WO2015037649A1 - 磁気光学材料及びその製造方法、並びに磁気光学デバイス - Google Patents

磁気光学材料及びその製造方法、並びに磁気光学デバイス Download PDF

Info

Publication number
WO2015037649A1
WO2015037649A1 PCT/JP2014/074040 JP2014074040W WO2015037649A1 WO 2015037649 A1 WO2015037649 A1 WO 2015037649A1 JP 2014074040 W JP2014074040 W JP 2014074040W WO 2015037649 A1 WO2015037649 A1 WO 2015037649A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
magneto
oxide
tantalum
germanium
Prior art date
Application number
PCT/JP2014/074040
Other languages
English (en)
French (fr)
Inventor
真憲 碇
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to EP14844266.8A priority Critical patent/EP3045958B1/en
Priority to KR1020167004889A priority patent/KR102238976B1/ko
Priority to US14/917,149 priority patent/US10526725B2/en
Priority to JP2015536616A priority patent/JP6135766B2/ja
Priority to CA2924312A priority patent/CA2924312C/en
Priority to CN201480050028.4A priority patent/CN105531619B/zh
Publication of WO2015037649A1 publication Critical patent/WO2015037649A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • C04B35/457Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates based on tin oxides or stannates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/12Single-crystal growth directly from the solid state by pressure treatment during the growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/30Niobates; Vanadates; Tantalates
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/32Titanates; Germanates; Molybdates; Tungstates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/0009Materials therefor
    • G02F1/0036Magneto-optical materials
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • G02F1/093Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect used as non-reciprocal devices, e.g. optical isolators, circulators
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3218Aluminium (oxy)hydroxides, e.g. boehmite, gibbsite, alumina sol
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3287Germanium oxides, germanates or oxide forming salts thereof, e.g. copper germanate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/81Materials characterised by the absence of phases other than the main phase, i.e. single phase materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina

Definitions

  • the present invention relates to a magneto-optical material and a magneto-optical device, and more particularly, a magneto-optical material made of a transparent ceramic or a single crystal containing a complex oxide suitable for constituting a magneto-optical device such as an optical isolator, and its manufacture.
  • the present invention relates to a method and a magneto-optical device using the magneto-optical material.
  • the optical isolator includes a Faraday rotator, a polarizer disposed on the light incident side of the Faraday rotator, and an analyzer disposed on the light emitting side of the Faraday rotator.
  • the Faraday rotator is used by applying a magnetic field parallel to the traveling direction of light. At this time, the polarization line of light rotates only in a fixed direction regardless of whether it travels forward or backward in the Faraday rotator. Further, the Faraday rotator is adjusted to such a length that the polarization segment of light is rotated exactly 45 degrees.
  • the forward polarization of the light is transmitted because it coincides at the polarizer position and the analyzer position.
  • the polarization of the backward light is rotated 45 degrees in the opposite direction to the deviation angle direction of the polarization plane of the polarizer which is shifted 45 degrees from the analyzer position.
  • the light traveling in this way functions as an optical isolator that transmits and emits light and blocks the returning light traveling backward.
  • TGG crystal Tb 3 Ga 5 O 12
  • TSAG crystal Tb (3-x) Sc 2 Al 3 O 12
  • the Verde constant of a TGG crystal is relatively large, 40 rad / (T ⁇ m), and is currently widely used for standard fiber laser devices.
  • the TSAG crystal has a Verde constant of about 1.3 times that of the TGG crystal, which is also a material mounted on the fiber laser device.
  • JP-A 2010-285299 (Patent Document 3) describes (Tb x R 1-x ) 2 O 3 (x is 0.4 ⁇ x ⁇ 1.0), and R is scandium.
  • a single crystal or ceramics mainly composed of an oxide selected from the group consisting of yttrium, lanthanum, europium, gadolinium, ytterbium, holmium, and lutetium is disclosed.
  • the oxide composed of the above components has a Verde constant of 0.18 min / (Oe ⁇ cm) or more, and in the examples, there is a description up to a maximum of 0.33 min / (Oe ⁇ cm). Further, in the text of the same document, the TGG Verde constant is also described as 0.13 min / (Oe ⁇ cm). The difference between the two Verde constants has actually reached 2.5 times.
  • Patent Document 4 discloses an oxide composed of substantially the same component, and describes that it has a larger Verde constant than a TGG single crystal.
  • the (Tb x R 1-x ) 2 O 3 oxide disclosed in Patent Documents 3 and 4 is certainly a TGG crystal disclosed in Patent Document 1 or referred to in the text of Patent Document 3.
  • the Verde constant is very large, 1.4 to 2.5 times, but the oxide is a fiber laser beam with a wavelength band of 0.9 to 1.1 ⁇ m that is expected to be used. Absorbs a little.
  • fiber laser devices have become more powerful in output, and even if they are slightly absorbing optical isolators, they can cause beam quality degradation due to the thermal lens effect. .
  • a fiber laser beam having a Verde constant larger than that of TGG crystal (Tb 3 Ga 5 O 12 ) or TSAG crystal (Tb (3-x) Sc 2 Al 3 O 12 ) and having a wavelength band of 0.9 to 1.1 ⁇ m.
  • TGG crystal Tb 3 Ga 5 O 12
  • TSAG crystal Tb (3-x) Sc 2 Al 3 O 12
  • a candidate for such a material is an oxide having a pyrochlore type crystal structure.
  • the pyrochlore type crystal has a crystal structure of A 2 B 2 O 7 and is known to have a cubic structure when the radius ratio of A ions to B ions is within a certain range. If a material having a cubic crystal structure can be selected, not only single crystals but also ceramic bodies can be produced with high transparency, and application as various optical materials is expected.
  • Patent Document 6 discloses that among the cubic titanium oxide pyrochlore having a rare earth element RE at the A site, the element RE at the A site is Lu, Yb. , Tm, Er, Ho, Y, Sc, Dy, Tb, Gd, Eu, Sm, and Ce are complex oxides RE 2-x Ti 2 O 7- ⁇ composed of one or more of each element And the non-stoichiometric amount x of the A-site element RE is 0 ⁇ x ⁇ 0.5 depending on the A-site element RE.
  • a cubic titanium oxide pyrochlore sintered body characterized in that it is formed by sintering an electronically conductive ceramic powder within the above range, followed by reduction treatment. Since the use is an electronic conductive ceramic, the transparency of the sintered body is not mentioned, and it is known among those skilled in the art that an ordinary sintered body can be formed only by ordinary sintering.
  • the material described in Document 6 is also estimated to be unusable as an optical material application, but the information that titanium oxide pyrochlore containing Tb can be cubic is disclosed in Patent Document 6.
  • Patent Document 7 at least 95% by weight, preferably at least 98% by weight of each crystal has a cubic chlorophyllite or fluorite structure, and is a stoichiometric compound.
  • B is at least one tetravalent cation
  • D is at least one pentavalent cation
  • E is at least one divalent anion.
  • a polycrystal, transparent optical ceramic containing A wherein A is selected from Y, Gd, Yb, Lu, Sc and La, and B is an optical ceramic selected from Ti, Zr, Hf, Sn and Ge
  • Tb is not included at all, cubic oxides containing 98% by weight or more of titanium oxide, zirconium oxide, hafnium oxide, tin oxide, and germanium oxide containing several kinds of rare earths (pyrochlore) It has been confirmed that it can take a structure.
  • the present invention has been made in view of the above circumstances, and does not absorb fiber laser light in the wavelength band of 0.9 to 1.1 ⁇ m, and therefore suppresses the generation of thermal lenses, and the Verde constant is larger than that of a TGG crystal. It is an object of the present invention to provide a transparent magneto-optical material suitable for constituting a magneto-optical device such as an optical isolator, a manufacturing method thereof, and a magneto-optical device.
  • the present inventor has a Verde constant larger than that of TGG crystal (Tb 3 Ga 5 O 12 ) or TSAG crystal (Tb (3-x) Sc 2 Al 3 O 12 ) based on the knowledge of the above prior art, and As a completely new material candidate that does not absorb fiber laser light in the wavelength band of 0.9 to 1.1 ⁇ m, we will study various pyrochlore type materials including Tb and configure magneto-optical devices such as optical isolators. A magneto-optical material and a magneto-optical device suitable for the above were completed.
  • this invention is the following magneto-optical material, its manufacturing method, and a magneto-optical device.
  • R is at least one element selected from the group consisting of silicon, germanium, titanium, tantalum, tin, hafnium, and zirconium (provided that silicon, germanium, and tantalum are the elements alone) ).
  • Terbium oxide powder and at least one oxide powder selected from the group consisting of silicon, germanium, titanium, tantalum, tin, hafnium, zirconium (however, for silicon, germanium, and tantalum, the element oxide alone is used) Is fired in a crucible to produce a fired raw material mainly composed of a cubic pyrochlore type oxide, and the fired raw material is pulverized into a raw material powder.
  • the raw material powder is used to form a predetermined shape.
  • a method for producing a magneto-optical material which is sintered after press molding and further subjected to a hot isostatic pressing process to obtain a sintered body of a transparent ceramic containing a composite oxide represented by the following formula (1) as a main component.
  • Tb 2 R 2 O 7 (1)
  • R is at least one element selected from the group consisting of silicon, germanium, titanium, tantalum, tin, hafnium, and zirconium (provided that silicon, germanium, and tantalum are the elements alone) ).
  • [7] The method for producing a magneto-optical material according to [6], wherein the firing temperature is 1200 ° C. or higher and lower than a sintering temperature performed thereafter.
  • a magneto-optical device comprising the magneto-optical material according to any one of [1] to [5].
  • An optical isolator comprising the magneto-optical material as a Faraday rotator and having a polarizing material before and after the optical axis of the Faraday rotator and usable in a wavelength band of 0.9 ⁇ m to 1.1 ⁇ m.
  • an optical isolator with a Verde's constant larger than that of a TGG crystal can be miniaturized without degrading the beam quality even when mounted on a fiber laser device having a wavelength band of 0.9 to 1.1 ⁇ m.
  • a transparent magneto-optical material suitable for constructing a magneto-optical device such as the above can be provided.
  • FIG. 3 is an enlarged view of an X-ray diffraction pattern near the (622) plane of FIG. 2.
  • 4 is an X-ray diffraction pattern of a sintered body (Tb 2 Zr 2 O 7 ) of Example 1-4.
  • the magneto-optical material according to the present invention is made of a transparent ceramic containing a complex oxide represented by the following formula (1) as a main component or a single crystal of the complex oxide represented by the following formula (1), and has a verde at a wavelength of 1064 nm.
  • the constant is 0.14 min / (Oe ⁇ cm) or more.
  • Tb 2 R 2 O 7 (1) In the formula, R is at least one element selected from the group consisting of silicon, germanium, titanium, tantalum, tin, hafnium, and zirconium (provided that silicon, germanium, and tantalum are the elements alone) ).
  • Terbium is a material having the largest Verde constant among paramagnetic elements other than iron (Fe), and is transparent at a wavelength of 1.06 ⁇ m (linear transmittance of light at an optical path length of 1 mm is 80% or more). It is the most suitable element for use in an optical isolator in this wavelength range. However, in order to make use of this transparency, terbium must not be in a metal-bonded state but must be finished in a stable compound state.
  • an oxide is mentioned as the most typical form for forming a stable compound.
  • certain materials (composite oxides) having a pyrochlore structure have a cubic structure (this is called a cubic crystal having a pyrochlore lattice (pyrochlore type cubic crystal)), so that there is no high degree of anisotropic scattering. A transparent compound is obtained.
  • terbium enters the A site
  • a pyrochlore type oxide having a cubic structure terbium-containing cubic pyrochlore type oxide
  • silicon, germanium, titanium, tantalum, tin, hafnium, and zirconium can be suitably used as a B site element for taking a cubic crystal structure.
  • silicon and germanium have an ionic radius that is too small, filling the B site with only these elements is not preferable because it becomes orthorhombic and obstructs transparency. Therefore, when silicon or germanium is selected, it is used in combination with zirconium which is another element having a larger ionic radius.
  • the magneto-optical material of the present invention is preferably a cubic crystal having a pyrochlore lattice (pyrochlore cubic crystal) as the main phase, and more preferably a pyrochlore cubic crystal.
  • the phrase “become the main phase” means that the pyrochlore type cubic crystal accounts for 90% by volume or more, preferably 95% by volume or more of the entire crystal structure.
  • the pyrochlorination rate calculated from the powder X-ray diffraction result of the magneto-optical material means that when R in the above formula (1) is zirconium alone, it is 51.5% or more.
  • R is at least one element selected from the group consisting of silicon, germanium, titanium, tantalum, tin, hafnium, zirconium (provided that silicon, germanium, tantalum and zirconium are the elements alone) Ex.)) Is 97.3% or more, preferably 99% or more.
  • the pyrochlorination rate is the terbium oxide (622) plane based on the Vegard law from the peak position (2 ⁇ value P (622) ) corresponding to the cubic (622) plane in the powder X-ray diffraction of the target material.
  • 2 ⁇ value (P Tb ) and the ideal pyrochlore type occupying the target material obtained using the 2622 value (P TbR ) of the (622) plane when the target material is an ideal pyrochlore cubic crystal
  • the (622) plane is the diffractive surface on the widest angle side among the four main diffraction surfaces in the X-ray diffraction pattern of the pyrochlore cubic crystal.
  • the magneto-optical material of the present invention preferably has an average sintered particle size of 2.5 ⁇ m or less, preferably 2.1 ⁇ m or less, in the transparent ceramic. If the average sintered particle diameter exceeds 2.5 ⁇ m, transparency may not be ensured.
  • the lower limit of the average sintered particle diameter is not particularly limited, but is 1 ⁇ m or more in production.
  • terbium and R is at least one element selected from the group consisting of silicon, germanium, titanium, tantalum, tin, hafnium, and zirconium (however, for silicon, germanium, and tantalum, the element alone) Except that there are other elements), but may further contain other elements.
  • other elements include rare earth elements such as lanthanum, gadolinium, thulium, cerium, praseodymium, ytterbium, dysprosium, and various impurity groups typically include calcium, aluminum, phosphorus, tungsten, molybdenum, and the like. Can be illustrated.
  • the content of other elements is preferably 10 or less, more preferably 1 or less, even more preferably 0.1 or less, and 0.001 or less when the total amount of terbium is 100. It is particularly preferred that it is substantially zero).
  • the magneto-optical material of the present invention contains a composite oxide represented by the above formula (1) as a main component. That is, the magneto-optical material of the present invention may contain the composite oxide represented by the above formula (1) as a main component, and may intentionally contain other components as subcomponents.
  • containing as a main component means containing 50 mass% or more of complex oxide represented by the said Formula (1).
  • the content of the composite oxide represented by the formula (1) is preferably 80% by mass or more, preferably 90% by mass or more, more preferably 99% by mass or more, and 99.9% by mass. The above is particularly preferable.
  • Other subcomponents (components other than the main component) that are generally exemplified include dopants that are doped during single crystal growth, flux, and sintering aids that are added during ceramic production.
  • the magneto-optical material of the present invention there are a single crystal manufacturing method such as a floating zone method and a micro pull-down method, and a ceramic manufacturing method, and any manufacturing method may be used.
  • the single crystal manufacturing method has a certain degree of restriction in the design of the concentration ratio of the solid solution, and the ceramic manufacturing method is more preferable in the present invention.
  • the ceramic production method will be described in more detail as an example of the production method of the magneto-optical material of the present invention, but the single crystal production method that follows the technical idea of the present invention is not excluded.
  • terbium and element R is at least one element selected from the group consisting of silicon, germanium, titanium, tantalum, tin, hafnium, and zirconium (however, regarding silicon, germanium, and tantalum).
  • R is at least one element selected from the group consisting of silicon, germanium, titanium, tantalum, tin, hafnium, and zirconium (however, regarding silicon, germanium, and tantalum).
  • the firing temperature at this time is preferably 1200 ° C. or higher and lower than the sintering temperature performed thereafter, more preferably 1400 ° C. or higher and lower than the sintering temperature performed thereafter.
  • the “main component” as used herein means that the pyrochlorination rate calculated from the powder X-ray diffraction result of the fired raw material is 41.5% when R in the formula (1) is zirconium alone.
  • R is other than that (that is, R is at least one element selected from the group consisting of silicon, germanium, titanium, tantalum, tin, hafnium, zirconium (provided that silicon, germanium, tantalum) And Zirconium (except for the element alone) is 50% or more, preferably 55% or more.
  • the purity of the raw material is preferably 99.9% by mass or more.
  • ceramics are manufactured using pyrochlore-type oxide powder having a desired configuration, but the powder shape at that time is not particularly limited, and for example, square, spherical, and plate-like powders are used. It can be suitably used. Moreover, it can use suitably even if it is the powder which carried out secondary aggregation, and it can use suitably also if it is the granular powder granulated by granulation processes, such as a spray-dry process. Furthermore, the preparation process of these raw material powders is not particularly limited.
  • a raw material powder produced by a coprecipitation method, a pulverization method, a spray pyrolysis method, a sol-gel method, an alkoxide hydrolysis method, or any other synthesis method can be suitably used. Further, the obtained raw material powder may be appropriately treated by a wet ball mill, a bead mill, a jet mill, a dry jet mill, a hammer mill or the like.
  • a sintering inhibitor may be added as appropriate.
  • a sintering suppression aid corresponding to the terbium-containing pyrochlore oxide.
  • the purity is preferably 99.9% by mass or more.
  • a sintering inhibitor when not added, it is preferable to select a raw material powder that has a primary particle size of nano-size and extremely high sintering activity. Such a selection may be made as appropriate.
  • organic additives may be added for the purpose of improving the quality stability and yield in the manufacturing process.
  • these are not particularly limited. That is, various dispersants, binders, lubricants, plasticizers, and the like can be suitably used.
  • the above raw material powder is pressed into a predetermined shape, degreased, and then sintered to produce a sintered body with a relative density of at least 92% or more. It is preferable to perform a hot isostatic pressing (HIP) process as a subsequent process.
  • HIP hot isostatic pressing
  • a normal press molding process can be suitably used. That is, it is possible to use a very general pressing process in which a mold is filled and pressurized from a certain direction, or a CIP (Cold Isostatic Pressing) process in which the mold is hermetically stored in a deformable waterproof container and pressurized with hydrostatic pressure.
  • the applied pressure may be appropriately adjusted while confirming the relative density of the obtained molded body, and is not particularly limited. For example, if the pressure is controlled within a pressure range of about 300 MPa or less that can be handled by a commercially available CIP device, the manufacturing cost can be suppressed. It's okay.
  • Alternatively, not only a molding process but also a hot press process, a discharge plasma sintering process, a microwave heating process, and the like that can be performed all at once at the time of molding can be suitably used.
  • a normal degreasing step can be suitably used. That is, it is possible to go through a temperature rising degreasing process by a heating furnace. Also, the type of atmospheric gas at this time is not particularly limited, and air, oxygen, hydrogen, and the like can be suitably used.
  • the degreasing temperature is not particularly limited, but when a raw material mixed with an organic additive is used, it is preferable to raise the temperature to a temperature at which the organic component can be decomposed and eliminated.
  • a general sintering process can be suitably used. That is, a heating and sintering process such as a resistance heating method or an induction heating method can be suitably used.
  • the atmosphere at this time is not particularly limited, but inert gas, oxygen gas, hydrogen gas and the like can be suitably used. Moreover, you may sinter under reduced pressure (in a vacuum).
  • the sintering temperature in the sintering process of the present invention is appropriately adjusted depending on the starting material selected. In general, using a selected starting material, a temperature that is several tens of degrees Celsius to 100 degrees Celsius or 200 degrees Celsius lower than the melting point of the terbium-containing pyrochlore oxide sintered body to be produced is suitably selected.
  • a temperature that is several tens of degrees Celsius to 100 degrees Celsius or 200 degrees Celsius lower than the melting point of the terbium-containing pyrochlore oxide sintered body to be produced is suitably selected.
  • the conditions must be strictly excluded from the temperature zone.
  • the sintering holding time in the sintering process of the present invention is appropriately adjusted depending on the starting material selected. In general, a few hours is often sufficient. However, the relative density of the terbium-containing pyrochlore oxide sintered body must be densified to at least 92%.
  • HIP Hot isostatic pressing
  • the pressurized gas medium at this time is preferably an inert gas such as argon or nitrogen, or Ar—O 2 .
  • the pressure applied by the pressurized gas medium is preferably 50 to 300 MPa, more preferably 100 to 300 MPa. If the pressure is less than 50 MPa, the transparency improvement effect may not be obtained. If the pressure exceeds 300 MPa, further improvement in transparency cannot be obtained even if the pressure is increased, and the load on the device may be excessive and may damage the device. .
  • the applied pressure is preferably 196 MPa or less, which can be processed with a commercially available HIP device, for convenience and convenience.
