WO2015036032A1 - Verfahren zum aufbringen einer bondschicht - Google Patents

Verfahren zum aufbringen einer bondschicht Download PDF

Info

Publication number
WO2015036032A1
WO2015036032A1 PCT/EP2013/069003 EP2013069003W WO2015036032A1 WO 2015036032 A1 WO2015036032 A1 WO 2015036032A1 EP 2013069003 W EP2013069003 W EP 2013069003W WO 2015036032 A1 WO2015036032 A1 WO 2015036032A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
base material
layer
preferably less
bonding
Prior art date
Application number
PCT/EP2013/069003
Other languages
English (en)
French (fr)
Inventor
Markus Wimplinger
Original Assignee
Ev Group E. Thallner Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN201910183859.3A priority Critical patent/CN110085526B/zh
Priority to ATA232/2022A priority patent/AT525410A1/de
Application filed by Ev Group E. Thallner Gmbh filed Critical Ev Group E. Thallner Gmbh
Priority to CN201380079527.1A priority patent/CN105517947B/zh
Priority to KR1020167006613A priority patent/KR102084291B1/ko
Priority to PCT/EP2013/069003 priority patent/WO2015036032A1/de
Priority to US14/909,157 priority patent/US9627349B2/en
Priority to DE112013007187.8T priority patent/DE112013007187B4/de
Priority to KR1020207005479A priority patent/KR102184239B1/ko
Priority to ATA9472/2013A priority patent/AT518702A5/de
Priority to CN201910183876.7A priority patent/CN110071049B/zh
Priority to KR1020207033596A priority patent/KR102306976B1/ko
Priority to SG11201601923VA priority patent/SG11201601923VA/en
Priority to JP2016541823A priority patent/JP6336600B2/ja
Priority to TW108139816A priority patent/TWI750526B/zh
Priority to TW108110542A priority patent/TWI677552B/zh
Priority to TW107117702A priority patent/TWI679264B/zh
Priority to TW103126810A priority patent/TWI630254B/zh
Publication of WO2015036032A1 publication Critical patent/WO2015036032A1/de
Priority to US15/441,741 priority patent/US9911713B2/en
Priority to US15/875,335 priority patent/US10438925B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C3/00Assembling of devices or systems from individually processed components
    • B81C3/001Bonding of two components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00261Processes for packaging MEMS devices
    • B81C1/00269Bonding of solid lids or wafers to the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0102Surface micromachining
    • B81C2201/0104Chemical-mechanical polishing [CMP]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0128Processes for removing material
    • B81C2201/013Etching
    • B81C2201/0132Dry etching, i.e. plasma etching, barrel etching, reactive ion etching [RIE], sputter etching or ion milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0128Processes for removing material
    • B81C2201/013Etching
    • B81C2201/0133Wet etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/03Bonding two components
    • B81C2203/033Thermal bonding
    • B81C2203/036Fusion bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29075Plural core members
    • H01L2224/2908Plural core members being stacked
    • H01L2224/29082Two-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29105Gallium [Ga] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29111Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29116Lead [Pb] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/29118Zinc [Zn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/29123Magnesium [Mg] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/29124Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29139Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29144Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29155Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29157Cobalt [Co] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/2916Iron [Fe] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/29166Titanium [Ti] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/29169Platinum [Pt] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/29171Chromium [Cr] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/29184Tungsten [W] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/325Material
    • H01L2224/32505Material outside the bonding interface, e.g. in the bulk of the layer connector
    • H01L2224/32507Material outside the bonding interface, e.g. in the bulk of the layer connector comprising an intermetallic compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83009Pre-treatment of the layer connector or the bonding area
    • H01L2224/8302Applying permanent coating to the layer connector in the bonding apparatus, e.g. in-situ coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83009Pre-treatment of the layer connector or the bonding area
    • H01L2224/83022Cleaning the bonding area, e.g. oxide removal step, desmearing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • H01L2224/8381Soldering or alloying involving forming an intermetallic compound at the bonding interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83894Direct bonding, i.e. joining surfaces by means of intermolecular attracting interactions at their interfaces, e.g. covalent bonds, van der Waals forces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01003Lithium [Li]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01011Sodium [Na]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01031Gallium [Ga]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01032Germanium [Ge]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01034Selenium [Se]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01037Rubidium [Rb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01038Strontium [Sr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01052Tellurium [Te]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01055Cesium [Cs]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01056Barium [Ba]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10252Germanium [Ge]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1027IV
    • H01L2924/10271Silicon-germanium [SiGe]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1027IV
    • H01L2924/10272Silicon Carbide [SiC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10323Aluminium nitride [AlN]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10328Gallium antimonide [GaSb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10329Gallium arsenide [GaAs]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/1033Gallium nitride [GaN]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10331Gallium phosphide [GaP]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10332Indium antimonide [InSb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10333Indium arsenide [InAs]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10334Indium nitride [InN]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10335Indium phosphide [InP]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10336Aluminium gallium arsenide [AlGaAs]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10346Indium gallium nitride [InGaN]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1037II-VI
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1037II-VI
    • H01L2924/10371Cadmium selenide [CdSe]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1037II-VI
    • H01L2924/10372Cadmium sulfide [CdS]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1037II-VI
    • H01L2924/10373Cadmium telluride [CdTe]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1037II-VI
    • H01L2924/10375Zinc selenide [ZnSe]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1037II-VI
    • H01L2924/10376Zinc sulfide [ZnS]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1037II-VI
    • H01L2924/10377Zinc telluride [ZnTe]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1082Other
    • H01L2924/10821Copper indium gallium selenide, CIGS [Cu[In,Ga]Se2]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1082Other
    • H01L2924/10823Copper indium selenide, CIS [CuInSe2]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1082Other
    • H01L2924/10831Selenium [Se]

