples of such a styrene copolymer or a hydrogenated product thereof include a styrene-ethylene-butylene-styrene block copolymer or a hydrogenated product thereof, and a styrene-ethylene-propylene block copolymer or a hydrogenated product thereof. be able to.
- a hydrogenated product of styrene-ethylene-butylene-styrene block copolymer can be particularly preferably used from the viewpoint of transparency and gas barrier properties. By including such a polyolefin copolymer component, excellent light resistance and low water absorption can be obtained.
- Examples of the photocurable (meth) acrylate resin component include urethane (meth) acrylate, polyester (meth) acrylate, and epoxy (meth) acrylate. Among these, from the viewpoint of heat resistance after photocuring, Urethane (meth) acrylate can be preferably used. By including such a photocurable (meth) acrylate resin component, excellent light resistance and low water absorption can be obtained.
- the resin composition may be blended with other light-transmitting resins, coloring pigments, solvents, and the like within a range not impairing the effects of the present invention.
- the water vapor barrier films 12 and 13 are gas barrier films in which a metal substrate such as PET (Polyethylene terephthalate) or a metal oxide thin film such as aluminum oxide, magnesium oxide or silicon oxide is formed on the surface of the film. Moreover, you may use the thing of multilayered structures, such as PET / SiOx / PET.
- the phosphor sheet is sealed with a cover member 14 in which the end of the first water vapor barrier film 12 and the end of the second water vapor barrier film 13 have a water vapor transmission rate of 1 g / m 2 / day or less. It is preferable that
- an adhesive tape in which an adhesive 142 is applied to a base material 141 having a water vapor transmission rate of 1 g / m 2 / day or less can be used.
- the base material 141 metal foil such as aluminum foil or water vapor barrier films 12 and 13 can be used.
- the aluminum foil either glossy white aluminum or non-glossy black aluminum may be used. However, when a good color of the end of the phosphor sheet is required, it is preferable to use white aluminum.
- the width W of the cover member 14 attached to the water vapor barrier film is preferably 1 mm to 10 mm, more preferably 1 mm to 5 mm, from the viewpoint of water vapor barrier properties and strength. According to the cover member 14 having such a configuration, it is possible to prevent water vapor from entering the phosphor layer from the end of the water vapor barrier film, and to prevent deterioration of the phosphor in the phosphor layer. .
- FIG. 2 is a schematic diagram for explaining an example of a method for producing a phosphor sheet.
- the phosphor sheet manufacturing method shown as a specific example includes a stirring step (A), a laminating step (B), a punching step (C), and a sealing step (D). .
- a red phosphor 21 and a green phosphor 22 are mixed at a predetermined mixing ratio in a resin paste dissolved in a solvent to obtain a phosphor-containing resin paste.
- the laminating step (B) the phosphor resin paste on the first water vapor barrier film 12 is applied, the film thickness of the phosphor resin paste is made uniform using the bar coater 23, and the phosphor resin paste is dried in the oven 24. Then, the phosphor layer 11 is formed.
- steam barrier film 13 is bonded together on the fluorescent substance layer 11 using the thermal laminator 25, and the fluorescent substance layer 11 of the fluorescent substance sheet clamped by the 1st, 2nd water vapor
- the phosphor sheet original is punched by the press 26 to obtain a phosphor sheet of a predetermined size with the phosphor layer exposed on the side face of the end.
- an aluminum foil tape is used as the cover member 14, and the phosphor layer exposed between the first water vapor barrier film and the second water vapor barrier film is sealed.
- FIG. 3 is a schematic cross-sectional view showing an edge light type illumination device.
- the lighting device includes a blue LED 31, a light guide plate 32 that diffuses blue light of the blue LED 31 incident from the side surface and emits uniform light on the surface, and a phosphor that obtains white light from the blue light.
- a so-called “edge light type backlight” including the sheet 33 and the optical film 34 is formed.
- the blue LED 31 constitutes a so-called “LED package” having, for example, an InGaN LED chip as a blue light emitting element.
- the light guide plate 32 uniformly emits light from the end face of a transparent substrate such as an acrylic plate.
- the phosphor sheet 33 contains a powdered phosphor that obtains white light from the blue light of the blue light emitting element.
- the phosphor powder having an average particle size of several ⁇ m to several tens of ⁇ m is used. Thereby, the light scattering effect of the phosphor sheet 33 can be improved.
- the optical film 34 is composed of, for example, a reflective polarizing film or a diffusion film for improving the visibility of the liquid crystal display device.
- FIG. 4 is a schematic cross-sectional view showing a direct type illumination device.
- the illumination device is arranged with a substrate 42 on which the blue LEDs 41 are two-dimensionally arranged, a diffusion plate 43 that diffuses blue light of the blue LEDs 41, and a substrate 42 that is spaced apart from the blue light to white light.