  • the treatment temperature (predetermined holding temperature) at that time may be appropriately set depending on the type of material and / or the sintering state, and is set in the range of, for example, 1000 to 2000 ° C., preferably 1300 to 1800 ° C. At this time, it is essential that the temperature be below the melting point and / or below the phase transition point of the terbium-containing pyrochlore oxide constituting the sintered body as in the case of the sintering step.
  • the terbium-containing pyrochlore-type oxide sintered body assumed in (1) exceeds the melting point or exceeds the phase transition point, making it difficult to perform an appropriate HIP treatment.
  • the heat treatment temperature is less than 1000 ° C., the effect of improving the transparency of the sintered body cannot be obtained.
  • the holding time of the heat treatment temperature is not particularly limited, but may be appropriately adjusted while ascertaining the characteristics of the terbium-containing pyrochlore oxide constituting the sintered body.
  • the heater material, the heat insulating material, and the processing container for HIP processing are not particularly limited, but graphite or molybdenum (Mo) can be suitably used.
  • oxygen deficiency may occur in the obtained terbium-containing pyrochlore-type oxide sintered body after the HIP treatment, resulting in a light gray appearance.
  • the manufacturing process may be simplified if the fine oxidation annealing process is performed using the same equipment as the HIP processing equipment. By this annealing treatment, all of the terbium-containing pyrochlore oxide sintered body having a light gray appearance can be prepared into a colorless and transparent ceramic body.
  • both end faces on the optically utilized axis of the terbium-containing pyrochlore oxide sintered body (that is, transparent ceramics) that have undergone the above series of production steps can be optically polished.
  • the optical surface accuracy is preferably ⁇ / 8 or less, particularly preferably ⁇ / 10 or less, when the measurement wavelength ⁇ is 633 nm. Note that it is possible to further reduce the optical loss by appropriately forming an antireflection film on the optically polished surface.
  • a magneto-optical material having a Verde constant at a wavelength of 1064 nm of 0.14 min / (Oe ⁇ cm) or more can be obtained.
  • the magneto-optical material of the present invention preferably has a linear transmittance of 90% or more for light transmission at a wavelength of 1064 nm per optical path length of 10 mm.
  • the “linear transmittance” means the linear transmittance when a transmission spectrum measured in a blank (space) state without placing a sample in the measurement optical path is 100%.
  • the maximum value of the incident power of laser light that does not generate a thermal lens is 30 W or more. Is preferable, and 80 W or more is more preferable. If the maximum value of the incident power of laser light that is not generated by the thermal lens is less than 30 W, it may be difficult to use in a high-power fiber laser device.
  • FIG. 1 is a schematic cross-sectional view showing an example of an optical isolator which is an optical device having a Faraday rotator made of the magneto-optical material of the present invention as an optical element.
  • an optical isolator 100 includes a Faraday rotator 110 made of a magneto-optical material of the present invention, and a polarizer 120 and an analyzer 130 that are polarizing materials are provided before and after the Faraday rotator 110. .
  • the optical isolator 100 is preferably arranged in the order of the polarizer 120, the Faraday rotator 110, and the analyzer 130, and the magnet 140 is preferably placed on at least one of these side surfaces.
  • the optical isolator 100 can be suitably used for an industrial fiber laser device. That is, it is suitable for preventing the reflected light of the laser light emitted from the laser light source from returning to the light source and causing oscillation to become unstable.
  • Example 1 An example in which hafnium, tin, titanium, or zirconium is selected as an example in which a single element is filled in the B site position (R in the above formula (1)) in the above formula (1) will be described.
  • Terbium oxide powder manufactured by Shin-Etsu Chemical Co., Ltd. Hafnium oxide powder manufactured by American Elements, and stannic oxide powder, titanium oxide powder manufactured by High Purity Chemical Laboratory Co., Ltd., and Nissan Chemical Industry Co., Ltd. Zirconia powder was obtained. All the purity was 99.9 mass% or more.
  • the mixture was dispersed and mixed in a zirconia ball mill apparatus while being careful to prevent each other from mixing.
  • the treatment time was 24 hours.
  • spray drying treatment was performed to produce a granular raw material having an average particle diameter of 20 ⁇ m.
  • these powders are put in an iridium crucible and fired at a temperature of 1000 ° C., 1100 ° C., 1200 ° C., 1400 ° C., and 1600 ° C. for 3 hours in a high-temperature muffle furnace, and fired at each composition.
  • the raw material was obtained.
  • Each obtained firing raw material was subjected to diffraction pattern analysis by a powder X-ray diffractometer manufactured by Panalytical.
  • the cubic crystal is obtained from these peaks.
  • the orthorhombic crystal was identified. For example, when there is no orthorhombic subpeak in these peaks, and a cubic crystal structure model is fitted by Rietveld analysis, it is determined to be cubic.
  • a cubic bixbite type oxide phase was mixed in addition to the cubic pyrochlore type oxide.
  • a cubic mixed crystal similar to the case of treatment at 1200 ° C. or higher was also confirmed in Tb 2 Zr 2 O 7 treated at 1100 ° C.
  • a clear diffraction pattern of the pyrochlore-type oxide crystal phase was not detected from the raw material treated at 1000 ° C., but a bixbite-type oxide crystal phase and a monoclinic diffraction pattern of zirconium oxide were detected instead. It was done.
  • the pyrochlorination rate of each firing raw material was determined by the following method.
  • R in the composition formula (1) is hafnium (Hf)
  • terbium oxide (Tb 4 O 7 ) and the pyrochlore type oxide to be prepared that is, ideal cubic pyrochlore type oxide (Tb 2 Hf 2 O 7 ), all of the four main diffraction planes,
  • the 2 ⁇ angles (P Tb , P TbHf ) of the (622) plane, which is the diffractive surface on the widest angle side, are obtained from literature values.
  • Tb of terbium oxide (Tb 4 O 7 ) is described in J. Org . Am. Chem. Soc. Vol. 76 p 5242-5244 (1954), P TbHf of Tb 2 Hf 2 O 7 is obtained from Solid State Sciences. Vol. 14 p1405-1411 (2012). Subsequently, using a powder X-ray diffractometer manufactured by Panalytical, each firing temperature (1400 ° C. (Example 1-1), 1200 ° C. (Example 1) by the out-of-plane method (2 ⁇ / ⁇ scan method). -5) The X-ray diffraction pattern of the calcined raw material powder produced at 1100 ° C.
  • FIG. 2 shows an ideal X-ray diffraction pattern and terbium oxide (Tb 4 O 7 ) of the firing raw material powders (Examples 1-1 and 1-5, Comparative Examples 1-1 and 1-5) at different firing temperatures.
  • the X-ray diffraction pattern of the literature value of a cubic pyrochlore type oxide (Tb 2 Hf 2 O 7 ) is shown.
  • the raw material powder obtained by firing consists of a pyrochlorinated cubic component and a cubic component equivalent to terbium oxide that has not yet been pyrochlorinated, and the respective molar fractions are represented by N P , ( 1 ⁇ N P ), and using the following equation (i) based on the Vegard's rule (an empirical rule that an approximate proportional relationship holds between the lattice constant of the solid solution and the molar fraction)
  • the fraction N P was calculated and defined as the pyrochlorination rate of the calcined raw material powder.
  • P (622) N P ⁇ P TbHf + (1 ⁇ N P ) ⁇ P Tb (i) ( Wherein P (622) is the value of 2 ⁇ angle of the (622) plane of the raw material powder (°), P TbHf is the value of 2 ⁇ angle of the (622) plane of pyrochlore type Tb 2 Hf 2 O 7 (° ), P Tb is the value (°) of the 2 ⁇ angle of the (622) plane of terbium oxide.) The results are shown in Table 1. From Table 1, it was confirmed that the pyrochlorination ratio was 50% or more at a firing temperature of 1200 ° C. or higher, and the cubic pyrochlore type oxide was the main raw material for firing.
  • R in the compositional formula (1) is tin (Sn)
  • the pyrochlorination rate of the firing raw material was determined for each firing temperature in the same manner as the above hafnium, and the pyrochlorination rate was 50 at a firing temperature of 1200 ° C. or higher. It was confirmed that the cubic pyrochlore-type oxide was the main firing material (Table 2).
  • the 2 ⁇ angle (P TbSn ) of the (622) plane of Tb 2 Sn 2 O 7 was set to 58.706 °.
  • R in the composition formula (1) is titanium (Ti)
  • the pyrochlorination rate of the firing raw material was determined for each firing temperature in the same manner as in the case of hafnium, and the pyrochlorination rate was 50 at a firing temperature of 1200 ° C. or higher. It was confirmed that the cubic pyrochlore type oxide was the main firing material (Table 3).
  • the 2 ⁇ angle (P TbTi ) of the (622) plane of Tb 2 Ti 2 O 7 was 60.561 °.
  • R in the composition formula (1) is zirconium (Zr)
  • the pyrochlorination rate calculation method described above can be applied to the firing raw material powder.
  • This is a distinct mixed crystal peak that can be seen separately from the double peak on the wide-angle side of the Cu-K ⁇ 1 line and the K ⁇ 2 line, and is probably a Tb (Zr) 4 with a slightly small lattice constant in which Zr ions are solid-solved at the Tb site. It was thought to be O 7- ⁇ cubic.
  • the Tb (Zr) 4 O 7- ⁇ cubic crystal component was not lost even in the sintered body, and remained.
  • An example is shown in FIG.
  • a temporary pyrochlorination rate is obtained using the above formula (i), and then a pyrochlore cubic crystal at an angle of 2 ⁇ of the (622) plane.
  • the correction coefficient K (622) is calculated by the following equation (ii)
  • the temporary pyrochlorination rate was multiplied to obtain the pyrochlorination rate.
  • the 2 ⁇ angle (P TbZr ) of the (622) plane of Tb 2 Zr 2 O 7 was set to 58.383 °.
  • the first three raw materials fired at 1200 ° C. or higher were all oxide raw materials mainly composed of cubic pyrochlore oxides.
  • a cubic bichlorite type oxide phase was mixed in addition to a cubic pyrochlore type oxide phase. It was confirmed that it was an oxide raw material containing as a main component.
  • the raw materials prepared in the above-described confirmation test are again in ethanol.
  • the mixture was dispersed and mixed in a zirconia ball mill.
  • the processing time was 40 hours. Thereafter, spray drying treatment was performed again to produce granular pyrochlore type oxide raw materials having an average particle diameter of 20 ⁇ m.
  • the raw materials thus obtained were each subjected to uniaxial press molding and isostatic pressing at a pressure of 198 MPa to obtain CIP compacts.
  • the obtained molded body was degreased in a muffle furnace at 1000 ° C. for 2 hours. Subsequently, the dried molded body was charged in a vacuum heating furnace and treated at 1700 ° C. ⁇ 20 ° C. for 3 hours under a reduced pressure of 2.0 ⁇ 10 ⁇ 3 Pa or less for a total of 16 types (4 types ⁇ 4 levels) of sintering. Got the body. At this time, the sintering temperature was finely adjusted so that the sintered relative density of all the samples was 92%.
  • each obtained sintered body was charged into a HIP furnace made of carbon heater and subjected to HIP treatment in Ar at 200 MPa, 1650 ° C. for 3 hours. About all obtained each sintered compact, it grind
  • a cubic bichlorite type oxide phase was mixed in addition to the cubic pyrochlore type oxide for those treated at a firing temperature of 1200 ° C. or higher.
  • the diffraction pattern of the cubic pyrochlore type oxide and the cubic bixbite type oxide was also confirmed from Tb 2 Zr 2 O 7 treated at a firing temperature of 1100 ° C.
  • the peak angle of the (622) plane was shifted to a lower angle side.
  • pyrochlorination rates were determined for the sintered bodies having four types of compositions by the same method as in the case of firing materials (Table 5).
  • the first three kinds of sintered bodies (Tb 2 Hf 2 O 7 , Tb 2 Sn 2 O 7 , Tb 2 Ti 2 O 7 ) were all treated at a firing temperature of 1200 ° C. or higher with a pyrochlorination rate of 97. 0.8% or more, particularly 100% at a firing temperature of 1400 ° C.
  • the sintered body of Tb 2 Zr 2 O 7, all those treated at the firing temperature 1200 ° C. or higher becomes pyrochlore of 51.5% or more.
  • D ( ⁇ m) 1.56 ⁇ L AVE (In the formula, D is the average sintered particle size ( ⁇ m), L AVE is the average length of particles crossing an arbitrary straight line ( ⁇ m), and the number of L AVE samples used for the calculation is at least 100 or more. The average value of the obtained reading lengths was taken as the value of L AVE .)
  • an antireflection film designed to have a center wavelength of 1064 nm was coated on the optically polished sample.
  • the optical appearance of the sample obtained here was also checked.
  • a polarizing element was set before and after each obtained ceramic sample, and then covered with a magnet, and both end surfaces were used using a high power laser (beam diameter 1.6 mm) manufactured by IPG Photonics Japan. Then, a high power laser beam having a wavelength of 1064 nm was incident, and the linear transmittance, the Verde constant, and the maximum value of the incident power not generated by the thermal lens were measured.
  • a high power laser beam diameter 1.6 mm
  • the linear transmittance is measured by transmitting light with a wavelength of 1064 nm with a beam diameter of 1 to 3 mm ⁇ using an optical system manufactured in-house using a light source manufactured by NKT Photonics, a power meter manufactured by Gentec, and a Ge photodetector. It was measured by the intensity of light at the time, and was obtained according to JIS K7361 and JIS K7136 based on the following formula.
  • Linear transmittance (% / cm) I / Io ⁇ 100 (In the formula, I represents transmitted light intensity (intensity of light that has been linearly transmitted through a sample having a length of 10 mm (1 cm)), and Io represents incident light intensity.)
  • V V ⁇ H ⁇ L (Where, ⁇ is the Faraday rotation angle (min), V is the Verde constant, H is the magnitude of the magnetic field (Oe), and L is the length of the Faraday rotator (in this case, 1 cm).)
  • the maximum value of the incident power that is not generated by the thermal lens is that the change in focal length is 0.1 m or less when the light of each incident power is emitted as a spatial light of 1.6 mm and the Faraday rotator is inserted there. It was determined by reading the maximum incident power when The high power laser used had a maximum output of up to 100 W, so no further thermal lens evaluation was possible. The above results are summarized in Table 5.
  • Example 2 Comparative Example 2
  • the B site position is filled with at least one element selected from the group consisting of silicon, germanium, titanium, tantalum, and tin to have a composition other than the composition of Example 1
  • Terbium oxide powder manufactured by Shin-Etsu Chemical Co., Ltd. and silica powder, germanium dioxide powder, titanium oxide powder, stannic oxide powder manufactured by High Purity Chemical Laboratory Co., Ltd., and pentoxide manufactured by Showa Chemical Co., Ltd. Tantalum was obtained. All the purity was 99.9 mass% or more.
  • Various composite oxide raw materials were produced using the above raw materials.
  • the mixture was dispersed and mixed in a zirconia ball mill apparatus while being careful to prevent each other from mixing.
  • the treatment time was 24 hours.
  • spray drying treatment was performed to produce a granular raw material having an average particle diameter of 20 ⁇ m.
  • these powders were placed in an iridium crucible and fired at 1400 ° C. for 3 hours in a high-temperature muffle furnace.
  • Each of the obtained fired raw materials was subjected to diffraction pattern analysis using a powder X-ray diffractometer manufactured by Panalical, and the pyrochlorination rate was determined in the same manner as when R in Formula (1) of Example 1 was Hf.
  • the obtained various raw materials were again dispersed and mixed in ethanol using a zirconia ball mill.
  • the processing time was 40 hours.
  • spray drying treatment was performed again to produce a granular composite oxide raw material having an average particle diameter of 20 ⁇ m.
  • the raw materials thus obtained were each subjected to uniaxial press molding and isostatic pressing at a pressure of 198 MPa to obtain CIP compacts.
  • the obtained molded body was degreased in a muffle furnace at 1000 ° C. for 2 hours. Subsequently, the dried molded body was placed in a vacuum heating furnace and treated at 1700 ° C. ⁇ 20 ° C. for 3 hours to obtain various sintered bodies.
  • each obtained sintered body was charged into a HIP furnace made of carbon heater and subjected to HIP treatment in Ar at 200 MPa, 1650 ° C. for 3 hours. A part of each of the obtained sintered bodies was pulverized in a zirconia mortar to form a powder. Subsequently, each powder sample obtained in the same manner as in Example 1 was subjected to diffraction pattern analysis using a powder X-ray diffractometer manufactured by Panalical (Table 6).
  • the composition confirmed to be a cubic pyrochlore type oxide was Tb 2 Si 1 Zr 1 O 7 , Tb 2 Ge 1 Zr 1 O 7 , Tb 2 Ti 1 Ta 1 O 7 , Tb 2 Sn 1 Ta 1 O.
  • Tb 2 Si 2 O 7 was a pyrochlore type
  • Tb 2 Ge 2 Zr 1 O 7 was a group of Tb 2 Si 2 O 7 and Tb 2 Ge 2 O 7 .
  • Tb 2 Ta 2 O 7 a clear pyrochlore type diffraction pattern was not obtained, and a result that seemed to be a mixed pattern of about three different phases was obtained. However, it could not be accurately identified. Therefore, it is written as Tb 2 Ta 2 O 7 + ⁇ .
  • the pyrochlorination rate was determined.
  • a polarizing element was set before and after each obtained ceramic sample, and then covered with a magnet, and both end surfaces were used using a high power laser (beam diameter 1.6 mm) manufactured by IPG Photonics Japan. Then, a high power laser beam having a wavelength of 1064 nm was made incident, and the linear transmittance and the Verde constant as well as the maximum value of the incident power not generated by the thermal lens were measured in the same manner as in Example 1.
  • the high power laser used had a maximum output of up to 100 W, so no further thermal lens evaluation was possible.
  • Example 3 Another embodiment in which hafnium and zirconium are selected at the B site position in the above formula (1) will be described.
  • Two types of pyrochlore type oxide materials of Tb 2 Hf 2 O 7 and Tb 2 Zr 2 O 7 were produced using the above materials.
  • two types of powders are prepared: terbium oxide and hafnium oxide mixed with terbium and hafnium in an equimolar molar ratio, and terbium oxide and zirconium oxide mixed with terbium and zirconium in an equimolar molar ratio. did. Subsequently, the mixture was dispersed and mixed in a zirconia ball mill apparatus while being careful to prevent each other from mixing. The treatment time was 24 hours. Thereafter, spray drying treatment was performed to produce a granular raw material having an average particle diameter of 20 ⁇ m. Subsequently, these powders were placed in an iridium crucible and fired at 1400 ° C.
  • the obtained molded body was degreased in a muffle furnace at 1000 ° C. for 2 hours. Subsequently, the dried compact is charged into an oxygen atmosphere furnace or a hydrogen atmosphere furnace, and each is treated at 1700 ° C. ⁇ 20 ° C. for 3 hours while flowing oxygen gas or hydrogen gas at a flow rate of 2 L / min at normal pressure. A sintered body was obtained. At this time, the sintering temperature was finely adjusted so that the sintered relative density of all the samples was 92%. Each obtained sintered body was charged into a HIP furnace made of carbon heater and subjected to HIP treatment in Ar at 200 MPa, 1650 ° C. for 3 hours.
  • each powder sample obtained in the same manner as in Example 1 was subjected to diffraction pattern analysis using a powder X-ray diffractometer manufactured by Panalical (Table 7). As a result, it was confirmed that any sample was a cubic pyrochlore oxide. At the same time, the pyrochlorination rate was determined.
  • the average sintered particle diameter D was measured in the same manner as in Example 1. Further, an antireflection film designed to have a center wavelength of 1064 nm was coated. The optical appearance of the sample obtained here was also checked. As shown in FIG. 1, a polarizing element was set before and after each obtained ceramic sample, and then covered with a magnet, and both end surfaces were used using a high power laser (beam diameter 1.6 mm) manufactured by IPG Photonics Japan. Then, a high power laser beam having a wavelength of 1064 nm was made incident, and the linear transmittance and the Verde constant as well as the maximum value of the incident power not generated by the thermal lens were measured in the same manner as in Example 1. The high power laser used had a maximum output of up to 100 W, so no further thermal lens evaluation was possible. These results are summarized in Table 7.
  • the material has a pyrochlore cubic crystal as a main phase, and the average sintered particle size is 2.1 ⁇ m or less.
  • a magneto-optical material having a maximum incident power that does not generate a thermal lens is 30 W or more and a Verde constant is 0.16 min / (Oe ⁇ cm) or more and excellent in transparency can be manufactured. It was done.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Structural Engineering (AREA)
  • Nonlinear Science (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

