CN104870608B - Eu‑活化的无机发光材料 - Google Patents

Eu‑活化的无机发光材料 Download PDF

Info

Publication number
CN104870608B
CN104870608B CN201380057397.1A CN201380057397A CN104870608B CN 104870608 B CN104870608 B CN 104870608B CN 201380057397 A CN201380057397 A CN 201380057397A CN 104870608 B CN104870608 B CN 104870608B
Authority
CN
China
Prior art keywords
compound
phosphor
simg
mixture
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201380057397.1A
Other languages
English (en)
Other versions
CN104870608A (zh
Inventor
R·派特里
H·温克勒
T·沃斯格罗内
C·汉佩尔
A·本克尔
T·朱斯特尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Patent GmbH
Original Assignee
Merck Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent GmbH filed Critical Merck Patent GmbH
Publication of CN104870608A publication Critical patent/CN104870608A/zh
Application granted granted Critical
Publication of CN104870608B publication Critical patent/CN104870608B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77344Aluminosilicates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Planar Illumination Modules (AREA)
  • Led Device Packages (AREA)

Abstract

本发明涉及Eu2+‑活化的无机发光材料、这些化合物的制备方法和包含本发明的Eu2+‑活化的无机发光材料的无机发光材料混合物、光源和照明装置。

Description

Eu-活化的无机发光材料
技术领域
本发明涉及Eu2+-活化的无机发光材料、这些化合物的制备方法和含有本发明的Eu2+-活化的无机发光材料的光源和照明装置。
现有技术
发光材料用于荧光灯源、发射式显示屏和用作将不可见辐射或高能粒子转换成可见光的闪烁晶体。已广泛用于此工作的一类材料是Ce3+-掺杂石榴石,特别是Y3Al5O12:Ce(YAG)和(Gd1-xYx)3(Al1-yGay)5O12:Ce(YAGaG:Ce),其中进一步掺杂,如Lu3+或Tb3+已用于优化该光谱。
早在1996年,即在具有高能量效率和几坎德拉的光通量的蓝光InGaN LEDs的工业化实施后不久,通过使用YAG:Ce或YAGaG:Ce部分转换蓝光,实现白光LEDs,因为这些无机发光材料的黄橙色发光颜色与LEDs的蓝色发光颜色互补并由此叠加获得白光。
迄今,所有市售白光LEDs都含有被YAG:Ce或YAGaG:Ce层覆盖的发射蓝光的InGaN芯片。一方面,这种方法的一个基本缺点是发光颜色对视角的依赖性,这归因于芯片的不均匀涂布。另一方面,在基于二色光谱(蓝色+黄橙色)的光源的情况下,颜色的再现取决于色温并且在足够高的颜色再现(CRI>80)下无法实现低色温(Tc<5000K)。
因此,为了扩大产品光谱和为了改进白光LEDs的颜色再现,目前的主要目标是实现三色LEDs。为此,必须提供在蓝色光谱区中具有高吸收、具有高量子产率和高流明当量的发射绿光、黄光和红光的无机发光材料。
目前,只知道少数主发射峰在450至580纳米波长范围内的具有窄带绿光发射的有效体系。其实例是发射绿光的原硅酸盐和硫代镓酸盐。
对许多用途而言,例如在LCD背光中,需要具有在450至580纳米之间的主发射峰的可蓝光或近紫外光激发的、非常热稳定的无机发光材料。这种波长完美匹配常见的滤色片并能实现良好的颜色再现。良好的热稳定性是必要的,因为由于在高功率下的高芯片温度和由于在无机发光材料体中形成的热,无机发光材料的温度可高达200℃。
第二个升温机制的成因是所谓的斯托克斯位移,即吸收和发射光子之间的能量差,其在无机发光材料中转换成热。
迄今,只有少数已知的具有窄带绿光发射的无机发光材料甚至在高温、优选至少125℃、特别是至少175℃下仍具有室温效率的至少80%、特别是甚至至少90%的高效率。窄带是指最多80纳米的FWHM。发射绿光是指主发射峰在440至580纳米波长范围的无机发光材料。
发明概述
出人意料地,现在已经发现,式I的相纯化合物满足所述要求,
(A1-wEuw)(E12-2z(G1Mg1)zO19 I
其中
A表示选自由Mg、Sr、Ba和Ca组成的组的一种或多种二价元素,
E表示选自由Al、B、Ga、In和Sc组成的组的一种或多种三价元素,优选Al和Ga,特别优选Al,
G表示选自由Si和Ge组成的组的一种或多种四价元素,优选Si,
0<z≤4,优选z=1,且
0.01≤w≤0.4,优选0.01≤w≤0.1。
该新型无机发光材料表现出非常好的热和化学稳定性。其非常适用于例如白光LEDs、按需选色(COD)、TV背光LEDs和电灯,例如荧光灯。
还指出了该新型无机发光材料的制备方法。
附图简述
图1显示Sr0.96Eu0.04Al10MgSiO19的激发光谱。使用Edinburgh Instruments FL900光谱仪、使用Xe高压灯和Hamamatsu光电倍增管在室温下在半无限厚的粉末层上记录光谱。
图2显示Sr0.96Eu0.04Al10MgSiO19在450纳米激发波长下的标准化发射光谱。使用Edinburgh Instruments FL900光谱仪、使用Xe高压灯和Hamamatsu光电倍增管在室温下在半无限厚的粉末层上记录光谱。
图3显示Sr0.96Eu0.04Al10MgSiO19的反射光谱。使用在乌布利希球中的EdinburghInstruments F920光谱仪、使用Xe高压灯和Hamamatsu光电倍增管在室温下在半无限厚的粉末层上记录光谱。
发明内容
在一个优选实施方案中,根据本发明的式I的化合物选自式II的化合物,其中z等于1,
(A1-wEuw)(E10(G1Mg1)O19 II
且参数A、E、G和w具有式I中指出的含义。
此外,式II的化合物优选选自式III的化合物,其中G等于Si:
(A1-wEuw)(E10SiMg)O19 III
且其中参数A、E和w具有式I中指出的含义。
此外,式III的化合物优选选自式IV的化合物,其中E等于Al,
(A1-wEuw)(Al10SiMg)O19 IV
其中参数A和w具有式I中指出的含义。
特别地,式IV的化合物优选选自式V-1至V-7的化合物,
((SrsBarCat)1-wEuw)(Al10SiMg)O19 V-1
((CatBar)1-wEuw)(Al10SiMg)O19 V-2