Definitions

  • the invention relates to a method according to claim 1 and a
  • Substrates are the carriers for functional assemblies such as microchips, memory chips or MEMS assemblies. In recent years, has been increasingly trying to connect, on
  • Substrate are bonded to a lying on a second substrate material.
  • It may be aluminum or a suitable different material.
  • a disadvantage of aluminum is its extreme oxygen affinity. Even with copper, the oxygen affinity is so high that regular copper oxides have to be removed before a bonding process. With aluminum, the oxygen affinity is many times higher. In addition, aluminum forms relatively thick,
  • Materials such as copper and aluminum prevent the oxidation of bonding surfaces and / or the complete removal of the oxide from
  • the basic idea of the present invention is one of a
  • a base material of the base layer is oxidizable, while a
  • Protective material of the protective layer is at least less easily oxidized.
  • the invention is therefore particularly of a process in which the oxidation of oxygen-affine materials such as in particular
  • Aluminum (preferred) or copper is prevented from the outset.
  • the protection of the oxygen-affine base material is achieved according to the invention in particular by the deposition of a protective material which at least partially, in particular, the base material
  • Oxygen-affine elements such as lithium are extremely non-noble, are easily oxidized, thus acting as a reducing agent, easily give off electrons and therefore have an extremely negative standard electrode potential.
  • elements with a low oxygen affinity are referred to as noble, since they can be easily reduced and therefore act as an oxidant, absorb electrons and have an extremely positive standard electrode potential.
  • the base material used is in particular a material with a standard electrode potential which is less than 2.00 V, preferably less than 1.00 V, more preferably less than 0.0 V, most preferably less than -0.0 V, most preferably less than -2.0 V, most preferably less than -3.0 V.
  • Copper has a standard electrode potential of about 0.16 V, aluminum of about - 1.66 V.
  • the noblest metal is gold with a
  • the base material and the protective material are located as separate targets in one
  • An embodiment of the invention is to leave the protective material on the base material during the bonding process and, at least partially, the protective material due to its chemical-physical properties during the bonding process in the base material, in particular predominantly, preferably completely, to be dissolved.
  • the selection of the base material-protective material combination is such that it allows a solid-solution process.
  • the protective material is better soluble in the base material than vice versa.
  • the protective material dissolves especially in certain
  • the base material therefore has an edge solubility for the protective material and / or the base material is at least partially, in particular, with the base material
  • the protective material according to the invention can be applied as an extremely thin layer to during the diffusion process of
  • the present invention is to provide a contact of the
  • oxygen-based base material with an oxygen-containing or oxygen-rich atmosphere to avoid, in particular by at least predominantly covering the non-covered by the substrate surfaces of the base layer with the protective layer.
  • the protective material itself is preferably a solid, in particular at least at room temperature. This is therefore not liquid and allows the transport of the protected base material by a
  • Protective material is selected so that it is less oxygen-affective than the base material or any oxide formed on the protective material is removable with simpler means than would be the case with an oxide formed on the base material.
  • oxide-forming material for the protective layer chosen such that in addition to the simple removal of the oxide after the Oxidentfernung new oxide is formed only slowly again.
  • at least 2 minutes pass, preferably at least 5 minutes, more preferably at least 10 minutes, and most preferably at least 15 minutes, to less than 0.3 nm oxide, more preferably less than 0.1 ⁇ m oxide
  • a recording of any oxide formed on the protective layer in the base material is prevented according to the invention in particular at least predominantly.
  • the oxide of the protective material is removed, in particular immediately before a bonding process. With a small amount of oxide formed also breaking of the oxide during the later desired bonding process and a direct installation in the
  • Low oxygen affinity in particular defined by a standard electrode potential greater than 0 V, more preferably greater than 1.00 V, more preferably greater than 2.00 V, preferably less than the oxygen affinity of the base material,
  • a high solubility in the base material in particular more than 10 "5 mol%, with preference more than 10" 3 mol%, with greater preference more than 1 mol%, most preferably more than 10 mol%, most preferably more than 40 mol%
  • the invention accordingly relates in particular to a method, a first material prone to oxidation, the base material, in particular a metal or a semiconductor, with a second material, the
  • Protective material is in a further process step by a solution process from the base material at least partially, in particular predominantly, preferably completely, dissolved and / or forms in a very special, extended embodiment partially, in particular predominantly, preferably completely, precipitates.
  • the preferred embodiment according to the invention comprises a complete solution of the protective material in the base material, in which case no precipitates arise.
  • the object of the protective layer formed from the protective material is in particular to prevent the oxidation of the base material.
  • the protective material can oxidize even on contact with an oxygen-containing atmosphere and is optionally freed from the oxide before the solution process according to the invention begins in the base material.
  • the removal of this oxide on the protective layer is carried out in a plant in which a renewed oxidation of the protective layer on the way to the bonder
  • the preferred objective of the process according to the invention is above all to protect oxygen-affine base materials, in particular aluminum but also copper, which are to be bonded in a further process step, from oxidation until the actual bonding step.
  • the base material to be protected preferably has a much lower oxygen affinity than the base material to be protected is much easier, faster and, above all, more reliable, so that the process can be accelerated.
  • the protective material in particular after removal of oxides of the protective material, is subsequently bonded to a further, in particular inventively formed, substrate.
  • the protective material is still at least partially, in particular predominantly, preferably completely dissolved during the bonding process in the base material, so that in the ideal case until bonding no contact between the base material and the oxygen-rich atmosphere.
  • the method according to the invention is therefore particularly suitable for oxygen-based base materials, in particular aluminum or copper, directly after the coating on a substrate, temporarily protect with the protective material.
  • the base material is not applied over the entire surface, but rather in particular structured and / or only in partial areas (for example copper contacts or aluminum borders, which are to become part of a hermetically sealed space of a MEMS component), then the protective material will be thicker as uniformly as possible, in particular applied closed film. According to the invention, above all, the ratio of (in particular middle)
  • Layer thickness of the base material to the layer thickness of the protective material plays a role according to the invention.
  • the base material is preferably a solid solvent.
  • the base material may be a multiphase multicomponent system. In the case of a multi-phase material, all considerations for the solution process apply at least for one phase, ideally for all phases.
  • a single chemical element is selected as the base material, in particular a metal, a semi-metal or a
  • Non-metal in particular silicon, gallium, aluminum, nickel, titanium or copper. These metals are the most common in the world
  • the protective material may in particular likewise be a multiphase multicomponent system, but is preferably a simple chemical element, which preferably occurs only in one phase.
  • This is preferably a metal, a semi-metal, an alkali or an alkaline earth metal. According to the invention conceivable would be the
  • the protective material in the base material is at least partially, in particular predominantly predominantly, preferably completely, detachable.
  • Chemical oxide removal in particular by a gaseous reducing agent and / or
  • PVD Physical vapor deposition
  • the systems of base layer and protective layer according to the invention are designed as layer systems and in particular represent a system that is not in thermodynamic equilibrium. This will increase when compared to room temperature
  • Temperature interdiffusion preferably at least predominantly, in particular exclusively, causes a diffusion of the protective material in the base material, between base material and protective material.
  • Phase diagrams of the aforementioned material combinations represent equilibrium states of several phases at different
  • Temperature is the faster the protective material in the base material diffuses and / or the lower the transition of protective material into the base material in the protective material base material interface.
  • Some components have a very low solubility in the respective second component, so that the
  • Solubility limit due to the representation is barely recognizable.
  • the protective material after deposition is also a one-component single-phase system.
  • the aforementioned material combination are
  • the system base material protective material of the bonding layer is therefore a layer system, which is preferably transferred during the bonding process by a solution process in a two-component single-phase system. In this case, preferably, a mixed crystal is formed
  • Base material and protective material The bonding process itself takes place either in an inert gas atmosphere, but more preferably in a vacuum.
  • precipitates are desired, in particular by at least one heat treatment being carried out after the (successful) bonding process, in order to obtain by at least partially, in particular predominantly, preferably
  • a first system to which the inventive idea can be applied is the system aluminum germanium, short Al-Ge.
  • the binary system Al-Ge is a purely eutectic system with a partial edge solubility for germanium in aluminum and a vanishing one low edge solubility of aluminum in germanium.
  • Base material is therefore chosen the aluminum.
  • Germanium layer covered as a protective layer Germanium is therefore the protective material of the invention.
  • the germanium layer is in particular smaller than ⁇ , with preference smaller than ⁇ ⁇ , with greater preference smaller than 100 nm, most preferably smaller than 10 nm, with very great advantage smaller than lnm.
  • the deposition takes place at temperatures as low as possible in order to prevent or at least increase the partial or even complete diffusion of the germanium at elevated temperature into the aluminum
  • the temperature of the aluminum in the deposition of germanium is less than 600 ° C, preferably less than 500 ° C, more preferably less than 400 ° C, most preferably less than 300 ° C, with
  • the aluminum can even be actively cooled to lower the temperature further. By the lowest possible temperature is deposited on the aluminum
  • Germanium impeded immediately in its thermal movement and preferably remains on the surface, therefore, does not diffuse into the aluminum. Furthermore, due to the particularly low solubility of the
  • Germanium in aluminum at low temperatures the diffusion of germanium into the aluminum difficult. Germanium serves from then on as protective material for the aluminum. If the system is exposed to an oxygen-containing atmosphere, it oxidizes at least
  • Germanium about 0.12V, the aluminum is about - 1.66V.
  • Germanium is therefore nobler than aluminum and therefore is not able to chemically protect aluminum as a sacrificial anode.
  • the germanium layer is densely applied to build a physical barrier between the aluminum and the atmosphere.
  • Germanium oxides removed from germanium. The removal of the
  • Germanium oxides take place by physical and / or chemical means. Conceivable is a sputtering of the oxides, a wet-chemical removal by reducing acids, a reduction by hydrogen or other gaseous reducing agents. After the removal of the germanium oxides, the contacting of the pure takes place as quickly as possible
  • Germanium surface with the surface to be bonded in particular an analog, in particular according to the invention, constructed substrate.
  • the bonding process is carried out at room temperature increased
  • the bonding temperature is in particular greater than 25 ° C, preferably greater than 100 ° C, more preferably greater than 200 ° C, most preferably greater than 300 ° C, most preferably greater than 400 ° C, most preferably around 426 ° C.
  • aluminum has the highest solubility for germanium of approx. 2.5 mol% at approx. 426 ° C.
  • the formation of a liquid, eutectic phase in the boundary region is prevented in a preferred embodiment in that the preferred bonding temperature is below the eutectic temperature, in particular between 400 ° C.-420 ° C. In this temperature range, the solubility of germanium is in
  • the bonding temperature during the bonding process is kept constant until at least predominantly, preferably completely, dissolving the germanium in the aluminum at this temperature.
  • the time required for the release can be solved by solving the problem
  • Diffusion constants of germanium in aluminum can be calculated. Nevertheless, it may be necessary and useful to keep the temperature shorter or longer.
  • the period of time for dissolving the germanium in the aluminum is in particular greater than 1 minute, more preferably greater than 10 minutes, more preferably greater than 30 minutes, most preferably greater than 1 hour, most preferably greater than 2 hours, most preferably greater than 5 hours, set.
  • the pressure on the substrate to be bonded is preferably maintained or increased.
  • the pressure acting on the bonding layer is greater than 1 Pa, more preferably greater than 100 Pa, more preferably greater than 10,000 Pa, most preferably greater than 1 MPa, most preferably greater than 10 MPa, most preferably greater than 100 MPa ,
  • the forces used, in particular based on standard wafers, are greater than 10 N, more preferably greater than 100 N, most preferably greater than 1000 N, most preferably greater than 10000 N, most preferably greater than 100000 N.
  • the germanium dissolves preferably in the entire aluminum. Due to the fact that the amount of germanium to be dissolved is very low, while at the same time the amount of dissolving aluminum is very large, the total concentration of germanium in the aluminum is very small.
  • the total concentration of germanium in the aluminum is in particular less than 1 mol%, with preference less than 10 "3 mol%, with preference less than 10" 5 mol%, with the greatest preference less than 10 "7 mol%.
  • the germanium dissolves with Preferably not only exclusively in the near-surface region of the aluminum but diffuses as deeply as possible into the aluminum, with preference so deep that after a certain time an equal distribution of germanium in the aluminum has reached.
  • Germanium always remains completely dissolved in the aluminum. This will precipitate germanium in the aluminum matrix throughout Temperature range prevented. This is realized according to the invention by selecting an inventive ratio of aluminum layer thickness to germanium layer thickness and the diffusion process runs for a certain time until the germanium is predominantly predominantly, preferably completely, and above all over the entire
  • the ratio between the germanium layer thickness and aluminum layer thickness is less than 1, more preferably less than 10 "3 , more preferably less than 10 " 5 , most preferably less than 10 "7 , most preferably less than 10 " 9 , most preferably less than 10 "u .
  • the germanium layer thickness is adjusted so that at higher temperatures, especially at least predominantly, preferably complete, solution of germanium occurs, but upon cooling, a supersaturated mixed crystal is formed which leads to germanium precipitates.
  • germanium excretions can be the
  • a second system to which the idea according to the invention can be applied is aluminum gallium, in short Al-Ga.
  • the binary system aluminum-gallium is a purely eutectic system with a very strong degeneration.
  • the eutectic concentration is very close to the concentration of pure gallium.
  • the marginal solubility of aluminum in gallium is exceptionally high and reaches its maximum of about 7.5-8.0 mol% at temperatures around 125 ° C.
  • the marginal solubility of aluminum in gallium is negligible.
  • the aluminum is therefore selected according to the invention.
  • a gallium layer after successful deposition.
  • the gallium layer is in particular less than 10 ⁇ , with preference smaller than ⁇ ⁇ , more preferably less than 100 nm, most preferably less than l Onm, with greatest preference less than lnm formed.
  • the deposition takes place at the lowest possible temperatures in order to prevent or at least suppress a partial or even complete diffusion of the gallium at elevated temperature into the aluminum.
  • Gallium has a very low melting point of about 30 ° C.
  • a temperature below 30 ° C. is set. According to the invention, however, it would also be conceivable for the gallium to remain in liquid form on the aluminum at relatively high temperatures, without making the handling of the entire wafer more difficult. The reason is mainly due to the extremely small amount of deposited gallium, which has a sufficiently high surface tension and a sufficiently high adhesion to the aluminum to continue to exist as a liquid metal film.
  • the gallium diffuses into the aluminum at moderate temperatures. Therefore, the subsequent bonding process is as short as possible after covering the base layer with the protective layer
  • the temperature of the aluminum during deposition of the gallium is less than 300 ° C, more preferably less than 200 ° C, more preferably less than 100 ° C, most preferably less than 50 ° C, most preferably less than 30 ° C , most preferably less than 0 ° C.
  • the aluminum can even be actively cooled to lower the temperature further.
  • the system be one
  • oxygen-containing atmosphere preferably oxidizes the gallium and thus protects the aluminum.
  • Gallium about -0.53V
  • the aluminum is about - 1.66V.
  • Gallium is therefore nobler than aluminum and is consequently unable to chemically protect aluminum as a sacrificial anode. Accordingly, the gallium layer is densely applied to build a physical barrier between the aluminum and the atmosphere.
  • the material gallium is particularly suitable for being dissolved in aluminum.
  • the process parameters are adjusted so that the concentration of gallium in the aluminum at any time is less than the edge solubility, otherwise a two-phase system of a
  • Aluminum mixed crystal with gallium and a liquid phase can arise. This would mean that the bond is no longer feasible, since the liquid phase is still existent at room temperature.
  • gallium is liquefied on the surface of the aluminum and adapts as a liquid phase to the contours of the two surfaces to be joined together.
  • the actual inventive idea of the invention is to dissolve the gallium in the aluminum, the ability to liquefy at low temperatures to assist in the bonding process is actually the case
  • Gallium oxides removed from gallium Gallium, like aluminum, is covered with a dense oxide layer and is thereby passivated. Gallium forms a gallium hydroxide layer with water. The removal of the gallium oxides takes place by physical and / or chemical means.
  • the bonding process is carried out at room temperature increased
  • the bonding temperature is in particular greater than 25 ° C, preferably greater than 100 ° C, more preferably greater than 200 ° C, most preferably greater than 300 ° C, most preferably greater than 400 ° C, most preferably around 426 ° C.