 下記式(1)で表わされる複合酸化物を主成分として含む透明セラミックス又は下記式(1)で表わされる複合酸化物の単結晶からなり、波長1064nmでのベルデ定数が0.14min/(Oe・cm)以上であり、波長帯0.9~1.1μmのファイバーレーザー光を吸収することなく、熱レンズの発生も起こらず、ベルデ定数はTGG結晶よりも大きな、光アイソレータなどの磁気光学デバイスを構成するのに好適な透明な磁気光学材料を提供する。 Tb227 (1) (式中、Rはシリコン、ゲルマニウム、チタン、タンタル、スズ、ハフニウム、ジルコニウムよりなる群から選択された少なくとも1つの元素である(ただし、シリコン、ゲルマニウム及びタンタルについては当該元素単独であることを除く)。)

Description

磁気光学材料及びその製造方法、並びに磁気光学デバイス
 本発明は、磁気光学材料並びに磁気光学デバイスに関し、より詳細には、光アイソレータなどの磁気光学デバイスを構成するのに好適な複合酸化物を含む透明セラミックス又は単結晶からなる磁気光学材料及びその製造方法、並びに該磁気光学材料を用いた磁気光学デバイスに関する。
 近年、高出力化が可能となってきたこともあり、ファイバーレーザーを用いたレーザー加工機の普及が目覚しい。ところで、レーザー加工機に組み込まれるレーザー光源は、外部からの光が入射すると共振状態が不安定化し、発振状態が乱れる現象が起こる。特に発振された光が途中の光学系で反射されて光源に戻ってくると、発振状態は大きく撹乱される。これを防止するために、通常光アイソレータが光源の手前等に設けられる。
 光アイソレータは、ファラデー回転子と、ファラデー回転子の光入射側に配置された偏光子と、ファラデー回転子の光出射側に配置された検光子とからなる。また、ファラデー回転子は、光の進行方向に平行に磁界を加えて利用する。この時、光の偏波線分はファラデー回転子中を前進しても後進しても一定方向にしか回転しなくなる。更に、ファラデー回転子は光の偏波線分が丁度45度回転される長さに調整される。ここで偏光子と検光子の偏波面を、前進する光の回転方向に45度ずらしておくと、前進する光の偏波は、偏光子位置と検光子位置で一致するため透過する。他方、後進する光の偏波は、検光子位置から、45度ずれている偏光子の偏波面のずれ角方向とは逆回転に45度回転することになる。すると偏光子位置における戻り光の偏波面は、偏光子の偏波面に対して45度-(-45度)=90度のずれとなり、偏光子を透過できない。こうして前進する光は透過、出射させ、後進する戻り光は遮断する光アイソレータとして機能する。
 上記、光アイソレータを構成するファラデー回転子として用いられる材料では、従来からTGG結晶(Tb3Ga512)やTSAG結晶(Tb(3-x)Sc2Al312)が知られている(特開2011-213552号公報(特許文献1)、特開2002-293693号公報(特許文献2))。TGG結晶のベルデ定数は比較的大きく、40rad/(T・m)であり、現在標準的なファイバーレーザー装置用として広く搭載されている。TSAG結晶のベルデ定数はTGG結晶の1.3倍程度あるとされており、こちらもファイバーレーザー装置に搭載される材料である。
 上記以外では、特開2010-285299号公報(特許文献3)に、(Tbx1-x23(xは、0.4≦x≦1.0)であり、Rは、スカンジウム、イットリウム、ランタン、ユウロピウム、ガドリニウム、イッテルビウム、ホルミウム、及び、ルテチウムよりなる群から選択される酸化物を主成分とする単結晶あるいはセラミックスが開示されている。上記成分からなる酸化物は、ベルデ定数が0.18min/(Oe・cm)以上あり、実施例では最大0.33min/(Oe・cm)のものまで記載がある。また、同一文献の本文中にはTGGのベルデ定数が0.13min/(Oe・cm)とも記載されている。両者のベルデ定数の差は実に2.5倍に達している。
 特開2011-121837号公報(特許文献4)にもほぼ同様成分からなる酸化物が開示されており、TGG単結晶よりも大きなベルデ定数を有すると記載されている。
 上記特許文献3、4のように、ベルデ定数の大きな光アイソレータが得られると、45度回転するために必要な全長を短くすることができ、光アイソレータの小型化につながり好ましい
 しかしながら、上記特許文献3、4に開示されている(Tbx1-x23酸化物は、確かに特許文献1に開示されているTGG結晶、あるいは特許文献3の本文中で言及されているTGG結晶に比べ、ベルデ定数が1.4倍~2.5倍と非常に大きいが、該酸化物は、その利用が想定される波長帯0.9~1.1μmのファイバーレーザー光をわずかながら吸収してしまう。近年のファイバーレーザー装置はその出力がどんどんとハイパワー化しており、わずかに吸収のある光アイソレータであっても、そこに搭載してしまうと、熱レンズ効果によるビーム品質の劣化をまねき問題となる。
 ところで、単位長さあたりのベルデ定数が非常に大きな材料として、鉄(Fe)を含むイットリウム鉄ガーネット(通称:YIG)単結晶がある(特開2000-266947号公報(特許文献5))。ただし、鉄(Fe)は波長0.9μmに大きな光吸収があり、波長0.9~1.1μm帯の光アイソレータにはこの光吸収の影響が出る。そのため、このイットリウム鉄ガーネット単結晶を用いた光アイソレータは、高出力化傾向の著しいファイバーレーザー装置での利用は極めて困難となっている。
 そのため、TGG結晶(Tb3Ga512)やTSAG結晶(Tb(3-x)Sc2Al312)よりもベルデ定数が大きく、且つ波長帯0.9~1.1μmのファイバーレーザー光を吸収することのない、まったく新しい材料が求められている。
 そのような材料の候補として、パイロクロア型の結晶構造をもつ酸化物が挙げられる。パイロクロア型結晶はA227の結晶構造をもち、AイオンとBイオンとの半径比が一定の範囲内にあると立方晶構造をもつことが知られている。結晶構造が立方晶をとる材料を選択できると、単結晶はもちろんのこと、セラミックス体であっても高い透明性をもった材料の作製が可能となり、様々な光学材料としての応用が見込まれる。
 こうしたパイロクロア型材料の例として、特開2005-330133号公報(特許文献6)では、Aサイトに希土類元素REを有する立方晶系チタン酸化物パイロクロアのうち、当該Aサイトの元素REがLu、Yb、Tm、Er、Ho、Y、Sc、Dy、Tb、Gd、Eu、Sm、Ceの各元素のうちの一つまたは二つ以上から成る複合酸化物RE2-xTi27-δであって、前記Aサイト元素REの不定比量xが当該Aサイト元素REに応じて
  0<x<0.5
の範囲内とされる電子導電性セラミックス粉体が焼結され、その後還元処理されることによって形成されていることを特徴とする立方晶系チタン酸化物パイロクロア焼結体が開示されている。用途が電子導電性セラミックスのため、当該焼結体の透明度は言及されておらず、普通に焼結しただけでは、通常不透明焼結体ができあがることが当業者の間では知られており、特許文献6記載の材料も光学材料用途としては利用不可であると推定されるが、Tbを含むチタン酸化物パイロクロアが立方晶になり得るという情報は該特許文献6により開示されている。
 ただし、それ以前にも単純なTbのシリコン酸化物では、立方晶を取ることができないことは別途知られている("Rare earth disilicates R2Si2O7 (R=Gd, Tb, Dy, Ho): type B", Z., Kristallogr., Vol.218 No.12 795-801 (2003)(非特許文献1))。
 また同じ頃、Tbは全く含まれないものの、ある種の希土類ハフニウム酸化物が立方晶パイロクロア構造を取り、透光性を有する事実が開示されている("Fabrication of transparent La2Hf2O7 ceramics from combustion synthesized powders", Mat. Res. Bull. 40 (3) 553-559 (2005)(非特許文献2))。
 更に、特開2010-241677号公報(特許文献7)では、個々の結晶の少なくとも95重量%、好ましくは少なくとも98重量%が立方晶黄緑石または蛍石構造を有し、化学量論の化合物
  A2+xyz7
 ここで、-1.15≦x≦0および0≦y≦3および0≦x≦1.6ならびに3x+4y+5z=8、かつAは希土類金属酸化物の群から選ばれる少なくとも1つの3価カチオンであり、Bは少なくとも1つの4価カチオンであり、Dは少なくとも1つの5価カチオンであり、およびEは少なくとも1つの2価アニオンである、
を含む多結晶、透明光学セラミックスであって、AはY、Gd、Yb、Lu、ScおよびLaから選択され、BはTi、Zr、Hf、SnおよびGeから選択される光学セラミックスが開示されており、Tbは全く含まれないものの、数種類の希土類を含んだチタン酸化物、ジルコニウム酸化物、ハフニウム酸化物、スズ酸化物、ゲルマニウム酸化物が、98重量%以上の立方晶黄緑石(パイロクロア)構造を取り得ることが確認されている。
特開2011-213552号公報 特開2002-293693号公報 特開2010-285299号公報 特開2011-121837号公報 特開2000-266947号公報 特開2005-330133号公報 特開2010-241677号公報
"Rare earth disilicates R2Si2O7 (R=Gd, Tb, Dy, Ho): type B", Z., Kristallogr., Vol.218 No.12 795-801 (2003) "Fabrication of transparent La2Hf2O7 ceramics from combustion synthesized powders", Mat. Res. Bull. 40 (3) 553-559 (2005)
 本発明は、上記事情に鑑みなされたもので、波長帯0.9~1.1μmのファイバーレーザー光を吸収することなく、そのため熱レンズの発生も抑制し、ベルデ定数はTGG結晶よりも大きな、光アイソレータなどの磁気光学デバイスを構成するのに好適な透明な磁気光学材料及びその製造方法、並びに磁気光学デバイスを提供することを目的とする。
 本発明者は、以上の先行技術の知見をベースとして、TGG結晶(Tb3Ga512)やTSAG結晶(Tb(3-x)Sc2Al312)よりもベルデ定数が大きく、且つ波長帯0.9~1.1μmのファイバーレーザー光を吸収することのない、まったく新しい材料候補として、Tbを含む様々なパイロクロア型材料の検討を行い、光アイソレータなどの磁気光学デバイスを構成するのに好適な磁気光学材料及び磁気光学デバイスを完成した。
 即ち、本発明は、下記の磁気光学材料及びその製造方法、並びに磁気光学デバイスである。
〔1〕 下記式(1)で表わされる複合酸化物を主成分として含む透明セラミックス又は下記式(1)で表わされる複合酸化物の単結晶からなり、波長1064nmでのベルデ定数が0.14min/(Oe・cm)以上であることを特徴とする磁気光学材料。
 Tb227   (1)
(式中、Rはシリコン、ゲルマニウム、チタン、タンタル、スズ、ハフニウム、ジルコニウムよりなる群から選択された少なくとも1つの元素である(ただし、シリコン、ゲルマニウム及びタンタルについては当該元素単独であることを除く)。)
〔2〕 光路長10mmとして波長1064nmのレーザー光をビーム径1.6mmで入射させた場合、熱レンズが発生しないレーザー光の入射パワーの最大値が30W以上であることを特徴とする〔1〕記載の磁気光学材料。
〔3〕 光路長10mm当たりの波長1064nmの光の直線透過率が90%以上である〔1〕又は〔2〕記載の磁気光学材料。
〔4〕 パイロクロア格子を有する立方晶が主相となった〔1〕~〔3〕のいずれかに記載の磁気光学材料。
〔5〕 上記透明セラミックスにおける平均焼結粒子径が2.5μm以下である〔1〕~〔4〕のいずれかに記載の磁気光学材料。
〔6〕 酸化テルビウム粉末と、シリコン、ゲルマニウム、チタン、タンタル、スズ、ハフニウム、ジルコニウムよりなる群から選択された少なくとも1つの酸化物粉末(ただし、シリコン、ゲルマニウム及びタンタルについては当該元素酸化物単独であることを除く)とをるつぼ内で焼成して立方晶パイロクロア型酸化物を主成分とする焼成原料を作製し、該焼成原料を粉砕して原料粉末とし、この原料粉末を用いて所定形状にプレス成形した後に焼結し、更に熱間等方圧プレス処理して下記式(1)で表わされる複合酸化物を主成分として含む透明セラミックスの焼結体を得る磁気光学材料の製造方法。
 Tb227   (1)
(式中、Rはシリコン、ゲルマニウム、チタン、タンタル、スズ、ハフニウム、ジルコニウムよりなる群から選択された少なくとも1つの元素である(ただし、シリコン、ゲルマニウム及びタンタルについては当該元素単独であることを除く)。)
〔7〕 上記焼成温度が1200℃以上、かつこれ以降に行われる焼結温度よりも低い温度であることを特徴とする〔6〕記載の磁気光学材料の製造方法。
〔8〕 〔1〕~〔5〕のいずれかに記載の磁気光学材料を用いて構成されることを特徴とする磁気光学デバイス。
〔9〕 上記磁気光学材料をファラデー回転子として備え、該ファラデー回転子の光学軸上の前後に偏光材料を備えた波長帯0.9μm以上1.1μm以下で利用可能な光アイソレータである〔8〕記載の磁気光学デバイス。
〔10〕 上記ファラデー回転子は、その光学面に反射防止膜を有することを特徴とする〔9〕記載の磁気光学デバイス。
 本発明によれば、波長帯0.9~1.1μmのファイバーレーザー装置に搭載してもビーム品質を劣化させることなく、ベルデ定数をTGG結晶よりも大きくした、小型化の可能な、光アイソレータなどの磁気光学デバイスを構成するのに好適な透明な磁気光学材料を提供できる。
本発明に係る磁気光学材料をファラデー回転子として用いた光アイソレータの構成例を示す断面模式図である。 実施例1-1,1-5、比較例1-1,1-5の焼成原料粉末(Tb2Hf27)のX線回折パターンである。 図2の(622)面近傍のX線回折パターン拡大図である。 実施例1-4の焼結体(Tb2Zr27)のX線回折パターンである。
[磁気光学材料]
 以下、本発明に係る磁気光学材料について説明する。
 本発明に係る磁気光学材料は、下記式(1)で表わされる複合酸化物を主成分として含む透明セラミックス又は下記式(1)で表わされる複合酸化物の単結晶からなり、波長1064nmでのベルデ定数が0.14min/(Oe・cm)以上であることを特徴とする。
 Tb227   (1)
(式中、Rはシリコン、ゲルマニウム、チタン、タンタル、スズ、ハフニウム、ジルコニウムよりなる群から選択された少なくとも1つの元素である(ただし、シリコン、ゲルマニウム及びタンタルについては当該元素単独であることを除く)。)
 テルビウムは鉄(Fe)を除く常磁性元素のなかで最大のベルデ定数をもつ材料であり、かつ波長1.06μmにおいて透明(光路長1mmにおける光の直線透過率が80%以上)であるため、この波長域の光アイソレータに使用するには最も適した元素である。ただし、この透明性を活かすためにはテルビウムが金属結合状態であってはならず、安定な化合物状態に仕上げる必要がある。
 ここで、安定な化合物を形成する最も典型的な形態として酸化物が挙げられる。その中でも、パイロクロア型構造を有するある種の材料(複合酸化物)は立方晶構造を取るため(これを、パイロクロア格子を有する立方晶(パイロクロア型立方晶)という)、異方性散乱のない高度に透明な化合物が得られる。よって、Aサイトにテルビウムが入る系からなり、パイロクロア型酸化物であって、立方晶構造をとる化合物(テルビウム含有立方晶系パイロクロア型酸化物)が、波長域0.9μm以上1.1μm以下、より詳細には1064±40nmの光アイソレータに使用する材料として好ましい。
 また、立方晶構造を取るためのBサイト元素としては、シリコン、ゲルマニウム、チタン、タンタル、スズ、ハフニウム、ジルコニウムが好適に利用できる。
 ただし、シリコンやゲルマニウムはイオン半径が小さすぎるため、これらの元素だけでBサイトを充填してしまうと、斜方晶になって透明性が阻害されてしまうため好ましくない。そこで、シリコンやゲルマニウムを選択する場合には、よりイオン半径の大きな他の元素であるジルコニウムと組み合わせて利用する。
 この結果、本発明の磁気光学材料は、パイロクロア格子を有する立方晶(パイロクロア型立方晶)が主相となったものが好ましく、パイロクロア型立方晶からなるものがより好ましい。なお、主相となったとは、結晶構造としてパイロクロア型立方晶が全体の90体積%以上、好ましくは95体積%以上を占めることをいう。あるいは、この磁気光学材料の粉末X線回折結果から算出されるパイロクロア化率が、上記式(1)におけるRがジルコニウム単独の場合には51.5%以上であることをいい、Rがそれ以外の場合(即ち、Rがシリコン、ゲルマニウム、チタン、タンタル、スズ、ハフニウム、ジルコニウムよりなる群から選択された少なくとも1つの元素(ただし、シリコン、ゲルマニウム、タンタル及びジルコニウムについては当該元素単独であることを除く)である場合)には97.3%以上、好ましくは99%以上であることをいう。
 なお、パイロクロア化率とは、対象材料の粉末X線回折における立方晶の(622)面に相当するピーク位置(2θの値P(622))から、ベガード則に基づき酸化テルビウムの(622)面の2θの値(PTb)及び対象材料を理想的なパイロクロア型立方晶とした場合の(622)面の2θの値(PTbR)を用いて求めた上記対象材料に占める理想的なパイロクロア型立方晶のモル分率である。なお、(622)面は、パイロクロア型立方晶のX線回折パターンにおける4つの主回折面のうち、最も広角側の回折面である。
 また、本発明の磁気光学材料は、透明セラミックスにおける平均焼結粒子径が2.5μm以下、好ましくは2.1μm以下であることが好ましい。平均焼結粒子径が2.5μm超では、透明性が確保できない場合がある。なお、平均焼結粒子径の下限は特に制限はないが、製造上1μm以上となる。
 上記式(1)は、テルビウムと、Rはシリコン、ゲルマニウム、チタン、タンタル、スズ、ハフニウム、ジルコニウムよりなる群から選択された少なくとも1つの元素(ただし、シリコン、ゲルマニウム及びタンタルについては当該元素単独であることを除く)とを含むもので構成されているが、更にその他の元素を含有していてもよい。その他の元素としては、希土類元素であれば、ランタン、ガドリニウム、ツリウム、セリウム、プラセオジム、イッテルビウム、ディスプロシウムが例示でき、様々な不純物群として、カルシウム、アルミニウム、燐、タングステン、モリブデン等が典型的に例示できる。
 その他の元素の含有量は、テルビウムの全量を100としたとき、10以下であることが好ましく、1以下であることが更に好ましく、0.1以下であることがより好ましく、0.001以下(実質的にゼロ)であることが特に好ましい。
 本発明の磁気光学材料は、上記式(1)で表わされる複合酸化物を主成分として含有する。即ち、本発明の磁気光学材料は、上記式(1)で表わされる複合酸化物を主成分として含有していればよく、その他の成分を副成分として意図的に含有していてもよい。