((SrsBar)1-wEuw)(Al10SiMg)O19 V-3
((SrsCat)1-wEuw)(Al10SiMg)O19 V-4
(Sr1-wEuw)(Al10SiMg)O19 V-5
(Ba1-wEuw)(Al10SiMg)O19 V-6
(Ca1-wEuw)(Al10SiMg)O19 V-7
其中0<r<1,0<s<1,0<t<1,其中r+s+t=1且w具有式I下指出的含义。
主晶格中的二价元素Sr、Ba或Ca被Eu2+部分取代令人惊讶地产生了非常有效的无机发光材料。在此重要的是设定二价元素的含量以防止Eu2+离子之间的过度能量迁移。在0.01至0.4、优选0.01至0.1的Eu2+浓度(w)下获得非常合适的无机发光材料。
LED用途中的典型工作温度为大约80℃。就此而言,至少100℃的热稳定性对LED用途是合意的。根据本发明的式I的化合物以至少150℃、优选至少200℃的高温稳定性为特征。
根据本发明的式I的化合物还以它们的高化学稳定性为特征。因此,式I的化合物对氧化和水解不敏感。
本发明还涉及式I的化合物的制备方法,其包括下述步骤:
1.将镁化合物、优选碳酸镁与下述物质混合:
a)二氧化硅和/或二氧化锗,
b)至少一种铝、铟、钪和/或镓化合物,优选选自碳酸铝、碳酸铟、碳酸钪和/或碳酸镓,
c)至少一种钡、锶和/或钙化合物,优选选自碳酸钡、碳酸锶和/或碳酸钙,和
d)至少一种铕化合物,优选选自氧化铕、碳酸铕、硝酸铕和/或草酸铕,
2.所述混合物的热处理。
就上述热处理而言,该反应通常在800℃以上进行。该热处理优选在多步法中、特别优选在两步法中进行,即首先在空气下在>800℃的温度下进行煅烧,然后优选在>1000℃的温度下、特别优选在1200至1800℃的温度下在还原条件(例如使用一氧化碳、合成气体或氢气或缺氧气氛)下进行。
在根据本发明的另一实施方案中,在热处理之前可以使用选自卤化铵、碱土金属氟化物(例如氟化钙、氟化锶或氟化钡)、碱土金属或碱金属硼酸盐、硼酸、碱土金属或碱金属碳酸盐或碳酸氢铵、柠檬酸、醇化物以及草酸盐和/或硅酸盐(例如TEOS)的无机或有机物质。优选添加柠檬酸和草酸盐。
本发明的无机发光材料可通过常规固态扩散法(由相应的碱土金属、半金属、金属或稀土元素的氧化物、硝酸盐、碳酸盐或卤化物开始)或通过由无机和/或有机半金属和/或金属和/或稀土盐借助溶胶-凝胶法、共沉淀法和/或干燥法进行的湿化学法制备。
在借助无机发光材料的水性前体的湿化学法中,下列方法是已知的:
·与NH4HCO3溶液共沉淀(参见例如Jander,Blasius Lehrbuch der analyt.u.anorg.Chem.2002[Blasius’s Textbook of Analyt.and Prep.Inorg.Chem.2002])
·使用柠檬酸和乙二醇的溶液的Pecchini法(参见例如Annual Review ofMaterials Research第36卷:2006,281-331)
·使用脲的燃烧法
·水溶液或有机盐溶液(原材料)的喷雾干燥
·水溶液或有机盐溶液(原材料)的喷雾热解
·硝酸盐溶液的蒸发和残留物的热转化
·使用包含柠檬酸或草酸盐的溶液的沉淀
在上述共沉淀的情况下,将TEOS/NH4HCO3溶液添加到例如相应无机发光材料原材料的氯化物溶液中,从而形成无机发光材料前体,其然后通过一步或多步热处理转化成无机发光材料。
在Pecchini法的情况下,在室温下将由柠檬酸和乙二醇构成的沉淀剂添加到例如相应无机发光材料原材料的硝酸盐溶液中,然后加热该混合物。粘度的提高导致形成无机发光材料前体。
在燃烧法的情况下,将例如相应无机发光材料原材料的硝酸盐溶液溶解在水中,然后将该溶液回流并加入脲,从而缓慢形成无机发光材料前体。
喷雾热解是气溶胶法之一,其特征在于将溶液、悬浮液或分散体喷到以各种方式加热的反应空间(反应器)中并形成和沉积固体粒子。与在<200℃的热气体温度下的喷雾干燥相比,作为高温法的喷雾热解除溶剂蒸发外还涉及所用原材料(例如盐)的热分解和物质(例如氧化物或混合氧化物)的再形成。
在使用柠檬酸或草酸盐的溶液的沉淀的情况下,将例如相应原材料的氧化物或碳酸盐溶液溶解在浓HNO3中,然后加入上述溶液,然后将该混合物蒸发或过滤。这种方法根据本发明优选。
上文提到的前六种方法变体详细描述在WO 2007/144060(Merck)中,其整个范围经此引用并入本申请的文本中。
式I化合物的特征特别在于它们可被300纳米至450纳米波长范围内的辐射激发以发射在440纳米至580纳米波长范围内的可见光。
在本申请的上下文中,紫外光是指最大发射在300至399纳米之间的光,蓝光是指最大发射在400至459纳米之间的光,青色光是指最大发射在460至505纳米之间的光,绿光是指最大发射在506至545纳米之间的光,黄光是指最大发射在546至565纳米之间的光,橙光是指最大发射在566至600纳米之间的光,红光是指最大发射在601至670纳米之间的光。根据本发明的式I的化合物优选是发射绿光的转换无机发光材料。
根据组成,特别是参数A的变化,可以有针对性地改变发射。因此,特别地,式V-1的化合物优选被300纳米至450纳米波长范围内的辐射激发并发射在440纳米至580纳米波长范围内的光,主发射峰的半峰全宽(FWHM)值为最多80纳米。
式V-5的化合物优选被300纳米至450纳米波长范围内的辐射激发并发射在440纳米至550纳米波长范围内的光,主发射峰的半峰全宽(FWHM)值为最多80纳米。
式V-6的化合物优选被300纳米至450纳米波长范围内的辐射激发并发射在440纳米至500纳米波长范围内的光,主发射峰的半峰全宽(FWHM)值为最多80纳米。
半峰全宽(FWHM)值是常用于描述峰或一个函数的宽度的参数。其在二维坐标系(x,y)中由该曲线上的具有相同y值(在此该函数达到其最大宽度的一半(ymax/2)))的两个点之间的距离(Δx)确定。
本发明的无机发光材料的粒度通常为50微米至1微米、优选30微米至3微米、特别优选20微米至5微米。
在另一优选实施方案中,粒子形式的无机发光材料具有连续表面涂层。这种表面涂层的优点在于,通过涂料折光指数的合适分级,可以使折光指数与环境匹配。在这种情况下,无机发光材料表面处的光散射降低且更大比例的光可进入无机发光材料并在此被吸收和转换。此外,由于全内反射降低,折光指数匹配的表面涂层能从该无机发光材料中耦合输出更多光。
此外,如果该无机发光材料必须包囊,则连续层是有利的。为了对抗无机发光材料或其部分对直接环境中的扩散水或其它材料的敏感性,这可能是必要的。用封闭壳包囊的另一原因是实际无机发光材料与LED中生成的热的热解耦。这种热导致无机发光材料的荧光产额降低并也可能影响荧光的颜色。最后,这种类型的涂层能够通过防止无机发光材料中发生的晶格振动传播到环境中来提高无机发光材料的效率。
此外,该无机发光材料优选具有多孔表面涂层。这些多孔涂层提供进一步降低单层的折光指数的可能性。这种类型的多孔涂层可通过如WO 03/027015中所述的三种常规方法制造,其整个范围经此引用并入本申请的文本中:玻璃蚀刻(例如钠钙玻璃(参见US4019884))、施加多孔层,以及多孔层和蚀刻操作的组合。
优选的是由SiO2、TiO2、Al2O3、ZnO、ZrO2和/或Y2O3或其混合氧化物构成的多孔涂层。
在另一优选实施方案中,该无机发光材料粒子具有带有促进化学键合到优选由环氧或有机硅树脂构成的环境上的官能团的表面。这些官能团可以是例如经由氧基键合并能与基于环氧化物和/或有机硅的粘合剂的成分形成连接的酯或其它衍生物。这种类型的表面具有促进无机发光材料均匀并入粘合剂中的优点。此外,可由此将该无机发光材料/粘合剂体系的流变性质以及适用期调节至特定程度。由此简化该混合物的加工。