- a so-called “direct-type backlight” including the phosphor sheet 33 and the optical film 34 is configured.
- the blue LED 41 constitutes a so-called “LED package” having, for example, an InGaN LED chip as a blue light emitting element.
- the substrate 42 is made of a glass cloth base material using a resin such as phenol, epoxy, polyimide, etc., and blue LEDs 41 are arranged on the substrate 42 at regular intervals with a predetermined pitch corresponding to the entire surface of the phosphor sheet 33. Placed in a dimension. Moreover, you may perform a reflection process to the mounting surface of blue LED41 on the board
- the substrate 42 and the phosphor sheet 33 are separated from each other by about 10 to 50 mm, and the lighting device constitutes a so-called “remote phosphor structure”.
- the gap between the substrate 42 and the phosphor sheet 33 is held by a plurality of support columns and reflectors, and is provided so that the support columns and reflectors surround the space formed by the substrate 42 and the phosphor sheet 33 in all directions. .
- the diffuser plate 43 diffuses the radiated light from the blue LED 41 over a wide range to such an extent that the shape of the light source becomes invisible, and has a total light transmittance of, for example, 20% to 80%.
- the phosphor layer of the phosphor sheet 33 (Sr 1-y Ca y) 1-x Ga 2 S 4: Eu x (0.03 ⁇ x ⁇ 0.20,0 ⁇ y ⁇ 1), which contains a green phosphor and a red phosphor with a half-value width of the diffraction peak on the (422) plane of the XRD pattern of less than 0.18, enabling a wide color gamut White light can be emitted.
- the present invention is not limited to the above-described embodiment, and it is needless to say that various updates can be added without departing from the gist of the present invention.
- the lighting device may be applied to a lighting light source.
- the optical film 34 is often unnecessary.
- the phosphor-containing resin is not only a flat sheet shape, but may also have a three-dimensional shape such as a cup shape. ⁇ 5.
- a europium compound, a strontium compound, and a calcium compound were added to 100 ml of pure water and sufficiently stirred until no undissolved residue was obtained, thereby obtaining a mixed solution containing Eu, Sr, and Ca.
- a powdered gallium compound (powdered Ga 2 O) was added to a solution prepared by dissolving 30.974 g of ammonium sulfite having a mole number of 1.15 times the total mole number of Eu, Sr, and Ca in 100 ml of pure water. 3 ) 36.550 g was added and stirred well to prepare a sulfite mixed solution.
- This precipitate / precipitate is a mixture of europium sulphite / strontium / calcium powder and gallium oxide powder.
- the precipitate / precipitate was washed with pure water, filtered, and dried at 120 ° C. for 6 hours until the conductivity became 0.1 mS / cm or less. Then, the powder mixture containing Eu, Sr, Ca, and Ga was obtained by passing through a wire mesh having a nominal aperture of 100 ⁇ m.
- This powder mixture is a mixture containing europium sulphite / strontium / calcium powder [powder made of (Sr, Ca, Eu) SO 3 ] and gallium oxide powder.
- the powder mixture was fired in an electric furnace.
- the above sample preparation method is referred to as wet method 1 in Table 1.
- Table 1 shows the evaluation results of the phosphor of Example 1.
- the diffraction peak attributed to the (422) plane was the maximum peak of the X-ray diffraction pattern.
- a PL peak appeared at a wavelength of 545 nm, the PL peak intensity was 2.97 (YAG ratio), and the half width was 48.46 nm.
- the absorption rate was 70.7%
- the internal quantum efficiency was 79.4%
- the internal quantum efficiency / absorption rate was 1.12
- the external quantum efficiency was 56.1%.
- Table 1 shows the evaluation results of the phosphor of Example 2.
- the diffraction peak attributed to the (422) plane was the maximum peak of the X-ray diffraction pattern.
- a PL peak appeared at a wavelength of 545 nm, the PL peak intensity was 3.51 (YAG ratio), and the half width was 47.71 nm.
- the absorption rate was 80.6%
- the internal quantum efficiency was 78.4%
- the internal quantum efficiency / absorption rate was 0.97
- the external quantum efficiency was 63.2%.
- Table 1 shows the evaluation results of the phosphor of Example 3.
- the diffraction peak attributed to the (422) plane was the maximum peak of the X-ray diffraction pattern.
- a PL peak appeared at a wavelength of 545 nm, the PL peak intensity was 3.67 (YAG ratio), and the half width was 47.53 nm.
- the absorption rate was 83.1%
- the internal quantum efficiency was 79.1%
- the internal quantum efficiency / absorption rate was 0.95
- the external quantum efficiency was 65.8%.
- Table 1 shows the evaluation results of the phosphor of Example 4.
- the diffraction peak attributed to the (422) plane was the maximum peak of the X-ray diffraction pattern.