 ここで、主成分として含有するとは、上記式(1)で表わされる複合酸化物を50質量%以上含有することを意味する。式(1)で表わされる複合酸化物の含有量は80質量%以上であることが好ましく、90質量%以上であることが好ましく、99質量%以上であることがより好ましく、99.9質量%以上であることが特に好ましい。
 一般的に例示される、その他の副成分(主成分以外の成分)としては、単結晶育成の際にドープされるドーパント、フラックス、セラミックス製造の際に添加される焼結助剤等がある。
 本発明の磁気光学材料の製法としては、フローティングゾーン法、マイクロ引下げ法などの単結晶製造方法、並びにセラミックス製造法があり、いずれの製法を用いても構わない。ただし、一般に単結晶製造方法では固溶体の濃度比の設計に一定程度の制約があり、セラミックス製造法の方が本発明ではより好ましい。
 以下、本発明の磁気光学材料の製造方法の例としてセラミックス製造法について更に詳述するが、本発明の技術的思想を踏襲した単結晶製造方法を排除するものではない。
《セラミックス製造法》
[原料]
 本発明で用いる原料としては、テルビウム及び元素R(Rはシリコン、ゲルマニウム、チタン、タンタル、スズ、ハフニウム、ジルコニウムよりなる群から選択された少なくとも1つの元素である(ただし、シリコン、ゲルマニウム及びタンタルについては当該元素単独であることを除く)。)からなる本発明の磁気光学材料の構成元素からなる金属粉末、ないしは硝酸、硫酸、尿酸等の水溶液、あるいは上記元素の酸化物粉末等が好適に利用できる。
 それらを、テルビウム対Rのモル比率が1:1となるように所定量秤量し、混合してから焼成して所望の構成の立方晶パイロクロア型酸化物を主成分とする焼成原料を得る。このときの焼成温度は、1200℃以上、かつこの後に行われる焼結温度よりも低い温度が好ましく、1400℃以上、かつこの後に行われる焼結温度よりも低い温度がより好ましい。なお、ここでいう「主成分とする」とは、焼成原料の粉末X線回折結果から算出される上記パイロクロア化率が、上記式(1)におけるRがジルコニウム単独の場合には41.5%以上であることをいい、Rがそれ以外の場合(即ち、Rがシリコン、ゲルマニウム、チタン、タンタル、スズ、ハフニウム、ジルコニウムよりなる群から選択された少なくとも1つの元素(ただし、シリコン、ゲルマニウム、タンタル及びジルコニウムについては当該元素単独であることを除く)である場合)には50%以上であり、好ましくは55%以上であることをいう。
 また、上記原料の純度は99.9質量%以上が好ましい。次いで、得られた焼成原料を粉砕して原料粉末とする。
 また、最終的には所望の構成のパイロクロア型酸化物粉末を用いてセラミックス製造をすることになるが、その際の粉末形状については特に限定されず、例えば角状、球状、板状の粉末が好適に利用できる。また、二次凝集している粉末であっても好適に利用できるし、スプレードライ処理等の造粒処理によって造粒された顆粒状粉末であっても好適に利用できる。更に、これらの原料粉末の調製工程については特に限定されない。共沈法、粉砕法、噴霧熱分解法、ゾルゲル法、アルコキシド加水分解法、その他あらゆる合成方法で作製された原料粉末が好適に利用できる。また、得られた原料粉末を適宜湿式ボールミル、ビーズミル、ジェットミルや乾式ジェットミル、ハンマーミル等によって処理してもよい。
 本発明で用いるパイロクロア型酸化物粉末原料中には、適宜焼結抑制助剤を添加してもよい。特に高い透明性を得るためには、テルビウム含有パイロクロア型酸化物に見合った焼結抑制助剤を添加することが好ましい。ただし、その純度は99.9質量%以上が好ましい。なお、焼結抑制助剤を添加しない場合には、使用する原料粉末についてその一次粒子の粒径がナノサイズであって焼結活性が極めて高いものを選定するとよい。こうした選択は適宜なされてよい。
 更に製造工程での品質安定性や歩留り向上の目的で、各種の有機添加剤が添加される場合がある。本発明においては、これらについても特に限定されない。即ち、各種の分散剤、結合剤、潤滑剤、可塑剤等が好適に利用できる。
[製造工程]
 本発明では、上記原料粉末を用いて、所定形状にプレス成形した後に脱脂を行い、次いで焼結して、相対密度が最低でも92%以上に緻密化した焼結体を作製する。その後工程として熱間等方圧プレス(HIP)処理を行うことが好ましい。
(プレス成形)
 本発明の製造方法においては、通常のプレス成形工程を好適に利用できる。即ち、ごく一般的な、型に充填して一定方向から加圧するプレス工程や変形可能な防水容器に密閉収納して静水圧で加圧するCIP(Cold Isostatic Pressing)工程が利用できる。なお、印加圧力は得られる成形体の相対密度を確認しながら適宜調整すればよく、特に制限されないが、例えば市販のCIP装置で対応可能な300MPa以下程度の圧力範囲で管理すると製造コストが抑えられてよい。あるいはまた、成形時に成形工程のみでなく一気に焼結まで実施してしまうホットプレス工程や放電プラズマ焼結工程、マイクロ波加熱工程なども好適に利用できる。
(脱脂)
 本発明の製造方法においては、通常の脱脂工程を好適に利用できる。即ち、加熱炉による昇温脱脂工程を経ることが可能である。また、この時の雰囲気ガスの種類も特に制限はなく、空気、酸素、水素等が好適に利用できる。脱脂温度も特に制限はないが、もしも有機添加剤が混合されている原料を用いる場合には、その有機成分が分解消去できる温度まで昇温することが好ましい。
(焼結)
 本発明の製造方法においては、一般的な焼結工程を好適に利用できる。即ち、抵抗加熱方式、誘導加熱方式等の加熱焼結工程を好適に利用できる。この時の雰囲気は特に制限されないが、不活性ガス、酸素ガス、水素ガス等が好適に利用できる。また、減圧下(真空中)で焼結してもよい。
 本発明の焼結工程における焼結温度は、選択される出発原料により適宜調整される。一般的には選択された出発原料を用いて、製造しようとするテルビウム含有パイロクロア型酸化物焼結体の融点よりも数10℃から100℃乃至は200℃程度低温側の温度が好適に選定される。また、選定される温度の近傍に立方晶以外の相に相変化する温度帯が存在するテルビウム含有パイロクロア型酸化物焼結体を製造しようとする際には、厳密にその温度帯を外した条件となるよう管理して焼結すると、立方晶以外の相の混入を抑制でき、複屈折性の散乱を低減できるメリットがある。
 本発明の焼結工程における焼結保持時間は、選択される出発原料により適宜調整される。一般的には数時間程度で十分な場合が多い。ただし、テルビウム含有パイロクロア型酸化物焼結体の相対密度は最低でも92%以上に緻密化されていなければならない。
(熱間等方圧プレス(HIP))
 本発明の製造方法においては、焼結工程を経た後に更に追加で熱間等方圧プレス(HIP(Hot Isostatic Pressing))処理を行う工程を設けることができる。
 なお、このときの加圧ガス媒体種類は、アルゴン、窒素等の不活性ガス、又はAr-O2が好適に利用できる。加圧ガス媒体により加圧する圧力は、50~300MPaが好ましく、100~300MPaがより好ましい。圧力50MPa未満では透明性改善効果が得られない場合があり、300MPa超では圧力を増加させてもそれ以上の透明性改善が得られず、装置への負荷が過多となり装置を損傷するおそれがある。印加圧力は市販のHIP装置で処理できる196MPa以下であると簡便で好ましい。
 また、その際の処理温度(所定保持温度)は材料の種類及び/又は焼結状態により適宜設定すればよく、例えば1000~2000℃、好ましくは1300~1800℃の範囲で設定される。このとき、焼結工程の場合と同様に焼結体を構成するテルビウム含有パイロクロア型酸化物の融点以下及び/又は相転移点以下とすることが必須であり、熱処理温度が2000℃超では本発明で想定しているテルビウム含有パイロクロア型酸化物焼結体が融点を超えるか相転移点を超えてしまい、適正なHIP処理を行うことが困難となる。また、熱処理温度が1000℃未満では焼結体の透明性改善効果が得られない。なお、熱処理温度の保持時間については特に制限されないが、焼結体を構成するテルビウム含有パイロクロア型酸化物の特性を見極めながら適宜調整するとよい。
 なお、HIP処理するヒーター材、断熱材、処理容器は特に制限されないが、グラファイト、ないしはモリブデン(Mo)が好適に利用できる。
(アニール)
 本発明の製造方法においては、HIP処理を終えた後に、得られたテルビウム含有パイロクロア型酸化物焼結体中に酸素欠損が生じてしまい、薄灰色の外観を呈する場合がある。その場合には、前記HIP処理温度以下(例えば、1100~1500℃)、且つ前記HIP処理圧力と同等の条件にて微酸化アニール処理を施すことが好ましい。この場合、前記HIP処理設備と同じ設備を利用して微酸化アニール処理をおこなうと、製造プロセスが簡便となって良い。このアニール処理により、薄灰色の外観を呈してしまったテルビウム含有パイロクロア型酸化物焼結体も、すべて無色透明なセラミックス体に整えることができる。
(光学研磨)
 本発明の製造方法においては、上記一連の製造工程を経たテルビウム含有パイロクロア型酸化物焼結体(即ち、透明セラミックス)について、その光学的に利用する軸上にある両端面を光学研磨することが好ましい。このときの光学面精度は測定波長λ=633nmの場合、λ/8以下が好ましく、λ/10以下が特に好ましい。なお、光学研磨された面に適宜反射防止膜を成膜することで光学損失を更に低減させることも可能である。
 以上のようにして、波長1064nmでのベルデ定数が0.14min/(Oe・cm)以上の磁気光学材料が得られる。本発明の磁気光学材料は、光路長10mm当たりの波長1064nmでの光透過における直線透過率が90%以上であることが好ましい。なお本発明において、「直線透過率」とは、測定光路中にサンプルを置かずにブランク(空間)状態で測定した透過スペクトルを100%とした場合における直線透過率を意味する。また、本発明の磁気光学材料は、光路長10mmとして波長1064nmのレーザー光をビーム径1.6mmで入射させた場合、熱レンズが発生しないレーザー光の入射パワーの最大値が30W以上であることが好ましく、80W以上であることがより好ましい。上記熱レンズが発生しないレーザー光の入射パワーの最大値が30W未満では高出力のファイバーレーザー装置での利用が困難となる場合がある。
[磁気光学デバイス]
 本発明の磁気光学材料は、磁気光学デバイス用途に好適であり、特に波長0.9~1.1μmの光アイソレータのファラデー回転子として好適に使用される。
 図1は、本発明の磁気光学材料からなるファラデー回転子を光学素子として有する光学デバイスである光アイソレータの一例を示す断面模式図である。図1において、光アイソレータ100は、本発明の磁気光学材料からなるファラデー回転子110を備え、該ファラデー回転子110の前後には、偏光材料である偏光子120及び検光子130が備えられている。また、光アイソレータ100は、偏光子120、ファラデー回転子110、検光子130の順序で配置され、それらの側面のうちの少なくとも1面に磁石140が載置されていることが好ましい。
 また、上記光アイソレータ100は産業用ファイバーレーザー装置に好適に利用できる。即ち、レーザー光源から発したレーザー光の反射光が光源に戻り、発振が不安定になるのを防止するのに好適である。
 以下に、実施例及び比較例を挙げて、本発明を更に具体的に説明するが、本発明は実施例に限定されるものではない。
[実施例1、比較例1]
 上記式(1)において、Bサイト位置(上記式(1)におけるR)に単一元素を充填した例としてハフニウム、スズ、チタン、ジルコニウムを選定した例について説明する。
 信越化学工業(株)製の酸化テルビウム粉末、及びAmerican Elements社製の酸化ハフニウム粉末、並びに(株)高純度化学研究所製の酸化第2スズ粉末、酸化チタン粉末及び日産化学工業(株)製のジルコニア粉末を入手した。純度はいずれも99.9質量%以上であった。
 上記原料を用いて、Tb2Hf27、Tb2Sn27、Tb2Ti27、Tb2Zr27の4種のパイロクロア型酸化物原料を作製した。即ち、酸化テルビウムと酸化ハフニウムをテルビウムとハフニウムが等量モル比率となるよう秤量した混合粉末、酸化テルビウムと酸化第2スズをテルビウムとスズが等量モル比率となるよう秤量した混合粉末、酸化テルビウムと酸化チタンをテルビウムとチタンが等量モル比率となるよう秤量した混合粉末、酸化テルビウムと酸化ジルコニウムをテルビウムとジルコニウムが等量モル比率となるよう秤量した混合粉末の4種を用意した。続いて、それぞれ互いの混入を防止するよう注意しながらエタノール中でジルコニア製ボールミル装置にて分散・混合処理した。処理時間は24時間であった。その後スプレードライ処理を行って、いずれも平均粒子径が20μmの顆粒状原料を作製した。
 続いて、これらの粉末をイリジウムるつぼに入れ高温マッフル炉にて1000℃、1100℃、1200℃、1400℃、1600℃それぞれの温度にて保持時間3時間で焼成処理し、それぞれの組成での焼成原料を得た。得られた各焼成原料をパナリティカル社製粉末X線回折装置で回折パターン解析した。即ち、焼成原料ごとに得られたX線回折パターンにおいてその組成のパイロクロア型酸化物の結晶相(立方晶及び斜方晶)の回折ピークに相当するピークを取り出した後、これらのピークから立方晶、斜方晶のいずれであるかを特定した。例えば、これらのピークにおいて斜方晶由来のサブピークが存在せず、かつリートベルト解析により立方晶の結晶構造モデルにフィットした場合に、立方晶であると判断した。
 その結果、最初の3種の焼成原料については1200℃以上で処理したものに関してはすべてパイロクロア型酸化物(即ち、それぞれTb2Hf27、Tb2Sn27、Tb2Ti27)ないしはビックスバイト型酸化物の結晶相、あるいはその中間遷移相と考えられる立方晶が確認された。また、1100℃で処理した原料でも上記1200℃以上で処理した場合と同様の立方晶が確認された。ただし、その回折ピーク位置は、よりビックスバイト型酸化物の回折ピーク位置に近かった。なお、1000℃で処理した原料からはパイロクロア型酸化物の結晶相の明確な回折パターンは検知されず、代わりにビックスバイト型酸化物の結晶相と、酸化ハフニウムの単斜晶ないしは酸化スズ、酸化チタンの正方晶の回折パターンが検知された。
 また、最後のTb2Zr27については1200℃以上で処理したものに関しては立方晶パイロクロア型酸化物の他に立方晶であるビックスバイト型酸化物相が混在していた。また、1100℃で処理したTb2Zr27でも上記1200℃以上で処理した場合と同様の立方晶の混晶が確認された。なお、1000℃で処理した原料からはパイロクロア型酸化物の結晶相の明確な回折パターンは検知されず、代わりにビックスバイト型酸化物の結晶相と、酸化ジルコニウムの単斜晶の回折パターンが検知された。
 次に、以下の方法で焼成原料それぞれのパイロクロア化率を求めた。
(パイロクロア化率の測定)
 ここでは、上記組成式(1)におけるRがハフニウム(Hf)である場合を例に説明する。
 まず、酸化テルビウム(Tb47)と作製しようとするパイロクロア型酸化物、即ち理想的な立方晶パイロクロア型酸化物(Tb2Hf27)の、いずれも4つの主回折面のうち、最も広角側の回折面である(622)面の2θの角度(PTb、PTbHf)を文献値より入手する。例えば、酸化テルビウム(Tb47)のPTbは、J.Am.Chem.Soc.Vol.76 p5242-5244(1954)より入手し、Tb2Hf27のPTbHfは、Solid State Sciences. Vol.14 p1405-1411(2012)より入手する。
 続いて、パナリティカル社製粉末X線回折装置を用いて、Out-of-plane法(2θ/ωスキャン法)で各焼成温度(1400℃(実施例1-1)、1200℃(実施例1-5)、1100℃(比較例1-1)、1000℃(比較例1-5))で作製した焼成原料粉末のX線回折パターンを測定する。XRD条件は、Cu-Kα1,2(管球電圧45kV-電流200mA)で、1mm×2mmのスリットコリメーションで、走査範囲10~110°、ステップ幅0.02°とした。図2に、焼成温度ごとの焼成原料粉末(実施例1-1,1-5、比較例1-1,1-5)のX線回折パターン及び酸化テルビウム(Tb47)と理想的な立方晶パイロクロア型酸化物(Tb2Hf27)の文献値のX線回折パターンを示す。また、図3に、その(622)面近傍のX線回折パターンを示す。
 得られた回折パターンのうち、4つの主回折面のうち、最も広角側の回折面である(622)面の2θの角度データを読み取る。その結果を表1に示す。
 すると、すべての原料粉末の(622)面の2θの角度の値は、酸化テルビウムのPTbとTb2Hf27のPTbHfとの間に入ってくることが確認できる。ここで、焼成して得られた原料粉末が、パイロクロア化した立方晶成分と、未だパイロクロア化していない酸化テルビウムと同等の立方晶成分とからなると仮定し、それぞれのモル分率をNP、(1-NP)と定義して、ベガード則(Vegard's rule、固溶体の格子定数とモル分率との間におおよその比例関係が成り立つという経験則)に基づく以下の式(i)を用いてモル分率NPを計算し、これを焼成原料粉末のパイロクロア化率と定義した。
 P(622)=NP×PTbHf+(1-NP)×PTb   (i)
(式中、P(622)は原料粉末の(622)面の2θの角度の値(°)、PTbHfはパイロクロア型Tb2Hf27の(622)面の2θの角度の値(°)、PTbは酸化テルビウムの(622)面の2θの角度の値(°)である。)
 以上の結果を表1に示す。
 表1より、焼成温度1200℃以上でパイロクロア化率が50%以上となり、立方晶パイロクロア型酸化物が主成分の焼成原料となっていることが確認された。
Figure JPOXMLDOC01-appb-T000001
 上記組成式(1)におけるRがスズ(Sn)である場合も上記ハフニウムと同様にして、焼成温度ごとに焼成原料のパイロクロア化率を求めたところ、焼成温度1200℃以上でパイロクロア化率が50%以上となり、立方晶パイロクロア型酸化物が主成分の焼成原料となっていることが確認された(表2)。なお、Tb2Sn27の(622)面の2θの角度(PTbSn)を58.706°とした。
Figure JPOXMLDOC01-appb-T000002
 上記組成式(1)におけるRがチタン(Ti)である場合も上記ハフニウムと同様にして、焼成温度ごとに焼成原料のパイロクロア化率を求めたところ、焼成温度1200℃以上でパイロクロア化率が50%以上となり、立方晶パイロクロア型酸化物が主成分の焼成原料となっていることが確認された(表3)。なお、Tb2Ti27の(622)面の2θの角度(PTbTi)を60.561°とした。
Figure JPOXMLDOC01-appb-T000003