本发明还涉及根据本发明的式I的化合物作为无机发光材料、特别作为转换无机发光材料的用途。
术语“转换无机发光材料”在本申请中是指吸收在电磁谱的某一波长范围(优选蓝光或UV光谱区)中的辐射并发射在电磁谱的另一波长区(优选红光、橙光、黄光或绿光光谱区,特别是绿光光谱区)中的可见光的材料。
在本文中也使用术语“辐射诱发的发射效率”,即该转换无机发光材料以一定效率吸收某一波长区中的辐射并发射另一波长区中的辐射。以发射光强度的提高衡量发射效率的提高。
术语“发射波长的偏移”意在表示转换无机发光材料与另一或类似的转换无机发光材料相比发射另一波长的光,即移向更短或更长的波长。最大发射由此偏移。
本发明还涉及包含根据本发明的式I化合物的无机发光材料混合物。该无机发光材料混合物可以完全由根据本发明的式I化合物构成并在这种情况下等同于上文定义的术语“无机发光材料或转换无机发光材料”。
本发明的无机发光材料混合物也可以除根据本发明的式I化合物外还包含其它转换无机发光材料。在这种情况下,本发明的无机发光材料混合物包含至少两种转换无机发光材料的混合物,其中这些之一是本发明的转换无机发光材料。这两种转换无机发光材料至少优选是发射优选互补的不同波长的光的无机发光材料。本发明的发射绿光的转换无机发光材料可以与发射蓝光和发射红光的转换无机发光材料结合使用(RGB概念)。或者,本发明的转换无机发光材料也可以与发射红光的转换无机发光材料结合使用。因此本发明的转换无机发光材料优选与一种或多种其它转换无机发光材料结合用在本发明的无机发光材料混合物中,其然后优选一起发射白光。
作为可与本发明的化合物一起使用的其它转换无机发光材料,通常可以使用任何可能的转换无机发光材料。下列这些合适,例如:Ba2SiO4:Eu2+、BaSi2O5:Pb2+、BaxSr1-xF2:Eu2 +、BaSrMgSi2O7:Eu2+、BaTiP2O7、(Ba,Ti)2P2O7:Ti、Ba3WO6:U、BaY2F8:Er3+,Yb+、Be2SiO4:Mn2+、Bi4Ge3O12、CaAl2O4:Ce3+、CaLa4O7:Ce3+、CaAl2O4:Eu2+、CaAl2O4:Mn2+、CaAl4O7:Pb2+,Mn2+、CaAl2O4:Tb3+、Ca3Al2Si3O12:Ce3+、Ca3Al2Si3Oi2:Ce3+、Ca3Al2Si3O,2:Eu2+、Ca2B5O9Br:Eu2+、Ca2B5O9Cl:Eu2+、Ca2B5O9Cl:Pb2+、CaB2O4:Mn2+、Ca2B2O5:Mn2+、CaB2O4:Pb2+、CaB2P2O9:Eu2+、Ca5B2SiO10:Eu3+、Ca0.5Ba0.5Al12O19:Ce3+,Mn2+、Ca2Ba3(PO4)3Cl:Eu2+、CaBr2:Eu2+在SiO2中、CaCl2:Eu2+在SiO2中、CaCl2:Eu2+,Mn2+在SiO2中、CaF2:Ce3+、CaF2:Ce3+,Mn2+、CaF2:Ce3+,Tb3+、CaF2:Eu2+、CaF2:Mn2+、CaF2:U、CaGa2O4:Mn2+、CaGa4O7:Mn2+、CaGa2S4:Ce3+、CaGa2S4:Eu2+、CaGa2S4:Mn2+、CaGa2S4:Pb2+、CaGeO3:Mn2+、CaI2:Eu2+在SiO2中、CaI2:Eu2+,Mn2+在SiO2中、CaLaBO4:Eu3+、CaLaB3O7:Ce3+,Mn2+、Ca2La2BO6.5:Pb2+、Ca2MgSi2O7、Ca2MgSi2O7:Ce3+、CaMgSi2O6:Eu2+、Ca3MgSi2O8:Eu2+、Ca2MgSi2O7:Eu2+、CaMgSi2O6:Eu2+,Mn2+、Ca2MgSi2O7:Eu2+,Mn2 +、CaMoO4、CaMoO4:Eu3+、CaO:Bi3+、CaO:Cd2+、CaO:Cu+、CaO:Eu3+、CaO:Eu3+、Na+、CaO:Mn2+、CaO:Pb2+、CaO:Sb3+、CaO:Sm3+、CaO:Tb3+、CaO:Tl、CaO:Zn2+、Ca2P2O7:Ce3+、-Ca3(PO4)2:Ce3+、-Ca3(PO4)2:Ce3+、Ca5(PO4)3Cl:Eu2+、Ca5(PO4)3Cl:Mn2+、Ca5(PO4)3Cl:Sb3+、Ca5(PO4)3Cl:Sn2+、-Ca3(PO4)2:Eu2+,Mn2+、Ca5(PO4)3F:Mn2+、Cas(PO4)3F:Sb3+、Cas(PO4)3F:Sn2+、-Ca3(PO4)2:Eu2+、-Ca3(PO4)2:Eu2+、Ca2P2O7:Eu2+、Ca2P2O7:Eu2+,Mn2+、CaP2O6:Mn2+、-Ca3(PO4)2:Pb2+、-Ca3(PO4)2:Sn2 +、-Ca3(PO4)2:Sn2+、-Ca2P2O7:Sn,Mn、-Ca3(PO4)2:Tr、CaS:Bi3+、CaS:Bi3+,Na、CaS:Ce3+、CaS:Eu2+、CaS:Cu+,Na+、CaS:La3+、CaS:Mn2+、CaSO4:Bi、CaSO4:Ce3+、CaSO4:Ce3+,Mn2+、CaSO4:Eu2+、CaSO4:Eu2+,Mn2+、CaSO4:Pb2+、CaS:Pb2+、CaS:Pb2+,Cl、CaS:Pb2+,Mn2+、CaS:Pr3+,Pb2+,Cl、CaS:Sb3+、CaS:Sb3+,Na、CaS:Sm3+、CaS:Sn2+、CaS:Sn2+,F、CaS:Tb3+、CaS:Tb3+,Cl、CaS:Y3+、CaS:Yb2 +、CaS:Yb2+,Cl、CaSiO3:Ce3+、Ca3SiO4Cl2:Eu2+、Ca3SiO4Cl2:Pb2+、CaSiO3:Eu2+、CaSiO3:Mn2+,Pb、CaSiO3:Pb2+、CaSiO3:Pb2+,Mn2+、CaSiO3:Ti4+、CaSr2(PO4)2:Bi3+、-(Ca,Sr)3(PO4)2:Sn2+Mn2 +、CaTi0.9Al0.1O3:Bi3+、CaTiO3:Eu3+、CaTiO3:Pr3+、Ca5(VO4)3Cl、CaWO4、CaWO4:Pb2+、CaWO4:W、Ca3WO6:U、CaYAlO4:Eu3+、CaYBO4:Bi3+、CaYBO4:Eu3+、CaYB0.8O3.7:Eu3+、CaY2ZrO6:Eu3+、(Ca,Zn,Mg)3(PO4)2:Sn、CeF3、(Ce,Mg)BaAl11O18:Ce、(Ce,Mg)SrAl11O18:Ce、CeMgAl11O19:Ce:Tb、Cd2B6O11:Mn2+、CdS:Ag+,Cr、CdS:In、CdS:In、CdS:In,Te、CdS:Te、CdWO4、CsF、Csl、CsI:Na+、CsI:Tl、(ErCl3)0.25(BaCl2)0.75、GaN:Zn、Gd3Ga5O12:Cr3+、Gd3Ga5O12:Cr,Ce、GdNbO4:Bi3+、Gd2O2S:Eu3+、Gd2O2Pr3+、Gd2O2S:Pr,Ce,F、Gd2O2S:Tb3+、Gd2SiO5:Ce3+、KAI11O17:Tl+、KGa11O17:Mn2+、K2La2Ti3O10:Eu、KMgF3:Eu2+、KMgF3:Mn2+、K2SiF6:Mn4+、LaAl3B4O12:Eu3+、LaAlB2O6:Eu3+、LaAlO3:Eu3+、LaAlO3:Sm3+、LaAsO4:Eu3+、LaBr3:Ce3+、LaBO3:Eu3+、(La,Ce,Tb)PO4:Ce:Tb、LaCl3:Ce3+、La2O3:Bi3+、LaOBr:Tb3+、LaOBr:Tm3+、LaOCl:Bi3+、LaOCl:Eu3+、LaOF:Eu3+、La2O3:Eu3+、La2O3:Pr3+、La2O2S:Tb3+、LaPO4:Ce3+、LaPO4:Eu3+、LaSiO3Cl:Ce3+、LaSiO3Cl:Ce3+,Tb3+、LaVO4:Eu3+、La2W3O12:Eu3+、LiAlF4:Mn2+、LiAl5O8:Fe3+、LiAlO2:Fe3+、LiAlO2:Mn2+、LiAl5O8:Mn2 +、Li2CaP2O7:Ce3+,Mn2+、LiCeBa4Si4O14:Mn2+、LiCeSrBa3Si4O14:Mn2+、LiInO2:Eu3+、LiInO2:Sm3+、LiLaO2:Eu3+、LuAlO3:Ce3+、(Lu,Gd)2Si05:Ce3+、Lu2SiO5:Ce3+、Lu2Si2O7:Ce3+、LuTaO4:Nb5+、Lu1-xYxAlO3:Ce3+、MgAl2O4:Mn2+、MgSrAl10O17:Ce、MgB2O4:Mn2+、MgBa2(PO4)2:Sn2+、MgBa2(PO4)2:U、MgBaP2O7:Eu2+、MgBaP2O7:Eu2+,Mn2+、MgBa3Si2O8:Eu2+、MgBa(SO4)2:Eu2+、Mg3Ca3(PO4)4:Eu2+、MgCaP2O7:Mn2+、Mg2Ca(SO4)3:Eu2+、Mg2Ca(SO4)3:Eu2+,Mn2、MgCeAlnO19:Tb3+、Mg4(F)GeO6:Mn2+、Mg4(F)(Ge,Sn)O6:Mn2+、MgF2:Mn2+、MgGa2O4:Mn2+、Mg8Ge2O11F2:Mn4+、MgS:Eu2+、MgSiO3:Mn2+、Mg2SiO4:Mn2+、Mg3SiO3F4:Ti4+、MgSO4:Eu2+、MgSO4:Pb2+、MgSrBa2Si2O7:Eu2+、MgSrP2O7:Eu2+、MgSr5(PO4)4:Sn2+、MgSr3Si2O8:Eu2+,Mn2+、Mg2Sr(SO4)3:Eu2+、Mg2TiO4:Mn4+、MgWO4、MgYBO4:Eu3 +、Na3Ce(PO4)2:Tb3+、NaI:Tl、Na1.23KO.42Eu0.12TiSi4O11:Eu3+、Na1.23K0.42Eu0.12TiSi5O13·xH2O:Eu3+、Na1.29K0.46Er0.08TiSi4O11:Eu3+、Na2Mg3Al2Si2O10:Tb、Na(Mg2-xMnx)LiSi4O10F2:Mn、NaYF4:Er3+、Yb3+、NaYO2:Eu3+、P46(70%)+P47(30%)、SrAl12O19:Ce3+、Mn2+、SrAl2O4:Eu2+、SrAl4O7:Eu3+、SrAl12O19:Eu2+、SrAl2S4:Eu2+、Sr2B5O9Cl:Eu2+、SrB4O7:Eu2+(F,Cl,Br)、SrB4O7:Pb2+、SrB4O7:Pb2+、Mn2+、SrB8O13:Sm2+、SrxBayClzAl2O4-z/2:Mn2+、Ce3+、SrBaSiO4:Eu2+、Sr(Cl,Br,I)2:Eu2+在SiO2中、SrCl2:Eu2+在SiO2中、Sr5Cl(PO4)3:Eu、SrwFxB4O6.5:Eu2+、SrwFxByOz:Eu2+,Sm2+、SrF2:Eu2+、SrGa12O19:Mn2+、SrGa2S4:Ce3+、SrGa2S4:Eu2+、SrGa2S4:Pb2+、SrIn2O4:Pr3+、Al3+、(Sr,Mg)3(PO4)2:Sn、SrMgSi2O6:Eu2+、Sr2MgSi2O7:Eu2+、Sr3MgSi2O8:Eu2+、SrMoO4:U、SrO·3B2O3:Eu2 +,Cl、β-SrO·3B2O3:Pb2+、β-SrO·3B2O3:Pb2+,Mn2+、α-SrO·3B2O3:Sm2+、Sr6P5BO20:Eu、Sr5(PO4)3Cl:Eu2+、Sr5(PO4)3Cl:Eu2+,Pr3+、Sr5(PO4)3Cl:Mn2+、Sr5(PO4)3Cl:Sb3+、Sr2P2O7:Eu2+、β-Sr3(PO4)2:Eu2+、Sr5(PO4)3F:Mn2+、Sr5(PO4)3F:Sb3+、Sr5(PO4)3F:Sb3+,Mn2+、Sr5(PO4)3F:Sn2+、Sr2P2O7:Sn2+、β-Sr3(PO4)2:Sn2+、β-Sr3(PO4)2:Sn2+,Mn2+(Al)、SrS:Ce3+、SrS:Eu2+、SrS:Mn2+、SrS:Cu+,Na、SrSO4:Bi、SrSO4:Ce3+、SrSO4:Eu2+、SrSO4:Eu2+,Mn2+、Sr5Si4O10Cl6:Eu2+、Sr2SiO4:Eu2+、SrTiO3:Pr3+、SrTiO3:Pr3+,Al3+、Sr3WO6:U、SrY2O3:Eu3+、ThO2:Eu3+、ThO2:Pr3+、ThO2:Tb3+、YAl3B4O12:Bi3+、YAl3B4O12:Ce3+、YAl3B4O12:Ce3+,Mn、YAl3B4O12:Ce3+,Tb3+、YAl3B4O12:Eu3+、YAl3B4O12:Eu3+,Cr3+、YAl3B4O12:Th4+,Ce3+,Mn2+、YAlO3:Ce3+、Y3Al5O12:Ce3+、Y3Al5O12:Cr3+、YAlO3:Eu3+、Y3Al5O12:Eu3r、Y4Al2O9:Eu3+、Y3Al5O12:Mn4+、YAlO3:Sm3+、YAlO3:Tb3+、Y3Al5O12:Tb3+、YAsO4:Eu3+、YBO3:Ce3+、YBO3:Eu3+、YF3:Er3+,Yb3+、YF3:Mn2+、YF3:Mn2+,Th4+、YF3:Tm3+,Yb3+、(Y,Gd)BO3:Eu、(Y,Gd)BO3:Tb、(Y,Gd)2O3:Eu3+、Y1.34Gd0.60O3(Eu,Pr)、Y2O3:Bi3+、YOBr:Eu3+、Y2O3:Ce、Y2O3:Er3+、Y2O3:Eu3+(YOE)、Y2O3:Ce3+,Tb3+、YOCl:Ce3+、YOCl:Eu3+、YOF:Eu3+、YOF:Tb3+、Y2O3:Ho3+、Y2O2S:Eu3+、Y2O2S:Pr3+、Y2O2S:Tb3+、Y2O3:Tb3+、YPO4:Ce3+、YPO4:Ce3+,Tb3+、YPO4:Eu3 +、YPO4:Mn2+,Th4+、YPO4:V5+、Y(P,V)O4:Eu、Y2SiO5:Ce3+、YTaO4、YTaO4:Nb5+、YVO4:Dy3+、YVO4:Eu3 +、ZnAl2O4:Mn2+、ZnB2O4:Mn2+、ZnBa2S3:Mn2+、(Zn,Be)2SiO4:Mn2+、Zn0.4Cd0.6S:Ag、Zn0.6Cd0.4S:Ag、(Zn,Cd)S:Ag,Cl、(Zn,Cd)S:Cu、ZnF2:Mn2+、ZnGa2O4、ZnGa2O4:Mn2+、ZnGa2S4:Mn2+、Zn2GeO4:Mn2+、(Zn,Mg)F2:Mn2+、ZnMg2(PO4)2:Mn2+、(Zn,Mg)3(PO4)2:Mn2+、ZnO:Al3+,Ga3+、ZnO:Bi3+、ZnO:Ga3+、ZnO:Ga、ZnO-CdO:Ga、ZnO:S、ZnO:Se、ZnO:Zn、ZnS:Ag+,Cl-、ZnS:Ag,Cu,Cl、ZnS:Ag,Ni、ZnS:Au,In、ZnS-CdS(25-75)、ZnS-CdS(50-50)、ZnS-CdS(75-25)、ZnS-CdS:Ag,Br,Ni、ZnS-CdS:Ag+,Cl、ZnS-CdS:Cu,Br、ZnS-CdS:Cu,I、ZnS:Cl-、ZnS:Eu2+、ZnS:Cu、ZnS:Cu+,Al3+、ZnS:Cu+,Cl-、ZnS:Cu,Sn、ZnS:Eu2+、ZnS:Mn2+、ZnS:Mn,Cu、ZnS:Mn2+,Te2+、ZnS:P、ZnS:P3-,Cl-、ZnS:Pb2+、ZnS:Pb2+,Cl-、ZnS:Pb,Cu、Zn3(PO4)2:Mn2+、Zn2SiO4:Mn2+、Zn2SiO4:Mn2+,As5+、Zn2SiO4:Mn,Sb2O2、Zn2SiO4:Mn2+,P、Zn2SiO4:Ti4+、ZnS:Sn2+、ZnS:Sn,Ag、ZnS:Sn2+,Li+、ZnS:Te,Mn、ZnS-ZnTe:Mn2+、ZnSe:Cu+,Cl或ZnWO4
