WO2015033989A1 - 電解用電極の製造方法 - Google Patents

電解用電極の製造方法 Download PDF

Info

Publication number
WO2015033989A1
WO2015033989A1 PCT/JP2014/073290 JP2014073290W WO2015033989A1 WO 2015033989 A1 WO2015033989 A1 WO 2015033989A1 JP 2014073290 W JP2014073290 W JP 2014073290W WO 2015033989 A1 WO2015033989 A1 WO 2015033989A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electrode catalyst
base material
catalyst component
conductive electrode
Prior art date
Application number
PCT/JP2014/073290
Other languages
English (en)
French (fr)
Inventor
篤実 竹内
Original Assignee
ペルメレック電極株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ペルメレック電極株式会社 filed Critical ペルメレック電極株式会社
Priority to CN201480004945.9A priority Critical patent/CN104937142B/zh
Priority to BR112015011879-8A priority patent/BR112015011879B1/pt
Priority to US14/436,342 priority patent/US9903031B2/en
Priority to KR1020157011388A priority patent/KR101675893B1/ko
Priority to EP14843061.4A priority patent/EP2915906B1/en
Publication of WO2015033989A1 publication Critical patent/WO2015033989A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/06Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/08Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1283Control of temperature, e.g. gradual temperature increase, modulation of temperature
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1291Process of deposition of the inorganic material by heating of the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1644Composition of the substrate porous substrates
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/093Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/097Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds comprising two or more noble metals or noble metal alloys