  • Aluminum is loud
  • the bonding temperature during the bonding process is kept constant until at least predominantly, preferably completely, dissolving the gallium in the aluminum at this temperature.
  • the time needed can be solved by the one-dimensional solution
  • Time to dissolve the gallium in aluminum is greater than 1 minute, preferably greater than 10 minutes, more preferably greater than 30 minutes, most preferably greater than 1 hour, with most preferably greater than 2 hours, most preferably greater than 5 hours.
  • the pressure on the substrate to be bonded is preferably maintained or even increased. More preferably, the applied pressure is greater than 1 Pa, more preferably greater than 100 Pa, more preferably greater than 10,000 Pa, most preferably greater than 1 MPa, most preferably greater than 10 MPa, most preferably greater than 100 MPa.
  • the forces used, in particular based on standard wafers, are greater than 10 N, more preferably greater than 100 N, most preferably greater than 1000 N, most preferably greater than 10000 N, most preferably greater than 100000 N.
  • the gallium dissolves preferably in the entire aluminum. Due to the fact that the amount of gallium to be dissolved is very small, but the amount of dissolving aluminum is very large, the total concentration of gallium in the aluminum is very small. The total concentration of gallium in the
  • aluminum is less than 10 mole%, more preferably less than 5 mole%, more preferably less than 1 mole%, most preferably less than 10 -3 mole%.
  • Gallium preferentially dissolves only in the near surface region of the Aluminum diffuses as deeply as possible into the aluminum, with preference so deep that after a certain time an equal distribution of gallium in aluminum has been achieved.
  • the ratio between the gallium layer thickness and aluminum layer thickness is less than 1, more preferably less than 10 "3 , more preferably less than 10 " 5 , most preferably less than 10 "7 , most preferably less than 10 " 9 , most preferably less than 10 "1 1 .
  • a third system to which the idea according to the invention can be applied, is the aluminum-zinc system, in short Al-Zn.
  • the binary system Aluminum Zinc is binary system that is zinc rich
  • the edge solubilities of the system partners are of particular importance.
  • aluminum has a marginal solubility for zinc and zinc, albeit a small, marginal solubility for aluminum. Since aluminum is preferably used as the base material and zinc is preferably used as the protective layer, only the aluminum-rich side of the phase diagram is important. In order to protect the aluminum from oxidation it will after the
  • Zinc is thus the protective material to protect the base layer from oxidation.
  • the zinc layer is in particular smaller than ⁇ ⁇ , with preference smaller than ⁇ ⁇ , more preferably less than lOOnm, most preferably less than lOnm, with very great preference smaller than lnm.
  • the deposition takes place at as low a temperature as possible in order to prevent or at least increase the partial or even complete diffusion of the zinc at elevated temperature into the aluminum
  • the temperature of the aluminum in the deposition of zinc is less than 600 ° C, more preferably less than 500 ° C, more preferably less than 400 ° C, most preferably less than 300 ° C, with
  • the aluminum can even be actively cooled to lower the temperature further. Due to the lowest possible temperature, the zinc deposited on the aluminum is immediately hindered in its thermal movement and remains
  • zinc serves as protective material for the aluminum.
  • the system be an oxygen-containing atmosphere exposed, oxidized at least predominantly, preferably completely, the zinc and thus protects the aluminum from oxidation, in particular by the aluminum seals to the atmosphere.
  • the standard electrode potential of zinc is about -0.76V, that of aluminum is about -1.66V.
  • Zinc is therefore more noble than aluminum and is consequently unable to chemically protect aluminum as a sacrificial anode. Accordingly dense, the zinc layer is applied to a physical barrier between
  • any zinc oxides formed are first removed from the zinc.
  • the removal of the zinc oxides takes place in particular by physical and / or chemical means.
  • the bonding process takes place at a temperature higher than room temperature.
  • the bond temperature is greater than 25 ° C, more preferably greater than 100 ° C, more preferably greater than 200 ° C, most preferably greater than 300 ° C, most preferably greater than 400 ° C, most preferably around 380 ° C ° C.
  • Zinc is loud Phase diagram between about 350 ° C and about 380 ° C an extremely large area with a high solubility for zinc in aluminum.
  • the amount of zinc deposited is set so low that after the complete and above all uniform distribution of the zinc in the aluminum, no concentrations in a range above 1 mol% zinc, let alone 50-60 mol% zinc will be established.
  • the large solubility range is well suited to avoid any local concentration peaks, without leaving the concentration range of a mixed crystal desired according to the invention.
  • the system be maintained within the temperature range for the period of time required to dissolve all the zinc in the aluminum. Nevertheless, even at about 280 ° C, the edge solubility of zinc in aluminum is large enough to carry out the process of the invention.
  • the time required can be calculated by solving the one-dimensional diffusion equation with knowledge of the diffusion constants of zinc in aluminum. Nevertheless, it may be useful according to the invention to keep the temperature shorter or longer.
  • the period for dissolving the zinc in the aluminum is in particular greater than 1 minute, preferably greater than 10 minutes, with a larger Preferably greater than 30 minutes, most preferably greater than 1 hour, most preferably greater than 2 hours, most preferably greater than 5 hours.
  • the pressure on the substrate to be bonded is preferably maintained or increased. More preferably, the applied pressure is greater than 1 Pa, more preferably greater than 100 Pa, more preferably greater than 10,000 Pa, most preferably greater than 1 MPa, most preferably greater than 10 MPa, most preferably greater than 100 MPa.
  • the forces used, in particular based on standard wafers, are greater than 10 N, more preferably greater than 100 N, most preferably greater than 1000 N, most preferably greater than 10000 N, most preferably greater than 100000 N.
  • the zinc preferably dissolves in the entire aluminum. Due to the fact that the amount of
  • Zinc is very low, but the amount of dissolving aluminum is very large, is the total concentration of zinc in the
  • Aluminum layer thickness is less than 1, more preferably less than 10 "3 , more preferably less than 10 " 5 , most preferably less than 10 " 7 , most preferably less than 10 " 9 , most preferably less than 10 "n .
  • the zinc layer thickness is adjusted so that at higher temperatures, especially at least predominantly, preferably complete, solution of the zinc in aluminum, however, upon cooling, a supersaturated mixed crystal is formed, which leads to zinc precipitation.
  • These zinc precipitates can positively influence the strength properties of the aluminum. With preference they lead to one
  • a fourth system is the system aluminum-magnesium, in short Al-Mg.
  • the binary system Al-Mg is a two-eutectic binary system with edge solubility for magnesium in aluminum, as well as one Rand solubility for aluminum in magnesium.
  • the aluminum is preferably selected.
  • Magnesium is, especially in its pure form, a very reactive alkaline earth metal.
  • the magnesium layer is in particular smaller than ⁇ , with preference smaller than ⁇ ⁇ , with greater preference smaller than l OOnm, most preferably smaller than lOnm, with very great preference smaller than lnm.
  • the deposition takes place at as low temperatures as possible in order to prevent or at least increase the partial or even complete diffusion of the magnesium at elevated temperature into the aluminum
  • the temperature of the aluminum in the deposition of magnesium is less than 600 ° C, more preferably less than 500 ° C, more preferably less than 400 ° C, most preferably less than 300 ° C, with
  • the aluminum can even be actively cooled to lower the temperature further. By the lowest possible temperature is deposited on the aluminum
  • Magnesium immediately interferes with its thermal movement and preferably remains on the surface, therefore does not diffuse into the aluminum. Furthermore, due to the particularly low solubility of the
  • Reducing agent for already at least partially formed or not completely removed alumina is used.
  • Heat treatment step can be performed and preferably reduces the magnesium-covered alumina to pure aluminum to form magnesium oxide.
  • Magnesium oxides are removed from the magnesium.
  • the removal of magnesium oxides takes place by physical and / or chemical means. According to the invention conceivable is a sputtering of the oxides, a
  • magnesium oxides are likely to be fairly stable structures, which are very difficult to completely remove wet-chemical way, so that physical methods are more suitable according to the invention.
  • Bonding temperature is greater than 25 ° C, preferably greater than 100 ° C, more preferably greater than 200 ° C, most preferably greater than 300 ° C, most preferably greater than 400 ° C, most preferably around 426 ° C.
  • Solubility for magnesium of about 16 mol%. However, if you want to prevent the formation of a liquid phase in the boundary area and only ensure that the solid magnesium is dissolved in solid aluminum, the preferred bonding temperature is below the above 452 ° C. In this temperature range, the solubility of magnesium in the
  • the temperature is maintained for the time of, in particular predominantly, preferably complete, solution of the magnesium in the aluminum.
  • the time needed can be solved by the one-dimensional solution
  • Magnesium can be calculated in aluminum. According to the invention, it may be useful to keep the temperature shorter or longer. In particular, the time to dissolve the magnesium in aluminum becomes greater than 1 minute, more preferably greater than 10 minutes, more preferably greater than 30 minutes, most preferably greater than 1 hour, most preferably greater than 2 hours, most preferably greater than 5 hours, set.
  • the pressure on the substrates to be bonded is preferably maintained or increased. More preferably, the applied pressure is greater than 1 Pa, more preferably greater than 100 Pa, more preferably greater than 10,000 Pa, most preferably greater than 1 MPa, most preferably greater than 10 MPa, most preferably greater than 100 MPa.
  • the forces applied to the wafer are greater than 10, preferably greater than 100 N, most preferably greater than 1000 N, most preferably greater than 10,000 N, most preferably greater than 100,000 N.
  • the magnesium preferably dissolves in the entire aluminum. Due to the fact that the amount of magnesium to be dissolved is very small, the amount of solvent
  • Aluminum is very large, the total concentration of magnesium in the aluminum is very small.
  • the magnesium dissolves with preference not only exclusively in the near-surface region of the aluminum but diffuses as deeply as possible into the aluminum, with preference so deep that after a certain time an equal distribution of germanium in the aluminum has reached.
  • the ratio between the magnesium layer thickness and aluminum layer thickness is less than 1, more preferably less than 10 "3 , more preferably less than 10 " 5 , most preferably less than 10 * 7 , most preferably less than 10 "9 , most preferably less than 10 "1 1 , selected.
  • the magnesium layer thickness is adjusted so that at higher temperatures, although a, in particular predominantly, preferably complete, solution of magnesium takes place, upon cooling, however
  • the aluminum magnesium phase precipitates can positively influence the strength properties of the aluminum. With preference, they lead to an increase in the strength of the aluminum, in particular in combination with a heat treatment.
  • the base material is ground and / or polished prior to the deposition of the protective material. This leads to a planarization of the surface, which is of crucial importance for the later bonding process.
  • the average roughness and / or the square roughness are less than ⁇ ⁇ , with preference smaller than ⁇ ⁇ , more preferably less than ⁇ ⁇ , most preferably less than l OOnm, most preferably less than l Onm, most preferably less than lnm.
  • the polishing can be purely on
  • an oxide layer has formed on the base material, it is preferably already removed by the abovementioned processes. Should the removal of the oxide by the processes just mentioned not be sufficient, the abovementioned processes for oxide removal, such as, for example, sputtering, use of reducing gases and / or acids can additionally be used. After the planarization and eventual cleaning of oxide, then the coating of the protective layer takes place.
  • the bonding process can take place separately from a second, later-occurring heat treatment process, in particular spatially.
  • the bonding system only the actual bonding process is preferred.
  • the bonding process takes less than 5 hours, more preferably less than 1 hour, more preferably less than 30 minutes, most preferably less than 15 minutes, most preferably less than 5 minutes.
  • the bonded substrate pair may become The bonder is taken to another plant
  • Such a heat treatment plant is preferably a batch plant, hence a plant that can accommodate a large number of wafers simultaneously, perhaps even continuously.
  • Heat treatment in such a heat treatment plant according to the invention takes in particular more than 5 minutes, preferably more than 30 minutes, more preferably more than 1 hour, most preferably more than 5 hours.
  • the temperature in such a heat treatment plant according to the invention takes in particular more than 5 minutes, preferably more than 30 minutes, more preferably more than 1 hour, most preferably more than 5 hours.
  • Heat treatment equipment is preferably adjustable, preferably along a path and / or adjustable as a function of time, so that the processed substrates can pass through exact temperature profiles.
  • the temperatures used are in particular greater than 25 ° C, preferably greater than 100 ° C, more preferably greater than 300 ° C, more preferably greater than 500 ° C, most preferably greater than 800 ° C.
  • the heat treatment may preferably be in one
  • Inertgasatmospreheat take place in order to protect the exposed surfaces of the substrates from unnecessary or unwanted oxidation.
  • the actual solution of the protective layer according to the invention in the base material takes place only in the heat treatment plant.
  • the heat treatment system can bring several pairs of substrates simultaneously to a higher temperature than that in one
  • Bonding system would be the case.
  • a continuous heat treatment plant which receives pairs of substrates on one side, continuously conveyed through the plant, for example by a conveyor belt, and released at another end, even the Setting a temperature gradient over the way, and therefore, in particular at a constant line speed, over time conceivable.
  • the diffusion of the protective material into the base material should only take place outside of a bonding system, if no pressure is necessary to produce a correspondingly strong bond between the substrates.
  • Recrystallization of the structure sought This recrystallization can take place in the heat treatment plant, unless the process already takes place during the actual bonding process.
  • recrystallization leads to a rebuilding of the grains, in particular over the bonding interface, and thus creates a, throughout the thickness, continuous, mechanically stable, solid and permanent base material layer.
  • the new formed by recrystallization leads to a rebuilding of the grains, in particular over the bonding interface, and thus creates a, throughout the thickness, continuous, mechanically stable, solid and permanent base material layer.
  • Microstructure possesses the optimal and actually desired structure, since in this structure no bonding interface occurs more.
  • Methods for at least partially controllable recrystallization of the microstructure are preferably used. These include in particular the increase in the dislocation density and / or a correspondingly high temperature.
  • the inventive solution of the protective material in the base material and the recrystallization of the structure in an external, in particular separated from the bonder, heat treatment plant carried out. This will make the bonder as fast as possible for the next substrate bond available.
  • the inventive solution of the protective material in the base material and the recrystallization of the structure in an external, in particular separated from the bonder, heat treatment plant carried out. This will make the bonder as fast as possible for the next substrate bond available.
  • FIG. 2 shows a representation of the binary phase diagram Al-Ga
  • FIG. 3 shows a representation of the binary phase diagram Al-Zn
  • FIG. 4 shows a representation of the binary phase diagram Al-Mg
  • Figure 5a is a schematic cross-sectional view of a
  • FIG. 5b shows a schematic cross-sectional view according to FIG. 5a during the contacting / bonding step
  • FIG. 5c shows a schematic cross-sectional view according to FIG. 5a after the bonding step.
  • FIG. 1 shows a first, exemplary binary system Al-Ge.
  • the invention important part in the phase diagram is the Mixed crystal region 7.
  • the mixed crystal region 7 is through the
  • Randlösige 8 separated from the two-phase areas 9, 10.
  • the edge solubility for germanium decreases, starting from the eutectic temperature or the eutectic 1 1 with decreasing temperature.
  • FIG. 2 shows a second exemplary binary system Al-Ga.
  • the invention important part in the phase diagram is the
  • the mixed crystal region 7 is through the
  • the edge solubility for gallium decreases, starting from the eutectic temperature or the eutectic 1 1, with decreasing temperature.
  • the degeneration of the eutectic is characterized by a eutectic point 6 very close to the concentration of pure germanium.
  • FIG. 3 shows a third, exemplary binary system Al-Zn.
  • the invention important part in the phase diagram is the
  • the mixed crystal region 7 is very pronounced here. It reaches temperatures of around 370 ° C up to more than 65 mol% zinc.
  • the mixed crystal region 7 is separated from the two-phase region 10 by the edge solubility 8 '.
  • FIG. 4 shows a fourth exemplary binary system Al-Mg.
  • the invention important part in the phase diagram is the
  • the mixed crystal region 7 is through the
  • the marginal solubility for magnesium decreases, starting from eutectic temperature or the eutectic 1 1, with decreasing temperature.
  • the marginal solubility for magnesium, starting from eutectic temperature or the eutectic 1 1, also decreases with increasing temperature.
  • FIG. 5a shows a system according to the invention that is as simple as possible, comprising a first substrate 4 and a second substrate 5. Both substrates, 4 and 5, are coated with a base material 1 and a protective material 2.
  • Embodiment base material 1 and protective material 2 are not necessarily applied over the entire surface of the first substrate 4, but have experienced some structuring before bonding. In this step, possible oxide layers of the protective material 2 have already been removed.
  • FIG. 5b shows a contacting or bonding scrap of the two
  • Substrates 4 and 5 If the two substrates were structured, a prior alignment step would have to align the two substrates with each other before the actual bonding or bonding step would have occurred.
  • FIG. 5 c shows the mixed crystal 12 produced, which has been formed by the diffusion of the protective layer material 2 into the base material 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)
  • Contacts (AREA)
  • Laminated Bodies (AREA)
  • Wire Bonding (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Aufbringen einer aus einer Grundschicht und einer Schutzschicht bestehenden Bondschicht auf ein Substrat mit folgenden Verfahrensschritten: Aufbringen eines oxidierbaren Grundmaterials als Grundschicht auf eine Bondseite des Substrats, zumindest teilweises Bedecken der Grundschicht mit einem in dem Grundmaterial zumindest teilweise lösbaren Schutzmaterial als Schutzschicht. Weiterhin betrifft die Erfindung ein korrespondierendes Substrat.

