WO2015033746A1 - アンブレインの製造方法 - Google Patents

アンブレインの製造方法 Download PDF

Info

Publication number
WO2015033746A1
WO2015033746A1 PCT/JP2014/071333 JP2014071333W WO2015033746A1 WO 2015033746 A1 WO2015033746 A1 WO 2015033746A1 JP 2014071333 W JP2014071333 W JP 2014071333W WO 2015033746 A1 WO2015033746 A1 WO 2015033746A1
Authority
WO
WIPO (PCT)
Prior art keywords
squalene
cyclase
seq
enzyme
tetraprenyl
Prior art date
Application number
PCT/JP2014/071333
Other languages
English (en)
French (fr)
Inventor
佐藤 努
大次郎 上田
力 星野
Original Assignee
国立大学法人新潟大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人新潟大学 filed Critical 国立大学法人新潟大学
Priority to US14/916,216 priority Critical patent/US9902979B2/en
Priority to EP14842894.9A priority patent/EP3042960B1/en
Priority to JP2015535401A priority patent/JP6429243B2/ja
Priority to CN201480046980.7A priority patent/CN105579585B/zh
Publication of WO2015033746A1 publication Critical patent/WO2015033746A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/22Preparation of oxygen-containing organic compounds containing a hydroxy group aromatic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/03Carbon-oxygen lyases (4.2) acting on phosphates (4.2.3)
    • C12Y402/0313Tetraprenyl-beta-curcumene synthase (4.2.3.130)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y504/00Intramolecular transferases (5.4)
    • C12Y504/99Intramolecular transferases (5.4) transferring other groups (5.4.99)
    • C12Y504/99017Squalene--hopene cyclase (5.4.99.17)

Definitions

  • the present invention relates to a method for manufacturing an umbrella.
  • Ambergris is a high-quality fragrance that has been used around the world since the 7th century, and is also used as a herbal medicine. It is thought that dragon whales were formed by sperm whales that formed the indigestion of food (octopus, squid, etc.) by stone formation and excretion, but the detailed production mechanism is unknown.
  • the main component of Ryu Rinka is an emblem, and it is thought that Ryu Rinka is oxidatively decomposed by sunlight and oxygen while floating on the sea to produce compounds with various fragrances.
  • 3037-3045 includes ( ⁇ ) (5,5,8a-trimethyloctahydro-1H-spiro [naphthalene-2,2′-oxirane] -1- Yl) 2-((1R, 2R, 4aS, 8aS) -2- (methoxymethoxy) -2,5,5,8a-tetramethyldecahydronaphthalen-1-yl) acetaldehyde synthesized from methanol and ( ⁇ ) 5-((4-((S) -2,2-dimethyl-6-methylenecyclohexyl) butan-2-yl) sulfonyl) -1-phenyl synthesized from methyl 6-hydroxy-2,2-dimethylcyclohexanecarboxylate
  • a method for convergent synthesis of -1H-tetrazole by a Julia coupling reaction to obtain an umbrain is disclosed.
  • 3-deoxyakileol A which is a monocyclic triterpene, from squalene by using a squalene-hopene cyclizing enzyme mutant enzyme (D377C, D377N, Y420H, Y420W, etc.).
  • a squalene-hopene cyclizing enzyme mutant enzyme D377C, D377N, Y420H, Y420W, etc.
  • Biosci. Biotechnol. Biochem. (1999) Vol. 63, pp. 2189-2198, Biosci. Biotechnol. Biochem., (2001) Vol. 65, pp. 2233-2242, Biosci. Biotechnol. Biochem., (2002 ) Vol.66, pp.1660-1670).
  • an object of the present invention is to provide a method for producing an umbrain, which can more easily produce an umbrain than conventionally known organic synthesis methods.
  • the present invention is as follows.
  • a method for producing an umbrain comprising reacting a tetraprenyl- ⁇ -curcumene cyclase with 3-deoxyacireol A to obtain an umbrain.
  • the method further includes reacting squalene with a mutant squalene-hopene cyclase capable of generating 3-deoxyacireol A from squalene to obtain 3-deoxyacireol A, [1] to [ 3] The method for producing an embrane according to any one of 3).