Definitions

  • the present invention is, for example, an expanded mesh, a punched perforated plate, a wire mesh, or the like used as an anode and / or a cathode of electrolytic cells for various industrial electrolysis involving soda electrolysis, water electrolysis, oxygen generation or chlorine generation
  • the present invention relates to a method for producing an electrode for electrolysis in which an electrode catalyst layer is formed on a conductive electrode base material having a large number of pores.
  • the anode and cathode of the electrolytic cell are used by being immersed in an electrolytic solution in various electrolysis methods, and examples of usage forms of the anode and cathode include the following.
  • the anode and the cathode are used separately from each other in a diaphragm electrolysis cell, when used separately from these membranes on both sides of the membrane or ion exchange membrane, or sandwiching the membrane or ion exchange membrane, It may be used for a phinite electrolysis cell provided with a small space on both sides, or a zero-gap electrolysis cell provided in contact with both sides of the ion exchange membrane with an ion exchange membrane in between.
  • the anode and the cathode are used as the front side where the opposite surfaces of the film perform the main reaction, and the opposite side is used as the back side.
  • the conductive electrode base material includes an expanded mesh, a punched porous material.
  • Conductive electrode substrates having a large number of holes in the shape of plates, wire meshes or the like are used.
  • an electrocatalyst layer is positively formed on one surface of the conductive electrode substrate having a large number of holes, the formed surface is the front side, and these front sides are in contact with both sides of the ion exchange membrane, respectively.
  • a small space is provided to form an anode and a cathode, respectively.
  • an ion exchange membrane method alkaline chloride electrolysis cell for producing alkali metal hydroxides with high current efficiency, low voltage and high purity, in particular, the anode and cathode are in contact with each other across the ion exchange membrane.
  • Many types of filter press type zero-gap electrolysis cells have been proposed.
  • This filter press type zero-gap electrolysis cell is composed of a large number of bipolar structures formed by arranging an anode chamber and a cathode chamber back to back through a cation exchange membrane.
  • the cathode for hydrogen generation is provided in a portion in contact with the cation exchange membrane
  • the anode for chlorine generation is provided in the anode chamber in a portion in contact with the opposite surface of the cation exchange membrane.
  • a titanium material is generally used for the anode base material, and nickel or a nickel alloy is used for the cathode base material.
  • an expanded mesh, a punched perforated plate, a metal mesh, or a conductive electrode substrate having a number of holes (hereinafter referred to simply as a “conductive group having a number of holes”).
  • the electrode catalyst component made of an expensive and rare platinum group metal and / or its oxide (hereinafter also referred to as platinum group metals) is provided on one surface of these substrates.
  • the electrode catalyst layer to be contained is formed, and the formed surface is used as the front side for performing the main reaction.
  • Patent Document 1 discloses a number of holes when used for an anode and a cathode.
  • conductive substrates having a large number of holes as described above are generally annealed, shaped, planarized by rolling, roughened by blasting, washed with acid, etched, and corrosion resistance improved. After that, an electrode catalyst layer containing an electrode catalyst component made of expensive platinum group metals is formed on the front side thereof.
  • the step of forming an electrode catalyst layer is called an activation treatment step.
  • a coating liquid containing a starting material that can be an electrode catalyst component hereinafter also simply referred to as a starting material
  • a starting material is usually applied to a substrate. Then, it is performed by three steps of drying and baking.
  • a coating solution in which a starting material is dissolved is prepared, and this coating solution is a conductive substrate having a large number of holes subjected to the pretreatment as described above. It is applied to the front side and then dried, and further baked to form an electrode catalyst layer. At that time, in order to form the target electrode catalyst layer, the three steps of coating, drying, and firing are repeated a plurality of times until the desired amount of the electrode catalyst component adhering to the front side of the conductive electrode substrate is obtained. Through this process, an electrode catalyst layer containing an electrode catalyst component (hereinafter also referred to as a catalyst layer forming substance) made of an expensive and rare platinum group metal is formed.
  • the coating process for coating the substrate with the coating liquid is usually performed by spraying, brush coating, electrostatic coating, or other methods. Moreover, the heating in a baking process is normally performed with the electric furnace etc.
  • the anode and cathode base material for forming the electrode catalyst layer has an expanded mesh, a punched perforated plate, a wire mesh, or a shape similar to these, and has a large number of holes.
  • the coating liquid containing the starting material is applied to the front side of the base material by the method as described above, the coating liquid applied to the front side of the base material passes through many holes or upper, lower, left and right edges of the base material. It moves to the back side of the base material, and a considerably large amount of coating liquid adheres to the back side of the base material.
  • the electrode catalyst component is fixed on the front side of the conductive base material having a large number of holes as mentioned above, and at the same time, on the back side of the base material,
  • the amount of the electrode catalyst component fixed on the front side is the same as that of the electrode catalyst component, and in some cases, the amount of the electrode catalyst component is fixed, and an electrode catalyst layer is also formed on the back side of the substrate. ing.
  • the electrode catalyst component of the anode and the cathode at least one selected from platinum, iridium, ruthenium, palladium, osmium and oxides thereof is used. All of these components are rare, and their main uses are those used with materials such as jewelry, which are extremely expensive materials, and their prices are rising year by year.
  • This electrolysis cell is also used in electrolysis cells of large facilities such as those used in petroleum complex electrolysis facilities, and the amount of use is enormous, and the ratio of the cost of the electrode catalyst component to the overall facility costs It is no exaggeration to say that the reduction of material costs is a huge desire of the industry.
  • the electrode catalyst component in the electrode catalyst layer formed on the back side of the substrate is also on the front side. It works effectively similarly to the electrode catalyst component in the electrode catalyst layer.
  • the front side is the main reaction, the electrode catalyst layer on the front side is consumed more rapidly than the electrode catalyst layer on the back side, and the electrode catalyst component is rapidly reduced on the front side compared to the back side. To do.
  • the amount of the electrode catalyst component in the electrode catalyst layer formed on the front side and the back side (hereinafter also referred to as the amount of electrode catalyst) is the same before electrolysis starts, When the amount falls below the minimum required residual amount, most of the backside electrode catalyst components remain unused even after the life of the electrode, and the economic loss caused by raw material components that are not effectively utilized is large. In view of the fact that the raw material price of the electrode catalyst component is extremely expensive, this fact must be said to be a fatal result in terms of production.
  • the electrode catalyst layers formed on the front and back surfaces of the conductive electrode substrate must be designed so that about 20% of the total amount of the electrode catalyst is left as the minimum required remaining amount after the electrolysis is completed. Also, it cannot be said that no electrode catalyst layer is formed on the back side.
  • the present inventor needs to adjust the amount of the electrode catalyst in the electrode catalyst layer formed on the front and back of the substrate as follows in order to design an economical electrode for electrolysis. It has come to be recognized that it is important to find a technique that can adjust the amount (attachment amount) of the electrode catalyst component that adheres and is fixed to the substrate surface by a simple method.
  • the difference in consumption (decrease) rate between the amount of electrode catalyst on the front side and the amount of electrode catalyst on the back side of the conductive electrode substrate is not constant, and the electrolysis conditions and / or electrodes Since it differs depending on the type of catalyst component, the amount of electrode catalyst on the front side and the amount of electrode catalyst on the back side of the electrode catalyst layer formed by adhering the electrode catalyst component on the base material are determined at the end of electrolysis after use. It was considered effective to make the time to reach the minimum required residual amount of the catalyst component approximately the same. In order to realize this, it is necessary to adjust the adhesion amount of the back-side electrode catalyst component in consideration of the adhesion amount of the front-side electrode catalyst component before the start of electrolysis.
  • the amount of the electrode catalyst component on the front side of the conductive electrode substrate is required. It is necessary to keep it to a minimum or an appropriate amount.
  • an object of the present invention is to minimize the amount of raw materials used for expensive electrocatalyst components, which are not disclosed or suggested by conventional methods, without compromising electrode performance.
  • a simple method can be used for the front side and the back side of the base material.
  • the object is to find a new technique capable of appropriately adjusting the amount of adhesion of the electrode catalyst component. That is, the object of the present invention is a simple method, which is mainly adjusted so that more electrode catalyst components adhere to the front side, which is the main reaction surface, and the minimum necessary amount of electrode catalyst components adhere to the back side.
  • An object of the present invention is to provide a method for producing an electrode for electrolysis. If the above object can be achieved, the amount of the expensive electrode catalyst component made of platinum group metals can be effectively reduced, and the raw material of the expensive electrode catalyst component can be minimized without deteriorating the electrode function. As a result, it is possible to provide an electrolysis electrode manufacturing method capable of economically and efficiently manufacturing a high-performance electrolysis electrode.
  • a conductive electrode substrate having a large number of holes in an expanded mesh, a punched perforated plate, a wire mesh, or a similar shape thereof (however, a metal Apply the coating solution containing the starting material of the electrode catalyst component to the front side of the sintered body obtained by sintering powder or metal fiber (except for the case of metal woven fabric), and then dry and calcinate the conductive material.
  • the conductive electrode substrate is made of titanium, Containing at least one metal selected from tantalum, niobium, zirconium, hafnium and nickel, or an alloy thereof, wherein the electrode catalyst component is platinum, iridium, ruthenium, palladium, osmium And at least one selected from these oxides, and during the step of forming the electrode catalyst layer, the conductive electrode substrate is preheated at least once, and the conductivity immediately before applying the coating solution When the coating solution is applied to the front side of the substrate so that the temperature of the electrode substrate is higher than room temperature, the temperature of the conductive electrode substrate immediately before applying the coating solution is adjusted by the preheating. By changing, the quantity of the electrode catalyst component adhering to the back side of the said conductive electrode base material is adjusted, The manufacturing method of the electrode for electrolysis characterized by
  • the second solving means of the present invention provides a method for producing an electrode for electrolysis in which the temperature of the conductive electrode substrate immediately before applying the coating liquid is 35 ° C. to 120 ° C. .
  • the third solution of the present invention provides a method for producing an electrode for electrolysis in which the temperature of the conductive electrode substrate immediately before applying the coating liquid is 35 ° C. to 70 ° C. .
  • the amount (A) of the electrode catalyst component adhering to the front side of the conductive electrode base material and the back side of the conductive electrode base material are attached.
  • a method for producing an electrode for electrolysis wherein the ratio (A / B) of the amount (B) of the electrode catalyst component is arbitrarily adjusted within the range of 1.5 to 6.8.
  • a fifth solution of the present invention there is provided a method for producing an electrode for electrolysis, wherein the ratio (A / B) is arbitrarily adjusted within a range of 1.5 to 4.4 in order to achieve the above object. To do.
  • the back side of the conductive electrode substrate is changed by changing the number of times of preheating the conductive electrode substrate in the catalyst layer forming step.
  • a method for producing an electrode for electrolysis that adjusts the amount of an electrode catalyst component adhering to the electrode.
  • an expanded mesh, a punched perforated plate, a wire mesh, or a conductive base material having a number of holes similar to these (however, a sintered body obtained by sintering metal powder or metal fiber,
  • the electrode catalyst component is applied to the front side and the back side of the conductive electrode substrate by applying a coating solution containing a starting material for the electrode catalyst component to the front side of the conductive electrode base material (except when the metal woven fabric is used).
  • the conductive electrode substrate is selected from titanium, tantalum, niobium, zirconium, hafnium and nickel Containing at least one metal or an alloy thereof, wherein the electrocatalyst component comprises at least one selected from platinum, iridium, ruthenium, palladium, osmium and oxides thereof.
  • the conductive electrode base material immediately before applying the coating liquid by preheating the conductive electrode base material at room temperature (ambient temperature, normal temperature) at least once during the electrode catalyst layer forming step.
  • the temperature of the conductive electrode substrate immediately before applying the coating liquid is changed by the preheating. It becomes possible to adjust the amount of the electrode catalyst component adhering to the back side of the conductive electrode substrate by a simple method, and the following remarkable effects can be obtained. That is, the amount of the electrode catalyst component that is an expensive raw material can be minimized, and as a result, a high-performance electrode for electrolysis can be produced economically and efficiently without impairing electrode performance. it can. Specifically, according to the production method of the present invention, by appropriately designing the heating temperature and / or the number of times of preheating in the preheating, drying of the coating liquid after coating on the substrate is accelerated.