- a PL peak appeared at a wavelength of 545 nm, the PL peak intensity was 3.71 (YAG ratio), and the half width was 46.97 nm.
- the absorption rate was 84.0%
- the internal quantum efficiency was 79.5%
- the internal quantum efficiency / absorption rate was 0.95
- the external quantum efficiency was 66.8%.
- Table 1 shows the evaluation results of the phosphor of Example 5.
- the diffraction peak attributed to the (422) plane was the maximum peak of the X-ray diffraction pattern.
- a PL peak appeared at a wavelength of 545 nm, the PL peak intensity was 3.63 (YAG ratio), and the half width was 47.14 nm.
- the absorption rate was 84.1%
- the internal quantum efficiency was 76.9%
- the internal quantum efficiency / absorption rate was 0.91
- the external quantum efficiency was 64.7%.
- Table 1 shows the evaluation results of the phosphor of Example 6.
- the diffraction peak attributed to the (422) plane was the maximum peak of the X-ray diffraction pattern.
- a PL peak appeared at a wavelength of 546 nm, the PL peak intensity was 3.75 (YAG ratio), and the half width was 47.26 nm.
- the absorption rate was 84.8%
- the internal quantum efficiency was 78.6%
- the internal quantum efficiency / absorption rate was 0.93
- the external quantum efficiency was 66.6%.
- Table 1 shows the evaluation results of the phosphor of Example 7.
- the diffraction peak attributed to the (422) plane was the maximum peak of the X-ray diffraction pattern.
- a PL peak appeared at a wavelength of 545 nm, the PL peak intensity was 3.68 (YAG ratio), and the half width was 46.88 nm.
- the absorption rate was 84.8%
- the internal quantum efficiency was 78.1%
- the internal quantum efficiency / absorption rate was 0.92
- the external quantum efficiency was 66.2%.
- Table 1 shows the evaluation results of the phosphor of Example 8.
- the diffraction peak attributed to the (422) plane was the maximum peak of the X-ray diffraction pattern.
- a PL peak appeared at a wavelength of 545 nm, the PL peak intensity was 3.38 (YAG ratio), and the half width was 46.69 nm.
- the absorption rate was 85.0%
- the internal quantum efficiency was 71.1%
- the internal quantum efficiency / absorption rate was 0.84
- the external quantum efficiency was 60.4%.
- Table 1 shows the evaluation results of the phosphor of Example 9.
- the diffraction peak attributed to the (422) plane was the maximum peak of the X-ray diffraction pattern.
- a PL peak appeared at a wavelength of 544 nm, the PL peak intensity was 3.57 (YAG ratio), and the half width was 47.04 nm.
- the absorption rate was 82.4%
- the internal quantum efficiency was 77.9%
- the internal quantum efficiency / absorption rate was 0.95
- the external quantum efficiency was 64.1%.
- Table 1 shows the evaluation results of the phosphor of Example 10.
- the diffraction peak attributed to the (422) plane was the maximum peak of the X-ray diffraction pattern.
- a PL peak appeared at a wavelength of 547 nm, the PL peak intensity was 3.49 (YAG ratio), and the half width was 48.23 nm.
- the absorption rate was 82.4%
- the internal quantum efficiency was 77.8%
- the internal quantum efficiency / absorption rate was 0.94
- the external quantum efficiency was 64.1%.
- Table 1 shows the evaluation results of the phosphor of Example 11.
- the diffraction peak attributed to the (422) plane was the maximum peak of the X-ray diffraction pattern.
- a PL peak appeared at a wavelength of 558 nm, the PL peak intensity was 2.86 (YAG ratio), and the half width was 50.04 nm.
- the absorption rate was 76.5%
- the internal quantum efficiency was 70.6%
- the internal quantum efficiency / absorption rate was 0.92
- the external quantum efficiency was 54.0%.
- Table 1 shows the evaluation results of the phosphor of Example 12.
- a PL peak appeared at a wavelength of 562 nm, the PL peak intensity was 2.86 (YAG ratio), and the half width was 50.27 nm.
- the absorption rate was 77.8%
- the internal quantum efficiency was 70.0%
- the internal quantum efficiency / absorption rate was 0.90
- the external quantum efficiency was 54.1%.
- calcium compound (Ca (NO 3 ) 2 .4H 2 O) 10.3737 g.
- a europium compound, a strontium compound, and a calcium compound are added to 100 ml of pure water, sufficiently stirred until there is no undissolved, 36.550 g of powdered gallium compound (powdered Ga 2 O 3 ) is added, Eu, A mixed solution containing Sr, Ca, and Ga was obtained.
- This precipitate / precipitate is a mixture of europium sulphite / strontium / calcium powder and gallium oxide powder.
- Table 1 shows the evaluation results of the phosphor of Example 13.