  • the mutant squalene-hopene cyclase has an amino acid substitution at at least one site selected from the group consisting of positions 377, 420, 607 and 612 in the amino acid sequence represented by SEQ ID NO: 1.
  • the method for producing an umbrella according to [4].
  • the mutant squalene-hopene cyclase has the amino acid sequence represented by any one of SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7 and SEQ ID NO: 8. [4] or [5].
  • the tetraprenyl- ⁇ -curcumene cyclase has the amino acid sequence represented by any one of SEQ ID NO: 16, SEQ ID NO: 17, and SEQ ID NO: 18, according to any one of [1] to [6] Method of manufacturing an brain.
  • the term “process” is not limited to an independent process, and is included in this term if the intended purpose of the process is achieved even when it cannot be clearly distinguished from other processes. .
  • a numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the amount of each component in the composition is the total amount of the plurality of substances present in the composition unless there is a specific indication when there are a plurality of substances corresponding to each component in the composition. Means.
  • an amino acid residue in an amino acid sequence is represented by a one-letter code (for example, “G” for a glycine residue) or a three-letter code (for example, “Gly” for a glycine residue) well known in the art. There is. In the present invention, “%” regarding the amino acid sequences of proteins and polypeptides is based on the number of amino acid residues unless otherwise specified.
  • the method for producing an umbrella according to the present invention is a method for producing an umbrella, comprising reacting tetraprenyl- ⁇ -curcumene cyclase with 3-deoxyakileol A to obtain an umbrella.
  • the embrane since tetraprenyl- ⁇ -curcumene cyclase is reacted with 3-deoxyacireol A to produce an embrane, the embrane can be produced easily.
  • Tetraprenyl- ⁇ -curcumene cyclase is known to be an enzyme that generates bicyclic terpenol from squalene, which is a C 30 linear unsaturated hydrocarbon, but has a single ring at one end. It was revealed that deoxyacireol A can be used as a substrate. In addition, when tetraprenyl- ⁇ -curcumene cyclase utilizes 3-deoxyacireol A as a substrate, it selectively cyclizes the non-cyclized end of 3-deoxyacireol A, thereby It was revealed that the compound was formed. The present invention is based on these findings. Due to the above activity of tetraprenyl- ⁇ -curcumene cyclase, it is possible to easily produce an emblem using a single enzyme using 3-deoxyacireol A having a single ring at one end as a material.
  • the method for producing an umbrella according to the present invention includes reacting tetraprenyl- ⁇ -curcumene cyclase with 3-deoxyakileol A to obtain an umbrella (hereinafter referred to as an “umbrain production step”). Other steps are included as necessary.
  • Umbrain is (1R, 4a ⁇ ) -1-[(E) -6-[(S) -2,2-dimethyl-6-methylenecyclohexyl] -4-methyl-3-hexenyl] decahydro-2,5, 5,8a ⁇ -tetramethylnaphthalen-2 ⁇ -ol, a cyclized compound having a composition formula C 30 H 52 O and a molecular weight of 428.745, and a triterpene alcohol having the following structure (CAS registration number: 473) -03-0).
  • 3-deoxyacireol A is used as a substrate for tetraprenyl- ⁇ -curcumene cyclase.
  • 3-Deoxyakileol A is (S) -1,1-dimethyl-3-methylene-2-((3E, 7E, 11E) -3,8,12,16-tetramethylheptadeca-3,7, 11,15-tetraen-1-yl) cyclohexane, a composition formula C 30 H 50 , and a one-end cyclized compound having the following structure.
  • the compound is used as a material for producing an embrane in the present invention.
  • the method for obtaining 3-deoxyacireol A is not particularly limited, and may be obtained by chemical synthesis or may be obtained from an existing compound using an enzyme reaction.
  • the production method of the present invention further includes reacting the mutant squalene-hopene cyclase with squalene to obtain 3-deoxyacireol A (hereinafter referred to as “3-deoxyacireol A production step”). It is preferable. As a result, an ambrain can be produced efficiently and simply from inexpensive squalene as a material by two enzyme reactions using mutant squalene-hopene cyclase and tetraprenyl- ⁇ -curcumene cyclase.