  • the time required for the catalyst layer forming substance in the liquid to be fixed to the front side of the substrate can be shortened to adjust the fixing amount, and the number of influences can be adjusted.
  • the adhesion amount of the electrode catalyst component on the front side of the conductive substrate having a large number of holes is made larger than the adhesion amount of the electrode catalyst component on the back side of the conductive electrode substrate, and the electrode catalyst on the front side and the back side.
  • the ratio of the component adhesion amount can be easily adjusted. As a result, it is possible to minimize the use of raw materials for expensive electrode catalyst components without deteriorating the electrode function.
  • the preheating in the present invention is, for example, at room temperature immediately before applying the coating liquid containing the starting material of the electrode catalyst component on the front side of the conductive electrode base material that has been pretreated if necessary.
  • the conductive electrode base material is heated to a temperature higher than room temperature (ambient temperature, normal temperature) immediately before forming the coating layer in this way, so that it is applied to the front side of the base material.
  • the coating liquid containing the starting material is quickly dried, and the catalyst layer forming substance (electrode catalyst component) in the applied coating liquid can be quickly fixed to the front side.
  • the substrate temperature of the conductive electrode substrate immediately before the coating step by the preheating of the substrate that characterizes the present invention, and the front side adhesion amount / back side adhesion amount ratio of the ruthenium component on the front side and the back side of the conductive electrode substrate It is a graph which shows a relationship.
  • the substrate temperature of the conductive electrode substrate immediately before the coating step by the preheating of the substrate that characterizes the present invention, and the front side adhesion amount / back side adhesion amount ratio of the iridium component on the front side and the back side of the conductive electrode substrate It is a graph which shows a relationship.
  • FIG. 1 is a process diagram showing an example of a typical production process of the method for producing an electrode for electrolysis according to the present invention.
  • the pretreatment step is performed on the conductive electrode base material for forming the electrode catalyst layer, but the step may be performed as necessary and is not essential in the present invention.
  • the electrode catalyst layer forming step performed after the pretreatment step characterizes the present invention. That is, in particular, by incorporating the preheating step that has not existed in the conventional method into the electrode catalyst layer forming step at least once at an appropriate timing, the remarkable effects of the present invention described above can be obtained. Obtainable.
  • the post-treatment process performed after the electrode catalyst layer forming process may be performed as necessary, and is not essential in the present invention. Details of each step will be described below.
  • the conductive electrode substrate In the present invention, an expanded mesh, a punched perforated plate, a wire mesh, or a plate-like body having a number of holes similar to these is used as the conductive electrode substrate.
  • the material of the conductive electrode substrate having a large number of holes is at least one metal selected from valve metals such as titanium, tantalum, niobium, zirconium, hafnium, etc.
  • the alloy is preferably used, and nickel or a nickel alloy or the like is preferably used when manufacturing an electrode for a cathode.
  • the conductive electrode substrate in the case of an anode, (the actual surface area per projected area 1 m 2) specific surface area 1.6 ⁇ 2.5 m 2, of about 0.5 ⁇ 3.0 mm thickness is used in the case of the cathode, (actual surface area per projected area 1 m 2) specific surface product 1.1 ⁇ 2.4 m 2, those having a thickness of about 0.1 ⁇ 0.8 mm is used.
  • the conductive electrode substrate having a large number of holes as described above used in the present invention may be appropriately pretreated by a pretreatment step as necessary.
  • a pretreatment process annealing, shape processing, roughening treatment, etching treatment, corrosion resistance improvement treatment, etc. are performed for the purpose of modifying the surface state of the substrate.
  • a necessary treatment may be performed depending on the conductive electrode base material to be used, the subsequent steps, and the like. Below, an example of the preferable pre-processing process which can be performed with respect to the electroconductive electrode base material used by this invention is demonstrated, respectively.
  • the conductive electrode base material is annealed in the atmosphere at an actual temperature range of 580 ° C. to 600 ° C. for 1 hour or more. After the heat holding, the furnace is cooled to about 200 ° C. To do. Then, it takes out outside a furnace and cools in air
  • the conductive electrode base material can be subjected to a corrosion resistance improving treatment by the following method.
  • This processing includes the following processing. Titanium and zirconium, which are base materials, form a stable oxide film on the surface at room temperature and are rich in corrosion resistance, and are coated with an electrode catalyst layer forming step to be described later. It has the property that it is hard to be corroded with respect to the coating liquid which consists of organic solutions. Therefore, when a base material made of these materials is used, it is not necessary to perform a corrosion resistance improvement treatment.
  • the substrate when using a material other than titanium or zirconium as the conductive electrode substrate, it may be corroded by the coating solution itself, so the substrate must be heated at a high temperature in advance before coating. It is preferable to perform a treatment for forming a strong, dense and corrosion-resistant oxide film on the surface. For example, in the case of a base material made of nickel, heat treatment may be performed in the atmosphere at about 500 ° C. for 30 minutes or less.
  • Electrode catalyst layer forming step In the present invention, as shown in FIG. 1, an electrocatalyst layer forming step characterizing the present invention is applied to a conductive electrode substrate having a large number of holes that have been pretreated as described above. An electrode catalyst layer is formed on the surface of the conductive electrode substrate.
  • the electrode catalyst layer forming step is characterized in that a preheating step is newly provided at least once in the conventional method, and the other steps are the conventional electrolysis electrodes. This may be the same as the method for forming the electrode catalyst layer in the production method. Specifically, conventionally, when an electrode catalyst layer is formed on the surface of a conductive electrode substrate having a large number of pores, the starting material for the electrode catalyst component is contained on one surface on the front side of the substrate.
  • the coating solution is applied, followed by drying and firing. By repeating this coating, drying and firing process multiple times, an electrode catalyst layer having the desired amount of electrode catalyst component is formed on the substrate surface.
  • the method of the present invention is basically the same.
  • the feature of the production method of the present invention is that the conductive electrode substrate is heated at room temperature or higher at least once at any stage when a series of steps of coating, drying and baking is repeated a plurality of times. That is, the coating liquid is applied.
  • An electrode catalyst layer having a desired amount of an electrode catalyst component can be formed on each of the front side and the back side of the substrate. That is, when applying the coating liquid to the front side of the conductive electrode substrate, the present inventor pre-heats the substrate and preheats the substrate, which accelerates drying of the applied coating liquid. It has been found that the time required for fixing the catalyst layer forming substance on the substrate surface side is shortened.
  • the amount of the coating liquid transferred to the back side of the substrate through holes or the like can be reduced, and the amount of the catalyst layer forming material transferred / fixed to the back side can be effectively controlled.
  • the amount of the electrode catalyst component of the electrode catalyst layer formed on the front side is reduced through the holes of the substrate. This is based on the knowledge that the amount of the electrode catalyst component of the electrode catalyst layer formed on the back side of the base material is clearly larger than that of the base material.
  • the preheating step may be performed at least once before the step of applying the coating liquid, and the number of times may be several times or before all the coating steps. You may go to It is not always necessary to perform preheating in the first process. For example, preheating is not performed in the first process. First, a series of steps of coating, drying, and baking is performed, and then preheating is performed. Heating may be performed. Moreover, after performing a series of steps of coating, drying, and baking a plurality of times, preheating may be performed, and thereafter, a series of steps of coating, drying, and baking may be performed.
  • the number of times of preheating may be one or more, and it may be always performed prior to application for each application process.
  • the conductive electrode substrate can be adjusted through the holes or the top, bottom, left, and right ends of the conductive electrode substrate.
  • the adhesion amount of the coating solution containing the starting material of the electrode catalyst component that will adhere to the back side can be adjusted.
  • the amount of the electrode catalyst of the electrode catalyst layer formed on the back side of the conductive electrode substrate relative to the amount of the electrode catalyst of the electrode catalyst layer formed on the front side of the conductive electrode substrate is determined by the number of times of preheating. The more it is, the less it is. That is, the ratio of the amount of the electrode catalyst adhering to the front side of the conductive electrode substrate can be increased with respect to the amount of the electrode catalyst of the electrode catalyst layer formed on the back side of the conductive electrode substrate. The degree can be controlled appropriately.
  • the conductive electrode base material is preheated, and the front side is at room temperature (ambient temperature, normal temperature) or higher, preferably the conductive electrode base material temperature immediately before the coating step described later is 35 ° C. to 120 ° C. Heat to °C. However, it is preferable that the heating temperature be lower than the boiling point of the solvent of the coating solution obtained by dissolving the starting material for the electrode catalyst component described later in an inorganic or organic solvent.
  • the conductive electrode substrate is heated to room temperature or higher before applying the coating solution to the front side of the conductive electrode substrate, but preheated to room temperature (ambient temperature, normal temperature) or higher.
  • the heating temperature of the conductive electrode substrate in the preheating step is heated so that the conductive electrode substrate temperature immediately before the coating step is 35 ° C. or higher, the surface temperature of the conductive electrode substrate is increased.
  • the ratio of the adhesion amount of the electrode catalyst component adhering to the back side of the conductive electrode substrate to the adhesion amount of the electrode catalyst component can be 1.5 times or more.
  • the conductive electrode substrate temperature immediately before the coating step in the preheating step is increased to 100 ° C.
  • the ratio of the amount of the electrode catalyst component on the front side and the back side becomes 5 times or more.
  • the substrate temperature is raised to 100 ° C. or higher, the effect is not so different, and if it exceeds 120 ° C., the drying proceeds too much, and the formation of the coating layer may be affected.
  • the present inventor considers the details of this principle as follows.
  • the reason why the adhesion amount of the electrode catalyst component on the front side is relatively increased compared to the adhesion amount on the back side is that the coating solution comes into contact with a conductive electrode substrate heated above room temperature.
  • the evaporation of the solvent in the solution accelerates, so the time for the coating solution to move (move) to the back side of the conductive electrode substrate is shortened, and the catalyst layer forming substance in the coating solution is quickly fixed on the front side, which is the coating surface. It is thought that it was because.
  • the heating temperature of the conductive electrode substrate is increased, so that the solvent in the coating solution evaporates in a shorter time, and the time required for immobilizing the catalyst layer forming substance on the front side This is considered to be due to the fact that the material was further shortened and the fixing of the substance to the front side accelerated and the ratio of the amount of adhesion between the front side and the back side increased.
  • the temperature exceeds 120 ° C. the temperature of the conductive electrode substrate becomes too high, which may cause bumping of the coating liquid, and the possibility of undesirable effects for other reasons increases. It is not preferable to make the temperature too high.
  • preheating is performed for each coating process. It is good to repeat as the previous process.
  • the amount of the electrode catalyst in the electrode catalyst layer formed on the front side of the conductive base material having a large number of holes, such as an expanded mesh, a punched perforated plate, a wire mesh, or the like In order to make it as much as possible than the amount of electrode catalyst in the electrode catalyst layer formed on the back side, coating, drying and baking so that preheating is performed each time the coating solution is applied to the front side of the substrate It is preferable to repeat the preheating, coating, drying, and baking by including the above-described preheating step in the repeating step.
  • the present invention is not limited to the above.
  • the preheating is performed only once, and the preheating process is not included in the repeated steps of coating, drying, and baking. Also good.
  • the preheating process may be turned ON / OFF for each coating cycle, and the number of times of inclusion in the repetition process may be adjusted. By configuring in this way, the conductive substrate having a large number of holes can be adjusted. The amount of the electrode catalyst of the electrode catalyst layer formed on the front side and the back side can be adjusted to a desired one.
  • an induction heating device is preferable because of high heat generation efficiency and quick temperature rise response, but of course, other heating means can be used.
  • other heating means include a heating method using radiant heat such as infrared rays or a radiant tube, and a heating method in which hot air is applied to the conductive electrode substrate. These methods are appropriately preheated according to the situation. It is possible to apply to