- the diffraction peak attributed to the (422) plane was the maximum peak of the X-ray diffraction pattern.
- a PL peak appeared at a wavelength of 541 nm, the PL peak intensity was 2.94 (YAG ratio), and the half width was 46.61 nm.
- the absorption rate was 79.1%
- the internal quantum efficiency was 69.2%
- the internal quantum efficiency / absorption rate was 0.88
- the external quantum efficiency was 54.7%.
- Table 1 shows the evaluation results of the phosphor of Example 14.
- the diffraction peak attributed to the (422) plane was the maximum peak of the X-ray diffraction pattern.
- a PL peak appeared at a wavelength of 542 nm, the PL peak intensity was 3.30 (YAG ratio), and the half width was 48.02 nm.
- the absorption rate was 80.8%
- the internal quantum efficiency was 73.4%
- the internal quantum efficiency / absorption rate was 0.91
- the external quantum efficiency was 59.3%.
- Ga 2 O 3 (purity 6N), CaCO 3 (purity 4N), SrCO 3 (purity 3N), and Eu 2 O 3 (purity 3N) were prepared.
- Europium compound, strontium compound, calcium compound and gallium compound were mixed in ethanol using a ball mill. After mixing, the mixture was filtered with suction and dried at 80 ° C. for 6 hours. Then, the powder mixture containing Eu, Sr, Ca, and Ga was obtained by passing through a wire mesh having a nominal aperture of 100 ⁇ m.
- Table 1 shows the evaluation results of the phosphor of Comparative Example 1.
- the diffraction peak attributed to the (422) plane was the maximum peak of the X-ray diffraction pattern.
- a PL peak appeared at a wavelength of 545 nm, the PL peak intensity was 2.27 (YAG ratio), and the half width was 49.30 nm.
- the absorption rate was 80.4%
- the internal quantum efficiency was 52.0%
- the internal quantum efficiency / absorption rate was 0.65
- the external quantum efficiency was 41.8%.
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Luminescent Compositions (AREA)
- Led Device Packages (AREA)
- Planar Illumination Modules (AREA)
Abstract
Description
1.緑色蛍光体
2.緑色蛍光体の製造方法
3.蛍光体シート及び蛍光体シートの製造方法
4.照明装置
5.実施例
本実施の形態に係る緑色蛍光体は、(Sr1-yCay)1-xGa2S4:Eux(0.03≦x≦0.20、0<y≦1)の組成式で示され、XRDパターンの(422)面の回折ピークの半値幅が、0.18未満である。これにより、蛍光体の高い変換効率を得ることができる。ここで、蛍光体の変換効率とは、励起光を吸収する効率(吸収率)、吸収した励起光を蛍光に変更する効率(内部量子効率)、及びそれらの積である励起光を蛍光に変換する効率(外部量子効率)をいう。
なお、前記XRDパターンの(422)面の回折ピークの半値幅は、0.18未満である限り、特に制限はされないが、より好ましくは0.16未満であり、更に好ましくは0.15未満である。
本実施の形態に係る緑色蛍光体の製造方法は、ユウロピウム化合物とストロンチウム化合物とカルシウム化合物とを含む混合溶液を、粉末ガリウム化合物を加えた亜硫酸塩溶液中に滴下し、Eu、Sr、Ca、及びGaを含む亜硫酸塩の粉体混合物を得た後、該粉体混合物を焼成し、(Sr1-yCay)1-xGa2S4:Eux(0.03≦x≦0.20、0<y≦1)の組成式で示される緑色蛍光体を得る。すなわち、本実施の形態に係る緑色蛍光体の製造方法は、出発物質を液相にて生成させる湿式法を用いる。
本実施の形態に係る蛍光体シートは、水蒸気バリアフィルムと、水蒸気バリアフィルムに挟持された蛍光体層とを備え、蛍光体層が、(Sr1-yCay)1-xGa2S4:Eux(0.03≦x≦0.20、0<y≦1)の組成式で示され、XRDパターンの(422)面の回折ピークの半値幅が、0.18未満である緑色蛍光体と赤色蛍光体とを含有する。これにより、青色LEDや近紫外LEDを用いて広い色域を可能とする白色光を得ることができる。