  • a mutant squalene-hopene cyclase capable of producing 3-deoxyacireol A from squalene is reacted with squalene to obtain 3-deoxyacireol A.
  • “mutant squalene-hopene cyclase” refers to a mutant squalene-hopene cyclase capable of producing 3-deoxyakileol A from squalene unless otherwise specified.
  • the mutant squalene-hopene cyclase is an enzyme obtained by modifying a wild-type squalene-hopene cyclase, and is an enzyme capable of generating 3-deoxyakileol A from squalene.
  • Wild-type squalene-hopene cyclase is known as an enzyme (EC 5.4.99.-) that cyclizes squalene to produce pentacyclic hopene or hopanol, and includes Alicyclobacillus, Zymomonas, It is widely present in prokaryotes such as Brasilizobium.
  • the amino acid sequence of wild-type squalene-hopene cyclase is already known.
  • amino acid sequence of wild-type squalene-hopene cyclase of Alicyclobacillus acidocaldarius (SEQ ID NO: 1) (Table 1) ) Is shown in GenBank accession number: AB007002.
  • the mutant squalene-hopene cyclase is an enzyme having a mutation in the amino acid sequence of the wild-type squalene-hopene cyclase and having an activity capable of generating monocyclic 3-deoxyacireol A from squalene.
  • a mutation is included in the amino acid sequence of wild-type squalene-hopene cyclase, an incomplete cyclization reaction occurs, and when reacted with squalene, the wild-type produces a pentacyclic compound. It is known that can be generated.
  • the mutant squalene-hopene cyclase is selected from the group consisting of positions 377, 420, 607 and 612 in the amino acid sequence shown in SEQ ID NO: 1 from the viewpoint of the production efficiency of 3-deoxyacireol
  • Mutant squalene-hopene cyclase having an amino acid substitution at at least one site is preferred, mutant squalene-hopene cyclase having a mutation at one or two of these sites is more preferred, and these sites
  • a mutant squalene-hopene cyclase having a mutation in any one of the above is more preferable.
  • the above-mentioned mutation site in the mutant squalene-hopene cyclase is relative, for example, “position 377” is a deletion of one amino acid residue N-terminal from position 377. In some cases, it is actually 376.
  • the amino acid sequence of wild-type squalene-hopene cyclase contains species-specific variations that are unrelated to the original function of squalene-hopene cyclase, depending on the species that originally possesses the enzyme. In this case, it should be read as a site after alignment by a method known in the art.
  • the amino acid substitution in the mutant squalene-hopene cyclase substitutes another amino acid residue for the wild type amino acid residue.
  • any amino acid residue can be used as long as the mutated squalene-hopene cyclase after the substitution can generate 3-deoxyacireol A from squalene. It may be an amino acid residue.
  • the following mutation site and substituted amino acid in the amino acid sequence represented by SEQ ID NO: 1 are preferable.
  • the aspartic acid residue (D) at position 377 is replaced with a cysteine residue (C) or an asparagine residue (N).
  • the tyrosine residue (Y) at position 420 is replaced with a histidine residue (H) or a tryptophan residue (W).
  • the leucine residue (L) at position 607 is replaced with a phenylalanine residue (F) or a tryptophan residue (W).
  • a tyrosine residue (Y) at position 612 is replaced with an alanine residue (A).
  • the mutant squalene-hopene cyclase is preferably an enzyme having at least one substitution selected from the group consisting of (i) to (iv) above in the amino acid sequence shown in SEQ ID NO: 1.
  • An enzyme having one or two substitutions selected from the group consisting of (iv) to (iv) is more preferable, and an enzyme having one substitution selected from the group consisting of (i) to (iv) is more preferable.
  • the amino acid sequence of the wild-type squalene-hopene cyclase has one Alternatively, it may have a sequence in which several amino acid residues are substituted, deleted, inserted or added.
  • the number of one or several amino acid residues to be substituted, deleted, inserted or added varies depending on the position of the amino acid residue in the three-dimensional structure of the protein, the type of amino acid residue, etc. The number is preferably 1 to 20, more preferably 1 to 10, and still more preferably 1 to 5.