  • IH Induction heating
  • IH is a method of causing a conductor such as a metal to be heated to generate heat by flowing a current through a heating coil using the principle of electromagnetic induction.
  • the heating principle is that when an alternating current is passed through the heating coil, magnetic lines of force are generated around it and the intensity changes.
  • a material such as a metal that conducts electricity is placed nearby, an eddy current flows in the metal under the influence of the changing magnetic field lines. Due to the electrical resistance of the metal itself, Joule heat of (current) 2 ⁇ resistance is generated, and the metal self-heats. This phenomenon is called induction heating IH.
  • the greatest advantage of IH is that the conductive electrode substrate can be heated to a predetermined temperature within a few seconds from the start of heating. Therefore, if IH is used, it is possible to install the preheating and coating facilities adjacent to each other.
  • a coating process for coating a coating solution containing the starting material for the electrode catalyst component on the front side of the conductive substrate having a large number of holes will be described.
  • a coating solution comprising an inorganic solution or an organic solution in which the starting material of the electrode catalyst component is dissolved in an inorganic solvent or an organic solvent is sprayed.
  • the above-mentioned remarkable effects are obtained by forming the coating layer by coating with the above.
  • the coating method in the coating step can be performed by a method other than spraying, for example, brush coating, electrostatic coating, or other methods.
  • the coating solution used in the present invention comprises a solution in which the starting material for the electrode catalyst component is dissolved, and is prepared, for example, as follows.
  • the starting material for the electrode catalyst component in the insoluble metal anode an inorganic or organic compound of at least one metal selected from platinum, iridium, ruthenium, palladium, and osmium is used.
  • an inorganic solution or an organic solution obtained by dissolving the above-described compounds in an inorganic solvent or an organic solvent or the like is used.
  • the starting material of the above-mentioned electrode catalyst component further, an inorganic or organic compound of valve metal such as titanium, tantalum, niobium, zirconium, hafnium, etc., an inorganic solvent or an organic solvent It is preferable to add what was melt
  • a rare earth element compound such as lanthanum, cerium, yttrium, oxalic acid hydrate, and the like are preferably used in addition to the above starting materials.
  • Electrode catalyst component examples include the following compounds. Platinum: Chloroplatinic acid or platinum nitrate compounds Iridium: Iridium chloride Ruthenium: Ruthenium chloride Palladium: Palladium chloride Titanium: Titanium chloride Tantalum: Tantalum pentachloride Cerium: Cerium chloride
  • An example of the coating solution is an inorganic solution in which iridium tetrachloride and tantalum pentachloride are dissolved in 35% hydrochloric acid.
  • examples of other coating solutions include inorganic / organic mixed solutions in which ruthenium chloride, iridium chloride, and titanium chloride solutions are dissolved in hydrochloric acid and IPA (isopropyl alcohol), and inorganic solutions in which dinitrodiammine platinum and cerium nitrate are dissolved in nitric acid. Is mentioned.
  • the coating amount per time 0.36 g to 0.66 g
  • the number of times of coating 6 to 12
  • Total coating amount 2.16 g to 5.28 g is applied.
  • the coating layer formed in the coating step described above is then dried and fired to form an electrode catalyst layer.
  • the drying process is not particularly limited. For example, after the leveling through a drying zone of a continuous furnace continuing from the coating booth, the drying process is performed at a setting temperature of 30 ° C. to 80 ° C. for a drying time of 5 to 10 minutes. This drying step is performed as a pre-firing step after application of the coating solution, and is clearly distinguished from preheating that preheats the substrate before applying the coating solution according to the present invention. It is what is done.
  • the coating layer after the drying step is finally fired to become an electrode catalyst layer containing an electrode catalyst component (catalyst layer forming substance).
  • a baking process is not specifically limited, For example, it is performed using the baking zone of the continuous furnace which continues from the drying zone in which a drying process is performed.
  • the firing conditions are not particularly limited, and vary depending on the electrode catalyst component. However, the firing is performed in an air atmosphere at a firing time of 10 to 15 minutes and at a firing temperature of about 350 to 600 ° C.
  • anode for example, selected from platinum, iridium, ruthenium, palladium, osmium and oxides thereof.
  • an electrode catalyst layer comprising an electrode catalyst component made of at least one metal and / or alloy, or these platinum group metals and / or oxides thereof, such as titanium, tantalum, niobium, zirconium, hafnium, etc.
  • An electrode catalyst layer containing an electrode catalyst component made of a composite oxide or a solid solution with a valve metal oxide added is formed.
  • an electrode catalyst layer is formed by containing a mixed oxide of the platinum group metal and / or oxide thereof with a rare earth element oxide such as cerium or lanthanum.
  • preheating for heating an expanded mesh, a punched perforated plate, a wire mesh, or a similar shape of the conductive base material having a large number of holes to room temperature or higher By performing an electrode catalyst layer forming step including a step, changing the heating temperature of the conductive electrode base material in the preheating performed in the step, and / or changing the number of times of preheating is described above.
  • the adhesion amount of the electrode catalyst component of the front electrode catalyst layer of the conductive substrate having a large number of holes can be made larger than the adhesion amount of the electrode catalyst component of the back electrode catalyst layer, and the front and back electrode catalysts.
  • the relative quantity ratio of the components can be changed to the desired state.
  • Example 1 Pretreatment conditions for conductive electrode substrate made of expanded mesh of insoluble metal anode Thickness 1.0 mm, specific surface area 2.35 m 2 (actual surface area per projected area 1 m 2 ), side size 300 mm square
  • a titanium expanded mesh composed of a size expanded mesh was used as a conductive electrode base material, and was annealed by maintaining at a substantial temperature range of 580 to 600 ° C. for 1 hour or more. Thereafter, the surface of the conductive electrode substrate is roughened by dry blasting with an alumina abrasive (# 60 size), and then immersed in a 20% aqueous hydrochloric acid solution (azeotropic point) for about 12 minutes. At the same time as the etching treatment, the conductive electrode substrate was washed. To this pretreated conductive electrode substrate, 18 temperature measuring thermocouples were welded in-plane so that the temperature of each point could be recorded and confirmed during preheating.
  • Electrocatalyst layer formation conditions [2-1 Preheating conditions for conductive electrode substrate] A 50kW class high-frequency power source and a heating coil with an effective heating length of 500mm are installed in front of the coating conveyor at 550mm from the coating position by the coating robot, and the conveyor moving speed is 1.8m / min. It was set to be applied after 18 seconds.
  • heating conditions for the conductive electrode base material to be heated (1) when not heating (28 ° C., comparative example), when preheating, (2) 35 ° C. setting conditions, (3) 50 ° C. setting conditions, The output of the high-frequency power source was adjusted and set so as to be 5 levels of (4) 70 ° C. setting condition and (5) 100 ° C. setting condition.
  • a ruthenium chloride, iridium chloride, and titanium chloride solution was used as a starting material for the electrode catalyst component, and an inorganic / organic mixed solution obtained by dissolving them in a mixed solution of hydrochloric acid and IPA was prepared as a coating solution. And this coating liquid was each apply
  • the amount of the coating solution to be applied in the coating step was set so as to be approximately 0.4 to 0.7 g / m 2 in terms of the amount of iridium and ruthenium metal in the electrode catalyst layer.
  • the following performance adjustment treatment was performed as a post-treatment step to produce each insoluble metal anode of Example 1 and Comparative Example.
  • the performance adjustment such as the unipolar electrolysis potential SEP and the oxygen concentration in the chlorine gas during electrolysis was performed by performing a heat treatment in the atmosphere at about 500 ° C. for about 1 hour.
  • FIGS. 2 and 3 show the results of studying the insoluble metal anodes obtained by carrying out the above-described Example 1 and Comparative Example. That is, in FIGS. 2 and 3, when the coating liquid is applied to the front side of the conductive electrode base material, the conductive electrode base material temperature immediately before the application process of each measurement point and the front side of each point conductive electrode base material And the ratio of the adhesion amount of the electrode catalyst component on the back side.
  • FIG. 2 shows the relationship between the temperature of the conductive electrode substrate immediately before the coating process and the ratio of the ruthenium front-side adhesion amount / back-side adhesion amount for the ruthenium component in the electrode catalyst layer.
  • the relationship between the conductive electrode substrate temperature immediately before the coating step and the front-side / back-side adhesion amount ratio of iridium for the iridium component in the catalyst layer is shown.
  • the adhesion amount of the electrode catalyst component was measured by the method described below. Measuring device: manufactured by Rigaku Corporation Model No. ZSXmini Device name: X-ray fluorescence analyzer Voltage-current: 40 kV-1.20 mA Mask diameter: ⁇ 30mm
  • the relationship between the conductive electrode substrate temperature immediately before the coating process and the ratio of the ruthenium front-side adhesion amount / back-side adhesion amount by the preheating of the substrate by the preheating step has a good correlation.
  • a linear function of the following formula (1) was calculated as an approximate expression.
  • the relationship between the conductive electrode substrate temperature immediately before the coating process and the iridium front-side adhesion / back-side adhesion ratio by the preheating of the substrate in the preheating process is a good correlation.
  • a linear function of the following formula (2) was calculated as an approximate expression.
  • FIG. 2 and FIG. 3 in the case of a comparative example in which heating by preheating was not performed (around 28 ° C.), application of a conductive electrode substrate
  • the substrate temperature immediately before the coating process is 100 ° C. by heating by preheating, the adhesion amount ratio between the front side and the back side of the conductive electrode substrate shown on the vertical axis in FIG. 2 and FIG.
  • the solvent evaporates in a shorter time, the time for immobilization becomes shorter, and the adhesion amount ratio between the front side and the back side increases.
  • it exceeds 120 ° C. the temperature of the conductive electrode substrate becomes too high, and there is a risk of bumping of the coating solution.
  • the conductive electrode since the electrode catalyst layer is formed by performing at least one preheating step of heating the conductive electrode substrate to room temperature or higher, the conductive electrode can be controlled by controlling the heating temperature in preheating.
  • the amount of electrode catalyst in the electrode catalyst layer on the front side of the base material is made larger than the amount of electrode catalyst on the back side, and the ratio of the amount of electrode catalyst on the front side and the back side can be appropriately controlled. Obtainable.
  • Example 2 instead of the insoluble metal anode described in Example 1, an insoluble metal cathode was produced using a conductive substrate having a number of holes made of the following nickel metal mesh.
  • Nickel wire mesh specific surface area 1.24 m 2 (actual surface area per 1 m 2 projected area) Thickness: 0.15mm 1)
  • the surface of the conductive substrate is dry-blasted with an alumina abrasive (# 320 size), and then etched in a 20% aqueous hydrochloric acid solution for about 3 minutes. The substrate was washed.
  • the conductive base material was subjected to a heat treatment within about 30 minutes at about 500 ° C. in the atmosphere to perform a corrosion resistance improvement treatment.
  • an electrocatalyst layer forming step was performed on the conductive substrate by the following procedure.
  • [2-1 Preheating conditions for conductive electrode substrate In the same manner as in Example 1, the pretreated conductive electrode substrate was preheated. This preheating was performed each time before applying the coating solution to the conductive electrode substrate, as in Example 1.
  • the amount of the coating solution was set so that the coating amount of the coating layer at one time was approximately 1.0 g / m 2 in terms of the amount of ruthenium metal oxide.
  • drying was performed using an electric heating type batch furnace, and drying was performed at a temperature of a set temperature of 60 ° C. for a drying time of about 5 to 10 minutes.
  • thermal decomposition coating was performed in an electrically heated muffle furnace (about 550 ° C., about 10 minutes) to form an electrode catalyst layer having an electrode catalyst component composed of ruthenium oxide and cerium oxide. Preheating, coating, drying, and firing operations were repeated 12 times under the above conditions to produce an insoluble metal cathode.
  • performance adjustment processing was performed as a post-processing step of the manufactured insoluble metal cathode.
  • a heat treatment was performed in the atmosphere at about 550 ° C. for about 1 hour to perform a post-treatment for adjusting the monopolar electrolytic potential SEP performance.
  • Example 1 As a result, in the same manner as in Example 1, by applying the coating liquid to the preheated base material, even in the conductive base material having a large number of holes made of nickel wire mesh, the electrode on the front side of the base material while the amount of electrode catalyst in the catalyst layer was made larger than the amount of electrode catalyst on the back side, the ratio of the amount of electrode catalyst on the front side and the back side could be controlled.
  • the method includes a preheating process in which an expanded mesh, a punched perforated plate, a wire mesh, or a shape similar to these is heated to a room temperature or higher.
  • a preheating process in which an expanded mesh, a punched perforated plate, a wire mesh, or a shape similar to these is heated to a room temperature or higher.
  • an electrode for electrolysis using a conductive substrate having a large number of holes the amount of an expensive electrode catalyst component such as a platinum group metal and / or oxide thereof is appropriately changed to a desired amount.
  • the raw material of the expensive electrocatalyst component can be minimized without deteriorating the electrode function, so that high-performance electrolysis electrodes can be produced economically and efficiently. Its wide use is expected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Ceramic Engineering (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Catalysts (AREA)

