WO2015037337A1 - 光ファイバ装置 - Google Patents

光ファイバ装置 Download PDF

Info

Publication number
WO2015037337A1
WO2015037337A1 PCT/JP2014/069575 JP2014069575W WO2015037337A1 WO 2015037337 A1 WO2015037337 A1 WO 2015037337A1 JP 2014069575 W JP2014069575 W JP 2014069575W WO 2015037337 A1 WO2015037337 A1 WO 2015037337A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
core
width dimension
incident
laser light
Prior art date
Application number
PCT/JP2014/069575
Other languages
English (en)
French (fr)
Inventor
悟司 村上
福田 悟
Original Assignee
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウシオ電機株式会社 filed Critical ウシオ電機株式会社
Priority to CN201480050207.8A priority Critical patent/CN105793751B/zh
Priority to US14/917,425 priority patent/US20160223767A1/en
Publication of WO2015037337A1 publication Critical patent/WO2015037337A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4292Coupling light guides with opto-electronic elements the light guide being disconnectable from the opto-electronic element, e.g. mutually self aligning arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4206Optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4236Fixing or mounting methods of the aligned elements
    • G02B6/424Mounting of the optical light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/43Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4012Beam combining, e.g. by the use of fibres, gratings, polarisers, prisms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres

Definitions

  • the present invention relates to an optical fiber device including an optical fiber portion having a core for transmitting laser light at a central portion.
  • an optical fiber device an optical fiber provided with an optical fiber portion having a core for transmitting laser light at its central portion, and a laser light path portion formed in a hollow shape so that laser light incident on the core passes through the inside.
  • An apparatus is known (for example, Patent Document 1).
  • the laser light path portion includes a diaphragm portion, laser light that does not enter the core is blocked by the diaphragm portion.
  • the clad formed of resin or the like may be burned by the incidence of laser light on the clad outside the core.
  • the entrance surface of the core may be damaged due to the diaphragm portion or the like coming into contact with the entrance surface of the core.
  • an object of the present invention is to provide an optical fiber device capable of efficiently injecting laser light into a core.
  • An optical fiber device includes: an optical fiber portion having a core for transmitting laser light at a central portion; and a fiber connection portion that connects an end portion on the incident side of the optical fiber portion, and the fiber connection portion.
  • the inner width dimension is formed larger than the outer width dimension of the core so as to be in contact with the outer side portion of the aperture portion and the outer end portion of the core on the incident side end face of the optical fiber portion.
  • the fiber connection portion connects the end portion on the incident side of the optical fiber portion, and the laser light passes through the inside of the laser light path portion formed in a hollow shape, The light is incident on the core at the center of the fiber portion and transmitted by the core.
  • the diaphragm portion is provided in the laser beam path portion, and the inner width dimension of the diaphragm portion is smaller than the outer width dimension of the core, so that the laser beam can be prevented from entering the outer portion than the core. it can.
  • the inner width dimension of the abutting portion arranged at the downstream end of the laser optical path portion is formed larger than the outer width dimension of the core, it is larger than the core at the incident side end face of the optical fiber portion. Abuts the outer part.
  • the optical fiber portion can be easily positioned with respect to the fiber connecting portion by abutting the end surface on the incident side of the optical fiber portion with the abutting portion, and the inner width dimension is smaller than the outer width dimension of the core. Even if a certain diaphragm portion exists, it is possible to prevent the incident surface of the core from being damaged. Thus, the laser beam can be efficiently incident on the core.
  • the optical fiber device further includes an optical system that focuses and emits incident laser light toward the laser optical path, and the outer width of the core is W1,
  • the inner width dimension of the part is W2
  • the separation distance between the end face on the incident side of the optical fiber part and the diaphragm part is W3
  • the aperture angle of the optical system is ⁇ 1, W1 ⁇ W2 + 2W3 ⁇ tan ( ⁇ 1 / 2) It may be configured to satisfy.
  • the optical system condenses and emits the incident laser light so that the aperture angle becomes ⁇ 1.
  • the laser light emitted from the optical system is incident on the core of the optical fiber portion through the aperture portion.
  • all of the laser light that has passed through the aperture part is incident on the core of the optical fiber part. Therefore, the laser beam can be incident on the core more efficiently.
  • the outer width dimension of the core is W1
  • the inner width dimension of the aperture portion is W2
  • the end surface on the incident side of the optical fiber portion and the aperture portion When the separation distance is W3 and the angle of the apex of the maximum conical laser beam incident on the core is ⁇ 2, W1 ⁇ W2 + 2W3 ⁇ tan ( ⁇ 2 / 2) It may be configured to satisfy.