 上記組成式(1)におけるRがジルコニウム(Zr)である場合、焼成原料粉末については上記のパイロクロア化率算出方法が一応適用できた。ただし、(622)面の2θの角度(58.4°付近)のところ、並びにそれ以上の広角側のピークパターンが常にすべてスプリットしていることが判明した。これはCu-Kα1線とKα2線の広角側のダブルピークとは別に見られる明確な混晶ピークであり、おそらくはTbサイトにZrイオンが固溶した、わずかに格子定数の小さなTb(Zr)47-α立方晶であると考えられた。そして、このTb(Zr)47-α立方晶成分は焼結体でも無くならず、残り続けた。その一例を図4に示す。
 そこで、Tb2Zr27の焼成原料のパイロクロア化率については、上記式(i)を用いて仮のパイロクロア化率を求め、次いで(622)面の2θの角度のところのパイロクロア型立方晶ピーク(低角側)とTb(Hf)47-α立方晶ピーク(広角側)とのピーク強度比を基に以下の式(ii)で補正係数K(622)を算出し、これを上記仮のパイロクロア化率に乗じてパイロクロア化率とした。なお、Tb2Zr27の(622)面の2θの角度(PTbZr)を58.383°とした。
 K(622)=ITbZr/(ITbZr+ITbZr’)   (ii)
(式中、ITbZrは焼成原料のパイロクロア型立方晶成分の(622)面でのピーク強度(Counts)、ITbZr’は焼成原料のTb(Zr)47-α立方晶成分の(622)面でのピーク強度(Counts)である。)
 その結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 以上の結果をまとめると、1200℃以上で焼成処理した最初の3種の原料については、いずれも立方晶パイロクロア型酸化物を主成分とする酸化物原料となっていることが確認された。また、1200℃以上で焼成処理したTb2Zr27については立方晶パイロクロア型酸化物相の他に立方晶であるビックスバイト型酸化物相が混在していたが、立方晶パイロクロア型酸化物を主成分とする酸化物原料となっていることが確認された。
 前記の確認テストで作製した原料のうち、いずれの組成(4種)についても1400℃、1200℃、1100℃、1000℃で焼成処理して得られた原料(各4水準)について、再度エタノール中でジルコニア製ボールミル装置にて分散・混合処理した。処理時間は40時間であった。その後再びスプレードライ処理を行って、いずれも平均粒子径が20μmの顆粒状パイロクロア型酸化物原料を作製した。
 こうして得られた原料につき、それぞれ一軸プレス成形、198MPaの圧力での静水圧プレス処理を施してCIP成形体を得た。得られた成形体をマッフル炉中で1000℃、2時間の条件にて脱脂処理した。続いて当該乾燥成形体を真空加熱炉に仕込み、2.0×10-3Pa以下の減圧下、1700℃±20℃で3時間処理して計16種(4種×4水準)の焼結体を得た。このとき、すべてのサンプルの焼結相対密度が92%になるように焼結温度を微調整した。
 得られた各焼結体をカーボンヒーター製HIP炉に仕込み、Ar中、200MPa、1650℃、3時間の条件でHIP処理した。得られた各焼結体すべてについて、その一部につき、ジルコニア製乳鉢で粉砕処理して粉末形状にした。続いて得られた各粉末サンプルをパナリティカル社製粉末X線回折装置で回折パターン解析した。即ち、焼成原料の場合と同様に、焼結体ごとに得られたX線回折パターンにおいてその組成のパイロクロア型酸化物の結晶相(立方晶及び斜方晶)の回折ピークに該当するピークを取り出した後、これらのピークから立方晶、斜方晶のいずれであるかを特定した。例えば、これらのピークにおいて斜方晶由来のサブピークが存在せず、かつリートベルト解析により立方晶の結晶構造モデルにフィットした場合に、立方晶であると判断した。
 その結果、最初の3種の粉末サンプルについては焼成温度1200℃以上で処理したものに関してはすべてパイロクロア型酸化物(即ち、それぞれTb2Hf27、Tb2Sn27、Tb2Ti27)の結晶相として立方晶が確認された。また、焼成温度1100℃で処理したものについては3種類のいずれでもパイロクロア型酸化物の結晶相として立方晶が確認された。ただし、その回折ピーク角度は若干低角度側にシフトしており、ある程度ビックスバイト型結晶相からの遷移過程にある不完全なパイロクロア型酸化物であると推定された。なお、1000℃で処理したもの(3種類の粉末サンプル)からはビックスバイト型酸化物とパイロクロア型酸化物の回折パターンの中間状態の回折パターンが確認されたが、Tb2Hf27、Tb2Sn27、Tb2Ti27の(622)面の文献値との乖離が大きいため、パイロクロア型酸化物が主成分であるとは断定しがたかった。
 また、最後のTb2Zr27の粉末サンプルついては焼成温度1200℃以上で処理したものに関しては立方晶パイロクロア型酸化物の他に立方晶であるビックスバイト型酸化物相が混在していた。また、焼成温度1100℃で処理したTb2Zr27からも立方晶パイロクロア型酸化物と立方晶であるビックスバイト型酸化物の回折パターンが確認された。ただし、(622)面のピーク角度はより低角度側にシフトしていた。なお、焼成温度1000℃で処理したTb2Zr27の粉末サンプルでは、更にTb47の回折パターンの角度に近い立方晶ビックスバイト型の結晶相と立方晶パイロクロア型酸化物の混晶が確認された。
 次に、4種類の組成の焼結体についてそれぞれ焼成原料の場合と同様の方法によってパイロクロア化率を求めた(表5)。
 その結果、最初の3種の焼結体(Tb2Hf27、Tb2Sn27、Tb2Ti27)については焼成温度1200℃以上で処理したものすべてがパイロクロア化率97.8%以上となっており、特に焼成温度1400℃のものでは100%となった。
 また、Tb2Zr27の焼結体については、焼成温度1200℃以上で処理したものすべてがパイロクロア化率51.5%以上となった。
 更に、こうして得られた各セラミックス焼結体を、長さ10mmになるように研削及び研磨処理し、次いでそれぞれのサンプルの光学両端面を光学面精度λ/8(測定波長λ=633nmの場合)で最終光学研磨した。また、これらのサンプルのうちの各1個ずつを抜きとり、以下の方法でSEM観察を実施して平均焼結粒子径を測定した。
(平均焼結粒子径の測定方法)
 日本電子(株)製のSEM装置(JSM-7000F)を用いて、加速電圧10kVで反射電子像モードで、試料傾斜角0°で、光学研磨サンプルの表面反射電子像を撮影する。この際、各々の焼結粒の粒界コントラストが得られるように明るさ、コントラストを調整する。続いて、J.Am.Ceram.Soc.、52[8]443-6(1969)に記載されている方法に従い、以下の式を使ってSEM像から平均焼結粒子径を算出した。
 D(μm)=1.56×LAVE
(式中、Dは平均焼結粒子径(μm)、LAVEは任意の直線を横切る粒子の平均長さ(μm)、なお、算出に使用したLAVEのサンプル数は最低でも100本以上とし、得られた読取り長さの平均値をLAVEの値とした。)
 次に、上記光学研磨したサンプルについて中心波長が1064nmとなるように設計された反射防止膜をコートした。ここで得られたサンプルの光学外観もチェックした。
 図1に示すように、得られた各セラミックスサンプルの前後に偏光素子をセットしてから磁石を被せ、IPGフォトニクスジャパン(株)製ハイパワーレーザー(ビーム径1.6mm)を用いて、両端面から、波長1064nmのハイパワーレーザー光線を入射して、直線透過率とベルデ定数、並びに熱レンズの発生しない入射パワーの最大値を測定した。
(直線透過率の測定方法)
 直線透過率は、NKT Photonics社製の光源とGentec社製のパワーメータ並びにGeフォトディテクタを用いて内製した光学系を用い、波長1064nmの光をビーム径を1~3mmφでの大きさで透過させたときの光の強度により測定され、以下の式に基づき、JIS K7361及びJIS K7136に準拠して求めた。
 直線透過率(%/cm)=I/Io×100
(式中、Iは透過光強度(長さ10mm(1cm)の試料を直線透過した光の強度)、Ioは入射光強度を示す。)
(ベルデ定数の測定方法)
 ベルデ定数Vは、以下の式に基づいて求めた。
 θ=V×H×L
(式中、θはファラデー回転角(min)、Vはベルデ定数、Hは磁界の大きさ(Oe)、Lはファラデー回転子の長さ(この場合、1cm)である。)
(熱レンズの発生しない入射パワーの最大値の測定方法)
 熱レンズの発生しない入射パワーの最大値は、それぞれの入射パワーの光を1.6mmの空間光にして出射させ、そこへファラデー回転子を挿入した際の焦点距離の変化が0.1m以下となるときの最大入射パワーを読み取ることにより求めた。
 なお、使用したハイパワーレーザーは最大出力が100Wまでのため、これ以上の熱レンズ評価はできなかった。
 以上の結果を表5にまとめて示す。
Figure JPOXMLDOC01-appb-T000005
 上記結果から、実施例1-1~1-8の4種いずれの組成においても焼成温度が1200℃以上であればパイロクロア型立方晶を主相とする材料となり、平均焼結粒子径が2.4μm以下となって、ベルデ定数が0.16min/(Oe・cm)以上であって、かつ透明性にも優れ、熱レンズの発生しない入射パワーの最大値が30W以上となることが確認された。
[実施例2、比較例2]
 上記式(1)において、Bサイト位置にシリコン、ゲルマニウム、チタン、タンタル、スズよりなる群から選択した少なくとも1つの元素を充填し、実施例1の組成以外の組成となるようにした例について説明する。
 信越化学工業(株)製の酸化テルビウム粉末、及び(株)高純度化学研究所製のシリカ粉末、二酸化ゲルマニウム粉末、酸化チタン粉末、酸化第2スズ粉末、並びに昭和化学(株)製の五酸化タンタルを入手した。純度はいずれも99.9質量%以上であった。
 上記原料を用いて、種々の複合酸化物原料を作製した。即ち、酸化テルビウムとシリカとジルコニアをテルビウムとシリコンとジルコニウムのモル比が2:1:1となるよう秤量した混合粉末、酸化テルビウムと二酸化ゲルマニウムとジルコニアをテルビウムとゲルマニウムとジルコニウムのモル比が2:1:1となるよう秤量した混合粉末、酸化テルビウムと酸化チタンと五酸化タンタルをテルビウムとチタンとタンタルのモル比が2:1:1となるよう秤量した混合粉末、酸化テルビウムと酸化第2スズと五酸化タンタルをテルビウムとスズとタンタルのモル比が2:1:1となるよう秤量した混合粉末、酸化テルビウムとシリカをテルビウムとシリコンが等量モル比率となるよう秤量した混合粉末、酸化テルビウムと二酸化ゲルマニウムをテルビウムとゲルマニウムが等量モル比率となるよう秤量した混合粉末、酸化テルビウムと五酸化タンタルをテルビウムとタンタルが等量モル比率となるよう秤量した混合粉末を用意した。続いて、それぞれ互いの混入を防止するよう注意しながらエタノール中でジルコニア製ボールミル装置にて分散・混合処理した。処理時間は24時間であった。その後スプレードライ処理を行って、いずれも平均粒子径が20μmの顆粒状原料を作製した。続いて、これらの粉末をイリジウムるつぼに入れ高温マッフル炉にて1400℃、3時間で焼成処理した。得られた各焼成原料をパナリティカル社製粉末X線回折装置で回折パターン解析し、実施例1の上記式(1)におけるRがHfである場合と同様にしてパイロクロア化率を求めた。
 次に、得られた各種原料を再度エタノール中でジルコニア製ボールミル装置にて分散・混合処理した。処理時間は40時間であった。その後再びスプレードライ処理を行って、いずれも平均粒子径が20μmの顆粒状複合酸化物原料を作製した。
 こうして得られた原料につき、それぞれ一軸プレス成形、198MPaの圧力での静水圧プレス処理を施してCIP成形体を得た。得られた成形体をマッフル炉中で1000℃、2時間の条件にて脱脂処理した。続いて当該乾燥成形体を真空加熱炉に仕込み、1700℃±20℃で3時間処理して種々の焼結体を得た。このとき、すべてのサンプルの焼結相対密度が92%になるように焼結温度を微調整した。
 得られた各焼結体をカーボンヒーター製HIP炉に仕込み、Ar中、200MPa、1650℃、3時間の条件でHIP処理した。得られた各焼結体のうちの一部につき、ジルコニア製乳鉢で粉砕処理して粉末形状にした。続いて、実施例1と同様にして得られた各粉末サンプルをパナリティカル社製粉末X線回折装置で回折パターン解析した(表6)。その結果、立方晶パイロクロア型酸化物と確認できた組成が、Tb2Si1Zr17、Tb2Ge1Zr17、Tb2Ti1Ta17、Tb2Sn1Ta17の群であった。またパイロクロア型ではあったものの、結晶系が斜方晶になっていた組成が、Tb2Si27、Tb2Ge27の群であった。最後にTb2Ta27については明確なパイロクロア型の回折パターンは得られず、3つほどの異なる相の混合パターンらしき結果が得られた。ただし正確に同定することはできなかった。そのため、Tb2Ta27+αと表記している。また、同時にパイロクロア化率を求めた。
 こうして得られた各セラミックス焼結体を、長さ10mmになるように研削及び研磨処理し、次いでそれぞれのサンプルの光学両端面を光学面精度λ/8(測定波長λ=633nmの場合)で最終光学研磨し、実施例1と同様に平均焼結粒子径Dを測定した。更に中心波長が1064nmとなるように設計された反射防止膜をコートした。ここで得られたサンプルの光学外観もチェックした。
 図1に示すように、得られた各セラミックスサンプルの前後に偏光素子をセットしてから磁石を被せ、IPGフォトニクスジャパン(株)製ハイパワーレーザー(ビーム径1.6mm)を用いて、両端面から、波長1064nmのハイパワーレーザー光線を入射して、実施例1と同様にして直線透過率とベルデ定数、並びに熱レンズの発生しない入射パワーの最大値を測定した。
 なお、使用したハイパワーレーザーは最大出力が100Wまでのため、これ以上の熱レンズ評価はできなかった。
 これらの結果を表6にまとめて示す。
Figure JPOXMLDOC01-appb-T000006
 上記結果から、Bサイト単体充填では失透又は失透ぎみとなったり、無色透明であっても複屈折が発生したり、熱レンズの発生しない入射パワーの最大値が10W以下となる元素(具体的には、比較例2-1~2-3におけるシリコン、ゲルマニウム、タンタル)であっても、適当な第3の元素と一緒にBサイトに固溶させた組成にした場合(実施例2-1~2-4)には、パイロクロア型立方晶を主相とする材料となり、平均焼結粒子径が2.5μm以下となって、ベルデ定数が0.14min/(Oe・cm)以上であって、かつ透明性にも優れ、熱レンズの発生しない入射パワーの最大値が30W以上となることが確認された。
[実施例3]
 上記式(1)において、Bサイト位置にハフニウム、ジルコニウムを選定した他の実施例について説明する。
 信越化学工業(株)製の酸化テルビウム粉末、及びAmerican Elements社製の酸化ハフニウム粉末並びに日産化学工業(株)製のジルコニア粉末を入手した。純度はいずれも99.9質量%以上であった。
 上記原料を用いて、Tb2Hf27、Tb2Zr27の2種のパイロクロア型酸化物原料を作製した。即ち、酸化テルビウムと酸化ハフニウムをテルビウムとハフニウムが等量モル比率となるよう秤量した混合粉末、酸化テルビウムと酸化ジルコニウムをテルビウムとジルコニウムが等量モル比率となるよう秤量した混合粉末の2種を用意した。続いて、それぞれ互いの混入を防止するよう注意しながらエタノール中でジルコニア製ボールミル装置にて分散・混合処理した。処理時間は24時間であった。その後スプレードライ処理を行って、いずれも平均粒子径が20μmの顆粒状原料を作製した。続いて、これらの粉末をイリジウムるつぼに入れ高温マッフル炉にて1400℃、3時間で焼成処理した。得られた各焼成原料をパナリティカル社製粉末X線回折装置で回折パターン解析し、実施例1の上記式(1)におけるRがHfである場合と同様にしてパイロクロア化率を求めた。
 次に、得られた各種原料を再度エタノール中でジルコニア製ボールミル装置にて分散・混合処理した。処理時間は40時間であった。その後再びスプレードライ処理を行って、いずれも平均粒子径が20μmの顆粒状複合酸化物原料を作製した。
 こうして得られた原料につき、それぞれ一軸プレス成形、198MPaの圧力での静水圧プレス処理を施してCIP成形体を得た。得られた成形体をマッフル炉中で1000℃、2時間の条件にて脱脂処理した。続いて当該乾燥成形体を酸素雰囲気炉、又は水素雰囲気炉に仕込み、おのおの常圧で毎分2Lの流量で酸素ガス又は水素ガスを流しながら、それぞれ1700℃±20℃で3時間処理して種々の焼結体を得た。このとき、すべてのサンプルの焼結相対密度が92%になるように焼結温度を微調整した。
 得られた各焼結体をカーボンヒーター製HIP炉に仕込み、Ar中、200MPa、1650℃、3時間の条件でHIP処理した。得られた各焼結体のうちの一部につき、ジルコニア製乳鉢で粉砕処理して粉末形状にした。続いて、実施例1と同様にして得られた各粉末サンプルをパナリティカル社製粉末X線回折装置で回折パターン解析した(表7)。その結果、いずれのサンプルについても立方晶パイロクロア型酸化物と確認できた。また、同時にパイロクロア化率を求めた。
 こうして得られた各セラミックス焼結体を、長さ10mmになるように研削及び研磨処理し、次いでそれぞれのサンプルの光学両端面を光学面精度λ/8(測定波長λ=633nmの場合)で最終光学研磨し、実施例1と同様に平均焼結粒子径Dを測定した。更に中心波長が1064nmとなるように設計された反射防止膜をコートした。ここで得られたサンプルの光学外観もチェックした。
 図1に示すように、得られた各セラミックスサンプルの前後に偏光素子をセットしてから磁石を被せ、IPGフォトニクスジャパン(株)製ハイパワーレーザー(ビーム径1.6mm)を用いて、両端面から、波長1064nmのハイパワーレーザー光線を入射して、実施例1と同様にして直線透過率とベルデ定数、並びに熱レンズの発生しない入射パワーの最大値を測定した。
 なお、使用したハイパワーレーザーは最大出力が100Wまでのため、これ以上の熱レンズ評価はできなかった。
 これらの結果を表7にまとめて示す。
Figure JPOXMLDOC01-appb-T000007
 上記結果から、焼結処理について真空焼結法以外の所定のガス雰囲気下の焼結処理としても、パイロクロア型立方晶を主相とする材料となり、平均焼結粒子径が2.1μm以下となって、熱レンズの発生しない入射パワーの最大値が30W以上であって、かつベルデ定数が0.16min/(Oe・cm)以上の、透明性にも優れた、磁気光学材料を作製できることが確認された。
 なお、これまで本発明を実施形態をもって説明してきたが、本発明は上記実施形態に限定されるものではなく、他の実施形態、追加、変更、削除など、当業者が想到することができる範囲内で変更することができ、いずれの態様においても本発明の作用効果を奏する限り、本発明の範囲に含まれるものである。
100 光アイソレータ
110 ファラデー回転子
120 偏光子
130 検光子
140 磁石