本发明还涉及本发明的无机发光材料混合物在光源中的用途。该光源特别优选是LED,特别是无机发光材料转换LED,简称为pc-LED。该无机发光材料混合物在此特别优选除本发明的发射绿光的转换无机发光材料外还包含至少一种其它,优选发射红光的转换无机发光材料,特别使得该光源整体发射白光或在另一优选实施方案中,具有特定色点的光(按需选色原理)。
按需选色概念是指借助使用一种或多种无机发光材料的pcLED(=无机发光材料转换LED)产生具有特定色点的光。这一概念例如用于产生某些企业设计,例如用于照亮的公司标记、商标等。
通过常规参数,例如显色指数或在CIE x和CIE y坐标中的色点描述LED品质。
显色指数或CRI是本领域技术人员熟悉的无量纲照明量,其与日光或灯丝光源(后两种具有100的CRI)比较人工光源的色彩再现忠实度。
CIE x和CIE y代表本领域技术人员熟悉的在CIE标准比色图表(在此为standardobserver 1931)中的坐标,借此描述光源的颜色。
由光源的发射光谱通过本领域技术人员熟悉的方法计算上述所有量。
本发明因此还涉及包含一次光源和本发明的无机发光材料混合物的光源。
该无机发光材料混合物在此也特别优选除本发明的发射绿光的转换无机发光材料外还包含至少一种其它、优选发射红光的转换无机发光材料,以使该光源优选发射白光或在另一优选实施方案中,具有特定色点的光。
本发明的光源优选是pc-LED。pc-LED通常包含一次光源和本发明的无机发光材料混合物。
该一次光源可以是半导体芯片、发光光源(例如ZnO)、所谓的TCO(透明导电氧化物)、ZnSe或SiC基装置、基于有机发光层(OLED)的装置或等离子体或放电源,最优选是半导体芯片。这种类型的一次光源的可能形式是本领域技术人员已知的。
如果该一次光源是半导体芯片,其优选是如现有技术中已知的发光氮化铟铝镓(InAlGaN)。
在一个优选实施方案中,本发明的光源包含发射UV的一次光源,优选具有1W的功耗和在390纳米的发射的UV-LED,和无机发光材料混合物——其包含一种或多种式I的发射绿光的转换无机发光材料(优选选自混合比为1:1(%w/w)的式V-5和V-6的化合物)和任选一种或多种发射红光的转换无机发光材料(优选选自氮化物,特别优选选自(Sr,Ca,Ba)2Si5N8:Eu、(Ca,Sr)AlSiN3:Eu和/或从WO 2011/091839 A1(Merck)中获知的氮氧化物),本发明的无机发光材料与发射红光的转换无机发光材料的比率为80:20(%w/w)。
在另一优选实施方案中,本发明的光源包含发射蓝光的一次光源,优选具有1W的功耗和在447纳米的发射的LED,和无机发光材料混合物——其包含一种或多种式I的发射绿光的转换无机发光材料(优选选自式V-5的化合物)和任选一种或多种发射红光的转换无机发光材料(优选选自氮化物,特别优选选自(Sr,Ca,Ba)2Si5N8:Eu、(Ca,Sr)AlSiN3:Eu和/或从WO 2011/091839 A1(Merck)中获知的氮氧化物),本发明的无机发光材料与发射红光的转换无机发光材料的比率为80:20(%w/w)。
由于施用到一次光源上的无机发光材料层优选由有机硅和均匀无机发光材料粒子的混合物构成(其通过本体流延施用),且该有机硅具有表面张力,这种无机发光材料混合物层在微观层面上不均匀或该层的厚度并非处处恒定。如果无机发光材料混合物不通过本体流延法施用而是在所谓的芯片级转换法(其中借助静电法将高浓缩的无机发光材料混合物薄层直接施用到一次光源的表面上)中施用,情况通常也如此。
借助上文提到的方法,可以由无机发光材料混合物制造任何所需外形或无机发光材料体,如球形粒子、薄片和结构化材料和陶瓷。
作为进一步优选的实施方案,通过常规方法由相应的半金属、金属和稀土盐进行薄片形无机发光材料体的制备。在EP 763573和DE102006054331中详细描述了该制备方法,其整个范围经此引用并入本申请的文本中。这些薄片可以如下制备:通过在水分散体或悬浮液中的沉淀反应使具有非常大的径厚比、原子级平滑表面和可调厚度的天然或合成的高度稳定的载体或基底(包含例如云母、SiO2、Al2O3、ZrO2、玻璃或TiO2薄片)被无机发光材料混合物层涂布。除云母、ZrO2、SiO2、Al2O3、玻璃或TiO2或其混合物外,该薄片也可以由无机发光材料混合物本身构成或由另一材料组成。如果薄片本身仅充当无机发光材料混合物的载体,其必须由可透过一次光源的一次辐射或吸收该一次辐射并将这种能量传递给无机发光材料混合物的材料构成。将该薄片形无机发光材料体分散在树脂(例如有机硅或环氧树脂)中并将这种分散体施用到一次光源上。
薄片在此可以在大工业规模下以50纳米至大约20微米、优选150纳米至5微米的厚度制造。直径在此为50纳米至20微米。
该薄片通常具有1:1至400:1、特别是3:1至100:1的径厚比(直径与粒子厚度的比率)。薄片尺寸(长度×宽度)取决于布置。薄片也适合作为转换层内的散射中心,特别是在它们具有特别小的尺寸的情况下。
可以为本发明的薄片形无机发光材料体的朝向一次光源的表面提供对一次光源发出的一次辐射具有减反射作用的涂层。这导致该一次辐射的反向散射降低,从而能将一次辐射更好耦合到本发明的无机发光材料体中。
适用于此用途的是例如,折光指数匹配的涂层,其必须具有下列厚度d:d=[一次光源的一次辐射的波长/(4*荧光陶瓷的折光指数)],参见例如Gerthsen,Physik[Physics],Springer Verlag,第18版,1995。这种涂层也可以由光子晶体构成,其也包括薄片形无机发光材料体表面的结构化以实现某些功能。
本发明还涉及陶瓷体形式的本发明的无机发光材料。在陶瓷无机发光材料体的情况下,不存在该无机发光材料体的激发和发射的位置依赖性变化,这意味着带有其的LED发射颜色一致的均匀光锥并具有高的光输出。可以在大工业规模下,例如以厚度几百纳米至大约500微米的薄片形式制造陶瓷无机发光材料体。薄片尺寸(长度×宽度)取决于布置。在直接施用到芯片上的情况下,应根据芯片尺寸(大约100μm*100μm至几平方毫米)选择薄片尺寸,在合适的芯片布置(例如倒装芯片布置)下或相应地,尺寸超出芯片表面的大约10%至30%。如果在成品LED上安装该无机发光材料体的薄片,则所有发出的光锥都穿过该薄片。
可以用轻金属或贵金属、优选铝或银涂布该陶瓷无机发光材料体的侧面。该金属涂层的作用在于,光不会从该无机发光材料体侧向射出。侧向射出的光会降低从LED中耦合输出的光通量。在等静压制产生杆或薄片后的工艺步骤中进行陶瓷无机发光材料体的金属涂布,其中任选在金属涂布之前将该杆或薄片切至必要尺寸。为此,例如用包含硝酸银和葡萄糖的溶液润湿侧面,然后在高温下暴露在氨气氛中。在该方法中在侧面上形成例如银涂层。
或者,无电金属化法也合适,参见例如Hollemann-Wiberg,Lehrbuch derAnorganic Chemie[Textbook of Inorganic Chemistry],Walter de Gruyter Verlag或Ullmannsder chemischen Technologie[Ullmann's Encyclopaedia ofChemical Technology]。