なお、前記XRDパターンの(422)面の回折ピークの半値幅は、0.18未満である限り、特に制限はされないが、より好ましくは0.16未満であり、更に好ましくは0.15未満である。
次に、前述の蛍光体シートを用いた照明装置について説明する。図3は、エッジライト型の照明装置を示す概略断面図である。図3に示すように、照明装置は、青色LED31と、側面から入射される青色LED31の青色光を拡散させ、表面に均一の光を出す導光板32と、青色光から白色光を得る蛍光体シート33と、光学フィルム34とを備える、所謂“エッジライト型バックライト”を構成する。
<5.実施例>
粉末X線解析計(株式会社リガク製)を用いて、CuKα線のX線回折(XRD)パターンにおける回折ピークの位置(2θ)及び半値幅を測定した。
分光蛍光光度計FP-6500(日本分光社製)を用いてPLスペクトルにおけるPLピーク波長、PLピーク強度、及びPLピーク半値幅を測定した。
蛍光体の変換効率として、励起光を吸収する効率(吸収率)、吸収した励起光を蛍光に変更する効率(内部量子効率)、及びそれらの積である励起光を蛍光に変換する効率(外部量子効率)を算出した。量子効率は、分光蛍光光度計FP-6500(日本分光社製)を用いて測定した。専用セルに蛍光体粉末を充填し、波長450nmの青色励起光を照射させて、蛍光スペクトルを測定した。その結果を、分光蛍光光度計付属の量子効率測定ソフトを用いて、緑色の量子効率を算出した。
先ず、Ga2O3(純度6N)、Sr(NO3)2(純度3N)、Ca(NO3)2・4H2O(純度2N)、及びEu(NO3)3・nH2O(純度3N、n=6.06)、並びに、亜硫酸アンモニウム一水和物を準備した。
表1に示すように、組成式(Sr1-yCay)1-xGa2S4:Euxで表される蛍光体において、x=0.05、y=0.35とする組成比(Eu濃度:5mol%、Ca置換割合:35%)で、0.2モル量となるように各原料の秤量値を算出した。これ以外は、実施例1と同様にして、(Sr1-yCay)1-xGa2S4:Eux(x=0.05、y=0.35)から成る蛍光体粒子を得た。
表1に示すように、組成式(Sr1-yCay)1-xGa2S4:Euxで表される蛍光体において、x=0.08、y=0.35とする組成比(Eu濃度:8mol%、Ca置換割合:35%)で、0.2モル量となるように各原料の秤量値を算出した。これ以外は、実施例1と同様にして、(Sr1-yCay)1-xGa2S4:Eux(x=0.08、y=0.35)から成る蛍光体粒子を得た。
表1に示すように、組成式(Sr1-yCay)1-xGa2S4:Euxで表される蛍光体において、x=0.10、y=0.35とする組成比(Eu濃度:10mol%、Ca置換割合:35%)で、0.2モル量となるように各原料の秤量値を算出した。これ以外は、実施例1と同様にして、(Sr1-yCay)1-xGa2S4:Eux(x=0.10、y=0.35)から成る蛍光体粒子を得た。
表1に示すように、組成式(Sr1-yCay)1-xGa2S4:Euxで表される蛍光体において、x=0.13、y=0.35とする組成比(Eu濃度:13mol%、Ca置換割合:35%)で、0.2モル量となるように各原料の秤量値を算出した。これ以外は、実施例1と同様にして、(Sr1-yCay)1-xGa2S4:Eux(x=0.13、y=0.35)から成る蛍光体粒子を得た。
表1に示すように、組成式(Sr1-yCay)1-xGa2S4:Euxで表される蛍光体において、x=0.15、y=0.35とする組成比(Eu濃度:15mol%、Ca置換割合:35%)で、0.2モル量となるように各原料の秤量値を算出した。これ以外は、実施例1と同様にして、(Sr1-yCay)1-xGa2S4:Eux(x=0.15、y=0.35)から成る蛍光体粒子を得た。
表1に示すように、組成式(Sr1-yCay)1-xGa2S4:Euxで表される蛍光体において、x=0.18、y=0.35とする組成比(Eu濃度:18mol%、Ca置換割合:35%)で、0.2モル量となるように各原料の秤量値を算出した。これ以外は、実施例1と同様にして、(Sr1-yCay)1-xGa2S4:Eux(x=0.18、y=0.35)から成る蛍光体粒子を得た。
表1に示すように、組成式(Sr1-yCay)1-xGa2S4:Euxで表される蛍光体において、x=0.20、y=0.35とする組成比(Eu濃度:20mol%、Ca置換割合:35%)で、0.2モル量となるように各原料の秤量値を算出した。これ以外は、実施例1と同様にして、(Sr1-yCay)1-xGa2S4:Eux(x=0.20、y=0.35)から成る蛍光体粒子を得た。
表1に示すように、組成式(Sr1-yCay)1-xGa2S4:Euxで表される蛍光体において、x=0.10、y=0.25とする組成比(Eu濃度:10mol%、Ca置換割合:25%)で、0.2モル量となるように各原料の秤量値を算出した。これ以外は、実施例1と同様にして、(Sr1-yCay)1-xGa2S4:Eux(x=0.10、y=0.25)から成る蛍光体粒子を得た。
表1に示すように、組成式(Sr1-yCay)1-xGa2S4:Euxで表される蛍光体において、x=0.10、y=0.50とする組成比(Eu濃度:10mol%、Ca置換割合:50%)で、0.2モル量となるように各原料の秤量値を算出した。これ以外は、実施例1と同様にして、(Sr1-yCay)1-xGa2S4:Eux(x=0.10、y=0.50)から成る蛍光体粒子を得た。
表1に示すように、組成式(Sr1-yCay)1-xGa2S4:Euxで表される蛍光体において、x=0.10、y=0.75とする組成比(Eu濃度:10mol%、Ca置換割合:75%)で、0.2モル量となるように各原料の秤量値を算出した。これ以外は、実施例1と同様にして、(Sr1-yCay)1-xGa2S4:Eux(x=0.10、y=0.75)から成る蛍光体粒子を得た。
表1に示すように、組成式(Sr1-yCay)1-xGa2S4:Euxで表される蛍光体において、x=0.10、y=1.00とする組成比(Eu濃度:10mol%、Ca置換割合:100%)で、0.2モル量となるように各原料の秤量値を算出した。これ以外は、実施例1と同様にして、(Sr1-yCay)1-xGa2S4:Eux(x=0.10、y=1.00)から成る蛍光体粒子を得た。
表1に示すように、組成式(Sr1-yCay)1-xGa2S4:Euxで表される蛍光体において、x=0.10、y=0.25とする組成比(Eu濃度:10mol%、Ca置換割合:25%)で、0.2モル量となるように各原料の秤量値を算出した。実施例13の場合、ユウロピウム化合物(Eu(NO3)3・nH2O)8.943g、ストロンチウム化合物(Sr(NO3)2)28.570g、及びカルシウム化合物(Ca(NO3)2・4H2O)10.637gである。
表1に示すように、組成式(Sr1-yCay)1-xGa2S4:Euxで表される蛍光体において、x=0.13、y=0.25とする組成比(Eu濃度:13mol%、Ca置換割合:25%)で、0.2モル量となるように各原料の秤量値を算出した。これ以外は、実施例13と同様にして、(Sr1-yCay)1-xGa2S4:Eux(x=0.13、y=0.25)から成る蛍光体粒子を得た。
先ず、Ga2O3(純度6N)、CaCO3(純度4N)、SrCO3(純度3N)、及びEu2O3(純度3N)を準備した。
Claims (8)
- (Sr1-yCay)1-xGa2S4:Eux(0.03≦x≦0.20、0<y≦1)の組成式で示され、
XRDパターンの(422)面の回折ピークの半値幅が、0.18未満である緑色蛍光体。 - PLピークの半値幅が、46nm~51nmである請求項1記載の緑色蛍光体。
- PLピーク波長が、530nm~570nmである請求項1又は2記載の緑色蛍光体。
- 前記組成式において、0.05≦x≦0.18、0.25≦y≦0.50である請求項1又は2記載の緑色蛍光体。
- ユウロピウム化合物とストロンチウム化合物とカルシウム化合物とを含む混合溶液を、粉末ガリウム化合物を加えた亜硫酸塩溶液中に滴下し、Sr、Ca、Eu及びGaを含む亜硫酸塩の粉体混合物を得た後、該粉体混合物を焼成してなる請求項1又は2記載の緑色蛍光体。
- 水蒸気バリアフィルムと、
前記水蒸気バリアフィルムに挟持された蛍光体層とを備え、
前記蛍光体層が、(Sr1-yCay)1-xGa2S4:Eux(0.03≦x≦0.20、0<y≦1)の組成式で示され、XRDパターンの(422)面の回折ピークの半値幅が、0.18未満である緑色蛍光体と赤色蛍光体とを含有する蛍光体シート。 - 請求項6記載の蛍光体シートを備える照明装置。
- ユウロピウム化合物とストロンチウム化合物とカルシウム化合物とを含む混合溶液を、粉末ガリウム化合物を加えた亜硫酸塩溶液中に滴下し、
Eu、Sr、Ca、及びGaを含む亜硫酸塩の粉体混合物を得た後、該粉体混合物を焼成し、(Sr1-yCay)1-xGa2S4:Eux(0.03≦x≦0.20、0<y≦1)の組成式で示される緑色蛍光体を得る緑色蛍光体の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201480051477.0A CN105555914B (zh) | 2013-09-20 | 2014-09-16 | 绿色荧光体及其制造方法、荧光体片以及照明装置 |
EP14846210.4A EP3048157B1 (en) | 2013-09-20 | 2014-09-16 | Green phosphor and production method therefor, phosphor sheet, and illumination device |
US14/917,665 US10093853B2 (en) | 2013-09-20 | 2014-09-16 | Green phosphor and production method therefor, phosphor sheet, and illumination device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-195518 | 2013-09-20 | ||
JP2013195518A JP5923473B2 (ja) | 2013-09-20 | 2013-09-20 | 緑色発光蛍光体 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015040855A1 true WO2015040855A1 (ja) | 2015-03-26 |
Family
ID=52688519
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/004757 WO2015040855A1 (ja) | 2013-09-20 | 2014-09-16 | 緑色蛍光体及びその製造方法、蛍光体シート、並びに、照明装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10093853B2 (ja) |
EP (1) | EP3048157B1 (ja) |
JP (1) | JP5923473B2 (ja) |
CN (1) | CN105555914B (ja) |
TW (1) | TWI632224B (ja) |
WO (1) | WO2015040855A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104864318A (zh) * | 2015-06-12 | 2015-08-26 | 深圳市华星光电技术有限公司 | 背光模组及显示装置 |
JP2017026905A (ja) * | 2015-07-24 | 2017-02-02 | 日亜化学工業株式会社 | 画像表示装置 |
US20170183566A1 (en) * | 2015-12-28 | 2017-06-29 | Nichia Corporation | Method of producing thiogallate-based fluorescent material and a sulfite for a thiogallate-based fluorescent material |
JP2019148808A (ja) * | 2019-04-10 | 2019-09-05 | 日亜化学工業株式会社 | 画像表示装置 |