Description

Verfahren zum Aufbringen einer Bondschicht
B e s c h r e i b u n g
Die Erfindung betrifft ein Verfahren gemäß Anspruch 1 sowie ein
Substrat nach Anspruch 9.
Im Stand der Technik existieren unzählige Verfahren, um
unterschiedliche Materialien miteinander zu verbinden. In der
Halbleiterindustrie hat sich in den vergangenen Jahren vor allem die Bondingtechnologie durchgesetzt, um zwei Substrate temporär oder permanent miteinander zu verbinden. Sehr oft erfolgt der Bondvorgang zwischen Halbleiter(n) und/oder Metallstrukturen auf dem Substrat. Die bekannteste Metallbondtechnologie der neueren Zeit ist das
Kupferbonden. Substrate sind die Träger für funktionelle Baugruppen wie Mikrochips, Speicherchips oder MEMS Baugruppen. In den letzten Jahren wurde zunehmend versucht, eine Verbindung zwischen, auf
unterschiedlichen Substraten angeordneten, Baugruppen herzustellen, um einen kostspieleigen, aufwendigen und fehleranfälligen Drahtbondprozess zwischen den Baugruppen zu umgehen. Des Weiteren hat die
Direktbondvariante den enormen Vorteil der erhöhten Baugruppendichte. Die Baugruppen müssen nicht mehr nebeneinander positioniert und über Drähte verbunden werden, sondern werden übereinander gestapelt und durch unterschiedliche Technologien miteinander vertikal verbunden. Die vertikalen Verbindungen werden meist über Kontaktstellen hergestellt. Die Kontaktstellen unterschiedlicher Substrate müssen zueinander deckungsgleich sein und vor dem eigentlichen Bondvorgang zueinander ausgerichtet werden.
Ein weiterer, weniger verbreiteter Prozess ist das Aluminiumbonden. Bei diesem Prozess sollen aluminierte Stellen an der Oberfläche eines
Substrats mit einem auf einem zweiten Substrat liegenden Material verbondet werden. Dabei kann es sich um Aluminium oder ein geeignetes anders Material handeln. Ein Nachteil von Aluminium ist seine extreme Sauerstoffaffinität. Bereits beim Kupfer ist die Sauerstoffaffinität so hoch, dass regelmäßig Kupferoxide vor einem Bondvorgang entfernt werden müssen. Beim Aluminium ist die Sauerstoffaffinität um ein Vielfaches höher. Noch dazu bildet Aluminium relativ dicke,
passivierende Aluminiumoxidschichten aus, die schwer zu entfernen sind. Aluminium wird im Gegensatz zum Kupfer daher weniger für Bonding Verbindungen verwendet, da derzeit aufgrund der sehr stabilen
Oxidschichten kein verlässliches Bondingergebnis mit vertretbarem Aufwand erzielbar ist. Dennoch findet Aluminium im Halbleiterbereich verbreitet Anwendung, um Metallverbindungen auf der Chipoberfläche in lateraler Richtung herzustellen. Hier zeichnet sich Aluminium dadurch aus, dass es wesentlich langsameres Diffusionsverhalten in Silizium hat als beispielsweise Kupfer oder Gold. In Silizium eindiffundierendes Metall würde die Charakteristik von Transistoren beeinträchtigen bzw. diese völlig funktionsuntüchtig machen. Basierend auf diesem
vorteilhaften Diffusionsverhalten, gepaart mit geringen Kosten und relativ guter elektrischer Leitfähigkeit hat sich Aluminium über viele Jahre als das hauptsächlich verwendete Material zur Herstellung elektrischer Verbindungen lateral auf Halbleiterchips etabliert. Zwar wird Aluminium in letzter Zeit bei Chips der neuesten Generation zunehmend durch Kupfer aufgrund seiner besseren elektrischen Leitfähigkeit ersetzt, Aluminium genießt jedoch dennoch nach wie vor eine große Bedeutung, vor allem bei Fertigung von Chips auf 200mm Substraten mit etwas älterer Fertigungstechnologie. Genau diese Fertigungsumgebungen / Fabriken finden in letzter Zeit verstärkt Verwendung für die Fertigung von MEMS (Mikro- elektro- mechanische Systeme) Bauteilen. Die Fertigung dieser MEMS Bauteile wiederum benötigt häufig Bonding Prozesse, sodass die Nachfrage nach einem verlässlichen Aluminium Bonding Prozess steigt. Aluminium ist auch außerhalb der
Halbleiterindustrie ein gefragtes, da leichtes, billiges und vor allem aushärtbares Konstruktionsmaterial. In der Halbleiterindustrie wird aufgrund oben genannter Gründe seit längerem versucht, Prozesse zu entwickeln, die Aluminium als Strukturmaterial und insbesondere
Material für Bonding-Verbindungen verwendbar machen.
Das größte Problem bei der Verwendung von sauerstoffaffinen
Materialien wie Kupfer und Aluminium ist die Vermeidung der Oxidation an Bondflächen und/oder die restlose Entfernung des Oxids von
Bondflächen vor einem Bondvorgang. Extrem sauerstoffaffine
Materialien wie Aluminium erzeugen darüber hinaus starke und schwer reduzierbare Oxide. Anlagen zur Oxidentfernung sind teuer, aufwendig und unter Umständen gefährlich (Giftstoffe). Es ist daher die Aufgabe der vorliegenden Erfindung, ein Verfahren sowie ein mit einer Bondschicht versehenes Substrat anzugeben, mit dem ein oxidierbares Material (wie insbesondere Aluminium) zum Bonden verwendet werden kann.
Diese Aufgabe wird mit den Merkmalen der Ansprüche 1 und 9 gelöst. Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben. In den Rahmen der Erfindung fallen auch sämtliche
Kombinationen aus zumindest zwei von in der Beschreibung, den
Ansprüchen und/oder den Figuren angegebenen Merkmalen. Bei angegebenen Wertebereichen sollen auch innerhalb der genannten
Grenzen liegende Werte als Grenzwerte offenbart und in beliebiger Kombination beanspruchbar sein.
Grundgedanke der vorliegenden Erfindung ist es, eine aus einer
Grundschicht und einer Schutzschicht bestehende Bondschicht,
insbesondere als Diffusionspaar, auf dem Substrat vorzusehen, wobei ein Grundmaterial der Grundschicht oxidierbar ist, während ein
Schutzmaterial der Schutzschicht zumindest weniger leicht oxidierbar ist.
Die Erfindung handelt daher insbesondere von einem Prozess, bei dem die Oxidation von sauerstoffaffinen Materialien wie insbesondere
Aluminium (bevorzugt) oder Kupfer von vornherein verhindert wird. Der Schutz des sauerstoffaffinen Grundmaterials wird erfindungsgemäß insbesondere durch die Abscheidung eines Schutzmaterials erreicht, welches das Grundmaterial zumindest teilweise, insbesondere
überwiegend, vorzugsweise vollständig, bedeckt. Die objektive Einteilung der Elemente in Bezug auf ihre Sauerstoffaffinität lässt sich am einfachsten durch die elektrochemische Spannungsreihe definieren. Sauerstoffaffine Elemente wie Lithium sind extrem unedel, werden leicht oxidiert, wirken daher als Reduktionsmittel, geben leicht Elektronen ab und besitzen daher ein extrem negatives Standardelektrodenpotential. Dagegen werden Elemente mit einer geringen Sauerstoffaffinität als edel bezeichnet, da diese leicht reduziert werden können und daher als Oxidationsmittel wirken, Elektronen aufnehmen sowie ein extrem positives Standardelektrodenpotential besitzen. Als Grundmaterial wird insbesondere ein Material mit einem Standardelektrodenpotential verwendet, dass kleiner ist als 2.00 V, mit Vorzug kleiner als 1.00 V, mit größerem Vorzug kleiner ist als 0.0 V, mit größtem Vorzug kleiner ist als - 1.0 V, mit allergrößtem Vorzug kleiner ist als -2.0 V, am bevorzugtesten kleiner ist als -3.0 V. Kupfer besitzt eine Standardelektrodenpotential von ca. 0.16 V, Aluminium von ca. - 1 .66 V. Das edelste Metall ist Gold mit einem
Standardelektrodenpotential von ca. 1.69 V (für die erste
Oxidationsstufe).
In einer besonders bevorzugten Variante befinden sich das Grundmaterial und das Schutzmaterial als voneinander getrennte Targets in einer
Beschichtungskammer und werden unter Vakuum nacheinander
aufgetragen, sodass kein Kontakt des Grundmaterials mit einer
sauerstoffhaltigen Atmosphäre entsteht.
Eine Ausführungsform der Erfindung besteht darin, das Schutzmaterial während des Bondprozesses auf dem Grundmaterial zu belassen und das Schutzmaterial auf Grund seiner chemisch-physikalischen Eigenschaften während des Bondprozesses im Grundmaterial zumindest teilweise, insbesondere überwiegend, vorzugsweise vollständig, zu lösen. Die Auswahl der Grundmaterial-Schutzmaterialkombination erfolgt derart, dass diese einen Festkörperlösungsprozess zulässt. Bevorzugt ist das Schutzmaterial besser in dem Grundmaterial lösbar als umgekehrt.
Das Schutzmaterial löst sich insbesondere bei bestimmten
Prozessbedingungen im Grundmaterial. Das Grundmaterial besitzt daher eine Randlöslichkeit für das Schutzmaterial und/oder das Grundmaterial ist mit dem Grundmaterial zumindest teilweise, insbesondere
überwiegend, vorzugsweise vollständig, mischbar. Bei einer vorhandenen Randlöslichkeit des Schutzmaterials im Grundmaterial ist die
Randlöslichkeit bei Raumtemperatur insbesondere groß genug, um eine gewisse Menge des Schutzmaterials gelöst zu halten. Auf diese Weise kann das Schutzmaterial erfindungsgemäß als extrem dünne Schicht aufgetragen werden, um während des Diffusionsprozesses des
Schutzmaterials in das Grundmaterial lokale Konzentrationsüberhöhungen zu vermeiden, die zu einer (ungewollten) Ausscheidung führen können.
Ein weiterer, erfindungsgemäßer und vorteilhafter Aspekt der
vorliegenden Erfindung besteht darin, einen Kontakt des
sauerstoffaffinen Grundmaterials mit einer sauerstoffhaltigen oder sauerstoffreichen Atmosphäre zu vermeiden, insbesondere durch zumindest überwiegendes Bedecken der nicht vom Substrat bedeckten Flächen der Grundschicht mit der Schutzschicht.
Das Schutzmaterial selbst ist vorzugsweise ein Festkörper, insbesondere zumindest bei Raumtemperatur. Dieser ist daher nicht flüssig und erlaubt den Transport des geschützten Grundmaterials durch eine
sauerstoffhaltige Atmosphäre. In einer vorteilhaften Ausführungsform der Erfindung wird das
Schutzmaterial so ausgewählt, dass dieses weniger sauerstoffaffin ist als das Grundmaterial oder ein etwaiges, auf dem Schutzmaterial gebildetes Oxid mit einfacheren Mitteln entfernbar ist als es bei einem auf dem Grundmaterial gebildeten Oxid der Fall wäre. Mit Vorteil wird
oxidausbildendes Material für die Schutzschicht derart gewählt, dass neben der einfachen Entfernung des Oxids nach der Oxidentfernung neues Oxid auch nur langsam wieder gebildet wird. Insbesondere verstreichen mindestens 2 min, mit Vorzug mindestens 5 min, mit größerem Vorzug mindestens 10 min und mit größtem Vorzug mindestens 15 min, bis weniger als 0,3 nm Oxid, mit Vorzug weniger als 0, lnm Oxid
nachgebildet werden.
Eine Aufnahme eines etwaigen, auf der Schutzschicht gebildeten Oxids in das Grundmaterial wird erfindungsgemäß insbesondere zumindest überwiegend verhindert. Hierzu wird das Oxid des Schutzmaterials insbesondere unmittelbar vor einem Bondvorgang entfernt. Bei geringer Menge an gebildetem Oxid sind auch ein Brechen des Oxids während des später erwünschten Bondvorgangs und ein direkter Einbau in die
Grenzschicht denkbar. Bevorzugt werden Schutzmaterialien mit einer oder mehreren der nachfolgend aufgeführten Eigenschaften verwendet:
• Eine geringe Sauerstoffaffinität, insbesondere definiert durch ein Standardelektrodenpotential von mehr als 0 V, mit Vorzug mehr als 1.00 V, mit größerem Vorzug mehr als 2.00 V, vorzugsweise geringer als die Sauerstoffaffinität des Grundmaterials,
• Eine hohe Löslichkeit im Grundmaterial, insbesondere mehr als 10" 5 mol %, mit Vorzug mehr als 10"3 mol %, mit größerem Vorzug mehr als 1 mol %, mit größtem Vorzug mehr als 10 mol %, mit allergrößtem Vorzug mehr als 40 mol %
• Die Eigenschaften des Grundmaterials nicht negativ beeinflussen, daher bei gewünschter hoher Leitfähigkeit die Leitfähigkeit nicht verschlechtern, bei gewünschter hoher Festigkeit, die Festigkeit nicht verringern,
• Gegenüber der Atmosphäre dicht,
• Kostengünstig,
• Hohe Verfügbarkeit,
• Gering toxisch, insbesondere nicht toxisch, und/oder
• gute Bondeigenschaften.
Die Erfindung betrifft demnach insbesondere eine Methode, ein zur Oxidation neigendes erstes Material, das Grundmaterial, insbesondere ein Metall oder einen Halbleiter, mit einem zweiten Material, dem
Schutzmaterial, zu bedecken, insbesondere beschichten. Das
Schutzmaterial wird insbesondere in einem weiteren Prozessschritt durch einen Lösungsprozess vom Grundmaterial zumindest teilweise, insbesondere überwiegend, vorzugsweise vollständig, gelöst und/oder bildet in einer ganz speziellen, erweiterten Ausführungsform teilweise, insbesondere überwiegend, vorzugsweise vollständig, Ausscheidungen. Die erfindungsgemäß bevorzugte Ausführungsform umfasst eine vollständige Lösung des Schutzmaterials im Grundmaterial, wobei in diesem Fall keine Ausscheidungen entstehen. Die Aufgabe der aus dem Schutzmaterial gebildeten Schutzschicht besteht insbesondere in der Verhinderung der Oxidation des Grundmaterials. Das Schutzmaterial kann selbst bei Kontakt mit einer sauerstoffhaltigen Atmosphäre oxidieren und wird gegebenenfalls vom Oxid befreit, bevor der erfindungsgemäße Lösungsprozess im Grundmaterial beginnt. In einer ganz besonderen Ausführungsform wird die Entfernung dieses Oxids auf der Schutzschicht in einer Anlage durchgeführt, in der eine erneute Oxidation der Schutzschicht auf dem Weg zum Bonder
kontruktionsbedingt verhindert wird. Denkbar wäre beispielsweise die Verwendung eines Oxidentfernungsmoduls und einer Bondkammer in einem entsprechenden Vakuumcluster, der die Module von der
umgebenden, sauerstoffhaltigen Atmosphäre trennt. Dem Fachmann sind derartige Clustersysteme bestens bekannt.
Das bevorzugte Ziel des erfindungsgemäßen Prozesses besteht vor allem darin, sauerstoffaffine Grundmaterialien, insbesondere Aluminium aber auch Kupfer, die in einem weiteren Prozessschritt gebondet werden sollen, bis zum eigentlichen Bondschritt vor einer Oxidation zu schützen. Die Entfernung von etwaigen Oxiden des Schutzmaterials, das
vorzugsweise eine viel geringere Sauerstoffaffinität als das zu schützende Grundmaterial aufweist, ist erheblich einfacher, schneller und vor allem verlässlicher, so dass der Prozess beschleunigt werden kann.
Gemäß einer bevorzugten Ausführungsform wird das Schutzmaterial, insbesondere nach einer Entfernung von Oxiden des Schutzmaterials, anschließend mit einem weiteren, insbesondere erfindungsgemäß gebildeten, Substrat gebonded. Bevorzugt wird das Schutzmaterial noch während des Bondprozesses im Grundmaterial zumindest teilweise, insbesondere überwiegend, vorzugsweise vollständig, gelöst, sodass im Idealfall bis zum Bonden kein Kontakt zwischen dem Grundmaterial und der sauerstoffreichen Atmosphäre entsteht.
Die erfindungsgemäße Methode eignet sich daher vor allem dazu, sauerstoffaffine Grundmaterialien, insbesondere Aluminium oder Kupfer, direkt nach der Beschichtung auf einem Substrat, temporär mit dem Schutzmaterial zu schützen.
Soweit das Grundmaterial nicht vollflächig, sondern insbesondere strukturiert und/oder nur in Teilbereichen (beispielsweise Kupferkontakte oder Aluminiumbegrenzungen, die Teil eines hermetisch verschlossenen Raumes eines MEMS-Bauteile werden sollen), auf dem Substrat aufgebracht wird, wird das Schutzmaterial als möglichst gleichmäßig dicker, insbesondere geschlossener Film aufgebracht. Erfindungsgemäß wichtig ist vor allem das Verhältnis der (insbesondere mittleren)
Schichtdicke des Grundmaterials zur Schichtdicke des Schutzmaterials. Außerdem spielt das chemische, physikalische und/oder metallurgische Verhalten des Grundmaterials mit dem Schutzmaterial erfindungsgemäß eine Rolle.
Das Grundmaterial ist bevorzugt ein festes Lösungsmittel. Insbesondere kann das Grundmaterial ein Mehrphasen-Mehrkomponentensystem sein. Im Falle eines Mehrphasenmaterials gelten alle Überlegungen für den Lösungsprozess zumindest für eine Phase, im Idealfall für alle Phasen. Bevorzugt wird als Grundmaterial ein einzelnes chemisches Element ausgewählt, insbesondere ein Metall, ein Halbmetall oder ein
Nichtmetall, insbesondere Silizium, Gallium, Aluminium, Nickel, Titan oder Kupfer. Diese Metalle sind die am häufigsten in der
Halbleiterindustrie verwendeten Materialien zur Herstellung von leitfähigen Verbindungen, Kontakten oder Strukturbausteinen
(beispielsweise von MEMS-Baugruppen).
Um den erfindungsgemäßen Prozess möglichst einfach zu offenbaren, wird beispielhaft, aber nicht einschränkend, der erfindungsgemäße Prozess am Grundmaterial Aluminium beschrieben. Aluminium ist erfindungsgemäß besonders geeignet, da es ein hoch verfügbares, kostengünstiges Strukturmaterial ist.
Das Schutzmaterial kann insbesondere ebenfalls ein Mehrphasen- Mehrkomponentensystem sein, ist aber vorzugsweise ein einfaches chemisches Element, das vorzugsweise nur in einer Phase vorkommt. Mit Vorzug handelt es sich dabei um ein Metall, ein Halbmetall, ein Alkalioder ein Erdalkalimetall. Erfindungsgemäß denkbar wäre auch die
Verwendung von nichtmetallischen Elementen wie Kohlenstoff, solange die chemisch-physikalischen Eigenschaften zwischen dem Nichtmetall mit Grundmaterial im Sinne des erfindungsgemäßen Prozesses
korrespondieren.
Folgende Materialien kommen erfindungsgemäß grundsätzlich als
Grundmaterial und/oder Schutzmaterial in Betracht. Die
erfindungsgemäßen Prozesse setzen dabei voraus, dass das Schutzmaterial im Grundmaterial zumindest teilweise, insbesondere überwiegend, vorzugsweise vollständig, lösbar ist.
• Metalle, insbesondere
o Cu, Ag, Au, AI, Fe, Ni, Co, Pt, W, Cr, Pb, Ti, Te, Sn, Zn, Ga
• Alkalimetalle, insbesondere
o Li, Na, K, Rb, Cs
• Erdalkalimetalle, insbesondere
o Mg, Ca, Sr, Ba,
• Legierungen,
• Halbleiter, insbesondere mit entsprechender Dotierung versehen, o Elementhalbleiter, insbesondere Si, Ge, Se, Te, B, Sn,
o Verbindungshalbleiter, insbesondere
GaAs, GaN, InP, InxGal -xN.InSb, In As, GaSb, A1N, InN, GaP, BeTe, ZnO, CuInGaSe2, ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, Hg(l -x)Cd(x)Te, BeSe, HgS, AlxGal -xAs, GaS, GaSe, GaTe, InS, InSe, InTe, CuInSe2, CuInS2, CuInGaS2, SiC, SiGe.
Zur Entfernung von Oxidschichten des Schutzmaterials einen sich bevorzugt folgende Prozesse :
Chemische Oxidentfernung, insbesondere durch ein o gasförmiges Reduktionsmittel und/oder
o flüssiges Reduktionsmittel
• Physikalische Oxidentfernung, insbesondere mit Plasma,
• Ion Assisted Chemical Etching, insbesondere
o Fast Ion Bombardement (FAB, Sputtern), o Schleifen und/oder
o Polieren.
Zur Abscheidung, daher Synthese des Grundmaterials und/oder der Schutzschicht, kommen folgende Prozesse in Frage
• Physikalische Gasphasenabscheidungen (engl. : physical vapour deposition, PVD)
• Chemische Gasphasenabscheidungen (engl. : chemical vapour
deposition, CVD)
• Galvanische Verfahren
• Sol-Gel Verfahren Die erfindungsgemäßen Systeme aus Grundschicht und Schutzschicht werden als Schichtsysteme konzipiert und stellen insbesondere ein System dar, dass sich nicht im thermodynamischen Gleichgewicht befindet. Dadurch wird bei gegenüber Raumtemperatur erhöhter
Temperatur eine Interdiffusion, vorzugsweise zumindest überwiegend, insbesondere ausschließlich, eine Diffusion des Schutzmaterials in das Grundmaterial, zwischen Grundmaterial und Schutzmaterial bewirkt.
Die erfindungsgemäßen Systeme sind insbesondere als Diffusionspaar ausgelegt. Die beschriebenen Phasendiagramme sowie etwaige
Phasendiagramme der vorgenannten Materialkombinationen stellen Gleichgewichtszustände mehrerer Phasen bei unterschiedlichen
Temperaturen und Konzentrationen dar. Die Schlüsse, die man aus Gleichgewichtsdiagrammen wie den Phasendiagrammen in Bezug auf kinetische Prozesse wie Diffusion ziehen kann, sind sehr beschränkt. Grundsätzlich erlauben Gleichgewichtsdiagramme keine Aussage über kinetische Prozesse. Die Phasendiagramme dienen daher ausschließlich dazu, eine Abschätzung zu treffen, ob sich das Schutzmaterial generell bei einer gewissen Temperatur im Grundmaterial lösen könnte. Soweit es während des Diffusionsprozesses des Schutzmaterials in das
Grundmaterial zu lokalen Konzentrationsanhäufungen kommt, welche die Löslichkeit des Schutzmaterials im Grundmaterial überschreiten und damit zu einer möglichen Entmischung, Phasenbildung oder ähnlichem führen, wird dies bei der nachfolgenden Beschreibung vernachlässigt. Im weiteren Verlauf wird grundsätzlich davon ausgegangen, dass die
Diffusion des Schutzmaterials in das Grundmaterial so schnell erfolgt, dass bei gegebener Temperatur zu keinem Zeitpunkt in keinem Punkt des Grundmaterials die maximale Löslichkeit an Schutzmaterial überschritten wird. Dies wird erfindungsgemäß insbesondere erreicht, je größer die Löslichkeit des Schutzmaterials im Grundmaterial bei gegebener
Temperatur ist, je schneller das Schutzmaterial im Grundmaterial diffundiert und/oder je geringer der Übergang an Schutzmaterial in das Grundmaterial in der Grenzfläche Schutzmaterial-Grundmaterial sind.
Die abgebildeten und beschriebenen Phasendiagramme wurden
metallurgisch ermittelt. Manche Komponenten besitzen eine sehr geringe Löslichkeit in der jeweils zweiten Komponente, so dass die
Löslichkeitsgrenze auf Grund der Darstellung kaum erkennbar ist.
Um den erfindungsgemäßen Gedanken besser beschreiben zu können, wird der erfindungsgemäße Gedanke an mehreren, möglichst einfachen Systemen beschrieben. Als Grundmaterial wird das technisch sehr wichtige und bisher sehr schwer zu bondende Material Aluminium verwendet. Es handelt sich daher beim Grundmaterial nach der
Abscheidung auf der Bondseite des Substrats um ein Einkomponenten- Einphasensystem.
Als Schutzmaterialien für die Schutzschicht werden nachfolgend beispielhaft vier wichtige Materialien vorgestellt, welche die
erfindungsgemäß notwendigen Eigenschaften besitzen, nämlich
Germanium, Gallium, Zink und Magnesium. Es handelt sich daher beim Schutzmaterial nach der Abscheidung ebenfalls um ein Einkomponenten- Einphasensystem. Die vorgenannten Materialkombination sind
erfindungsgemäß bevorzugt, wobei auf die nachfolgend beschriebenen Beispiele mit den genannten Vorteilen bezogen auf die individuelle Materialkombination verwiesen wird. Das System Grundmaterial-Schutzmaterial der Bondschicht ist demnach ein Schichtsystem, welches vorzugsweise während des Bondprozesses durch einen Lösungsprozess in ein Zweikomponenten-Einphasensystem überführt wird. Dabei entsteht vorzugsweise ein Mischkristall aus
Grundmaterial und Schutzmaterial. Der Bondprozess selbst findet entweder in einer Inertgasatmosphäre, bevorzugter allerdings im Vakuum statt.
In einer vorteilhaften Ausführungsform der vorliegenden Erfindung sind Ausscheidungen erwünscht, insbesondere indem nach dem (erfolgreichen) Bondvorgang mindestens eine Wärmebehandlung erfolgt, um durch zumindest teilweise, insbesondere überwiegende, vorzugsweise
vollständige, Ausscheidung des Schutzmaterials aus dem Grundmaterial ein Zweikomponenten-Zweiphasensystem zu erzeugen.
Nachfolgend wird an Hand vorteilhafter Ausführungsbeispiele die
Erfindung erläutert, wobei die Ausführungsbeispiele jeweils für sich betrachtet eigenständige Erfindungsaspekte sein können, die als separate Erfindungen offenbart und beanspruchbar sein sollen, insbesondere in Kombination mit der obigen allgemeinen Offenbarung.
Erstes Ausführungsbeispiel
Ein erstes System, an dem der erfindungsgemäße Gedanke angewandt werden kann ist das System Aluminium-Germanium, kurz Al-Ge. Das binäre System Al-Ge ist ein rein eutektischen System mit einer teilweisen Randlöslichkeit für Germanium in Aluminium und einer verschwindend geringen Randlöslichkeit von Aluminium in Germanium. Als
Grundmaterial wird daher das Aluminium gewählt.
Um das Aluminium vor Oxidation zu schützen, wird es nach der erfolgreichen Abscheidung auf dem Substrat sofort mit einer
Germaniumschicht als Schutzschicht bedeckt. Germanium ist daher das erfindungsgemäße Schutzmaterial.
Die Germaniumschicht ist insbesondere kleiner als ΙΟμπι, mit Vorzug kleiner als Ι μιη, mit größerem Vorzug kleiner als lOOnm, mit größtem Vorzug kleiner als lOnm, mit allergrößtem Vorzug kleiner als lnm.
Die Abscheidung erfolgt bei möglichst geringen Temperaturen, um eine teilweise oder sogar vollständige Diffusion des Germaniums bei erhöhter Temperatur in das Aluminium zu verhindern oder zumindest zu
unterdrücken.
Die Temperatur des Aluminiums ist bei der Abscheidung des Germaniums kleiner als 600°C, mit Vorzug kleiner als 500°C, mit größerem Vorzug kleiner als 400°C, mit größtem Vorzug kleiner als 300°C, mit
allergrößtem Vorzug kleiner als 200°C, am bevorzugtesten kleiner als 100°C. In besonderen Fällen kann das Aluminium sogar aktiv gekühlt werden um die Temperatur weiter zu senken. Durch die möglichst niedrige Temperatur wird ein auf dem Aluminium abgeschiedenes
Germanium sofort in seiner thermischen Bewegung behindert und verbleibt vorzugsweise an der Oberfläche, diffundiert daher nicht in das Aluminium. Des Weiteren wird durch die besonders geringe Löslichkeit des
Germaniums im Aluminium bei niedrigen Temperaturen die Diffusion des Germaniums in das Aluminium erschwert. Germanium dient ab diesem Zeitpunkt als Schutzmaterial für das Aluminium. Wird das System einer sauerstoffhaltigen Atmosphäre ausgesetzt, oxidiert zumindest
überwiegend, vorzugsweise vollständig, das Germanium und dieses schützt somit das Aluminium vor Oxidation, indem es das Aluminium gegenüber der Atmosphäre abdichtet.
Zu beachten ist hierbei, dass das Standardelektrodenpotential von
Germanium ca. 0.12V, das des Aluminiums ca. - 1.66V beträgt.
Germanium ist daher edler als Aluminium und ist demzufolge nicht in der Lage, Aluminium chemisch als Opferanode zu schützen.
Dementsprechend dicht wird die Germaniumschicht aufgebracht, um eine physikalische Barriere zwischen dem Aluminium und der Atmosphäre aufzubauen.
Um einen Bond zwischen Aluminium und einem gewünschten zweiten Material durchzuführen, werden zuerst die allfällig gebildeten
Germaniumoxide vom Germanium entfernt. Die Entfernung der
Germaniumoxide erfolgt auf physikalischem und/oder chemischem Wege. Denkbar ist ein Absputtern der Oxide, eine nasschemische Entfernung durch reduzierende Säuren, eine Reduktion durch Wasserstoff oder andere gasförmige Reduktionsmittel. Nach der Entfernung der Germaniumoxide erfolgt möglichst schnell die Kontaktierung der reinen
Germaniumoberfläche mit der zu bondenden Oberfläche, insbesondere einem analog, insbesondere erfindungsgemäß, aufgebauten Substrat . Der Bondprozess erfolgt bei gegenüber Raumtemperatur erhöhter
Bondtemperatur. Die Bondtemperatur ist dabei insbesondere größer als 25°C, mit Vorzug größer als 100°C, mit größerem Vorzug größer als 200°C, mit größtem Vorzug größer als 300°C, mit allergrößtem Vorzug größer als 400°C, am bevorzugtesten um die 426°C. Aluminium besitzt laut Phasendiagramm bei ca. 426°C die größte Löslichkeit für Germanium von ca. 2.5 Mol %. Erfindungsgemäß wird in bevorzugter Ausführung die Ausbildung einer flüssigen, eutektischen Phase im Grenzbereich verhindert, indem die bevorzugte Bondtemperatur unterhalb der eutektischen Temperatur, insbesondere zwischen 400°C-420°C, liegt. In diesem Temperaturbereich ist die Löslichkeit des Germaniums im
Aluminium immer noch hoch genug, um eine Lösung des Germaniums im Aluminium zu begründen. Erfindungsgemäß wird die Bondtemperatur während des Bondprozesses bis zum zumindest überwiegenden, vorzugsweise vollständigen, Lösen des Germaniums im Aluminium bei dieser Temperatur konstant gehalten.
Die für das Lösen benötigte Zeit kann durch die Lösung der
eindimensionalen Diffusionsgleichung bei Kenntnis der
Diffusionskonstanten von Germanium in Aluminium berechnet werden. Dennoch kann es notwendig und sinnvoll sein, die Temperatur kürzer oder länger zu halten. Die Zeitspanne zum Lösen des Germaniums im Aluminium wird erfindungsgemäß insbesondere größer als 1 Minute, mit Vorzug größer als 10 Minuten, mit größerem Vorzug größer als 30 Minuten, mit größtem Vorzug größer als 1 Stunde, mit allergrößtem Vorzug größer als 2 Stunden, am bevorzugtesten größer als 5 Stunden, eingestellt. Während des Lösungsvorgangs wird mit Vorzug der Druck auf die miteinander zu bondenden Substrat aufrechterhalten oder erhöht. Der auf die Bondschicht einwirkende Druck ist insbesondere größer als 1 Pa, mit Vorzug größer als 100 Pa, mit größerem Vorzug größer als 10000 Pa, mit größtem Vorzug größer als 1 MPa, mit allergrößtem Vorzug größer als 10 MPa, am bevorzugtesten größer als 100 MPa. Die verwendeten Kräfte, insbesondere bezogen auf Standardwafer, sind größer als 10 N, mit Vorzug größer als 100 N, mit größtem Vorzug größer als 1000 N, mit allergrößtem Vorzug größer als 10000 N, am bevorzugtesten größer als 100000 N.
Während des Lösungsvorgangs löst sich das Germanium bevorzugt im gesamten Aluminium auf. Auf Grund der Tatsache, dass die Menge an aufzulösendem Germanium sehr gering, gleichzeitig die Menge des lösenden Aluminiums sehr groß ist, ist die Gesamtkonzentration des Germaniums im Aluminium sehr klein. Die Gesamtkonzentration des Germaniums im Aluminium ist insbesondere kleiner als 1 mol %, mit Vorzug kleiner als 10"3 mol %, mit Vorzug kleiner als 10"5 mol %, mit größtem Vorzug kleiner als 10"7 mol %. Das Germanium löst sich mit Vorzug nicht nur ausschließlich in der oberflächennahen Region des Aluminiums sondern diffundiert möglichst tief in das Aluminium, mit Vorzug so tief, dass man nach einer gewissen Zeit eine Gleichverteilung des Germaniums im Aluminium erreicht hat.
In einer ersten erfindungsgemäßen Vorgehensweise wird dafür gesorgt, dass es während des Abkühlungsprozesses nicht zur Überschreitung der Randlöslichkeit des Germaniums im Aluminium kommt, sodass
Germanium immer vollständig im Aluminium gelöst bleibt. Dadurch wird die Ausscheidung von Germanium in der Aluminiummatrix im gesamten Temperaturbereich verhindert. Dies wird erfindungsgemäß realisiert, indem ein erfindungsgemäßes Verhältnis von Aluminiumschichtdicke zu Germaniumschichtdicke gewählt wird und der Diffusionsprozess eine bestimmte Zeit läuft, bis das Germanium insbesondere überwiegend, vorzugsweise vollständig, und vor allem über den gesamten zur
Verfügung stehenden Raum im Aluminium verteilt wird. Das Verhältnis zwischen der Germaniumschichtdicke und Aluminiumschichtdicke ist dabei kleiner als 1 , mit Vorzug kleiner als 10"3, mit größerem Vorzug kleiner als 10"5, mit größtem Vorzug kleiner als 10"7, mit allergrößtem Vorzug kleiner als 10"9, am bevorzugtesten kleiner als 10"u .
In einer alternativen erfindungsgemäßen Vorgehensweise wird die Germaniumschichtdicke so eingestellt, dass bei höheren Temperaturen eine, insbesondere zumindest überwiegende, vorzugsweise vollständige, Lösung des Germaniums erfolgt, beim Abkühlen allerdings ein übersättigter Mischkristall entsteht, der zu Germaniumausscheidungen führt. Diese Germaniumausscheidungen können die
Festigkeitseigenschaften des Aluminiums positiv beeinflussen. Mit Vorzug führen sie zu einer Festigkeitssteigerung des Aluminiums, insbesondere in Kombination mit einer zusätzlichen Wärmebehandlung.
Zweites Ausführungsbeispiel
Ein zweites System, an dem der erfindungsgemäße Gedanke angewandt werden kann, ist Aluminium-Gallium, kurz Al-Ga. Das binäre System Aluminium-Gallium ist ein rein eutektischen System mit einer sehr starken Entartung. Die eutektische Konzentration liegt sehr nahe an der Konzentration des reinen Galliums. Die Randlöslichkeit des Galliums in Aluminium ist außergewöhnlich hoch und erreicht ihr Maximum von ca. 7.5-8.0 Mol-% bei Temperaturen um die 125°C. Die Randlöslichkeit von Aluminium in Gallium ist dagegen verschwindend gering.
Als Grundmaterial wird daher erfindungsgemäß das Aluminium gewählt. Um das Aluminium vor Oxidation zu schützen, wird es nach der erfolgreichen Abscheidung sofort mit einer Gallium Schicht bedeckt. Die Galliumschicht wird insbesondere kleiner als 10 μηι, mit Vorzug kleiner als Ι μιη, mit größerem Vorzug kleiner als 100 nm, mit größtem Vorzug kleiner als l Onm, mit allergrößtem Vorzug kleiner als lnm ausgebildet.
Die Abscheidung erfolgt bei möglichst geringen Temperaturen, um eine teilweise oder sogar vollständige Diffusion des Galliums bei erhöhter Temperatur in das Aluminium zu verhindern oder zumindest zu unterdrücken. Gallium besitzt einen sehr geringen Schmelzpunkt von ca. 30°C. Um zu verhindern, dass die auf das Aluminium aufgebrachte Galliumschicht verflüssigt, wird eine Temperatur unterhalb von 30°C eingestellt. Erfindungsgemäß denkbar wäre es allerdings auch, dass das Gallium bei höheren Temperaturen in flüssiger Form auf dem Aluminium verbleibt, ohne die Handhabung des gesamten Wafers zu erschweren. Der Grund dürfte vor allem in der extrem geringen Menge an abgeschiedenem Gallium liegen, welches eine genügend hohe Oberflächenspannung und eine genügen hohe Adhäsion zum Aluminium aufweist, um als flüssiger Metallfilm weiter zu existieren.
Bei der zweiten Ausführungsform ist es erfindungsgemäß vorgesehen, dass das Gallium bei moderaten Temperaturen in das Aluminium diffundiert. Daher wird der anschließende Bondprozess möglichst kurz nach der Bedeckung der Grundschicht mit der Schutzschicht
durchgeführt.
Die Temperatur des Aluminiums ist bei der Abscheidung des Galliums kleiner als 300°C, mit Vorzug kleiner als 200°C, mit größerem Vorzug kleiner als 100°C, mit größtem Vorzug kleiner als 50°C, mit allergrößtem Vorzug kleiner als 30°C, am bevorzugtesten kleiner als 0°C. In
besonderen Fällen kann das Aluminium sogar aktiv gekühlt werden um die Temperatur weiter zu senken. Wird das System einer
sauerstoffhaltigen Atmosphäre ausgesetzt, oxidiert mit Vorzug das Gallium und schützt somit das Aluminium.