Abstract

 電極触媒成分の量を所望量に適宜に変更することができ、電極性能を損なうことなく、高性能の電解用電極を経済的かつ効率的に製造することのできる電解用電極の製造方法の提供。 エキスパンデッドメッシュ等の、多数の孔を有する導電性電極基材の表側に、電気触媒成分の出発原料を含有する塗布液を塗布し、その後に乾燥・焼成して基材の表側と裏側に電極触媒層を形成する工程を有する電解用電極の製造方法において、基材が、Ti、Ta、Nb、Zr、Hf及びNiから選ばれた少なくとも1種の金属又はその合金を含有し、電極触媒成分が、Pt、Ir、Ru、Pd、Os及びこれらの酸化物から選ばれた少なくとも1種を含有し、電極触媒層形成工程中、基材を少なくとも1回プリヒーティングして、塗布液を塗布する直前の基材の温度を室温よりも高くし、かつまたその温度を変更することで、基材裏側に付着する電極触媒成分量を調整する電解用電極の製造方法。

Description

電解用電極の製造方法
 本発明は、例えば、ソーダ電解、水電解、酸素発生ないしは塩素発生を伴う各種工業電解の電解セルの陽極及び/又は陰極として使用される、エキスパンデッドメッシュ、打抜き多孔板、金網又はこれらに類似する形状の多数の孔を有する導電性電極基材に電極触媒層を形成した電解用電極の製造方法に関するものである。
 前記電解セルの陽極及び陰極は、各種電解法において電解液中に浸漬されて使用されるが、陽極及び陰極の使用形態としては、下記のものが挙げられる。例えば、陽極及び陰極を、無隔膜電解セルにおいて互いに離隔して使用する場合や、隔膜又はイオン交換膜の両側にこれらの膜と離隔して使用する場合や、隔膜又はイオン交換膜を挟んでその両側に微小空間をあけて設けたファイナイト電解セルに使用する場合や、イオン交換膜を挟んで該イオン交換膜の両側に接触して設けたゼロギャップ電解セルに使用する場合がある。いずれの場合も、陽極と陰極は、膜の相対する面が主反応を行う表側として使用され、その反対側が裏側として使用されている。
 電解用電極を、イオン交換膜法電解、特に、前記ファイナイト電解セル及びゼロギャップ電解セル用の陽極及び陰極として使用する場合、それらの導電性電極基材には、エキスパンデッドメッシュ、打抜き多孔板、金網又はこれらに類似する形状の多数の孔を有する導電性電極基材が使用されている。そして、通常、これらの多数の孔を有する導電性電極基材の一方の面に電極触媒層を積極的に形成し、形成した面を表側とし、これらの表側をイオン交換膜の両側にそれぞれ接触又は微小空間をあけて設置して、各々陽極及び陰極としている。
 特に、ソーダ電解においては、高電流効率、低電圧で高純度のアルカリ金属水酸化物を生産するためのイオン交換膜法塩化アルカリ電解セル、特に、イオン交換膜を挟んで陽極と陰極が接触している形式のフィルタープレス型ゼロギャップ電解セルが多く提案されている。このフィルタープレス型ゼロギャップ電解セルは、陽極室と陰極室とを背中合わせに配置して構成した複極式構造体を、陽イオン交換膜を介して多数配列させたもので、上記陰極室には、陽イオン交換膜と接触する部分に水素発生用陰極が設けられ、上記陽極室には、陽イオン交換膜の反対側の面と接触する部分に塩素発生用陽極が設けられている。
 この種の電解セルにおいて、一般的に、陽極の基材にはチタン製材料が用いられ、陰極の基材には、ニッケル又はニッケル合金が用いられている。また、陽極及び陰極ともに、エキスパンデッドメッシュ、打抜き多孔板、金網又はこれらに類似する形状の、多数の孔を有する導電性電極基材(以下、これらを単に「多数の孔を有する導電性基材」とも呼ぶ)が用いられており、これらの基材の一方の面に、高価で希少な白金族金属及び/又はその酸化物(以下、白金族金属類とも呼ぶ)よりなる電極触媒成分を含有する電極触媒層を形成することが行われ、形成した面を、主反応を行う表側として使用している。
 イオン交換膜を挟んで陽極と陰極が接触している形式のゼロギャップ電解セルに使用する電解用電極の製造方法については、例えば、特許文献1に、陽極及び陰極に使用する場合の多数の孔を有する導電性基材の板厚、開口率、電極触媒層の厚さ、電極表の凹凸の厚さ、焼鈍、形状加工、圧延による平面化処理、ブラストによる粗面化処理、酸による洗浄、エッチング処理、耐食性向上処理等の前処理が記載されている。
 従来、前記したような多数の孔を有する導電性基材には、一般的に、焼鈍、形状加工、圧延による平面化処理、ブラストによる粗面化処理、酸による洗浄、エッチング処理、耐食性向上処理等の前処理が施され、しかる後、その表側に、高価な白金族金属類よりなる電極触媒成分を含有する電極触媒層を形成している。電極触媒層の形成工程は活性化処理工程と呼ばれており、該工程は、通常、電極触媒成分となり得る出発原料(以下、単に出発原料とも呼ぶ)を含有する塗布液を基材に塗布し、その後に、乾燥、焼成する3工程によって行われている。より具体的には、活性化処理工程では、通常、先ず、出発原料を溶解した塗布液を作成し、この塗布液を前記したような前処理を施した多数の孔を有する導電性基材の表側に塗布し、しかる後、これを乾燥し、更に焼成して電極触媒層を形成している。その際、目的とする電極触媒層を形成するために、塗布、乾燥、焼成の3工程を、導電性電極基材の表側に付着する電極触媒成分が所望の量となるまで複数回繰り返し、これらの工程を経て、高価で希少な白金族金属類よりなる電極触媒成分(以下、触媒層形成物質とも呼ぶ)を含有する電極触媒層を形成している。基材に塗布液を塗布する塗布工程は、通常、スプレー、刷毛塗り、静電塗装、その他の方法により行われている。また、焼成工程おける加熱は、通常、電気炉等により行われている。
特許第4453973号公報
 上記した従来技術に対し、本発明者は、新たに下記の課題を認識するに至った。上記のような従来方法によると、電極触媒層を形成する陽極及び陰極の基材は、エキスパンデッドメッシュ、打抜き多孔板、金網又はこれらに類似する形状の、多数の孔を有するものであるため、該基材の表側に、前記したような方法で出発原料を含む塗布液を塗布すると、該基材の表側に塗布した塗布液は、基材の多くの孔又は上下左右の端を介して前記基材の裏側に移行し、かなり多くの量の塗布液が前記基材の裏側にも付着する。このため、その後に、乾燥、焼成工程を行うと、上記に挙げたような多数の孔を有する導電性基材の表側に電極触媒成分が固定されると同時に、該基材の裏側にも、その表側に固定された電極触媒成分の量と同量、場合によっては同量以上の量の電極触媒成分が固定されることが生じており、前記基材の裏側にも電極触媒層が形成されている。
 ここで、上記のような電解セルにおいては、陽極及び陰極の電極触媒成分としては、白金、イリジウム、ルテニウム、パラジウム、オスミウム及びこれらの酸化物から選ばれた少なくとも1種が用いられているが、いずれの成分も希少で、主な用途は、宝石等の材料と使用されているものであり、極めて高価な材料であり、その価格は年々高騰している。また、この電解セルは、石油コンビナートの電解設備に使用されるなど、大型の設備の電解セルに使用されており、その使用量も莫大であり、設備費全体に占める電極触媒成分のコストの割合は、極めて大きく、その材料費の低減は、産業界の悲願であるといっても過言ではない。
 一方で、陽極又は陰極として使用する前記に挙げたような多数の孔を有する導電性基材が薄い場合は、該基材の裏側に形成された電極触媒層中の電極触媒成分も、表側の電極触媒層中の電極触媒成分と同様に有効に働く。しかし、陽極及び陰極のいずれの場合も、その表側が主反応であり、表側の電極触媒層が裏側の電極触媒層よりも急速に消耗し、裏側に比べて表側では電極触媒成分が急速に減量する。このため、例えば、電解開始前において、表側と裏側に形成されている電極触媒層中の電極触媒成分の量(以下、電極触媒量とも呼ぶ)が同等であった場合には、表側の電極触媒量が最低必要残存量以下になった時点で、裏側の電極触媒成分の多くは、電極の寿命後も使用されないまま残されており、有効利用されない原料成分によって生じる経済的な損失は大きい。この事実は、電極触媒成分の原料価格が極めて高価である点から考えると、製造面では致命的な結果と言わざるを得ない。一方で、導電性電極基材の表裏に形成される電極触媒層は、電解終了後に、電極触媒量の全量の約20%が、最低必要残存量として残されるように設計しておく必要があり、裏側に電極触媒層を全く形成しないとすることもできない。
 本発明者は、これらのことから、経済的な電解用電極を設計するためには、基材の表裏に形成される電極触媒層中の電極触媒量を下記のように調整することが必要であり、簡便な方法で、基材面に付着し固定する電極触媒成分の量(付着量)を調整できる技術を見出すことが重要であると認識するに至った。具体的には、前述したように、導電性電極基材の表側の電極触媒量と裏側の電極触媒量との消耗(減量)速度の差は、一定ではなく、また、電解条件及び/又は電極触媒成分の種類によって異なるため、基材上に電極触媒成分を付着させて形成した電極触媒層の、表側の電極触媒量と裏側の電極触媒量とを、使用後の電解終了の際に、電極触媒成分の最低必要残存量に到達する時間が略同じになるようにすることが有効であると考えた。そして、これを実現するためには、電解開始前における表側の電極触媒成分の付着量を考慮して、裏側の電極触媒成分の付着量を調整することが必要となる。即ち、電極触媒成分の付着量を経済的かつ性能的に最適にするためには、
(1)導電性電極基材の表側の電極触媒成分の付着量が、導電性電極基材の裏側の電極触媒成分の付着量より多くなるよう調整すること、並びに
(2)電解用電極の使用条件や触媒成分の種類によって異なる表裏両側の電極触媒成分の消耗速度に応じて、導電性電極基材の表側の電極触媒成分の付着量と、導電性電極基材の裏側の電極触媒成分の付着量を適宜に調整し、基材の表側に塗布液を塗布した場合に、導電性電極基材に存在している多くの孔又は上下左右の端を介して裏側に付着する電極触媒量を必要最小限に、あるいは適宜な量に抑えること、が必要となる。
 これに対し、従来方法においては、このような認識や、該認識に基づく検討は全くされておらず、従来の方法では、電極触媒成分として、白金、イリジウム、ルテニウム、パラジウム、オスミウム及びこれらの酸化物から選ばれた極めて高価な材料が用いられているにもかかわらず、基材の裏側の電極触媒成分の付着量を低減することすら行われていなかった。即ち、従来技術では、電極触媒成分の導電性基材の表裏における付着量を経済的かつ性能的に最適にするために必要となる前記(1)及び(2)の目的も、これらの目的を達成するために必要になる方法、手段、方策、検討については、他の技術分野を調査しても、特許文献1を含めて、開示も示唆もなかった。
 従って、本発明の目的は、従来の方法には開示も示唆もされていない、高価な電極触媒成分の原材料の使用量を、電極性能を損なうことなく最小限にすることにあり、そのために、エキスパンデッドメッシュ、打抜き多孔板、金網又はこれらに類似する形状の、多数孔を有する導電性電極基材に電極触媒層を形成する際に、簡便な方法で、該基材の表側と裏側の電極触媒成分の付着量を適宜に調整することができる新たな技術を見出すことにある。即ち、本発明の目的は、簡便な方法で、主に、主たる反応面である表側に電極触媒成分がより多く付着し、裏側には、必要最小限の電極触媒成分が付着するよう簡便に調整できる電解用電極の製造方法を提供することにある。上記の目的が達成できれば、白金族金属類からなる高価な電極触媒成分の使用量を効果的に低減することができ、電極機能を低下させることなく、高価な電極触媒成分の原材料を最小限にすることができ、その結果、高性能の電解用電極を経済的に、かつ、効率的に製造することのできる電解用電極の製造方法の提供が可能になる。
 本発明における第1の解決手段では、上記の目的を達成するため、エキスパンデッドメッシュ、打抜き多孔板、金網又はこれらに類似する形状の、多数の孔を有する導電性電極基材(但し、金属粉体や金属繊維を焼結した焼結体、金属織布である場合を除く)の表側に、電極触媒成分の出発原料を含有する塗布液を塗布し、その後に乾燥・焼成して前記導電性電極基材の表側と裏側に前記電極触媒成分を含有する電極触媒層を形成するための電極触媒層形成工程を有する電解用電極を製造する方法において、前記導電性電極基材が、チタン、タンタル、ニオブ、ジルコニウム、ハフニウム及びニッケルから選ばれた少なくとも1種の金属又はその合金を含有し、前記電極触媒成分が、白金、イリジウム、ルテニウム、パラジウム、オスミウム及びこれらの酸化物から選ばれた少なくとも1種を含有し、前記電極触媒層形成工程中、前記導電性電極基材を少なくとも1回プリヒーティングして、前記塗布液を塗布する直前の導電性電極基材の温度を室温よりも高くなるようにして前記塗布液を基材の表側に塗布する際に、前記プリヒーティングにより、前記塗布液を塗布する直前の導電性電極基材の温度を変更することで、前記導電性電極基材の裏側に付着する電極触媒成分の量を調整することを特徴とする電解用電極の製造方法を提供する。
 本発明における第2の解決手段では、上記の目的を達成するため、塗布液を塗布する直前の前記導電性電極基材の温度を35℃~120℃とした電解用電極の製造方法を提供する。
 本発明における第3の解決手段では、上記の目的を達成するため、塗布液を塗布する直前の前記導電性電極基材の温度を35℃~70℃とした電解用電極の製造方法を提供する。
 本発明における第4の解決手段では、上記の目的を達成するため、前記導電性電極基材の表側に付着する電極触媒成分の付着量(A)と前記導電性電極基材の裏側に付着する電極触媒成分の付着量(B)の比率(A/B)を、1.5~6.8の範囲内で任意に調整する電解用電極の製造方法を提供する。
 本発明における第5の解決手段では、上記の目的を達成するため、前記比率(A/B)を、1.5~4.4の範囲内で任意に調整する電解用電極の製造方法を提供する。
 本発明における第6の解決手段では、上記の目的を達成するため、前記触媒層形成工程において前記導電性電極基材をプリヒーティングする回数を変更することで、該導電性電極基材の裏側に付着する電極触媒成分の付着量を調整する電解用電極の製造方法を提供する。
 本発明によれば、エキスパンデッドメッシュ、打抜き多孔板、金網又はこれらに類似する形状の、多数の孔を有する導電性基材(但し、金属粉体や金属繊維を焼結した焼結体、金属織布である場合を除く)の表側に、電極触媒成分の出発原料を含有する塗布液を塗布し、その後に乾燥・焼成して前記導電性電極基材の表側と裏側に前記電極触媒成分を含有する電極触媒層を形成するための電極触媒層形成工程を有する電解用電極を製造する方法において、前記導電性電極基材が、チタン、タンタル、ニオブ、ジルコニウム、ハフニウム及びニッケルから選ばれた少なくとも1種の金属又はその合金を含有し、前記電極触媒成分が、白金、イリジウム、ルテニウム、パラジウム、オスミウム及びこれらの酸化物から選ばれた少なくとも1種を含有し、前記電極触媒層形成工程中、室温(周囲温度、常温)にある前記導電性電極基材を少なくとも1回プリヒーティングして、前記塗布液を塗布する直前の導電性電極基材の温度を室温よりも高くなるようにして前記塗布液を基材の表側に塗布する際に、前記プリヒーティングにより、前記塗布液を塗布する直前の導電性電極基材の温度を変更するという極めて簡便な方法で、前記導電性電極基材の裏側に付着する電極触媒成分の量を調整することが可能になり、これにより下記の顕著な効果が得られる。即ち、高価原料である電極触媒成分の使用量を、最小限にすることができ、その結果、高性能の電解用電極を、電極性能を損なうことなく、経済的かつ効率的に製造することができる。具体的には、本発明の製造方法によれば、前記プリヒーティングにおける加熱温度及び/又はプリヒーティングの実施回数を適宜に設計することで、基材に塗布後の塗布液の乾燥を早め、該液中の触媒層形成物質が基材の表側に固定する所要時間を短縮して固定量を調整したり、影響を及ぼす回数を調整したりできる。これにより、例えば、多数の孔を有する導電性基材の表側の電極触媒成分の付着量を、導電性電極基材の裏側の電極触媒成分の付着量より多くするとともに、表側と裏側の電極触媒成分の付着量の比率を簡便に調整することができ、その結果、電極機能を低下させることなく、高価な電極触媒成分の原材料の使用を最小限にすることができる。
