WO2018131710A1 - 無方向性電磁鋼板及び無方向性電磁鋼板の製造方法 - Google Patents

無方向性電磁鋼板及び無方向性電磁鋼板の製造方法 Download PDF

Info

Publication number
WO2018131710A1
WO2018131710A1 PCT/JP2018/000974 JP2018000974W WO2018131710A1 WO 2018131710 A1 WO2018131710 A1 WO 2018131710A1 JP 2018000974 W JP2018000974 W JP 2018000974W WO 2018131710 A1 WO2018131710 A1 WO 2018131710A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
content
oriented electrical
electrical steel
Prior art date
Application number
PCT/JP2018/000974
Other languages
English (en)
French (fr)
Inventor
屋鋪 裕義
義顕 名取
竹田 和年
務川 進
松本 卓也
晃司 藤田
諸星 隆
雅文 宮嵜
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to CN201880005578.2A priority Critical patent/CN110121567B/zh
Priority to US16/470,078 priority patent/US11021771B2/en
Priority to KR1020197019395A priority patent/KR102259136B1/ko
Priority to BR112019009507-1A priority patent/BR112019009507B1/pt
Priority to PL18739320.2T priority patent/PL3569726T3/pl
Priority to JP2018561447A priority patent/JP6593555B2/ja
Priority to EP18739320.2A priority patent/EP3569726B1/en
Publication of WO2018131710A1 publication Critical patent/WO2018131710A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14708Fe-Ni based alloys
    • H01F1/14733Fe-Ni based alloys in the form of particles
    • H01F1/14741Fe-Ni based alloys in the form of particles pressed, sintered or bonded together
    • H01F1/1475Fe-Ni based alloys in the form of particles pressed, sintered or bonded together the particles being insulated

Definitions

  • the present invention relates to a non-oriented electrical steel sheet and a method for producing a non-oriented electrical steel sheet.
  • Si tends to increase the electrical resistance, resulting in iron loss. It is an element that is effective for the reduction of Therefore, in the said patent document 1, it is disclosed that Si content shall be 6 mass% or less, and in the said patent document 2 and patent document 3, it is disclosed that Si content shall be 5.0 mass% or less. Has been. Patent Documents 1 to 3 also disclose that the Al content is 0.0050% or less and the electrical resistance is increased with Si or Si and Mn to reduce the iron loss.
  • Patent Documents 1 to 3 have not been sufficiently reduced (improved) in high-frequency iron loss such as W 10/400 .
  • the reason for this is that high alloying is indispensable for reducing high-frequency iron loss.
  • Patent Documents 1 to 3 do not discuss high-frequency iron loss. Since the lower limit and distribution of appropriate contents of Si, Al, and Mn are not taken into consideration, it is considered that the reduction of high-frequency iron loss as in W 10/400 was not sufficient.
  • An object of the present invention is to provide a non-oriented electrical steel sheet having good cold rollability and excellent magnetic properties, particularly high-frequency iron loss, and a method for producing the non-oriented electrical steel sheet.
  • the non-oriented electrical steel sheet according to one aspect of the present invention has a chemical composition of mass%, C: more than 0%, 0.0050% or less, Si: 3.0% to 4.0%, Mn : 1.0% to 3.3%, P: more than 0%, less than 0.030%, S: more than 0%, 0.0050% or less, sol.
  • the O content in the central portion of the plate thickness excluding the surface layer portion that is a range from the front surface and the back surface to the position of 10 ⁇ m in the depth direction is less than 0.0100%.
  • the chemical composition is mass%, C: more than 0%, 0.0050% or less, Si: 3.0% to 4. 0%, Mn: 1.0% to 3.3%, P: more than 0%, less than 0.030%, S: more than 0%, 0.0050% or less, sol.
  • Al more than 0%, 0.0040% or less, N: more than 0%, 0.0040% or less, O: less than 0.0100%, Sn: 0% to 0.050%, Sb: 0% to 0.050 , Ti: more than 0%, 0.0050% or less, the balance being Fe and impurities, Sn + Sb: 0.050% or less, Si-0.5 ⁇ Mn: 2.0% or more
  • a cold rolling process for forming a cold-rolled steel sheet, and a finish-annealing process for subjecting the cold-rolled steel sheet to a finish annealing In the finish annealing process, the average in the entire thickness direction of the cold-rolled steel sheet after finish annealing. Finish annealing conditions are controlled so that the O content is 0.0110 mass% or more and 0.0350 mass% or less. It is.
  • the dew point of the atmosphere at the time of temperature rise and soaking is within a range of ⁇ 10 ° C. to 40 ° C. in the finish annealing step. May be controlled.
  • Al is an alloying element that exhibits an effect of increasing electric resistance like Si.
  • Al causes a decrease in cold rollability.
  • the Al content increases, the hysteresis loss tends to deteriorate and the magnetic properties tend to deteriorate. Therefore, it is difficult to contain a large amount of Al as an alloy element in the non-oriented electrical steel sheet.
  • the inventors of the present invention have sought for a method for improving the cold rolling property while suppressing the deterioration of the magnetic properties, and have made extensive studies. As a result, it is possible to improve the cold rollability and magnetic properties by making Al content below a predetermined value and containing Mn with Si having little adverse effect on cold rollability together with Si. Obtained knowledge. Further, in order to further improve the cold rolling property, it is required to reduce the contents of P, Sn, and Sb that may cause the cold rolling property to be lowered. However, the present inventors have also found that reducing the Sn and Sb contents may promote nitriding during finish annealing and possibly reduce magnetic properties.
  • FIG. 1 is a diagram schematically showing the structure of a non-oriented electrical steel sheet according to an embodiment of the present invention
  • FIG. 2 shows the structure of the ground iron of the non-oriented electrical steel sheet according to an embodiment of the present invention. It is the figure shown typically.
  • the non-oriented electrical steel sheet 10 according to the present embodiment has a ground iron 11 having a predetermined chemical composition, as schematically shown in FIG.
  • the non-oriented electrical steel sheet according to the present embodiment may be composed only of the ground iron 11, it is preferable to further have an insulating coating 13 on the surface of the ground iron 11.
  • ground iron 11 of the non-oriented electrical steel sheet 10 will be described in detail.
  • the base iron 11 of the non-oriented electrical steel sheet 10 has a chemical composition of mass%, C: more than 0%, 0.0050% or less, Si: 3.0% to 4.0%, Mn : 1.0% to 3.3%, P: more than 0%, less than 0.030%, S: more than 0%, 0.0050% or less, sol.
  • Al more than 0%, 0.0040% or less, N: more than 0%, 0.0040% or less, O: 0.0110% to 0.0350%, Sn: 0% to 0.050%, Sb: 0% ⁇ 0.050%, Ti: more than 0%, 0.0050% or less, with the balance being Fe and impurities, Sn + Sb: 0.050% or less, Si-0.5 ⁇ Mn ⁇ 2.0% Satisfied.
  • C is an element that is inevitably contained, and is an element that causes iron loss deterioration (increase in iron loss).
  • the C content exceeds 0.0050%, iron loss deterioration occurs in the non-oriented electrical steel sheet, and good magnetic properties cannot be obtained. Therefore, in the non-oriented electrical steel sheet according to the present embodiment, the C content is set to 0.0050% or less.
  • the C content is preferably 0.0040% or less, and more preferably 0.0030% or less. The smaller the C content, the better.
  • C is an inevitably contained element, and the lower limit is made to exceed 0%. Further, if the C content is reduced to less than 0.0005%, the cost is significantly increased. Therefore, the C content may be 0.0005% or more.
  • Si silicon
  • Si is an element that reduces eddy current loss and improves high-frequency iron loss by increasing the electrical resistance of steel.
  • Si has a large solid solution strengthening ability, it is an element effective for increasing the strength of non-oriented electrical steel sheets.
  • the Si content needs to be 3.0% or more. Si content becomes like this. Preferably it is 3.1% or more, More preferably, it is 3.2% or more.
  • the Si content exceeds 4.0%, the workability is remarkably deteriorated and it is difficult to perform cold rolling, or the steel sheet is broken during the cold rolling (that is, , Cold rollability is reduced). Therefore, the Si content is 4.0% or less.
  • the Si content is preferably 3.9% or less, and more preferably 3.8% or less.
  • Mn manganese
  • Mn manganese
  • Si silicon
  • the Mn content is preferably 1.2% or more, more preferably 1.4% or more.
  • the Mn content is 3.3% or less.
  • the Mn content is preferably 3.0% or less, and more preferably 2.8% or less.
  • P more than 0%, less than 0.030%
  • P phosphorus
  • the P content is preferably 0.020% or less, and more preferably 0.010% or less. The smaller the P content, the better.
  • P is an element that is inevitably contained, and the lower limit is made to exceed 0%. If the P content is less than 0.001%, a significant cost increase is caused. Therefore, the lower limit is preferably set to 0.001% or more. More preferably, it is 0.002% or more.
  • S is an element that increases the iron loss by forming fine precipitates of MnS and degrades the magnetic properties of the non-oriented electrical steel sheet. Therefore, the S content needs to be 0.0050% or less. S content becomes like this. Preferably it is 0.0040% or less, More preferably, it is 0.0035% or less. The smaller the S content, the better. However, S is an element that is unavoidably contained, and the lower limit is made to exceed 0%. Further, if the S content is reduced to less than 0.0001%, a significant cost increase is caused. Accordingly, the S content is preferably 0.0001% or more.
  • Al is an element that, when dissolved in steel, reduces eddy current loss and improves high-frequency iron loss by increasing the electrical resistance of the non-oriented electrical steel sheet.
  • the non-oriented electrical steel sheet according to the present embodiment positively contains Mn, which is an element that increases the electrical resistance without degrading workability as compared with Al. Therefore, it is not necessary to positively contain Al.
  • sol. If the Al (acid-soluble Al) content exceeds 0.0040%, fine nitrides are precipitated in the steel, and the grain growth during hot-rolled sheet annealing or finish annealing is hindered, resulting in deterioration of magnetic properties. Therefore, sol.
  • the Al content is 0.0040% or less.
  • the Al content is preferably 0.0030% or less, more preferably 0.0020% or less.
  • Al is an element inevitably contained, and the lower limit is made over 0%. Also, sol. Attempting to reduce the Al content below 0.0001% results in a significant cost increase. Therefore, sol.
  • the Al content is preferably 0.0001% or more.
  • N nitrogen
  • nitrogen is an element that forms fine nitrides in steel to increase iron loss and degrade the magnetic properties of the non-oriented electrical steel sheet. Therefore, the N content needs to be 0.0040% or less.
  • the N content is preferably 0.0030% or less, more preferably 0.0020% or less.
  • N is an element inevitably contained, and the lower limit is made over 0%. Further, the smaller the N content, the better. However, if the N content is reduced from 0.0001%, a significant cost increase is caused. Therefore, the N content is preferably 0.0001% or more. More preferably, it is 0.0003% or more.
  • O oxygen
  • the O content is preferably 0.0115% or more, and more preferably 0.0120% or more.
  • the O content exceeds 0.0350%, the oxide layer in the surface layer portion of the steel sheet formed by the introduction of oxygen becomes thick and the magnetic properties deteriorate, which is not preferable. Therefore, the O content is 0.0350% or less.
  • the O content is preferably 0.0330% or less, and more preferably 0.0300% or less.
  • iron loss increases when a steel sheet is nitrided during finish annealing.
  • the surface of the steel sheet is oxidized, nitriding can be suppressed, but the magnetic properties are deteriorated due to the generated oxide. Therefore, conventionally, oxidizing the steel sheet surface has not been performed.
  • the total amount of oxygen to be 0.0110 to 0.0350% in a specific component system, nitridation is suppressed and deterioration in magnetic properties due to oxide is minimized. What is suppressed is a knowledge newly found by the present inventors.
  • the O content of 0.0110% or more and 0.0350% or less as described above means an average content in the entire thickness direction of the base iron 11 as described in detail below.
  • O (oxygen) in the ground iron 11 is mainly introduced into the steel during finish annealing. Therefore, most of the introduced oxygen is present in the surface layer portion of the ground iron 11 as will be described in detail below, and the distribution of oxygen along the thickness direction is not uniform.
  • the oxygen content (O content) other than the surface layer portion of the base iron 11 will be described again below.
  • Sn and Sb are elements useful for ensuring low iron loss by segregating on the surface of the steel sheet and suppressing nitriding during annealing. Therefore, in the non-oriented electrical steel sheet according to the present embodiment, it is preferable that at least one of Sn and Sb is contained in the ground iron 11 in order to obtain such an effect.
  • the Sn content is preferably 0.005% or more, and more preferably 0.010% or more.
  • the Sb content is preferably 0.005% or more, and more preferably 0.010% or more.
  • the contents of Sn and Sb are each preferably 0.050% or less.
  • the Sn content is more preferably 0.040% or less, and still more preferably 0.030% or less. Further, the Sb content is more preferably 0.040% or less, and still more preferably 0.030% or less.
  • Sn + Sb 0.050% or less
  • Sn and Sb are elements that cause a decrease in cold rollability when excessively contained in the ground iron 11.
  • the total content of Sn and Sb is set to 0.050% or less.
  • the total content of Sn and Sb is preferably 0.040% or less, and more preferably 0.030% or less.
  • Ti over 0%, 0.0050% or less
  • Ti titanium
  • Ti is an element that combines with C, N, O, etc. in the ground iron to form fine precipitates such as TiN, TiC, Ti oxide, etc., and inhibits the growth of crystal grains during annealing, thereby deteriorating magnetic properties. It is. Therefore, the Ti content is 0.0050% or less. Preferably it is 0.0040% or less, More preferably, it is 0.0030% or less.
  • Ti is an element inevitably contained, and the lower limit is made to exceed 0%. An attempt to make the Ti content less than 0.0003% results in a significant cost increase, so the Ti content is preferably set to 0.0003% or more. More preferably. 0.0005% or more.
  • the non-oriented electrical steel sheet according to the present embodiment basically includes the above elements, with the balance being Fe and impurities.
  • the non-oriented electrical steel sheet according to the present embodiment may contain elements such as Ni (nickel), Cr (chromium), Cu (copper), and Mo (molybdenum) other than the elements described above. Even if each of these elements is contained in an amount of 0.50% or less, the effect of the non-oriented electrical steel sheet according to the present embodiment is not impaired.
  • Ca calcium
  • Mg magnesium
  • La lanthanum
  • Ce cerium
  • Pr praseodymium
  • Nd neodymium
  • elements such as Pb (lead), Bi (bismuth), V (vanadium), As (arsenic), and B (boron) may be contained. Even if these elements are included in the range of 0.0001% to 0.0050%, the effect of the non-oriented electrical steel sheet according to the present embodiment is not impaired.
  • Si-0.5 ⁇ Mn: 2.0% or more the content of each element is controlled as described above, and the Si content and the Mn content are controlled to satisfy a predetermined relationship.
  • Si is a ferrite phase formation promoting element (so-called ferrite former element)
  • Mn which is an alloy element is an austenite phase formation promoting element (so-called austenite former element). Therefore, depending on the respective contents of Si and Mn, the metal structure of the non-oriented electrical steel sheet changes, and the non-oriented electrical steel sheet becomes a component system having a transformation point or a component system having no transformation point. It becomes.
  • the non-oriented electrical steel sheet according to the present embodiment it is required to appropriately increase the average crystal grain size in the base iron 11, and the component system having no transformation point increases the crystal grain size. It becomes an effective means for. Therefore, each content of Si and Mn needs to satisfy a predetermined relationship so that the component system does not have a transformation point.
  • the ability to promote austenite phase formation by Mn (in other words, the effect of canceling the ability to promote ferrite phase formation) is considered to be about 0.5 times the ability to promote ferrite phase formation by Si. Therefore, the equivalent amount of the ferrite phase formation promoting ability in the present embodiment can be expressed as “Si ⁇ 0.5 ⁇ Mn” based on the Si content.
  • the value of Si-0.5 ⁇ Mn When the value of Si-0.5 ⁇ Mn is less than 2.0%, the non-oriented electrical steel sheet becomes a component system having a transformation point. As a result, there is a concern that the metal structure of the steel sheet is not a ferrite single phase during high-temperature treatment during production, and the magnetic properties of the non-oriented electrical steel sheet are deteriorated. Therefore, the value of Si-0.5 ⁇ Mn needs to be 2.0% or more. Preferably, it is 2.1% or more.
  • the upper limit of Si-0.5 ⁇ Mn is not particularly specified, but from the range of Si content and Mn content of the non-oriented electrical steel sheet according to the present embodiment, Si-0.5 ⁇ Mn. The value of Mn cannot exceed 3.5%. Therefore, the upper limit value of Si-0.5 ⁇ Mn is substantially 3.5%.
  • spark discharge emission analysis method ICP emission analysis method
  • combustion-infrared absorption method when measuring C and S with high accuracy
  • inert gas melting-red when measuring O and N with high accuracy
  • An external absorption method / thermal conductivity method or the like may be used as appropriate.
  • the surface layer oxidized portion 11a in a state where oxygen is concentrated is formed on the surface layer portion of the ground iron 11 of the non-oriented electrical steel sheet 10 according to the present embodiment, as schematically shown in FIG.
  • the base material part 11b, which is a part other than the surface layer oxidation part 11a, and the surface layer oxidation part 11a have different oxygen contents (O content).
  • the center of the plate thickness excluding the surface layer portion that is a range from the front surface and the back surface of the steel plate (base iron 11) to the 10 ⁇ m position in the depth direction.
  • the O content in the part is less than 0.0100%.
  • the O content in the central portion of the plate thickness is preferably 0.0080% or less and may be 0%.
  • the O content in the base iron 11 of 0.0110% to 0.0350% mentioned earlier means the average O content in the whole plate thickness direction of the base iron 11, and is in the central portion of the plate thickness. Different from O content. As described above, the O content in the central portion of the plate thickness excluding the steel plate (base iron 11) from the front and back surfaces to the 10 ⁇ m position in the depth direction is in the steel ingot that is the base of the base iron 11. It can be said that it is O content of.
  • the O content in the central portion of the plate thickness is, for example, after melting up to 10 ⁇ m in the depth direction from the front and back surfaces of the steel plate (base iron 11) by a known method such as chemical polishing, for example, inert gas melting ⁇ It can be measured by using various known measuring methods such as infrared absorption method / thermal conductivity method.
  • the depth from the front surface and the back surface of the steel sheet (base metal 11) is specified by specifying the O content in the central portion of the plate thickness and the average O content (average oxygen content) in the entire plate thickness direction. It is possible to calculate the O content up to 10 ⁇ m in the direction (in other words, the O content of the surface oxidation portion 11a). More specifically, the O content of the surface oxidation portion 11a can be calculated by the following formula (1) with reference to FIG.
  • ⁇ O t (mass%): Average O content in the whole thickness direction of the steel sheet
  • ⁇ O 10 ⁇ m (mass%): O content up to 10 ⁇ m position from the front surface and back surface of the steel sheet (ground iron) in the depth direction
  • Amount ⁇ O b (mass%): O content in a portion where the steel plate (base iron) is removed from the front and back surfaces to the 10 ⁇ m position in the depth direction t ( ⁇ m): the thickness of the base iron
  • the thickness (the thickness t in FIGS. 1 and 2) of the ground iron 11 in the non-oriented electrical steel sheet 10 according to the present embodiment is 0.40 mm or less. It is preferable that On the other hand, when the plate thickness t of the ground iron 11 is less than 0.10 mm, it is difficult to pass the annealing line because the plate thickness is thin. Therefore, the thickness t of the ground iron 11 in the non-oriented electrical steel sheet 10 is preferably 0.10 mm or more and 0.40 mm or less. The plate thickness t of the ground iron 11 in the non-oriented electrical steel sheet 10 is more preferably 0.15 mm or more and 0.35 mm or less.
  • ground iron 11 of the non-oriented electrical steel sheet 10 according to the present embodiment has been described in detail.
  • the iron loss is composed of eddy current loss and hysteresis loss.
  • the insulating coating 13 provided in the non-oriented electrical steel sheet 10 according to the present embodiment is not particularly limited as long as it is used as an insulating film of the non-oriented electrical steel sheet, and a known insulating coating is used. It is possible to use.
  • an insulating film for example, a composite insulating film mainly containing an inorganic substance and further containing an organic substance can be exemplified.
  • the composite insulating film is mainly composed of at least one of inorganic substances such as metal chromate, metal phosphate or colloidal silica, Zr compound, Ti compound, and fine organic resin particles are dispersed. It is an insulating coating.
  • metal phosphates, Zr or Ti coupling agents, or insulating films using these carbonates or ammonium salts as starting materials are available.
  • metal phosphates, Zr or Ti coupling agents, or insulating films using these carbonates or ammonium salts as starting materials are available.
  • metal phosphates, Zr or Ti coupling agents, or insulating films using these carbonates or ammonium salts as starting materials are available.
  • insulating films using these carbonates or ammonium salts as starting materials are available.
  • insulating films using these carbonates or ammonium salts as starting materials are available.
  • the adhesion amount of the insulating coating 13 as described above is not particularly limited. For example, it is preferably about 0.1 g / m 2 or more and 2.0 g / m 2 or less per side, and 0.3 g per side. / M 2 or more and 1.5 g / m 2 or less is more preferable.
  • the insulating coating 13 so as to have the above-described adhesion amount, it is possible to maintain excellent uniformity.
  • various known measuring methods can be used.
  • the adhesion amount of the insulating coating 13 is calculated from, for example, a mass difference between before and after removing the insulating coating 13 by removing only the insulating coating 13 by immersing the non-oriented electrical steel sheet 10 on which the insulating coating 13 is formed in a hot alkaline solution. Is possible.
  • the non-oriented electrical steel sheet 10 according to the present embodiment has excellent magnetic properties by having the above structure.
  • various magnetic properties shown by the non-oriented electrical steel sheet 10 according to the present embodiment are the Epstein method defined in JIS C2550 and the single plate magnetic property measurement method (Single Sheet Tester: SST) defined in JIS C2556. ) And can be measured.
  • the non-oriented electrical steel sheet 10 according to the present embodiment has been described in detail above with reference to FIGS. 1 and 2.
  • FIG. 3 is a flowchart showing an example of the flow of the method for manufacturing the non-oriented electrical steel sheet according to the present embodiment.
  • ⁇ Hot rolling process> In the method for producing a non-oriented electrical steel sheet according to the present embodiment, first, by mass, C: more than 0%, 0.0050% or less, Si: 3.0% to 4.0%, Mn: 1.0 % To 3.3%, P: more than 0%, less than 0.030%, S: more than 0%, 0.0050% or less, sol.
  • Al more than 0%, 0.0040% or less, N: more than 0%, 0.0040% or less, O: less than 0.0100%, Sn: 0% to 0.050%, Sb: 0% to 0.050 , Ti: more than 0%, 0.0050% or less, the balance being Fe and impurities, Sn + Sb: 0.050% or less, Si-0.5 ⁇ Mn: 2.0% or more (Slab) is heated and hot rolling is performed on the heated steel ingot to obtain a hot-rolled steel sheet (step S101).
  • the heating temperature of the steel ingot at the time of hot rolling is not particularly specified, but it is preferably, for example, 1050 ° C. to 1300 ° C.
  • the heating temperature of the steel ingot is more preferably 1050 ° C. to 1250 ° C.
  • the thickness of the hot-rolled steel sheet after hot rolling is not particularly specified, but is preferably about 1.6 mm to 3.5 mm in consideration of the final sheet thickness of the base iron. .
  • the hot rolling step is preferably completed while the temperature of the steel sheet is in the range of 700 ° C to 1000 ° C.
  • the end temperature of hot rolling is more preferably 750 ° C. to 950 ° C.
  • hot-rolled sheet annealing (annealing for hot-rolled steel sheet) is performed (step S103).
  • the hot-rolled steel sheet is annealed, for example, at 750 ° C. to 1200 ° C. and including soaking for 10 seconds to 10 minutes.
  • the hot rolled steel sheet is annealed, for example, at 650 ° C. to 950 ° C. and including soaking for 30 minutes to 24 hours.
  • step S105 pickling is performed (step S105). Thereby, the scale layer mainly composed of oxides formed on the surface of the steel sheet during the hot-rolled sheet annealing is removed.
  • hot-rolled sheet annealing is box annealing, it is preferable to implement a pickling process before hot-rolled sheet annealing from a viewpoint of descaling property.
  • Step S107 After the pickling step (when hot-rolled plate annealing is performed by box annealing, it may be after the hot-rolled plate annealing step), cold rolling is performed on the hot-rolled steel plate.
  • Step S107 the pickled plate from which the scale has been removed is rolled at a rolling reduction such that the final thickness of the base iron is 0.10 mm or more and 0.40 mm or less.
  • finish annealing is performed on the cold-rolled steel sheet obtained by the cold rolling step (step S109).
  • the finish annealing conditions are controlled so that the average O content in the entire thickness direction of the cold-rolled steel sheet is 0.0110% by mass or more and 0.0350% by mass or less after the finish annealing. Therefore, the finish annealing process includes a temperature raising process, a soaking process, and a cooling process. In the finish annealing process of the method for manufacturing a non-oriented electrical steel sheet according to the present embodiment, it is necessary to control each process. is there.
  • the average temperature raising rate is set to 1 ° C./second to 2000 ° C./second.
  • the average temperature rising rate is more preferably 5 ° C./second to 1500 ° C./second, and the ratio of H 2 in the atmosphere is more preferably 15 volume% to 90 volume%.
  • the dew point of the atmosphere is more preferably ⁇ 5 ° C. or more and 35 ° C.
  • the temperature raising process of finish annealing is rapid heating. By rapidly performing the heating in the temperature raising process, a recrystallized texture that is advantageous in magnetic properties is formed in the iron core 11.
  • finish annealing is preferably performed by continuous annealing. For example, in the case of heating by gas combustion, the above average heating rate is obtained by using direct heating or indirect heating using a radiant tube, or using a known heating method such as energization heating or induction heating. It is possible to realize.
  • the soaking temperature is set to 700 ° C. to 1100 ° C.
  • the soaking time is set to 1 second to 300 seconds
  • the atmosphere has an H 2 ratio of 10% to 100% by volume.
  • the soaking temperature is more preferably 750 ° C. to 1050 ° C., and the proportion of H 2 in the atmosphere is more preferably 15 volume% to 90 volume%.
  • the dew point of the atmosphere is more preferably ⁇ 10 ° C. or higher and 30 ° C. or lower, and further preferably ⁇ 5 ° C. or higher and 20 ° C. or lower.
  • the average cooling rate is preferably 1 ° C./second to 50 ° C./second to 200 ° C. or lower.
  • the average cooling rate is more preferably 5 ° C./second to 30 ° C./second.
  • the non-oriented electrical steel sheet 10 according to this embodiment can be manufactured.
  • step S111 After the finish annealing, an insulating coating forming process is performed as necessary (step S111).
  • the step of forming the insulating film is not particularly limited, and the treatment liquid may be applied and dried by a known method using the above-described known insulating film treatment liquid.
  • the surface of the base iron 11 on which the insulating film is formed may be subjected to any pretreatment such as degreasing treatment with alkali or pickling treatment with hydrochloric acid, sulfuric acid, phosphoric acid or the like before applying the treatment liquid. And the surface as it is after finishing annealing without performing these pretreatments may be sufficient.
  • the method for producing the non-oriented electrical steel sheet and the non-oriented electrical steel sheet according to the present invention will be specifically described with reference to examples.
  • the example shown below is only an example of the manufacturing method of the non-oriented electrical steel sheet and the non-oriented electrical steel sheet according to the present invention, and the manufacturing method of the non-oriented electrical steel sheet and the non-oriented electrical steel sheet according to the present invention is as follows. It is not limited to the following example.
  • Example 1 A steel slab containing the composition shown in Table 1 and the balance being Fe and impurities was heated to 1150 ° C. and then rolled to a thickness of 2.0 mm by hot rolling. Subsequently, the hot-rolled steel sheet was subjected to hot-rolled sheet annealing in a continuous annealing type annealing furnace with a soaking temperature of 1000 ° C. and a soaking time of 40 seconds, followed by cold rolling to obtain a 0.25 mm thick cold steel sheet. A rolled steel sheet was used. This cold-rolled steel sheet was subjected to finish annealing with a soaking temperature of 1000 ° C. and a soaking time of 15 seconds. Thereafter, a non-oriented electrical steel sheet was manufactured by further applying and baking a solution containing an acrylic resin emulsion mainly composed of a metal phosphate to both surfaces of the steel sheet to form a composite insulating film.
  • the atmosphere of the temperature rising process and the soaking process was controlled to be 20 volume% H 2 +80 volume% N 2 atmosphere.
  • the dew point is -30 ° C for test number 1, + 5 ° C for test number 2, + 15 ° C for test number 3, + 45 ° C for test number 4, + 15 ° C for test number 5, -15 ° C for test number 6
  • Number 7 was + 45 ° C.
  • the average temperature increase rate in the temperature rising process during the finish annealing was 20 ° C./second, and the average cooling rate in the cooling process was 20 ° C./second. After finish annealing, it was cooled to 200 ° C. or lower.
  • Test No. 2, Test No. 3, and Test No. 6 in which the O content of the steel sheet after finish annealing is within the scope of the present invention were excellent in both iron loss and magnetic flux density.
  • Example 2 A steel slab containing the composition shown in Table 2 and the balance being Fe and impurities was heated to 1160 ° C. and then rolled to 2.0 mm thickness by hot rolling. Subsequently, the hot-rolled steel sheet was subjected to hot-rolled sheet annealing in a continuous annealing-type annealing furnace under the conditions that the soaking temperature was 1000 ° C. and the soaking time was 40 seconds, and then cold-rolled to perform 0.25 mm thick cooling. A rolled steel sheet was obtained. Thereafter, the cold-rolled steel sheet was subjected to finish annealing under the conditions that the soaking temperature was 1000 ° C. and the soaking time was 15 seconds. Thereafter, a non-oriented electrical steel sheet was manufactured by further applying and baking a solution containing an acrylic resin emulsion mainly composed of a metal phosphate to both surfaces of the steel sheet to form a composite insulating film.
  • the atmosphere of the temperature rising process and the soaking process was controlled to be 20 volume% H 2 +80 volume% N 2 atmosphere.
  • the dew point was + 10 ° C.
  • the average temperature increase rate in the temperature rising process during the finish annealing was 30 ° C./second, and the average cooling rate in the cooling process was 20 ° C./second. After finish annealing, it was cooled to 200 ° C. or lower.
  • the test number 15 in which the Al content deviated higher than the range of the present invention and the test number 19 in which Ti deviated higher than the range of the present invention were inferior in iron loss and magnetic flux density.
  • Test Nos. 9, 10, 13, 16, and 17 in which the chemical composition of the steel sheet is within the scope of the present invention were capable of cold rolling and were excellent in iron loss and magnetic flux density.
  • Example 3 A steel slab containing the composition shown in Table 3 and the balance being Fe and impurities was heated to 1150 ° C. and then rolled to 2.0 mm thickness by hot rolling. Subsequently, the hot-rolled steel sheet was subjected to hot-rolled sheet annealing in a continuous annealing-type annealing furnace under the conditions that the soaking temperature was 1000 ° C. and the soaking time was 40 seconds, and then cold-rolled to perform 0.25 mm thick cooling. A rolled steel sheet was obtained. Thereafter, the cold-rolled steel sheet was subjected to finish annealing under conditions where the soaking temperature was 800 ° C. and the soaking time was 15 seconds.
  • a non-oriented electrical steel sheet was manufactured by further applying and baking a solution containing an acrylic resin emulsion mainly composed of a metal phosphate to both surfaces of the steel sheet to form a composite insulating film. Subsequently, the obtained steel plate was subjected to strain relief annealing at 750 ° C. ⁇ 2 hr.
  • the atmosphere of the temperature raising process and the soaking process was controlled to be 15 volume% H 2 +85 volume% N 2 atmosphere.
  • the dew point was + 10 ° C.
  • the average temperature increase rate in the temperature increase process during finish annealing was 20 ° C./second, and the average cooling rate in the cooling process was 15 ° C./second. After finish annealing, it was cooled to 200 ° C. or lower.
  • test numbers 20, 22 and 24, in which the chemical composition of the steel sheet is within the scope of the present invention were excellent in iron loss and magnetic flux density.
  • Test No. 21 in which Si-0.5 ⁇ Mn was out of the range of the present invention was inferior in iron loss and magnetic flux density.
  • the non-oriented steel sheet according to the present invention exhibits excellent magnetic properties even when strain relief annealing is performed.

Abstract

この無方向性電磁鋼板は、化学組成が、質量%で、C:0%超、0.0050%以下、Si:3.0%~4.0%、Mn:1.0%~3.3%、P:0%超、0.030%未満、S:0%超、0.0050%以下、sol.Al:0%超、0.0040%以下、N:0%超、0.0040%以下、O:0.0110%~0.0350%、Sn:0%~0.050%、Sb:0%~0.050%、Ti:0%超、0.0050%以下、を含有し、残部がFe及び不純物からなり、Sn+Sb:0.050%以下、Si-0.5×Mn:2.0%以上であり、表面及び裏面から深さ方向に10μmの位置までの範囲である表層部分を除いた板厚中央部分のO含有量が、0.0100%未満である。

Description

無方向性電磁鋼板及び無方向性電磁鋼板の製造方法
 本発明は、無方向性電磁鋼板及び無方向性電磁鋼板の製造方法に関する。
 本願は、2017年01月16日に、日本に出願された特願2017-005213号に基づき優先権を主張し、その内容をここに援用する。
 昨今、地球環境問題が注目されており、省エネルギーへの取り組みに対する要求は、一段と高まってきている。なかでも電気機器の高効率化は、近年強く要望されている。このため、モータや発電機又は変圧器等の鉄心材料として広く使用されている無方向性電磁鋼板においても、磁気特性の向上に対する要請が更に強まっている。近年、高効率化が進展する電気自動車やハイブリッド自動車用のモータや発電機、及び、コンプレッサ用モータにおいては、その傾向が顕著である。
 無方向性電磁鋼板の磁気特性を向上させるためには、鋼中に合金元素を添加することで鋼板の電気抵抗を上げ、渦電流損を低減することが有効である。そのため、例えば以下の特許文献1~特許文献3では、Si、Al、Mn、P等といった電気抵抗を上昇させる効果を有する元素を添加して、磁気特性の改善(鉄損の低下、磁束密度等の増加等)を図ることが行われている。
国際公開第2016/027565号 日本国特開2016-130360号公報 日本国特開2016-138316号公報
 ここで、同一の含有量(質量%)で合金元素を添加することを考えた場合に、冷間圧延性への悪影響の大きいPを除くと、Siが、電気抵抗を上昇させやすく、鉄損の低減に有効な元素である。そのため、上記特許文献1では、Si含有量を6質量%以下とすることが開示されており、上記特許文献2及び特許文献3では、Si含有量を5.0質量%以下とすることが開示されている。また、特許文献1~特許文献3では、Al含有量を0.0050%以下とし、SiまたはSi及びMnで電気抵抗を上昇させて、鉄損を低減することも開示されている
 しかしながら、本発明者らが検討した結果、特許文献1~特許文献3に示された鋼板では、W10/400のような高周波鉄損の低減(向上)は十分ではなかった。その理由として、高周波鉄損の低減には高合金化が不可欠であるが、特許文献1~特許文献3では、高周波鉄損については検討されておらず、高周波鉄損低減に必要な合金量の下限値や、Si、Al、Mnの適正な含有量の配分が考慮されていないので、W10/400のような高周波鉄損の低減が十分ではなかったと考えられる。
 本発明は、上記問題に鑑みてなされた。本発明の目的は、冷間圧延性が良好で、磁気特性、特に高周波鉄損の優れる無方向性電磁鋼板及び無方向性電磁鋼板の製造方法を提供することにある。
 上記課題を解決するために、本発明者らは鋭意検討を行った。その結果、(i)Al含有量を所定の値以下とすること、(ii)電気抵抗の上昇に寄与し、冷間圧延性への悪影響が少ないMnをSiとともに含有させること、によって良好な冷間圧延性を確保しつつ磁気特性を向上させることが可能であるとの知見を得た。
 また、更なる冷間圧延性の向上のためには、冷間圧延性の低下を招く可能性のあるP、Sn、Sbの含有量を低減することが求められる。一方で、本発明者らは、Sn及びSbの含有量を低減すると、仕上焼鈍時の窒化が促進され、磁気特性が低下する可能性があるとの知見も得た。このような知見をもとに、本発明者が更なる検討を行った結果、Sn及びSbの含有量を低減した場合であっても、磁気特性の低下を招くことなく、冷間圧延性をより一層向上させることが可能な方法に想到し、本発明を完成するに至った。
 上記知見に基づき完成された本発明の要旨は、以下の通りである。
(1)本発明の一態様に係る無方向性電磁鋼板は、化学組成が、質量%で、C:0%超、0.0050%以下、Si:3.0%~4.0%、Mn:1.0%~3.3%、P:0%超、0.030%未満、S:0%超、0.0050%以下、sol.Al:0%超、0.0040%以下、N:0%超、0.0040%以下、O:0.0110%~0.0350%、Sn:0%~0.050%、Sb:0%~0.050%、Ti:0%超、0.0050%以下、を含有し、残部がFe及び不純物からなり、Sn+Sb:0.050%以下、Si-0.5×Mn:2.0%以上であり、表面及び裏面から深さ方向に10μmの位置までの範囲である表層部分を除いた板厚中央部分のO含有量が、0.0100%未満である。
(2)本発明の別の態様に係る無方向性電磁鋼板の製造方法は、化学組成が、質量%で、C:0%超、0.0050%以下、Si:3.0%~4.0%、Mn:1.0%~3.3%、P:0%超、0.030%未満、S:0%超、0.0050%以下、sol.Al:0%超、0.0040%以下、N:0%超、0.0040%以下、O:0.0100%未満、Sn:0%~0.050%、Sb:0%~0.050%、Ti:0%超、0.0050%以下を含有し、残部がFe及び不純物からなり、Sn+Sb:0.050%以下、Si-0.5×Mn:2.0%以上である鋼塊を、熱間圧延して熱延鋼板とする熱間圧延工程と、前記熱延鋼板を焼鈍する熱延板焼鈍工程と、前記熱延板焼鈍工程後の前記熱延鋼板を冷間圧延して冷延鋼板とする冷間圧延工程と、前記冷延鋼板に対して仕上焼鈍を施す仕上焼鈍工程と、を含み、前記仕上焼鈍工程では、仕上焼鈍後に前記冷延鋼板の板厚方向全体における平均O含有量が0.0110質量%以上0.0350質量%以下となるように、仕上焼鈍条件が制御される。
(3)上記(2)に記載の無方向性電磁鋼板の製造方法は、前記仕上焼鈍工程では、昇温時及び均熱時の雰囲気の露点が-10℃~40℃の範囲内となるように制御されてもよい。
 本発明の上記態様によれば、良好な冷間圧延性及び優れた磁気特性を有する無方向性電磁鋼板、及びその製造方法が得られる。
本発明の一実施形態に係る無方向性電磁鋼板の構造を模式的に示した図である。 同実施形態に係る無方向性電磁鋼板の地鉄の構造を模式的に示した図である。 同実施形態に係る無方向性電磁鋼板の製造方法の流れの一例を示した図である。
 以下に、図面を参照しながら、本発明の好適な実施の一形態について詳細に説明する。本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
(無方向性電磁鋼板について)
 無方向性電磁鋼板においては、先だって説明したように、鉄損を低減するために、一般的には、鋼中に合金元素を含有させて鋼板の電気抵抗を上げて、渦電流損を低減させる。ここで、同一の含有量(質量%)の合金元素を含有させることを考えた場合に、Siが、電気抵抗を上昇させやすいので、鉄損の低減に有効な元素である。しかしながら、本発明者らによる検討の結果、Si含有量が4.0質量%を超える場合には、無方向性電磁鋼板の冷間圧延性が著しく低下することが明らかとなった。
 また、Alも、Siと同様に電気抵抗の上昇効果を示す合金元素である。しかしながら、本発明者らによる検討の結果、AlもSiと同様に冷間圧延性の低下を招くことが明らかとなった。また、Al含有量が多くなると、ヒステリシス損が劣化して磁気特性が低下する傾向がある。そのため、無方向性電磁鋼板に、合金元素としてAlを大量に含有させることは、困難である。無方向性電磁鋼板において、ヒステリシス損の劣化による磁気特性の低下を抑制するためには、Al含有量は、少なくすることが好ましい。
 本発明者らは、磁気特性の低下を抑制しつつ冷間圧延性を向上させる方法を求めて、鋭意検討を行った。その結果、Al含有量を所定の値以下とし、かつ、冷間圧延性への悪影響が少ないMnをSiとともに含有させることで、冷間圧延性及び磁気特性を向上させることが可能であるとの知見を得た。
 また、更なる冷間圧延性の向上のためには、冷間圧延性の低下を招く可能性のあるP、Sn、Sbの含有量を低減することが求められる。しかしながら、本発明者らは、Sn及びSbの含有量の低減は、仕上焼鈍時の窒化を促進して、磁気特性を低下させる可能性があるとの知見も得た。本発明者らが更なる検討を行った結果、仕上焼鈍時に鋼板の表層部分を適度に酸化させて窒化を抑制することにより、冷間圧延性をより一層向上させるためにSn及びSbの含有量を低減した場合であっても、磁気特性の低下を抑制できるとの知見を得た。
 以下では、図1及び図2を参照しながら、本発明の一実施形態に係る無方向性電磁鋼板(本実施形態に係る無方向性電磁鋼板)及びその製造方法について、詳細に説明する。
 図1は、本発明の実施形態に係る無方向性電磁鋼板の構造を模式的に示した図であり、図2は、本発明の実施形態に係る無方向性電磁鋼板の地鉄の構造を模式的に示した図である。
 本実施形態に係る無方向性電磁鋼板10は、図1に模式的に示したように、所定の化学組成の地鉄11を有している。本実施形態に係る無方向性電磁鋼板は、地鉄11のみからなってもよいが、地鉄11の表面に、絶縁被膜13を更に有していることが好ましい。
 以下では、まず、本実施形態に係る無方向性電磁鋼板10の地鉄11について、詳細に説明する。
<地鉄の化学組成について>
 本実施形態に係る無方向性電磁鋼板10の地鉄11は、化学組成が、質量%で、C:0%超、0.0050%以下、Si:3.0%~4.0%、Mn:1.0%~3.3%、P:0%超、0.030%未満、S:0%超、0.0050%以下、sol.Al:0%超、0.0040%以下、N:0%超、0.0040%以下、O:0.0110%~0.0350%、Sn:0%~0.050%、Sb:0%~0.050%、Ti:0%超、0.0050%以下、を含有し、残部がFe及び不純物からなり、Sn+Sb:0.050%以下、Si-0.5×Mn≧2.0%を満足する。
 以下では、本実施形態に係る地鉄11の化学組成が上記のように規定される理由について、詳細に説明する。以下では、特に断りの無い限り、化学組成に関する「%」は「質量%」を表すものとする。
[C:0%超、0.0050%以下]
 C(炭素)は、不可避的に含有される元素であるとともに、鉄損劣化(鉄損の増加)を引き起こす元素である。C含有量が0.0050%を超える場合には、無方向性電磁鋼板において鉄損劣化が生じ、良好な磁気特性を得ることができない。従って、本実施形態に係る無方向性電磁鋼板では、C含有量を、0.0050%以下とする。C含有量は、好ましくは0.0040%以下であり、より好ましくは0.0030%以下である。C含有量は、少なければ少ないほど好ましいが、Cは不可避的に含有される元素であり、下限を0%超とする。また、C含有量を0.0005%よりも低減させようとすると、大幅なコストアップとなる。従って、C含有量は、0.0005%以上としてもよい。
[Si:3.0%~4.0%]
 Si(ケイ素)は、鋼の電気抵抗を上昇させることによって、渦電流損を低減させ、高周波鉄損を改善する元素である。また、Siは、固溶強化能が大きいため、無方向性電磁鋼板の高強度化にも有効な元素である。無方向性電磁鋼板において、高強度化は、モータの高速回転時の変形抑制や疲労破壊抑制といった観点から必要である。このような効果を十分に発揮させるためには、Si含有量を3.0%以上とすることが必要である。Si含有量は、好ましくは3.1%以上、より好ましくは3.2%以上である。
 一方、Si含有量が4.0%を超える場合には、加工性が著しく劣化し、冷間圧延を実施することが困難となったり、冷間圧延の途中で鋼板が破断したりする(すなわち、冷間圧延性が低下する)。従って、Si含有量は、4.0%以下とする。Si含有量は、好ましくは3.9%以下であり、より好ましくは、3.8%以下である。
[Mn:1.0%~3.3%]
 Mn(マンガン)は、電気抵抗を上昇させることによって、渦電流損を低減し、高周波鉄損を改善する元素である。また、Mnは、Siより固溶強化能は小さいものの、加工性を劣化させることなく、無方向性電磁鋼板の高強度化に寄与できる元素である。このような効果を十分に発揮させるためには、Mn含有量を1.0%以上とすることが必要である。Mn含有量は、好ましくは1.2%以上、より好ましくは1.4%以上である。
 一方、Mn含有量が3.3%を超える場合には、磁束密度の低下が顕著となる。従って、Mn含有量は、3.3%以下とする。Mn含有量は、好ましくは3.0%以下であり、より好ましくは、2.8%以下である。
[P:0%超、0.030%未満]
 P(リン)は、Si及びMnの含有量が多い高合金鋼において、著しく加工性を劣化させて冷間圧延を困難にする元素である。従って、P含有量は、0.030%未満とする。P含有量は、好ましくは0.020%以下であり、より好ましくは、0.010%以下である。
 P含有量は、少なければ少ないほど良いが、Pは不可避的に含有される元素であり、下限を0%超とする。P含有量を0.001%未満にしようとすると、大幅なコストアップを招く。従って、下限を0.001%以上とすることが好ましい。より好ましくは0.002%以上である。
[S:0%超、0.0050%以下]
 S(硫黄)は、MnSの微細析出物を形成することで鉄損を増加させ、無方向性電磁鋼板の磁気特性を劣化させる元素である。そのため、S含有量は、0.0050%以下とする必要がある。S含有量は、好ましくは0.0040%以下であり、より好ましくは0.0035%以下である。
 S含有量は、少なければ少ないほど好ましいが、Sは不可避的に含有される元素であり、下限を0%超とする。また、S含有量を0.0001%よりも低減させようとすると、大幅なコストアップを招く。従って、S含有量は、好ましくは0.0001%以上である。
[sol.Al:0%超、0.0040%以下]
 Al(アルミニウム)は、鋼中に固溶されると、無方向性電磁鋼板の電気抵抗を上昇させることによって渦電流損を低減し、高周波鉄損を改善する元素である。しかしながら、本実施形態に係る無方向性電磁鋼板では、Alよりも加工性を劣化させずに電気抵抗を上昇させる元素であるMnを積極的に含有させる。そのため、Alを積極的に含有させる必要はない。また、sol.Al(酸可溶性Al)含有量が0.0040%を超えると、鋼中に微細な窒化物が析出して熱延板焼鈍や仕上焼鈍での結晶粒成長が阻害され、磁気特性が劣化する。従って、sol.Al含有量は、0.0040%以下とする。sol.Al含有量は、好ましくは0.0030%以下、より好ましくは0.0020%以下である。
 一方、Alは不可避的に含有される元素であり、下限を0%超とする。また、sol.Al含有量を0.0001%よりも低減させようとすると、大幅なコストアップを招く。従って、sol.Al含有量は、好ましくは0.0001%以上である。
[N:0%超、0.0040%以下]
 N(窒素)は、鋼中で微細な窒化物を形成して鉄損を増加させ、無方向性電磁鋼板の磁気特性を劣化させる元素である。そのため、N含有量は、0.0040%以下とする必要がある。N含有量は、好ましくは0.0030%以下であり、より好ましくは0.0020%以下である。
 一方、Nは不可避的に含有される元素であり、下限を0%超とする。また、N含有量は、少なければ少ないほど良いが、N含有量を0.0001%よりも低減させようとすると、大幅なコストアップを招く。従って、N含有量は、好ましくは0.0001%以上である。より好ましくは、0.0003%以上である。
[O:0.0110%~0.0350%]
 後述する範囲にSn含有量及びSb含有量を低減すると、仕上焼鈍時の鋼板表面の窒化が促進される。O(酸素)は、仕上焼鈍時の窒化を防止するために、仕上焼鈍時に鋼中に導入される元素である。仕上焼鈍時の窒化を防止するためには、O含有量が0.0110%以上となるように酸素を鋼中に導入する必要がある。O含有量は、好ましくは0.0115%以上であり、より好ましくは0.0120%以上である。
 一方、O含有量が0.0350%を超える場合には、酸素の導入により形成される鋼板表層部分の酸化層が厚くなり、磁気特性が劣化するので好ましくない。従って、O含有量は、0.0350%以下とする。O含有量は、好ましくは0.0330%以下であり、より好ましくは0.0300%以下である。
 一般に、仕上焼鈍時に鋼板が窒化すると、鉄損が増加する。一方、鋼板表面を酸化させると、窒化は抑制できるが、逆に生成した酸化物によって磁気特性が低下する。そのため、従来、鋼板表面を酸化させることは行われていなかった。これに対し、特定の成分系において、かつ全体の酸素量が0.0110~0.0350%となるように制御することで、窒化を抑制しつつ、酸化物による磁気特性の低下も最低限に抑えられることは、本発明者らが新たに見出した知見である。
 上記のような0.0110%以上0.0350%以下のO含有量は、以下で詳述するように、地鉄11の板厚方向全体での平均の含有量を意味する。本実施形態に係る無方向性電磁鋼板において、地鉄11中のO(酸素)は、主に仕上焼鈍時に鋼中へと導入される。そのため、導入された酸素の多くは、以下で詳述するように地鉄11の表層部分に存在し、板厚方向に沿った酸素の分布は一様ではない。地鉄11の表層部分以外の酸素含有量(O含有量)については、以下で改めて説明する。
[Sn:0%~0.050%]
[Sb:0%~0.050%]
 Sn、Sbは必ずしも含有する必要はないので、下限は0%である。
 Sn(スズ)及びSb(アンチモン)は、鋼板の表面に偏析して焼鈍中の窒化を抑制することで、低い鉄損を確保するのに有用な元素である。従って、本実施形態に係る無方向性電磁鋼板では、このような効果を得るために、Sn及びSbの少なくとも何れか一方を地鉄11中に含有させることが好ましい。
 具体的には、Sn含有量は、好ましくは0.005%以上であり、より好ましくは0.010%以上である。また、Sb含有量は、好ましくは0.005%以上であり、より好ましくは、0.010%以上である。
 一方、Sn及びSbの含有量がそれぞれ0.050%を超える場合には、地鉄の延性が低下して冷間圧延が困難となる。従って、含有させる場合でも、Sn及びSbの含有量は、それぞれ0.050%以下とすることが好ましい。Sn含有量は、より好ましくは0.040%以下であり、更に好ましくは0.030%以下である。また、Sb含有量は、より好ましくは0.040%以下であり、更に好ましくは0.030%以下である。
[Sn+Sb:0.050%以下]
 Sn及びSbは、前述のように、地鉄11中に多く含有させすぎると冷間圧延性の低下の原因となる元素である。特に、Sn及びSbの合計含有量が0.050%を超えると、冷間圧延性の低下が顕著となる。従って、Sn及びSbの合計含有量は、0.050%以下とする。Sn及びSbの合計含有量は、好ましくは0.040%以下であり、より好ましくは0.030%以下である。
[Ti:0%超、0.0050%以下]
 Ti(チタン)は、SiやMnの原材料中に不可避的に含有される。Tiは、地鉄中のC、N、Oなどと結合してTiN、TiC、Ti酸化物などの微小析出物を形成し、焼鈍中の結晶粒の成長を阻害して磁気特性を劣化させる元素である。従って、Ti含有量は0.0050%以下とする。好ましくは0.0040%以下、より好ましくは0.0030%以下である。
 一方、Tiは不可避的に含有される元素であり、下限は0%超とする。Ti含有量を0.0003%未満にしようとすると大幅なコストアップになるので、Ti含有量を0.0003%以上とすることが好ましい。より好ましくは。0.0005%以上である。
 本実施形態に係る無方向性電磁鋼板は、上記の元素を含み、残部がFe及び不純物からなることを基本とする。しかしながら、本実施形態に係る無方向性電磁鋼板において、上述した元素以外のNi(ニッケル)、Cr(クロム)、Cu(銅)、及び、Mo(モリブデン)等の元素を含有してもよい。これらの元素それぞれ0.50%以下含有しても、本実施形態に係る無方向性電磁鋼板の効果は損なわれない。また、無方向性電磁鋼板の仕上焼鈍時の結晶粒成長を促進するために、Ca(カルシウム)、Mg(マグネシウム)、La(ランタン)、Ce(セリウム)、Pr(プラセオジム)及びNd(ネオジム)を、それぞれ100ppm(0.0100%)以下の範囲で含有してもよい。
 また、上記の元素の他に、Pb(鉛)、Bi(ビスマス)、V(バナジウム)、As(ヒ素)、B(ホウ素)などの元素を含有してもよい。これらの元素がそれぞれ0.0001%~0.0050%の範囲で含まれていても、本実施形態に係る無方向性電磁鋼板の効果は損なわれない。
[Si-0.5×Mn:2.0%以上]
 本実施形態に係る方向性電磁鋼板では、上記のように各元素の含有量を制御した上で、Si含有量とMn含有量とが所定の関係性を満足するように制御する。
 Siは、フェライト相形成促進元素(いわゆる、フェライトフォーマー元素)である一方で、合金元素であるMnは、オーステナイト相形成促進元素(いわゆる、オーステナイトフォーマー元素)である。従って、Si及びMnそれぞれの含有量に応じて、無方向性電磁鋼板の金属組織は変化し、無方向性電磁鋼板は、変態点を有する成分系となったり、変態点を有しない成分系となったりする。本実施形態に係る無方向性電磁鋼板では、地鉄11における平均結晶粒径を適度に大きくすることが求められており、変態点を有しない成分系とすることは、結晶粒径を大きくするための有効な手段となる。そのため、変態点を有しない成分系となるように、Si及びMnのそれぞれの含有量は、所定の関係性を満たす必要がある。
 本発明者らの検討によれば、Mnによるオーステナイト相形成促進能(換言すれば、フェライト相形成促進能を打ち消す効果)は、Siによるフェライト相形成促進能の0.5倍程度と考えられる。そのため、本実施形態におけるフェライト相形成促進能の等量は、Siの含有量を基準として、「Si-0.5×Mn」として表すことができる。
 Si-0.5×Mnの値が2.0%未満である場合には、無方向性電磁鋼板は、変態点を有する成分系となってしまう。その結果、製造途中の高温処理時において鋼板の金属組織がフェライト単相ではなくなり、無方向性電磁鋼板の磁気特性が低下する懸念がある。従って、Si-0.5×Mnの値は、2.0%以上とする必要がある。好ましくは、2.1%以上である。
 一方、Si-0.5×Mnの上限値は、特に規定するものではないが、本実施形態に係る無方向性電磁鋼板のSi含有量及びMn含有量の範囲から、Si-0.5×Mnの値は、3.5%を超えることはあり得ない。従って、Si-0.5×Mnの上限値は、実質的には、3.5%となる。
 以上、本実施形態に係る無方向性電磁鋼板における地鉄の化学組成成分について、詳細に説明した。
 無方向性電磁鋼板における地鉄の化学組成を、事後的に測定する場合には、公知の各種測定法を利用することが可能である。例えば、スパーク放電発光分析法、ICP発光分析法、更に、C、Sを精度良く測定する場合には燃焼-赤外吸収法、O、Nを精度良く測定する場合には不活性ガス融解-赤外吸収法/熱伝導率法等を適宜利用すればよい。
<地鉄における酸素の分布状況について>
 続いて、図2を参照しながら、本実施形態に係る無方向性電磁鋼板10の地鉄11における酸素の分布状況について、詳細に説明する。
 先だって簡単に言及したように、本実施形態に係る無方向性電磁鋼板10が製造される際には、仕上焼鈍時に、鋼板の表層部分を適度に酸化させる処理が行われる。仕上焼鈍時の酸化処理は、焼鈍雰囲気の露点を制御することで行われるので、酸素原子は、地鉄11の表面から地鉄11の内部に向かって浸透していく。その結果、本実施形態に係る無方向性電磁鋼板10の地鉄11の表層部分には、図2に模式的に示したように、酸素が濃化した状態にある表層酸化部11aが形成され、表層酸化部11a以外の部位である母材部11bと、表層酸化部11aとは、酸素の含有量(O含有量)が異なることとなる。
 ここで、図2に示した表層酸化部11aの厚みtは、本発明者らが各種の仕上焼鈍条件で検討を行ったところ、大きくても数μm程度であった。また、図2では、図示の都合上、表層酸化部11aの母材部11b側の端部が平坦であるように示しているが、実際の表層酸化部11aと母材部11bとの境界面は、平坦になっていないことが多い。従って、地鉄11における、表層酸化部11a以外の部分のO含有量を考慮するにあたって、本実施形態では、表層酸化部11aと母材部11bとの境界面の非平坦性を考慮して、地鉄11の表面及び裏面から深さ方向に向かって10μmの位置までを除き、残存した板厚中央部分(図2において、板厚tで示した部分)におけるO含有量に着目する。
 本実施形態に係る無方向性電磁鋼板10の地鉄11では、鋼板(地鉄11)の表面及び裏面から深さ方向に向かって10μm位置までの範囲である表層部分を除いた、板厚中央部分のO含有量が、0.0100%未満である。板厚中央部分のO含有量が0.0100%以上である場合には、鋼中の酸化物が増加して磁気特性が劣化するので好ましくない。板厚中央部分のO含有量は、好ましくは0.0080%以下であり、0%であってもよい。
 先だって言及した、0.0110%~0.0350%という地鉄11中のO含有量は、地鉄11の板厚方向全体での平均のO含有量を意味しており、板厚中央部分のO含有量とは異なる。
 上記のような、鋼板(地鉄11)の表面及び裏面から深さ方向に向かって10μm位置までを除いた板厚中央部分のO含有量は、地鉄11のもととなる鋼塊中でのO含有量であるともいえる。
 板厚中央部分のO含有量は、化学研磨等の公知の方法により鋼板(地鉄11)の表面及び裏面から深さ方向に向かって10μm位置までを除いた後に、例えば、不活性ガス融解-赤外吸収法/熱伝導率法等の公知の各種測定法を利用することで、測定可能である。
 また、板厚中央部分のO含有量と、板厚方向全体での平均のO含有量(平均酸素含有量)とが特定されることで、鋼板(地鉄11)の表面及び裏面から深さ方向に向かって10μm位置までのO含有量(換言すれば、表層酸化部11aのO含有量)を算出することが可能である。より詳細には、表層酸化部11aのO含有量は、図2を参考にして、以下の式(1)で算出可能である。
  O=(20/t)×O10μm+[(t-20)/t]×O ・・・(1)
 ここで、上記式(1)中における各記号の意味は、以下の通りである。
 ・O(質量%):鋼板の板厚方向全体での平均O含有量
 ・O10μm(質量%):鋼板(地鉄)の表面及び裏面から深さ方向に向かって10μm位置までのO含有量
 ・O(質量%):鋼板(地鉄)の表面及び裏面から深さ方向に向かって10μm位置までを除去した部分のO含有量
 ・t(μm):地鉄の厚み
 以上、図2を参照しながら、本実施形態に係る地鉄11における酸素の分布状況について、詳細に説明した。
<地鉄の板厚について>
 本実施形態に係る無方向性電磁鋼板10における地鉄11の板厚(図1及び図2における厚みt)は、渦電流損を低減させて高周波鉄損を低減するために、0.40mm以下とすることが好ましい。一方、地鉄11の板厚tが0.10mm未満である場合には、板厚が薄いために焼鈍ラインの通板が困難となる可能性がある。従って、無方向性電磁鋼板10における地鉄11の板厚tは、0.10mm以上、0.40mm以下とすることが好ましい。無方向性電磁鋼板10における地鉄11の板厚tは、より好ましくは、0.15mm以上、0.35mm以下である。
 以上、本実施形態に係る無方向性電磁鋼板10の地鉄11について、詳細に説明した。
<絶縁被膜について>
 続いて、本実施形態に係る無方向性電磁鋼板10が有していることが好ましい絶縁被膜13について、簡単に説明する。
 無方向性電磁鋼板の磁気特性を向上させるためには、鉄損を低減することが重要であるが、鉄損は、渦電流損とヒステリシス損とから構成されている。地鉄11の表面に絶縁被膜13を設けることで、鉄心として積層された電磁鋼板間の導通を抑制して鉄心の渦電流損を低減することが可能となり、無方向性電磁鋼板10の実用的な磁気特性を更に向上させることが可能となる。
 ここで、本実施形態に係る無方向性電磁鋼板10が備える絶縁被膜13は、無方向性電磁鋼板の絶縁被膜として用いられるものであれば、特に限定されるものではなく、公知の絶縁被膜を用いることが可能である。このような絶縁被膜として、例えば、無機物を主体とし、更に有機物を含んだ複合絶縁被膜を挙げることができる。ここで、複合絶縁被膜とは、例えば、クロム酸金属塩、リン酸金属塩又はコロイダルシリカ、Zr化合物、Ti化合物等の無機物の少なくとも何れかを主体とし、微細な有機樹脂の粒子が分散している絶縁被膜である。特に、近年ニーズの高まっている製造時の環境負荷低減の観点からは、リン酸金属塩やZrあるいはTiのカップリング剤、又は、これらの炭酸塩やアンモニウム塩を出発物質として用いた絶縁被膜が好ましく用いられる。
 上記のような絶縁被膜13の付着量は、特に限定するものではないが、例えば、片面あたり0.1g/m以上2.0g/m以下程度とすることが好ましく、片面あたり0.3g/m以上1.5g/m以下とすることがより好ましい。上述した付着量となるように絶縁被膜13を形成することで、優れた均一性を保持することが可能となる。絶縁被膜13の付着量を、事後的に測定する場合には、公知の各種測定法を利用することが可能である。絶縁被膜13の付着量は、例えば、絶縁被膜13を形成した無方向性電磁鋼板10を熱アルカリ溶液に浸漬することで絶縁被膜13のみを除去し、絶縁被膜13の除去前後の質量差から算出することが可能である。
<無方向性電磁鋼板の磁気特性の測定方法について>
 本実施形態に係る無方向性電磁鋼板10は、上記のような構造を有することで、優れた磁気特性を示す。ここで、本実施形態に係る無方向性電磁鋼板10の示す各種の磁気特性は、JIS C2550に規定されたエプスタイン法や、JIS C2556に規定された単板磁気特性測定法(Single Sheet Tester:SST)に則して、測定することが可能である。
 以上、図1及び図2を参照しながら、本実施形態に係る無方向性電磁鋼板10について、詳細に説明した。
(無方向性電磁鋼板の製造方法について)
 続いて、図3を参照しながら、以上説明したような本実施形態に係る無方向性電磁鋼板10の製造方法について、簡単に説明する。
 図3は、本実施形態に係る無方向性電磁鋼板の製造方法の流れの一例を示した流れ図である。
 本実施形態に係る無方向性電磁鋼板10の製造方法では、所定の化学組成を有する鋼塊に対して、熱間圧延、熱延板焼鈍、酸洗、冷間圧延、仕上焼鈍を順に実施する。また、絶縁被膜13を地鉄11の表面に形成する場合には、上記仕上焼鈍の後に絶縁被膜の形成が行われる。以下、本実施形態に係る無方向性電磁鋼板10の製造方法で実施される各工程について、詳細に説明する。
<熱間圧延工程>
 本実施形態に係る無方向性電磁鋼板の製造方法では、まず、質量%で、C:0%超、0.0050%以下、Si:3.0%~4.0%、Mn:1.0%~3.3%、P:0%超、0.030%未満、S:0%超、0.0050%以下、sol.Al:0%超、0.0040%以下、N:0%超、0.0040%以下、O:0.0100%未満、Sn:0%~0.050%、Sb:0%~0.050%、Ti:0%超、0.0050%以下を含有し、残部がFe及び不純物からなり、Sn+Sb:0.050%以下、Si-0.5×Mn:2.0%以上である鋼塊(スラブ)を加熱し、加熱された鋼塊について熱間圧延を行って、熱延鋼板を得る(ステップS101)。熱間圧延に供する際の鋼塊の加熱温度については、特に規定するものではないが、例えば、1050℃~1300℃とすることが好ましい。鋼塊の加熱温度は、より好ましくは、1050℃~1250℃である。
 また、熱間圧延後の熱延鋼板の板厚についても、特に規定するものではないが、地鉄の最終板厚を考慮して、例えば、1.6mm~3.5mm程度とすることが好ましい。熱間圧延工程は、鋼板の温度が700℃~1000℃の範囲にあるうちに終了することが好ましい。熱間圧延の終了温度は、より好ましくは、750℃~950℃である。
<熱延板焼鈍工程>
 上記熱間圧延の後には、熱延板焼鈍(熱延鋼板に対する焼鈍)が実施される(ステップS103)。連続焼鈍の場合には、熱延鋼板に対して、例えば、750℃~1200℃で、10秒~10分の均熱を含む焼鈍を実施する。また、箱焼鈍の場合、熱延鋼板に対して、例えば、650℃~950℃で、30分~24時間の均熱を含む焼鈍を実施する。
<酸洗工程>
 上記熱延板焼鈍工程の後には、酸洗が実施される(ステップS105)。これにより、熱延板焼鈍の際に鋼板の表面に形成された、酸化物を主体とするスケール層が除去される。熱延板焼鈍が箱焼鈍である場合、脱スケール性の観点から、酸洗工程は、熱延板焼鈍前に実施することが好ましい。
<冷間圧延工程>
 上記酸洗工程の後(熱延板焼鈍が箱焼鈍で実施される場合は、熱延板焼鈍工程の後となる場合もある。)には、熱延鋼板に対し、冷間圧延が実施される(ステップS107)。冷間圧延では、地鉄の最終板厚が0.10mm以上0.40mm以下となるような圧下率で、スケールの除去された酸洗板が圧延される。
<仕上焼鈍工程>
 上記冷間圧延工程の後には、冷間圧延工程によって得られた冷延鋼板に対し、仕上焼鈍が実施される(ステップS109)。この仕上焼鈍工程では、仕上焼鈍後に冷延鋼板の板厚方向全体における平均O含有量が0.0110質量%以上0.0350質量%以下となるように、仕上焼鈍条件が制御される。そのため、仕上焼鈍工程は、昇温過程、均熱過程、冷却過程を含むが、本実施係形態に係る無方向性電磁鋼板の製造方法の仕上焼鈍工程では、それぞれの過程について、制御する必要がある。
 具体的には、昇温過程では、平均昇温速度を1℃/秒~2000℃/秒とする。また、昇温時の炉内の雰囲気を、Hの割合が10体積%~100体積%であるH及びNの混合雰囲気(H+N=100体積%)とし、雰囲気の露点を-10℃以上40℃以下とすることが好ましい。平均昇温速度は、より好ましくは、5℃/秒~1500℃/秒であり、雰囲気中のHの割合は、より好ましくは、15体積%~90体積%である。雰囲気の露点は、より好ましくは、-5℃以上35℃以下であり、更に好ましくは、0℃以上30℃以下である。
 本実施形態に係る無方向性電磁鋼板の製造方法では、仕上焼鈍の昇温過程を、急速加熱とする。昇温過程の加熱を急速に行うことにより、地鉄11において、磁気特性に有利な再結晶集合組織が形成される。仕上焼鈍の昇温過程を急速加熱とする場合、本実施形態に係る無方向性電磁鋼板の製造方法では、仕上焼鈍は、連続焼鈍で実施することが好ましい。上記の平均加熱速度は、例えば、ガス燃焼による加熱の場合には直接加熱やラジアントチューブを用いた間接加熱を用いたり、その他に通電加熱又は誘導加熱等といった公知の加熱方法を用いたりすることで、実現することが可能である。
 昇温過程の後の均熱過程では、均熱温度を、700℃~1100℃とし、均熱時間を、1秒~300秒とし、雰囲気を、Hの割合が10体積%~100体積%であるH及びNの混合雰囲気(H+N=100体積%)とし、雰囲気の露点を-10℃以上40℃以下とすることが好ましい。均熱温度は、より好ましくは、750℃~1050℃であり、雰囲気中のHの割合は、より好ましくは、15体積%~90体積%である。雰囲気の露点は、より好ましくは、-10℃以上30℃以下であり、更に好ましくは、-5℃以上20℃以下である。
 均熱過程の後の冷却過程では、平均冷却速度を1℃/秒~50℃/秒で200℃以下まで冷却することが好ましい。平均冷却速度は、より好ましくは、5℃/秒~30℃/秒である。
 上記のような各工程を含む製造方法によれば、本実施形態に係る無方向性電磁鋼板10を製造することができる。
<絶縁被膜形成工程>
 上記仕上焼鈍の後には、必要に応じて、絶縁被膜の形成工程が実施される(ステップS111)。ここで、絶縁被膜の形成工程については、特に限定されるものではなく、上記のような公知の絶縁被膜処理液を用いて、公知の方法により処理液の塗布及び乾燥を行えばよい。
 絶縁被膜が形成される地鉄11の表面は、処理液を塗布する前に、アルカリなどによる脱脂処理や、塩酸、硫酸、リン酸などによる酸洗処理など、任意の前処理を施してもよいし、これら前処理を施さずに仕上焼鈍後のままの表面であってもよい。
 以上、図3を参照しながら、本実施形態に係る無方向性電磁鋼板の製造方法について、詳細に説明した。
 以下では、実施例を示しながら、本発明に係る無方向性電磁鋼板及び無方向性電磁鋼板の製造方法について、具体的に説明する。以下に示す実施例は、本発明に係る無方向性電磁鋼板及び無方向性電磁鋼板の製造方法の一例にすぎず、本発明に係る無方向性電磁鋼板及び無方向性電磁鋼板の製造方法が下記の例に限定されるものではない。
(実験例1)
 表1に示す組成を含有し、残部がFe及び不純物からなる鋼スラブを、1150℃に加熱した後、熱間圧延にて2.0mm厚に圧延した。続いて、熱延鋼板を連続焼鈍式の焼鈍炉で、均熱温度が1000℃で均熱時間が40秒の熱延板焼鈍を行った後、冷間圧延を行って0.25mm厚の冷延鋼板とした。この冷延鋼板に対し、均熱温度が1000℃で均熱時間が15秒の仕上焼鈍を行った。その後、更にリン酸金属塩を主体とし、アクリル樹脂のエマルジョンを含む溶液を鋼板の両面に塗布及び焼き付けし、複合絶縁被膜を形成することで無方向性電磁鋼板を製造した。
 上記の仕上焼鈍時は、全ての試験番号において、昇温過程、均熱過程の雰囲気が20体積%H+80体積%N雰囲気となるように制御した。また、露点は、試験番号1が-30℃、試験番号2が+5℃、試験番号3が+15℃、試験番号4が+45℃、試験番号5が+15℃、試験番号6が-15℃、試験番号7が+45℃であった。また、仕上焼鈍時の昇温過程における平均昇温速度を20℃/秒、冷却過程における平均冷却速度を20℃/秒とした。仕上焼鈍後は200℃以下まで冷却した。
 表1において、「Tr.」とは、該当する元素を意図して含有させていないことを表す。また、下線は、本発明範囲から外れていることを表す。
 その後、製造したそれぞれの無方向性電磁鋼板について、JIS C2550に規定されたエプスタイン法により、磁束密度B50及び鉄損W10/400を評価した。得られた結果を、表1にあわせて示した。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、仕上焼鈍後のO含有量が本発明の範囲より低めに外れた試験番号1、仕上焼鈍後のO含有量が本発明の範囲より高めに外れた試験番号4と試験番号7、及び、板厚中央部でのO含有量が本発明範囲より高めに外れた試験番号5、は、鉄損及び/又は磁束密度が劣っていた。一方、仕上焼鈍後の鋼板のO含有量が本発明の範囲内である試験番号2、試験番号3、及び試験番号6は、鉄損と磁束密度とが共に優れていた。
(実験例2)
 表2に示す組成を含有し、残部がFe及び不純物からなる鋼スラブを、1160℃に加熱した後、熱間圧延にて2.0mm厚に圧延した。続いて、熱延鋼板を均熱温度が1000℃、均熱時間が40秒となる条件で連続焼鈍式の焼鈍炉で熱延板焼鈍した後、冷間圧延を行って0.25mm厚の冷延鋼板を得た。その後、この冷延鋼板に対し、均熱温度が1000℃、均熱時間が15秒となる条件で仕上焼鈍を行った。その後、更にリン酸金属塩を主体とし、アクリル樹脂のエマルジョンを含む溶液を鋼板の両面に塗布及び焼き付けし、複合絶縁被膜を形成することで無方向性電磁鋼板を製造した。
 上記の仕上焼鈍時は、全ての試験番号において、昇温過程、均熱過程の雰囲気が20体積%H+80体積%N雰囲気となるように制御した。露点は+10℃であった。また、仕上焼鈍時の昇温過程における平均昇温速度を30℃/秒、冷却過程における平均冷却速度を20℃/秒とした。仕上焼鈍後は200℃以下まで冷却した。
 表2において、「Tr.」とは、該当する元素を意図して含有させていないことを表す。また、下線は、本発明の範囲から外れていることを表す。
 その後、製造したそれぞれの無方向性電磁鋼板について、JIS C2550に規定されたエプスタイン法により、磁束密度B50及び鉄損W10/400を評価した。得られた結果も表2にあわせて示した。
Figure JPOXMLDOC01-appb-T000002
 Si含有量が本発明の範囲より高めに外れた試験番号8、Sn含有量が本発明の範囲より高めに外れた試験番号11、Sn+Sbの含有量が本発明の範囲より高めに外れた試験番号12、及び、P含有量が本発明の範囲より高めに外れた試験番号14は、それぞれ冷間圧延時に破断したため、磁気測定が出来なかった。sol.Al含有量が本発明の範囲より高めに外れた試験番号15、Tiが本発明範囲より高めに外れた試験番号19は、鉄損と磁束密度とが劣っていた。Mn含有量が本発明範囲より低めに外れた試験番号18は、鉄損が劣っていた。一方、鋼板の化学組成が本発明の範囲内である試験番号9、10、13、16及び17は、冷間圧延が可能であり、鉄損及び磁束密度が優れていた。
(実験例3)
 表3に示す組成を含有し、残部がFe及び不純物からなる鋼スラブを、1150℃に加熱した後、熱間圧延にて2.0mm厚に圧延した。続いて、熱延鋼板を均熱温度が1000℃、均熱時間が40秒となる条件で連続焼鈍式の焼鈍炉で熱延板焼鈍した後、冷間圧延を行って0.25mm厚の冷延鋼板を得た。その後、この冷延鋼板に、均熱温度が800℃、均熱時間が15秒となる条件で仕上焼鈍を行った。その後、更にリン酸金属塩を主体とし、アクリル樹脂のエマルジョンを含む溶液を鋼板の両面に塗布及び焼き付けし、複合絶縁被膜を形成することで無方向性電磁鋼板を製造した。続いて、得られた鋼板に対し、750℃×2hrの歪取焼鈍を施した。
 ここで、上記の仕上焼鈍時は、全ての試験番号において、昇温過程、均熱過程の雰囲気が15体積%H+85体積%N雰囲気となるように制御した。露点は+10℃であった。また、仕上焼鈍時の昇温過程における平均昇温速度を20℃/秒、冷却過程における平均冷却速度を15℃/秒とした。仕上焼鈍後は200℃以下まで冷却した。
 表3において、「Tr.」とは、該当する元素を意図して含有させていないことを表す。また、下線は、本発明の範囲から外れていることを表す。
 その後、製造したそれぞれの無方向性電磁鋼板について、JIS C2550に規定されたエプスタイン法により、磁束密度B50及び鉄損W10/400を評価した。得られた結果を、表3にあわせて示した。
Figure JPOXMLDOC01-appb-T000003
 まず、歪取焼鈍を実施した実験例3の各試験番号の磁気特性は、歪取焼鈍を実施していない実験例1と実験例2の各試験番号の磁気特性と比較すれば全般的に優れているものの、特に鋼板の化学組成が本発明の範囲である試験番号20、22及び24は、鉄損及び磁束密度が優れていた。一方、Si-0.5×Mnが本発明範囲より低めに外れた試験番号21は、鉄損と磁束密度とが劣っていた。また、S含有量が本発明の範囲から高めに外れた試験番号23は、Sを除きほぼ同一の組成である本発明の範囲内の試験番号20や22と比較して、鉄損と磁束密度とが劣っていた。以上のように、歪取焼鈍を行う場合にも、本発明に係る無方向性鋼板は、優れた磁気特性を示すことが明らかとなった。
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
 本発明によれば、良好な冷間圧延性及び優れた磁気特性を有する無方向性電磁鋼板、及びその製造方法が得られるので、産業上の利用可能性が高い。
 10  無方向性電磁鋼板
 11  地鉄
 11a 表層酸化部
 11b 母材部
 13  絶縁被膜

Claims (3)

  1.  化学組成が、質量%で、
     C:0%超、0.0050%以下、
     Si:3.0%~4.0%、
     Mn:1.0%~3.3%、
     P:0%超、0.030%未満、
     S:0%超、0.0050%以下、
     sol.Al:0%超、0.0040%以下、
     N:0%超、0.0040%以下、
     O:0.0110%~0.0350%、
     Sn:0%~0.050%、
     Sb:0%~0.050%、
     Ti:0%超、0.0050%以下、
    を含有し、残部がFe及び不純物からなり、
     Sn+Sb:0.050%以下、
     Si-0.5×Mn:2.0%以上であり、
     表面及び裏面から深さ方向に10μmの位置までの範囲である表層部分を除いた板厚中央部分のO含有量が、0.0100%未満である
    ことを特徴とする無方向性電磁鋼板。
  2.  化学組成が、質量%で、C:0%超、0.0050%以下、Si:3.0%~4.0%、Mn:1.0%~3.3%、P:0%超、0.030%未満、S:0%超、0.0050%以下、sol.Al:0%超、0.0040%以下、N:0%超、0.0040%以下、O:0.0100%未満、Sn:0%~0.050%、Sb:0%~0.050%、Ti:0%超、0.0050%以下を含有し、残部がFe及び不純物からなり、Sn+Sb:0.050%以下、Si-0.5×Mn:2.0%以上である鋼塊を、熱間圧延して熱延鋼板とする熱間圧延工程と、
     前記熱延鋼板を焼鈍する熱延板焼鈍工程と、
     前記熱延板焼鈍工程後の前記熱延鋼板を冷間圧延して冷延鋼板とする冷間圧延工程と、
     前記冷延鋼板に対して仕上焼鈍を施す仕上焼鈍工程と、
    を含み、
     前記仕上焼鈍工程では、仕上焼鈍後に前記冷延鋼板の板厚方向全体における平均O含有量が0.0110質量%以上0.0350質量%以下となるように、仕上焼鈍条件が制御される、
    ことを特徴とする無方向性電磁鋼板の製造方法。
  3.  前記仕上焼鈍工程では、昇温時及び均熱時の雰囲気の露点が-10℃~40℃の範囲内となるように制御される
    ことを特徴とする請求項2に記載の無方向性電磁鋼板の製造方法。
PCT/JP2018/000974 2017-01-16 2018-01-16 無方向性電磁鋼板及び無方向性電磁鋼板の製造方法 WO2018131710A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201880005578.2A CN110121567B (zh) 2017-01-16 2018-01-16 无方向性电磁钢板及无方向性电磁钢板的制造方法
US16/470,078 US11021771B2 (en) 2017-01-16 2018-01-16 Non-oriented electrical steel sheet and method for manufacturing non-oriented electrical steel sheet
KR1020197019395A KR102259136B1 (ko) 2017-01-16 2018-01-16 무방향성 전자 강판 및 무방향성 전자 강판의 제조 방법
BR112019009507-1A BR112019009507B1 (pt) 2017-01-16 2018-01-16 Chapa de aço elétrico não orientado e método para fabricar chapa de aço elétrico não orientado
PL18739320.2T PL3569726T3 (pl) 2017-01-16 2018-01-16 Blacha cienka z niezorientowanej stali elektrotechnicznej i sposób wytwarzania blachy cienkiej z niezorientowanej stali elektrotechnicznej
JP2018561447A JP6593555B2 (ja) 2017-01-16 2018-01-16 無方向性電磁鋼板及び無方向性電磁鋼板の製造方法
EP18739320.2A EP3569726B1 (en) 2017-01-16 2018-01-16 Non-oriented electrical steel sheet and method for manufacturing non-oriented electrical steel sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017005213 2017-01-16
JP2017-005213 2017-01-16

Publications (1)

Publication Number Publication Date
WO2018131710A1 true WO2018131710A1 (ja) 2018-07-19

Family

ID=62840566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000974 WO2018131710A1 (ja) 2017-01-16 2018-01-16 無方向性電磁鋼板及び無方向性電磁鋼板の製造方法

Country Status (9)

Country Link
US (1) US11021771B2 (ja)
EP (1) EP3569726B1 (ja)
JP (1) JP6593555B2 (ja)
KR (1) KR102259136B1 (ja)
CN (1) CN110121567B (ja)
BR (1) BR112019009507B1 (ja)
PL (1) PL3569726T3 (ja)
TW (1) TWI641703B (ja)
WO (1) WO2018131710A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020091043A1 (ja) * 2018-11-02 2020-05-07 日本製鉄株式会社 無方向性電磁鋼板
CN111321344A (zh) * 2020-03-04 2020-06-23 马鞍山钢铁股份有限公司 一种电动汽车驱动电机用高强度冷轧无取向电工钢及其生产方法
CN111471941A (zh) * 2020-04-27 2020-07-31 马鞍山钢铁股份有限公司 一种屈服强度600MPa级新能源汽车驱动电机转子用高强无取向硅钢及其制造方法
US11795518B2 (en) * 2018-10-24 2023-10-24 Nippon Steel Corporation Non-oriented electrical steel sheet and method of manufacturing stacked core using same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7044165B2 (ja) * 2019-07-31 2022-03-30 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法
CN114286871B (zh) * 2019-11-15 2023-03-17 日本制铁株式会社 无取向性电磁钢板的制造方法
KR20220041205A (ko) * 2019-11-15 2022-03-31 닛폰세이테츠 가부시키가이샤 무방향성 전자 강판의 제조 방법
CN115135788A (zh) * 2020-02-20 2022-09-30 日本制铁株式会社 无取向性电磁钢板用热轧钢板、无取向性电磁钢板及其制造方法
WO2021199400A1 (ja) * 2020-04-02 2021-10-07 日本製鉄株式会社 無方向性電磁鋼板およびその製造方法
CN113969371B (zh) * 2020-07-24 2022-09-20 宝山钢铁股份有限公司 一种定子、转子铁芯同时套裁用无取向电工钢板及其制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000256751A (ja) * 1999-03-03 2000-09-19 Nkk Corp 鉄損の低い無方向性電磁鋼板の製造方法
KR20140084896A (ko) * 2012-12-27 2014-07-07 주식회사 포스코 무방향성 전기강판 및 그 제조방법
JP2015206092A (ja) * 2014-04-22 2015-11-19 Jfeスチール株式会社 積層電磁鋼板およびその製造方法
JP2016041832A (ja) * 2014-08-14 2016-03-31 Jfeスチール株式会社 磁気特性に優れる無方向性電磁鋼板
JP2016138316A (ja) * 2015-01-28 2016-08-04 Jfeスチール株式会社 無方向性電磁鋼板とモータコア
JP2016145376A (ja) * 2015-02-06 2016-08-12 新日鐵住金株式会社 無方向性電磁鋼板

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2853552B2 (ja) * 1994-02-01 1999-02-03 住友金属工業株式会社 磁気特性の優れた無方向性電磁鋼板とその製造方法
KR100240995B1 (ko) * 1995-12-19 2000-03-02 이구택 절연피막의 밀착성이 우수한 무방향성 전기강판의 제조방법
JPH11131196A (ja) * 1997-10-30 1999-05-18 Nkk Corp 鉄損の低い無方向性電磁鋼板
JP2000160306A (ja) * 1998-11-30 2000-06-13 Sumitomo Metal Ind Ltd 加工性に優れた無方向性電磁鋼板およびその製造方法
JP2000219917A (ja) * 1999-01-28 2000-08-08 Nippon Steel Corp 磁束密度が高く鉄損の低い無方向性電磁鋼板の製造法
US6290783B1 (en) * 1999-02-01 2001-09-18 Kawasaki Steel Corporation Non-oriented electromagnetic steel sheet having excellent magnetic properties after stress relief annealing
JP2000319767A (ja) * 1999-05-07 2000-11-21 Nkk Corp 鉄損と励磁実効電流の低い無方向性電磁鋼板
JP2001323347A (ja) * 2000-05-15 2001-11-22 Kawasaki Steel Corp 加工性、リサイクル性および歪み取り焼鈍後の磁気特性に優れた無方向性電磁鋼板
US7011139B2 (en) * 2002-05-08 2006-03-14 Schoen Jerry W Method of continuous casting non-oriented electrical steel strip
CN100526492C (zh) * 2003-10-06 2009-08-12 新日本制铁株式会社 高强度电磁钢板及其加工部件和它们的制造方法
KR100683471B1 (ko) * 2004-08-04 2007-02-20 제이에프이 스틸 가부시키가이샤 무방향성 전자 강판의 제조방법, 및 무방향성 전자강판용의 소재 열연 강판
JP4510911B2 (ja) * 2008-07-24 2010-07-28 新日本製鐵株式会社 高周波用無方向性電磁鋼鋳片の製造方法
KR101325369B1 (ko) * 2009-01-26 2013-11-08 신닛테츠스미킨 카부시키카이샤 무방향성 전자기 강판
EP2439302B1 (en) * 2009-06-03 2016-07-06 Nippon Steel & Sumitomo Metal Corporation Non-oriented magnetic steel sheet and method for producing same
US9187830B2 (en) * 2010-02-18 2015-11-17 Nippon Steel & Sumitomo Metal Corporation Non-oriented electrical steel sheet and manufacturing method thereof
CN102134675B (zh) * 2011-02-22 2012-10-03 武汉钢铁(集团)公司 薄板坯连铸连轧生产的无取向电工钢及其方法
EP2612942B1 (de) * 2012-01-05 2014-10-15 ThyssenKrupp Steel Europe AG Nicht kornorientiertes Elektroband oder -blech, daraus hergestelltes Bauteil und Verfahren zur Erzeugung eines nicht kornorientierten Elektrobands oder -blechs
EP2876173B9 (en) * 2012-07-20 2019-06-19 Nippon Steel & Sumitomo Metal Corporation Manufacturing method of grain-oriented electrical steel sheet
EP2985360B1 (en) * 2013-04-09 2018-07-11 Nippon Steel & Sumitomo Metal Corporation Non-oriented magnetic steel sheet and method for producing same
WO2015037614A1 (ja) 2013-09-10 2015-03-19 新日鐵住金株式会社 ほうろう用冷延鋼板及びその製造方法、並びにほうろう製品
CN106661692A (zh) 2014-08-20 2017-05-10 杰富意钢铁株式会社 磁特性优异的无取向性电磁钢板
KR101963056B1 (ko) * 2014-10-30 2019-03-27 제이에프이 스틸 가부시키가이샤 무방향성 전기 강판 및 무방향성 전기 강판의 제조 방법
JP6020863B2 (ja) 2015-01-07 2016-11-02 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法
EP3263719B1 (en) 2015-02-24 2019-05-22 JFE Steel Corporation Method for producing non-oriented electrical steel sheets

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000256751A (ja) * 1999-03-03 2000-09-19 Nkk Corp 鉄損の低い無方向性電磁鋼板の製造方法
KR20140084896A (ko) * 2012-12-27 2014-07-07 주식회사 포스코 무방향성 전기강판 및 그 제조방법
JP2015206092A (ja) * 2014-04-22 2015-11-19 Jfeスチール株式会社 積層電磁鋼板およびその製造方法
JP2016041832A (ja) * 2014-08-14 2016-03-31 Jfeスチール株式会社 磁気特性に優れる無方向性電磁鋼板
JP2016138316A (ja) * 2015-01-28 2016-08-04 Jfeスチール株式会社 無方向性電磁鋼板とモータコア
JP2016145376A (ja) * 2015-02-06 2016-08-12 新日鐵住金株式会社 無方向性電磁鋼板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3569726A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11795518B2 (en) * 2018-10-24 2023-10-24 Nippon Steel Corporation Non-oriented electrical steel sheet and method of manufacturing stacked core using same
WO2020091043A1 (ja) * 2018-11-02 2020-05-07 日本製鉄株式会社 無方向性電磁鋼板
CN112513299A (zh) * 2018-11-02 2021-03-16 日本制铁株式会社 无取向电磁钢板
JPWO2020091043A1 (ja) * 2018-11-02 2021-09-02 日本製鉄株式会社 無方向性電磁鋼板
EP3875612A4 (en) * 2018-11-02 2022-07-06 Nippon Steel Corporation NON-ORIENTED ELECTROMAGNETIC STEEL
JP7143901B2 (ja) 2018-11-02 2022-09-29 日本製鉄株式会社 無方向性電磁鋼板
US11866797B2 (en) 2018-11-02 2024-01-09 Nippon Steel Corporation Non-oriented electrical steel sheet
CN111321344A (zh) * 2020-03-04 2020-06-23 马鞍山钢铁股份有限公司 一种电动汽车驱动电机用高强度冷轧无取向电工钢及其生产方法
CN111321344B (zh) * 2020-03-04 2022-03-01 马鞍山钢铁股份有限公司 一种电动汽车驱动电机用高强度冷轧无取向电工钢及其生产方法
CN111471941A (zh) * 2020-04-27 2020-07-31 马鞍山钢铁股份有限公司 一种屈服强度600MPa级新能源汽车驱动电机转子用高强无取向硅钢及其制造方法
CN111471941B (zh) * 2020-04-27 2022-02-01 马鞍山钢铁股份有限公司 一种屈服强度600MPa级新能源汽车驱动电机转子用高强无取向硅钢及其制造方法

Also Published As

Publication number Publication date
EP3569726A4 (en) 2020-06-03
BR112019009507A2 (pt) 2019-07-30
JPWO2018131710A1 (ja) 2019-11-07
PL3569726T3 (pl) 2022-08-01
EP3569726B1 (en) 2022-05-11
BR112019009507B1 (pt) 2023-04-11
EP3569726A1 (en) 2019-11-20
US20190316221A1 (en) 2019-10-17
US11021771B2 (en) 2021-06-01
JP6593555B2 (ja) 2019-10-23
CN110121567B (zh) 2021-07-27
TWI641703B (zh) 2018-11-21
TW201829802A (zh) 2018-08-16
CN110121567A (zh) 2019-08-13
KR102259136B1 (ko) 2021-06-01
KR20190092499A (ko) 2019-08-07

Similar Documents

Publication Publication Date Title
JP6593555B2 (ja) 無方向性電磁鋼板及び無方向性電磁鋼板の製造方法
JP6478004B1 (ja) 無方向性電磁鋼板
JP6870687B2 (ja) 無方向性電磁鋼板
JP6794704B2 (ja) 無方向性電磁鋼板、無方向性電磁鋼板の製造方法及びモータコアの製造方法
JP4710465B2 (ja) 回転子用無方向性電磁鋼板の製造方法
JP6724712B2 (ja) 無方向性電磁鋼板
CN112930408B (zh) 无取向性电磁钢板的制造方法
TWI809799B (zh) 無方向性電磁鋼板及其製造方法
TWI777498B (zh) 無方向性電磁鋼板及其製造方法
JP7328597B2 (ja) 無方向性電磁鋼板およびその製造方法
KR20240015427A (ko) 무방향성 전기강판 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18739320

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018561447

Country of ref document: JP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019009507

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20197019395

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112019009507

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190509

WWE Wipo information: entry into national phase

Ref document number: 2018739320

Country of ref document: EP