US11136502B2 (en) | 2016-12-02 | 2021-10-05 | Nichia Corporation | Method of producing thiogallate-based fluorescent material, method of producing light-emitting device, thiogallate-based fluorescent material and light-emitting device |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017043682A (ja) * | 2015-08-25 | 2017-03-02 | デクセリアルズ株式会社 | 波長変換部材、蛍光体シート、白色光源装置、及び表示装置 |
JP6641824B2 (ja) * | 2015-09-16 | 2020-02-05 | 日亜化学工業株式会社 | 発光装置 |
JP6712925B2 (ja) * | 2016-07-28 | 2020-06-24 | 富士フイルム株式会社 | バックライト用フィルム |
KR102343413B1 (ko) * | 2017-07-19 | 2021-12-24 | 삼성디스플레이 주식회사 | 표시 장치 및 그 제조 방법 |
US10177287B1 (en) * | 2017-09-19 | 2019-01-08 | Eie Materials, Inc. | Gamut broadened displays with narrow band green phosphors |
JP7304680B2 (ja) * | 2017-09-26 | 2023-07-07 | デクセリアルズ株式会社 | 光源、白色光源装置、及び表示装置 |
JP6932679B2 (ja) | 2017-11-30 | 2021-09-08 | デクセリアルズ株式会社 | 被覆蛍光体、その製造方法、並びに、蛍光体シート、及び発光装置 |
WO2019107080A1 (ja) | 2017-11-30 | 2019-06-06 | デクセリアルズ株式会社 | 被覆蛍光体、その製造方法、並びに、蛍光体シート、及び発光装置 |
KR102561114B1 (ko) * | 2018-06-04 | 2023-07-28 | 삼성디스플레이 주식회사 | 색변환 표시판의 제조 방법 및 색변환 표시판을 포함하는 표시 장치의 제조 방법 |
JP6776422B2 (ja) * | 2019-09-05 | 2020-10-28 | デクセリアルズ株式会社 | 波長変換部材、蛍光体シート、白色光源装置、及び表示装置 |
EP4317363A1 (en) * | 2021-03-30 | 2024-02-07 | Mitsui Mining & Smelting Co., Ltd. | Phosphor, method for producing same, light emitting element containing phosphor, and light emitting device |
WO2024142796A1 (ja) * | 2022-12-27 | 2024-07-04 | 日亜化学工業株式会社 | 波長変換部材及び波長変換部材の製造方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011033830A1 (ja) | 2009-09-18 | 2011-03-24 | 三井金属鉱業株式会社 | 蛍光体 |
JP2011236310A (ja) | 2010-05-10 | 2011-11-24 | Sony Corp | 緑色発光蛍光体粒子及びその製造方法、並びに、色変換シート、発光装置及び画像表示装置組立体 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5443662B2 (ja) * | 2005-09-28 | 2014-03-19 | 戸田工業株式会社 | 耐湿性蛍光体粒子粉末の製造方法及び該製造方法により得られた耐湿性蛍光体粒子粉末を用いたled素子または分散型el素子 |
CN100530292C (zh) * | 2006-05-19 | 2009-08-19 | 佳能株式会社 | 图像显示装置和图像显示装置的驱动方法 |
KR100898288B1 (ko) * | 2008-01-09 | 2009-05-18 | 삼성에스디아이 주식회사 | 백색 형광체, 이를 이용하는 발광 장치, 및 이 발광 장치를백 라이트 유닛으로 사용하는 액정 표시 장치 |
-
2013
- 2013-09-20 JP JP2013195518A patent/JP5923473B2/ja active Active
-
2014
- 2014-09-16 WO PCT/JP2014/004757 patent/WO2015040855A1/ja active Application Filing
- 2014-09-16 CN CN201480051477.0A patent/CN105555914B/zh active Active
- 2014-09-16 EP EP14846210.4A patent/EP3048157B1/en active Active
- 2014-09-16 US US14/917,665 patent/US10093853B2/en active Active
- 2014-09-19 TW TW103132341A patent/TWI632224B/zh active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011033830A1 (ja) | 2009-09-18 | 2011-03-24 | 三井金属鉱業株式会社 | 蛍光体 |
JP2011236310A (ja) | 2010-05-10 | 2011-11-24 | Sony Corp | 緑色発光蛍光体粒子及びその製造方法、並びに、色変換シート、発光装置及び画像表示装置組立体 |
Non-Patent Citations (3)
Title |
---|
JOURNAL OF MMIJ, vol. 126, 2010, pages 456 - 459 |
JOURNAL OF RARE EARTHS, vol. 25, 2007, pages 701 - 705, XP022934168 * |