 ここで、本発明におけるプリヒーティングとは、例えば、必要に応じて前処理を施した導電性電極基材の表側に、電極触媒成分の出発原料を含有する塗布液を塗布する直前に、室温(周囲温度、常温)に置かれている該導電性電極基材を室温より高くなるよう加熱することである。本発明者の検討によれば、このように、塗布層を形成する直前に、導電性電極基材を室温(周囲温度、常温)よりも高くなるよう加熱することで、基材の表側に塗布した出発原料を含有する塗布液の乾燥が早まり、付着した塗布液中の触媒層形成物質(電極触媒成分)を速やかに表側に固定させることができるようになる。この結果、基板の孔等を介して裏側に移行する電極触媒成分の付着量を適宜に調整することが可能になり、裏側に移行・固定される電極触媒層形成物質の量を効果的に低減することができ、基材の裏側に効率的な電極触媒層が形成される。
本発明の電解用電極を製造する方法の代表的な1実施態様を示す工程図である。 本発明を特徴づける基材のプリヒーティングによる塗布工程直前の導電性電極基材の基材温度と、導電性電極基材の表側と裏側のルテニウム成分の表側付着量/裏側付着量比との関係を示すグラフである。 本発明を特徴づける基材のプリヒーティングによる塗布工程直前の導電性電極基材の基材温度と、導電性電極基材の表側と裏側のイリジウム成分の表側付着量/裏側付着量比との関係を示すグラフである。
 以下、本発明の電解用電極の製造方法の好ましい実施の態様を図面とともに説明する。
 図1は、本発明の電解用電極の製造方法の代表的な製造工程の一例を示す工程図である。具体的には、まず、前処理工程は、電極触媒層を形成するための導電性電極基材に対して行うが、該工程は必要に応じて実施すればよく、本発明においては必須ではない。前処理工程後に行う電極触媒層形成工程が本発明を特徴づけるものである。即ち、電極触媒層形成工程に、特に、従来の方法では存在していなかったプリヒーティング工程を適宜なタイミングで、少なくとも1回、組み入れたことで、先に述べた本発明の顕著な効果を得ることができる。この電極触媒層形成工程後に行う後処理工程も、必要に応じて実施すればよく、本発明においては必須ではない。以下、各工程の詳細について説明する。
(導電性電極基材)
 本発明では、導電性電極基材として、エキスパンデッドメッシュ、打抜き多孔板、金網又はこれらに類似する形状の、多数の孔を有する板状体を用いる。但し、この多数の孔を有する板状体には、基材の表側に塗布した塗布液が裏側に移行するおそれのない、金属粉体や金属繊維を焼結した焼結体や、金属織布であるようなものは、当然のことながら含まない。これらの多数の孔を有する導電性電極基材の材質は、陽極用の電極を製造する場合には、チタン、タンタル、ニオブ、ジルコニウム、ハフニウム等のバルブ金属から選ばれた少なくとも1種の金属又はその合金が好適に用いられ、陰極用の電極を製造する場合には、ニッケル又はニッケル合金等が好適に用いられる。また、導電性電極基材は、陽極の場合は、比表面積1.6~2.5m2(投影面積1m2当たりの実表面積)、厚さ0.5~3.0mm程度のものが使用され、陰極の場合は、比表積1.1~2.4m2(投影面積1m2当たりの実表面積)、厚さ0.1~0.8mm程度のものが使用される。
(1.前処理工程)
 本発明で使用する、上記したような多数の孔を有する導電性電極基材に対しては、必要に応じて前処理工程により適宜な前処理を行ってもよい。前処理工程としては、基材の表面状態を改質する等の目的で、焼鈍、形状加工、粗面化処理、エッチング処理、耐食性向上処理等を行う。具体的には、前処理工程として、少なくとも以下の工程を行うことが好ましいが、使用する導電性電極基材材料や、その後の工程などにより適宜必要となる処理を行えばよい。以下に、本発明で使用する導電性電極基材に対して行うことのできる好ましい前処理工程の一例を、それぞれ説明する。
[1-1 焼鈍工程]
 導電性電極基材を、バッチ式加熱炉を用いて、大気中で580℃~600℃の実体温度範囲で1時間以上保持して焼鈍を行い、加熱保持後、約200℃程度まで炉内冷却する。その後、炉外に取り出し、大気中で冷却する。
[1-2 粗面化処理工程]
 必要に応じて焼鈍した導電性電極基材を形状加工した後、例えば、250~212μm、あるいは40.0±2.5μmの大きさの粒度分布を有するアルミナよりなる研磨剤を用いて0.3~0.5MPaの圧力で、導電性電極基材表面の両面に吹き付け、導電性電極基材表面の両面に凹凸を付ける。
[1-3 エッチング処理工程] 
 導電性電極基材に上記のような粗面化処理を行った場合は、粗面化処理工程で使用した研磨剤が残留しないよう、18~22wt.%程度の濃度と100℃~109℃程度の温度に調整した塩酸等の鉱酸溶液中に所定の減耗量となるような時間浸漬し、導電性電極基材中に残留する研磨剤の除去を行うと同時に、表面をエッチングする。
[1-4 耐食性向上処理工程]
 導電性電極基材は、下記に挙げるような方法で、耐食性向上処理を施すことができる。この処理には、次のような処理がある。基材材料であるチタンやジルコニウムは、常温でその表面に安定な酸化皮膜を形成し、耐食性に富んでおり、後述する電極触媒層形成工程にて塗布される、電極触媒成分が溶解した無機又は有機溶液よりなる塗布液に対し、腐食され難い性質を有する。従って、これらの材料からなる基材を用いる場合は、耐食性向上処理をする必要性は低い。一方、導電性電極基材としてチタンやジルコニウムを除く材質を使用する場合は、塗布液自身により腐食される場合があることから、塗布前に事前に基材を高温で加熱して、強制的にその表面に強固で緻密で耐食性を有する酸化皮膜を形成させる処理を施すことが好ましい。例えば、ニッケル製である基材の場合は、大気中で約500℃、30分以内の加熱処理を行うとよい。
(2.電極触媒層形成工程)
 本発明では、図1に示したように、必要に応じて前記したような前処理が施された多数の孔を有する導電性電極基材に対し、本発明を特徴づける電極触媒層形成工程により、導電性電極基材の表面に、電極触媒層を形成する。該電極触媒層形成工程は、従来で行われていた方法に新たに、少なくとも1回、プリヒーティングする工程を設けたことを特徴とするものであり、その他の工程は、従来の電解用電極の製造方法における電極触媒層の形成方法と同様でよい。具体的には、従来、多数の孔を有する導電性電極基材の表面に電極触媒層を形成する場合に、該基材の表側となる一方の面に、電極触媒成分の出発原料を含有する塗布液を塗布し、その後に乾燥・焼成を行い、この塗布・乾燥・焼成の一連の工程を複数回繰り返すことで、所望する量の電極触媒成分を有する電極触媒層を基材表面に形成しているが、本発明の方法も、基本的には同様である。本発明の製造方法の特徴は、塗布・乾燥・焼成の一連の工程を複数回繰り返す場合のいずれかの段階に、少なくとも1回、プリヒーティングして室温以上に加熱した導電性電極基材に塗布液を塗布するように構成したことにある。
 図1を参照して、この点についての概略を説明するが、先に述べたように、本発明では、下記の知見に基づき、プリヒーティングを行うタイミングと回数を適宜に決定することで、基材の表側と裏側に、所望する量の電極触媒成分を有する電極触媒層をそれぞれに形成することを可能にしている。即ち、本発明者は、導電性電極基材の表側に塗布液を塗布する場合に、プリヒーティングして基材を予備加熱しておくと、塗布された塗布液の乾燥が早まり、該液中の触媒層形成物質の基材表側への固定所要時間が短縮することを見出した。この結果、基材の裏側に孔等を介して塗布液が移行する量を低減でき、裏側に移行・固定する触媒層形成物質の量を効果的に制御することができるため、プリヒーティングをせずに導電性電極基材に塗布液を塗布し、その後に乾燥・焼成を行った場合と比較すると、表側に形成される電極触媒層の電極触媒成分量が、基材の孔等を介して基材の裏側に形成される電極触媒層の電極触媒成分量よりも明らかに多くなるとの知見を得たことに基づく。
 本発明の方法においては、図1に示したように、プリヒーティング工程を、塗布液を塗布する工程の前に少なくとも1回行えばよく、その回数は、数回若しくは全ての塗布工程の前に行ってもよい。そのタイミングは、必ずしも1回目の工程でプリヒーティングを行う必要はなく、例えば、1回目の工程ではプリヒーティングを行わず、まず、塗布・乾燥・焼成の一連の工程を行い、その後にプリヒーティングを行ってもよい。また、塗布・乾燥・焼成の一連の工程を複数回行った後に、プリヒーティングを行い、その後に塗布・乾燥・焼成の一連の工程を行ってもよい。さらに、プリヒーティングの回数も1回以上であればよく、塗布工程毎に、塗布に先だって必ず行うようにしてもよい。本発明者の検討によれば、プリヒーティングの回数と、プリヒーティングを行うタイミングを調整することによって、導電性電極基材の、孔又は上下左右の端を介して導電性電極基材の裏側に付着することになる電極触媒成分の出発原料を含有する塗布液の付着量を調整することができる。結果として、導電性電極基材の表側に形成される電極触媒層の電極触媒量に対する、該導電性電極基材の裏側に形成される電極触媒層の電極触媒量は、プリヒーティングの回数が多くなればなるほど少なくなる。即ち、導電性電極基材の裏側に形成される電極触媒層の電極触媒量に対して、導電性電極基材の表側に付着する電極触媒量の割合を多くすることができ、しかも、多くする程度を適宜に制御することができる。
[2-1 プリヒーティング工程]
 プリヒーティング工程では、導電性電極基材をプリヒーティングして、その表側を室温(周囲温度、常温)以上、好ましくは、後述する塗布工程直前の導電性電極基材温度が35℃~120℃になるよう加熱する。但し、この加熱温度は、後述する電極触媒成分の出発原料を無機又は有機溶媒に溶解した塗布液の溶剤の沸点を下回るようにすることが好ましい。このプリヒーティング工程では、導電性電極基材の表側に塗布液を塗布する前に、該導電性電極基材を室温以上に加熱するが、室温(周囲温度、常温)以上に予備加熱することにより、塗布工程後に行う乾燥工程における塗布液中の溶媒の蒸発を加速し、導電性電極基材の表側に付着した塗布液中の触媒層形成物質が裏側に移行・固定するのを効果的に抑止することができ、この結果、導電性電極基材の裏側に固定される触媒成分を必要最小限に制御することができる効果が得られる。
 後述するように、例えば、プリヒーティング工程における導電性電極基材の加熱温度を、塗布工程直前の導電性電極基材温度が35℃以上になるよう加熱すると、導電性電極基材の表側の電極触媒成分の付着量に対する、導電性電極基材の裏側に付着する電極触媒成分の付着量の比を1.5倍以上とすることができる。さらに、後述するように、プリヒーティング工程における塗布工程直前の導電性電極基材温度を100℃に高めると、前記した表側と裏側との電極触媒成分の付着量の比は5倍以上となる。一方、100℃以上になるよう基材温度を上げても効果にそれほど違いはなく、120℃を超えると乾燥が進みすぎて、塗布層の形成に影響が出る恐れがあるので好ましくない。
 本発明者は、この原理の詳細を以下のように考えている。まず、表側の電極触媒成分の付着量が、裏側の付着量に比して相対的に増加した理由は、室温以上に加熱された導電性電極基材に少量の塗布液が接触することで塗布液中の溶媒の蒸発が加速し、そのため塗布液が導電性電極基材の裏側に移行(移動)できる時間が短縮され、塗布液中の触媒層形成物質が塗布面である表側に速やかに固定したためと考えられる。そして、プリヒーティングの温度をより高くすると、導電性電極基材の加熱温度が上昇することで塗布液中の溶媒は更に短時間で蒸発し、触媒層形成物質の表側への固定化所要時間が更に短くなって表側への該物質の固定が加速し、表側と裏側との付着量比が大きくなったことによると考えられる。しかし、120℃を超えると、導電性電極基材の温度が高温となりすぎ、塗布液の突沸などの恐れが生じ、別の理由で好ましくない影響が出てくる可能性が高まるので、基材の温度を高くし過ぎることは好ましくない。
 このため、表側の電極触媒成分の付着量を、裏側の電極触媒成分の付着量に比して相対的に増加させる効果をより向上させるためには、プリヒーティングを、全ての塗布工程毎にその前工程として繰り返し行うとよい。具体的には、エキスパンデッドメッシュ、打抜き多孔板、金網又はこれらに類似する形状の、多数の孔を有する導電性基材の表側に形成する電極触媒層における電極触媒量を、該基材の裏側に付随して形成される電極触媒層における電極触媒量よりもできるだけ多くするためには、基材の表側に塗布液を塗布する毎にプリヒーティングが行われるように、塗布・乾燥・焼成の繰り返し工程中に上記したプリヒーティング工程を含めて、プリヒーティング・塗布・乾燥・焼成を繰り返すとよい。
 勿論、本発明は上記に限定されず、先に述べたように、プリヒーティングは1回のみとし、塗布・乾燥・焼成の繰り返し工程の中には、プリヒーティング工程を含めないようにしてもよい。また、プリヒーティング工程は、塗布周回ごとにON/OFFして、繰り返し工程に含める場合の回数を調整してもよく、このように構成することで、多数の孔を有する導電性基材の表側と裏側に形成される電極触媒層の電極触媒量を所望するものに調整することができる。
 プリヒーティング工程における加熱手段としては、発熱効率が高いことや、昇温レスポンスが早い等の理由から誘導加熱装置が好ましいが、勿論、その他の加熱手段を用いることもできる。その他の加熱手段としては、赤外線やラジアントチューブなどによる輻射熱を用いた加熱方法や、温風を導電性電極基材に当てる加熱などが挙げられ、これらの方法を、状況に合わせて適宜にプリヒーティングに適用することが可能である。
 本発明において好適な誘導加熱(Induction Heating:以下、略称IH)は、電磁誘導の原理を利用して加熱コイルに電流を流して、加熱対象である金属等導電体を発熱させる方法である。その加熱原理は、加熱コイルに交流電流を流すとその周りに向き、強度の変化する磁力線が発生する。その近くに電気を通す金属等物質を置くと、この変化する磁力線の影響を受けて金属の中に渦電流が流れる。金属自身の電気抵抗により(電流)2×抵抗分のジュール熱が発生して、金属が自己発熱する。この現象を誘導加熱IHという。IHの最大の利点は、加熱開始から数秒で導電性電極基材を所定の温度に昇温できることである。従って、IHを利用すれば、プリヒーティングと塗布の各設備を隣接して設置することが可能である。
[2-2 塗布工程]
 次に、電極触媒成分の出発原料を含有する塗布液を多数の孔を有する導電性基材の表側に塗布する塗布工程について説明する。本発明では、プリヒーティング後の予備加熱された導電性電極基材の表側に、電極触媒成分の出発原料を無機溶媒又は有機溶媒等に溶解した無機溶液又は有機溶液よりなる塗布液を、スプレー等により塗布し、塗布層を形成することで、先に述べた顕著な効果を得ている。該塗布工程における塗布方法は、スプレー以外の方法、例えば、刷毛塗り、静電塗装、その他の方法によって行うこともできる。