  • the origin of the mutant squalene-hopene cyclizing enzyme is not particularly limited, and is preferably a mutant squalene-hopene cyclizing enzyme derived from, for example, an alicyclobacillus bacterium, a zymomonas genus bacterium, or a Brasilizobium bacterium.
  • the mutant squalene-hopene cyclase is more preferably a mutant squalene-hopene cyclase derived from an alicyclobacillus bacterium, and in particular, from alicyclobacillus acidcardarius.
  • the mutant squalene-hopene cyclase is particularly preferred.
  • polypeptides A to G As the mutant squalene-hopene cyclase, the following polypeptides A to G (SEQ ID NOs: 2 to 8) are preferable from the viewpoint of enzyme activity.
  • amino acid residues other than the mutation shown by “mutation” are the same as the amino acid residues in the amino acid sequence shown by SEQ ID NO: 1.
  • each of the polypeptides A to G constituting the mutant squalene-hopene cyclase one or several amino acid residues in each amino acid sequence represented by SEQ ID NOs: 2 to 8 are substituted, deleted, inserted or Polypeptides having an added amino acid sequence and retaining the function of generating 3-deoxyakileol A from squalene are included.
  • the number of amino acid residues to be substituted, deleted, inserted or added in each amino acid sequence shown in SEQ ID NOs: 2 to 8 is preferably 1 to 20, more preferably 1 to 10, and still more preferably. Is 1 to 5.
  • Polypeptides A to G constituting the mutant squalene-hopene cyclase are, for example, not less than 80%, preferably not less than 90%, more preferably with respect to the entire amino acid sequences represented by SEQ ID NOs: 2 to 8, respectively.
  • Polypeptides are included.
  • a polynucleotide capable of expressing a mutant squalene-hopene cyclase is available based on wild-type sequence information.
  • Examples of the polynucleotide capable of expressing the mutant squalene-hopene cyclase include polynucleotides A to G having the base sequences represented by SEQ ID NOs: 9 to 15 (Table 3).
  • the base sequence (GenBank accession number: AB007002) of the wild-type squalene-hopene cyclase gene of Alicyclobacillus acidcardarius is the same except for the site indicated by “mutation site”.
  • Each of the polynucleotides A to G has a base sequence in which one or several bases are substituted, deleted, inserted or added in each of the base sequences shown in SEQ ID NOs: 9 to 15, and from squalene A polynucleotide encoding a polypeptide that retains the function of generating 3-deoxyacireol A is included.
  • the number of bases substituted, deleted, inserted or added in each base sequence shown in SEQ ID NOs: 9 to 15 is preferably 1 to 20, more preferably 1 to 10, and still more preferably 1. ⁇ 5.
  • polynucleotides A to G for example, 80% or more, preferably 90% or more, more preferably 95% or more, more preferably 97% or more, with respect to the entire base sequences shown in SEQ ID NOs: 9 to 15, respectively. More preferably 98% or more, particularly preferably 99% or more of the polynucleotide encoding a polypeptide having a sequence identity of 99% or more and retaining the function of generating 3-deoxyacetyle A from squalene.
  • Polynucleotides A to G are polynucleotides that hybridize under stringent conditions to the complementary strands of the base sequences shown in SEQ ID NOs: 9 to 15, respectively, from squalene to 3-deoxyakileol A
  • a polynucleotide encoding a polypeptide that retains the function of generating is included.
  • Hybridization can be performed according to a known method or a method according to a known method, for example, the method described in Molecular Cloning 3rd (J. Sambrook et al., Cold Spring Harbor Lab. Press, 2001).
  • Stringent conditions refer to conditions in which specific hybrids are formed and non-specific hybrids are not formed.
  • Typical stringent conditions include, for example, a potassium concentration of about 25 mM to about 50 mM, and a magnesium concentration of about 1.0 mM to about 5.0 mM.