  • the laser beam incident on the core uses an optical system having an aperture angle of ⁇ 2 or less. And condensed.
  • the condensed laser light is incident on the core of the optical fiber portion through the aperture portion.
  • all of the laser light that has passed through the aperture part is incident on the core of the optical fiber part. Therefore, the laser beam can be incident on the core more efficiently.
  • the optical fiber device according to the present invention has an excellent effect that laser light can be efficiently incident on the core.
  • FIG. 1 is an overall schematic diagram of an optical fiber device according to an embodiment of the present invention. It is principal part sectional drawing of the optical fiber apparatus which concerns on the same embodiment. It is a principal part enlarged view in FIG. 2 of the optical fiber apparatus which concerns on the embodiment. It is a figure explaining the size of the optical fiber device concerning the embodiment. It is a figure explaining the effect
  • an optical fiber device 1 includes an optical fiber portion 2 that transmits laser light.
  • the optical fiber device 1 also includes a light source device 3 that emits laser light toward the optical fiber portion 2.
  • the optical fiber unit 2 includes an optical fiber 21 that transmits laser light, and a ferrule 22 that holds the optical fiber 21 inside and holds it.
  • the optical fiber 21 includes a core 21a that is disposed at the center and transmits laser light, and a clad 21b that is disposed outside the core 21a and has a lower refractive index than the core 21a.
  • the core 21a is formed so that the cross-sectional shape is a circular shape, specifically, a perfect circular shape.
  • the clad 21b is formed outside the core 21a so as to have the same thickness dimension. Therefore, the optical fiber 21 is formed so that the cross-sectional shape is a circular shape, specifically, a perfect circular shape.
  • the clad 21b is formed of resin, but is not limited to such a configuration, and may be formed of, for example, quartz glass.
  • the light source device 3 includes a light source unit 4 that emits laser light, and an optical system 5 on which the laser light emitted from the light source unit 4 is incident.
  • the light source device 3 includes a housing 6 that houses the light source unit 4 and the optical system 5, and a fiber connection unit 7 that is fixed to the housing 6 and connects the optical fiber unit 2.
  • the light source unit 4 includes a plurality of semiconductor lasers 41 that emit and emit laser light. Further, the light source unit 4 includes a plurality of reflection mirrors 42 that reflect the laser light emitted from each semiconductor laser 41 toward the optical system 5. The light source unit 4 is configured so that the optical axes of the respective lights emitted from the plurality of semiconductor lasers 41 are parallel to each other when entering the optical system 5. In addition, although the semiconductor laser 41 and the reflective mirror 42 are each provided 6 each in FIG. 1, it is not restricted to such quantity.
  • the optical system 5 includes a pair of lenses 51 and 52 that collect and emit incident laser light.
  • the optical system 5 condenses and emits the incident laser light toward the fiber connection portion 7 and the optical fiber portion 2.
  • the optical system 5 includes two lenses 51 and 52, but the number is not limited thereto.
  • the first lens 51 receives the laser light emitted from the light source unit 4 and condenses and emits the incident laser light toward the second lens 52.
  • the second lens 52 receives the laser light emitted from the first lens 51, collects the incident laser light toward the fiber connection portion 7 and the optical fiber portion 2, and emits the condensed laser light.
  • the fiber connection portion 7 includes a cylindrical fiber insertion portion 71 into which an incident-side end portion of the optical fiber portion 2 is inserted in order to detachably connect the optical fiber portion 2. And a fixing mechanism 72 for fixing the optical fiber portion 2 to the fiber insertion portion 71. Further, the fiber connection portion 7 includes a laser light path portion 73 formed in a hollow shape so that the laser light incident on the core 21a of the optical fiber portion 2 passes inside. The fiber insertion portion 71 and the laser optical path portion 73 are in communication with each other, and the fiber connection portion 7 is formed in a cylindrical shape as a whole.
  • the fixing mechanism 72 is a screw member 72 that is screwed into a screw hole 71a provided in the fiber insertion portion 71. Then, when the screw member 72 presses the optical fiber portion 2, the optical fiber portion 2 is attached to the fiber connection portion 7, while the screw member 72 releases the pressure on the optical fiber portion 2, thereby 2 is removed from the fiber connection 7.
  • the laser optical path portion 73 is disposed on the downstream side of the optical path portion main body 73a with the optical path portion main body 73a formed so that the internal opening gradually decreases from the upstream side toward the downstream side, and the inner width dimension is the smallest. And a narrowed portion 73b formed in such a manner. Further, the laser optical path portion 73 includes a contact portion 73c that contacts the end surface on the incident side of the optical fiber portion 2 at the downstream end portion.