 本発明において使用する塗布液は、電極触媒成分の出発原料を溶解した溶液よりなるものであり、例えば、次のようにして調製される。
 不溶性金属陽極における電極触媒成分の出発原料としては、白金、イリジウム、ルテニウム、パラジウム、オスミウムから選ばれた少なくとも1種の金属の無機又は有機化合物が用いられる。これらの出発原料を含有する塗布液としては、上記に挙げた化合物を、無機又は有機化合物を無機溶媒又は有機溶媒等に溶解した無機溶液又は有機溶液が用いられる。更に、この無機溶液又は有機溶液としては、上記に挙げた電極触媒成分の出発原料に、さらに、チタン、タンタル、ニオブ、ジルコニウム、ハフニウム等のバルブ金属の無機又は有機化合物を、無機溶媒又は有機溶媒に溶解したものを加えたものであることが好ましい。
 また、不溶性金属陰極における電極触媒成分の出発原料としては、上記に挙げた出発原料とともに、ランタン、セリウム、イットリウム等の希土類元素の化合物及びシュウ酸の水和物等が好適に用いられる。
 電極触媒成分の出発原料として使用される具体的にものとしては、以下に挙げるような化合物が挙げられる。
  白金:塩化白金酸あるいは白金硝酸化合物
  イリジウム:塩化イリジウム
  ルテニウム:塩化ルテニウム
  パラジウム:塩化パラジウム
  チタン:塩化チタン
  タンタル:五塩化タンタル
  セリウム:塩化セリウム
 前記塗布液の一例を挙げると、四塩化イリジウム、五塩化タンタルを35%塩酸に溶解した無機溶液が用いられる。その他の塗布液の例として、塩化ルテニウム、塩化イリジウム、塩化チタン溶液を、塩酸とIPA(イソプロピルアルコール)に溶解した無機・有機混合溶液や、ジニトロジアンミン白金、硝酸セリウムを硝酸に溶解した無機溶液などが挙げられる。
 本発明における塗布工程の工程条件の一例を挙げると、食塩電解用陽極を製造する場合であれば、例えば、1回当たりの塗布量:0.36g~0.66g、塗布回数:6~12で、全体の塗布量:2.16g~5.28gが塗布される。
[2-3 乾燥工程]
 前記した塗布工程で形成した塗布層は、その後に、乾燥・焼成されて、電極触媒層を形成する。乾燥工程は、特に限定されないが、例えば、コーティングブースから続く連続炉の乾燥ゾーンを経てレベリングされた後、乾燥時間5~10分、設定温度30℃~80℃の温度で乾燥される。尚、この乾燥工程は、塗布液の塗布後に、焼成の前段階として行われるものであって、本発明で行う塗布液を塗布する前に基材を予備加熱するプリヒーティングとは明確に区別されるものである。
[2-4 焼成工程]
 前記乾燥工程後の塗布層は、最終的に焼成されて、電極触媒成分(触媒層形成物質)を含有してなる電極触媒層となる。焼成工程は、特に限定されないが、例えば、乾燥工程が行われる乾燥ゾーンから続く連続炉の焼成ゾーンを使用して行われる。焼成条件も特に限定されず、電極触媒成分により異なるが、大気雰囲気で焼成時間10~15分、焼成温度約350~600℃で焼成される。
 上記したような条件で焼成することで、前記塗布液中の出発原料は、熱分解され、陽極の場合であれば、例えば、白金、イリジウム、ルテニウム、パラジウム、オスミウム及びこれらの酸化物から選ばれた少なくとも1種の金属及び/又は合金よりなる電極触媒成分を含有してなる電極触媒層、あるいは、これらの白金族金属及び/又はその酸化物に、チタン、タンタル、ニオブ、ジルコニウム、ハフニウム等のバルブ金属の酸化物を加えた複合酸化物又は固溶体よりなる電極触媒成分を含有してなる電極触媒層、が形成される。また、陰極の場合であれば、前記白金族金属及び/又はその酸化物に、セリウム、ランタン等の希土類元素の酸化物との混合酸化物を含有してなる電極触媒層が形成される。
(3.後工程)
 本発明の電解用電極の製造方法では、上記したような電極触媒層形成工程の後に、図1に示したように、必要に応じて、性能調整工程、中和処理工程、形状加工などの後処理がなされ、電解用電極が製造される。これらの後処理工程は、本発明においても従来の方法と同様に行えばよく、従来の方法と何ら異なるものではない。
 上記したように、本発明の製造方法によれば、エキスパンデッドメッシュ、打抜き多孔板、金網又はこれらに類似する形状の、多数の孔を有する導電性基材を室温以上に加熱するプリヒーティング工程を含む電極触媒層形成工程を実施し、該工程で行うプリヒーティングにおける導電性電極基材の加熱温度を変更すること、及び/又は、プリヒーティングの回数を変更することにより、上記したように、多数の孔を有する導電性基材の表側の電極触媒層の電極触媒成分の付着量を、裏側の電極触媒層の電極触媒成分の付着量より多くできるとともに、表側と裏側の電極触媒成分の相対的な量比を所望の状態に変更することができる。
 次に、本発明の実施例を説明するが、本発明はこれらに限定されるものではない。
<実施例1、比較例>
1)不溶性金属陽極のエキスパンデッドメッシュよりなる導電性電極基材の前処理条件
 厚さ1.0mm、比表面積2.35m2(投影面積1m2当たりの実表面積)、1辺のサイズ300mm角サイズのエキスパンデットメッシュよりなるチタン製エキスパンデッドメッシュを導電性電極基材として使用し、580~600℃の実体温度範囲で1時間以上保持して焼鈍した。しかる後、この導電性電極基材の表面をアルミナ研磨剤(#60サイズ)にて乾式ブラスト処理を施して粗面化し、次いで、20%塩酸水溶液中(共沸点)にて約12分間浸漬してエッチング処理を行うと同時に、導電性電極基材の洗浄処理を行った。
 この前処理済みの導電性電極基材に対し、面内に18点の温度測定用の熱電対を溶接取り付けし、プリヒーティング時に各々のポイントの温度が記録・確認できるようにした。
2)電極触媒層の形成条件
[2-1 導電性電極基材のプリヒーティング条件]
 50kW級高周波電源、ならびに有効加熱長500mmの加熱コイルを、塗装用ロボットによる塗布位置より550mm、塗装コンベアーの手前に設置し、コンベアー移動速度1.8m/分より、導電性電極基材加熱後約18秒後に塗布されるようにセッティングした。
 加熱対象となる導電性電極基材の加熱条件として、(1)加熱しない(28℃、比較例)、プリヒーティングをする場合、(2)35℃設定条件、(3)50℃設定条件、(4)70℃設定条件、(5)100℃設定条件の5水準となるよう、前記高周波電源の出力を調整・設定した。
[2-2 塗布工程の条件]
 次に、塩化ルテニウム、塩化イリジウム、塩化チタン溶液を電極触媒成分の出発原料とし、これらを塩酸とIPAとの混合液に溶液化した無機・有機混合溶液を塗布液として用意した。そして、この塗布液を、コーティングブース内で、前記した各温度に調整された導電性電極基材の表面に、それぞれスプレーにより塗布した。塗布工程における1回の塗布量は、電極触媒層中のイリジウム及びルテニウムの金属量に換算してほぼ0.4~0.7g/m2になるように塗布する塗布液の量を設定した。
[2-3 乾燥工程の条件]
 次に、コーティングブースから続く連続炉の乾燥ゾーンを使用して、乾燥時間約10分、設定温度60℃で、基材を移動させながら表面の塗布液を乾燥した。
[2-4 焼成工程の条件]
 乾燥後、空気循環式のガス燃焼ヒーター式焼成炉中(約470℃、約10分間)にて熱分解被覆を行い、酸化イリジウムと酸化ルテニウムよりなる電極触媒成分を有する電極触媒層を形成した。
 上記した塗布~焼成操作を6回繰り返し、不溶性金属陽極を製作した。その際、導電性電極基材に塗布液を塗布する前に、その都度、(1)加熱しない(28℃、比較例)以外の基材については、それぞれ、(2)35℃設定条件、(3)50℃設定条件、(4)70℃設定条件、(5)100℃設定条件でプリヒーティングをし、その後に基材に塗布液を塗布した。
3)電極触媒層形成工程の後、後処理工程として、下記の性能調整処理をして、実施例1及び比較例の各不溶性金属陽極を製造した。性能調整処理は、大気中で約500℃、約1時間の熱処理を実施することで、単極電解電位SEP及び電解時塩素ガス中酸素濃度、といった性能調整をした。
 上記した実施例1及び比較例を実施して得られた各不溶性金属陽極について、検討した結果を図2及び図3に示した。即ち、図2及び図3に、導電性電極基材の表側に塗布液を塗布した場合の、各測定ポイントの塗布工程直前の導電性電極基材温度と、各ポイント導電性電極基材の表側と裏側における電極触媒成分の付着量の比との関係を示した。
 図2は、電極触媒層中のルテニウム成分について、塗布工程直前の導電性電極基材温度と、ルテニウムの表側付着量/裏側付着量比との関係を示したものであり、図3は、電極触媒層中のイリジウム成分について、塗布工程直前の導電性電極基材温度と、イリジウムの表側付着量/裏側付着量比との関係を示したものである。
 尚、電極触媒成分の付着量は、以下に記載の方法により測定した。
  測定装置:株式会社リガク製 型番ZSXmini
  装置名称:蛍光X線分析装置
  電圧-電流:40kV-1.20mA
  マスク径:φ30mm
 図2から明らかなように、プリヒーティング工程による基材の予備加熱によって、塗布工程直前の導電性電極基材温度と、ルテニウムの表側付着量/裏側付着量比との関係は、よい相関を示しており、統計処理の結果、その近似式として下記式(1)の一次関数が算出された。
Figure JPOXMLDOC01-appb-I000001
 また、図3から明らかなように、プリヒーティング工程による基材の予備加熱によって塗布工程直前の導電性電極基材温度と、イリジウムの表側付着量/裏側付着量比との関係は、よい相関を示しており、統計処理の結果、その近似式として下記式(2)の一次関数が算出された。
Figure JPOXMLDOC01-appb-I000002
 図2及び図3から求めた上記近似式(1)、(2)にから、基材を加熱しない28℃の場合と、プリヒーティングの温度の各設定条件における、ルテニウムの表側付着量/裏側付着量比と、イリジウムの表側付着量/裏側付着量比を求めた結果を表1に示した。このことは、プリヒーティングの温度を変更することで、基材の表側と裏側に電極触媒成分の量が異なる電極触媒層を適宜に形成できることを示している。
Figure JPOXMLDOC01-appb-I000003
 より具体的には、表1、図2及び図3より明らかなように、(1)プリヒーティングによる加熱を行わなかった比較例の場合(28℃近傍)は、導電性電極基材の塗布面である表側と裏側の電極触媒成分付着量比は、略1であり、導電性基材の表側と裏側では、電極触媒成分の付着量はほぼ同じであった。一方、プリヒーティングによる加熱を行い、塗布工程直前の基材温度が100℃になるまで、図2、図3の縦軸に示した導電性電極基材の表側と裏側の付着量比は、増加し、(2)35℃の場合では略1.5倍、(3)50℃の場合では2.6~2.8倍、(4)70℃の場合では4~4.4倍、(5)100℃の場合では6~6.8倍となった。そして、100℃以上になると、その付着量比は、略一定となり、変化が少なくなることが分かった。
 先に述べたように、このようなものになった原理は、下記のようであると考えられる。室温以上に加熱された導電性電極基材に少量の塗布液が接触することで塗布液中の溶媒が蒸発し、そのため、電極触媒成分が導電性電極基材表面を移動する時間的猶予が無くなり、塗布面である表面に固定する。導電性電極基材の加熱温度が上昇することで溶媒は更に短時間で蒸発し、固定化する時間が更に短くなり、表側と裏側との付着量比が大きくなる。一方、120℃を超えると、導電性電極基材の温度が高温となり過ぎ、塗布液の突沸などの恐れがある。
 本発明では、導電性電極基材を室温以上に加熱するプリヒーティング工程を少なくとも1回行って電極触媒層の形成を実施するので、プリヒーティングにおける加熱温度を制御することにより、導電性電極基材の表側の電極触媒層の電極触媒量を、裏側の電極触媒量より多くするとともに、表側と裏側の電極触媒量の割合を適宜に制御できるという、従来の技術では達成できない顕著な効果を得ることができる。
<実施例2>
 実施例1に記載の不溶性金属陽極に代えて、下記のニッケル製金網よりなる多数の孔を有する導電性基材を使用し、不溶性金属陰極を製造した。
  ニッケル製金網
  比表面積:1.24m2(投影面積1m2当たりの実表面積)
  厚さ:0.15mm
1)前処理工程として、上記の導電性基材の表面をアルミナ研磨剤(#320サイズ)にて乾式ブラスト処理を施し、次いで、20%塩酸水溶液中にて約3分間エッチング処理を行い、電極基材の洗浄処理を行った。
 次に、この導電性基材を大気中で約500℃、30分以内の加熱処理を行い、耐食性向上処理を施した。
2)続いて、この導電性基材に下記の通りの手順で、電極触媒層形成工程を施した。
[2-1 導電性電極基材のプリヒーティング条件]
 実施例1と同様にして、上記の前処理した導電性電極基材をプリヒーティングした。このプリヒーティングは、実施例1と同様に、導電性電極基材に塗布液を塗布する前に、その都度、実施した。
[2-2 塗布工程の条件]
 次に、塩化ルテニウム溶液中に、塩化セリウム、シュウ酸を溶解した実施例1で使用したと同様の無機・有機混合溶液を塗布液とし、この塗布液を、前記導電性基材の表面にスポンジローラーにより塗布した。この際の塗布層の1回の塗布量は、ルテニウムの金属酸化物量に換算してほぼ1.0g/m2になる様に前記塗布液の量を設定した。
[2-3 乾燥工程の条件]
 次に、電気加熱式バッチ炉を使用して乾燥が行われ、乾燥時間約5~10分、設定温度60℃の温度で乾燥した。
[2-4 焼成工程の条件]
 乾燥後、電気加熱式マッフル炉中(約550℃、約10分間)にて熱分解被覆を行い、酸化ルテニウムと酸化セリウムよりなる電極触媒成分を有する電極触媒層を形成した。
 上記のような各条件で、プリヒーティング・塗布・乾燥・焼成操作を12回繰り返し、不溶性金属陰極を製作した。
3)更に、製作した不溶性金属陰極の後処理工程として、性能調整処理をした。この処理は、大気中で約550℃、約1時間の熱処理を実施することで、単極電解電位SEP性能調整のための後処理を行った。
 その結果、実施例1と同様に、プリヒーティングを行った基材に塗布液を塗布することで、ニッケル製金網よりなる多数の孔を有する導電性基材においても、基材の表側の電極触媒層の電極触媒量を、裏側の電極触媒量より多くするとともに、表側と裏側の電極触媒量の割合を制御することができた。
 上記した通り、本発明によれば、エキスパンデッドメッシュ、打抜き多孔板、金網又はこれらに類似する形状の、多数の孔を有する導電性基材を室温以上に加熱するプリヒーティング工程を含んだ電極触媒層形成を実施し、そのプリヒーティングにおける加熱温度を適宜に変化させることにより、これらの多数の孔を有する導電性基材の表側の電極触媒層の電極触媒量を、裏側の電極触媒量より多くできるとともに、表側と裏側に形成される電極触媒層の電極触媒量を所望する量に適宜に変化させることができることを確認した。
 本発明によれば、ソーダ電解、水電解、酸素発生ないしは塩素発生を伴うその他各種工業電解の電解セルの陽極又は陰極として使用される、エキスパンデッドメッシュ、打抜き多孔板、金網又はこれらに類似する形状の、多数の孔を有する導電性基材を用いた電解用電極の製造において、白金族金属及び/又はその酸化物のような高価な電極触媒成分の量を所望する量に適宜に変更することができ、しかも、電極機能を低下させることなく、高価な電極触媒成分の原材料を最小限にすることができるので、高性能の電解用電極を経済的かつ効率的に製造することが達成でき、その広範な利用が期待される。