  • a potassium concentration of about 25 mM to about 50 mM As an example of the conditions of the present invention, there may be mentioned conditions for performing hybridization in Tris-HCl buffer (pH 8.6), 25 mM KCl, and 1.5 mM MgCl 2 , but the present invention is not limited thereto. Absent. Other stringent conditions are described in Molecular Cloning 3rd (J. Sambrook et al., Cold Spring Harbor Lab. Press, 2001). Those skilled in the art can easily select stringent conditions by changing the hybridization reaction conditions, that is, the salt concentration of the hybridization reaction solution.
  • a recombinant vector used for expressing a polynucleotide encoding a mutant squalene-hopene cyclase is not particularly limited, and is expressed in a vector that can be expressed in E. coli such as pET-3a, and in Bacillus subtilis such as pHT01. And vectors that can be expressed in yeast such as pYES2.
  • E. coli such as pET-3a
  • Bacillus subtilis such as pHT01.
  • yeast that can be expressed in yeast such as pYES2.
  • an enzyme expression vector can be obtained.
  • the host bacterium to which the enzyme expression vector is to be introduced can be appropriately selected according to the type of the recombinant vector used. For example, Escherichia coli such as BL21 (DE3), 168 strains such as Bacillus subtilis, Saccharomyces cerevisiae And yeasts.
  • the recombinant vector may have a promoter, a splicing signal, a poly A addition signal, a selection marker, a ribosome binding sequence (SD sequence), a terminator such as NOS, and the like as necessary.
  • a selection marker for example, known ones such as kanamycin resistance gene, ampicillin resistance gene, antibiotic resistance gene such as tetracycline resistance gene are used without particular limitation.
  • the recombinant vector may contain a reporter gene for confirming the introduction of the target gene. Examples of such a reporter gene include GUS ( ⁇ -glucuronidase) gene, luciferase gene, GFP (green fluorescent protein) gene and the like.
  • Mutant squalene-hopene cyclase is produced by culturing a transformant obtained by introducing an enzyme expression vector into a bacterium or the like.
  • the medium used for culturing the transformant may be a commonly used medium, and is appropriately selected according to the type of host. For example, when culturing E. coli, LB medium or the like is used. Antibiotics according to the type of selection marker may be added to the medium.
  • the mutant squalene-hopene cyclizing enzyme may be a product obtained by extracting and purifying an enzyme from a culture solution obtained by culturing a transformant capable of expressing the enzyme. Moreover, you may use the extract containing the enzyme extracted from the transformant in a culture solution as it is. A known method may be applied as an enzyme extraction method from the transformant.
  • the enzyme extraction step may include, for example, disrupting the transformant in an extraction solvent and separating the cell contents from the transformant fragments.
  • the obtained cell contents contain the target mutant squalene-hopene cyclase.
  • the cell contents extracted from the cells and separated from the cell fragments are referred to as “cell-free extract”.
  • the disruption method of the transformant the separation method of the cell contents and the fragment of the microorganism, the composition of the extraction solvent and the pH conditions, the same matters as described in the later-described process for producing the brain are applied as they are.
  • Mutant squalene-hopene cyclase may be used alone or in combination of two or more.
  • the conditions for the reaction between the mutant squalene-hopene cyclizing enzyme and squalene as long as the enzymatic reaction can proceed.
  • the reaction temperature and reaction time can be appropriately selected based on the activity of the mutant squalene-hopene cyclase. From the viewpoint of reaction efficiency, the reaction temperature and reaction time are, for example, 4 ° C. to 100 ° C. and 0.1 hour to 48 hours, preferably 30 ° C. to 60 ° C. and 16 hours to 24 hours.
  • the pH condition is, for example, 3 to 10 and preferably 6 to 8 from the viewpoint of reaction efficiency.
  • the reaction solvent is not particularly limited as long as it does not inhibit the enzyme reaction, and a commonly used buffer or the like can be used. Further, for example, the same extraction solvent used in the enzyme extraction step can be used. Alternatively, an extract containing a mutant squalene-hopene cyclase (eg, a cell-free extract) may be used as an enzyme solution for the reaction as it is.
  • the concentration ratio of the mutant squalene-hopene cyclizing enzyme and the substrate squalene in the 3-deoxyacireol A production reaction is the molar concentration ratio of the substrate to the enzyme (substrate / enzyme). 10 to 10000 is preferable, 100 to 5000 is more preferable, 1000 to 3000 is more preferable, and 1000 to 2000 is still more preferable.