如果必要,该可以使用水玻璃溶液将陶瓷无机发光材料体固定到一次光源的基板上。
在另一实施方案中,该陶瓷无机发光材料体在与一次光源相反的面上具有结构化(例如锥体形)表面。这能从该无机发光材料体中耦合输出尽可能多的光。
例如通过DE 102006037730(Merck)(其整个范围经此引用并入本申请的文本中)中描述的方法制造陶瓷体形式的无机发光材料体,本领域技术人员已知的其它方法也可用于制造陶瓷无机发光材料体,例如烧结。
优选通过湿化学法如下制造无机发光材料:混合相应的原材料和掺杂剂,然后等静压制并以均匀、薄和无孔的薄片形式直接施用到一次光源表面上。优选通过使用具有结构化压板的压模进行等静压制并由此将结构压印到该表面中来制造无机发光材料体上的结构化表面。如果目的是制造尽可能薄的无机发光材料体或薄片,则需要结构化表面。压制条件是本领域技术人员已知的(参见J.Kriegsmann,Technische keramische Werkstoffe[Industrial Ceramic Materials],第4章,Deutscher Wirtschaftsdienst,1998)。重要的是,所用压制温度为要压制的物质的熔点的2/3至5/6。
本发明还涉及包含至少一个本发明光源的照明装置。这种类型的照明装置尤其可用于显示器,特别是具有背光的液晶显示器(LC显示器)。尤其在用于液晶显示器的情况下,特别重要的是,该发射无机发光材料具有在滤色片的吸收范围外的窄带发射频带以确保高透射。
在本发明的照明装置中,优选通过光导布置实现无机发光材料体与一次光源(特别是半导体芯片)之间的光耦合。因此,可以将一次光源安装在中心位置,并借助光导装置、例如光纤将其与无机发光材料体光耦合。由此,可以获得适合照明意图的无机发光材料体,其包含优选选自式V-5的化合物的一种或多种本发明的转换无机发光材料(它们可布置形成光幕)和耦合到一次光源上的光波导管。
因此,可以在有利于电气安装的位置安装强一次光源,并且无需进一步使用电缆而是仅通过在任何所需位置铺设光波导管就可以安装与光波导管耦合的包含一种或多种本发明无机发光材料的无机发光材料体。
还优选的是特别用于一般照明的照明装置,其特征在于其具有>60、优选>70、更优选>85的CRI(=显色指数)。但是,只有在根据本发明的式I的转换无机发光材料(优选选自式V-6的化合物)在LED中另外与发射红光的无机发光材料(优选选自氮化物,特别优选选自(Sr,Ca,Ba)2Si5N8:Eu、(Ca,Sr)AlSiN3:Eu和/或从WO 2011/091839 A1(Merck)中获知的氮氧化物)以80:20(%w/w)的本发明转换无机发光材料与发射红光的转换无机发光材料的比率结合时才能实现>85的CRI值。
本发明还涉及本发明的无机发光材料作为电致发光材料、例如电致发光薄膜(也称作发光膜或光膜)的用途,其中例如使用硫化锌或Mn2+、Cu+或Ag+掺杂的硫化锌作为发射体,其在黄绿区内发光。该电致发光薄膜的应用领域是,例如,广告、液晶显示屏(LC显示器)和薄膜晶体管(TFT)显示器中的显示背光灯、自发光车辆照牌、地板图案(与抗压和防滑层压材料结合)、在显示和/或控制元件中,例如在汽车、火车、轮船和飞机中,或家庭用具、花园设施、测量仪器或运动和休闲器材。
编号列表形式的本发明的基本特征是:
1.式I的化合物
(A1-wEuw)(E12-z(G1Mg1)z)O19 I
其中
A是指选自由Sr、Ba和Ca组成的组的一种或多种二价元素,
E是指选自由Al、Ga、In和Sc组成的组的一种或多种三价元素,
G是指选自由Si和Ge组成的组的一种或多种四价元素,且
0<z≤4,
0.01≤w≤0.4。
2.根据1的化合物,其特征在于z=1。
3.根据1或2的化合物,其特征在于G=Si。
4.根据1至3的一项或多项的化合物,其特征在于0.01≤w≤0.1。
5.根据1至4的一项或多项的化合物,其特征在于式I的化合物选自式V-1至V-7的化合物:
((SrsBarCat)1-wEuw)(Al10SiMg)O19 V-1
((CatBar)1-wEuw)(Al10SiMg)O19 V-2
((SrsBar)1-wEuw)(Al10SiMg)O19 V-3
((SrsCat)1-wEuw)(Al10SiMg)O19 V-4
(Sr1-wEuw)(Al10SiMg)O19 V-5
(Ba1-wEuw)(Al10SiMg)O19 V-6
(Ca1-wEuw)(Al10SiMg)O19 V-7
其中0<r<1,0<s<1,0<t<1,其中r+s+t=1且w具有式I下指出的含义。
6.制备根据1至5的一项或多项的化合物的方法,其特征在于将二氧化硅和/或二氧化锗与至少一种镁化合物、至少一种铝、铟、钪或镓化合物、至少一种钡、锶或钙化合物和至少一种铕化合物混合,并然后热处理所述混合物。
7.根据6的方法,其特征在于所述混合物的热处理在2个步骤中进行,其中在第一步骤中,将所述混合物在空气下在>800℃的温度下煅烧,然后在还原条件下在>1000℃的温度下煅烧。
8.无机发光材料混合物,其包含一种或多种根据1至5的一项或多项的化合物。
9.根据8的无机发光材料混合物,其另外包含至少一种发射红光的转换无机发光材料。
10.根据8或9的无机发光材料混合物,其另外包含至少一种发射蓝光的转换无机发光材料。
11.光源,其包含一次光源和根据8至10的一项或多项的无机发光材料混合物。
12.照明装置,其包含至少一个根据11的光源。
下列实施例旨在例证本发明。但是,它们无论如何不应被视为限制。该组合物中可用的所有化合物或组分是已知和可购得的,或可通过已知方法合成。实施例中所示的温度始终以℃计。此外,无须说,在说明书和在实施例中,该组合物中的组分的添加量始终合计为100%。所给的百分比数据应始终在给定背景下考虑。但是,它们通常总是涉及所示分量或总量的重量。
实施例
实施例1:Sr0.96Eu0.04Al10MgSiO19的制备
在手工研钵中均化2.28克碳酸锶(0.015摩尔)、21.70克碱性碳酸铝(0.081摩尔,Alfa Aesar)、1.37克碳酸镁(0.016摩尔,Acros)、0.975克二氧化硅(0.016摩尔,Aldrich)和0.142克氧化铕(0.004摩尔,Treibacher)。将该混合物在空气下在1000℃下煅烧4小时。然后将由此获得的无机发光材料前体在氮/氢气氛(10%比例的氢)下在1300℃下煅烧4小时。然后借助手工研钵研碎该粗制无机发光材料,筛分(孔径<36μm)并通过光谱学表征。
实施例2:作为一次光源的蓝色LED
称出1.1克化学组成为Sr0.96Eu0.04Al10MgSiO19的绿色无机发光材料和5克化学组成为Sr1.94Eu0.06Si5N7.67O0.5的红色无机发光材料,并在Speedmixer中均匀混合。然后将这种无机发光材料混合物以8%w/w的浓度分散在光学透明有机硅中。借助自动分配器将由此获得的有机硅/无机发光材料混合物施用到蓝色半导体LED的芯片(具有1W的功耗和在447纳米的发射的LED)上并在供热下固化。
实施例3:作为一次光源的UV-LED
称出2.1克化学组成为Sr0.96Eu0.04Al10MgSiO19的绿色无机发光材料和5克化学组成为Sr1.94Eu0.06Si5N7.67O0.5的红色无机发光材料,并在Speedmixer中均匀混合。然后将这种无机发光材料混合物以6%w/w的浓度分散在光学透明有机硅中。借助自动分配器将由此获得的有机硅/无机发光材料混合物施用到发射UV的半导体LED的芯片(具有1W的功耗和在390纳米的发射的UV-LED)上并在供热下固化。