Claims (6)

  1.  エキスパンデッドメッシュ、打抜き多孔板、金網又はこれらに類似する形状の、多数の孔を有する導電性電極基材(但し、金属粉体や金属繊維を焼結した焼結体、金属織布である場合を除く)の表側に、電極触媒成分の出発原料を含有する塗布液を塗布し、その後に乾燥・焼成して前記導電性電極基材の表側と裏側に前記電極触媒成分を含有する電極触媒層を形成するための電極触媒層形成工程を有する電解用電極を製造する方法において、
     前記導電性電極基材が、チタン、タンタル、ニオブ、ジルコニウム、ハフニウム及びニッケルから選ばれた少なくとも1種の金属又はその合金を含有し、
     前記電極触媒成分が、白金、イリジウム、ルテニウム、パラジウム、オスミウム及びこれらの酸化物から選ばれた少なくとも1種を含有し、
     前記電極触媒層形成工程中、前記導電性電極基材を少なくとも1回プリヒーティングして、前記塗布液を塗布する直前の導電性電極基材の温度を室温よりも高くなるようにして前記塗布液を基材の表側に塗布する際に、前記プリヒーティングにより、前記塗布液を塗布する直前の導電性電極基材の温度を変更することで、前記導電性電極基材の裏側に付着する電極触媒成分の量を調整することを特徴とする電解用電極の製造方法。
  2.  塗布液を塗布する直前の前記導電性電極基材の温度を35℃~120℃とした請求項1に記載の電解用電極の製造方法。
  3.  塗布液を塗布する直前の前記導電性電極基材の温度を35℃~70℃とした請求項1に記載の電解用電極の製造方法。
  4.  前記導電性電極基材の表側に付着する電極触媒成分の付着量(A)と前記導電性電極基材の裏側に付着する電極触媒成分の付着量(B)の比率(A/B)を、1.5~6.8の範囲内で任意に調整する請求項1又は2に記載の電解用電極の製造方法。
  5.  前記比率(A/B)を、1.5~4.4の範囲内で任意に調整する請求項1又は3に記載の電解用電極の製造方法。
  6.  前記触媒層形成工程において前記導電性電極基材をプリヒーティングする回数を変更することで、該導電性電極基材の裏側に付着する電極触媒成分の付着量を調整する請求項1~5のいずれか1項に記載の電解用電極の製造方法。
PCT/JP2014/073290 2013-09-06 2014-09-04 電解用電極の製造方法 WO2015033989A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201480004945.9A CN104937142B (zh) 2013-09-06 2014-09-04 电解用电极的制造方法
BR112015011879-8A BR112015011879B1 (pt) 2013-09-06 2014-09-04 Método de produção de eletrodo para eletrólise
US14/436,342 US9903031B2 (en) 2013-09-06 2014-09-04 Production method for electrode for electrolysis
KR1020157011388A KR101675893B1 (ko) 2013-09-06 2014-09-04 전해용 전극의 제조 방법
EP14843061.4A EP2915906B1 (en) 2013-09-06 2014-09-04 Production method for electrode for electrolysis

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-185589 2013-09-06
JP2013185589A JP5548296B1 (ja) 2013-09-06 2013-09-06 電解用電極の製造方法

Publications (1)

Publication Number Publication Date
WO2015033989A1 true WO2015033989A1 (ja) 2015-03-12

Family

ID=51416731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073290 WO2015033989A1 (ja) 2013-09-06 2014-09-04 電解用電極の製造方法

Country Status (8)

Country Link
US (1) US9903031B2 (ja)
EP (1) EP2915906B1 (ja)
JP (1) JP5548296B1 (ja)
KR (1) KR101675893B1 (ja)
CN (1) CN104937142B (ja)
BR (1) BR112015011879B1 (ja)
TW (1) TWI638066B (ja)
WO (1) WO2015033989A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3187626A4 (en) * 2014-07-15 2018-05-16 De Nora Permelec Ltd Electrolysis cathode and method for producing electrolysis cathode
US20220018032A1 (en) * 2019-02-22 2022-01-20 Lg Chem, Ltd. Electrode For Electrolysis

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017030249A1 (ko) * 2015-08-18 2017-02-23 한국과학기술원 철-에틸렌디아민사아세트산을 이용한 질소화합물 포집용 전기분해장치
KR102566436B1 (ko) * 2015-08-18 2023-08-18 한국과학기술원 철-에틸렌디아민사아세트산을 이용한 질소화합물 포집용 전기분해장치
AR106068A1 (es) * 2015-09-25 2017-12-06 Akzo Nobel Chemicals Int Bv Electrodo y proceso para su manufactura
US11056288B2 (en) 2015-12-15 2021-07-06 The Regents Of The University Of California Nanodendrite with ruthenium oxide capacitor and method
JP6789035B2 (ja) * 2016-08-24 2020-11-25 株式会社神戸製鋼所 電極用チタン合金板
JP6670948B2 (ja) * 2016-11-22 2020-03-25 旭化成株式会社 電解用電極
WO2018131519A1 (ja) * 2017-01-13 2018-07-19 旭化成株式会社 電解用電極、電解槽、電極積層体及び電極の更新方法
US20180366738A1 (en) * 2017-06-16 2018-12-20 GM Global Technology Operations LLC Thermal control of substrates for prevention of ionomer permeation
KR101950465B1 (ko) * 2017-08-11 2019-05-02 주식회사 엘지화학 전해용 전극 및 이의 제조방법
WO2019031753A1 (ko) * 2017-08-11 2019-02-14 주식회사 엘지화학 전해용 전극 및 이의 제조방법
KR102358447B1 (ko) * 2017-09-29 2022-02-04 주식회사 엘지화학 전기분해 양극용 코팅액 조성물
WO2020009473A1 (ko) * 2018-07-06 2020-01-09 주식회사 엘지화학 전기분해용 환원 전극의 활성층 조성물 및 이로 유래된 환원 전극
KR102666728B1 (ko) * 2019-01-02 2024-05-16 주식회사 엘지화학 전해용 전극 및 이의 제조방법
US11791108B2 (en) * 2019-01-14 2023-10-17 B.G. Negev Technologies & Applications Ltd., At Ben-Gurion University Electrode and a pseudo-capacitor based on the electrode
KR102663795B1 (ko) * 2019-01-18 2024-05-03 주식회사 엘지화학 전해용 전극 및 이의 제조방법
CN110441349B (zh) * 2019-07-22 2022-02-18 苏州工业园区传世汽车电子有限公司 纳米金属氧化物复合贵金属电极及其制备方法
KR20210079202A (ko) * 2019-12-19 2021-06-29 주식회사 엘지화학 전기분해용 전극

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4326943A (en) * 1979-06-29 1982-04-27 Bbc Brown, Boveri & Company, Limited Electrode in water electrolysis
JPS5964788A (ja) * 1982-09-30 1984-04-12 Asahi Chem Ind Co Ltd 電解用電極およびその製造方法
JPH0325390A (ja) * 1989-06-22 1991-02-04 Toshiba Corp 物体識別装置
JP4453973B2 (ja) 2002-11-27 2010-04-21 旭化成ケミカルズ株式会社 複極式ゼロギャップ電解セル
JP2010140718A (ja) * 2008-12-10 2010-06-24 Honda Motor Co Ltd 固体高分子型燃料電池の製造方法、及び製造装置
JP2011181511A (ja) * 2009-12-22 2011-09-15 Mitsubishi Rayon Co Ltd 固体高分子型燃料電池用の多孔質電極基材

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3385736A (en) * 1965-03-01 1968-05-28 Monsanto Res Corp Method of making electrode from viscoelastic dough
JPS5420967A (en) * 1977-07-15 1979-02-16 Tdk Corp Production of insoluble electrode
JPS5420968A (en) * 1977-07-18 1979-02-16 Tdk Corp Production of insoluble electrode
JPH03253590A (ja) * 1990-03-02 1991-11-12 Permelec Electrode Ltd 水電解用電極の製造方法
CN1154752A (zh) * 1994-06-28 1997-07-16 米歇尔·舍瓦叙塞 广告的存储、选择和显示的自控导引装置
US5958197A (en) * 1998-01-26 1999-09-28 De Nora S.P.A. Catalysts for gas diffusion electrodes
DE19819325A1 (de) 1998-04-30 1999-11-04 Emitec Emissionstechnologie Elektrode mit für ein Fluid durchgängigen Poren und Brennstoffzelle
JP3126349B2 (ja) * 1999-04-09 2001-01-22 長一 古屋 ガス拡散電極の製造方法
CN1205683C (zh) * 2001-05-25 2005-06-08 北京飞驰绿能电源技术有限责任公司 燃料电池电极催化剂涂布方法
JP2004196646A (ja) * 2002-10-23 2004-07-15 Nissan Motor Co Ltd 燃料改質装置
KR100659133B1 (ko) * 2006-02-08 2006-12-19 삼성에스디아이 주식회사 촉매 코팅 전해질막, 이를 포함하는 연료전지 및 상기 촉매코팅 전해질막의 제조방법
DE102008031942A1 (de) * 2008-07-07 2010-01-14 Steinbichler Optotechnik Gmbh Verfahren und Vorrichtung zur 3D-Digitalisierung eines Objekts
CN101671782B (zh) * 2009-10-20 2011-09-21 华东理工大学 一种喷涂型金属丝网多孔材料的制备方法
US20130108802A1 (en) * 2011-11-01 2013-05-02 Isaiah O. Oladeji Composite electrodes for lithium ion battery and method of making
JP5655769B2 (ja) * 2011-12-09 2015-01-21 トヨタ自動車株式会社 電極の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4326943A (en) * 1979-06-29 1982-04-27 Bbc Brown, Boveri & Company, Limited Electrode in water electrolysis
JPS5964788A (ja) * 1982-09-30 1984-04-12 Asahi Chem Ind Co Ltd 電解用電極およびその製造方法
JPH0325390A (ja) * 1989-06-22 1991-02-04 Toshiba Corp 物体識別装置
JP4453973B2 (ja) 2002-11-27 2010-04-21 旭化成ケミカルズ株式会社 複極式ゼロギャップ電解セル
JP2010140718A (ja) * 2008-12-10 2010-06-24 Honda Motor Co Ltd 固体高分子型燃料電池の製造方法、及び製造装置
JP2011181511A (ja) * 2009-12-22 2011-09-15 Mitsubishi Rayon Co Ltd 固体高分子型燃料電池用の多孔質電極基材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2915906A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3187626A4 (en) * 2014-07-15 2018-05-16 De Nora Permelec Ltd Electrolysis cathode and method for producing electrolysis cathode
US10676831B2 (en) 2014-07-15 2020-06-09 De Nora Permelec Ltd Electrolysis cathode and method for producing electrolysis cathode
US20220018032A1 (en) * 2019-02-22 2022-01-20 Lg Chem, Ltd. Electrode For Electrolysis

Also Published As

Publication number Publication date
BR112015011879A2 (pt) 2017-07-11
TWI638066B (zh) 2018-10-11
EP2915906A4 (en) 2016-07-20
EP2915906A1 (en) 2015-09-09
JP5548296B1 (ja) 2014-07-16
BR112015011879B1 (pt) 2021-11-03
EP2915906B1 (en) 2018-08-15
US20150259811A1 (en) 2015-09-17
CN104937142A (zh) 2015-09-23
KR101675893B1 (ko) 2016-11-14
JP2015052145A (ja) 2015-03-19
TW201516189A (zh) 2015-05-01
KR20150060978A (ko) 2015-06-03
US9903031B2 (en) 2018-02-27
CN104937142B (zh) 2017-11-24

Similar Documents

Publication Publication Date Title
JP5548296B1 (ja) 電解用電極の製造方法
KR102579080B1 (ko) 전기분해용 양극 및 이의 제조방법
JP2006097122A (ja) 電解用電極及び電解用電極の製造方法
WO2016010045A1 (ja) 電解用陰極及び電解用陰極の製造方法
JP5686455B2 (ja) 耐高負荷用酸素発生用陽極の製造方法
CN108546935A (zh) 铂涂层阳极板的制备方法
JP2008050675A (ja) 電解用電極
JPH02247393A (ja) 耐久性電解用電極及びその製造方法
CN102509633B (zh) 一种高熵混合氧化物电极材料及其制备方法
KR101919261B1 (ko) 전해용 음극 및 그 제조 방법, 그리고 전해용 전해조
JP2023523690A (ja) 電極を製造するための金属基材の処理のための方法
JP5789058B2 (ja) 光触媒体の製造方法
KR102347982B1 (ko) 전기분해용 양극 및 이의 제조방법
KR20140089056A (ko) Cnt-모재 복합구조를 가지는 전기도금 또는 전해용 양극 및 그 제조방법
JP6835379B1 (ja) 電解用チタン基体被覆電極の製造方法
CN108866610B (zh) 一种电解阳极
WO2023286641A1 (ja) 電極の製造方法及び電極
KR101224191B1 (ko) 불용성 전극의 제조 방법 및 불용성 전극 제조용 중간층 코팅 장치
TW574414B (en) Process for producing Al2O3 ceramic coating on MAR-M247 superalloy by electrolytic deposition
CN104724796A (zh) 一种以微乳液爆炸法制备金属氧化物电极的方法
JPH05195294A (ja) 不溶性電極の製造方法
CN104947143A (zh) 一种钛基TiNx/TiO2-RuO2涂层阳极
JP2011003804A (ja) 多孔質バルブ金属陽極体の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14436342

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14843061

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014843061

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157011388

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015011879

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112015011879

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150522