Zu beachten ist hierbei, dass das Standardelektrodenpotential von
Gallium ca. -0.53V, das des Aluminiums ca. - 1.66V beträgt. Gallium ist daher edler als Aluminium und ist dem zu Folge nicht in der Lage, Aluminium chemisch als Opferanode zu schützen. Dementsprechend dicht wird die Galliumschicht aufgebracht, um eine physikalische Barriere zwischen dem Aluminium und der Atmosphäre aufzubauen.
Die Randlöslichkeit von Gallium in Aluminium ist auch bei
Raumtemperatur noch extrem hoch, wenn nicht sogar knapp am Maximum von den bereits genannten 7.5-8.0 Mol %. Die Randlöslichkeit des Galliums im Aluminium nimmt erst unterhalb der Raumtemperatur wieder ab. Eine Ausscheidung von gelöstem Gallium in Aluminium kann daher bei dieser Ausführung der Erfindung vermieden werden .
Durch die besonders hohe Löslichkeit des Galliums in Aluminium, insbesondere auch noch bei Raumtemperatur, eignet sich das Material Gallium besonders dafür, in Aluminium gelöst zu werden. Erfindungsgemäß werden die Prozessparameter so eingestellt, dass die Konzentration des Galliums im Aluminium zu jeder Zeit kleiner ist als die Randlöslichkeit, da sonst ein Zweiphasensystem aus einem
Aluminiummischkristall mit Gallium und einer flüssigen Phase entstehen kann. Dies würde dazu führen, dass der Bond nicht mehr durchführbar ist, da die flüssige Phase auch noch bei Raumtemperatur existent ist.
Andererseits sind gerade der niedrige Schmelzpunkt und die Möglichkeit, sich bei extrem geringen Temperaturen zu verflüssigen, eine optimale Voraussetzung für einen späteren Bondprozess. Durch geringste
Temperaturerhöhungen wird Gallium an der Oberfläche des Aluminiums verflüssigt und passt sich so als flüssige Phase den Konturen der beiden miteinander zu verbindenden Oberflächen an. Obwohl es der eigentliche erfindungsgemäße Gedanke der Erfindung ist, das Gallium im Aluminium zu lösen, ist die Fähigkeit zur Verflüssigung bei niedrigen Temperaturen zur Unterstützung des Bondvorganges vor dem eigentlichen
Lösungsvorgang als eigenständiger Erfindungsaspekt hierdurch offenbart .
Um einen Bond zwischen Aluminium und einem gewünschten zweiten Material durchzuführen, werden zuerst die allfällig gebildeten
Galliumoxide vom Gallium entfernt. Gallium überzieht sich genauso wie Aluminium mit einer dichten Oxidschicht und wird dadurch passiviert. Mit Wasser bildet Gallium eine Galliumhydroxidschicht. Die Entfernung der Galliumoxide erfolgt auf physikalischem und/oder chemischem Wege.
Denkbar ist ein Absputtern der Oxide, eine nasschemische Entfernung durch reduzierende Säuren und/oder Laugen, eine Reduktion durch
Wasserstoff oder andere gasförmige Reduktionsmittel. Nach der
Entfernung der Galliumoxide erfolgt möglichst schnell die Kontaktierung der reinen Galliumoberfläche mit der zu bondenden Oberfläche, insbesondere einem analog, insbesondere erfindungsgemäß, aufgebauten Substrat.
Der Bondprozess erfolgt bei gegenüber Raumtemperatur erhöhter
Temperatur. Die Bondtemperatur ist dabei insbesondere größer als 25°C, mit Vorzug größer als 100°C, mit größerem Vorzug größer als 200°C, mit größtem Vorzug größer als 300°C, mit allergrößtem Vorzug größer als 400°C, am bevorzugtesten um die 426°C. Aluminium besitzt laut
Phasendiagramm zwischen 77°C und 177°C die größte Löslichkeit für Germanium von ca. 8 Mol-%.
Das Verhindern der Ausbildung einer flüssigen, eutektischen Phase im Grenzbereich wird bei einem Al-Ga-Diffusionspaar sehr schwierig. Da die Lösung des Galliums im Aluminium erfindungsgemäß bevorzugt ist und die Diffusion möglichst rasch von statten gehen soll, wird eine kurzzeitige Existenz einer flüssigen Phase erfindungsgemäß in Kauf genommen. Erfindungsgemäß wird die Bondtemperatur während des Bondprozesses bis zum zumindest überwiegenden, vorzugsweise vollständigen, Lösen des Galliums im Aluminium bei dieser Temperatur konstant gehalten.
Die benötigte Zeit kann durch die Lösung der eindimensionalen
Diffusionsgleichung bei Kenntnis der Diffusionskonstanten von Gallium in Aluminium berechnet werden. Dennoch kann es notwendig und sinnvoll sein, die Temperatur kürzer oder länger zu halten. Die
Zeitspanne zum Lösen des Galliums im Aluminium ist dabei größer als 1 Minute, mit Vorzug größer als 10 Minuten, mit größerem Vorzug größer als 30 Minuten, mit größtem Vorzug größer als 1 Stunde, mit allergrößtem Vorzug größer als 2 Stunden, am bevorzugtesten größer als 5 Stunden.
Während des Lösungsvorgangs wird mit Vorzug der Druck auf die miteinander zu bondenden Substrat aufrechterhalten, oder sogar erhöht. Der einwirkende Druck ist insbesondere größer als 1 Pa, mit Vorzug größer als 100 Pa, mit größerem Vorzug größer als 10000 Pa, mit größtem Vorzug größer als 1 MPa, mit allergrößtem Vorzug größer als 10 MPa, am bevorzugtesten größer als 100 MPa. Die verwendeten Kräfte, insbesondere bezogen auf Standardwafer, sind größer als 10 N, mit Vorzug größer als 100 N, mit größtem Vorzug größer als 1000 N, mit allergrößtem Vorzug größer als 10000 N, am bevorzugtesten größer als 100000 N.
Während des Lösungsvorganges löst sich das Gallium bevorzugt im gesamten Aluminium auf. Auf Grund der Tatsache, dass die Menge an aufzulösendem Gallium sehr gering, die Menge des lösenden Aluminiums allerdings sehr groß ist, ist die Gesamtkonzentration des Galliums im Aluminium sehr klein. Die Gesamtkonzentration des Galliums im
Aluminium ist insbesondere kleiner als 10 mol %, mit Vorzug kleiner als 5 mol %, mit Vorzug kleiner als 1 mol %, mit größtem Vorzug kleiner als 10"3 mol %. Das Gallium löst sich mit Vorzug nicht nur ausschließlich in der oberflächennahen Region des Aluminiums sondern diffundiert möglichst tief in das Aluminium, mit Vorzug so tief, dass man nach einer gewissen Zeit eine Gleichverteilung des Gallium im Aluminium erreicht hat.
In einer erfindungsgemäßen Vorgehensweise wird nun dafür gesorgt, dass es während des Abkühlungsprozesses niemals zur Überschreitung der Randlöslichkeit des Galliums im Aluminium kommt, sodass das Gallium immer vollständig im Aluminium gelöst bleibt. Dadurch wird die
Ausscheidung von Gallium in der Aluminiummatrix im gesamten
Temperaturbereich verhindert. Im System Al-Ga ist das technisch sehr einfach zu bewerkstelligen, da die Änderung der Randlöslichkeit vom Gallium im Aluminium im Temperaturbereich zwischen ca. 130°C und Raumtemperatur marginal ist, daher sich nicht besonders stark ändert. Dadurch besteht während des Abkühlprozesses praktisch keine Gefahr, dass es zu einer (nennenswerten) Ausscheidung von Gallium im
Aluminium kommt. Das Verhältnis zwischen der Galliumschichtdicke und Aluminiumschichtdicke ist dabei kleiner als 1 , mit Vorzug kleiner als 10"3, mit größerem Vorzug kleiner als 10"5, mit größtem Vorzug kleiner als 10"7, mit allergrößtem Vorzug kleiner als 10"9, am bevorzugtesten kleiner als 10" 1 1.
Drittes Ausführungsbeispiel
Ein drittes System, an dem der erfindungsgemäße Gedanke angewandt werden kann ist das System Aluminium-Zink, kurz Al-Zn. Das binäre System Aluminium-Zink ist binäres System, das ein zinkreiches
Eutektikum und ein zinkreiches Eutektoid besitzt. Für den
erfindungsgemäßen Gedanken sind insbesondere die Randlöslichkeiten der Systempartner von Bedeutung. Laut des Phasendiagrams Al-Zn besitzt Aluminium eine Randlöslichkeit für Zink und Zink eine, wenn auch geringe, Randlöslichkeit für Aluminium. Da Aluminium bevorzugt als Grundmaterial und Zink bevorzugt als Schutzschicht verwendet wird, ist nur die aluminiumreiche Seite des Phasendiagrams von Bedeutung. Um das Aluminium vor Oxidation zu schützen wird es nach der
erfolgreichen Abscheidung auf dem Substrat sofort mit einer Zinkschicht als Schutzschicht bedeckt. Zink ist somit das Schutzmaterial zum Schutz der Grundschicht vor Oxidation.
Die Zinkschicht ist insbesondere kleiner als Ι Ομπι, mit Vorzug kleiner als Ι μηι, mit größerem Vorzug kleiner als lOOnm, mit größtem Vorzug kleiner als lOnm, mit allergrößtem Vorzug kleiner als lnm.
Die Abscheidung erfolgt bei möglichst geringen Temperaturen, um eine teilweise oder sogar vollständige Diffusion des Zinks bei erhöhter Temperatur in das Aluminium zu verhindern oder zumindest zu
unterdrücken.
Die Temperatur des Aluminiums ist bei der Abscheidung des Zinks kleiner als 600°C, mit Vorzug kleiner als 500°C, mit größerem Vorzug kleiner als 400°C, mit größtem Vorzug kleiner als 300°C, mit
allergrößtem Vorzug kleiner als 200°C, am bevorzugtesten kleiner als 100°C. In besonderen Fällen kann das Aluminium sogar aktiv gekühlt werden, um die Temperatur weiter zu senken. Durch die möglichst niedrige Temperatur wird das auf dem Aluminium abgeschiedene Zink sofort in seiner thermischen Bewegung behindert und verbleibt
vorzugsweise an der Oberfläche, diffundiert daher nicht in das
Aluminium.
Des Weiteren wird durch die besonders geringe Löslichkeit des Zinks im Aluminium bei niedrigen Temperaturen die Diffusion des Zinks in das Aluminium erschwert. Zink dient ab diesem Zeitpunkt als Schutzmaterial für das Aluminium. Wird das System einer sauerstoffhaltigen Atmosphäre ausgesetzt, oxidiert zumindest überwiegend, vorzugsweise vollständig das Zink und dieses schützt somit das Aluminium vor Oxidation, insbesondere indem es das Aluminium gegenüber der Atmosphäre abdichtet.
Zu beachten ist hierbei, dass das Standardelektrodenpotential von Zink ca. -0.76V, das des Aluminium ca. -1 .66V beträgt. Zink ist daher edler als Aluminium und ist dem zu Folge nicht in der Lage, Aluminium chemisch als Opferanode zu schützen. Dementsprechend dicht wird die Zinkschicht aufgebracht, um eine physikalische Barriere zwischen
Aluminium und der Umgebung, insbesondere der Atmosphäre,
aufzubauen.
Um einen Bond zwischen Aluminium und einem gewünschten zweiten Material durchzuführen, werden zuerst die allfällig gebildeten Zinkoxide vom Zink entfernt. Die Entfernung der Zinkoxide erfolgt insbesondere auf physikalischem und/oder chemischem Wege. Erfindungsgemäß denkbar ist ein Absputtern der Oxide, eine nasschemische Entfernung durch reduzierende Säuren, eine Reduktion durch Wasserstoff oder andere gasförmige Reduktionsmittel, insbesondere Kohlenmonoxid.
Nach der Entfernung der Zinkoxide erfolgt möglichst schnell die
Kontaktierung der reinen Zinkoberfläche mit der zu bondenden
Oberfläche. Der Bondprozess erfolgt bei gegenüber Raumtemperatur erhöhter Temperatur. Die Bondtemperatur ist dabei größer als 25°C, mit Vorzug größer als 100°C, mit größerem Vorzug größer als 200°C, mit größtem Vorzug größer als 300°C, mit allergrößtem Vorzug größer als 400°C, am bevorzugtesten um die 380°C. Zink besitzt laut Phasendiagramm zwischen ca. 350°C und ca. 380°C einen extrem großen Bereich mit einer hohen Löslichkeit für Zink in Aluminium.
Erfindungsgemäß wird die Menge an abgeschiedenem Zink so gering eingestellt, dass sich nach der vollständigen und vor allem gleichmäßigen Verteilung des Zink im Aluminium keine Konzentrationen in einem Bereich über 1 Mol-% Zink, geschweige denn 50-60 Mol % Zink einstellen werden. Der große Löslichkeitsbereich ist gut dafür geeignet, allfällige lokale Konzentrationsüberhöhungen zu vermeiden, ohne den erfindungsgemäß erwünschten Konzentrationsbereich eines Mischkristalls zu verlassen. Durch eine entsprechend lange thermische Behandlung wird sich eine etwaige Konzentrationsüberhöhung des Zink im Aluminium durch eine gleichmäßige Verteilung des Zink im Aluminium wieder abbauen, sodass die abschließende, vor dem Abkühlprozess erreichte, Endkonzentration des Zink im Aluminium vorzugsweise unter der
andlöslichkeit des Zinks im Aluminium bei Raumtemperatur liegt.
Erfindungsgemäß hält man daher bevorzugt während des Bondprozesses das System für die Zeitspanne, die benötigt wird um das gesamte Zink im Aluminium zu lösen, innerhalb dieses Temperaturbereichs. Dennoch ist bereits bei ca. 280°C die Randlöslichkeit des Zinks in Aluminium groß genug, um den erfindungsgemäßen Prozess durchzuführen. Die benötigte Zeit kann durch die Lösung der eindimensionalen Diffusionsgleichung bei Kenntnis der Diffusionskonstanten von Zink in Aluminium berechnet werden. Dennoch kann es erfindungsgemäß sinnvoll sein, die Temperatur kürzer oder länger zu halten.
Die Zeitspanne zum Lösen des Zinks im Aluminium wird insbesondere größer als 1 Minute, mit Vorzug größer als 10 Minuten, mit größerem Vorzug größer als 30 Minuten, mit größtem Vorzug größer als 1 Stunde, mit allergrößtem Vorzug größer als 2 Stunden, am bevorzugtesten größer als 5 Stunden, eingestellt.
Während des Lösungsvorgangs wird mit Vorzug der Druck auf die miteinander zu bondenden Substrat aufrechterhalten oder erhöht. Der einwirkende Druck ist insbesondere größer als 1 Pa, mit Vorzug größer als 100 Pa, mit größerem Vorzug größer als 10000 Pa, mit größtem Vorzug größer als 1 MPa, mit allergrößtem Vorzug größer als 10 MPa, am bevorzugtesten größer als 100 MPa. Die verwendeten Kräfte, insbesondere bezogen auf Standardwafer, sind größer als 10 N, mit Vorzug größer als 100 N, mit größtem Vorzug größer als 1000 N, mit allergrößtem Vorzug größer als 10000 N, am bevorzugtesten größer als 100000 N.
Während des Lösungsvorganges löst sich das Zink bevorzugt im gesamten Aluminium auf. Auf Grund der Tatsache, dass die Menge an
aufzulösendem Zinks sehr gering, die Menge des lösenden Aluminiums allerdings sehr groß ist, ist die Gesamtkonzentration des Zinks im
Aluminium sehr klein. Das Zink löst sich mit Vorzug nicht nur
ausschließlich in der oberflächennahen Region des Aluminiums sondern diffundiert möglichst tief in das Aluminium, mit Vorzug so tief, dass man nach einer gewissen Zeit eine Gleichverteilung des Zinks im
Aluminium erreicht hat.
In einer ersten erfindungsgemäßen Vorgehensweise wird nun dafür gesorgt, dass es während des Abkühlungsprozesses nicht zur
Überschreitung der Randlöslichkeit des Zinks im Aluminium kommt, sodass Zink immer vollständig im Aluminium gelöst bleibt. Dadurch wird die Ausscheidung von Zink in der Aluminiummatrix im gesamten erfindungsgemäßen Temperaturbereich verhindert. Dies wird
erfindungsgemäß realisiert, indem man ein erfindungsgemäßes Verhältnis von Aluminiumschichtdicke zu Zinkschichtdicke gewählt wird und der Diffusionsprozess eine bestimmte Zeit läuft, bis das Zink vollständig, insbesondere im gesamten zur Verfügung stehenden Raum, im Aluminium verteilt ist. Das Verhältnis zwischen der Zinkschichtdicke und
Aluminiumschichtdicke ist dabei kleiner als 1 , mit Vorzug kleiner als 10"3, mit größerem Vorzug kleiner als 10"5, mit größtem Vorzug kleiner als 10"7, mit allergrößtem Vorzug kleiner als 10"9, am bevorzugtesten kleiner als 10" n .
Gemäß einer weiteren erfindungsgemäßen Vorgehensweise wird die Zinkschichtdicke so eingestellt, dass bei höheren Temperaturen eine, insbesondere zumindest überwiegende, vorzugsweise vollständige, Lösung des Zinks im Aluminium erfolgt, beim Abkühlen allerdings ein übersättigter Mischkristall entsteht, der zu Zinkausscheidungen führt. Diese Zinkausscheidungen können die Festigkeitseigenschaften des Aluminiums positiv beeinflussen. Mit Vorzug führen sie zu einer
Festigkeitssteigerung des Aluminiums, insbesondere in Kombination mit einer Wärmebehandlung.
Viertes Ausführungsbeispiel
Ein viertes System, an dem der erfindungsgemäße Gedanke angewandt werden kann, ist das System Aluminium-Magnesium, kurz Al-Mg. Das binäre System Al-Mg ist ein aus zwei Eutektika bestehendes binäres System mit Randlöslichkeit für Magnesium in Aluminium, sowie einer Randlöslichkeit für Aluminium in Magnesium. Als Grundmaterial wird bevorzugt das Aluminium gewählt.
Um das Aluminium vor Oxidation zu schützen, wird es nach der erfolgreichen Abscheidung des Magnesiummaterials sofort mit einer Magnesiumschicht bedeckt. Magnesium ist, vor allem in seiner reinen Form, ein sehr reaktives Erdalkalimetall.
Die Magnesiumschicht ist insbesondere kleiner als ΙΟμπι, mit Vorzug kleiner als Ι μηι, mit größerem Vorzug kleiner als l OOnm, mit größtem Vorzug kleiner als lOnm, mit allergrößtem Vorzug kleiner als lnm.
Die Abscheidung erfolgt bei möglichst geringen Temperaturen, um eine teilweise oder sogar vollständige Diffusion des Magnesiums bei erhöhter Temperatur in das Aluminium zu verhindern oder zumindest zu
unterdrücken.
Die Temperatur des Aluminiums ist bei der Abscheidung des Magnesiums kleiner als 600°C, mit Vorzug kleiner als 500°C, mit größerem Vorzug kleiner als 400°C, mit größtem Vorzug kleiner als 300°C, mit
allergrößtem Vorzug kleiner als 200°C, am bevorzugtesten kleiner als 100°C. In besonderen Fällen kann das Aluminium sogar aktiv gekühlt werden um die Temperatur weiter zu senken. Durch die möglichst niedrige Temperatur wird ein auf dem Aluminium abgeschiedenes
Magnesium sofort in seiner thermischen Bewegung behindert und verbleibt vorzugsweise an der Oberfläche, diffundiert daher nicht in das Aluminium. Des Weiteren wird durch die besonders geringe Löslichkeit des
Magnesiums im Aluminium bei niedrigen Temperaturen die Diffusion des Magnesiums in das Aluminium erschwert. Magnesium dient ab diesem Zeitpunkt als Schutzmaterial für das Aluminium. Wird das System einer sauerstoffhaltigen Atmosphäre ausgesetzt, oxidiert mit Vorzug das Magnesium und schützt somit das Aluminium.
Zu beachten ist hierbei, dass das Standardelektrodenpotential von
Magnesium ca. -2.36, das des Aluminiums ca. - 1 .66V beträgt. Magnesium ist daher unedler als Aluminium und ist dem zu Folge in der Lage, Aluminium chemisch als Opferanode zu schützen. Denkbar wäre vielleicht sogar, dass das abgeschiedene Magnesium direkt als
Reduktionsmittel für bereits zumindest teilweise gebildetes oder nicht vollständig entferntes, Aluminiumoxid verwendet wird. Der
Reduktionsprozess kann durch einen eigenen, zusätzlichen
Wärmebehandlungsschritt durchgeführt werden und reduziert mit Vorzug das vom Magnesium bedeckte Aluminiumoxid zu reinem Aluminium unter Bildung von Magnesiumoxid. Hierin wird insbesondere ein eigenständiger Erfindungsaspekt gesehen, der in Kombination mit beliebigen weiteren Verfahrensmerkmalen offenbart gelten und
beanspruchbar sein soll.
Um einen Bond zwischen Aluminium und einem gewünschten zweiten Material durchzuführen, müssen zuerst die allfällig gebildeten
Magnesiumoxide vom Magnesium entfernt werden. Die Entfernung der Magnesiumoxide erfolgt auf physikalischem und/oder chemischem Wege. Erfindungsgemäß denkbar ist ein Absputtern der Oxide, eine
nasschemische Entfernung durch reduzierende Säuren, eine Reduktion durch Wasserstoff oder andere gasförmige Reduktionsmittel. Zu bedenken ist hierbei, dass Magnesiumoxide ziemlich stabile Strukturen sein dürften, die auf nasschemischem Weg nur sehr schwer vollständig zu entfernen sind, wodurch sich physikalische Methoden erfindungsgemäß eher eignen.
Nach der Entfernung der Magnesiumoxide erfolgt möglichst schnell die Kontaktierung der reinen Magnesiumoberfläche mit der zu bondenden Oberfläche. Der Bondprozess erfolgt bei erhöhter Temperatur. Die
Bondtemperatur ist dabei größer als 25°C, mit Vorzug größer als 100°C, mit größerem Vorzug größer als 200°C, mit größtem Vorzug größer als 300°C, mit allergrößtem Vorzug größer als 400°C, am bevorzugtesten um die 426°C.
Aluminium besitzt laut Phasendiagramm bei ca. 452°C die größte
Löslichkeit für Magnesium von ca. 16 Mol %. Möchte man allerdings die Ausbildung einer flüssigen Phase im Grenzbereich verhindern und nur dafür sorgen, dass das feste Magnesium im festen Aluminium gelöst wird, liegt die bevorzugte Bondtemperatur unterhalb der genannten 452°C. In diesem Temperaturbereich ist die Löslichkeit des Magnesiums im
Aluminium immer noch hoch genug, um eine merkliche Lösung des Magnesiums im Aluminium zu bewirken. Erfindungsgemäß wird die Temperatur für die Zeit der, insbesondere überwiegenden, vorzugsweise vollständigen, Lösung des Magnesiums im Aluminium gehalten. Die benötigte Zeit kann durch die Lösung der eindimensionalen
Diffusionsgleichung bei Kenntnis der Diffusionskonstanten von
Magnesium in Aluminium berechnet werden. Erfindungsgemäß kann es sinnvoll sein, die Temperatur kürzer oder länger zu halten. Die Zeitspanne zum Lösen des Magnesiums im Aluminium wird insbesondere größer als 1 Minute, mit Vorzug größer als 10 Minuten, mit größerem Vorzug größer als 30 Minuten, mit größtem Vorzug größer als 1 Stunde, mit allergrößtem Vorzug größer als 2 Stunden, am bevorzugtesten größer als 5 Stunden, eingestellt.
Während des Lösungsvorgangs wird mit Vorzug der Druck auf die miteinander zu bondenden Substrate aufrechterhalten oder erhöht. Der einwirkende Druck ist insbesondere größer als 1 Pa, mit Vorzug größer als 100 Pa, mit größerem Vorzug größer als 10000 Pa, mit größtem Vorzug größer als 1 MPa, mit allergrößtem Vorzug größer als 10 MPa, am bevorzugtesten größer als 100 MPa. Die verwendeten Kräfte, die auf den Wafer einwirken sine größer als 10 , mit Vorzug größer als 100 N, mit größtem Vorzug größer als 1000 N, mit allergrößtem Vorzug größer als 10000 N, am bevorzugtesten größer als 100000 N.
Während des Lösungsvorgangs löst sich das Magnesium bevorzugt im gesamten Aluminium auf. Auf Grund der Tatsache, dass die Menge an aufzulösendem Magnesium sehr gering, die Menge des lösenden
Aluminiums sehr groß ist, ist die Gesamtkonzentration des Magnesiums im Aluminium sehr klein. Das Magnesium löst sich mit Vorzug nicht nur ausschließlich in der oberflächennahen Region des Aluminiums sondern diffundiert möglichst tief in das Aluminium, mit Vorzug so tief, dass man nach einer gewissen Zeit eine Gleichverteilung des Germaniums im Aluminium erreicht hat.
In einer ersten erfindungsgemäßen Vorgehensweise wird dafür gesorgt, dass es während des Abkühlungsprozesses nicht zu einer Überschreitung der Randlöslichkeit des Magnesiums im Aluminium kommt, sodass Magnesium vollständig im Aluminium gelöst bleibt. Dadurch wird die Ausscheidung einer stöchiometrischen Aluminium-Magnesiumphase in der Aluminiummatrix im gesamten, erfindungsgemäßen
Temperaturbereich verhindert. Dies wird erfindungsgemäß realisiert, indem man ein erfindungsgemäßes Verhältnis von Aluminiumschichtdicke zu Magnesiumschichtdicke wählt und dem Diffusionsprozess genug Zeit gibt, das Magnesium vollständig, und vor allem über den gesamten zur Verfügung stehenden Raum, im Aluminium zu verteilen. Das Verhältnis zwischen der Magnesiumschichtdicke und Aluminiumschichtdicke wird insbesondere kleiner als 1, mit Vorzug kleiner als 10"3, mit größerem Vorzug kleiner als 10"5, mit größtem Vorzug kleiner als 10*7, mit allergrößtem Vorzug kleiner als 10"9, am bevorzugtesten kleiner als 10" 1 1, gewählt.
In einer alternativen, erfindungsgemäßen Vorgehensweise wird die Magnesiumschichtdicke so eingestellt, dass bei höheren Temperaturen zwar eine, insbesondere überwiegende, vorzugsweise vollständige, Lösung des Magnesiums erfolgt, beim Abkühlen allerdings ein
übersättigter Mischkristall entsteht, der zur Ausscheidung der
stöchiometrischen Aluminium-Magnesiumphase führt. Die Aluminium- Magnesiumphasenausscheidungen können die Festigkeitseigenschaften des Aluminiums positiv beeinflussen. Mit Vorzug führen sie zu einer Festigkeitssteigerung des Aluminiums, insbesondere in Kombination mit einer Wärmebehandlung.
In ganz besonderen Ausführungsformen wird das Grundmaterial vor der Abscheidung des Schutzmaterials geschliffen und/oder poliert. Dabei kommt es zu einer Planarisierung der Oberfläche, die für den späteren Bondprozess von entscheidender Bedeutung ist. Die mittlere Rauheit und/oder die quadratische Rauheit sind kleiner als Ι ΟΟμιη, mit Vorzug kleiner als Ι Ομιη, mit größerem Vorzug kleiner als Ι μπι, mit größtem Vorzug kleiner als l OOnm, mit allergrößtem Vorzug kleiner als l Onm, am bevorzugtesten kleiner als lnm. Das Polieren kann auf rein
mechanischem und/oder chemischem Wege geschehen. Am optimalsten ist ein chemisch-mechanisches Polieren (engl. : chemical mechanical polishing, CMP).
Sollte sich auf dem Grundmaterial eine Oxidschicht gebildet haben, wird diese mit Vorzug durch die genannten Prozesse bereits entfernt. Sollte die Entfernung des Oxids durch die eben genannten Prozesse nicht ausreichen, können die bereits genannten Prozesse zur Oxidentfernung, wie beispielsweise Sputtern, Verwendung von reduzierenden Gasen und/oder Säuren zusätzlich verwendet werden. Nach der Planarisierung und eventuellen Reinigung von Oxid, erfolgt dann die Beschichtung der Schutzschicht.
Für alle erfindungsgemäßen Ausführungsformen gilt gemäß einer vorteilhaften Ausführungsform der Erifndung, dass der Bondprozess von einem zweiten, später stattfindenden Wärmebehandlungsprozess, insbesondere räumlich, getrennt stattfinden kann. In der Bondinganlage wird mit Vorzug nur der eigentliche Bondvorgang durchgeführt. Der Bondvorgang dauert insbesondere weniger als 5 Stunden, mit Vorzug weniger als 1 Stunde, mit größerem Vorzug weniger als 30 Minuten, mit größtem Vorzug weniger als 15 Minuten, mit allergrößtem Vorzug weniger als 5 Minuten.
Sobald der Bondschritt beendet wurde und eine genügend hohe Adhäsion zwischen beiden Substraten besteht, kann das gebondete Substratpaar aus dem Bonder entnommen werden, um in einer anderen Anlage
weiterbehandelt, insbesondere wärmebehandelt, zu werden. Bei einer derartigen Wärmebehandlungsanlage handelt es sich mit Vorzug um eine Batchanlage, daher eine Anlage, die eine große Anzahl von Wafern gleichzeitig, vielleicht sogar kontinuierlich aufnehmen kann. Die
Wärmebehandlung in einer derartigen Wärmebehandlungsanlage erfolgt erfindungsgemäß insbesondere länger als 5 Minuten, mit Vorzug länger als 30 Minuten, mit größerem Vorzug länger als 1 Stunde, mit größtem Vorzug länger als 5 Stunden. Die Temperatur in einer solchen
Wärmebehandlungsanlage ist bevorzugt einstellbar, mit Vorzug entlang eines Weges und/oder als Funktion der Zeit einstellbar, so dass die prozessierten Substrate exakte Temperaturprofile durchlaufen können. Die verwendeten Temperaturen sind insbesondere größer als 25°C, mit Vorzug größer als 100°C, mit größerem Vorzug größer als 300°C, mit größerem Vorzug größer als 500°C, mit allergrößtem Vorzug größer als 800°C. Die Wärmebehandlung kann bevorzugt in einer
Inertgasatmosphäre stattfinden, um die freiliegenden Oberflächen der Substrate vor unnötiger bzw. nichtgewollter Oxidation zu schützen.
In einer derartigen Wärmebehandlungsanlage können alle denkbaren Wärmebehandlungsschritte durchgeführt werden. Denkbar
wäreinsbesondere, dass die eigentliche Lösung der erfindungsgemäßen Schutzschicht im Grundmaterial erst in der Wärmebehandlungsanlage erfolgt. Die Wärmebehandlungsanlage kann mehrere Substratpaare gleichzeitig auf eine höhere Temperatur bringen, als das in einer
Bondinganlage der Fall wäre. Im Falle eine kontinuierlich arbeitenden Wärmebehandlungsanlage, welche an einer Seite Substratpaare aufnimmt, sie kontinuierlich durch die Anlage befördert, beispielsweise durch ein Fließband, und an einem andere Ende wieder freigibt, wäre sogar die Einstellung eines Temperaturgradienten über den Weg, und daher, insbesondere bei konstanter Fließbandgeschwindigkeit, über die Zeit denkbar. Erfindungsgemäß sollte die Diffusion des Schutzmaterials in das Grundmaterial allerdings nur dann außerhalb einer Bondinganlage erfolgen, wenn zur Herstellung eines entsprechend festen Bonds zwischen den Substraten kein Druck notwendig ist.
Nach einer erfolgreichen Kontaktierung und einem erfolgreichen Bond zwischen den Substraten, insbesondere nach der erfindungsgemäßen Lösung des Schutzmaterials im Grundmaterial, wird eine, möglichst über die gesamte Dicke beider Grundmaterialschichten wirkende,
Rekristallisation des Gefüges angestrebt. Diese Rekristallisation kann in der Wärmebehandlungsanlage stattfinden, sofern der Vorgang nicht schon während des eigentlichen Bondvorgangs stattfindet.
Die Rekristallisation führt zu einem Neubau der Körner, insbesondere über die Bondgrenzfläche hinweg, und erzeugt so eine, entlang der gesamten Dicke, durchgehende, mechanisch stabile, feste und permanente Grundmaterialschicht. Die durch Rekristallisation gebildete, neue
Mikrostruktur besitzt das optimale und eigentlich erwünschte Gefüge, da in diesem Gefüge keine Bondgrenzfläche mehr vorkommt. Methoden zur zumindest teilweise steuerbaren Rekristallisation des Gefüges werden bevorzugt angewendet. Dazu zählen insbesondere die Erhöhung der Versetzungsdichte und/oder eine entsprechend hohe Temperatur.
In der bevorzugtesten Ausführungsform erfolgen die erfindungsgemäße Lösung des Schutzmaterials im Grundmaterial sowie die Rekristallisation des Gefüges in einer externen, insbesondere vom Bonder getrennten, Wärmebehandlungsanlage. Dadurch wird der Bonder so schnell wie möglich für den nächsten Substratbond verfügbar. In einer ganz besonderen Ausführungsform finden der erfindungsgemäße
Lösungsvorgang, sowie die Rekristallisation gleichzeitig statt.
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele sowie anhand der Zeichnungen. Diese zeigen in:
Figur 1 eine Darstellung des binären Phasendiagramms Al-Ge,
Figur 2 eine Darstellung des binären Phasendiagramms Al-Ga,
Figur 3 eine Darstellung des binären Phasendiagramms Al-Zn,
Figur 4 eine Darstellung des binären Phasendiagramms Al-Mg,
Figur 5a eine schematische Querschnittsdarstellung einer
Ausführungsform eines erfindungsgemäßen Substrats mit einer vollflächigen Grundschicht aus einem Grundmaterial und einer vollflächigen Schutzschicht aus einem Schutzmaterial beim Ausrichten,
Figur 5b eine schematische Querschnittsdarstellung gemäß Figur 5a beim Kontaktieren/Bondschritt und
Figur 5c eine schematische Querschnittsdarstellung gemäß Figur 5a nach dem Bondschritt.
Die Figur 1 zeigt ein erstes, beispielhaftes binäres System Al-Ge. Der erfindungsgemäß wichtige Teil im Phasendiagramm ist der Mischkristallbereich 7. Der Mischkristallbereich 7 ist durch die
Randlöslichkeit 8 von den Zweiphasengebieten 9, 10 getrennt. Die Randlöslichkeit für Germanium nimmt, ausgehend von der eutektischen Temperatur bzw. der Eutektikalen 1 1 mit abnehmender Temperatur ab. Die Randlöslichkeit für Germanium nimmt, ausgehend von der eutektischen Temperatur bzw. der Eutektikalen 1 1, mit steigender Temperatur ebenfalls ab.
Die Figur 2 zeigt ein zweites, beispielhaftes binäres System Al-Ga. Der erfindungsgemäß wichtige Teil im Phasendiagramm ist der
Mischkristallbereich 7. Der Mischkristallbereich 7 ist durch die
Randlöslichkeit 8 von den Zweiphasengebieten 9, 10 getrennt. Die Randlöslichkeit für Gallium nimmt, ausgehend von der eutektischen Temperatur bzw. der Eutektikalen 1 1 , mit abnehmender Temperatur ab. Die Randlöslichkeit für Gallium nimmt, ausgehend von der eutektischen Temperatur bzw. der Eutektikalen 1 1 , mit steigender Temperatur ebenfalls ab. Charakteristisch ist die Entartung des Eutektikums durch einen sehr nahe bei der Konzentration des reinen Germaniums liegenden eutektischen Punkt 6.
Die Figur 3 zeigt ein drittes, beispielhaftes binäres System Al-Zn. Der erfindungsgemäß wichtige Teil im Phasendiagramm ist der
Mischkristallbereich 7. Der Mischkristallbereich 7 ist hier sehr ausgeprägt. Er reicht bei Temperaturen um die 370°C bis zu mehr als 65 Mol-% Zink. Der Mischkristallbereich 7 ist durch die Randlöslichkeit 8' von dem Zweiphasengebiet 10 getrennt. Die Randlöslichkeit für Zink nimmt, ausgehend von der eutektoiden Temperatur bzw. der Eutektoiden 1 Γ, mit abnehmender Temperatur ab. Die Figur 4 zeigt ein viertes, beispielhaftes binäres System Al-Mg. Der erfindungsgemäß wichtige Teil im Phasendiagramm ist der
Mischkristallbereich 7. Der Mischkristallbereich 7 ist durch die
Randlöslichkeit 8 von den Zweiphasengebieten 9, 10 getrennt. Die Randlöslichkeit für Magnesium nimmt, ausgehend von eutektischen Temperatur bzw. der Eutektikalen 1 1, mit abnehmender Temperatur ab. Die Randlöslichkeit für Magnesium nimmt, ausgehend von eutektischen Temperatur bzw. der Eutektikalen 1 1 , mit steigender Temperatur ebenfalls ab.
Die Figur 5a zeigt ein möglichst einfaches erfindungsgemäßes System, bestehend aus einem ersten Substrat 4 und einem zweiten Substrat 5. Beide Substrate, 4 und 5, sind mit einem Grundmaterial 1 und einem Schutzmaterial 2 beschichtet. In einer erfindungsgemäßen
Ausführungsform werden Grundmaterial 1 und Schutzmaterial 2 nicht notwendigerweise vollflächig auf dem ersten Substrat 4 aufgebracht sein, sondern eine gewisse Strukturierung vor dem Bonden erfahren haben. In diesem Schritt sind mögliche Oxidschichten des Schutzmaterials 2 bereits entfernt worden.
Figur 5b zeigt einen Kontaktierungs- bzw. Bondschrott der beiden
Substrate 4 und 5. Wären die beiden Substrate strukturieret, hätte ein vorheriger Ausrichtungsschritt die beiden Substrate zueinander ausrichten müssen, bevor der eigentliche Kontaktierungs- bzw. Bondschritt erfolgt wäre.
Die Figur 5c zeigt schließlich den erzeugten Mischkristall 12, der durch die Diffusion des Schutzschichtmaterials 2 in das Grundmaterial 1 erfolgt ist. Verfahren zum Aufbringen einer Bondschicht
B ezugszeichenliste
Grundmaterial
Schutzmaterial
Oxidschicht
Erstes Substrat
Zweites Substrat
Eutektischer Punkt
Mischkristallbereich
Randlöslichkeit
Zweiphasengebiet flüssig, fest
Zweiphasengebiet fest, fest
Eutektikale, Eutektoide
Mischkristall