Claims (12)

1.式I的化合物
(A1-wEuw)(E12-2z(G1Mg1)z)O19 I
其中
A表示选自由Sr、Ba和Ca组成的组的一种或多种二价元素,
E表示选自由Al、Ga、In和Sc组成的组的一种或多种三价元素,
G表示选自由Si和Ge组成的组的一种或多种四价元素,且
z=1,
0.01≤w≤0.4。
2.根据权利要求1的化合物,其特征在于G=Si。
3.根据权利要求1或2的化合物,其特征在于0.01≤w≤0.1。
4.根据权利要求1或2的化合物,其特征在于式I的化合物选自式V-1至V-7的化合物:
((SrsBarCat)1-wEuw)(Al10SiMg)O19 V-1
((CatBar)1-wEuw)(Al10SiMg)O19 V-2
((SrsBar)1-wEuw)(Al10SiMg)O19 V-3
((SrsCat)1-wEuw)(Al10SiMg)O19 V-4
(Sr1-wEuw)(Al10SiMg)O19 V-5
(Ba1-wEuw)(Al10SiMg)O19 V-6
(Ca1-wEuw)(Al10SiMg)O19 V-7
其中0<r<1,0<s<1,0<t<1,其中w具有式I下指出的含义;且在式V-1中,r+s+t=1;在式V-2中,r+t=1;在式V-3中,r+s=1;在式V-4中,s+t=1。
5.根据权利要求4的化合物,其特征在于0.01≤w≤0.1。
6.制备根据权利要求1至5任一项的化合物的方法,其特征在于将二氧化硅和/或二氧化锗与至少一种镁化合物、至少一种铝、铟、钪或镓化合物、至少一种钡、锶或钙化合物和至少一种铕化合物混合,并然后热处理所述混合物。
7.根据权利要求6的方法,其特征在于所述混合物的热处理在2个步骤中进行,其中在第一步骤中,将所述混合物在空气下在>800℃的温度下煅烧,然后在还原条件下在>1000℃的温度下煅烧。
8.无机发光材料混合物,其包含一种或多种根据权利要求1至5任一项的化合物。
9.根据权利要求8的无机发光材料混合物,其另外包含至少一种发射红光的转换无机发光材料。
10.根据权利要求8或9的无机发光材料混合物,其另外包含至少一种发射蓝光的转换无机发光材料。
11.光源,其包含一次光源和根据权利要求8至10任一项的无机发光材料混合物。
12.照明装置,其包含至少一个根据权利要求11的光源。
CN201380057397.1A 2012-11-02 2013-10-04 Eu‑活化的无机发光材料 Expired - Fee Related CN104870608B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102012021570.3 2012-11-02
DE102012021570.3A DE102012021570A1 (de) 2012-11-02 2012-11-02 Eu-aktivierte Leuchtstoffe
PCT/EP2013/002997 WO2014067609A1 (de) 2012-11-02 2013-10-04 Eu-aktivierte leuchtstoffe