  • the inner width dimension (inner diameter) of the throttle portion 73b is smaller than the outer width dimension (outer diameter) of the core 21a.
  • the inner width dimension (inner diameter) of the contact part 73c is larger than the outer width dimension (outer diameter) of the core 21a.
  • the abutting portion 73c abuts on the outer side of the core 21a on the incident side end face of the optical fiber portion 2, that is, the clad 21b and the ferrule 22 (in this embodiment, only the ferrule 22).
  • the relationship between W3 and the opening angle ⁇ 1 of the optical system 5 will be described.
  • the opening angle of the optical system 5 (the angle at which the object point on the optical axis allows the diameter of the entrance pupil) ⁇ 1 is the lens (second lens) 52 arranged on the most downstream side of the optical system 5. Is the angle at which the laser beam is collected.
  • the outer width dimension W1 of the core 21a, the inner width dimension W2 of the aperture portion 73b, the separation distance W3 between the incident side end face of the fiber portion 7 and the aperture portion 73b, and the maximum conical laser incident into the core 21a The relationship with the light vertex angle ⁇ 2 will be described.
  • the opening angle ⁇ 1 of the optical system 5 is set to be equal to or smaller than the angle ⁇ 2.
  • the angle ⁇ 2 and the opening angle ⁇ 1 of the optical system 5 are set to be the same.
  • the fiber connection portion 7 connects the incident side end portion of the optical fiber portion 2, and the laser light path portion is formed in a hollow shape.
  • the light passes through the core 73, enters the core 21a at the center of the optical fiber portion 2, and is transmitted by the core 21a.
  • the laser beam path 73 is provided with a diaphragm 73b. Since the inner width of the diaphragm 73b is smaller than the outer width of the core 21a, the laser light is incident on the outer portion of the core 21a. Can be suppressed. Therefore, it is possible to prevent the clad 21b made of resin from being burnt by the laser light.
  • the abutting portion 73c is formed on the incident side end face of the optical fiber portion 2. It abuts on the outer portion of the core 21a.
  • the optical fiber part 2 can be easily positioned with respect to the fiber connection part 7 by abutting the incident side end face of the optical fiber part 2 on the abutting part 73c, and is smaller than the outer width dimension of the core 21a.
  • the aperture 73b having the inner width dimension exists, it is possible to prevent the incident surface of the core 21a from being damaged.
  • the laser beam can be efficiently incident on the core 21a.
  • the optical system 5 condenses and emits the incident laser light.
  • the laser light emitted from the optical system 5 passes through the diaphragm 73b and enters the core 21a of the optical fiber unit 2.
  • all of the laser light that has passed through the diaphragm 73 b is incident on the core 21 a of the optical fiber portion 2. Therefore, the laser beam can be incident on the core 21a more efficiently.
  • the angle of the apex of the maximum conical laser beam incident on the core 21a is ⁇ 2, and the laser beam incident on the core 21a has an opening angle of ⁇ 2.
  • the condensed laser light is incident on the core 21a of the optical fiber portion 2 through the aperture portion 73b.
  • the laser light that has passed through the diaphragm 73 b is all incident on the core 21 a of the optical fiber portion 2. Therefore, the laser beam can be incident on the core 21a more efficiently.
  • optical fiber device according to the present invention is not limited to the configuration of the above-described embodiment, and is not limited to the above-described effects.
  • optical fiber device according to the present invention can be variously modified without departing from the gist of the present invention.
  • configurations, methods, and the like according to various modifications described below may be arbitrarily selected and employed in the configurations, methods, and the like according to the above-described embodiments.
  • the optical fiber 21 and the core 21a are configured so that the cross-sectional shape is a perfect circle.
  • the optical fiber device according to the present invention is not limited to such a configuration.
  • the optical fiber 21 and the core 21a may be configured such that the cross-sectional shape is an elliptical shape or a polygonal shape.
  • the optical fiber unit 2 is configured to include the optical fiber 21 and the ferrule 22 that places the optical fiber 21 inside and holds and fixes it.
  • the optical fiber device according to the present invention is not limited to such a configuration.
  • the optical fiber unit 2 may be composed of an optical fiber.
  • an optical fiber strand provided with a primary coating on the outer side of a clad of a bare optical fiber composed of a core and a cladding is adopted, or a secondary coating is further provided on the outer side of the optical fiber strand.
  • An optical fiber core wire provided can be adopted.
  • the opening angle ⁇ 1 of the optical system 5 and the vertex angle ⁇ 2 of the maximum conical laser beam incident on the core 21a are set to be the same. It is a configuration.
  • the optical fiber device according to the present invention is not limited to such a configuration.
  • the opening angle ⁇ 1 of the optical system 5 and the apex angle ⁇ 2 of the maximum conical laser beam incident on the core 21a are set differently. But you can.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)