Claims (10)

  1.  下記式(1)で表わされる複合酸化物を主成分として含む透明セラミックス又は下記式(1)で表わされる複合酸化物の単結晶からなり、波長1064nmでのベルデ定数が0.14min/(Oe・cm)以上であることを特徴とする磁気光学材料。
     Tb227   (1)
    (式中、Rはシリコン、ゲルマニウム、チタン、タンタル、スズ、ハフニウム、ジルコニウムよりなる群から選択された少なくとも1つの元素である(ただし、シリコン、ゲルマニウム及びタンタルについては当該元素単独であることを除く)。)
  2.  光路長10mmとして波長1064nmのレーザー光をビーム径1.6mmで入射させた場合、熱レンズが発生しないレーザー光の入射パワーの最大値が30W以上であることを特徴とする請求項1記載の磁気光学材料。
  3.  光路長10mm当たりの波長1064nmの光の直線透過率が90%以上である請求項1又は2記載の磁気光学材料。
  4.  パイロクロア格子を有する立方晶が主相となった請求項1~3のいずれか1項記載の磁気光学材料。
  5.  上記透明セラミックスにおける平均焼結粒子径が2.5μm以下である請求項1~4のいずれか1項記載の磁気光学材料。
  6.  酸化テルビウム粉末と、シリコン、ゲルマニウム、チタン、タンタル、スズ、ハフニウム、ジルコニウムよりなる群から選択された少なくとも1つの酸化物粉末(ただし、シリコン、ゲルマニウム及びタンタルについては当該元素酸化物単独であることを除く)とをるつぼ内で焼成して立方晶パイロクロア型酸化物を主成分とする焼成原料を作製し、該焼成原料を粉砕して原料粉末とし、この原料粉末を用いて所定形状にプレス成形した後に焼結し、更に熱間等方圧プレス処理して下記式(1)で表わされる複合酸化物を主成分として含む透明セラミックスの焼結体を得る磁気光学材料の製造方法。
     Tb227   (1)
    (式中、Rはシリコン、ゲルマニウム、チタン、タンタル、スズ、ハフニウム、ジルコニウムよりなる群から選択された少なくとも1つの元素である(ただし、シリコン、ゲルマニウム及びタンタルについては当該元素単独であることを除く)。)
  7.  上記焼成温度が1200℃以上、かつこれ以降に行われる焼結温度よりも低い温度であることを特徴とする請求項6記載の磁気光学材料の製造方法。
  8.  請求項1~5のいずれか1項記載の磁気光学材料を用いて構成されることを特徴とする磁気光学デバイス。
  9.  上記磁気光学材料をファラデー回転子として備え、該ファラデー回転子の光学軸上の前後に偏光材料を備えた波長帯0.9μm以上1.1μm以下で利用可能な光アイソレータである請求項8記載の磁気光学デバイス。
  10.  上記ファラデー回転子は、その光学面に反射防止膜を有することを特徴とする請求項9記載の磁気光学デバイス。
PCT/JP2014/074040 2013-09-12 2014-09-11 磁気光学材料及びその製造方法、並びに磁気光学デバイス WO2015037649A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP14844266.8A EP3045958B1 (en) 2013-09-12 2014-09-11 Magnetooptical material, manufacturing method therefor, and magnetooptical device
KR1020167004889A KR102238976B1 (ko) 2013-09-12 2014-09-11 자기 광학 재료 및 그 제조 방법, 그리고 자기 광학 디바이스
US14/917,149 US10526725B2 (en) 2013-09-12 2014-09-11 Magnetooptical material, manufacturing method therefor, and magnetooptical device
JP2015536616A JP6135766B2 (ja) 2013-09-12 2014-09-11 磁気光学材料及びその製造方法、並びに磁気光学デバイス
CA2924312A CA2924312C (en) 2013-09-12 2014-09-11 Magnetooptical material, manufacturing method therefor, and magnetooptical device
CN201480050028.4A CN105531619B (zh) 2013-09-12 2014-09-11 磁光材料及其制造方法、以及磁光设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-189348 2013-09-12
JP2013189348 2013-09-12

Publications (1)

Publication Number Publication Date
WO2015037649A1 true WO2015037649A1 (ja) 2015-03-19

Family

ID=52665749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074040 WO2015037649A1 (ja) 2013-09-12 2014-09-11 磁気光学材料及びその製造方法、並びに磁気光学デバイス

Country Status (8)

Country Link
US (1) US10526725B2 (ja)
EP (1) EP3045958B1 (ja)
JP (1) JP6135766B2 (ja)
KR (1) KR102238976B1 (ja)
CN (1) CN105531619B (ja)
CA (1) CA2924312C (ja)
TW (1) TWI634093B (ja)
WO (1) WO2015037649A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016143859A1 (ja) * 2015-03-11 2016-09-15 信越化学工業株式会社 磁気光学材料及びその製造方法、並びに磁気光学デバイス
JP2016169115A (ja) * 2015-03-11 2016-09-23 信越化学工業株式会社 磁気光学材料及び磁気光学デバイス
WO2019194290A1 (ja) * 2018-04-04 2019-10-10 国立研究開発法人産業技術総合研究所 複合酸化物、並びにそれを電解質材料に使用した電気化学デバイス
CN110467464A (zh) * 2018-05-11 2019-11-19 信越化学工业株式会社 制备用于烧结的陶瓷成型体的方法和制造陶瓷烧结体的方法
JP2020067523A (ja) * 2018-10-23 2020-04-30 信越化学工業株式会社 光アイソレータ

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106145955A (zh) * 2016-08-08 2016-11-23 屠秀芬 一种alon‑纳米氧化铽复合磁光透明陶瓷的制备方法
CN106200025A (zh) * 2016-08-31 2016-12-07 欧阳征标 无泄漏磁光材料空隙波导磁表面快波光二极管
JP7135920B2 (ja) * 2018-03-09 2022-09-13 信越化学工業株式会社 透明複合酸化物焼結体の製造方法、透明複合酸化物焼結体並びに磁気光学デバイス
US11492294B2 (en) * 2018-05-11 2022-11-08 Shin-Etsu Chemical Co., Ltd. Method for preparing ceramic molded body for sintering and method for producing ceramic sintered body
CN114585597A (zh) * 2019-10-23 2022-06-03 佳能株式会社 制造陶瓷制品的方法和陶瓷制品
CN115433006B (zh) * 2021-06-02 2023-07-11 中国科学院上海硅酸盐研究所 一种铽基磁光陶瓷及其制备方法
CN114133235B (zh) * 2021-11-03 2022-10-14 中国科学院上海硅酸盐研究所 一种红外透过性好的稀土铁石榴石磁光陶瓷的轴向热压烧结制备方法
CN114685158B (zh) * 2022-05-05 2023-05-26 闽都创新实验室 一种磁光陶瓷及其制备方法和应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000266947A (ja) 1999-03-19 2000-09-29 Univ Tokyo 光アイソレータ
JP2002293693A (ja) 2001-03-30 2002-10-09 Nec Tokin Corp テルビウム・アルミニウム・ガーネット単結晶及びその製造方法
JP2005330133A (ja) 2004-05-18 2005-12-02 Central Res Inst Of Electric Power Ind 電子導電性セラミックス粉体とそれから形成される立方晶系チタン酸化物パイロクロア焼結体、およびこれらを利用した硫黄サイクルハイブリッド水素製造用電気分解槽
JP2010241677A (ja) 2009-03-31 2010-10-28 Schott Ag 立方晶構造を持つ受動光学セラミックス、同一のものの製造方法およびそれらの使用
JP2010285299A (ja) 2009-06-09 2010-12-24 Shin-Etsu Chemical Co Ltd 酸化物及び磁気光学デバイス
JP2011121837A (ja) 2009-12-14 2011-06-23 Oxide Corp 磁気光学素子用透光性酸化テルビウム焼結体
JP2011213552A (ja) 2010-03-31 2011-10-27 Oxide Corp 磁気光学素子用ガーネット結晶
JP2012036031A (ja) * 2010-08-05 2012-02-23 Fujikura Ltd ファラデー回転子用ガーネット型単結晶及びそれを用いた光アイソレータ
JP2012082079A (ja) * 2010-10-06 2012-04-26 Shin-Etsu Chemical Co Ltd 磁気光学材料、ファラデー回転子、及び光アイソレータ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100462305C (zh) * 2007-03-02 2009-02-18 浙江理工大学 一种镧系稀土锡酸盐纳米粉体的通用合成方法
JP4878343B2 (ja) * 2007-12-12 2012-02-15 神島化学工業株式会社 透光性希土類ガリウムガーネット焼結体及びその製造方法と磁気光学デバイス
DE102010028213A1 (de) * 2010-04-26 2011-10-27 Jt Optical Engine Gmbh + Co. Kg Optischer Isolator
DE102010021203B4 (de) * 2010-05-21 2020-11-12 Forschungsinstitut für mineralische und metallische Werkstoffe Edelsteine/Edelmetalle GmbH Terbiumtitanat zur Verwendung als Faraday-Rotator - Faraday-Rotator und optischer Isolator
EP2500763B1 (en) 2011-03-16 2015-07-29 Shin-Etsu Chemical Co., Ltd. Process of producing a Faraday rotator
JP5575719B2 (ja) * 2011-09-16 2014-08-20 信越化学工業株式会社 磁気光学素子用焼結体及び磁気光学デバイス
CN103113106A (zh) * 2013-01-25 2013-05-22 福建福晶科技股份有限公司 一种烧绿石型a2b2o7透明陶瓷的制备方法
JP5522866B2 (ja) * 2013-02-05 2014-06-18 株式会社オキサイド 磁気光学素子用透光性酸化テルビウム焼結体

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000266947A (ja) 1999-03-19 2000-09-29 Univ Tokyo 光アイソレータ
JP2002293693A (ja) 2001-03-30 2002-10-09 Nec Tokin Corp テルビウム・アルミニウム・ガーネット単結晶及びその製造方法
JP2005330133A (ja) 2004-05-18 2005-12-02 Central Res Inst Of Electric Power Ind 電子導電性セラミックス粉体とそれから形成される立方晶系チタン酸化物パイロクロア焼結体、およびこれらを利用した硫黄サイクルハイブリッド水素製造用電気分解槽
JP2010241677A (ja) 2009-03-31 2010-10-28 Schott Ag 立方晶構造を持つ受動光学セラミックス、同一のものの製造方法およびそれらの使用
JP2010285299A (ja) 2009-06-09 2010-12-24 Shin-Etsu Chemical Co Ltd 酸化物及び磁気光学デバイス
JP2011121837A (ja) 2009-12-14 2011-06-23 Oxide Corp 磁気光学素子用透光性酸化テルビウム焼結体
JP2011213552A (ja) 2010-03-31 2011-10-27 Oxide Corp 磁気光学素子用ガーネット結晶
JP2012036031A (ja) * 2010-08-05 2012-02-23 Fujikura Ltd ファラデー回転子用ガーネット型単結晶及びそれを用いた光アイソレータ
JP2012082079A (ja) * 2010-10-06 2012-04-26 Shin-Etsu Chemical Co Ltd 磁気光学材料、ファラデー回転子、及び光アイソレータ

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
"Fabrication of transparent La Hf 0 ceramics from combustion synthesized powders", MAT. RES. BULL., vol. 40, no. 3, 2005, pages 553 - 559
"Fabrication of transparent La,H f o ceramics from combustion synthesized powders", MAT. RES. BULL., vol. 40, no. 3, 2005, pages 553 - 559
"Rare earth disilicates R Si O (R = Gd, Tb, Dy, Ho): type B", Z., KRISTALLOGR., vol. 218, no. 12, 2003, pages 795 - 801
HIROSHI TAKATSU: "Quantumu spin fluctuations in the spin liquid state of Tb2Ti207", ARXIV, ARXIV, 13 December 2011 (2011-12-13), XP080510002 *
J. AM. CERAM. SOC., vol. 52, no. 8, 1969, pages 443 - 446
J. AM. CHEM. SOC., vol. 76, 1954, pages 5242 - 5244
SOLID STATE SCIENCES, vol. 14, 2012, pages 1405 - 1411

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016143859A1 (ja) * 2015-03-11 2016-09-15 信越化学工業株式会社 磁気光学材料及びその製造方法、並びに磁気光学デバイス
JP2016169115A (ja) * 2015-03-11 2016-09-23 信越化学工業株式会社 磁気光学材料及び磁気光学デバイス
US10274754B2 (en) 2015-03-11 2019-04-30 Shin-Etsu Chemical Co., Ltd. Magneto-optical material, method for producing same and magneto-optical device
WO2019194290A1 (ja) * 2018-04-04 2019-10-10 国立研究開発法人産業技術総合研究所 複合酸化物、並びにそれを電解質材料に使用した電気化学デバイス
CN111918837A (zh) * 2018-04-04 2020-11-10 国立研究开发法人产业技术综合研究所 复合氧化物、以及将其用于电解质材料的电化学器件
JPWO2019194290A1 (ja) * 2018-04-04 2021-04-30 国立研究開発法人産業技術総合研究所 複合酸化物、並びにそれを電解質材料に使用した電気化学デバイス
JP7285013B2 (ja) 2018-04-04 2023-06-01 国立研究開発法人産業技術総合研究所 複合酸化物、並びにそれを電解質材料に使用した電気化学デバイス
CN110467464A (zh) * 2018-05-11 2019-11-19 信越化学工业株式会社 制备用于烧结的陶瓷成型体的方法和制造陶瓷烧结体的方法
CN110467464B (zh) * 2018-05-11 2023-03-03 信越化学工业株式会社 制备用于烧结的陶瓷成型体的方法和制造陶瓷烧结体的方法
JP2020067523A (ja) * 2018-10-23 2020-04-30 信越化学工業株式会社 光アイソレータ
JP7236839B2 (ja) 2018-10-23 2023-03-10 信越化学工業株式会社 光アイソレータ

Also Published As

Publication number Publication date
EP3045958A1 (en) 2016-07-20
CN105531619A (zh) 2016-04-27
JP6135766B2 (ja) 2017-05-31
KR102238976B1 (ko) 2021-04-09
CN105531619B (zh) 2018-12-21
EP3045958A4 (en) 2017-04-12
TWI634093B (zh) 2018-09-01
US20160201222A1 (en) 2016-07-14
EP3045958B1 (en) 2019-04-24
US10526725B2 (en) 2020-01-07
KR20160055792A (ko) 2016-05-18
TW201522274A (zh) 2015-06-16
CA2924312C (en) 2022-05-03
JPWO2015037649A1 (ja) 2017-03-02
CA2924312A1 (en) 2015-03-19

Similar Documents

Publication Publication Date Title
JP6135766B2 (ja) 磁気光学材料及びその製造方法、並びに磁気光学デバイス
JP6465202B2 (ja) 磁気光学材料及びその製造方法、並びに磁気光学デバイス
JP6265155B2 (ja) 磁気光学材料及び磁気光学デバイス
JP6743970B2 (ja) 常磁性ガーネット型透明セラミックス、磁気光学材料及び磁気光学デバイス
KR102262771B1 (ko) 자기 광학 재료 및 그 제조 방법과 자기 광학 디바이스
JP6879264B2 (ja) 常磁性ガーネット型透明セラミックス、磁気光学材料及び磁気光学デバイス
JP6881390B2 (ja) 常磁性ガーネット型透明セラミックス、磁気光学材料及び磁気光学デバイス
JP6137044B2 (ja) 磁気光学材料及び磁気光学デバイス
TWI673249B (zh) 磁性光學材料及其製造方法、與磁性光學裝置
JP6187379B2 (ja) 磁気光学材料及び磁気光学デバイス
JP2022019246A (ja) 磁気光学材料及び磁気光学デバイス

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480050028.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14844266

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015536616

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167004889

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014844266

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014844266

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14917149

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2924312

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE