WO2015037614A1 - ほうろう用冷延鋼板及びその製造方法、並びにほうろう製品 - Google Patents

ほうろう用冷延鋼板及びその製造方法、並びにほうろう製品 Download PDF

Info

Publication number
WO2015037614A1
WO2015037614A1 PCT/JP2014/073918 JP2014073918W WO2015037614A1 WO 2015037614 A1 WO2015037614 A1 WO 2015037614A1 JP 2014073918 W JP2014073918 W JP 2014073918W WO 2015037614 A1 WO2015037614 A1 WO 2015037614A1
Authority
WO
WIPO (PCT)
Prior art keywords
enamel
content
steel sheet
fatigue
steel
Prior art date
Application number
PCT/JP2014/073918
Other languages
English (en)
French (fr)
Inventor
友清 寿雅
山中 晋太郎
健悟 竹田
西村 哲
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to JP2015536600A priority Critical patent/JP6586012B2/ja
Priority to KR1020167005745A priority patent/KR101723349B1/ko
Priority to CN201480049483.2A priority patent/CN105518174B/zh
Priority to US14/916,299 priority patent/US10011888B2/en
Publication of WO2015037614A1 publication Critical patent/WO2015037614A1/ja
Priority to PH12016500410A priority patent/PH12016500410B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • C21D8/0284Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present invention relates to a high-strength enameled steel plate excellent in workability, enamel characteristics (foam / spot resistance, adhesion, and resistance to tearing) and fatigue characteristics, and its manufacturing method, in particular, after the resistance to engraving and enamel processing.
  • the present invention relates to a cold-rolled steel sheet for high-strength enamel that is remarkably excellent in fatigue properties and a method for producing the same.
  • the present invention also relates to an enamel product using the enamel steel plate.
  • enamel steel sheets have been used as enamel products after heat resistance, weather resistance, chemical resistance, and water resistance functions have been imparted by enamel processing by baking glass onto the steel sheet surface.
  • enamel steel plates are widely used as materials for kitchen utensils such as pots, sinks, and building materials, taking advantage of these characteristics. Properties required for such an enamel steel sheet include firing strain resistance, resistance to tearing, adhesion, bubble resistance and sunspot defects. Further, in the manufacturing process in which the enamel steel sheet is used as an enamel product, press working is usually performed to obtain a product shape. Therefore, in addition to the above characteristics, the enamel steel sheet is also required to have good formability (workability).
  • enamel steel plates have recently been applied to the energy field of power generation facilities and the like (for example, heat exchangers for generators). In such a field, it is required to increase the strength of the steel sheet used for the purpose of improving reliability such as fatigue due to aging and further reducing the weight of parts.
  • Patent Document 1 describes the strengthening of steel plates having enamel characteristics.
  • the steel sheet described in Patent Document 1 is strengthened by adding Ti to the steel and finely precipitating TiC in the steel sheet during enamel firing (firing process in enamel processing).
  • Patent Document 2 describes a steel sheet that secures enamel characteristics at the same time as increasing strength by controlling the addition ratio of Ni and P as components in the steel sheet to a specific range.
  • Patent Document 1 the steel sheet obtained by the technique of Patent Document 1 is liable to generate surface defects called bubbles or black spots when enameled. Further, in a short heat treatment during firing, TiC is not easily generated sufficiently, and pinch defects are likely to occur.
  • Patent Document 2 requires the addition of expensive Ni in order to ensure enamel characteristics. Therefore, although characteristics can be secured, problems remain from the viewpoint of manufacturing cost.
  • Non-Patent Document 1 describes a technique for improving the fatigue characteristics of an automotive steel sheet by increasing the P content.
  • enamel steel sheets unlike automotive steel sheets, have many precipitates (especially oxides) that cause intentional degradation of fatigue characteristics in order to ensure enamel characteristics, particularly toughness resistance. Need to be distributed throughout the organization.
  • enamel steel plates unlike enamel steel plates, enamel steel plates are subjected to enamel treatment that is heated to 800 ° C. or higher after processing, so that the structure changes due to thermal history. Therefore, as shown in FIG. 1, the enamel steel sheet has lower fatigue properties than the automobile steel sheet. As a result, even if the technique for improving fatigue properties performed on steel plates for automobiles is applied to steel plates for enamel, it is not possible to obtain enamel steel plates having sufficient fatigue properties.
  • the present invention develops the technology related to the enamel steel sheet described above, and is an inexpensive high-strength enamel steel sheet excellent in workability, tough resistance, and fatigue characteristics, in particular, excellent in workability and tough resistance.
  • An object of the present invention is to provide an inexpensive high-strength cold rolled steel sheet for enamel having excellent fatigue characteristics even after enamel treatment and a method for producing the same.
  • Another object of the present invention is to obtain an enamel product using an inexpensive high-strength enamel cold-rolled steel sheet that is excellent in workability, resistance to fatigue, and fatigue properties.
  • the present invention has been made through various studies in order to overcome the problems of conventional steel plates for enamel.
  • the inventors of the present invention have studied the effects of the composition of the components and the manufacturing conditions on the tensile resistance, workability, and fatigue characteristics of the cold rolled steel sheet for enamel and obtained the following findings (a) to (f). It was.
  • Tightness resistance is improved by optimizing the component composition of the steel and controlling precipitates in the steel plate that traps hydrogen in the steel plate, which is a cause of tension.
  • the resistance to squeezing is improved.
  • the crystal grain size can be controlled by appropriately controlling the hot rolling, pickling and cold rolling conditions. Further, the diameter of the oxide can be controlled within a preferable range, and the precipitate form in the final product can be controlled. Furthermore, in cold rolling, the strain accumulated in the surface layer portion can be reduced by setting the coefficient of friction between the roll and the steel sheet to an appropriate range by selecting cold rolling oil or the like.
  • the present invention has been made based on the above knowledge, and the gist thereof is as follows.
  • the cold rolled steel sheet for enamel according to one embodiment of the present invention is, in mass%, C: 0.0005 to 0.0050%, Mn: 0.05 to 1.50%, Si: 0.001 to 0 .015%, Al: 0.001 to 0.01%, N: 0.0010 to 0.0045%, O: 0.0150 to 0.0550%, P: 0.04 to 0.10%, S: 0.0050 to 0.050%, Nb: 0.020 to 0.080%, Cu: 0.015 to 0.045%, the balance being Fe and impurities, the C content being C (%)
  • Mn content is represented by Mn (%)
  • P content is represented by P (%)
  • Nb content is represented by Nb (%)
  • the average crystal grain size of the ferrite at a position of 1/4 of the plate thickness in the plate thickness direction is 12.0 ⁇ m or less
  • Fe, Mn Containing Nb, the Fe-Mn-Nb based composite oxide in diameter is 0.2 ⁇ m or more 10 ⁇ m or less
  • the fatigue limit ratio is the retention time heat treatment 5 minutes are shown by the value obtained by dividing the fatigue strength in the tensile strength is a stress at 10 7 cycles after undergoing A void is formed between the structure and the Fe—Mn—Nb-based composite oxide, and the equivalent circle diameter of the void is 0.1 to 0.6 ⁇ m;
  • the value obtained by dividing the length of the base by the height is 1.0 to 15. 2.20 ⁇ 8 ⁇ C (%) + 1.3 ⁇ Mn (%) + 18 ⁇ P (%) + 5.1 ⁇ (Nb (%)) 0.5 ⁇ 4.00 (i)
  • the cold rolled steel sheet for enamel according to another aspect of the present invention is, by mass, C: 0.0005 to 0.0050%, Mn: 0.05 to 1.50%, Si: 0.001 to 0.015%, Al: 0.001 to 0.01%, N: 0.0010 to 0.0045%, O: 0.0150 to 0.0550%, P: 0.04 to 0.10%, S : 0.0050 to 0.050%, Nb: 0.020 to 0.080%, Cu: 0.015 to 0.045% B: 0.0005 to 0.0050%, the balance being Fe and impurities
  • C content is represented by C (%)
  • Mn content is represented by Mn (%)
  • the P content is represented by P (%)
  • Nb content is represented by Nb (%)
  • the following formula (ii) is satisfied.
  • the structure contains ferrite, and the average crystal grain size of the ferrite at a position 1/4 of the plate thickness in the plate thickness direction from the surface.
  • the fatigue limit ratio represented by a value obtained by dividing the fatigue strength by the tensile strength is greater than 0.42; voids are formed between the structure and the Fe—Mn—Nb—B composite oxide, and the voids
  • the circle equivalent diameter is 0.1 to 0.6 ⁇ m; when the gap is approximated as a triangle and the long side of the triangle is the base, the value obtained by dividing the length of the base by the height is 1.0. ⁇ 15. 2.50 ⁇ 8 ⁇ C (%) + 1.3 ⁇ Mn (%) + 18 ⁇ P (%) + 5.1 ⁇ (Nb (%)) 0.5 ⁇ 4.00 (ii)
  • the cold rolled steel sheet for enamel according to the above (1) or (2) is further in mass%, Cr, V, Zr, Ni, As, Ti, Se, Ta, W, Mo, Sn, Sb.
  • One or more selected from La, Ce, Ca and Mg may be contained in a total amount of 0.1% or less.
  • An enamel product according to another aspect of the present invention is manufactured using the cold rolled steel sheet for enamel described in (1) or (2) above.
  • An enamel product according to another aspect of the present invention is manufactured using the cold rolled steel sheet for enamel described in (3) above.
  • a high-strength enameled steel sheet having excellent workability and anti-tackiness properties and excellent fatigue characteristics even after enamel processing, and an enamel product produced using this cold-rolled steel sheet are provided.
  • the cold-rolled steel sheet for high-strength enamel of the present invention can improve reliability against fatigue and the like in aged use and reduce the weight of the product when applied to the energy field in addition to kitchen utensils and building materials.
  • a cold rolled steel sheet for high-strength enamel having excellent fatigue properties after enamel processing (hereinafter referred to as “enamel steel sheet according to this embodiment”), which has excellent workability and toughness resistance according to this embodiment. ) And its manufacturing method (hereinafter sometimes referred to as “a method for manufacturing an enamel steel plate according to this embodiment”), and a high-strength enamel with excellent workability and anti-slip properties according to this embodiment.
  • An enamel product manufactured using a cold-rolled steel sheet hereinafter sometimes referred to as “enamel product according to the present embodiment” will be described.
  • % related to the component composition means mass%. Since the enamel product according to this embodiment is manufactured using the enamel steel plate according to this embodiment, the component composition of the enamel product according to this embodiment is the same as that of the enamel steel plate according to this embodiment.
  • the upper limit of the C content is set to 0.0050%.
  • the upper limit of the C content is preferably set to 0.0025%. More preferably, it is 0.0015%.
  • the lower limit of the C content is not particularly limited from the viewpoint of securing the steel sheet characteristics. However, if the C content is reduced more than necessary, not only the steelmaking cost is increased, but also the content of other alloy elements needs to be increased in order to ensure the strength as a product, resulting in an increase in production cost. Therefore, it is preferable that the lower limit of the C content is 0.0005%. A more preferable lower limit of the C content is 0.0010%.
  • Mn 0.05 to 1.50% Mn affects the composition of oxides that contribute to the improvement of the toughness of the steel plate for enamel in relation to the O content, the Nb content, and the B content. It also affects the strengthening of the steel sheet. Therefore, Mn is an important element in the enamel steel plate. Mn is an element that prevents hot brittleness due to the presence of S during hot rolling. In order to obtain these effects, the lower limit of the Mn content is 0.05% in the enamel steel plate according to the present embodiment containing O. Normally, when the Mn content is high, the enamel adhesion becomes poor and bubbles and black spots are likely to occur. However, when Mn is present in the steel as an oxide, the enamel adhesion, the foam resistance / spot resistance Deterioration is small.
  • Mn is actively used for controlling oxides and ensuring the strength of the steel plate.
  • the Mn content exceeds 1.50%, solidification segregation is likely to occur and the toughness and mechanical properties may be deteriorated. Therefore, the upper limit of the Mn content is 1.50%.
  • the upper limit of the preferable Mn content is 1.20%.
  • Si 0.001 to 0.015%
  • Si is an element having an effect of controlling the composition of the oxide.
  • the lower limit of the Si content needs to be 0.001%.
  • the lower limit of the preferred Si content is 0.005%.
  • the upper limit of the Si content is 0.015%.
  • the upper limit of the Si content is preferably 0.008%.
  • Al 0.001 to 0.010%
  • Al is an element effective for deoxidation of steel.
  • the content needs to be carefully controlled.
  • the Al content exceeds 0.010%, it becomes difficult to keep the O content required for the enamel steel plate according to the present embodiment in the steel. In this case, it becomes difficult to form a desired composite oxide, and the number density of the composite oxide effective for the resistance to sag is lowered.
  • an Al oxide having poor ductility in hot rolling is formed, which becomes a factor of reducing the resistance to squeezing. In this case, it becomes difficult to control the oxide effective for improving the resistance to squeezing. Therefore, the upper limit of the Al content is 0.010%.
  • the Al content is less than 0.001%, a great load is applied to the steelmaking process. Therefore, the lower limit of the Al content is 0.001%.
  • the lower limit of the preferred Al content is 0.003%.
  • N 0.0010 to 0.0045%
  • N is an interstitial solid solution element.
  • the upper limit of N content is set to 0.0045%.
  • the lower limit of the N content need not be particularly limited. However, since it is extremely costly to reduce the N content to 0.0010% or less with the current technology, the lower limit of the N content may be set to 0.0010%. A more preferable lower limit of the N content is 0.0020%.
  • O 0.0150 to 0.0550%
  • O is an element necessary for forming a complex oxide, and directly affects the resistance to gripping and workability. Further, the O content has an influence on the anti-fatigue property, that is, the number density of the composite oxide and the size of the voids existing in the steel in relation to the Mn content, the Nb content, and the B content. Therefore, O is an essential element in the enamel steel plate according to the present embodiment.
  • the lower limit of the O content is set to 0.0150%.
  • the lower limit of the preferable O content is 0.0200%.
  • the upper limit of the O content is 0.0550%.
  • a preferable upper limit of the O content is 0.0450%.
  • P 0.040 to 0.100%
  • P is an element effective for increasing the strength by reducing the crystal grain size of the steel sheet.
  • the lower limit of the P content is 0.040%.
  • the lower limit of the preferred P content is 0.050%.
  • the upper limit of the P content is 0.100%.
  • a preferable upper limit of the P content is 0.075%.
  • S 0.0050 to 0.0500%
  • S is an element that forms Mn sulfide together with Mn.
  • the lower limit of the S content is set to 0.0050%.
  • a preferable lower limit of the S content is 0.0100%, and a more preferable lower limit of the S content is 0.0150%.
  • the upper limit of the S content is 0.0500%.
  • the upper limit of the preferable S content is 0.0300%.
  • Nb 0.020 to 0.080%
  • Nb is an essential element in the enamel steel plate according to the present embodiment.
  • Nb affects the composition of oxides that contribute to the improvement of the toughness of the steel plate for enamel in relation to the O content, the Mn content, and the B content.
  • Nb is an element that contributes to increasing the strength of a steel sheet by refining crystal grains.
  • the lower limit of the Nb content is 0.020%.
  • the lower limit of the preferable Nb content is 0.040%.
  • the upper limit of Nb content is 0.080%.
  • the upper limit with preferable Nb content is 0.060%, and a more preferable upper limit is 0.055%.
  • Cu 0.015 to 0.045%
  • Cu is an element having an effect of controlling the reaction between the vitreous and the steel plate during enamel firing.
  • the lower limit of the Cu content is 0.015%.
  • the minimum of preferable Cu content is 0.020%.
  • the upper limit of the Cu content is 0.045%.
  • the upper limit of the preferable Cu content is 0.040%, and the more preferable upper limit is 0.030%.
  • B 0.0005 to 0.0050%
  • the control range of the oxide becomes wider, which is advantageous for improving the tightness resistance. Even when B is not contained, it is possible to obtain a steel plate for enamel having excellent resistance to squeezing. However, the inclusion of B can easily improve the squeeze resistance.
  • the B content needs to be 0.0005% or more.
  • B is an element having an effect of improving the adhesion of the enamel. From the viewpoint of adhesion, the lower limit of the B content is preferably 0.0010%, more preferably 0.0015%. On the other hand, if the B content is excessive, castability in the steel making process is deteriorated.
  • the upper limit of the B content is set to 0.0050%. Further, when Nb is contained in a relatively large amount, if the B content is excessive, the recrystallization temperature is remarkably increased, and the workability after cold rolling and annealing is lowered. In addition, when the B content is excessive, annealing at a very high temperature is required to obtain sufficient workability, and the productivity of annealing is reduced. Therefore, also from this point, the upper limit of the B content is set to 0.0050%. A preferable upper limit of the B content is 0.0035%.
  • the enamel steel plate according to the present embodiment basically contains the above-described elements and the balance is Fe and impurities, but if necessary, Cr, V, Zr, Ni, As, Ti, One or more selected from Se, Ta, W, Mo, Sn, Sb, La, Ce, Ca, and Mg may be contained in total of 1.0% or less.
  • one or more elements may be contained in a total amount of 1.0% or less. The total content of these elements is preferably 0.5% or less, more preferably 0.1% or less.
  • C, Mn, P, and Nb need to satisfy the following formula (1). 2.20 ⁇ 8 ⁇ C (%) + 1.3 ⁇ Mn (%) + 18 ⁇ P (%) + 5.1 ⁇ (Nb (%)) 0.5 ⁇ 4.00 (1)
  • C (%), Mn (%), P (%), and Nb (%) represent the contents in mass% of C, Mn, P, and Nb, respectively.
  • the fatigue properties of steel sheets improve as the tensile strength of the steel sheets increases.
  • the enamel is subjected to a heat history through heating (firing) exceeding 800 ° C. for enamel processing. Since this processing and enamel treatment change the structure of the steel plate, the tensile strength of the steel plate after enamel treatment is different from the state before enamel treatment.
  • the inventors of the present invention focused on changes in the structure morphology before and after the enamel treatment, and found that C, Mn, P and Nb contained in the steel plate greatly affect the changes in the structure before and after the enamel treatment. Moreover, when content of C, Mn, P, and Nb in a steel plate satisfy
  • the present inventors contain Mn, Si, Al, N, O, P, S, Nb, and Cu, and further Cr, V, Zr, Ni, As, Ti, Se, Ta, W, Mo, and Sn. , Sb, La, Ce, Ca, Mg
  • a heat treatment of 830 ° C. ⁇ 5 min corresponding to the enamel treatment was performed.
  • the fatigue strength indicates the fatigue strength corresponding to the tensile strength of the steel plate that has been processed and enameled (that is, exhibits a sufficient fatigue limit ratio).
  • the fatigue strength is low with respect to the tensile strength of the steel sheet (that is, the fatigue limit ratio is low).
  • Formula (1x) is 2.40 or more.
  • the inventors contain Mn, Si, Al, N, O, P, S, Nb, Cu and B, and further Cr, V, Zr, Ni, As, Ti, Se, Ta, W
  • steel plates containing one or more of Mo, Sn, Sb, La, Ce, Ca, Mg as required various component compositions by changing the contents of C, Mn, P and Nb A steel plate was prepared. Then, after applying a tensile strain of 10% to the steel plate, a heat treatment of 830 ° C. ⁇ 5 min corresponding to the enamel treatment was performed.
  • Formula (2x) is 2.50 or more, the fatigue strength corresponding to the tensile strength of the steel plate that has been processed and subjected to the enamel treatment is shown, but if it is less than 2.50, the tensile strength of the steel plate is shown. On the other hand, the fatigue strength was found to be low.
  • Formula (2x) is 2.70 or more.
  • the steel sheet when the steel sheet does not contain B, a composite oxide containing Fe, Mn, and Nb, particularly an Fe—Mn, Nb oxide integrated with Fe— There is a Mn—Nb-based composite oxide. Further, when the steel sheet contains B, a composite oxide containing Fe, Mn, Nb, and B, particularly a Fe—Mn—Nb—B system in which an oxide made of Fe, Mn, Nb, and B is integrated. A complex oxide is present.
  • a composite oxide having a diameter of 0.2 ⁇ m or more and 10 ⁇ m or less is present in the steel sheet at 2 ⁇ 10 2 pieces / mm 2 or more and 1 ⁇ 10 4 pieces / mm 2 or less.
  • the above-described Fe—Mn—Nb-based composite oxide and the above-described Fe—Mn—Nb—B-based composite oxide have the same effects, and therefore both are referred to as the composite oxide according to the present embodiment. There is.
  • the composite oxide having a diameter of less than 0.2 ⁇ m has a small degree of contribution to improvement of the resistance to squeezing. Therefore, the diameter of the complex oxide according to this embodiment is 0.2 ⁇ m or more. Preferably, it is 0.5 ⁇ m or more, more preferably 1.0 ⁇ m or more. The definition of the diameter of the composite oxide according to this embodiment and the measurement method will be described later.
  • the upper limit of the diameter of the composite oxide according to the present embodiment is not particularly limited from the viewpoint of improving the resistance to tearing.
  • the diameter of the complex oxide according to this embodiment is 10 ⁇ m or less. Preferably it is 5 micrometers or less.
  • the complex oxide according to the present embodiment needs to be 2 ⁇ 10 2 pieces / mm 2 or more. Preferably, it is 5 ⁇ 10 2 pieces / mm 2 or more.
  • the number density of the complex oxide according to the present embodiment in the steel sheet is 1 ⁇ 10 4 pieces / mm 2 or less. Preferably, it is 5 ⁇ 10 3 pieces / mm 2 or less.
  • the method for identifying the composite oxide according to the present embodiment is not particularly limited.
  • the oxide in which B and B are simultaneously detected may be used as the composite oxide according to this embodiment.
  • a scanning electron microscope (FE-SEM) and an energy dispersive X-ray dispersive analyzer (EDAX) may be used.
  • the measurement method may be a normal method. However, since it is necessary to determine the concentration of the minute region, it is necessary to take care such as sufficiently reducing the beam diameter of the electron beam.
  • the diameter and density of the composite oxide were defined by the following method. That is, at an arbitrary position of the steel sheet with SEM, the magnification: 5000 times, the number of fields of view: 10 or more, the size and number of complex oxides in the field of view are measured, and the major axis of the complex oxide is the oxide diameter. did.
  • the density the number of complex oxides having a major axis of 0.2 ⁇ m or more among the oxides in the field of view was calculated, and the density (number density) per unit area (mm 2 ) was calculated from the number.
  • the structure of the enamel steel plate according to this embodiment is mainly composed of ferrite. For this reason, it is effective to reduce the crystal grain size in order to improve fatigue properties in addition to increasing strength.
  • the enamel steel plate is processed into a desired product shape by a press or the like as described later, and then enameled with a glaze and heated to a temperature of more than about 800 ° C. By this heating, adhesion between the vitreous enamel glaze and the steel sheet is achieved. By this heat treatment (enamel treatment), grain growth occurs and the crystal grain size changes, resulting in a change in fatigue strength.
  • the average crystal grain size of ferrite in the steel sheet structure before heat treatment must be 12.0 ⁇ m or less at a position (1/4 t) of the plate thickness in the plate thickness direction from the surface. is there.
  • the average crystal grain size exceeds 12.0 ⁇ m, it is difficult to increase the strength of the steel sheet.
  • it is desirable that the average crystal grain size is small. However, as the average crystal grain size decreases, the workability deteriorates.
  • the crystal grain size of the steel plate for enamel is affected by the concentration of elements in the steel, particularly P, and the crystal grain size tends to decrease as the P concentration increases. The concentration distribution of P in the steel sheet changes in the hot rolling and pickling processes.
  • the P concentration at a position (surface layer portion) of 20 ⁇ m in the thickness direction from the surface layer is higher than the position of 1/4 t at which the average crystal grain size was measured.
  • the crystal grain size becomes smaller than 1/4 t.
  • the concentration distribution of elements can be measured by glow discharge emission analysis or the like.
  • the average crystal grain size of ferrite may be measured according to the cutting method described in JIS G0552.
  • each content of C, Mn, P, and Nb when the steel plate does not contain B, the following formula (1), When B is contained, it is important to satisfy the following formula (2).
  • the value of the formula (1) is less than 2.20 or the value of the formula (2) is less than 2.50, fatigue characteristics are deteriorated in an enamel product obtained by processing and enamelling a steel plate for enamel.
  • the present inventors contain C, Mn, Si, Al, N, O, P, S, Nb, Cu as steel components in the laboratory, and further, if necessary, Cr, V, Zr, Ni, Steel plate partially containing As, Ti, Se, Ta, W, Mo, Sn, Sb, La, Ce, Ca, Mg, and C, Mn, Si, Al, N, O, P, S, Nb, Cu
  • Cr, V, Zr, Ni Ni, As, Ti, Se, Ta, W, Mo, Sn, Sb, La, Ce, Ca, Mg
  • Steel plates having various component compositions with varying contents of C, Mn, P, and Nb were prepared.
  • the horizontal axis represents 8 ⁇ C (%) + 1.3 ⁇ Mn (%) + 18 ⁇ P (%) + 5.1 ⁇ (Nb (%)) 0.5 in Formula (1) and Formula (2) 0.5
  • the vertical axis represents the fatigue limit ratio, that is, the value ( ⁇ w / TS) obtained by dividing the fatigue strength ( ⁇ w), which is the stress at 10 7 cycles, by the tensile strength (TS) measured in the tensile test.
  • a limit ratio is 8 ⁇ C (%) of formula (1) + 1.3 ⁇ Mn ( %) + 18 ⁇ P (%) + 5.1 ⁇ (Nb (%)) fixed relationship relative to 0.5 of the value
  • the fatigue limit ratio improved as the value was increased. Further, when the steel sheet structure after the fatigue test was observed, the value of 8 ⁇ C (%) + 1.3 ⁇ Mn (%) + 18 ⁇ P (%) + 5.1 ⁇ (Nb (%)) 0.5 was 2. It was confirmed that the crystal grain size was coarsened in a steel sheet of less than .50. 8 ⁇ C (%) + 1.3 ⁇ Mn (%) + 18 ⁇ P (%) + 5.1 ⁇ (Nb (%)) When 0.5 is 2.50 or more, the crystal grains of the steel sheet become coarse However, the degree of coarsening was small.
  • the gap is formed at the interface between the steel plate and the composite oxide during processing because the steel plate and the composite oxide have a difference in deformation resistance and the composite oxide is less likely to be deformed than the steel plate. Since this void is formed during hot rolling or cold rolling, it exhibits a pseudo-triangular shape (substantially triangular shape) in the direction in which the steel plate is extended by rolling (cross section in the rolling direction).
  • FIG. 3 shows an example of the gap. Since such voids serve as trap sites for hydrogen in the steel, it is desirable that such voids exist in order to suppress spurious defects.
  • strain concentration in the voids leads to a decrease in fatigue characteristics. In order to suppress the deterioration of fatigue characteristics due to voids, it is important to alleviate strain concentration in the voids.
  • the inventors reduced the concentration of voids to 0.6 ⁇ m or less in terms of the equivalent circle diameter, thereby reducing strain concentration in the voids and performing processing and enamel processing. It was found that the deterioration of fatigue characteristics is suppressed. However, if the size of the voids becomes too small, the function as a trap site for hydrogen in steel cannot be exhibited. Therefore, the lower limit of the size of the gap is set to 0.1 ⁇ m in terms of the equivalent circle diameter.
  • the present inventors have found that even when the size of the void is an equivalent circle diameter of 0.6 ⁇ m or less, the fatigue characteristics may be deteriorated. That is, the present inventors have found that the fatigue characteristics are affected not only by the size of the air gap but also by the shape.
  • the void formed at the interface between the steel plate and the composite oxide by hot rolling or cold rolling has a pseudo-triangular shape.
  • the shape of the void changes depending on the conditions of hot rolling and cold rolling, and when the angle of the triangle tip becomes acute, strain tends to concentrate during stress loading, leading to coarsening of crystal grains after enamel processing.
  • fatigue characteristics deteriorate due to concentration of strain.
  • the decrease in fatigue characteristics increases as the tip angle of the triangular shape of the air gap becomes acute.
  • the long side of the triangular shape is defined as the base
  • the value obtained by dividing the length of the base by the height exceeds 15, particularly. It becomes.
  • a value obtained by dividing the length of the base by the height of the triangle is 15
  • the shape of the gap is regarded as a triangle and the long side is the base
  • the apex angle of the triangle of the gap is small even when the value obtained by dividing the length of the base by the height is less than 1.0. Strain concentrates.
  • the lower limit of the value obtained by dividing the length of the base by the height is 1.0.
  • the equivalent circle diameter of the void and the shape when considered as a triangle were defined by the following method. That is, with a SEM, the magnification was 5000 times, the number of fields was 10 or more, and the long sides and heights forming the triangular shape of the voids in the field of view were measured. The equivalent circle diameter was converted from the triangular area.
  • the steel plate for enamel according to the present embodiment is manufactured by refining, casting, hot rolling, pickling, cold rolling, continuous annealing, temper rolling, etc. of the molten steel having the above-described chemical components based on conventional methods. To do.
  • the heating temperature of the steel slab is preferably 1150 to 1250 ° C.
  • the rolling rate (cumulative rolling reduction) is preferably 30 to 90%
  • the finishing temperature is preferably 900 ° C. or higher.
  • a composite oxide containing Fe, Mn, and Nb produced in a refining and casting process, or a composite oxide containing Fe, Mn, Nb, and B is stretched by hot rolling.
  • the composite oxide is stretched and crushed by rolling, changed into a more preferable form for the desired properties, and uniformly distributed in the steel sheet, and rolled at a certain rolling rate. Is effective.
  • the composite oxide in steel can be sufficiently stretched, and the size and number density of the composite oxide obtained after cold rolling and continuous annealing can be easily achieved. A desired range can be obtained. However, if the hot rolling ratio exceeds 90%, the composite oxide in the steel becomes too fine, and it may not be possible to obtain good toughness resistance.
  • pickling after hot rolling the scale generated on the surface is removed.
  • pickling with hydrochloric acid may be performed on the basis of a concentration of about 8%, a liquid temperature of about 90 ° C., and an immersion time of about 60 seconds.
  • Pickling with sulfuric acid is not preferred. This is because in pickling with sulfuric acid, an excessive pickling is performed, and the surface layer in which elements are concentrated is removed more than necessary.
  • the steel sheet is further drawn by cold rolling. However, since the processing is performed at about 150 ° C. at the maximum, the hard complex oxide is hardly drawn by cold rolling.
  • the cold rolling rate (cumulative rolling reduction) in cold rolling is important for determining product characteristics, and is preferably 65 to 85%.
  • the hard complex oxide that functions as a hydrogen trap site is crushed in this cold rolling process. Therefore, the size and number density of the composite oxide present in the final product change depending on the cold rolling rate.
  • voids functioning as hydrogen trap sites are also formed by crushing hard composite oxide in the cold rolling process.
  • 65 It is preferable to perform a cold rolling rate of at least%.
  • the air gap effectively acts on the anti-tack property, but adversely acts on the workability.
  • the upper limit of the cold rolling rate is preferably 85%.
  • the composite oxide is crushed more than necessary and the size thereof becomes too small, so that the number density of the composite oxide effective for the resistance to fatigue decreases.
  • gap was crushed and disappeared is observed.
  • the shape of the gap formed by cold rolling that is, when the gap is regarded as a triangle, the value obtained by dividing the length of the base when the long side of the triangle is the base by the height is increased. The effect of improving jumpiness is reduced. Further, since the voids are not systematically bonded and disappeared, the introduction of strain due to processing causes the voids to become the starting point of cracking, and the workability deteriorates.
  • the gap shape can be preferably controlled.
  • the friction coefficient between the rolling roll and the steel plate is preferably 0.015 to 0.060, and more preferably 0.015 to 0.040. preferable.
  • the relationship between the friction coefficient and the gap shape varies depending on the setting of the rolling mill.
  • the friction coefficient can be calculated by iterative calculation using a general technique in rolling, that is, a rolling theory based on a two-dimensional slab method, so that the advanced rate and the calculated value of the rolling load are equal to the actually measured values.
  • rolling in which the friction coefficient between the rolling roll and the steel plate is controlled during rolling has not been performed.
  • the cold rolled steel sheet is annealed.
  • This annealing is preferably continuous annealing using a continuous annealing line from the viewpoint of productivity.
  • the annealing temperature is preferably 700 to 850 ° C., but it may be less than 700 ° C. or more than 850 ° C. for the purpose of characterizing mechanical properties.
  • temper rolling may be performed mainly for shape control. By this temper rolling, a steel plate for enamel having desired characteristics can be obtained.
  • the enamel product according to the present embodiment can be obtained by subjecting the enamel steel plate according to the present embodiment to processing such as press or roll forming for obtaining a desired shape, and enamel processing. What is necessary is just to perform according to a conventional method about processing, such as press and roll forming, and an enamel process.
  • processing such as press and roll forming, and an enamel process.
  • the glass plate of the glaze and the steel plate may be brought into close contact with each other by heating the steel plate coated with the glaze to, for example, 800 to 850 ° C. and holding it for 1 to 10 minutes.
  • the conditions in the examples are one example of conditions used for confirming the feasibility and effects of the present invention, and the present invention is based on this one example of conditions. It is not limited.
  • the present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
  • the hot-rolled steel sheet After pickling the hot-rolled steel sheet, it cold-rolled by the cold rolling rate shown in Table 2 to make a cold-rolled steel sheet, and further subjected to continuous annealing at 780 ° C. Thereafter, temper rolling of 1.2% was performed to produce a steel plate for enamel having a plate thickness of 0.8 mm.
  • board thickness of the hot-rolled steel plate was changed with respect to the rolling rate of cold rolling. The friction coefficient between the rolling roll and the steel plate was 0.025.
  • the cross section parallel to the cold rolling direction was observed with an SEM, and the diameter and number density of the oxide were measured by the above-described method.
  • the fatigue characteristics were evaluated by performing a double-side fatigue test on a steel sheet that had been subjected to a heat treatment corresponding to enamel treatment at a heating temperature of 830 ° C. and a holding time of 5 minutes after applying 10% tensile strain.
  • Fatigue properties are defined as a value obtained by dividing the stress at 10 7 cycles as fatigue strength ( ⁇ w) by the tensile strength (TS) obtained in a tensile test performed on the heat-treated steel sheet ( ⁇ w / TS) was defined as the fatigue limit ratio.
  • ⁇ w fatigue strength
  • TS tensile strength
  • the enamel characteristics are judged by evaluating the anti-sticking property and adhesion of a steel sheet that is dry by powder electrostatic coating, coated with glaze 100 ⁇ m, and fired at 830 ° C. for 5 min in the air. did.
  • the steel plate after the enamel treatment was placed in a constant temperature bath at 160 ° C. for 10 hours.
  • C Normal
  • D Determined to be problematic
  • a to C The enamel adhesion was evaluated by measuring the enamel peeling state of the deformed portion with 169 palpation needles by dropping a 2 kg ball head weight from a height of 1 m, and evaluating the area ratio of the unseparated portion.
  • the area ratio of the unpeeled portion was evaluated in four stages: A: 95% or more, B: more than 85% and less than 95%, C: more than 70% to less than 85%, and D: 70% or less.
  • the number of composite oxides having a diameter of 0.2 ⁇ m or more and 10 ⁇ m or less among the Fe—Mn—Nb composite oxide or Fe—Mn—Nb—B composite oxide per unit area is within the scope of the present invention. It was confirmed that the products in (2 ⁇ 10 2 pieces / mm 2 or more, 1 ⁇ 10 4 pieces / mm 2 or less) satisfy the workability while maintaining the anti-slip property.
  • Production No. Nos. 1 to 33 show that the steel sheet for high-strength enamel has excellent fatigue characteristics while maintaining workability and resistance to sturdiness compared to the conventional steel sheet for enamel.
  • production No. which is a comparative example.
  • 34 to 48 sufficient characteristics were not obtained in any one of workability, fatigue characteristics, toughness and adhesion.
  • the present invention it is possible to provide a high-strength enamel steel plate excellent in workability and toughness resistance and an enamel product manufactured using this enamel steel plate.
  • the high-strength enamel steel sheet according to the present invention can improve the reliability of fatigue and the like in aged use and reduce the product weight when applied to the energy field in addition to kitchen utensils and building materials. is there. Therefore, the present invention has high applicability in enamel steel plate manufacturing and utilization industries.

Abstract

 このほうろう用冷延鋼板は、所定の化学成分を有し、直径が0.2μm以上10μm以下であるFe‐Mn‐Nb系複合酸化物を、2×10個/mm以上1×10個/mm以下含み;10%の引張歪が付与され、かつ、加熱温度が830℃、保持時間が5分の熱処理が施された後の疲労限度比が0.42超であり;前記組織と前記Fe‐Mn‐Nb系複合酸化物との間に、空隙が形成され、前記空隙の円相当径が0.1~0.6μmであり;前記空隙を三角形として近似して前記三角形の長辺を底辺としたとき、前記底辺の長さを高さで除した値が1.0~15である。

Description

ほうろう用冷延鋼板及びその製造方法、並びにほうろう製品
 本発明は加工性、ほうろう特性(耐泡・黒点性、密着性、耐つまとび性)及び疲労特性に優れた高強度ほうろう用鋼板及びその製造方法に関し、特に、耐つまとび性及びほうろう処理後の疲労特性に著しく優れた高強度ほうろう用冷延鋼板及びその製造方法に関する。また、本発明は、このほうろう用鋼板を用いたほうろう製品に関する。
 本願は、2013年09月10日に、日本に出願された特願2013-187473号に基づき優先権を主張し、その内容をここに援用する。
 従来、ほうろう用鋼板は鋼板表面にガラス質を焼き付けるほうろう処理によって耐熱性、耐候性、耐薬品性及び耐水性の機能が付与された上で、ほうろう製品として用いられている。また、ほうろう用鋼板は、このような特性を活かして、鍋類、流し台等の台所用品、建材等の材料として広く利用されている。このようなほうろう用鋼板に求められる特性として、耐焼成ひずみ性、耐つまとび性、密着性、耐泡・黒点欠陥性等がある。また、ほうろう用鋼板をほうろう製品とする製造過程においては、製品形状を得るために、通常プレス加工が施される。そのためほうろう用鋼板には、上記の特性に加えて良好な成形性(加工性)も求められる。
 また、ほうろう処理を施すことにより、硫酸等が含まれる苛酷な腐食環境下での耐食性が向上する。そのため、ほうろう用鋼板は、近年、発電設備等(例えば発電機用熱交換器)のエネルギー分野にも適用範囲が広がっている。このような分野においては、経年使用に対する疲労等の信頼性の向上や、さらには、部品の軽量化を目的として、使用される鋼板の高強度化が求められている。
 ほうろう特性を有する鋼板の高強度化に関しては、例えば、特許文献1に記載されている。特許文献1に記載の鋼板は、鋼中にTiを添加し、ほうろう焼成(ほうろう処理における焼成工程)中に、TiCを鋼板中に微細析出させることによって高強度化が図られている。また、特許文献2には、鋼板中成分のNi及びPの添加量比を特定の範囲に制御することによって、高強度化と同時にほうろう特性を確保した鋼板が記載されている。
 しかし、特許文献1の技術で得られた鋼板は、ほうろう処理を施した場合に、泡または黒点と言われる表面欠陥が発生し易い。また、焼成中の短時間の熱処理では、TiCが十分に生成し難く、つまとび欠陥が発生し易い。
 特許文献2の技術は、ほうろう特性の確保のために、高価なNiの添加を必須としている。そのため、特性確保は可能なものの、製造コストの観点からは課題が残る。
 自動車用鋼板等では、従来、疲労特性の向上が求められており、種々の研究がなされている。しかしながら、ほうろう用鋼板のほうろう処理後の疲労特性(すなわち、ほうろう製品の疲労特性)を向上させる技術については、報告されていない。例えば非特許文献1では、P含有量を高めることにより、自動車用鋼板の疲労特性の向上を図る技術が記載されている。
 しかしながら、ほうろう用鋼板は、自動車用鋼板等とは異なり、ほうろう特性、特に耐つまとび性の確保のために、意図的に疲労特性を低下させる原因となる多くの析出物(特に酸化物)を組織中に分散させる必要がある。また、自動車用鋼板等と異なり、ほうろう用鋼板では、加工後に800℃以上に加熱するほうろう処理が行われるため、熱履歴により組織が変化してしまう。そのため、図1に示すように、ほうろう用鋼板では、自動車用鋼板に比べて疲労特性が低くなる。
 その結果、自動車用鋼板で行われる疲労特性向上技術を、ほうろう用鋼板に適用したとしても、それだけでは十分な疲労特性を有するほうろう用鋼板を得ることはできない。
 このように、ほうろう用鋼板の重要な特性である、耐つまとび性、加工性、さらには、鋼板信頼性の指針となる製品での疲労特性を十分満足する高強度鋼板は提供されていない。
日本国特開昭61-117246号公報 日本国特許第1456199号公報
"高強度薄鋼板の疲労強度"、長江ら、鉄と鋼、第68年(1982)第9号 p.1430~1436
 本発明は、前述したほうろう用鋼板に係る技術を発展させ、加工性、耐つまとび性、及び、疲労特性に優れた安価な高強度ほうろう用鋼板、特に、加工性、耐つまとび性に優れ、ほうろう処理後でも優れた疲労特性を有する安価な高強度ほうろう用冷延鋼板と、その製造方法を提供することを目的とする。また、本発明は、加工性、耐つまとび性及び疲労特性に優れた安価な高強度ほうろう用冷延鋼板を用いたほうろう製品を得ることを目的とする。
 本発明は、従来のほうろう用鋼板の課題を克服するために種々の検討を重ねてなされた。本発明者らは、ほうろう用冷延鋼板の耐つまとび性、加工性、及び、疲労特性について、成分組成、製造条件の影響を検討し、次の(a)~(f)の知見を得た。
 (a)鋼の成分組成を適正化し、つまとびの要因となる鋼板中水素をトラップする鋼板中の析出物を制御すれば、耐つまとび性が向上する。特に、鋼板中に酸化物を存在させると、耐つまとび性が向上する。
 (b)加工性は、鋼板の強度が高くなると劣化する。しかしながら、鋼板中に存在する析出物(ほうろう用鋼板の場合は、特に酸化物)の直径、個数を適正化することにより、鋼板が高強度化しても、加工性の劣化代を小さくできる。
 (c)ほうろう用鋼板では、上述のように鋼中に多くの酸化物が存在する。このようなほうろう用鋼板に、冷間圧延やプレス成形等の加工を行うと、鋼板中に存在する酸化物と鋼板との変形抵抗差により鋼中に存在する酸化物と鋼板組織との間に空隙が形成される。この空隙は、形状によっては、切欠き効果によって応力集中をもたらし、疲労破壊の起点となる可能性がある。そのため、空隙の形状を適切に制御することで、疲労特性の向上を図ることができる。
 (d)ほうろう用鋼板では、加工によって析出物の周囲及び空隙の周囲に歪が蓄積されやすい。特にプレス成形において曲げ変形が生じる場合には表層部(例えば表層から20μm以内)において、この傾向は顕著である。この蓄積された歪により、ほうろう処理時に粒成長が引き起こされる。
 ほうろう処理後の疲労特性は、表層部でのほうろう処理後の結晶粒径に影響を受けるため、平均結晶粒径を小さくすることは、疲労特性向上に有効である。しかしながら、平均結晶粒径が小さくても、粒成長によって部分的に粗大化した結晶粒が存在すると、疲労破壊の起点となるため、疲労特性が低下する。特に、空隙の近傍で粒成長が発生すると、疲労の起点になりやすい。このような粒成長は、ほうろう処理のような熱履歴が付与されない自動車用鋼板等では観察されないので、ほうろう用鋼板に特有の現象であると考えられる。
 (e)熱延、酸洗及び冷間圧延条件を適正に制御することで、結晶粒径の制御が可能である。また、酸化物の直径を好ましい範囲に制御し、最終製品での析出物形態を制御できる。
 さらに、冷間圧延において、冷延油などの選択によりロールと鋼板との摩擦係数を適正な範囲とすることにより、表層部に蓄積する歪を低下させることができる。
 (f)鋼板成分、特にC、Mn、P、Nbの含有量を所定の範囲に制御することで、ほうろう処理(ほうろう焼成)時の粒成長を防止できる。そのため、加工前の結晶粒径を小さくするとともに、C、Mn、P、Nbの含有量を適正化することによりほうろう処理後にも結晶粒を小さくすることができ、疲労特性を向上させることが可能となる。
 本発明は、以上の知見に基づいてなされたもので、その要旨は以下のとおりである。
 (1)本発明の一態様に係るほうろう用冷延鋼板は、質量%で、C:0.0005~0.0050%、Mn:0.05~1.50%、Si:0.001~0.015%、Al:0.001~0.01%、N:0.0010~0.0045%、O:0.0150~0.0550%、P:0.04~0.10%、S:0.0050~0.050%、Nb:0.020~0.080%、Cu:0.015~0.045%を含有し、残部がFeおよび不純物であり、C含有量をC(%)、Mn含有量をMn(%)、P含有量をP(%)、Nb含有量をNb(%)で表したとき、下記式(i)を満足し;組織がフェライトを含有し、表面から板厚方向に板厚の1/4の位置における前記フェライトの平均結晶粒径が12.0μm以下であり;Fe、Mn、Nbを含有し、直径が0.2μm以上10μm以下であるFe‐Mn‐Nb系複合酸化物を、2×10個/mm以上1×10個/mm以下含み;10%の引張歪が付与され、かつ、加熱温度が830℃、保持時間が5分の熱処理が施された後の10サイクルでの応力である疲労強度を引張強度で除した値で示される疲労限度比が0.42超であり;前記組織と前記Fe‐Mn‐Nb系複合酸化物との間に、空隙が形成され、前記空隙の円相当径が0.1~0.6μmであり;前記空隙を三角形として近似して前記三角形の長辺を底辺としたとき、前記底辺の長さを高さで除した値が1.0~15である。
 2.20≦8×C(%)+1.3×Mn(%)+18×P(%)+5.1×(Nb(%))0.5≦4.00・・・(i)
 (2)本発明の別の態様に係るほうろう用冷延鋼板は、質量%で、C:0.0005~0.0050%、Mn:0.05~1.50%、Si:0.001~0.015%、Al:0.001 ~0.01%、N:0.0010~0.0045%、O:0.0150~0.0550%、P:0.04~0.10%、S:0.0050~0.050%、Nb:0.020~0.080%、Cu:0.015~0.045%B:0.0005~0.0050%を含有し、残部がFeおよび不純物であり、C含有量をC(%)、Mn含有量をMn(%)、P含有量をP(%)、Nb含有量をNb(%)で表したとき、下記式(ii)を満足し;組織がフェライトを含有し、表面から板厚方向に板厚の1/4の位置における前記フェライトの平均結晶粒径が12.0μm以下であり;Fe、Mn、Nb、Bを含有し、直径が0.2μm以上10μm以下であるFe‐Mn‐Nb‐B系複合酸化物を、2×10個/mm以上1×10個/mm以下含み;10%の引張歪が付与され、かつ、加熱温度が830℃、保持時間が5分の熱処理が施された後の10サイクルでの応力である疲労強度を引張強度で除した値で示される疲労限度比が0.42超であり;前記組織と前記Fe‐Mn‐Nb‐B系複合酸化物との間に、空隙が形成され、前記空隙の円相当径が0.1~0.6μmであり;前記空隙を三角形として近似して前記三角形の長辺を底辺としたとき、前記底辺の長さを高さで除した値が1.0~15である。
 2.50≦8×C(%)+1.3×Mn(%)+18×P(%)+5.1×(Nb(%))0.5≦4.00・・・(ii)
 (3)上記(1)または(2)に記載のほうろう用冷延鋼板は、さらに、質量%で、Cr、V、Zr、Ni、As、Ti、Se、Ta、W、Mo、Sn、Sb、La、Ce、Ca、Mgから選択される1種以上を合計で0.1%以下含有してもよい。
 (4)本発明の別の態様に係るほうろう製品は、上記(1)または(2)に記載のほうろう用冷延鋼板を用いて製造される。
 (5)本発明の別の態様に係るほうろう製品は、上記(3)に記載のほうろう用冷延鋼板を用いて製造される。
 本発明によれば、加工性と耐つまとび性とに優れ、ほうろう処理後にも優れた疲労特性を有する高強度ほうろう用鋼板、及びこの冷延鋼板を用いて製造されたほうろう製品を提供することができる。本発明の高強度ほうろう用冷延鋼板は、台所用品、建材用に加え、エネルギー分野に適用する場合において、経年使用における疲労等に対する信頼性の向上や、製品の軽量化を可能とする。
各種鋼板の引張強度と疲労強度との関係を示す図である。 8×C(%)+1.3×Mn(%)+18×P(%)+5.1×(Nb(%))0.5の値と疲労強度比との関係を示す図である。 本実施形態に係るほうろう用鋼板に存在する空隙の一例である。
 以下、本実施形態に係る加工性と耐つまとび性とに優れ、ほうろう処理後に優れた疲労特性を有する高強度ほうろう用冷延鋼板(以下「本実施形態に係るほうろう用鋼板」ということがある。)とその製造方法(以下「本実施形態に係るほうろう用鋼板の製造方法」ということがある。)、並びに、本実施形態に係る加工性と耐つまとび性とに優れた高強度ほうろう用冷延鋼板を用いて製造されたほうろう製品(以下「本実施形態に係るほうろう製品」ということがある。)について説明する。
 まず、本実施形態に係るほうろう用鋼板の成分組成(化学成分)を限定する理由について説明する。ここで、成分組成に関する%は、質量%を意味する。
 本実施形態に係るほうろう製品は、本実施形態に係るほうろう用鋼板を用いて製造されるので、本実施形態に係るほうろう製品の成分組成は、本実施形態に係るほうろう用鋼板と同じである。
 C:0.0005~0.0050%
 Cは、その含有量が低いほど加工性が良好となる。そのため、C含有量の上限を0.0050%とする。加工性の指標となる伸び及びr値をより向上させるには、C含有量の上限を、0.0025%とすることが好ましい。更に好ましくは0.0015%である。C含有量の下限は、鋼板特性確保の観点からは特に限定する必要がない。しかしながら、C含有量を必要以上に低減すると製鋼コストが高くなるだけでなく、製品としての強度を確保するために他の合金元素の含有量を増加させる必要が生じ、製造コストが高くなる。そのため、C含有量の下限を0.0005%とすることが好ましい。より好ましいC含有量の下限は0.0010%である。
 Mn:0.05~1.50%
 Mnは、O含有量、Nb含有量、B含有量と関連して、ほうろう用鋼板の耐つまとび性の向上に寄与する酸化物の組成に影響する。また、鋼板の高強度化にも影響する。そのため、Mnはほうろう用鋼板において重要な元素である。また、Mnは、熱間圧延時に、Sの存在に起因する熱間脆性を防止する元素である。これらの効果を得るため、Oを含む本実施形態に係るほうろう用鋼板において、Mn含有量の下限は0.05%とする。
 通常、Mn含有量が高くなると、ほうろう密着性が悪くなり、泡や黒点が発生し易くなるが、Mnが酸化物として鋼中に存在する場合には、ほうろう密着性、耐泡・黒点性の劣化は小さい。従って、本実施形態に係るほうろう用鋼板では、Mnを、酸化物の制御、鋼板強度の確保のために積極的に活用する。しかしながら、Mn含有量が1.50%を超えると、凝固偏析が生じやすくなり靱性や機械特性が劣化する恐れがある。そのため、Mn含有量の上限を、1.50%とする。好ましいMn含有量の上限は1.20%である。
 Si:0.001~0.015%
 Siは、酸化物の組成を制御する効果を有する元素である。この効果を得るためには、Si含有量の下限を0.001%とする必要がある。好ましいSi含有量の下限は0.005%である。一方、Si含有量が過剰であると、ほうろう特性が劣化する。特に、熱間圧延でSi酸化物が多量に形成されて、耐つまとび性が劣化する場合がある。そのため、Si含有量の上限を、0.015%とする。耐泡、耐黒点性などを向上させ、さらに良好な表面性状を得る場合、Si含有量の上限を0.008%とすることが好ましい。
 Al:0.001~0.010%
 Alは、鋼の脱酸に有効な元素である。しかしながら、強脱酸元素であるため、含有量については慎重に制御する必要がある。Al含有量が0.010%を超えると、本実施形態に係るほうろう用鋼板が必要とするO含有量を鋼中に留めることが困難となる。この場合、所望する複合酸化物の形成が困難となり、耐つまとび性に有効となる複合酸化物の数密度が低下する。また、熱間圧延での延性に乏しいAl酸化物を形成して、耐つまとび性を低下させる要因となる。この場合、耐つまとび性の向上に有効な酸化物の制御が困難になる。そのため、Al含有量の上限を、0.010%とする。一方、Al含有量を0.001%未満とする場合、製鋼工程に多大な負荷がかかる。そのため、Al含有量の下限を、0.001%とする。好ましいAl含有量の下限は0.003%である。
 N:0.0010~0.0045%
 Nは、侵入型固溶元素である。Nを多量に含有すると、NbやB等の窒化物形成元素を添加しても加工性が劣化する傾向があるだけでなく、非時効性鋼板を製造し難くなる。そのためN含有量の上限を、0.0045%とする。N含有量の下限は特に限定する必要がない。しかしながら、現状技術ではN含有量を0.0010%以下に低減するには著しくコストがかかるので、N含有量の下限を0.0010%としてもよい。より好ましいN含有量の下限は0.0020%である。
 O:0.0150~0.0550%
 Oは、複合酸化物を形成するために必要な元素であり、耐つまとび性、加工性に直接に影響する。また、O含有量は、Mn含有量、Nb含有量、B含有量と関連して、耐つまとび性、すなわち複合酸化物の数密度および鋼中に存在する空隙のサイズに影響する。そのため、Oは、本実施形態に係るほうろう用鋼板において必須の元素である。これらの効果を得るためO含有量の下限を0.0150%とする。好ましいO含有量の下限は0.0200%である。O含有量が低くなりすぎると鋼板中に素材する複合酸化物の数密度が少なくなり、同時に製造工程で形成される空隙サイズも小さくなり、耐つまとび性が劣化する。一方、O含有量が高くなりすぎると、形成される複合酸化物の数密度の増加やサイズの増大を招く。この場合、圧延工程で形成される空隙のサイズが大きくなり、結果として加工性の劣化を招く。そのため、O含有量の上限を0.0550%とする。好ましいO含有量の上限は0.0450%である。
 P:0.040~0.100%
 Pは、鋼板の結晶粒径を微細化させて高強度化を図るのに有効な元素である。この効果を得るため、P含有量の下限を0.040%とする。好ましいP含有量の下限は0.050%である。一方、P含有量が過剰であると、ほうろう焼成時に、Pが鋼板の結晶粒界に高濃度に偏析し、泡・黒点等の原因となる場合がある。そのため、P含有量の上限を0.100%とする。好ましいP含有量の上限は0.075%である。
 S:0.0050~0.0500%
 Sは、MnとともにMn硫化物を形成する元素である。このMn硫化物を酸化物に複合析出させることで、耐つまとび性を大きく向上させることができる。この効果を得るため、S含有量の下限を0.0050%とする。好ましいS含有量の下限は0.0100%であり、より好ましいS含有量の下限は0.0150%である。しかしながら、S含有量が過剰であると、酸化物の制御に必要なMnの効果を低下させる場合がある。そのため、S含有量の上限を、0.0500%とする。好ましいS含有量の上限は0.0300%である。
 Nb:0.020~0.080%
 Nbは、本実施形態に係るほうろう用鋼板において必須の元素である。Nbは、O含有量、Mn含有量、B含有量と関連して、ほうろう用鋼板の耐つまとび性の向上に寄与する酸化物の組成に影響する。また、Nbは、結晶粒を微細化することによって、鋼板の高強度化にも寄与する元素である。これらの効果を得るためNb含有量の下限を0.020%とする。好ましいNb含有量の下限は0.040%である。一方で、Nb含有量が過剰であると、Nb添加時に脱酸が生じて、鋼中に酸化物を形成させることが困難になる。そのため、Nb含有量の上限を0.080%とする。Nb含有量の好ましい上限は0.060%、より好ましい上限は、0.055%である。
 Cu:0.015~0.045%
 Cuは、ほうろう焼成時に、ガラス質と鋼板との反応を制御する効果を有する元素である。この効果を得るため、Cu含有量の下限を0.015%とする。好ましいCu含有量の下限は0.020%である。一方、Cu含有量が過剰であると、ガラス質と鋼板との反応を阻害するばかりでなく、鋼板の加工性を劣化させる場合がある。そのため、Cu含有量の上限を、0.045%とする。好ましいCu含有量の上限は0.040%、より好ましい上限は0.030%である。
 B:0.0005~0.0050%
 Mn、Nb、Oを必須とする本実施形態に係るほうろう用鋼板に、Bを含有させた場合、酸化物の制御範囲がより広範囲なものとなり、耐つまとび性の向上に有利となる。Bを含有させない場合でも、耐つまとび性に優れたほうろう用鋼板を得ることはできるが、Bを含有させることによって、耐つまとび性の向上が容易に図れる。上記効果を得る場合、B含有量を0.0005%以上とする必要がある。また、Bは、ほうろうの密着性を向上させる効果を有する元素である。密着性の観点からは、B含有量の下限は、好ましくは0.0010%、より好ましくは0.0015%である。
 一方で、B含有量が過剰であると、製鋼工程における鋳造性が悪化する。そのため、B含有量の上限を0.0050%とする。また、Nbを比較的多く含有する場合には、B含有量が過剰であると再結晶温度が顕著に上昇し、冷延・焼鈍後の加工性が低下する。また、B含有量が過剰な場合に、十分な加工性を得るためには非常に高温での焼鈍が必要になり、焼鈍の生産性を低下させる。そのため、この点からもB含有量の上限を0.0050%とする。好ましいB含有量の上限は0.0035%である。
 本実施形態に係るほうろう用鋼板は、上記の元素を含有し、残部がFeおよび不純物であることを基本とするが、必要に応じて、さらに、Cr、V、Zr、Ni、As、Ti、Se、Ta、W、Mo、Sn、Sb、La、Ce、Ca、Mgから選択される1種以上を、合計で1.0%以下含有してもよい。
 Cr、V、Zr、Ni、As、Ti、Se、Ta、W、Mo、Sn、Sb、La、Ce、Ca、Mgから選択される1種以上:合計で1.0%以下
 Cr、V、Zr、Ni、As、Ti、Se、Ta、W、Mo、Sn、Sb、La、Ce、Ca、Mgは、鉱石やスクラップ等の鋼原料から不可避的に混入するので、積極的に添加する必要はない。しかしながら、酸化物を形成して、Nbと同様に、つまとび防止に有効な作用をなす元素であるので、1種又は2種以上を合計で1.0%以下含有させてもよい。これらの元素の合計含有量は、好ましくは0.5%以下、より好ましくは0.1%以下である。これらの元素の合計含有量が過剰であると、酸化物形成元素との反応が無視できなくなり、所望の酸化物制御が困難となる。その結果、耐つまとび性の劣化を招く。また、これらの元素の合計含有量が過剰であると、所望しない酸化物が鋼板中に形成され、加工性が劣化する。
 さらに、本実施形態に係るほうろう用鋼板において、Bを含有しない場合には、上記元素のうち、加工性及び耐つまとび性に加えてほうろう処理後の疲労特性及びほうろう密着性に影響を及ぼす、C、Mn、P、及び、Nbの含有量が下記式(1)を満足する必要がある。
 2.20≦8×C(%)+1.3×Mn(%)+18×P(%)+5.1×(Nb(%))0.5≦4.00・・・(1)
 ここで、C(%)、Mn(%)、P(%)、Nb(%)はそれぞれ、C、Mn、P、Nbの質量%での含有量を表している。
 また、本実施形態に係るほうろう用鋼板において、Bを含有する場合には、C、Mn、P、及び、Nbの含有量が下記式(2)を満足する必要がある。
 2.50≦8×C(%)+1.3×Mn(%)+18×P(%)+5.1×(Nb(%))0.5≦4.00・・・(2)
 通常、鋼板の疲労特性は鋼板の引張強度が高くなると向上する。しかし、ほうろう用鋼板の場合、ほうろう製品として使用するには、所望の形状に加工された後、ほうろう処理のために800℃超の加熱(焼成)を経る熱履歴を受ける。この加工及びほうろう処理は、鋼板の組織を変化させるので、ほうろう処理後の鋼板の引張強度はほうろう処理前の状態と異なる。
 本発明者らは、ほうろう処理前後における組織形態の変化に着目し、鋼板中に含有されるC、Mn、P及びNbが、ほうろう処理前後の組織の変化に大きく影響することを見出した。また、鋼板中のC、Mn、P及びNbの含有量が所定の関係式を満たした場合に、組織形態の変化が抑制され、それらの元素の効果は夫々加算されることも見出した。
 本発明者らは、Mn、Si、Al、N、O、P、S、Nb、Cuを含有し、さらに、Cr、V、Zr、Ni、As、Ti、Se、Ta、W、Mo、Sn、Sb、La、Ce、Ca、Mgの1種又は2種以上を必要に応じて含有する鋼板において、C、Mn、P及びNbの含有量を変化させて、種々の成分組成の鋼板を作製した。そして、その鋼板に10%の引張歪を付与した上で、ほうろう処理に相当する830℃×5minの熱処理を施した。その後、この鋼板を用いて疲労試験を実施し、上記式(1)の“8×C(%)+1.3×Mn(%)+18×P(%)+5.1×(Nb(%))0.5”(以下「式(1x)」という。)と疲労限度比の関係を調査した。
 その結果、式(1x)が2.20以上であれば、疲労強度は、加工及びほうろう処理を施した鋼板の引張強度に対応する疲労強度を示す(すなわち、十分な疲労限度比を示す)が、2.20未満では、鋼板の引張強度に対して疲労強度が低くなる(すなわち、疲労限度比が低くなる)ことがわかった。好ましくは式(1x)が2.40以上である。