Publications (2)

Publication Number Publication Date
CN104870608A CN104870608A (zh) 2015-08-26
CN104870608B true CN104870608B (zh) 2017-08-22

Family

ID=49304887

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380057397.1A Expired - Fee Related CN104870608B (zh) 2012-11-02 2013-10-04 Eu‑活化的无机发光材料

Country Status (8)

Country Link
US (1) US9856417B2 (zh)
EP (1) EP2914688B1 (zh)
JP (1) JP6243438B2 (zh)
KR (1) KR20150083099A (zh)
CN (1) CN104870608B (zh)
DE (1) DE102012021570A1 (zh)
TW (1) TWI632225B (zh)
WO (1) WO2014067609A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL127129A (en) * 1998-11-18 2004-06-01 Ferring Bv Method for preparation of progesterone tablets for vaginal delivery and tablets so prepared
DE102014108004A1 (de) * 2014-06-06 2015-12-17 Osram Opto Semiconductors Gmbh Verfahren zum Herstellen eines optoelektronischen Bauelements und optoelektronisches Bauelement
US9328878B2 (en) 2014-07-02 2016-05-03 General Electric Company Phosphor compositions and lighting apparatus thereof
DE102015204360A1 (de) 2015-03-11 2016-09-15 Osram Oled Gmbh Optoelektronisches Bauteil und Verfahren zum Austausch eines optoelektronischen Bauteils
DE102016104369A1 (de) * 2016-03-10 2017-09-14 Osram Opto Semiconductors Gmbh Leuchtstoffmischung und optoelektronisches Bauelement mit einer Leuchtstoffmischung
KR102486988B1 (ko) * 2017-09-22 2023-01-10 삼성디스플레이 주식회사 발광 소자 및 이를 포함하는 표시 장치
CN108640686B (zh) * 2018-06-27 2021-03-16 武汉理工大学 一种铕钇共掺氟化钙闪烁陶瓷及其制备方法
CN113667472B (zh) * 2021-07-12 2022-06-10 广东工业大学 一种Bi3+掺杂的紫外长余辉发光材料及其制备方法和应用
CN115490517A (zh) * 2022-10-17 2022-12-20 闽都创新实验室 一种红光闪烁陶瓷及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1264727A (zh) * 1999-02-25 2000-08-30 北京清华永昌化工有限公司 一种长余辉蓝色荧光体
JP2001022308A (ja) * 1999-07-12 2001-01-26 Nemoto & Co Ltd 複層表示体及びこの複層表示体を用いた表示装置
JP2005109085A (ja) * 2003-09-30 2005-04-21 Okaya Electric Ind Co Ltd 発光ダイオード
CN102186944A (zh) * 2008-10-13 2011-09-14 默克专利有限公司 用于pc led的具有红移的掺杂石榴石发光材料
CN102618266A (zh) * 2012-03-15 2012-08-01 上海师范大学 一种蓝紫光激发的黄光荧光材料及其制备方法和应用

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7214860A (zh) 1972-11-03 1974-05-07
US4019884A (en) 1976-01-22 1977-04-26 Corning Glass Works Method for providing porous broad-band antireflective surface layers on chemically-durable borosilicate glasses
JPH072947B2 (ja) * 1985-06-27 1995-01-18 松下電子工業株式会社 螢光体
JPH0735510B2 (ja) * 1986-03-20 1995-04-19 松下電子工業株式会社 蛍光ランプ
JP3242561B2 (ja) 1995-09-14 2001-12-25 メルク・ジヤパン株式会社 薄片状酸化アルミニウム、真珠光沢顔料及びその製造方法
JP2000017257A (ja) * 1998-06-30 2000-01-18 Nichia Chem Ind Ltd 蛍光体及びそれを用いた発光スクリーン
JP2001240856A (ja) 2000-02-29 2001-09-04 Sumitomo Chem Co Ltd 真空紫外線励起発光素子用蛍光体
JP3447274B2 (ja) * 2001-02-22 2003-09-16 化成オプトニクス株式会社 アルミン酸塩蛍光体の製造方法
JP2002348570A (ja) 2001-05-28 2002-12-04 Nichia Chem Ind Ltd 真空紫外線励起蛍光体及びその製造方法
CN100400450C (zh) 2001-09-21 2008-07-09 默克专利股份有限公司 用于形成耐磨的SiO2抗反射层的混杂型溶胶
JP4122752B2 (ja) * 2001-10-30 2008-07-23 株式会社日立製作所 発光装置
JP4123758B2 (ja) * 2001-10-31 2008-07-23 株式会社日立製作所 発光装置
US7223987B2 (en) 2003-02-20 2007-05-29 Matsushita Electric Industrial Co., Ltd. Process for producing phosphor and plasma display panel unit
US7268370B2 (en) * 2003-06-05 2007-09-11 Matsushita Electric Industrial Co., Ltd. Phosphor, semiconductor light emitting device, and fabrication method thereof
JP2005019981A (ja) * 2003-06-05 2005-01-20 Matsushita Electric Ind Co Ltd 蛍光体及び半導体発光素子、並びにこれらの製造方法
EP1811009A4 (en) 2004-09-07 2008-10-22 Sumitomo Chemical Co PHOSPHORUS, PHOSPHORIC PASTE AND LIGHT-EMITTING DEVICE
JP4770160B2 (ja) 2004-11-30 2011-09-14 住友化学株式会社 紫外線励起発光素子用蛍光体
DE102006027133A1 (de) 2006-06-12 2007-12-13 Merck Patent Gmbh Verfahren zur Herstellung von Granat-Leuchtstoffen in einem Pulsationsreaktor
DE102006037730A1 (de) 2006-08-11 2008-02-14 Merck Patent Gmbh LED-Konversionsleuchtstoffe in Form von keramischen Körpern
DE102006054331A1 (de) 2006-11-17 2008-05-21 Merck Patent Gmbh Leuchtstoffkörper basierend auf plättchenförmigen Substraten
JP5782049B2 (ja) 2010-01-29 2015-09-24 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung 蛍光体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1264727A (zh) * 1999-02-25 2000-08-30 北京清华永昌化工有限公司 一种长余辉蓝色荧光体
JP2001022308A (ja) * 1999-07-12 2001-01-26 Nemoto & Co Ltd 複層表示体及びこの複層表示体を用いた表示装置
JP2005109085A (ja) * 2003-09-30 2005-04-21 Okaya Electric Ind Co Ltd 発光ダイオード
CN102186944A (zh) * 2008-10-13 2011-09-14 默克专利有限公司 用于pc led的具有红移的掺杂石榴石发光材料
CN102618266A (zh) * 2012-03-15 2012-08-01 上海师范大学 一种蓝紫光激发的黄光荧光材料及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Role of valence state of dopant (Eu2+,Eu3+) and growth environment inluminescence and morphology of SrAl12O19 nano- and microcrystals;Santa Chawla等;《Materials Chemistry and Physics》;20101231;582-587 *

Also Published As

Publication number Publication date
JP6243438B2 (ja) 2017-12-06
DE102012021570A1 (de) 2014-05-22
JP2016503443A (ja) 2016-02-04
US9856417B2 (en) 2018-01-02
KR20150083099A (ko) 2015-07-16
US20150275079A1 (en) 2015-10-01
TW201418416A (zh) 2014-05-16
EP2914688A1 (de) 2015-09-09
TWI632225B (zh) 2018-08-11
WO2014067609A1 (de) 2014-05-08
CN104870608A (zh) 2015-08-26
EP2914688B1 (de) 2019-05-08

Similar Documents

Publication Publication Date Title
CN104870608B (zh) Eu‑活化的无机发光材料
US8987687B2 (en) Silicophosphate phosphors
US9758722B2 (en) Eu2+-activated phosphors
US10125315B2 (en) Phosphors and phosphor-converted LEDs
CN105051154B (zh) 铝硅酸镁基荧光体
US20160108311A1 (en) Phosphors
US9920246B2 (en) Phosphors
WO2017092849A1 (de) Mn-aktivierte leuchtstoffe
EP2625247B1 (de) Mn-aktivierte leuchtstoffe
US20170084797A1 (en) Conversion phosphors
Zych et al. Eu 2+-activated phosphors

Legal Events

Date Code Title Description
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170822

Termination date: 20191004