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 148, no. 7, 2001, pages D89 - D93, XP002643547 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104864318A (zh) * | 2015-06-12 | 2015-08-26 | 深圳市华星光电技术有限公司 | 背光模组及显示装置 |
JP2017026905A (ja) * | 2015-07-24 | 2017-02-02 | 日亜化学工業株式会社 | 画像表示装置 |
US20170183566A1 (en) * | 2015-12-28 | 2017-06-29 | Nichia Corporation | Method of producing thiogallate-based fluorescent material and a sulfite for a thiogallate-based fluorescent material |
US11136501B2 (en) * | 2015-12-28 | 2021-10-05 | Nichia Corporation | Method of producing thiogallate-based fluorescent material and a sulfite for a thiogallate-based fluorescent material |
US11136502B2 (en) | 2016-12-02 | 2021-10-05 | Nichia Corporation | Method of producing thiogallate-based fluorescent material, method of producing light-emitting device, thiogallate-based fluorescent material and light-emitting device |
JP2019148808A (ja) * | 2019-04-10 | 2019-09-05 | 日亜化学工業株式会社 | 画像表示装置 |
Also Published As
Publication number | Publication date |
---|---|
EP3048157A4 (en) | 2017-05-24 |
US10093853B2 (en) | 2018-10-09 |
EP3048157B1 (en) | 2020-06-03 |
JP2015059202A (ja) | 2015-03-30 |
CN105555914B (zh) | 2017-10-27 |
CN105555914A (zh) | 2016-05-04 |
TW201514277A (zh) | 2015-04-16 |
EP3048157A1 (en) | 2016-07-27 |
US20160222287A1 (en) | 2016-08-04 |
JP5923473B2 (ja) | 2016-05-24 |
TWI632224B (zh) | 2018-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5923473B2 (ja) | 緑色発光蛍光体 | |
US10153406B2 (en) | Mn-activated hexafluorosilicates for LED applications | |
JP5575994B1 (ja) | 蛍光体、led発光素子及び光源装置 | |
JP6292126B2 (ja) | 蛍光体、その蛍光体を用いた蛍光体含有組成物及び発光装置、並びに、その発光装置を用いた画像表示装置及び照明装置 | |
EP2730637B1 (en) | Rare-earth aluminum garnet type fluorescent substance and light-emitting device obtained using same | |
CN105051154B (zh) | 铝硅酸镁基荧光体 | |
WO2020262200A1 (ja) | 蛍光体、蛍光体の製造方法、発光素子、発光装置および画像表示装置 | |
US7514020B2 (en) | Silicophosphate-based phosphor and light-emitting device including the same | |
JPWO2019188319A1 (ja) | 蛍光体及びそれを用いた発光装置 | |
KR101148998B1 (ko) | 형광체 | |
JP6871098B2 (ja) | 蛍光体、及びその製造方法、蛍光体シート、並びに照明装置 | |
JP2010196049A (ja) | 蛍光体及びその製造方法、蛍光体含有組成物、並びに、該蛍光体を用いた発光装置、画像表示装置及び照明装置 | |
JP6908460B2 (ja) | 蛍光体、及びその製造方法、蛍光体シート、並びに照明装置 | |
JP5756523B2 (ja) | 赤色蛍光体及び発光素子 | |
KR20070080486A (ko) | 보레이트클로라이드계 형광체 및 이를 포함한 led, 형광램프 및 pdp | |
JP6949806B2 (ja) | 緑色蛍光体、蛍光体シート、及び発光装置 | |
JP7112355B2 (ja) | 緑色発光蛍光体及びその製造方法、並びに蛍光体シート及び発光装置 | |
CN117447985A (zh) | 高致密性复合发光材料及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480051477.0 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14846210 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2014846210 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14917665 Country of ref document: US Ref document number: 2014846210 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |