WO2020091043A1 - 無方向性電磁鋼板 - Google Patents

無方向性電磁鋼板 Download PDF

Info

Publication number
WO2020091043A1
WO2020091043A1 PCT/JP2019/043039 JP2019043039W WO2020091043A1 WO 2020091043 A1 WO2020091043 A1 WO 2020091043A1 JP 2019043039 W JP2019043039 W JP 2019043039W WO 2020091043 A1 WO2020091043 A1 WO 2020091043A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
content
oriented electrical
electrical steel
Prior art date
Application number
PCT/JP2019/043039
Other languages
English (en)
French (fr)
Inventor
屋鋪 裕義
義顕 名取
美穂 冨田
竹田 和年
松本 卓也
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to BR112020026876-3A priority Critical patent/BR112020026876A2/pt
Priority to JP2020554982A priority patent/JP7143901B2/ja
Priority to US17/264,207 priority patent/US11866797B2/en
Priority to EP19879514.8A priority patent/EP3875612A4/en
Priority to KR1020237011113A priority patent/KR102656381B1/ko
Priority to KR1020217002558A priority patent/KR20210024613A/ko
Priority to CN201980050379.8A priority patent/CN112513299A/zh
Publication of WO2020091043A1 publication Critical patent/WO2020091043A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/28Normalising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0006Details, accessories not peculiar to any of the following furnaces
    • C21D9/0012Rolls; Roll arrangements
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a non-oriented electrical steel sheet.
  • the present application claims priority based on Japanese Patent Application No. 2018-206969 filed in Japan on November 2, 2018, the contents of which are incorporated herein by reference.
  • the motor core of various motors as described above is composed of a stator, which is a stator, and a rotor, which is a rotor.
  • the characteristics required for the stator and the rotor that form the motor core are different from each other.
  • the stator is required to have excellent magnetic properties (low iron loss and high magnetic flux density), particularly low iron loss, while the rotor is required to have excellent mechanical properties (high strength).
  • the desired characteristics can be realized by making the non-oriented electrical steel sheet for the stator and the non-oriented electrical steel sheet for the rotor separately.
  • preparing two types of non-oriented electrical steel sheets causes a decrease in yield. Therefore, in order to realize the high strength required for the rotor and the low iron loss required for the stator without performing stress relief annealing, a non-oriented electrical steel sheet excellent in strength and magnetic properties is also provided.
  • Patent Documents 1 to 3 attempts have been made to realize excellent magnetic properties and high strength.
  • Patent Documents 1 to 3 are insufficient in reducing iron loss as a stator material. It was
  • the present invention has been made to solve such a problem, and an object thereof is to provide a non-oriented electrical steel sheet having high strength and excellent magnetic properties.
  • the gist of the present invention is the following non-oriented electrical steel sheet.
  • the chemical composition of the base material is% by mass, C: 0.0050% or less, Si: 3.5-5.0%, Mn: more than 0.2% and less than 2.0%, P: 0.030% or less, S: 0.0050% or less, sol.
  • the average crystal grain size of the base material is more than 40 ⁇ m and 120 ⁇ m or less.
  • the element symbol in the above formula is the content (mass%) of each element.
  • the non-oriented electrical steel sheet according to (1) may have an elastic modulus in the rolling direction of 175,000 MPa or more.
  • the tensile strength of the non-oriented electrical steel sheet according to (1) or (2) may be 600 MPa or more.
  • the chemical composition is% by mass, Sn: 0.005 to 0.100%, and Sb: 0.005 to 0.100%, You may contain 1 type or 2 types selected from.
  • the non-oriented electrical steel sheet according to any one of (1) to (4) above may have an insulating coating on the surface of the base material.
  • a non-oriented electrical steel sheet having high strength and excellent magnetic properties can be obtained.
  • the present inventors have made the following findings as a result of intensive studies to solve the above problems.
  • Si, Mn and Al are elements that have the effect of increasing the electrical resistance of steel and reducing eddy current loss. Further, these elements are elements that also contribute to strengthening the strength of steel.
  • Si is the element that most efficiently contributes to the increase in electric resistance, and is also the element that most efficiently contributes to the increase in strength.
  • Al like Si, also has the effect of effectively increasing the electrical resistance.
  • Mn has a lower effect of increasing electric resistance than Si and Al, but has an advantage that workability is less likely to be deteriorated.
  • sol By reducing the Al content as much as possible and adjusting the Si and Mn contents within an appropriate range, it is possible to secure workability while achieving high strength and improvement of magnetic properties.
  • control of the crystal grain size is also important in order to increase strength and improve magnetic properties. From the viewpoint of high strength, it is desirable that the crystal grains in the steel are fine grains.
  • Iron loss mainly consists of hysteresis loss and eddy current loss.
  • the crystal grains are preferably coarsened, and in order to reduce the eddy current loss, the crystal grains are preferably refined. That is, there is a trade-off relationship between the two.
  • the present inventors have also found that the punching workability of the motor core can be improved by increasing the elastic modulus in the rolling direction to 175,000 MPa or more and increasing the rigidity of the non-oriented electrical steel sheet. Furthermore, the present inventors have found that the above requirements can be realized by increasing the Si content of the base material, performing hot-rolled sheet annealing at a low temperature, and performing finish annealing in a predetermined temperature range.
  • the non-oriented electrical steel sheet according to the present embodiment has high strength and excellent magnetic characteristics, and thus is suitable for both the stator and the rotor. Further, the non-oriented electrical steel sheet according to the present embodiment preferably has an insulating coating on the surface of the base material described below.
  • C is an element that causes iron loss deterioration of the non-oriented electrical steel sheet.
  • C content exceeds 0.0050%, the iron loss of the non-oriented electrical steel sheet deteriorates, and good magnetic properties cannot be obtained. Therefore, the C content is 0.0050% or less.
  • the C content is preferably 0.0040% or less, more preferably 0.0035% or less, and even more preferably 0.0030% or less.
  • the C content is preferably 0.0005% or more and is 0.0010% or more in order to obtain the effect. Is more preferable.
  • Si 3.5-5.0%
  • Si is an element that increases the electric resistance of steel, reduces eddy current loss, and improves high-frequency iron loss of non-oriented electrical steel sheets. Moreover, since Si has a large solid solution strengthening ability, it is also an element effective for increasing the strength of the non-oriented electrical steel sheet. In order to obtain these effects, the Si content is set to 3.5% or more. The Si content is preferably 3.7% or more, more preferably 3.9% or more, and even more preferably more than 4.0%. On the other hand, if the Si content is excessive, the workability is significantly deteriorated, and it becomes difficult to carry out cold rolling. Therefore, the Si content is 5.0% or less. The Si content is preferably 4.8% or less, and more preferably 4.5% or less.
  • Mn more than 0.2% and less than 2.0% Mn (manganese) is effective for increasing the electric resistance of steel, reducing eddy current loss, and improving high-frequency iron loss of non-oriented electrical steel sheets. Is an element. Further, if the Mn content is too low, fine sulfides (MnS) may be precipitated in the steel, which may result in insufficient grain growth during finish annealing. Therefore, the Mn content is set to more than 0.2%. The Mn content is preferably 0.4% or more, more preferably 0.6% or more, and even more preferably 0.7% or more. On the other hand, when the Mn content is excessive, the decrease in the magnetic flux density of the non-oriented electrical steel sheet becomes remarkable. Therefore, the Mn content is less than 2.0%. The Mn content is preferably 1.8% or less, more preferably 1.7% or less, and even more preferably 1.6% or less.
  • the electric resistance of steel is secured by appropriately controlling the contents of Si and Mn. Therefore, in addition to the contents of Si and Mn being within the above ranges, respectively, it is necessary to satisfy the following formula (i).
  • the value on the left side of the following (i) is preferably 4.4 or more, more preferably 4.5 or more, and even more preferably 4.6 or more.
  • P 0.030% or less
  • P phosphorus
  • the P content is 0.030% or less.
  • the P content is preferably 0.025% or less, more preferably 0.020% or less.
  • the P content is preferably 0%, but the extreme reduction of the P content may cause an increase in manufacturing cost, so the P content may be 0.003% or more.
  • S 0.0050% or less
  • S sulfur
  • the S content is preferably 0.0040% or less, more preferably 0.0035% or less. Since the extreme reduction of the S content may cause an increase in manufacturing cost, the S content is preferably 0.0003% or more, more preferably 0.0005% or more, and 0.1% or more. It is even more preferable that it is 0008% or more.
  • Al 0.0030% or less
  • Al aluminum
  • aluminum is an element having an effect of reducing eddy current loss by increasing electric resistance of steel and improving high frequency iron loss of non-oriented electrical steel sheet. Is. Further, it is an element that contributes to the strengthening of the non-oriented electrical steel sheet by solid solution strengthening.
  • the sol. The inclusion of Al deteriorates the workability in the steel sheet manufacturing process. Furthermore, if the sol. Even with the inclusion of Al, a nitride such as AlN is finely precipitated in the steel, which hinders the growth of crystal grains during finish annealing and deteriorates the magnetic properties of the non-oriented electrical steel sheet.
  • the sufficient electric resistance of steel is secured by adjusting the contents of Si and Mn. Therefore, sol. It is desirable to reduce the Al content as much as possible, and it is set to 0.0030% or less. sol.
  • the Al content is preferably 0.0025% or less, and more preferably 0.0020% or less. In addition, sol. Extreme reduction of the Al content may cause an increase in manufacturing cost.
  • the Al content is preferably 0.0001% or more, more preferably 0.0003% or more. In the present embodiment, sol.
  • the Al content is sol. It means the content of Al (acid-soluble Al).
  • N 0.0030% or less
  • N nitrogen
  • the N content is set to 0.0030% or less.
  • the N content is preferably 0.0025% or less, and more preferably 0.0020% or less.
  • the N content is preferably 0.0005% or more.
  • Ti less than 0.0050%
  • Ti titanium
  • carbide or nitride is an element that is inevitably mixed in the steel and can combine with carbon or nitrogen to form precipitates (carbides, nitrides). When carbide or nitride is formed, these precipitates themselves deteriorate the magnetic properties of the non-oriented electrical steel sheet. Furthermore, it inhibits the growth of crystal grains during finish annealing and deteriorates the magnetic properties of the non-oriented electrical steel sheet. Therefore, the Ti content is less than 0.0050%.
  • the Ti content is preferably 0.0040% or less, more preferably 0.0030% or less, and even more preferably 0.0020% or less. Note that the Ti content is preferably 0.0005% or more because the extreme reduction of the Ti content may cause an increase in manufacturing cost.
  • Nb less than 0.0050%
  • Nb niobium
  • the Nb content is preferably 0.0040% or less, more preferably 0.0030% or less, and even more preferably 0.0020% or less. Further, the Nb content is more preferably equal to or less than the measurement limit, and more preferably less than 0.0001%. The lower the Nb content, the more preferable, so the Nb content may be 0%.
  • Zr less than 0.0050%
  • Zr zirconium
  • the Zr content is preferably 0.0040% or less, more preferably 0.0030% or less, and even more preferably 0.0020% or less. Further, the Zr content is more preferably equal to or less than the measurement limit, and more preferably, 0.0001% or less. The lower the Zr content, the more preferable, so the Zr content may be 0%.
  • V less than 0.0050%
  • V vanadium
  • the V content is preferably 0.0040% or less, more preferably 0.0030% or less, and even more preferably 0.0020% or less.
  • the V content is more preferably equal to or lower than the measurement limit, and more preferably, 0.0001% or less. The lower the V content, the more preferable, so the V content may be 0%.
  • Cu less than 0.200%
  • Cu (copper) is an element that is unavoidably mixed in steel.
  • the intentional inclusion of Cu increases the manufacturing cost of the non-oriented electrical steel sheet. Therefore, in the present embodiment, it is not necessary to positively contain Cu, and Cu may be at the impurity level.
  • the Cu content is less than 0.200%, which is the maximum value that can be inevitably mixed in the manufacturing process.
  • the Cu content is preferably 0.150% or less, more preferably 0.100% or less.
  • the lower limit of the Cu content is not particularly limited, extreme reduction of the Cu content may cause an increase in manufacturing cost. Therefore, the Cu content is preferably 0.001% or more, more preferably 0.003% or more, still more preferably 0.005% or more.
  • Ni less than 0.500%
  • Ni nickel
  • Ni is an element that is unavoidably mixed in steel.
  • Ni is also an element that improves the strength of the non-oriented electrical steel sheet, and thus may be intentionally contained.
  • the Ni content is less than 0.500%.
  • the Ni content is preferably 0.400% or less, more preferably 0.300% or less.
  • the lower limit of the Ni content is not particularly limited, extreme reduction of the Ni content may cause an increase in manufacturing cost. Therefore, the Ni content is preferably 0.001% or more, more preferably 0.003% or more, and even more preferably 0.005% or more.
  • Sn 0 to 0.100%
  • Sb 0 to 0.100%
  • Sn (tin) and Sb (antimony) are elements useful for securing a low iron loss in the non-oriented electrical steel sheet by segregating on the surface of the base material and suppressing oxidation and nitridation during annealing.
  • Sn and Sb also have the effect of segregating at the grain boundaries to improve the texture and increase the magnetic flux density of the non-oriented electrical steel sheet. Therefore, at least one of Sn and Sb may be contained if necessary.
  • the contents of Sn and Sb are each set to 0.100% or less.
  • the Sn and Sb contents are each preferably 0.060% or less.
  • the content of at least one of Sn and Sb is preferably 0.005% or more, and more preferably 0.010% or more.
  • the balance is Fe and impurities.
  • impurities are components such as ores, raw materials such as scrap when manufacturing steel industrially, various factors of the manufacturing process, and the non-oriented electrical steel sheet of the present embodiment. It means one that is allowed within a range that does not adversely affect the characteristics.
  • the content of Cr and Mo as impurity elements is not particularly specified.
  • the non-oriented electrical steel sheet according to the present embodiment even if each of these elements is contained in the range of 0.5% or less, the characteristics of the non-oriented electrical steel sheet according to the present embodiment are not particularly affected. Further, even if each of Ca and Mg is contained in the range of 0.002% or less, the characteristics of the non-oriented electrical steel sheet according to this embodiment are not particularly affected. Even if the rare earth element (REM) is contained in the range of 0.004% or less, the characteristics of the non-oriented electrical steel sheet according to the present embodiment are not particularly affected.
  • REM refers to a total of 17 elements composed of Sc, Y and lanthanoid, and the content of REM refers to the total content of these elements.
  • O is also an impurity element, its content in the range of 0.05% or less does not affect the characteristics of the non-oriented electrical steel sheet according to this embodiment. Since O may be mixed in the steel in the annealing step, the content in the slab stage (that is, the ladle value), even if contained in the range of 0.01% or less, is non-directional according to the present embodiment. There is no particular effect on the properties of the electrical magnetic steel sheet.
  • elements such as Pb, Bi, As, B, and Se may be contained as impurity elements, but if the content of each is within a range of 0.0050% or less, the present embodiment It does not impair the characteristics of the non-oriented electrical steel sheet.
  • the chemical composition of the base material of the non-oriented electrical steel sheet according to the present embodiment may be measured by using ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry).
  • ICP-AES Inductively Coupled Plasma-Atomic Emission Spectrometry
  • sol. Al may be measured by ICP-AES using a filtrate obtained by thermally decomposing a sample with an acid.
  • C and S may be measured by a combustion-infrared absorption method
  • N may be measured by an inert gas melting-heat conductivity method.
  • Crystal grain size From the viewpoint of increasing the strength of the non-oriented electrical steel sheet, it is desirable that the crystal grains in the steel are fine grains. In addition, it is preferable to coarsen the crystal grains in order to reduce the hysteresis loss, and it is preferable to make the crystal grains finer in order to reduce the eddy current loss.
  • the average crystal grain size of the base material is set to more than 40 ⁇ m and 120 ⁇ m or less.
  • the average crystal grain size of the base material is preferably 45 ⁇ m or more, more preferably 50 ⁇ m or more, and even more preferably 55 ⁇ m or more. Further, the average crystal grain size of the base material is preferably 110 ⁇ m or less, and more preferably 100 ⁇ m or less.
  • the average crystal grain size of the base material is determined according to JIS G 0551 (2013) “Steel-microscopic examination method of grain size”. Specifically, first, a test piece is sampled from a position 10 mm or more away from the end of the non-oriented electrical steel sheet such that the plate thickness cross section parallel to the rolling direction becomes the observation surface. An optical microscope having a photographing function is used to photograph an observation surface at a magnification of 100 times, where crystal grain boundaries can be clearly observed by etching with a corrosive liquid. The average crystal grain size of the observed crystal grains is measured by the cutting method described in JIS G 0551 (2013) using the obtained observation photograph.
  • 5 or more straight lines with a length of 2 mm in the rolling direction are drawn in the plate thickness direction at equal intervals, and the total number of captured crystal grains captured by the straight lines of 10 mm or more and the plate thickness direction orthogonal to the straight line in the rolling direction.
  • excellent magnetic characteristics means that the iron loss W 10/400 is low and the magnetic flux density B 50 is high. Specifically, excellent magnetic properties mean that the iron loss W 10/400 is 16.0 W / kg or less and the magnetic flux density B 50 is less than 0.30 mm or less and 0.35 mm or less.
  • the above magnetic characteristics are measured in accordance with the Epstein test defined in JIS C 2550-1 (2011).
  • the iron loss W 10/400 means the iron loss generated under the condition that the maximum magnetic flux density is 1.0 T and the frequency is 400 Hz
  • the magnetic flux density B 50 means the magnetic flux density in the magnetic field of 5000 A / m.
  • having high strength means having a tensile (maximum) strength of 600 MPa or more.
  • the non-oriented electrical steel sheet according to this embodiment has a tensile strength of 600 MPa or more.
  • the tensile strength is preferably 610 MPa or more.
  • the upper limit of the tensile strength is not particularly limited, but may be less than 710 MPa.
  • the tensile strength is measured by performing a tensile test according to JIS Z 2241 (2011).
  • the surface of the base material has an insulating coating.
  • Non-oriented electrical steel sheets are used after being laminated after punching out core blanks.Therefore, by providing an insulating coating on the surface of the base material, it is possible to reduce the eddy currents between the plates and reduce the eddy currents as cores. It is possible to reduce the loss.
  • the type of the insulating coating is not particularly limited, and it is possible to use a known insulating coating used as the insulating coating of the non-oriented electrical steel sheet.
  • a composite insulating coating mainly containing an inorganic substance and further containing an organic substance can be mentioned.
  • the composite insulating film is, for example, a metal salt such as a metal salt of chromate or metal phosphate, or an inorganic substance such as colloidal silica, a Zr compound, or a Ti compound as a main component, and a fine organic film. It is an insulating coating in which resin particles are dispersed.
  • an insulating coating using a metal phosphate, a coupling agent of Zr or Ti as a starting material, or a metal phosphate, Zr or Ti is preferably used.
  • the amount of the insulating coating deposited is not particularly limited, but is preferably about 200 to 1500 mg / m 2 per side, and more preferably 300 to 1200 mg / m 2 per side.
  • the amount of the insulating coating deposited is not particularly limited, but is preferably about 200 to 1500 mg / m 2 per side, and more preferably 300 to 1200 mg / m 2 per side.
  • the elastic modulus parallel to the rolling method may be 175000 MPa or more. By setting the elastic modulus parallel to the rolling method to 175,000 MPa or more, the rigidity of the non-oriented electrical steel sheet can be increased and the punching workability of the motor core can be improved.
  • the Si content in the steel component is increased to increase the strength. If the Si content is increased, the workability decreases. Therefore, it is necessary to anneal the hot rolled sheet at a low temperature. As the temperature of the hot-rolled sheet annealing decreases, the (111) oriented grains in the texture of the final product increase. As a result, the elastic modulus of the final product is high. Further, in this embodiment, in order to make the crystal grain size of the final product coarse, it is necessary to perform the finish annealing at a high temperature. By increasing the grain size of the final product, the hysteresis loss is reduced, while the eddy current loss is increased.
  • the eddy current loss is reduced due to the increase of the Si content in the chemical composition
  • the increase of the eddy current loss due to the crystal grain size can be allowed.
  • the grain size of the final product by increasing the grain size of the final product, the hysteresis loss is reduced, but the strength is reduced.
  • the strength is improved due to the increase in the Si content in the chemical composition, so that the strength can be reduced even if the crystal grain size becomes coarse.
  • the crystal grain size of the final product becomes larger than 100 ⁇ m, the (111) oriented grains decrease and the elastic modulus decreases even when the hot-rolled sheet annealing temperature is low.
  • JIS Z 2241 (2011) JIS No. 5 tensile test pieces are sampled so that the longitudinal direction is parallel to the rolling direction of the non-oriented electrical steel sheet.
  • a strain gauge is attached to the center of the parallel part of the test piece in the longitudinal direction and the center of the width direction.
  • a tensile test is performed using the above test piece according to JIS Z 2241 (2011), and the elastic modulus is determined from the slope of the stress-strain curve within the elastic range.
  • strain gauges are attached to both front and back surfaces of the test piece, two stress-strain curves are obtained, and an average value of elastic moduli obtained from the respective stress-strain curves is calculated. Get the elastic modulus.
  • the method of manufacturing the non-oriented electrical steel sheet according to the present embodiment is not particularly limited, for example, for the steel ingot having the above-described chemical composition, hot rolling step, hot rolled sheet annealing step It is possible to manufacture by sequentially performing a pickling process, a cold rolling process, and a finish annealing process. When forming an insulating coating on the surface of the base material, an insulating coating forming step is performed after the finish annealing step. Hereinafter, each step will be described in detail.
  • ⁇ Hot rolling process> A steel ingot (slab) having the above chemical composition is heated, and hot rolling is performed on the heated steel ingot to obtain a hot rolled steel sheet.
  • the heating temperature of the steel ingot during hot rolling is not particularly specified, but is preferably 1050 to 1250 ° C, for example.
  • the plate thickness of the hot-rolled steel sheet after hot rolling is not particularly specified, but considering the final plate thickness of the base material, it is preferably about 1.5 to 3.0 mm, for example. ..
  • hot rolled sheet annealing is performed for the purpose of increasing the magnetic flux density of the non-oriented electrical steel sheet.
  • the heat treatment conditions in hot-rolled sheet annealing for example, in the case of continuous annealing, it is preferable to anneal the hot-rolled steel sheet at 700 to 1000 ° C. for 10 to 150 s, and at 800 to 980 ° C. More preferably, it is set to 150 s.
  • the soaking temperature of the hot rolled sheet annealing is 800 to 970 ° C. and the soaking time is 10 to 150 s.
  • the soaking temperature of the hot rolled sheet annealing is 800 ° C. or more and less than 950 ° C. and the soaking time is 10 to 150 s.
  • the hot rolled steel sheet In the case of box annealing, it is preferable to hold the hot rolled steel sheet at 600 to 900 ° C. for 30 minutes to 24 hours. More preferably, the soaking is performed at 650 to 850 ° C. for 1 to 20 hours. Although the magnetic properties are inferior to the case where the hot-rolled sheet annealing step is performed, the hot-rolled sheet annealing step may be omitted for cost reduction.
  • the pickling conditions such as the concentration of the acid used for pickling, the concentration of the accelerator used for pickling, and the temperature of the pickling solution are not particularly limited and may be known pickling conditions. it can.
  • the pickling step is preferably performed before the hot rolled sheet annealing from the viewpoint of descaling. In this case, it is not necessary to carry out pickling after annealing the hot rolled sheet.
  • cold rolling After the pickling (when the hot-rolled sheet annealing is performed by box annealing, it may be after the hot-rolled sheet annealing step), cold rolling is performed. In the cold rolling, the pickled plate from which the scale layer has been removed is rolled at a reduction rate such that the final plate thickness of the base material is 0.10 to 0.35 mm.
  • finish annealing is performed.
  • a continuous annealing furnace is used for finish annealing.
  • the finish annealing step is an important step for controlling the average crystal grain size of the base material.
  • the soaking temperature of finish annealing is 900 to 1000 ° C. and the soaking time is 1 to 300 s.
  • the soaking temperature is lower than 900 ° C., the crystal grain size becomes fine and the iron loss of the non-oriented electrical steel sheet deteriorates, which is not preferable. If the soaking temperature exceeds 1030 ° C., the strength of the non-oriented electrical steel sheet becomes insufficient, the iron loss deteriorates, and the elastic modulus decreases, which is not preferable.
  • the soaking temperature is more preferably 900 to 1000 ° C, and even more preferably 920 to 980 ° C. If the soaking time is less than 1 s, the crystal grains cannot be sufficiently coarsened. If the soaking time exceeds 300 s, the manufacturing cost will increase.
  • the proportion of H 2 in the atmosphere is more preferably 15 to 90% by volume.
  • the dew point of the atmosphere is more preferably 10 ° C or lower, and further preferably 0 ° C or lower.
  • an insulating film forming step is carried out if necessary.
  • the method for forming the insulating coating is not particularly limited, and the coating and drying of the processing liquid may be performed by a known method using a processing liquid for forming the following known insulating coating.
  • a known insulating coating for example, a composite insulating coating mainly containing an inorganic substance and further containing an organic substance can be mentioned.
  • the composite insulating coating is, for example, a metal salt such as a metal salt of chromate or metal phosphate, or at least one of inorganic materials such as colloidal silica, Zr compound, and Ti compound as a main component, and fine organic resin particles.
  • an insulating coating using a metal phosphate, a coupling agent of Zr or Ti as a starting material, or a metal phosphate, Zr or Ti is preferably used.
  • the surface of the base material on which the insulating film is formed may be subjected to any pretreatment such as degreasing treatment with alkali or pickling treatment with hydrochloric acid, sulfuric acid, phosphoric acid or the like before applying the treatment liquid.
  • the treatment liquid may be applied to the surface of the base material as it is after finish annealing without performing these pretreatments.
  • the present invention will be described more specifically by way of examples, but the conditions in the examples are merely examples adopted for confirming the feasibility and effects of the present invention, and the present invention is limited to these example conditions. It is not something that will be done.
  • the present invention can employ various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
  • Example 1 After heating the slabs having the component compositions shown in Table 1 to 1150 ° C., hot rolling was performed at a finishing temperature of 850 ° C. and a finishing plate thickness of 2.0 mm, and wound at 650 ° C. to obtain hot rolled steel sheets. The obtained hot-rolled steel sheet was annealed at 970 ° C. for 50 s, and the surface scale was removed by pickling. The pickled plate thus obtained was cold rolled into a cold rolled steel plate having a plate thickness of 0.25 mm.
  • an annealing temperature 900 to 1050 ° C. and soaking are performed so that the average crystal grain size is as shown in Table 2 below.
  • the above-mentioned insulating coating is formed by applying an insulating coating made of aluminum phosphate and an acrylic-styrene copolymer resin emulsion having a particle size of 0.2 ⁇ m so as to have a predetermined adhesion amount, and baking at 350 ° C. in the atmosphere. Formed.
  • the average crystal grain size of the base material was measured according to JIS G 0551 (2013) "Steel-microscopic examination method of grain size".
  • Epstein test pieces were sampled from the rolling direction and the width direction of each test material, and the magnetic properties (iron loss W 10/400 , magnetic flux density B 50 ) were measured by an Epstein test according to JIS C 2550-1 (2011). evaluated.
  • the iron loss W 10/400 was 13.0 W / kg or less and the magnetic flux density B 50 was 1.60 T or more, the magnetic properties were excellent and it was determined to be acceptable. When this condition was not satisfied, the magnetic properties were inferior, and it was judged as a failure.
  • the pass condition was set because the plate thickness of each test material was more than 0.20 mm and not more than 0.25 mm.
  • JIS Z 2241 (2011) JIS No. 5 tensile test pieces were taken from each test material so that the longitudinal direction coincided with the rolling direction of the steel sheet. Then, using the above test piece, a tensile test was performed according to JIS Z 2241 (2011) to measure the tensile strength. When the tensile strength was 600 MPa or more, it was judged as having a high strength and passed. When the tensile strength was less than 600 MPa, the strength was inferior and it was determined as a failure.
  • test No. which is a comparative example.
  • Nos. 1, 2, 4, 7, 8, 11 to 13, 16, 19 to 21 and 25 at least one of the magnetic property and the tensile strength was inferior, or the toughness was remarkably deteriorated, and the production became difficult.
  • the test No. In No. 1 since the Si content was lower than the specified range, the tensile strength was inferior. In addition, the test No. whose chemical composition satisfies the regulations. Comparing 2 to 4, the test No. In No. 2, since the average crystal grain size is smaller than the specified range, the iron loss is inferior. In No. 4, the average grain size was larger than the specified range, resulting in poor tensile strength.
  • test No. 7 the Si content exceeds the specified range
  • test No. 12 since the P content exceeded the specified range, the toughness deteriorated and fracture occurred during cold rolling, and the average crystal grain size, tensile strength and magnetic properties could not be measured.
  • Test No. 8 since the formula (i) was not satisfied, iron loss and tensile strength were inferior.
  • the test No. In No. 11 since the Mn content exceeded the specified range, the magnetic flux density was inferior.
  • test No. 20 sol. Since the Al content exceeds the specified range, sol. Other than Al, the chemical composition and the average crystal grain size are almost the same. The magnetic properties were inferior to those of No. 15.
  • Example 2 After heating the slabs having the component compositions shown in Table 3 to 1150 ° C., they were hot-rolled at a finishing temperature of 850 ° C. and a finishing plate thickness of 2.0 mm, and wound at 650 ° C. to obtain hot-rolled steel sheets. The obtained hot-rolled steel sheet was subjected to hot-rolled sheet annealing at 40 s at the hot-rolled sheet annealing temperature shown in Table 4, and the scale on the surface was removed by pickling. The pickled plate thus obtained was cold rolled into a cold rolled steel plate having a plate thickness of 0.25 mm.
  • the above-mentioned insulating coating is formed by applying an insulating coating made of aluminum phosphate and an acrylic-styrene copolymer resin emulsion having a particle size of 0.2 ⁇ m so as to have a predetermined adhesion amount, and baking at 350 ° C. in the atmosphere. Formed.
  • Example 2 For each of the obtained test materials, the average crystal grain size of the base material, magnetic properties (iron loss W 10/400 , magnetic flux density B 50 ), tensile strength and rolling direction were measured in the same manner as in Example 1.
  • the elastic modulus was measured.
  • the elastic modulus parallel to the rolling direction was measured by applying a strain gauge to both sides of a JIS No. 5 tensile test piece and performing a tensile test in the same manner as the measurement of tensile strength.
  • the elastic modulus was determined from the slope of the stress-strain curve within the elastic range.
  • the elastic modulus was obtained by obtaining two stress-strain curves from strain gauges attached to both sides of the test piece and calculating the average value of the elastic moduli obtained from the respective stress-strain curves.
  • An elastic modulus of 175,000 MPa or more parallel to the rolling method was judged to be excellent.
  • the other acceptance criteria were the same as in Example 1. The results are also shown in Table 4.
  • Test No. in which the chemical composition of the steel sheet satisfying the regulations of the present invention and the average grain size after finish annealing, and the temperature of hot-rolled sheet annealing and the temperature of finish annealing were appropriately adjusted.
  • the core loss was excellent and the magnetic flux density was particularly low, the core loss was high, the tensile strength was 600 MPa or more, and the elastic modulus parallel to the rolling direction was 175000 MPa or more. I understood.
  • test No. which is a comparative example.
  • Nos. 4 and 6 to 9 had poor magnetic properties, tensile strength and elastic modulus.
  • the test No. 4 to 6 the test No. In No. 4, the iron loss was inferior because the average crystal grain size was smaller than the specified range.
  • the annealing temperature was too high, the average crystal grain size became larger than the specified range, and the tensile strength, magnetic flux density, and elastic modulus were inferior.
  • Test Nos. 7 to 8 No. 7 is inferior in iron loss
  • the test No. No. 8 is inferior in tensile strength.
  • No. 9 is inferior in iron loss and tensile strength.

Abstract

この無方向性電磁鋼板は、母材が式[Si+0.5×Mn≧4.3]を満足する所定の化学組成を有し、前記母材の平均結晶粒径が、40μmを超えて120μm以下である。

Description

無方向性電磁鋼板
 本発明は、無方向性電磁鋼板に関する。
 本願は、2018年11月2日に、日本に出願された特願2018-206969号に基づき優先権を主張し、その内容をここに援用する。
 近年、地球環境問題が注目されており、省エネルギーへの取り組みに対する要求は、一段と高まってきている。省エネルギーへの取り組みに対する要求の中でも、電気機器の高効率化が強く要求されている。このため、モータまたは発電機等の鉄心材料として広く使用されている無方向性電磁鋼板においても、磁気特性の向上に対する要求がさらに強まっている。電気自動車およびハイブリッド自動車用の駆動モータならびにエアコンのコンプレッサ用モータにおいては、その傾向が顕著である。
 上記のような各種モータのモータコアは、固定子であるステータおよび回転子であるロータから構成される。モータコアを構成するステータおよびロータに求められる特性は、互いに相違するものである。ステータには、優れた磁気特性(低鉄損および高磁束密度)、特に低鉄損が求められるのに対し、ロータには、優れた機械特性(高強度)が求められる。
 ステータとロータとで求められる特性が異なることから、ステータ用の無方向性電磁鋼板とロータ用の無方向性電磁鋼板とを作り分けることで、所望の特性を実現することができる。しかしながら、2種類の無方向性電磁鋼板を準備することは、歩留まりの低下を引き起こす。そこで、ロータに求められる高強度を実現しつつ、歪取焼鈍を行わなくともステータに求められる低鉄損を実現するために、強度に優れ、かつ、磁気特性にも優れた無方向性電磁鋼板が、従来から検討されてきた。
 例えば、特許文献1~3では、優れた磁気特性と高い強度とを実現するための試みがなされている。
日本国特開2004-300535号公報 日本国特開2007-186791号公報 日本国特開2012-140676号公報
 しかしながら、近年、電気自動車またはハイブリッド自動車のモータに求められる省エネルギー特性を実現するには、特許文献1~3で開示されているような技術では、ステータ素材としての低鉄損化が不十分であった。
 本発明は、このような問題を解決するためになされたものであり、高い強度および優れた磁気特性を有する無方向性電磁鋼板を提供することを目的とする。
 本発明は、下記の無方向性電磁鋼板を要旨とする。
(1)本発明の一態様に係る無方向性電磁鋼板は、母材の化学組成が、質量%で、
 C:0.0050%以下、
 Si:3.5~5.0%、
 Mn:0.2%を超えて2.0%未満、
 P:0.030%以下、
 S:0.0050%以下、
 sol.Al:0.0030%以下、
 N:0.0030%以下、
 Ti:0.0050%未満、
 Nb:0.0050%未満、
 Zr:0.0050%未満、
 V:0.0050%未満、
 Cu:0.200%未満、
 Ni:0.500%未満、
 Sn:0~0.100%、
 Sb:0~0.100%、および
 残部:Feおよび不純物であり、
 下記(i)式を満足し、
 前記母材の平均結晶粒径が、40μmを超えて120μm以下である。
 Si+0.5×Mn≧4.3   ・・・(i)
 但し、上記式中の元素記号は、各元素の含有量(質量%)である。
(2)上記(1)に記載の無方向性電磁鋼板は、圧延方向の弾性率が175000MPa以上であってもよい。
(3)上記(1)または(2)に記載の無方向性電磁鋼板は、引張強さが600MPa以上であってもよい。
(4)上記(1)~(3)のいずれか一項に記載の無方向性電磁鋼板は、前記化学組成が、質量%で、
 Sn:0.005~0.100%、および、
 Sb:0.005~0.100%、
 から選択される1種または2種を含有してもよい。
(5)上記(1)~(4)のいずれか一項に記載の無方向性電磁鋼板は、前記母材の表面に絶縁被膜を有してもよい。
 本発明に係る上記態様によれば、高い強度および優れた磁気特性を有する無方向性電磁鋼板を得ることができる。
 本発明者らは、上記の課題を解決するために、鋭意検討を行った結果、以下の知見を得た。
 Si、MnおよびAlは、鋼の電気抵抗を上昇させて渦電流損を低減させる効果を有する元素である。また、これらの元素は、鋼の高強度化にも寄与する元素である。
 Si、MnおよびAlの中でも、Siは電気抵抗の上昇に最も効率的に寄与する元素であり、強度の上昇にも最も効率的に寄与する元素である。AlもSiと同様、電気抵抗を効率的に上昇させる効果を有する。しかしながら、AlはSiとともに大量に含有させると、鋼の靱性を低下させ、冷間圧延時等の加工性を劣化させるという問題が生じる。それに対して、Mnは、SiおよびAlに比べて電気抵抗を上昇させる効果は低いものの、加工性の劣化を生じさせにくい利点がある。
 これらのことから、本実施形態においては、sol.Al含有量を極力低減するとともに、SiおよびMnの含有量を適切な範囲内に調整することで、高強度化および磁気特性の向上を達成しつつ、加工性を確保する。
 さらに、高強度化および磁気特性の向上のためには、結晶粒径の制御も重要である。高強度化の観点からは、鋼中の結晶粒は細粒であることが望ましい。
 また、電気自動車およびハイブリッド自動車用の駆動モータならびにエアコンのコンプレッサ用モータの鉄心材料として使用する無方向性電磁鋼板の磁気特性では、鉄損、特に高周波域での鉄損を改善する必要がある。鉄損は主にヒステリシス損と渦電流損とからなる。ここで、ヒステリシス損を低減するためには結晶粒は粗大化させることが好ましく、渦電流損を低減するためには結晶粒は微細化させることが好ましい。すなわち、両者の間にはトレードオフの関係が存在する。
 そこで本発明者らが、さらに検討を重ねた結果、高強度化および高周波鉄損の低減を達成するための好適な粒径の範囲があることを見出した。
 また、本発明者らは、圧延方向の弾性率を175000MPa以上とし、無方向性電磁鋼板の剛性を高めることで、モータコアの打ち抜き作業性を高められることを見出した。更に、本発明者らは、母材のSi含有量を高くし、低温で熱延板焼鈍を行い、所定の温度域で仕上げ焼鈍を行うことで、上記の要件を実現できることを見出した。
 本発明は上記の知見に基づいてなされたものである。以下、本発明の好適な実施形態について詳しく説明する。ただし、本発明は本実施形態に開示の構成のみに制限されることなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。
 1.全体構成
 本実施形態に係る無方向性電磁鋼板は、高い強度を有し、かつ優れた磁気特性を有するため、ステータおよびロータの双方に好適である。また、本実施形態に係る無方向性電磁鋼板は、以下に説明する母材の表面に絶縁被膜を備えていることが好ましい。
 2.母材の化学組成
 本実施形態に係る無方向性電磁鋼板の母材の化学組成において、各元素の限定理由は下記のとおりである。なお、以下の説明において含有量についての「%」は、「質量%」を意味する。「~」を挟んで記載する数値限定範囲には、下限値および上限値がその範囲に含まれる。
 C:0.0050%以下
 C(炭素)は、無方向性電磁鋼板の鉄損劣化を引き起こす元素である。C含有量が0.0050%を超えると、無方向性電磁鋼板の鉄損が劣化し、良好な磁気特性を得ることができない。したがって、C含有量は0.0050%以下とする。C含有量は0.0040%以下であるのが好ましく、0.0035%以下であるのがより好ましく、0.0030%以下であるのがより一層好ましい。なお、Cは無方向性電磁鋼板の高強度化に寄与することから、その効果を得たい場合には、C含有量は0.0005%以上であるのが好ましく、0.0010%以上であるのがより好ましい。
 Si:3.5~5.0%
 Si(ケイ素)は、鋼の電気抵抗を上昇させて渦電流損を低減させ、無方向性電磁鋼板の高周波鉄損を改善する元素である。また、Siは、固溶強化能が大きいため、無方向性電磁鋼板の高強度化にも有効な元素である。これらの効果を得るために、Si含有量は3.5%以上とする。Si含有量は3.7%以上であるのが好ましく、3.9%以上であるのがより好ましく、4.0%超であるのがより一層好ましい。一方、Si含有量が過剰であると、加工性が著しく劣化し、冷間圧延を実施することが困難となる。したがって、Si含有量は5.0%以下とする。Si含有量は4.8%以下であるのが好ましく、4.5%以下であるのがより好ましい。
 Mn:0.2%を超えて2.0%未満
 Mn(マンガン)は、鋼の電気抵抗を上昇させて渦電流損を低減し、無方向性電磁鋼板の高周波鉄損を改善するために有効な元素である。また、Mn含有量が低すぎる場合には、鋼中に微細な硫化物(MnS)が析出することで、仕上げ焼鈍時に十分に結晶粒成長しない場合がある。そのため、Mn含有量は0.2%超とする。Mn含有量は0.4%以上であるのが好ましく、0.6%以上であるのがより好ましく、0.7%以上であるのがより一層好ましい。一方、Mn含有量が過剰であると、無方向性電磁鋼板の磁束密度の低下が顕著となる。したがって、Mn含有量は2.0%未満とする。Mn含有量は1.8%以下であるのが好ましく、1.7%以下であるのがより好ましく、1.6%以下であるのがより一層好ましい。
 本実施形態においては、SiおよびMnの含有量を適切に制御することによって、鋼の電気抵抗を確保する。そのため、SiおよびMnの含有量がそれぞれ上記の範囲内であることに加えて、下記(i)式を満足する必要がある。下記(i)の左辺の値は、4.4以上であるのが好ましく、4.5以上であるのがより好ましく、4.6以上であるのがより一層好ましい。
 Si+0.5×Mn≧4.3   ・・・(i)
 但し、上記式中の元素記号は、各元素の含有量(質量%)である。
 P:0.030%以下
 P(リン)は、不純物として鋼中に含まれ、その含有量が過剰であると、無方向性電磁鋼板の靱性が著しく劣化し、冷間圧延を実施することが困難となる。したがって、P含有量は0.030%以下とする。P含有量は0.025%以下であるのが好ましく、0.020%以下であるのがより好ましい。P含有量は0%であることが好ましいが、P含有量の極度の低減は製造コストの増加を引き起こす場合があるため、P含有量は0.003%以上としてもよい。
 S:0.0050%以下
 S(硫黄)は、MnSの微細析出物を形成することで鉄損を増加させ、無方向性電磁鋼板の磁気特性を劣化させる元素である。したがって、S含有量は0.0050%以下とする。S含有量は0.0040%以下であるのが好ましく、0.0035%以下であるのがより好ましい。なお、S含有量の極度の低減は製造コストの増加を引き起こす場合があるため、S含有量は0.0003%以上であるのが好ましく、0.0005%以上であるのがより好ましく、0.0008%以上であるのがより一層好ましい。
 sol.Al:0.0030%以下
 Al(アルミニウム)は、一般的には、鋼の電気抵抗を上昇させることで渦電流損を低減し、無方向性電磁鋼板の高周波鉄損を改善する効果を有する元素である。また、固溶強化により無方向性電磁鋼板の高強度化に寄与する元素である。しかしながら、本実施形態のようなSi含有量の高い鋼板においては、0.1%以上のsol.Alの含有は鋼板製造過程における加工性を劣化させる。さらに0.1%未満のsol.Alの含有においても、AlNのような窒化物が鋼中に微細析出して、仕上げ焼鈍中の結晶粒の成長を阻害して無方向性電磁鋼板の磁気特性を劣化させる。
 本実施形態においては、SiおよびMnの含有量を調整することにより、鋼の十分な電気抵抗を確保している。そのため、sol.Al含有量は極力低減することが望ましく、0.0030%以下とする。sol.Al含有量は0.0025%以下であるのが好ましく、0.0020%以下であるのがより好ましい。なお、sol.Al含有量の極度の低減は製造コストの増加を引き起こす場合があるため、sol.Al含有量は0.0001%以上であるのが好ましく、0.0003%以上であるのがより好ましい。なお、本実施形態において、sol.Al含有量は、sol.Al(酸可溶Al)の含有量を意味する。
 N:0.0030%以下
 N(窒素)は、鋼中に不可避的に混入する元素であり、窒化物を形成して鉄損を増加させ、無方向性電磁鋼板の磁気特性を劣化させる元素である。したがって、N含有量は0.0030%以下とする。N含有量は0.0025%以下であるのが好ましく、0.0020%以下であるのがより好ましい。なお、N含有量の極度の低減は製造コストの増加を引き起こす場合があるため、N含有量は0.0005%以上であるのが好ましい。
 Ti:0.0050%未満
 Ti(チタン)は、鋼中に不可避的に混入する元素であり、炭素または窒素と結合して析出物(炭化物、窒化物)を形成し得る。炭化物または窒化物が形成された場合には、これらの析出物そのものが無方向性電磁鋼板の磁気特性を劣化させる。さらには、仕上げ焼鈍中の結晶粒の成長を阻害して、無方向性電磁鋼板の磁気特性を劣化させる。したがって、Ti含有量は0.0050%未満とする。Ti含有量は0.0040%以下であるのが好ましく、0.0030%以下であるのがより好ましく、0.0020%以下であるのがより一層好ましい。なお、Ti含有量の極度の低減は製造コストの増加を引き起こす場合があるため、Ti含有量は0.0005%以上であるのが好ましい。
 Nb:0.0050%未満
 Nb(ニオブ)は、炭素または窒素と結合して析出物(炭化物)を形成することで高強度化に寄与する元素であるが、これらの析出物そのものが無方向性電磁鋼板の磁気特性を劣化させる。したがって、Nb含有量は0.0050%未満とする。Nb含有量は0.0040%以下であるのが好ましく、0.0030%以下であるのがより好ましく、0.0020%以下であるのがより一層好ましい。また、Nb含有量は、測定限界以下であるのが更に好ましく、具体的には、0.0001%未満であることが更に好ましい。Nb含有量は低ければ低いほど好ましいため、Nb含有量は0%としてもよい。
 Zr:0.0050%未満
 Zr(ジルコニウム)は、炭素または窒素と結合して析出物(炭化物、窒化物)を形成することで高強度化に寄与する元素であるが、これらの析出物そのものが無方向性電磁鋼板の磁気特性を劣化させる。したがって、Zr含有量は0.0050%未満とする。Zr含有量は0.0040%以下であるのが好ましく、0.0030%以下であるのがより好ましく、0.0020%以下であるのがより一層好ましい。また、Zr含有量は測定限界以下であるのが更に好ましく、具体的には、0.0001%以下であることが更に好ましい。Zr含有量は低ければ低いほど好ましいため、Zr含有量は0%としてもよい。
 V:0.0050%未満
 V(バナジウム)は、炭素または窒素と結合して析出物(炭化物、窒化物)を形成することで高強度化に寄与する元素であるが、これらの析出物そのものが無方向性電磁鋼板の磁気特性を劣化させる。したがって、V含有量は0.0050%未満とする。V含有量は0.0040%以下であるのが好ましく、0.0030%以下であるのがより好ましく、0.0020%以下であるのがより一層好ましい。V含有量は測定限界以下であるのが更に好ましく、具体的には、0.0001%以下であるのが更に好ましい。V含有量は低ければ低いほど好ましいため、V含有量は0%としてもよい。
 Cu:0.200%未満
 Cu(銅)は、鋼中に不可避的に混入する元素である。意図的にCuを含有させると、無方向性電磁鋼板の製造コストが増加する。したがって、本実施形態においては、Cuは積極的に含有させる必要はなく、不純物レベルでよい。Cu含有量は、製造工程において不可避的に混入しうる最大値である0.200%未満とする。Cu含有量は0.150%以下であるのが好ましく、0.100%以下であるのがより好ましい。なお、Cu含有量の下限値は、特に限定されるものではないが、Cu含有量の極度の低減は製造コストの増加を引き起こす場合がある。そのため、Cu含有量は0.001%以上であるのが好ましく、0.003%以上であるのがより好ましく、0.005%以上であるのがより一層好ましい。
 Ni:0.500%未満
 Ni(ニッケル)は、鋼中に不可避的に混入する元素である。しかし、Niは、無方向性電磁鋼板の強度を向上させる元素でもあるため、意図的に含有させてもよい。ただし、Niは高価であるため、Ni含有量は0.500%未満とする。Ni含有量は0.400%以下であるのが好ましく、0.300%以下であるのがより好ましい。なお、Ni含有量の下限値は、特に限定されるものではないが、Ni含有量の極度の低減は製造コストの増加を引き起こす場合がある。そのため、Ni含有量は0.001%以上であるのが好ましく、0.003%以上であるのがより好ましく、0.005%以上であるのがより一層好ましい。
 Sn:0~0.100%
 Sb:0~0.100%
 Sn(スズ)およびSb(アンチモン)は、母材表面に偏析し焼鈍中の酸化および窒化を抑制することで、無方向性電磁鋼板において低い鉄損を確保するのに有用な元素である。また、SnおよびSbは、結晶粒界に偏析して集合組織を改善し、無方向性電磁鋼板の磁束密度を高める効果も有する。そのため、必要に応じてSnおよびSbの少なくとも一方を含有させてもよい。しかしながら、これらの元素の含有量が過剰であると、鋼の靱性が低下して冷間圧延が困難となる場合がある。したがって、SnおよびSbの含有量は、それぞれ0.100%以下とする。SnおよびSbの含有量は、それぞれ0.060%以下であるのが好ましい。なお、上記の効果を確実に得たい場合には、SnおよびSbの少なくとも一方の含有量を、0.005%以上とするのが好ましく、0.010%以上とするのがより好ましい。
 本実施形態に係る無方向性電磁鋼板の母材の化学組成において、残部はFeおよび不純物である。ここで「不純物」とは、鋼を工業的に製造する際に、鉱石、スクラップ等の原料、製造工程の種々の要因によって混入する成分であって、本実施形態に係る無方向性電磁鋼板の特性に悪影響を与えない範囲で許容されるものを意味する。
 なお、不純物元素として、CrおよびMoの含有量に関しては、特に規定されるものではない。本実施形態に係る無方向性電磁鋼板では、これらの元素をそれぞれ0.5%以下の範囲で含有しても、本実施形態に係る無方向性電磁鋼板の特性に特に影響はない。また、CaおよびMgをそれぞれ0.002%以下の範囲で含有しても、本実施形態に係る無方向性電磁鋼板の特性に特に影響はない。希土類元素(REM)を0.004%以下の範囲で含有しても、本実施形態に係る無方向性電磁鋼板の特性に特に影響はない。なお、本実施形態においてREMとは、Sc、Yおよびランタノイドからなる合計17元素を指し、上記REMの含有量とは、これらの元素の合計の含有量を指す。
 Oも不純物元素であるが、0.05%以下の範囲で含有しても、本実施形態に係る無方向性電磁鋼板の特性に影響はない。Oは、焼鈍工程において鋼中に混入することもあるため、スラブ段階(すなわち、レードル値)の含有量においては、0.01%以下の範囲で含有しても、本実施形態に係る無方向性電磁鋼板の特性に特に影響はない。
 また、上記の元素の他に、不純物元素として、Pb、Bi、As、B、Seなどの元素が含まれうるが、それぞれの含有量が0.0050%以下の範囲であれば、本実施形態に係る無方向性電磁鋼板の特性を損なうものではない。
 本実施形態に係る無方向性電磁鋼板の母材の化学組成は、ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry)を用いて測定すればよい。なお、sol.Alは、試料を酸で加熱分解した後の濾液を用いてICP-AESによって測定すればよい。また、CおよびSは燃焼-赤外線吸収法を用い、Nは不活性ガス融解-熱伝導度法を用いて測定すればよい。
 3.結晶粒径
 無方向性電磁鋼板の高強度化の観点からは、鋼中の結晶粒は細粒であることが望ましい。加えて、ヒステリシス損を低減するためには結晶粒は粗大化させることが好ましく、渦電流損を低減するためには結晶粒は微細化させることが好ましい。
 母材の平均結晶粒径が40μm以下では、ヒステリシス損が著しく悪化し、無方向性電磁鋼板の磁気特性を改善することが困難になる。一方、母材の平均結晶粒径が120μmを超えると、鋼の強度が低下するだけでなく、渦電流損の悪化が著しくなり、無方向性電磁鋼板の磁気特性を改善することが困難になる。したがって、母材の平均結晶粒径は、40μm超、120μm以下とする。母材の平均結晶粒径は45μm以上であるのが好ましく、50μm以上であるのがより好ましく、55μm以上であるのがより一層好ましい。また、母材の平均結晶粒径は110μm以下であるのが好ましく、100μm以下であるのがより好ましい。
 本実施形態において、母材の平均結晶粒径は、JIS G 0551(2013)「鋼-結晶粒度の顕微鏡試験方法」に従って求める。具体的には、まず、無方向性電磁鋼板の端部から10mm以上離れた位置から、圧延方向に平行な板厚断面が観察面となるように試験片を採取する。撮影機能を有する光学顕微鏡を用いて、倍率100倍で、腐食液によるエッチングで結晶粒界が明瞭に観察できる観察面を撮影する。得られた観察写真を用いて、JIS G 0551(2013)に記載の切断法により、観察される結晶粒の平均結晶粒径を測定する。切断法では、圧延方向に長さ2mmの直線を板厚方向に等間隔で5本以上引き、合計で10mm以上の直線で捕捉した捕捉結晶粒数と、圧延方向の直線と直交する板厚方向に平行な直線を、圧延方向に等間隔で5本以上引き、合計で(板厚×5)mm以上の直線で補足した補足結晶粒数との2種類の補足結晶粒数を用いて評価する。
 4.磁気特性
 本実施形態に係る無方向性電磁鋼板において、磁気特性に優れるとは、鉄損W10/400が低く、磁束密度B50が高いことを意味する。具体的には、磁気特性に優れるとは、無方向性電磁鋼板の板厚が0.30mm超、0.35mm以下では鉄損W10/400が16.0W/kg以下且つ磁束密度B50が1.60T以上、0.25mm超、0.30mm以下では15.0W/kg以下且つ磁束密度B50が1.60T以上、0.20mm超、0.25mm以下では13.0W/kg以下且つ磁束密度B50が1.60T以上、0.20mm以下では12.0W/kg以下且つ磁束密度B50が1.59T以上の場合をいう。ここで、本実施形態では、上記の磁気特性(鉄損W10/400および磁束密度B50)は、JIS C 2550-1(2011)に規定されたエプスタイン試験に則して、測定する。なお、鉄損W10/400は、最大磁束密度が1.0Tで周波数400Hzという条件下で発生する鉄損を意味し、磁束密度B50は、5000A/mの磁場における磁束密度を意味する。
 5.機械的特性
 本実施形態に係る無方向性電磁鋼板において、高い強度を有するとは、引張(最大)強さが600MPa以上であることを意味する。本実施形態に係る無方向性電磁鋼板は、引張強さが600MPa以上である。引張強さは610MPa以上であるのが好ましい。また、引張強さの上限は、特に制限されないが、710MPa未満であればよい。ここで、引張強さは、JIS Z 2241(2011)に準拠した引張試験を行うことで、測定する。
 6.絶縁被膜
 本実施形態に係る無方向性電磁鋼板においては、母材の表面に絶縁被膜を有することが好ましい。無方向性電磁鋼板は、コアブランクを打ち抜いた後に積層されてから使用されるため、母材の表面に絶縁被膜を設けることで、板間の渦電流を低減することができ、コアとして渦電流損を低減することが可能となる。
 本実施形態では、絶縁被膜の種類については特に限定されず、無方向性電磁鋼板の絶縁被膜として用いられる公知の絶縁被膜を用いることが可能である。このような絶縁被膜として、例えば、無機物を主体とし、さらに有機物を含んだ複合絶縁被膜を挙げることができる。ここで、複合絶縁被膜とは、例えば、クロム酸金属塩、リン酸金属塩等の金属塩、または、コロイダルシリカ、Zr化合物、Ti化合物等の無機物の少なくともいずれか一方を主体とし、微細な有機樹脂の粒子が分散している絶縁被膜である。特に、近年ニーズの高まっている製造時の環境負荷低減の観点からは、リン酸金属塩、ZrもしくはTiのカップリング剤を出発物質として用いた絶縁被膜、または、リン酸金属塩、ZrもしくはTiのカップリング剤の炭酸塩もしくはアンモニウム塩を出発物質として用いた絶縁被膜が好ましく用いられる。
 絶縁被膜の付着量は、特に限定するものではないが、例えば、片面あたり200~1500mg/m程度とすることが好ましく、片面あたり300~1200mg/mとすることがより好ましい。上記範囲内の付着量となるように絶縁被膜を形成することで、優れた均一性を保持することが可能となる。なお、絶縁被膜の付着量を、事後的に測定する場合には、公知の各種測定法を利用することが可能であり、例えば、水酸化ナトリウム水溶液浸漬前後の質量差を測定する方法、または検量線法を用いた蛍光X線法等を適宜利用すればよい。
 7.弾性率規定
 本実施形態では、圧延方法に平行な弾性率を175000MPa以上としてもよい。圧延方法に平行な弾性率を175000MPa以上とすることで、無方向性電磁鋼板の剛性を高めることができ、モータコアの打ち抜き作業性を高めることができる。
 上記のような弾性率とすることについて、その技術思想を以下に説明する。
 本実施形態では、高強度化のために鋼成分中のSi含有量を高めている。Si含有量を高めると、加工性が低下する。そのため、熱延板焼鈍を低い温度で行う必要がある。この熱延板焼鈍の低温度化に伴って、最終製品の集合組織中の(111)方位粒が増加する。その結果、最終製品の弾性率が高くなる。
 また、本実施形態では、最終製品の結晶粒径を粗大にするために、仕上げ焼鈍を高い温度で行う必要がある。最終製品の結晶粒径を粗大にすることで、ヒステリシス損が低減するが、一方、渦電流損が増大する。ただ、本実施形態では、化学組成中のSi含有量を高めたことに起因して渦電流損が低減するので、結晶粒径に起因する渦電流損の増大を許容できる。同様に、最終製品の結晶粒径を粗大にすることで、ヒステリシス損が低減するが、一方、強度が低下する。ただ、本実施形態では、化学組成中のSi含有量を高めたことに起因して強度が向上するので、結晶粒径が粗大化しても強度の低下を許容できる。しかし、最終製品の結晶粒径が100μmを超えるような粗大粒になると、熱延板焼鈍温度が低い場合でも(111)方位粒が減少して、弾性率が低下する。
 上記の結果、機械的特性と鉄損特性と弾性率とをバランスさせた無方向性電磁鋼板を製造できる。
 以下に、弾性率の測定方法について説明する。
 JIS Z 2241(2011)に従い、長手方向が無方向性電磁鋼板の圧延方向と平行になるようにJIS5号引張試験片を採取する。試験片の平行部の長手方向中央かつ幅方向の中央に歪ゲージを貼る。上記試験片を用いてJIS Z 2241(2011)に準拠して引張試験を行い、弾性範囲内の応力-歪曲線の傾きから、弾性率を求める。測定精度の観点から、試験片の表裏面の両面に歪ゲージを貼り、二つの応力-歪曲線を得て、それぞれの応力-歪曲線から得られた弾性率の平均値を算出することで、弾性率を得る。
 8.製造方法
 本実施形態に係る無方向性電磁鋼板の製造方法については特に制限されるものではないが、例えば、上述した化学組成を有する鋼塊に対して、熱間圧延工程、熱延板焼鈍工程、酸洗工程、冷間圧延工程および仕上げ焼鈍工程を順に実施することによって製造することが可能である。また、絶縁被膜を母材の表面に形成する場合には、上記仕上げ焼鈍工程の後に絶縁被膜形成工程が行われる。以下、各工程について、詳細に説明する。
 <熱間圧延工程>
 上記の化学組成を有する鋼塊(スラブ)を加熱し、加熱された鋼塊に対して熱間圧延を行い、熱延鋼板を得る。ここで、熱間圧延に供する際の鋼塊の加熱温度については、特に規定するものではないが、例えば、1050~1250℃とすることが好ましい。また、熱間圧延後の熱延鋼板の板厚についても、特に規定するものではないが、母材の最終板厚を考慮して、例えば、1.5~3.0mm程度とすることが好ましい。
 <熱延板焼鈍工程>
 熱間圧延の後、無方向性電磁鋼板の磁束密度を上昇させることを目的として、熱延板焼鈍を実施する。熱延板焼鈍における熱処理条件については、例えば、連続焼鈍の場合には、熱延鋼板に対して、700~1000℃で10~150s間保持する焼鈍を行うことが好ましく、800~980℃で10~150sとすることがより好ましい。特に、弾性率を好ましい値に制御するためには、熱延板焼鈍の均熱温度が800~970℃であり、均熱時間が10~150sであることが好ましい。また、熱延板焼鈍の均熱温度が800℃以上950℃未満で均熱時間が10~150sであることがより好ましい。
 箱焼鈍の場合には、熱延鋼板に対して600~900℃で30min~24h保持することが好ましい。より好ましくは、650~850℃で1h~20hの均熱である。なお、熱延板焼鈍工程を実施した場合と比較して磁気特性は劣ることとなるが、コスト削減のために、上記の熱延板焼鈍工程を省略してもよい。
 <酸洗工程>
 上記熱延板焼鈍の後には、酸洗が実施され、母材の表面に生成したスケール層が除去される。ここで、酸洗に用いられる酸の濃度、酸洗に用いる促進剤の濃度、酸洗液の温度等の酸洗条件は、特に限定されるものではなく、公知の酸洗条件とすることができる。なお、熱延板焼鈍が箱焼鈍である場合、脱スケール性の観点から、酸洗工程は、熱延板焼鈍前に実施することが好ましい。この場合、熱延板焼鈍後に酸洗を実施する必要はない。
 <冷間圧延工程>
 上記酸洗の後(熱延板焼鈍が箱焼鈍で実施される場合は、熱延板焼鈍工程の後になる場合もある。)には、冷間圧延が実施される。冷間圧延では、母材の最終板厚が0.10~0.35mmとなるような圧下率で、スケール層の除去された酸洗板が圧延される。
 <仕上げ焼鈍工程>
 上記冷間圧延の後には、仕上げ焼鈍が実施される。本実施形態に係る無方向性電磁鋼板の製造方法では、仕上げ焼鈍には、連続焼鈍炉を使用する。仕上げ焼鈍工程は、母材の平均結晶粒径を制御するために、重要な工程である。
 ここで、仕上げ焼鈍条件は、均熱温度を900~1030℃とし、均熱時間を1~300sとし、Hの割合が10~100体積%である、HおよびNの混合雰囲気(すなわち、H+N=100体積%)とし、雰囲気の露点を30℃以下とすることが好ましい。特に、弾性率を好ましい値に制御するためには、仕上げ焼鈍の均熱温度が900~1000℃であり、均熱時間が1~300sであることが好ましい。
 均熱温度が900℃未満の場合には、結晶粒径が細かくなり、無方向性電磁鋼板の鉄損が劣化するため好ましくない。均熱温度が1030℃を超える場合には、無方向性電磁鋼板において強度不足となり、鉄損が劣化し、弾性率も低下するため、好ましくない。均熱温度は、より好ましくは900~1000℃であり、より一層好ましくは920~980℃である。均熱時間が1s未満であると、十分に結晶粒を粗大化することができない。均熱時間が300s超であると、製造コストの増加を引き起こす。雰囲気中のHの割合は、より好ましくは15~90体積%である。雰囲気の露点は、より好ましくは10℃以下であり、さらに好ましくは0℃以下である。
 <絶縁被膜形成工程>
 上記仕上げ焼鈍の後には、必要に応じて、絶縁被膜形成工程が実施される。ここで、絶縁被膜の形成方法は、特に限定されるものではなく、下記に示す公知の絶縁被膜を形成する処理液を用いて、公知の方法により処理液の塗布および乾燥を行えばよい。公知の絶縁被膜として、例えば、無機物を主体とし、さらに有機物を含んだ複合絶縁被膜を挙げることができる。複合絶縁被膜とは、例えば、クロム酸金属塩、リン酸金属塩等の金属塩、または、コロイダルシリカ、Zr化合物、Ti化合物等の無機物の少なくともいずれか一方を主体とし、微細な有機樹脂の粒子が分散している絶縁被膜である。特に、近年ニーズの高まっている製造時の環境負荷低減の観点からは、リン酸金属塩、ZrもしくはTiのカップリング剤を出発物質として用いた絶縁被膜、または、リン酸金属塩、ZrもしくはTiのカップリング剤の炭酸塩あるいはアンモニウム塩を出発物質として用いた絶縁被膜が好ましく用いられる。
 絶縁被膜が形成される母材の表面は、処理液を塗布する前に、アルカリなどによる脱脂処理、または塩酸、硫酸、リン酸などによる酸洗処理など、任意の前処理を施してもよい。これらの前処理を施さずに仕上げ焼鈍後のまま、母材の表面に処理液を塗布してもよい。
 以下、実施例によって本発明をより具体的に説明するが、実施例での条件は本発明の実施可能性及び効果を確認するために採用した例に過ぎず、本発明はこの条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
[実施例1]
 表1に示す成分組成のスラブを1150℃に加熱した後、仕上温度850℃、仕上板厚2.0mmにて熱間圧延を施し、650℃で巻取って熱延鋼板とした。得られた熱延鋼板に対して、970℃×50sの熱延板焼鈍を施し、酸洗により表面のスケールを除去した。こうして得られた酸洗板を、冷間圧延により板厚0.25mmの冷延鋼板とした。
 さらに、H:20%、N:80%、露点0℃の混合雰囲気にて、以下の表2に示すような平均結晶粒径となるように、焼鈍温度:900~1050℃および均熱時間:1~300sの範囲内で、仕上げ焼鈍条件を変えて焼鈍した。具体的には、平均結晶粒径が大きくなるように制御する場合には、仕上げ焼鈍温度をより高く、および/または、均熱時間をより長くした。また、平均結晶粒径が小さくなるように制御する場合は、その逆とした。その後、絶縁被膜を塗布して、無方向性電磁鋼板を製造し試験材とした。
 また、上記の絶縁被膜は、リン酸アルミニウムおよび粒径0.2μmのアクリル-スチレン共重合体樹脂エマルジョンからなる絶縁被膜を所定付着量となるよう塗布し、大気中、350℃で焼付けることで形成した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 得られた各試験材について、JIS G 0551(2013)「鋼-結晶粒度の顕微鏡試験方法」に従って、母材の平均結晶粒径を計測した。また、各試験材の圧延方向および幅方向からエプスタイン試験片を採取し、JIS C 2550-1(2011)に則したエプスタイン試験により、磁気特性(鉄損W10/400、磁束密度B50)を評価した。鉄損W10/400が13.0W/kg以下且つ磁束密度B50が1.60T以上の場合を、磁気特性に優れるとして合格と判定した。この条件を満たさない場合、磁気特性に劣るとして不合格と判定した。なお、この合格条件としたのは、各試験材の板厚が0.20mm超、0.25mm以下であったためである。
 さらに、各試験材から、JIS Z 2241(2011)に従い、長手方向が鋼板の圧延方向と一致するようにJIS5号引張試験片を採取した。そして、上記試験片を用いてJIS Z 2241(2011)に従い引張試験を行い、引張強さを測定した。引張強さが600MPa以上の場合を、高い強度を有するとして合格と判定した。引張強さが600MPa未満の場合を、強度に劣るとして不合格と判定した。
 上記の結果を表2に併せて示す。
 鋼板の化学組成および仕上げ焼鈍後の平均結晶粒径が本発明の規定を満足する試験No.3、5、6、9、10、14、15、17、18、22~24および26~28では、鉄損が低く、磁束密度が高く、かつ、600MPa以上の高い引張強さを有していることが分かった。
 それらに対して、比較例である試験No.1、2、4、7、8、11~13、16、19~21および25では、磁気特性および引張強さの少なくともいずれか一方が劣るか、靱性が著しく劣化し製造が困難となった。
 具体的には、試験No.1では、Si含有量が規定範囲より低いため、引張強さが劣る結果となった。また、化学組成が規定を満足する試験No.2~4を比較すると、試験No.2では、平均結晶粒径が規定範囲より小さいため鉄損が劣っており、試験No.4では、平均結晶粒径が規定範囲より大きいため引張強さが劣る結果となった。
 また、試験No.7では、Si含有量が規定範囲を超え、試験No.12では、P含有量が規定範囲を超えたため、靱性が劣化して冷間圧延時に破断し、平均結晶粒径、引張強さおよび磁気特性の測定を実施できなかった。試験No.8では、(i)式を満足しないため、鉄損および引張強さが劣る結果となった。さらに、試験No.11では、Mn含有量が規定範囲を超えたため、磁束密度が劣る結果となった。
 試験No.13では、S含有量が規定範囲を超えたため、鉄損が劣る結果となった。化学組成が規定を満足する試験No.16~19を比較すると、試験No.16では、平均結晶粒径が規定範囲より小さいため鉄損が劣っており、試験No.19では、平均結晶粒径が規定範囲より大きいため引張強さが劣る結果となった。
 また、試験No.20では、sol.Al含有量が規定範囲を超えたため、sol.Al以外は化学組成と平均結晶粒径がほぼ同じである試験No.15に比べて、磁気特性が劣る結果となった。
 そして、化学組成が規定を満足する試験No.21~25を比較すると、試験No.21では、平均結晶粒径が規定範囲より小さいため鉄損が劣っており、試験No.25では、平均結晶粒径が規定範囲より大きいため引張強さが劣る結果となった。
[実施例2]
 表3に示す成分組成のスラブを1150℃に加熱した後、仕上温度850℃、仕上板厚2.0mmにて熱間圧延を施し、650℃で巻取って熱延鋼板とした。得られた熱延鋼板に対して、表4に示す熱延板焼鈍温度で40s均熱する熱延板焼鈍を施し、酸洗により表面のスケールを除去した。こうして得られた酸洗板を、冷間圧延により板厚0.25mmの冷延鋼板とした。
 さらに、H:15%、N:85%、露点-10℃の混合雰囲気にて、表4に示す温度で15s均熱の仕上げ焼鈍を施し、表4に示す平均結晶粒径の仕上げ焼鈍板とした。その後、絶縁被膜を塗布して、無方向性電磁鋼板を製造し試験材とした。
 また、上記の絶縁被膜は、リン酸アルミニウムおよび粒径0.2μmのアクリル-スチレン共重合体樹脂エマルジョンからなる絶縁被膜を所定付着量となるよう塗布し、大気中、350℃で焼付けることで形成した。
 得られた各試験材について、実施例1と同様の方法により、母材の平均結晶粒径、磁気特性(鉄損W10/400、磁束密度B50)、引張強さおよび圧延方向に平行な弾性率を測定した。圧延方向に平行な弾性率は、JIS5号引張試験片の両面に歪ゲージを張り付けて、引張強さの測定と同様の方法で引張試験を行って測定した。弾性範囲内の応力-歪曲線の傾きから、弾性率を求めた。なお、試験片の両面に張り付けた歪みゲージから二つの応力-歪曲線を得て、それぞれの応力-歪曲線から得られた弾性率の平均値を算出することで、弾性率を得た。圧延方法に平行な弾性率が175000MPa以上を、弾性率に優れると判断した。
 他の合格基準については実施例1と同様とした。結果を表4に併せて示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 本発明の規定を満足する鋼板の化学組成および仕上げ焼鈍後の平均結晶粒径で、かつ熱延板焼鈍の温度と仕上げ焼鈍の温度を適切に調整した試験No.1、2および5では、鉄損および磁束密度に優れ、特に鉄損が低く、かつ、600MPa以上の高い引張強さを有し、さらに圧延方向に平行な弾性率が175000MPa以上となっていることが分かった。
 それらに対して、比較例である試験No.4および6~9では、磁気特性、引張強さおよび弾性率のいずれかが劣っていた。
 化学組成および平均結晶粒径が規定を満足する試験No.1~3において、試験No.3は熱延板焼鈍温度が高いため、本発明例の中でも弾性率が劣る結果となった。また、化学組成が規定を満足する試験No.4~6を比較すると、試験No.4では、平均結晶粒径が規定範囲より小さいため鉄損が劣っており、試験No.6では、焼鈍温度が高すぎて、平均結晶粒径が規定範囲より大きくなり、引張強度および磁束密度、弾性率が劣る結果となった。(i)式を満足しない試験No.7~8において、試験No.7は鉄損が劣っており、試験No.8は引張強さが劣っており、試験No.9は鉄損および引張強さが劣っている。
 以上のように、本発明によれば、高い強度および優れた磁気特性を有する無方向性電磁鋼板を得ることができる。

Claims (5)

  1.  母材の化学組成が、質量%で、
     C:0.0050%以下、
     Si:3.5~5.0%、
     Mn:0.2%を超えて2.0%未満、
     P:0.030%以下、
     S:0.0050%以下、
     sol.Al:0.0030%以下、
     N:0.0030%以下、
     Ti:0.0050%未満、
     Nb:0.0050%未満、
     Zr:0.0050%未満、
     V:0.0050%未満、
     Cu:0.200%未満、
     Ni:0.500%未満、
     Sn:0~0.100%、
     Sb:0~0.100%、および
     残部:Feおよび不純物であり、
     下記(i)式を満足し、
     前記母材の平均結晶粒径が、40μmを超えて120μm以下である、
     無方向性電磁鋼板。
     Si+0.5×Mn≧4.3   ・・・(i)
     但し、上記式中の元素記号は、各元素の質量%での含有量である。
  2.  圧延方向に平行な弾性率が175000MPa以上である、
     請求項1に記載の無方向性電磁鋼板。
  3.  引張強さが600MPa以上である、
     請求項1または2に記載の無方向性電磁鋼板。
  4.  前記化学組成が、質量%で、
     Sn:0.005~0.100%、および、
     Sb:0.005~0.100%、
     から選択される1種または2種を含有する、
     請求項1~3のいずれか一項に記載の無方向性電磁鋼板。
  5.  前記母材の表面に絶縁被膜を有する、
     請求項1~4のいずれか一項に記載の無方向性電磁鋼板。
PCT/JP2019/043039 2018-11-02 2019-11-01 無方向性電磁鋼板 WO2020091043A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
BR112020026876-3A BR112020026876A2 (pt) 2018-11-02 2019-11-01 chapa de aço elétrico não orientado
JP2020554982A JP7143901B2 (ja) 2018-11-02 2019-11-01 無方向性電磁鋼板
US17/264,207 US11866797B2 (en) 2018-11-02 2019-11-01 Non-oriented electrical steel sheet
EP19879514.8A EP3875612A4 (en) 2018-11-02 2019-11-01 NON-ORIENTED ELECTROMAGNETIC STEEL
KR1020237011113A KR102656381B1 (ko) 2018-11-02 2019-11-01 무방향성 전자기 강판
KR1020217002558A KR20210024613A (ko) 2018-11-02 2019-11-01 무방향성 전자기 강판
CN201980050379.8A CN112513299A (zh) 2018-11-02 2019-11-01 无取向电磁钢板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-206969 2018-11-02
JP2018206969 2018-11-02

Publications (1)

Publication Number Publication Date
WO2020091043A1 true WO2020091043A1 (ja) 2020-05-07

Family

ID=70463274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/043039 WO2020091043A1 (ja) 2018-11-02 2019-11-01 無方向性電磁鋼板

Country Status (8)

Country Link
US (1) US11866797B2 (ja)
EP (1) EP3875612A4 (ja)
JP (1) JP7143901B2 (ja)
KR (2) KR102656381B1 (ja)
CN (1) CN112513299A (ja)
BR (1) BR112020026876A2 (ja)
TW (1) TWI722636B (ja)
WO (1) WO2020091043A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112023014920A2 (pt) * 2021-04-02 2023-10-31 Nippon Steel Corp Chapa de aço elétrico não orientado
WO2022211016A1 (ja) * 2021-04-02 2022-10-06 日本製鉄株式会社 無方向性電磁鋼板
JP7164071B1 (ja) * 2021-04-02 2022-11-01 日本製鉄株式会社 無方向性電磁鋼板

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004300535A (ja) 2003-03-31 2004-10-28 Jfe Steel Kk 磁気特性の優れた高強度無方向性電磁鋼板およびその製造方法
JP2007186791A (ja) 2005-12-15 2007-07-26 Jfe Steel Kk 高強度無方向性電磁鋼板およびその製造方法
JP2012140676A (ja) 2010-12-28 2012-07-26 Jfe Steel Corp 無方向性電磁鋼板およびその製造方法
JP2014040622A (ja) * 2012-08-21 2014-03-06 Jfe Steel Corp 打抜加工による鉄損劣化の小さい無方向性電磁鋼板
WO2017022360A1 (ja) * 2015-08-04 2017-02-09 Jfeスチール株式会社 磁気特性に優れる無方向性電磁鋼板の製造方法
WO2018025941A1 (ja) * 2016-08-05 2018-02-08 新日鐵住金株式会社 無方向性電磁鋼板、無方向性電磁鋼板の製造方法及びモータコアの製造方法
WO2018097006A1 (ja) * 2016-11-25 2018-05-31 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法
WO2018131710A1 (ja) * 2017-01-16 2018-07-19 新日鐵住金株式会社 無方向性電磁鋼板及び無方向性電磁鋼板の製造方法
JP2018206969A (ja) 2017-06-05 2018-12-27 株式会社ディスコ チップの製造方法
WO2019017426A1 (ja) * 2017-07-19 2019-01-24 新日鐵住金株式会社 無方向性電磁鋼板

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6436199B1 (en) * 1999-09-03 2002-08-20 Kawasaki Steel Corporation Non-oriented magnetic steel sheet having low iron loss and high magnetic flux density and manufacturing method therefor
JP2001279327A (ja) 2000-03-28 2001-10-10 Kawasaki Steel Corp 高周波用の無方向性電磁鋼板の製造方法
JP4269139B2 (ja) 2002-09-04 2009-05-27 住友金属工業株式会社 加工性と高周波磁気特性にすぐれた軟磁性鋼板およびその製造方法
EP1580289B1 (en) 2002-12-05 2015-02-11 JFE Steel Corporation Non-oriented magnetic steel sheet and method for production thereof
JP5699642B2 (ja) * 2010-04-30 2015-04-15 Jfeスチール株式会社 モータコア
US9579701B2 (en) * 2010-08-04 2017-02-28 Nippon Steel & Sumitomo Metal Corporation Manufacturing method of non-oriented electrical steel sheet
JP5273235B2 (ja) * 2011-11-29 2013-08-28 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
WO2013125223A1 (ja) * 2012-02-23 2013-08-29 Jfeスチール株式会社 電磁鋼板の製造方法
JP6127408B2 (ja) * 2012-08-17 2017-05-17 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
CN103849810A (zh) * 2012-12-03 2014-06-11 宝山钢铁股份有限公司 无取向硅钢及其制造方法
JP2015131993A (ja) * 2014-01-14 2015-07-23 Jfeスチール株式会社 磁気特性に優れる無方向性電磁鋼板
US10541071B2 (en) * 2014-06-26 2020-01-21 Nippon Steel Corporation Electrical steel sheet
MX2017001348A (es) * 2014-07-31 2017-04-27 Jfe Steel Corp Lamina de acero electrico de grano no orientado y metodo para la produccion de la misma, y nucleo de motor y metodo para la produccion del mismo.
JP6724712B2 (ja) 2016-10-18 2020-07-15 日本製鉄株式会社 無方向性電磁鋼板

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004300535A (ja) 2003-03-31 2004-10-28 Jfe Steel Kk 磁気特性の優れた高強度無方向性電磁鋼板およびその製造方法
JP2007186791A (ja) 2005-12-15 2007-07-26 Jfe Steel Kk 高強度無方向性電磁鋼板およびその製造方法
JP2012140676A (ja) 2010-12-28 2012-07-26 Jfe Steel Corp 無方向性電磁鋼板およびその製造方法
JP2014040622A (ja) * 2012-08-21 2014-03-06 Jfe Steel Corp 打抜加工による鉄損劣化の小さい無方向性電磁鋼板
WO2017022360A1 (ja) * 2015-08-04 2017-02-09 Jfeスチール株式会社 磁気特性に優れる無方向性電磁鋼板の製造方法
WO2018025941A1 (ja) * 2016-08-05 2018-02-08 新日鐵住金株式会社 無方向性電磁鋼板、無方向性電磁鋼板の製造方法及びモータコアの製造方法
WO2018097006A1 (ja) * 2016-11-25 2018-05-31 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法
WO2018131710A1 (ja) * 2017-01-16 2018-07-19 新日鐵住金株式会社 無方向性電磁鋼板及び無方向性電磁鋼板の製造方法
JP2018206969A (ja) 2017-06-05 2018-12-27 株式会社ディスコ チップの製造方法
WO2019017426A1 (ja) * 2017-07-19 2019-01-24 新日鐵住金株式会社 無方向性電磁鋼板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3875612A4

Also Published As

Publication number Publication date
TWI722636B (zh) 2021-03-21
CN112513299A (zh) 2021-03-16
KR20230051302A (ko) 2023-04-17
BR112020026876A2 (pt) 2021-07-27
US11866797B2 (en) 2024-01-09
KR102656381B1 (ko) 2024-04-12
KR20210024613A (ko) 2021-03-05
TW202026438A (zh) 2020-07-16
EP3875612A1 (en) 2021-09-08
JP7143901B2 (ja) 2022-09-29
EP3875612A4 (en) 2022-07-06
US20210301363A1 (en) 2021-09-30
JPWO2020091043A1 (ja) 2021-09-02

Similar Documents

Publication Publication Date Title
WO2019017426A1 (ja) 無方向性電磁鋼板
JP7143900B2 (ja) 無方向性電磁鋼板
KR102656381B1 (ko) 무방향성 전자기 강판
WO2022211004A1 (ja) 無方向性電磁鋼板およびその製造方法
JP7469694B2 (ja) 無方向性電磁鋼板およびその製造方法
JP7001210B1 (ja) 無方向性電磁鋼板およびその製造方法
JP7328597B2 (ja) 無方向性電磁鋼板およびその製造方法
WO2022176933A1 (ja) 無方向性電磁鋼板およびその製造方法
WO2023176866A1 (ja) 無方向性電磁鋼板およびその製造方法
TW202138581A (zh) 無方向性電磁鋼板及其製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19879514

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020554982

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020026876

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20217002558

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019879514

Country of ref document: EP

Effective date: 20210602

ENP Entry into the national phase

Ref document number: 112020026876

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20201229