 また、本発明者らは、Mn、Si、Al、N、O、P、S、Nb、Cu及びBを含有し、さらに、Cr、V、Zr、Ni、As、Ti、Se、Ta、W、Mo、Sn、Sb、La、Ce、Ca、Mgの1種又は2種以上を必要に応じて含有する鋼板において、C、Mn、P及びNbの含有量を変化させて、種々の成分組成の鋼板を作製した。そして、その鋼板に10%の引張歪を付与した上で、ほうろう処理に相当する830℃×5minの熱処理を施した。その後、この鋼板を用いて疲労試験を実施し、上記式(2)の“8×C(%)+1.3×Mn(%)+18×P(%)+5.1×(Nb(%))0.5”(以下「式(2x)」という。)と疲労限度比との関係を調査した。
 その結果、式(2x)が、2.50以上であれば、加工してほうろう処理を施した鋼板の引張強度に対応する疲労強度を示すが、2.50未満では、上記鋼板の引張強度に対して疲労強度が低くなることがわかった。好ましくは式(2x)が2.70以上である。
 上述した疲労試験後の鋼板の組織を観察したところ、いずれの鋼板においても結晶粒径が粗大化していることが確認された。しかしながら、Bを含有しない鋼板のうち、式(1x)が2.20以上の鋼板、及びBを含有する鋼板のうち、式(2x)が2.50以上の鋼板においては、結晶粒の粗大化は生じているものの、粗大化の程度が小さいことが確認された。
 鋼板の成分組成によってほうろう処理後の疲労特性が変化する理由は、必ずしも明確ではない。しかしながら、C、Mn、P、及び、Nbを、上記式(1)または式(2)を満たす範囲内で一定量含有させることで、ほうろう処理時の結晶粒成長が抑制され、鋼板の引張強度に対する疲労強度(疲労限度比)の低下を防止することができると推察される。
 一方、式(1x)及び式(2x)が4.00を超えると、ほうろう処理時における鋼板とガラス質との密着性が劣化する。そのため、式(1x)及び式(2x)の上限をいずれも4.00とする。好ましい上限は3.50である。
 次に、Fe、Mn、及び、Nbを含む複合酸化物、及び、Fe、Mn、Nb、及び、Bを含む複合酸化物について説明する。
 本実施形態に係るほうろう用鋼板中には、鋼板がBを含有しない場合には、Fe、Mn、Nbを含む複合酸化物、特にFe、Mn、Nbからなる酸化物が一体となったFe-Mn-Nb系複合酸化物が存在する。また、鋼板がBを含有する場合には、Fe、Mn、Nb、Bを含む複合酸化物、特にFe、Mn、Nb、Bからなる酸化物が一体となったFe-Mn-Nb-B系複合酸化物が存在する。複合酸化物の内、直径が0.2μm以上、10μm以下の複合酸化物が、鋼板中に2×10個/mm以上、1×10個/mm以下存在することが好ましい。なお、上記のFe-Mn-Nb系複合酸化物と、上記のFe-Mn-Nb-B系複合酸化物とは同様の効果を有するので、いずれも本実施形態に係る複合酸化物と言う場合がある。
 直径が0.2μm未満の複合酸化物は、耐つまとび性の向上に寄与する程度が小さい。そのため、本実施形態に係る複合酸化物の直径は0.2μm以上とする。好ましくは、0.5μm以上、より好ましくは1.0μm以上である。なお、本実施形態に係る複合酸化物の直径の定義、及び、測定方法については後述する。
 本実施形態に係る複合酸化物の直径の上限は、耐つまとび性の向上の点からは特に限定する必要はない。しかしながら、粗大な複合酸化物が多くなると、複合酸化物の数密度が減少し、水素透過阻害効果が小さくなるので、耐つまとび性の向上効果が得られない。また、粗大な複合酸化物は加工時の割れの起点となり易いので、粗大な複合酸化物が多くなると、加工性が低下する。仮に割れの発生に至らなくても、加工の際に複合酸化物の加工性と鋼板組織の加工性との差によって、複合酸化物と鋼板組織との界面付近に粗大な空隙が発生し、結果として、ほうろう製品の疲労特性が低下し、信頼性が損なわれる。
 それ故、本実施形態に係る複合酸化物の直径は、10μm以下とする。好ましくは5μm以下である。
 鋼板中の本実施形態に係る複合酸化物の数密度が2×10個/mm未満であると、優れた耐つまとび性を確保することができない。そのため、本実施形態に係る複合酸化物は2×10個/mm以上存在することが必要である。好ましくは5×10個/mm以上である。
 一方、本実施形態に係る複合酸化物が1×10個/mmを超えて鋼板中に存在すると、加工時に、複合酸化物と鋼板組織との界面に空隙が過剰に生成し、ほうろう製品の疲労特性が低下する。そのため、鋼板中における本実施形態に係る複合酸化物の数密度は、1×10個/mm以下とする。好ましくは5×10個/mm以下である。
 本実施形態に係る複合酸化物を同定する方法は、特に限定されないが、例えば、(a)Fe、Mn、Nb及びOを同時に検出した酸化物、又は、(b)Fe、Mn、Nb、O及びBを同時に検出した酸化物を本実施形態に係る複合酸化物とすればよい。酸化物の同定には、例えば、走査型電子顕微鏡(FE-SEM)、及び、エネルギー分散型X線分散型分析装置(EDAX)を用いればよい。
 複合酸化物同定の際、測定方法は通常の方法でよいが、微小領域の濃度を決定する必要があるので、電子線のビーム径は十分に小さくする等の注意が必要である。
 複合酸化物の直径及び密度は以下の手法で規定した。即ち、SEMにて、鋼板の任意の位置において、倍率:5000倍、視野数:10以上とし、視野内の複合酸化物の寸法及び個数を計測し、複合酸化物の長径を酸化物の直径とした。密度は、視野内の酸化物の内、長径が0.2μm以上の複合酸化物の個数を算出し、個数から単位面積(mm)当たりの密度(数密度)を算出した。
 次に、本実施形態に係るほうろう用鋼板の組織(金属組織)について説明する。
 本実施形態に係るほうろう用鋼板の組織は、フェライトを主体とする。そのため、高強度化に加え疲労特性を向上させるには結晶粒径を小さくすることが有効である。ほうろう用鋼板は、ほうろう製品として用いられる場合、後述のように、所望の製品形状にプレス等によって加工された後、ほうろう釉薬を塗布され、約800℃超の温度に加熱される。この加熱によりほうろう釉薬のガラス質と鋼板との密着が図られる。この熱処理(ほうろう処理)により、粒成長が生じて結晶粒径が変化し、結果として疲労強度も変化する。ほうろう処理後の結晶粒径を小さくすることが、ほうろう処理後の鋼板の疲労強度の向上には有効である。ほうろう処理後の結晶粒径を小さくするには、熱処理前の粒径を小さくし、かつ、ほうろう処理に伴う粒成長を抑制することが重要となる。
 熱処理(ほうろう処理)前の鋼板組織中のフェライトの平均結晶粒径は、表面から板厚方向に板厚の1/4の位置(1/4t)において、12.0μm以下であることが必要である。平均結晶粒径が12.0μm超となると鋼板の高強度化を図ることも困難となる。高強度化を図る上では平均結晶粒径は小さい方が望ましいが、平均結晶粒径が小さくなるに従い、加工性が劣化する。そのため、所望の製品形状に対して最適な結晶粒径を確定する必要がある。
 さらに、通常、疲労破壊は亀裂の発生および亀裂の進展により破断に至る。亀裂の発生は鋼板の表面から発生しやすいので、疲労特性の向上には、鋼板表層の結晶粒径が小さいことが望ましい。ほうろう用鋼板の結晶粒径は、鋼中元素、特にPの濃度により影響を受け、P濃度が高くなると結晶粒径が小さくなる傾向がある。鋼板中のPの濃度分布は、熱延、酸洗工程において変化する。
 本実施形態に係るほうろう用鋼板では、平均結晶粒径を測定した1/4tの位置に比べ、表層から板厚方向に20μmの位置(表層部)でのP濃度が高くなる。その結果、表層部では、1/4tに比べて結晶粒径が小さくなる。本実施形態に係るほうろう用鋼板では、鋼中のP含有量(平均濃度)が約0.04%以上であれば、鋼板表層の結晶粒径がさらに小さくなり、疲労特性の向上に寄与する。元素の濃度分布は、グロー放電発光分析等により測定することが可能である。フェライトの平均結晶粒径はJIS G0552に記載の切断法等に準じて測定すればよい。
 さらに、ほうろう処理に伴う粒成長を抑制するには、上記各成分のうち、C、Mn、P、Nbの各含有量が、鋼板がBを含有しない場合には下記式(1)、鋼板がBを含有する場合には下記式(2)を満足することが重要となる。
 2.20≦8×C(%)+1.3×Mn(%)+18×P(%)+5.1×(Nb(%))0.5≦4.00・・・(1)
 2.50≦8×C(%)+1.3×Mn(%)+18×P(%)+5.1×(Nb(%))0.5≦4.00・・・(2)
 式(1)の値が2.20未満、または式(2)の値が2.50未満では、ほうろう用鋼板に対して加工及びほうろう処理を施したほうろう製品において、疲労特性の低下が生じる。
 本発明者らは、実験室にて鋼中成分としてC、Mn、Si、Al、N、O、P、S、Nb、Cuを含有し、さらに必要に応じてCr、V、Zr、Ni、As、Ti、Se、Ta、W、Mo、Sn、Sb、La、Ce、Ca、Mgを一部含んだ鋼板、及びC、Mn、Si、Al、N、O、P、S、Nb、Cu、Bを含有し、さらに必要に応じてCr、V、Zr、Ni、As、Ti、Se、Ta、W、Mo、Sn、Sb、La、Ce、Ca、Mgを一部含んだ鋼板において、C、Mn、P、Nbの含有量を変化させた種々の成分組成を有する鋼板を作成した。また、これらの鋼板を用いて、10%の引張歪を付与した上で、830℃×5minの熱処理を施した鋼板に対して疲労試験を実施し、上記式(1)、式(2)の8×C(%)+1.3×Mn(%)+18×P(%)+5.1×(Nb(%))0.5と疲労限度比との関係を調査した。
 その結果を、図2に示す。図中の横軸は、式(1)、式(2)の8×C(%)+1.3×Mn(%)+18×P(%)+5.1×(Nb(%))0.5の値、縦軸は、疲労限度比、すなわち10サイクルでの応力である疲労強度(σw)を引張試験にて測定された引張強度(TS)で除した値(σw/TS)である。
 式(1)の8×C(%)+1.3×Mn(%)+18×P(%)+5.1×(Nb(%))0.5の値が2.20以上では、疲労限度比は式(1)の8×C(%)+1.3×Mn(%)+18×P(%)+5.1×(Nb(%))0.5の値に対して一定の関係が認められその値が大きくなると疲労限度比も向上した。これに対して、8×C(%)+1.3×Mn(%)+18×P(%)+5.1×(Nb(%))0.5の値が2.20未満では、上記の関係から乖離し、疲労限度比の低下代が大きくなることが判明した。疲労試験後の鋼板組織を観察したところ、8×C(%)+1.3×Mn(%)+18×P(%)+5.1×(Nb(%))0.5の値が2.20未満の鋼板では、結晶粒径が粗大化していることが確認された。8×C(%)+1.3×Mn(%)+18×P(%)+5.1×(Nb(%))0.5の値が2.20以上のものでは鋼板の結晶粒の粗大化は生じているものの、粗大化の程度が小さかった。
 また、式(2)の8×C(%)+1.3×Mn(%)+18×P(%)+5.1×(Nb(%))0.5の値が2.20以上では、疲労限度比は式(1)の8×C(%)+1.3×Mn(%)+18×P(%)+5.1×(Nb(%))0.5の値に対して一定の関係が認められその値が大きくなると疲労限度比も向上した。また、疲労試験後の鋼板組織を観察したところ、8×C(%)+1.3×Mn(%)+18×P(%)+5.1×(Nb(%))0.5の値が2.50未満の鋼板では、結晶粒径が粗大化していることが確認された。8×C(%)+1.3×Mn(%)+18×P(%)+5.1×(Nb(%))0.5の値が2.50以上のものでは鋼板の結晶粒の粗大化は生じているものの、粗大化の程度が小さかった。
 一方、式(1)、式(2)の8×C(%)+1.3×Mn(%)+18×P(%)+5.1×(Nb(%))0.5の値が4.00を超えると、ほうろう処理における鋼板とガラス質との密着性が劣化した。そのため、8×C(%)+1.3×Mn(%)+18×P(%)+5.1×(Nb(%))0.5の上限を4.00とした。
 次に本実施形態に係るほうろう用鋼板中に存在する空隙について説明する。空隙は、鋼板と複合酸化物とが変形抵抗差を有し、複合酸化物が鋼板に比べて変形し難いことに起因して、加工時に鋼板と複合酸化物との界面に形成される。この空隙は、熱間圧延や冷間圧延時に形成されるため、圧延により鋼板が延ばされる方向(圧延方向断面)において、擬似三角形の形状(略三角形形状)を呈する。図3に空隙の一例を示す。このような空隙は、鋼中水素のトラップサイトとなるので、つまとび欠陥を抑制するために存在することが望ましい。しかしながら、空隙のサイズが大きくなると、製品とするためのプレス成形等の加工を行う際に、歪が集中して割れ発生の起点となる場合がある。また、加工後にほうろう処理を行った場合、歪集中部は粒成長しやすくなるので、大きな空隙が存在すると、ほうろう処理後の結晶粒の粗大化を招き疲労特性を低下させる。さらに、ほうろう製品として使用される場合にも、空隙に歪が集中することによって、疲労特性の低下を招くこととなる。
 空隙による疲労特性の低下を抑制するためには、空隙へのひずみ集中を緩和することが重要である。本発明者らは、本実施形態に係るほうろう用鋼板において、空隙の大きさを円相当径で0.6μm以下にすることで、空隙へのひずみ集中が緩和され加工及びほうろう処理を行っても、疲労特性の低下が抑制されることを見出した。しかしながら、空隙の大きさが小さくなりすぎると、鋼中水素のトラップサイトとしての機能が発揮できなくなる。そのため、空隙の大きさの下限を円相当径で0.1μmとする。
 さらに、本発明者らは、空隙の大きさが円相当径で0.6μm以下であっても疲労特性が低下する場合があることを見出した。すなわち、本発明者らは、疲労特性が空隙の大きさだけでなく、形状にも影響を受けることを見出した。上述したように、熱間圧延や冷間圧延により鋼板と複合酸化物との界面に形成された空隙は擬似三角形の形状を呈している。空隙の形状は、熱延圧延や冷間圧延の条件によって変化し、三角形の先端の角度が鋭角になると応力負荷時に歪が集中しやすくなり、ほうろう処理後の結晶粒の粗大化を招く。また製品として使用される場合にも歪の集中により、疲労特性が低下する。
 疲労特性の低下は空隙の三角形形状の先端角度が鋭角になるほど大きくなるが、三角形形状の長辺を底辺とした場合に、底辺の長さを高さで除した値が15を超えると特に顕著となる。このため、本実施形態に係るほうろう用鋼板において、空隙の形状を近似的に三角形と見做し、長辺を底辺とした場合に、底辺の長さを三角形の高さで除した値を15以下とする。また、空隙の形状を三角形と見做し、長辺を底辺とした場合に、底辺の長さを高さで除した値が1.0未満である場合も、空隙の三角形の頂角が小さくなり歪集中する。そのため、底辺の長さを高さで除した値の下限を1.0とする。
 空隙の円相当径および三角形と見做したときの形状は以下の手法で規定した。即ち、SEMにて、倍率:5000倍、視野数:10以上とし、視野内の空隙の三角形形状を形成する長辺および高さを測定した。また、三角形形状の面積から円相当径を換算した。 
 本実施形態に係るほうろう用鋼板の製造方法、及び本実施形態に係るほうろう製品の製造方法について説明する。
 本実施形態に係るほうろう用鋼板は、上述した化学成分を有する溶鋼を、常法に基づいて精錬、鋳造、熱間圧延、酸洗、冷間圧延、連続焼鈍、調質圧延等を行って製造する。
 熱間圧延に際して、鋼片の加熱温度は1150~1250℃が好ましく、圧延率(累積圧下率)は30~90%が好ましく、仕上げ温度は900℃以上が好ましい。
 精錬、鋳造工程で生成したFe、Mn及びNbを含む複合酸化物、又は、Fe、Mn、Nb及びBを含む複合酸化物は熱間圧延で延伸される。この熱間圧延において、この複合酸化物を圧延により延伸・破砕し、目的とする特性にとってより好ましい形態へと変化させ、鋼板中に均一に分散させためには、ある程度の圧延率で圧延を行うことが有効である。すなわち、熱間圧延率を30%以上とすることで、鋼中の複合酸化物を十分延伸させることができ、冷間圧延、連続焼鈍後に得られる複合酸化物のサイズ及び数密度を、容易に所望の範囲とすることができる。しかしながら、熱延圧延率が90%を超えると鋼中の複合酸化物が細かくなりすぎ、良好な耐つまとび性を得ることができなくなる場合がある。
 また、熱間圧延後の酸洗においては、表面に生成したスケールが除去される。酸洗工程においては、スケール残り等によって、次工程である冷間圧延での製造を阻害しないような条件で酸洗を行うことが重要となる。例えば、塩酸による酸洗で、濃度8%程度、液温90℃程度で浸漬時間60秒程度を基本として酸洗を行えばよい。硫酸による酸洗は好ましくない。硫酸による酸洗では、過度の酸洗が施され元素が濃化した表層が必要以上に除去されてしまうからである。
 酸洗後、冷間圧延でさらに鋼板は延伸されるが、最大でも150℃程度での加工となるので、硬質の上記複合酸化物は冷間圧延では延伸され難い。
 冷間圧延における冷延率(累積圧下率)は、製品の特性を決定するために重要であり、65~85%が好ましい。水素トラップサイトとして機能する硬質の複合酸化物は、この冷延工程において破砕される。そのため、冷延率によって、最終製品中に存在する複合酸化物のサイズ及び数密度が変化する。同様に、水素トラップサイトとして機能する空隙も冷延工程において硬質の複合酸化物が破砕されることにより形成される。硬質の複合酸化物を破砕することによって、複合酸化物のサイズ及び数密度の最適化するため、また、空隙を形成させるため、さらには、焼鈍後に良好な成形性を確保するためには、65%以上の冷延率を行うことが好ましい。空隙は、耐つまとび性に対しては有効に作用するが、加工性に対しては不利に作用する。それ故、空隙の必要以上の存在は、加工性を低下させ、加工、ほうろう処理後の製品の疲労特性を損なう原因となる。そのため、冷延率の上限は85%とすることが好ましい。冷延率が85%を超えると、複合酸化物が必要以上に破砕されてそのサイズが小さくなりすぎるので、耐つまとび性に有効な複合酸化物の数密度が少なくなる。また、形成された空隙が潰されて消失したような組織が観察される。冷間圧延により形成された空隙の形状、すなわち空隙を三角形と見做した場合の、三角形の長辺を底辺とした場合の底辺の長さを高さで除した値が大きくなるので、耐つまとび性向上の効果が小さくなる。さらに、空隙は組織的に結合して消失したわけではないので、加工による歪の導入で空隙が割れの起点となって、加工性が劣化する。
 一般に、冷間圧延では、鋼板の内部に比べて鋼板の表層部に、大きな歪が導入される。しかしながら、冷延油などの選択によりロールと鋼板との摩擦係数を小さくすることで、表層部と内部とに導入される歪の差を小さくすることができ、表層部に過度に歪が導入されることを抑制することができる。その結果、空隙形状を好ましく制御することができる。
 本実施形態に係るほうろう用鋼板に好ましい空隙形状を得る場合、圧延ロールと鋼板との摩擦係数を0.015~0.060とすることが好ましく、0.015~0.040とすることがさらに好ましい。ただし、摩擦係数と空隙形状の関係は圧延機の設定によりばらつきがある。摩擦係数については、圧延における一般的な手法、すなわち、二次元のスラブ法による圧延理論を用い、先進率と圧延荷重の計算値とが実測値に等しくなるように繰り返し計算で算出することができる。
 なお、従来は、圧延時に圧延ロールと鋼板との摩擦係数を制御した圧延は行われていなかった。
 冷間圧延後には、冷延鋼板に焼鈍を行う。この焼鈍は、生産性の観点から連続焼鈍ラインによる連続焼鈍が好ましい。焼鈍温度は、700~850℃が好ましいが、機械的性質に特徴を持たせる目的で、700℃未満としてもよいし、850℃超としてもよい。
 連続焼鈍の後、形状制御を主目的として調質圧延を施してもよい。この調質圧延で、所望の特性を有するほうろう用鋼板を得ることができる。
 本実施形態に係るほうろう製品は、本実施形態に係るほうろう用鋼板に対して、所望の形状を得るためのプレスやロール成形等の加工、及びほうろう処理を行うことによって得られる。プレスやロール成形等の加工、ほうろう処理については、常法に応じて行えばよい。例えば、ほうろう処理については、釉薬を塗布した鋼板を、例えば800~850℃に加熱し、1~10分保持することによって、釉薬のガラス質と鋼板とを密着させればよい。
 次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得る。
 表1に示す成分組成の鋼を転炉で溶製し、常法に従い連続鋳造でスラブ(鋼片)とした。これらのスラブを加熱炉で1150~1250℃に加熱して熱間圧延に供し、900℃以上の仕上げ温度で熱間圧延を終了し、熱間圧延後の熱延鋼板を700~750℃で巻き取った。
 そして、熱延鋼板を酸洗した後、表2に示す冷延率で冷間圧延を行って冷延鋼板とし、さらに、780℃で連続焼鈍を施した。その後、1.2%の調質圧延を施し、板厚が0.8mmのほうろう用鋼板を作製した。なお、調質圧延後の板厚を一定にするため、冷間圧延の圧延率に対して熱延鋼板の板厚を変化させた。
 なお、圧延ロールと鋼板との摩擦係数は0.025であった。
 上記ほうろう用鋼板を用い、各種の評価を実施した。機械特性は、JIS Z2241に従う引張試験をJIS5号試験片にて実施し、引張強度(TS)及び破断伸びを測定した。鋼板の平均結晶粒径は、板厚1/4位置近傍をJIS G0552に従い測定を実施した。
 鋼板中の酸化物は、冷間圧延の方向と平行な断面をSEMで観察し、上述の方法で、酸化物の直径と数密度とを測定した。
 加工性の評価は、JIS Z2248に従うVブロック法による90°曲げ試験を実施して行った。曲げ内半径を変化させて、90°曲げを行った後、湾曲部の外側を目視で観察し、割れの有無で評価した。割れの発生状況を、A:内半径0.5mm以下で割れ無し、B:内半径0.5mmを超えて2.5mm以下で割れ無し、C:内半径2.5mmを超えて割れ発生の3段階で判定し、A及びBであれば合格とした。
 疲労特性の評価は、10%の引張歪を付与した後、ほうろう処理に相当する加熱温度830℃、保持時間5minの熱処理を施した鋼板に対して、両振りの疲労試験を実施して行った。疲労特性は、10サイクルでの応力を疲労強度(σw)とし、この疲労強度を、熱処理後の鋼板に対して行った引張試験で得られた引張強度(TS)で除した値(σw/TS)を疲労限度比とした。疲労特性は、疲労限度比の値が0.42を超えるものを合格とした。
 ほうろう特性は、粉体静電塗装法により乾式で、釉薬を100μm塗布し、大気中830℃×5minの焼成を行った鋼板に対して、耐つまとび性及び密着性の評価を実施して判断した。耐つまとび性は、ほうろう処理後の鋼板を、160℃の恒温槽中に10時間入れるつまとび促進試験を行った鋼板に対し、目視で、つまとび発生状況を、A:優れる、B:わずかに優れる、C:通常、D:問題ありとする4段階で判定し、A~Cを合格とした。
 また、ほうろう密着性は、2kgの球頭の重りを1m高さから落下させ、変形部のほうろう剥離状態を169本の触診針で計測し、未剥離部分の面積率で評価した。未剥離部分の面積率が、A:95%以上、B:85%を超えて95%未満、C:70%超~85%未満、D:70%以下の4段階で評価し、A~Cを合格とした。
 評価結果を表2に示す。
 なお、製造No.1~33の発明例において、鋼中に、Fe-Mn-Nb系複合酸化物又はFe-Mn-Nb-B系複合酸化物において、直径が10μm超の複合酸化物は観察されなかった。
 また、単位面積あたりのFe-Mn-Nb系複合酸化物又はFe-Mn-Nb-B系複合酸化物のうち、直径が0.2μm以上、10μm以下の複合酸化物の個数が本発明の範囲(2×10個/mm以上、1×10個/mm以下)内のものは、耐つまとび性を維持しつつ、加工性を満足することが確認できた。
 さらに、式(1)の“8×C(%)+1.3×Mn(%)+18×P(%)+5.1×(Nb(%))0.5”(式(1x))が本発明の範囲内のものは、疲労特性及び密着性に優れていることが確認できた。成分量や式(1x)が本発明の範囲を満足しない場合には、加工性、ほうろう特性、疲労特性を同時に満足することはできなかった。
 表1、表2に示す結果から、発明例である製造No.1~33では、従来のほうろう用鋼板に対して、加工性、耐つまとび性を維持しつつ、疲労特性に優れた高強度ほうろう用鋼板であることが解る。一方、比較例である製造No.34~48では、加工性、疲労特性、耐つまとび性、密着性のいずれかにおいて、十分な特性が得られなかった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本発明によれば、加工性と耐つまとび性に優れた高強度ほうろう用鋼板及びこのほうろう用鋼板を用いて製造されたほうろう製品を提供することができる。そして、本発明の高強度ほうろう用鋼板は、台所用品、建材用に加え、エネルギー分野に適用する場合において、経年使用における疲労等に対する信頼性の向上や、製品の軽量化を可能とするものである。よって、本発明は、ほうろう用鋼板製造及び利用産業において利用可能性が高いものである。
  1 空隙
  2 Fe‐Mn‐Nb系複合酸化物

Claims (5)

  1.  質量%で、
    C :0.0005~0.0050%、
    Mn:0.05~1.50%、
    Si:0.001~0.015%、
    Al:0.001~0.01%、
    N :0.0010~0.0045%、
    O :0.0150~0.0550%、
    P :0.04~0.10%、
    S :0.0050~0.050%、
    Nb:0.020~0.080%、
    Cu:0.015~0.045%
    を含有し、残部がFeおよび不純物であり、
     C含有量をC(%)、Mn含有量をMn(%)、P含有量をP(%)、Nb含有量をNb(%)で表したとき、下記式(1)を満足し;
     組織がフェライトを含有し、表面から板厚方向に板厚の1/4の位置における前記フェライトの平均結晶粒径が12.0μm以下であり;
     Fe、Mn、Nbを含有し、直径が0.2μm以上10μm以下であるFe‐Mn‐Nb系複合酸化物を、2×10個/mm以上1×10個/mm以下含み;
     10%の引張歪が付与され、かつ、加熱温度が830℃、保持時間が5分の熱処理が施された後の10サイクルでの応力である疲労強度を引張強度で除した値で示される疲労限度比が0.42超であり;
     前記組織と前記Fe‐Mn‐Nb系複合酸化物との間に、空隙が形成され、前記空隙の円相当径が0.1~0.6μmであり;
     前記空隙を三角形として近似して前記三角形の長辺を底辺としたとき、前記底辺の長さを高さで除した値が1.0~15である;
    ことを特徴とするほうろう用冷延鋼板。
     2.20≦8×C(%)+1.3×Mn(%)+18×P(%)+5.1×(Nb(%))0.5≦4.00・・・(1)
  2.  質量%で、
    C :0.0005~0.0050%、
    Mn:0.05~1.50%、
    Si:0.001~0.015%、
    Al:0.001 ~0.01%、
    N :0.0010~0.0045%、
    O :0.0150~0.0550%、
    P :0.04~0.10%、
    S :0.0050~0.050%、
    Nb:0.020~0.080%、
    Cu:0.015~0.045%
    B :0.0005~0.0050%
    を含有し、残部がFeおよび不純物であり、
     C含有量をC(%)、Mn含有量をMn(%)、P含有量をP(%)、Nb含有量をNb(%)で表したとき、下記式(2)を満足し;
     組織がフェライトを含有し、表面から板厚方向に板厚の1/4の位置における前記フェライトの平均結晶粒径が12.0μm以下であり;
     Fe、Mn、Nb、Bを含有し、直径が0.2μm以上10μm以下であるFe‐Mn‐Nb‐B系複合酸化物を、2×10個/mm以上1×10個/mm以下含み;
     10%の引張歪が付与され、かつ、加熱温度が830℃、保持時間が5分の熱処理が施された後の10サイクルでの応力である疲労強度を引張強度で除した値で示される疲労限度比が0.42超であり;
     前記組織と前記Fe‐Mn‐Nb‐B系複合酸化物との間に、空隙が形成され、前記空隙の円相当径が0.1~0.6μmであり;
     前記空隙を三角形として近似して前記三角形の長辺を底辺としたとき、前記底辺の長さを高さで除した値が1.0~15である;
    ことを特徴とするほうろう用冷延鋼板。
     2.50≦8×C(%)+1.3×Mn(%)+18×P(%)+5.1×(Nb(%))0.5≦4.00・・・(2)
  3.  さらに、質量%で、Cr、V、Zr、Ni、As、Ti、Se、Ta、W、Mo、Sn、Sb、La、Ce、Ca、Mgから選択される1種以上を合計で0.1%以下含有することを特徴とする請求項1または2に記載のほうろう用冷延鋼板。
  4.  請求項1または2に記載のほうろう用冷延鋼板を用いて製造されることを特徴とするほうろう製品。
  5.  請求項3に記載のほうろう用冷延鋼板を用いて製造されることを特徴とするほうろう製品。
PCT/JP2014/073918 2013-09-10 2014-09-10 ほうろう用冷延鋼板及びその製造方法、並びにほうろう製品 WO2015037614A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015536600A JP6586012B2 (ja) 2013-09-10 2014-09-10 ほうろう用冷延鋼板及びほうろう製品
KR1020167005745A KR101723349B1 (ko) 2013-09-10 2014-09-10 법랑용 냉연 강판과 그 제조 방법 및 법랑 제품
CN201480049483.2A CN105518174B (zh) 2013-09-10 2014-09-10 搪瓷用冷轧钢板和搪瓷制品
US14/916,299 US10011888B2 (en) 2013-09-10 2014-09-10 Cold-rolled steel sheet for vitreous enameling and its named enameled product thereof
PH12016500410A PH12016500410B1 (en) 2013-09-10 2016-03-01 Cold-rolled steel sheet for vitreous enameling, method for producing the same, and enameled product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013187473 2013-09-10
JP2013-187473 2013-09-10

Publications (1)

Publication Number Publication Date
WO2015037614A1 true WO2015037614A1 (ja) 2015-03-19

Family

ID=52665716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073918 WO2015037614A1 (ja) 2013-09-10 2014-09-10 ほうろう用冷延鋼板及びその製造方法、並びにほうろう製品

Country Status (8)

Country Link
US (1) US10011888B2 (ja)
JP (1) JP6586012B2 (ja)
KR (1) KR101723349B1 (ja)
CN (1) CN105518174B (ja)
MY (1) MY179869A (ja)
PH (1) PH12016500410B1 (ja)
TW (1) TWI541364B (ja)
WO (1) WO2015037614A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017043660A1 (ja) * 2015-09-11 2017-03-16 新日鐵住金株式会社 鋼板およびほうろう製品
CN106811705A (zh) * 2015-12-02 2017-06-09 鞍钢股份有限公司 一种抗鳞爆性能优良的搪玻璃用钢板及其制造方法
JPWO2021193953A1 (ja) * 2020-03-27 2021-09-30

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101657787B1 (ko) * 2014-12-04 2016-09-20 주식회사 포스코 황산 내식성 및 법랑 밀착성이 우수한 강판 및 그 제조방법
CN106180187B (zh) * 2016-07-22 2019-04-23 武汉钢铁有限公司 一种复合钢板及其制备方法
KR101853767B1 (ko) * 2016-12-05 2018-05-02 주식회사 포스코 강의 제조 방법 및 이를 이용하여 제조된 강
WO2018131710A1 (ja) * 2017-01-16 2018-07-19 新日鐵住金株式会社 無方向性電磁鋼板及び無方向性電磁鋼板の製造方法
CN108796380B (zh) * 2017-04-26 2020-06-23 宝山钢铁股份有限公司 烧成后屈服强度在210MPa以上的极低碳冷轧搪瓷用钢板及其制造方法
KR101969109B1 (ko) 2017-08-21 2019-04-15 주식회사 포스코 법랑용 냉연강판 및 그 제조방법
CN107574375B (zh) * 2017-08-31 2019-06-07 武汉钢铁有限公司 具有优异涂搪性能的双面搪瓷用热轧酸洗钢板及其制造方法
US11236427B2 (en) 2017-12-06 2022-02-01 Polyvision Corporation Systems and methods for in-line thermal flattening and enameling of steel sheets
TWI704237B (zh) * 2018-05-17 2020-09-11 日商日本製鐵股份有限公司 鋼板及琺瑯製品
CN111647814B (zh) * 2020-06-08 2022-06-07 首钢集团有限公司 一种搪瓷用冷轧钢板及其制备方法
KR102501947B1 (ko) * 2020-12-21 2023-02-20 주식회사 포스코 법랑용 강판 및 그 제조방법
TWI789985B (zh) * 2021-11-09 2023-01-11 中國鋼鐵股份有限公司 搪瓷鋼片及其製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03166336A (ja) * 1989-11-24 1991-07-18 Nippon Steel Corp 深絞り性の極めて優れたほうろう用鋼板
JPH0633187A (ja) * 1992-07-20 1994-02-08 Kawasaki Steel Corp ほうろう焼成後高強度化するほうろう用冷延鋼板およびその製造方法
JPH0978190A (ja) * 1995-09-14 1997-03-25 Sumitomo Metal Ind Ltd ほうろう用冷延鋼板と製造方法
JPH11229087A (ja) * 1998-02-18 1999-08-24 Nkk Corp 成形性に優れたほうろう用冷延鋼板およびその製造方法
KR20050068250A (ko) * 2003-12-29 2005-07-05 주식회사 포스코 법랑용 강판 및 그 제조 방법
CN102899565A (zh) * 2011-07-25 2013-01-30 宝山钢铁股份有限公司 一种冷轧搪瓷用钢及其制造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5831063A (ja) 1981-08-18 1983-02-23 Kawasaki Steel Corp ほうろう用高張力冷延鋼板
JPS61117246A (ja) 1984-11-13 1986-06-04 Nippon Kokan Kk <Nkk> 焼成後の強度が高く且つ耐爪とび性に優れたほうろう用熱延鋼板の製造方法
JPH0762211A (ja) 1993-08-23 1995-03-07 Teijin Ltd ポリエステル水分散体及び易接着性ポリエステルフイルム
EP2065482A4 (en) 2006-09-19 2015-04-22 Nippon Steel & Sumitomo Metal Corp WORKING FOR EMAILLING AND ENAMELED PRODUCTS
AU2007301332B2 (en) 2006-09-27 2011-02-10 Nippon Steel Corporation Enameling steel sheet highly excellent in unsusceptibility to fishscaling and process for producing the same
KR101289415B1 (ko) 2009-12-18 2013-07-24 주식회사 포스코 표면 결함이 없는 법랑용 강판 및 그 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03166336A (ja) * 1989-11-24 1991-07-18 Nippon Steel Corp 深絞り性の極めて優れたほうろう用鋼板
JPH0633187A (ja) * 1992-07-20 1994-02-08 Kawasaki Steel Corp ほうろう焼成後高強度化するほうろう用冷延鋼板およびその製造方法
JPH0978190A (ja) * 1995-09-14 1997-03-25 Sumitomo Metal Ind Ltd ほうろう用冷延鋼板と製造方法
JPH11229087A (ja) * 1998-02-18 1999-08-24 Nkk Corp 成形性に優れたほうろう用冷延鋼板およびその製造方法
KR20050068250A (ko) * 2003-12-29 2005-07-05 주식회사 포스코 법랑용 강판 및 그 제조 방법
CN102899565A (zh) * 2011-07-25 2013-01-30 宝山钢铁股份有限公司 一种冷轧搪瓷用钢及其制造方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017043660A1 (ja) * 2015-09-11 2017-03-16 新日鐵住金株式会社 鋼板およびほうろう製品
JP6115691B1 (ja) * 2015-09-11 2017-04-19 新日鐵住金株式会社 鋼板およびほうろう製品
KR20180038019A (ko) * 2015-09-11 2018-04-13 신닛테츠스미킨 카부시키카이샤 강판 및 법랑 제품
CN107949652A (zh) * 2015-09-11 2018-04-20 新日铁住金株式会社 钢板及搪瓷制品
EP3348661A4 (en) * 2015-09-11 2019-02-13 Nippon Steel & Sumitomo Metal Corporation STEEL PLATE AND ENAMELED PRODUCT
AU2016321009B2 (en) * 2015-09-11 2019-08-22 Nippon Steel Corporation Steel sheet and enameled product
AU2016321009C1 (en) * 2015-09-11 2019-11-21 Nippon Steel Corporation Steel sheet and enameled product
KR102068499B1 (ko) * 2015-09-11 2020-01-22 닛폰세이테츠 가부시키가이샤 강판 및 법랑 제품
CN106811705A (zh) * 2015-12-02 2017-06-09 鞍钢股份有限公司 一种抗鳞爆性能优良的搪玻璃用钢板及其制造方法
JPWO2021193953A1 (ja) * 2020-03-27 2021-09-30
JP7115653B2 (ja) 2020-03-27 2022-08-09 日本製鉄株式会社 鋼板およびほうろう製品

Also Published As

Publication number Publication date
MY179869A (en) 2020-11-18
PH12016500410A1 (en) 2016-05-16
TWI541364B (zh) 2016-07-11
JPWO2015037614A1 (ja) 2017-03-02
CN105518174A (zh) 2016-04-20
PH12016500410B1 (en) 2016-05-16
KR20160041967A (ko) 2016-04-18
US10011888B2 (en) 2018-07-03
KR101723349B1 (ko) 2017-04-05
TW201525156A (zh) 2015-07-01
US20160201154A1 (en) 2016-07-14
JP6586012B2 (ja) 2019-10-02
CN105518174B (zh) 2017-06-06

Similar Documents

Publication Publication Date Title
JP6586012B2 (ja) ほうろう用冷延鋼板及びほうろう製品
EP2426230B1 (en) High-strength hot-dip zinc-coated steel sheet having excellent workability, weldability and fatigue properties, and process for production thereof
JP6115691B1 (ja) 鋼板およびほうろう製品
KR102504491B1 (ko) 강판 및 법랑 제품
WO2008136290A1 (ja) 缶用鋼板およびその製造方法
TW201313348A (zh) 高強度高加工性罐用鋼板及其製造方法
JP7216358B2 (ja) 水素脆性に対する抵抗性に優れた熱間プレス成形部材及びその製造方法
JP6209175B2 (ja) めっき表面外観およびバーリング性に優れた溶融Zn−Al−Mg系めっき鋼板の製造方法
JP5388577B2 (ja) 加工性に優れた亜鉛メッキ用鋼板及びその製造方法
JP5463677B2 (ja) 高加工性3ピース缶用dr鋼板およびその製造方法
JP5483916B2 (ja) 曲げ性に優れた高強度合金化溶融亜鉛めっき鋼板
WO1996001335A1 (fr) Tole d&#39;acier au chrome a excellente formabilite a la presse
JP5884161B2 (ja) 缶用鋼板用原板と缶用鋼板の製造方法
JP2023100953A (ja) 熱間成形後の衝撃特性に優れた熱間成形用めっき鋼板、熱間成形部材及びこれらの製造方法
TWI771963B (zh) 鋼板及琺瑯製品
JP6515294B2 (ja) 容器用鋼板
JP6453140B2 (ja) 切断端面の耐遅れ破壊性に優れた高強度鋼板およびその製造方法
WO2023199555A1 (ja) 鋼板およびほうろう製品
JP6819838B1 (ja) 缶用鋼板およびその製造方法
JP3183451B2 (ja) ほうろう用冷延鋼板の製造方法
JP2011195874A (ja) 加工後の表面外観に優れたステンレス冷延鋼板およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14843614

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015536600

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167005745

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14916299

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: IDP00201601551

Country of ref document: ID

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14843614

Country of ref document: EP

Kind code of ref document: A1