Claims

Verfahren zum Aufbringen einer Bondschicht
P atentansprüche
1. Verfahren zum Aufbringen einer aus einer Grundschicht und einer Schutzschicht bestehenden Bondschicht auf ein Substrat mit folgenden Verfahrensschritten:
- Aufbringen eines oxidierbaren Grundmaterials als Grundschicht auf eine Bondseite des Substrats,
- zumindest teilweises Bedecken der Grundschicht mit einem in dem Grundmaterial zumindest teilweise lösbaren Schutzmaterial als Schutzschicht.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass das Grundmaterial sauerstoffaffin ist, insbesondere zumindest überwiegend aus Aluminium und/oder Kupfer besteht.
3. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass das Aufbringen des Grundmaterials und/oder das Bedecken des Grundmaterials mit dem Schutzmaterial durch Abscheidung erfolgen.
4. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass die Schutzschicht mit einer Dicke von weniger als 10 μπι, mit Vorzug weniger als 1 μπι, mit größerem Vorzug weniger als 100 nm, mit größtem Vorzug weniger als 10 nm, mit allergrößtem Vorzug weniger als 1 nm, aufgebracht wird.
5. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass die Schutzschicht derart aufgebracht wird, dass die
Grundschicht zumindest überwiegend, vorzugsweise vollständig gegenüber der Atmosphäre abgedichtet ist.
6. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass die Schutzschicht, insbesondere bei einem Bondschritt mit einem weiteren Substrat, zumindest überwiegend, insbesondere vollständig, in der Grundschicht gelöst wird.
7. Verfahren nach Anspruch 6,
dadurch gekennzeichnet,
dass die Schutzschicht vor dem Bondschritt mit einem oder mehreren der folgenden Prozesse behandelt wird:
• Chemische Oxidentfernung, insbesondere durch ein
o gasförmiges Reduktionsmittel und/oder
o flüssiges Reduktionsmittel
• Physikalische Oxidentfernung, insbesondere mit Plasma, Ion Assisted Chemical Etching, insbesondere
o Fast Ion Bombardement (FAB, Sputtern), o Schleifen und/oder
o Polieren.
,
Figure imgf000047_0001
Halbleiter, insbesondere mit entsprechender Dotierung versehen, o Elementhalbleiter, insbesondere Si, Ge, Se, Te, B, Sn, o Verbindungshalbleiter, insbesondere GaAs, GaN, InP,
InxGal -xN,InSb, In As, GaSb, A1N, InN, GaP, BeTe, ZnO, CuInGaSe2, ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, Hg(l - x)Cd(x)Te, BeSe, HgS, AlxGal -xAs, GaS, GaSe, GaTe, InS, InSe, InTe, CuInSe2, CuInS2, CuInGaS2, SiC, SiGe.
9. Mit einer Bondschicht versehenes Substrat,
dadurch gekennzeichnet,
dass die Bondschicht gebildet ist aus:
- einer aus einem oxidierbaren Grundmaterial an einer Bondseite des Substrats ausgebildeten Grundschicht und
- einer zumindest teilweise die Grundschicht bedeckenden, aus einem in dem Grundmaterial zumindest teilweise lösbaren Schutzmaterial gebildeten Schutzschicht.
10. Substrat nach Anspruch 9,
dadurch gekennzeichnet,
dass das Grundmaterial sauerstoffaffin ist, insbesondere zumindest überwiegend aus Aluminium und/oder Kupfer besteht.
1 1. Substrat nach Anspruch 9 oder 10,
dadurch gekennzeichnet,
dass die Schutzschicht eine Dicke von weniger als 10 μπι, mit Vorzug weniger als 1 μπι, mit größerem Vorzug weniger als 100 nm, mit größtem Vorzug weniger als 10 nm, mit allergrößtem Vorzug weniger als 1 nm, aufweist.
PCT/EP2013/069003 2013-09-13 2013-09-13 Verfahren zum aufbringen einer bondschicht WO2015036032A1 (de)

Priority Applications (19)

Application Number Priority Date Filing Date Title
KR1020207033596A KR102306976B1 (ko) 2013-09-13 2013-09-13 접합 레이어 도포 방법
CN201910183876.7A CN110071049B (zh) 2013-09-13 2013-09-13 用于施加接合层的方法
SG11201601923VA SG11201601923VA (en) 2013-09-13 2013-09-13 Method for applying a bonding layer
ATA232/2022A AT525410A1 (de) 2013-09-13 2013-09-13 Verfahren zum Aufbringen einer Bondschicht
PCT/EP2013/069003 WO2015036032A1 (de) 2013-09-13 2013-09-13 Verfahren zum aufbringen einer bondschicht
US14/909,157 US9627349B2 (en) 2013-09-13 2013-09-13 Method for applying a bonding layer
DE112013007187.8T DE112013007187B4 (de) 2013-09-13 2013-09-13 Verfahren zum Aufbringen einer Bondschicht
KR1020207005479A KR102184239B1 (ko) 2013-09-13 2013-09-13 접합 레이어 도포 방법
ATA9472/2013A AT518702A5 (de) 2013-09-13 2013-09-13 Verfahren zum Aufbringen einer Bondschicht
CN201910183859.3A CN110085526B (zh) 2013-09-13 2013-09-13 用于施加接合层的方法
KR1020167006613A KR102084291B1 (ko) 2013-09-13 2013-09-13 접합 레이어 도포 방법
CN201380079527.1A CN105517947B (zh) 2013-09-13 2013-09-13 用于施加接合层的方法
JP2016541823A JP6336600B2 (ja) 2013-09-13 2013-09-13 ボンディング層を施与する方法
TW108139816A TWI750526B (zh) 2013-09-13 2014-08-05 施用黏結層之方法
TW108110542A TWI677552B (zh) 2013-09-13 2014-08-05 施用黏結層之方法
TW107117702A TWI679264B (zh) 2013-09-13 2014-08-05 施用黏結層之方法
TW103126810A TWI630254B (zh) 2013-09-13 2014-08-05 施用黏結層之方法
US15/441,741 US9911713B2 (en) 2013-09-13 2017-02-24 Method for applying a bonding layer
US15/875,335 US10438925B2 (en) 2013-09-13 2018-01-19 Method for applying a bonding layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2013/069003 WO2015036032A1 (de) 2013-09-13 2013-09-13 Verfahren zum aufbringen einer bondschicht

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/909,157 A-371-Of-International US9627349B2 (en) 2013-09-13 2013-09-13 Method for applying a bonding layer
US15/441,741 Continuation US9911713B2 (en) 2013-09-13 2017-02-24 Method for applying a bonding layer

Publications (1)

Publication Number Publication Date
WO2015036032A1 true WO2015036032A1 (de) 2015-03-19

Family

ID=49170702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/069003 WO2015036032A1 (de) 2013-09-13 2013-09-13 Verfahren zum aufbringen einer bondschicht

Country Status (9)

Country Link
US (3) US9627349B2 (de)
JP (1) JP6336600B2 (de)
KR (3) KR102306976B1 (de)
CN (3) CN105517947B (de)
AT (2) AT518702A5 (de)
DE (1) DE112013007187B4 (de)
SG (1) SG11201601923VA (de)
TW (4) TWI677552B (de)
WO (1) WO2015036032A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112013007187B4 (de) * 2013-09-13 2023-08-10 Ev Group E. Thallner Gmbh Verfahren zum Aufbringen einer Bondschicht
CH717141B1 (fr) * 2019-01-16 2023-12-15 Patek Philippe Sa Geneve Procédé d'assemblage de composants horlogers.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2363373A1 (de) * 2010-03-02 2011-09-07 SensoNor Technologies AS Procédé de collage pour systèmes micro et nano sensibles
US20130099355A1 (en) * 2011-10-24 2013-04-25 Taiwan Semiconductor Manufacturing Company, Ltd. MEMS Structures and Methods for Forming the Same

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1223757B1 (de) * 2001-01-09 2006-03-22 Metabyte Networks, Inc. System, Verfahren und Software für die Bereitstellung einer gezielten Werbung durch Benutzerprofildatenstruktur basierend auf Benutzerpräferenzen
JP4136844B2 (ja) * 2002-08-30 2008-08-20 富士電機ホールディングス株式会社 電子部品の実装方法
WO2005086221A1 (ja) 2004-03-02 2005-09-15 Fuji Electric Holdings Co., Ltd. 電子部品の実装方法
JP4325571B2 (ja) * 2005-02-28 2009-09-02 株式会社日立製作所 電子装置の製造方法
US8736081B2 (en) * 2005-08-26 2014-05-27 Innovative Micro Technology Wafer level hermetic bond using metal alloy with keeper layer
US7569926B2 (en) * 2005-08-26 2009-08-04 Innovative Micro Technology Wafer level hermetic bond using metal alloy with raised feature
JP4552968B2 (ja) * 2007-05-29 2010-09-29 住友電気工業株式会社 化合物半導体基板の研磨方法、化合物半導体基板、化合物半導体エピ基板の製造方法および化合物半導体エピ基板
DE102008040775A1 (de) * 2008-07-28 2010-02-04 Robert Bosch Gmbh Verkapselung, MEMS sowie Verfahren zum selektiven Verkapseln
EP2544169A4 (de) * 2010-03-03 2015-04-22 Sharp Kk Anzeigevorrichtung, ansteuerungsverfahren dafür und flüssigkristallanzeigevorrichtung
JP2012079935A (ja) * 2010-10-01 2012-04-19 Fujikura Ltd 複合基板の製造方法、及び複合基板
US8377798B2 (en) 2010-11-10 2013-02-19 Taiwan Semiconductor Manufacturing Co., Ltd Method and structure for wafer to wafer bonding in semiconductor packaging
US20120145308A1 (en) * 2010-12-08 2012-06-14 Jiangwei Feng Methods for anodic bonding material layers to one another and resultant apparatus
JP5919641B2 (ja) 2011-04-27 2016-05-18 富士通株式会社 半導体装置およびその製造方法並びに電子装置
EP2600389B1 (de) * 2011-11-29 2020-01-15 IMEC vzw Verfahren zum Bonden von Halbleitersubstraten
DE112013007187B4 (de) * 2013-09-13 2023-08-10 Ev Group E. Thallner Gmbh Verfahren zum Aufbringen einer Bondschicht

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2363373A1 (de) * 2010-03-02 2011-09-07 SensoNor Technologies AS Procédé de collage pour systèmes micro et nano sensibles
US20130099355A1 (en) * 2011-10-24 2013-04-25 Taiwan Semiconductor Manufacturing Company, Ltd. MEMS Structures and Methods for Forming the Same

Also Published As

Publication number Publication date
KR102306976B1 (ko) 2021-09-30
KR20200023525A (ko) 2020-03-04
US9627349B2 (en) 2017-04-18
TWI679264B (zh) 2019-12-11
TW201922989A (zh) 2019-06-16
JP6336600B2 (ja) 2018-06-06
KR20200133836A (ko) 2020-11-30
DE112013007187A5 (de) 2016-03-10
KR20160053937A (ko) 2016-05-13
US20160190092A1 (en) 2016-06-30
TWI677552B (zh) 2019-11-21
TW202000820A (zh) 2020-01-01
AT518702A5 (de) 2017-12-15
CN110071049A (zh) 2019-07-30
AT525410A1 (de) 2023-03-15
TW201518464A (zh) 2015-05-16
JP2016532312A (ja) 2016-10-13
DE112013007187B4 (de) 2023-08-10
SG11201601923VA (en) 2016-04-28
TWI630254B (zh) 2018-07-21
CN105517947A (zh) 2016-04-20
CN105517947B (zh) 2019-04-23
US9911713B2 (en) 2018-03-06
CN110085526A (zh) 2019-08-02
US10438925B2 (en) 2019-10-08
KR102084291B1 (ko) 2020-03-03
TWI750526B (zh) 2021-12-21
TW201829692A (zh) 2018-08-16
CN110085526B (zh) 2023-11-28
US20170162538A1 (en) 2017-06-08
CN110071049B (zh) 2023-12-08
KR102184239B1 (ko) 2020-11-30
US20180145048A1 (en) 2018-05-24

Similar Documents

Publication Publication Date Title
EP3043378A2 (de) Verfahren zum permanenten bonden von wafern mittels festkörperdiffusion oder phasenumwandlung mit anwendung einer funktionsschicht
DE10257902A1 (de) Siliziumkarbid-Halbleiterbauteil und sein Herstellverfahren
DE102011051822A1 (de) Verfahren zur Herstellung von Halbleiterbauelementen mit einer Metallisierungsschicht
WO2014048502A1 (de) Verfahren zum bschichten und bonden von substraten
DE112011102835B4 (de) Wasserreaktives, Al-basiertes Verbundmaterial, wasserreaktiver, Al-basierter,thermisch gespritzter Film, Verfahren für die Herstellung eines solchen Al-basierten, thermisch gespritzten Films und Bestandteil für eine Filmbildungskammer
DE19531158A1 (de) Verfahren zur Erzeugung einer temperaturstabilen Verbindung
WO2018228891A1 (de) Verfahren zum befestigen eines halbleiterchips auf einem substrat und elektronisches bauelement
DE112013007187B4 (de) Verfahren zum Aufbringen einer Bondschicht
DE102011056087A1 (de) Solarzellen-Siebdruck-Zusammensetzung, Solarzelle und Verfahren zum Herstellen einer Metallisierungsstruktur
DE102012216026B4 (de) Verfahren zur Herstellung einer flexiblen Photovoltaik-Dünnschichtzelle mit einer Eisendiffusionsbarriereschicht und flexible Photovoltaik-Dünnschichtzelle mit einer Eisendiffusionsbarriereschicht
EP4139129B1 (de) Trägersubstrat, verfahren zur herstellung eines trägersubstrates sowie verfahren zur übertragung einer übertragungsschicht von einem trägersubstrat auf ein produktsubstrat
DE10350707B4 (de) Elektrischer Kontakt für optoelektronischen Halbleiterchip und Verfahren zu dessen Herstellung
DE102015112857A1 (de) Vorrichtung und Verfahren zur Herstellung einer Vorrichtung
EP3797181B1 (de) Kupferband zur herstellung von elektrischen kontakten und verfahren zur herstellung eines kupferbandes und steckverbinder
WO2017032771A1 (de) Bauelement und verfahren zur herstellung eines bauelements
JP6918074B2 (ja) ボンディング層を施与する方法
WO2017211629A1 (de) Verfahren zur herstellung einer solarzellenstruktur
WO2013110315A1 (de) Verfahren und vorrichtung zum permanenten bonden von wafern sowie spanwerkzeug
DE10127255A1 (de) Konditionierung von Glasoberflächen für den Transfer von CIGS-Solarzellen auf flexible Kunstoffsubstrate
WO2017093142A1 (de) Bauelement mit einer silber enthaltenden quintären verbindungsschicht und verfahren zu dessen herstellung

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13762480

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: ATA 9472/2013

Country of ref document: AT

WWE Wipo information: entry into national phase

Ref document number: 112013007187

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 14909157

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112013007187

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 2016541823

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167006613

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13762480

Country of ref document: EP

Kind code of ref document: A1