Abstract

 光ファイバ装置1においては、ファイバ接続部7は、コア21aに入射するレーザ光が内部を通るために、中空状に形成されるレーザ光路部73を備え、レーザ光路部73は、内幅寸法がコア21aの外幅寸法よりも小さく形成される絞り部73bと、下流側の端部に配置され、光ファイバ部2の入射側の端面におけるコア21aよりも外側部分と当接するために、内幅寸法がコア21aの外幅寸法よりも大きく形成される当接部73cと、を備える。

Description

光ファイバ装置
 本発明は、レーザ光を伝送するコアを中心部分に有する光ファイバ部を備える光ファイバ装置に関する。
 従来、光ファイバ装置として、レーザ光を伝送するコアを中心部分に有する光ファイバ部と、コアに入射するレーザ光が内部を通るために、中空状に形成されるレーザ光路部とを備える光ファイバ装置が知られている(例えば、特許文献1)。斯かる光ファイバ装置においては、レーザ光路部が絞り部を備えているため、コアに入射しないレーザ光が絞り部で遮断されている。
 ところで、レーザ光を効率的にコアに入射させるためには、光ファイバ部の入射面と絞り部との位置合わせが必要である。そして、例えば、その位置合わせが不十分である場合には、コアの外側にあるクラッドにレーザ光が入射することで、樹脂等で形成されているクラッドが焦げる場合がある。また、例えば、その位置合わせが行われる際に、コアの入射面に絞り部等が接触することで、コアの入射面が傷つく場合もある。
日本国特開平7-92348号公報
 よって、本発明は、斯かる事情に鑑み、レーザ光を効率的にコアに入射できる光ファイバ装置を提供することを課題とする。
 本発明に係る光ファイバ装置は、レーザ光を伝送するコアを中心部分に有する光ファイバ部と、前記光ファイバ部の入射側の端部を接続するファイバ接続部と、を備え、前記ファイバ接続部は、前記コアに入射するレーザ光が内部を通るために、中空状に形成されるレーザ光路部を備え、前記レーザ光路部は、内幅寸法が前記コアの外幅寸法よりも小さく形成される絞り部と、下流側の端部に配置され、前記光ファイバ部の入射側の端面における前記コアよりも外側部分と当接するために、内幅寸法が前記コアの外幅寸法よりも大きく形成される当接部と、を備える。
 本発明に係る光ファイバ装置によれば、ファイバ接続部は、光ファイバ部の入射側の端部を接続しており、レーザ光は、中空状に形成されるレーザ光路部の内部を通り、光ファイバ部の中心部分に有するコアに入射され、コアにより伝送される。そして、レーザ光路部には、絞り部が設けられており、絞り部の内幅寸法がコアの外幅寸法よりも小さいため、レーザ光がコアよりも外側部分に入射することを抑制することができる。
 しかも、レーザ光路部の下流側の端部に配置される当接部は、内幅寸法がコアの外幅寸法よりも大きく形成されているため、光ファイバ部の入射側の端面におけるコアよりも外側部分と当接する。これにより、当接部に光ファイバ部の入射側の端面を当接することで、ファイバ接続部に対して光ファイバ部を容易に位置決めでき、しかも、コアの外幅寸法よりも小さい内幅寸法である絞り部が存在していても、コアの入射面を傷付けられることが防止できる。このように、レーザ光を効率的にコアに入射することができる。
 また、本発明に係る光ファイバ装置においては、入射されたレーザ光を前記レーザ光路部に向けて集光して出射する光学系をさらに備え、前記コアの外幅寸法がW1であり、前記絞り部の内幅寸法がW2であり、前記光ファイバ部の入射側の端面と前記絞り部との離間距離がW3であり、前記光学系の開口角がθ1であるときに、
 W1≧W2+2W3×tan(θ1/2)
を満たす、という構成でもよい。
 斯かる構成によれば、光学系は、入射されたレーザ光を開口角がθ1となるように集光して出射する。そして、光学系から出射されたレーザ光は、絞り部を通って、光ファイバ部のコアに入射される。このとき、上記関係式を満たすことにより、絞り部を通過したレーザ光は、光ファイバ部のコアに全て入射される。したがって、レーザ光をさらに効率的にコアに入射することができる。
 また、本発明に係る光ファイバ装置においては、前記コアの外幅寸法がW1であり、前記絞り部の内幅寸法がW2であり、前記光ファイバ部の入射側の端面と前記絞り部との離間距離がW3であり、前記コア内へ入射する最大円錐状レーザ光の頂点の角度がθ2であるときに、
 W1≧W2+2W3×tan(θ2/2)
を満たす、という構成でもよい。
 斯かる構成によれば、コア内へ入射する最大円錐状レーザ光の頂点の角度がθ2であるとき、一般的に、コアに入射されるレーザ光は、開口角がθ2以下の光学系を用いて、集光される。そして、集光されたレーザ光は、絞り部を通って、光ファイバ部のコアに入射される。このとき、上記関係式を満たすことにより、絞り部を通過したレーザ光は、光ファイバ部のコアに全て入射される。したがって、レーザ光をさらに効率的にコアに入射することができる。
 以上の如く、本発明に係る光ファイバ装置は、レーザ光を効率的にコアに入射できるという優れた効果を奏する。
本発明の一実施形態に係る光ファイバ装置の全体概要図である。 同実施形態に係る光ファイバ装置の要部断面図である。 同実施形態に係る光ファイバ装置の図2における要部拡大図である。 同実施形態に係る光ファイバ装置のサイズを説明する図である。 同実施形態に係る光ファイバ装置の作用を説明する図である。
 以下、本発明に係る光ファイバ装置における一実施形態について、図1~図5を参酌して説明する。
 図1に示すように、本実施形態に係る光ファイバ装置1は、レーザ光を伝送する光ファイバ部2を備えている。また、光ファイバ装置1は、光ファイバ部2に向けてレーザ光を出射する光源装置3を備えている。
 光ファイバ部2は、図2及び図3に示すように、レーザ光を伝送する光ファイバ21と、光ファイバ21を内部に配置して保持固定するフェルール22とを備えている。光ファイバ21は、中心部分に配置されてレーザ光を伝送するコア21aと、コア21aの外側に配置され、コア21aよりも低い屈折率であるクラッド21bとを備えている。
 コア21aは、断面形状が円形状、具体的には、真円形状となるように、形成されている。また、クラッド21bは、コア21aの外側に同じ厚み寸法となるように形成されている。したがって、光ファイバ21は、断面形状が円形状、具体的には、真円形状となるように、形成されている。本実施形態においては、クラッド21bは、樹脂から形成されているが、斯かる構成に限られず、例えば、石英ガラスから形成されていてもよい。
 図1に戻り、光源装置3は、レーザ光を出射する光源部4と、光源部4から出射されたレーザ光が入射される光学系5とを備えている。また、光源装置3は、光源部4及び光学系5を収容する筐体6と、筐体6に固定され、光ファイバ部2を接続するファイバ接続部7とを備えている。
 光源部4は、レーザ光を発生して出射する複数の半導体レーザ41を備えている。また、光源部4は、各半導体レーザ41から出射されたレーザ光を光学系5に向けて反射する複数の反射ミラー42を備えている。そして、光源部4は、複数の半導体レーザ41から出射される各光の光軸が光学系5に入射される際に互いに平行となるように、構成されている。なお、半導体レーザ41及び反射ミラー42は、図1において、それぞれ6つずつ備えられているが、斯かる数量に限られない。
 光学系5は、入射されたレーザ光を集光して出射する一対のレンズ51,52を備えている。そして、光学系5は、入射されたレーザ光をファイバ接続部7及び光ファイバ部2に向けて集光して出射する。なお、本実施形態においては、光学系5は、レンズ51,52を二つ備えているが、斯かる数量に限られない。
 第1のレンズ51は、光源部4から出射されたレーザ光が入射され、入射されたレーザ光を第2のレンズ52に向けて集光して出射する。第2のレンズ52は、第1のレンズ51から出射されたレーザ光が入射され、入射されたレーザ光をファイバ接続部7及び光ファイバ部2に向けて集光して出射する。
 ファイバ接続部7は、図2及び図3に示すように、光ファイバ部2を着脱可能に接続すべく、光ファイバ部2の入射側の端部が挿入される筒状のファイバ挿入部71と、光ファイバ部2をファイバ挿入部71に固定するための固定機構72とを備えている。また、ファイバ接続部7は、光ファイバ部2のコア21aに入射するレーザ光が内部を通るために、中空状に形成されるレーザ光路部73を備えている。ファイバ挿入部71とレーザ光路部73とは、連通しており、ファイバ接続部7は、全体として筒状に形成されている。
 固定機構72は、本実施形態において、ファイバ挿入部71に設けられるネジ孔71aと螺合するネジ部材72としている。そして、ネジ部材72が光ファイバ部2を押圧することで、光ファイバ部2がファイバ接続部7に取り付けられる一方、ネジ部材72が光ファイバ部2への押圧を解除することで、光ファイバ部2がファイバ接続部7から取り外される。
 レーザ光路部73は、内部の開口が上流側から下流側に向けて次第に小さくなるように形成される光路部本体73aと、光路部本体73aの下流側に配置され、内幅寸法が一番小さくなるように形成される絞り部73bとを備えている。また、レーザ光路部73は、下流側の端部に、光ファイバ部2の入射側の端面と当接する当接部73cを備えている。
 絞り部73bの内幅寸法(内径)は、コア21aの外幅寸法(外径)よりも小さい。これにより、絞り部73bを通過したレーザ光は、コア21aよりも外側部分、即ち、クラッド21bやフェルール22に入射することを抑制される。
 当接部73cの内幅寸法(内径)は、コア21aの外幅寸法(外径)よりも大きい。これにより、当接部73cは、光ファイバ部2の入射側の端面におけるコア21aよりも外側部分、即ち、クラッド21bやフェルール22(本実施形態においては、フェルール22のみ)と当接する。
 ここで、本実施形態に係る光ファイバ装置1の各構成のサイズとそれによる作用とについて、図4及び図5を参酌して、説明する。
 まず、図4に示すように、コア21aの外幅寸法(外径)W1と、絞り部73bの内幅寸法(内径)W2と、ファイバ部7の入射側端面と絞り部73bとの離間距離W3と、光学系5の開口角θ1との関係について説明する。本実施形態において、光学系5の開口角(光軸上の物点が入射ひとみの直径を見込む角)θ1は、光学系5のうち最下流に配置されているレンズ(第2のレンズ)52がレーザ光を集光する角度である。
 そして、以下の式1を満たすように、それぞれが設定されている。
  W1≧W2+2W3×tan(θ1/2)   …(式1)
 次に、コア21aの外幅寸法W1と、絞り部73bの内幅寸法W2と、ファイバ部7の入射側端面と絞り部73bとの離間距離W3と、コア21a内へ入射する最大円錐状レーザ光の頂点の角度θ2との関係について説明する。一般的に、光学系5から出射されたレーザ光をコア21a内に最大限に入射するために、光学系5の開口角θ1は、当該角度θ2以下に設定される。なお、本実施形態においては、当該角度θ2と光学系5の開口角θ1とは、同じに設定されている。
 そして、以下の式2を満たすように、それぞれが設定されている。
  W1≧W2+2W3×tan(θ2/2)   …(式2)
 上記式1及び式2を満たしているため、図5に示すように、絞り部73bを通過したレーザ光は、角度θ1(=θ2)で広がったとしても、必ずコア21aに入射され、コア21aよりも外側部分であるクラッド21b及びフェルール22に入射しない。なお、コア21aの中心と、レーザ光路部73の中心と、光学系5から出射したレーザ光の光軸とは、同じ直線上に位置している。
 以上より、本実施形態に係る光ファイバ装置1によれば、ファイバ接続部7は、光ファイバ部2の入射側端部を接続しており、レーザ光は、中空状に形成されるレーザ光路部73の内部を通り、光ファイバ部2の中心部分に有するコア21aに入射され、コア21aにより伝送される。
 そして、レーザ光路部73には、絞り部73bが設けられており、絞り部73bの内幅寸法がコア21aの外幅寸法よりも小さいため、レーザ光がコア21aよりも外側部分に入射することを抑制することができる。したがって、樹脂で形成されているクラッド21bがレーザ光により焦げることを防止することができる。
 しかも、レーザ光路部73の下流側の端部に配置される当接部73cは、内幅寸法がコア21aの外幅寸法よりも大きく形成されているため、光ファイバ部2の入射側端面におけるコア21aよりも外側部分と当接する。これにより、当接部73cに光ファイバ部2の入射側端面を当接することで、ファイバ接続部7に対して光ファイバ部2を容易に位置決めでき、しかも、コア21aの外幅寸法よりも小さい内幅寸法である絞り部73bが存在していても、コア21aの入射面を傷付けられることが防止できる。このように、レーザ光を効率的にコア21aに入射することができる。
 また、本実施形態に係る光ファイバ装置1によれば、光学系5は、入射されたレーザ光を集光して出射する。そして、光学系5から出射されたレーザ光は、絞り部73bを通って、光ファイバ部2のコア21aに入射される。このとき、上記式1を満たしているため、絞り部73bを通過したレーザ光は、光ファイバ部2のコア21aに全て入射される。したがって、レーザ光をさらに効率的にコア21aに入射することができる。
 また、本実施形態に係る光ファイバ装置1によれば、コア21a内へ入射する最大円錐状レーザ光の頂点の角度がθ2であって、コア21aに入射されるレーザ光は、開口角がθ2と同じθ1の光学系5を用いて、集光されている。そして、集光されたレーザ光は、絞り部73bを通って、光ファイバ部2のコア21aに入射される。このとき、上記式2を満たしているため、絞り部73bを通過したレーザ光は、光ファイバ部2のコア21aに全て入射される。したがって、レーザ光をさらに効率的にコア21aに入射することができる。
 なお、本発明に係る光ファイバ装置は、上記した実施形態の構成に限定されるものではなく、また、上記した作用効果に限定されるものではない。また、本発明に係る光ファイバ装置は、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。例えば、下記する各種の変更例に係る構成や方法等を任意に選択して、上記した実施形態に係る構成や方法等に採用してもよいことは勿論である。
 上記実施形態に係る光ファイバ装置1においては、光ファイバ21及びコア21aは、断面形状が真円形状となるように、形成されている、という構成である。しかしながら、本発明に係る光ファイバ装置は、斯かる構成に限られない。例えば、本発明に係る光ファイバ装置においては、光ファイバ21及びコア21aは、断面形状が楕円形状や多角形状となるように、形成されている、という構成でもよい。
 また、上記実施形態に係る光ファイバ装置1においては、光ファイバ部2は、光ファイバ21と、光ファイバ21を内部に配置して保持固定するフェルール22とを備えている、という構成である。しかしながら、本発明に係る光ファイバ装置は、斯かる構成に限られない。
 例えば、本発明に係る光ファイバ装置においては、光ファイバ部2は、光ファイバからなる、という構成でもよい。斯かる光ファイバにおいては、例えば、コアとクラッドとからなる裸光ファイバのクラッドの外側に1次被覆を備える光ファイバ素線を採用したり、その光ファイバ素線の外側にさらに2次被覆を備える光ファイバ心線を採用したりすることができる。
 また、上記実施形態に係る光ファイバ装置1においては、光学系5の開口角θ1と、コア21a内へ入射する最大円錐状レーザ光の頂点の角度θ2とは、同じに設定されている、という構成である。しかしながら、本発明に係る光ファイバ装置は、斯かる構成に限られない。例えば、本発明に係る光ファイバ装置においては、光学系5の開口角θ1と、コア21a内へ入射する最大円錐状レーザ光の頂点の角度θ2とは、異なるように設定されている、という構成でもよい。
 1…光ファイバ装置、2…光ファイバ部、3…光源装置、4…光源部、5…光学系、6…筐体、7…ファイバ接続部、21…光ファイバ、21a…コア、21b…クラッド、22…フェルール、41…半導体レーザ、42…反射ミラー、51…(第1の)レンズ、52…(第2の)レンズ、71…ファイバ挿入部、71a…ネジ孔、72…固定機構(ネジ部材)、73…レーザ光路部、73a…光路部本体、73b…絞り部、73c…当接部、W1…コアの外幅寸法、W2…絞り部の内幅寸法、W3…ファイバ部の入射側端面と絞り部との距離、θ1…光学系の開口角、θ2…コア内へ入射する最大円錐状レーザ光の頂点の角度

Claims (3)

  1.  レーザ光を伝送するコアを中心部分に有する光ファイバ部と、
     前記光ファイバ部の入射側の端部を接続するファイバ接続部と、を備え、
     前記ファイバ接続部は、前記コアに入射するレーザ光が内部を通るために、中空状に形成されるレーザ光路部を備え、
     前記レーザ光路部は、内幅寸法が前記コアの外幅寸法よりも小さく形成される絞り部と、下流側の端部に配置され、前記光ファイバ部の入射側の端面における前記コアよりも外側部分と当接するために、内幅寸法が前記コアの外幅寸法よりも大きく形成される当接部と、を備える光ファイバ装置。
  2.  入射されたレーザ光を前記レーザ光路部に向けて集光して出射する光学系をさらに備え、
     前記コアの外幅寸法がW1であり、前記絞り部の内幅寸法がW2であり、前記光ファイバ部の入射側の端面と前記絞り部との離間距離がW3であり、前記光学系の開口角がθ1であるときに、
     W1≧W2+2W3×tan(θ1/2)
    を満たす請求項1に記載の光ファイバ装置。
  3.  前記コアの外幅寸法がW1であり、前記絞り部の内幅寸法がW2であり、前記光ファイバ部の入射側の端面と前記絞り部との離間距離がW3であり、前記コア内へ入射する最大円錐状レーザ光の頂点の角度がθ2であるときに、
     W1≧W2+2W3×tan(θ2/2)
    を満たす請求項1又は2に記載の光ファイバ装置。
PCT/JP2014/069575 2013-09-11 2014-07-24 光ファイバ装置 WO2015037337A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480050207.8A CN105793751B (zh) 2013-09-11 2014-07-24 光纤装置
US14/917,425 US20160223767A1 (en) 2013-09-11 2014-07-24 Optical fiber device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-188179 2013-09-11
JP2013188179A JP5943209B2 (ja) 2013-09-11 2013-09-11 光ファイバ装置

Publications (1)

Publication Number Publication Date
WO2015037337A1 true WO2015037337A1 (ja) 2015-03-19

Family

ID=52665459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069575 WO2015037337A1 (ja) 2013-09-11 2014-07-24 光ファイバ装置

Country Status (4)

Country Link
US (1) US20160223767A1 (ja)
JP (1) JP5943209B2 (ja)
CN (1) CN105793751B (ja)
WO (1) WO2015037337A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113534372A (zh) * 2021-06-24 2021-10-22 中国科学院合肥物质科学研究院 应用于激光光斑取样的金属加持光纤单元及高反射率靶板
CN115166906A (zh) * 2022-09-05 2022-10-11 度亘激光技术(苏州)有限公司 光学模块

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH037905A (ja) * 1989-06-05 1991-01-16 Matsushita Electric Ind Co Ltd 光コネクタ
JPH05113525A (ja) * 1991-10-21 1993-05-07 Omron Corp 光結合ユニツトおよびそれを用いたフアイバ光電センサ
JPH0792348A (ja) * 1993-09-21 1995-04-07 Toshiba Corp 光ファイバーへのレーザ光入射装置
JP2001025889A (ja) * 1999-07-15 2001-01-30 Amada Eng Center Co Ltd レーザ光出射装置
JP2007017580A (ja) * 2005-07-06 2007-01-25 Fujinon Corp 光モジュール
WO2010047270A1 (ja) * 2008-10-20 2010-04-29 オムロン株式会社 投光装置およびセンサ
JP2013080069A (ja) * 2011-10-04 2013-05-02 Sumitomo Electric Ind Ltd 光学部材

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1156510A (zh) * 1994-06-29 1997-08-06 英国电讯公司 组装式光学装置
JP2002182073A (ja) * 2000-12-11 2002-06-26 Nippon Sheet Glass Co Ltd 光源−光ファイバ結合器
CN1181369C (zh) * 2002-08-26 2004-12-22 中国科学院半导体研究所 半导体激光器v形槽固定光纤同轴器件
GB2431729A (en) * 2005-10-29 2007-05-02 Gsi Group Ltd Optical fibre coupling structure with wedge shaped end
CN201845110U (zh) * 2010-10-26 2011-05-25 武汉高晟知光科技有限公司 一种传输高功率激光的光纤端部结构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH037905A (ja) * 1989-06-05 1991-01-16 Matsushita Electric Ind Co Ltd 光コネクタ
JPH05113525A (ja) * 1991-10-21 1993-05-07 Omron Corp 光結合ユニツトおよびそれを用いたフアイバ光電センサ
JPH0792348A (ja) * 1993-09-21 1995-04-07 Toshiba Corp 光ファイバーへのレーザ光入射装置
JP2001025889A (ja) * 1999-07-15 2001-01-30 Amada Eng Center Co Ltd レーザ光出射装置
JP2007017580A (ja) * 2005-07-06 2007-01-25 Fujinon Corp 光モジュール
WO2010047270A1 (ja) * 2008-10-20 2010-04-29 オムロン株式会社 投光装置およびセンサ
JP2013080069A (ja) * 2011-10-04 2013-05-02 Sumitomo Electric Ind Ltd 光学部材

Also Published As

Publication number Publication date
CN105793751A (zh) 2016-07-20
JP5943209B2 (ja) 2016-06-29
US20160223767A1 (en) 2016-08-04
JP2015055714A (ja) 2015-03-23
CN105793751B (zh) 2017-08-08

Similar Documents

Publication Publication Date Title
US9841570B2 (en) Optical fiber assembly, optical coupling device, and optical fiber coupling device
KR102103867B1 (ko) 고출력 공간필터
JP2011175245A5 (ja)
JP2015223463A5 (ja)
JP2015223462A5 (ja)
JP2016061941A (ja) 光ファイバ接続構造
JP5943209B2 (ja) 光ファイバ装置
JP2016109887A (ja) 光接続器
JP2011164182A (ja) 光コネクタ連結体
JP2015136545A5 (ja)
WO2014077069A1 (ja) 光合波装置
WO2012172718A1 (ja) 導光装置及び導光方法
JP6492647B2 (ja) 光コネクタフェルール
WO2014129280A1 (ja) 光コネクタ装置
JP6540310B2 (ja) 光ファイバ端末
JP4262692B2 (ja) 光ファイバ反射モジュールの製造方法及びそれを用いた光フィルタモジュールの製造方法、波長多重通信用波長分離光モジュールの製造方法
WO2014112281A1 (ja) 光モジュールおよび光伝送システム
JP6484279B2 (ja) 光ファイバケーブルユニット
JP2007133239A (ja) コリメータ及びそれを用いた光学フィルタ装置
US20150212269A1 (en) Optical multiplexing device
JP2019169780A (ja) 光通信システム
JP2004309896A (ja) 光ファイバー用コリメータレンズおよび光結合器
WO2015045481A1 (ja) 光学ユニット
JP2008032999A (ja) 光ファイバデバイスと、その出射方向調整方法と、スイッチング方法およびスイッチング機構と、光学特性検査方法および光学特性検査システム
JP2020129063A (ja) 光ファイバ、多芯光ファイバ、及び光コネクタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14844069

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14917425

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14844069

Country of ref document: EP

Kind code of ref document: A1