  • the concentration of squalene used in the enzyme reaction is preferably 0.000001% by mass to 0.002% by mass and more preferably 0.00001% by mass to 0.0002% by mass with respect to the total mass of the reaction solvent from the viewpoint of reaction efficiency. preferable.
  • 3-Deoxyakileol A obtained by a reaction using a mutant squalene-hopene cyclase can be subjected to a reaction with tetraprenyl- ⁇ -curcumene cyclase after purification by a known method.
  • the method for purifying 3-deoxyacireol A is not particularly limited as long as 3-deoxyacireol A in the reaction solution can be taken out, and may be appropriately selected from commonly used purification methods.
  • Specific examples of the purification method include solvent extraction, recrystallization, distillation, column chromatography, high performance liquid chromatography (HPLC) and the like.
  • the reaction step in which the mutant squalene-hopene cyclizing enzyme reacts with squalene may be repeated a plurality of times. As a result, the yield of 3-deoxyacireol A can be increased.
  • the timing and amount of charging can be appropriately set according to the concentration of mutant squalene-hopene cyclizing enzyme in the reaction solution, the base mass remaining in the reaction solution, and the like.
  • Tetraprenyl- ⁇ -curcumene cyclase is classified in EC 4.2.1.129, a reaction that produces baciterpenol A from water and tetraprenyl- ⁇ -curcumene, or 8 ⁇ -hydroxypolypoda-13 from squalene. It is an enzyme that can catalyze the reaction to produce 17,21-triene.
  • Tetraprenyl- ⁇ -curcumene cyclase is known as an enzyme produced by bacteria such as Bacillus bacteria. From the viewpoint of reaction efficiency, the tetraprenyl- ⁇ -curcumene cyclase is preferably derived from a Bacillus bacterium.
  • the tetraprenyl- ⁇ -curcumene cyclase derived from the genus Bacillus is preferably an enzyme derived from Bacillus megaterium, Bacillus subtilis, Bacillus licheniformis, etc. From the viewpoint, an enzyme derived from Bacillus megaterium or Bacillus subtilis is more preferable, and an enzyme derived from Bacillus megaterium is particularly preferable.
  • the amino acid sequence of tetraprenyl- ⁇ -curcumene cyclase from Bacillus bacteria is known.
  • the amino acid sequence of tetraprenyl- ⁇ -curcumene cyclase derived from Bacillus megaterium is shown in GenBank accession number: ADF38987 (SEQ ID NO: 16) (Table 4).
  • the amino acid sequence of tetraprenyl- ⁇ -curcumene cyclase derived from Bacillus subtilis is shown in GenBank accession number: AB618206 (SEQ ID NO: 17) (Table 5).
  • the amino acid sequence of tetraprenyl- ⁇ -curcumene cyclase derived from Bacillus licheniformis is shown in GenBank accession number: AAU41134 (SEQ ID NO: 18) (Table 6).
  • the tetraprenyl- ⁇ -curcumene cyclase is preferably tetraprenyl- ⁇ -curcumene cyclase having the amino acid sequence represented by SEQ ID NO: 16, SEQ ID NO: 17 or SEQ ID NO: 18, Tetraprenyl- ⁇ -curcumene cyclase having the amino acid sequence represented by 16 is more preferred.
  • Tetraprenyl- ⁇ -curcumene cyclase has an amino acid sequence in which one or several amino acid residues are substituted, deleted, inserted or added in each amino acid sequence shown in SEQ ID NOs: 16 to 18,
  • polypeptides that retain the function of generating an ambrain from 3-deoxyacireol A are included.
  • the number of amino acid residues to be substituted, deleted, inserted or added in each amino acid sequence shown in SEQ ID NOs: 16 to 18 is preferably 1 to 20, more preferably 1 to 10, and still more preferably. Is 1 to 5.
  • tetraprenyl- ⁇ -curcumene cyclase for example, 80% or more, preferably 90% or more, more preferably 95% or more, and more preferably, with respect to the entire amino acid sequences shown in SEQ ID NOs: 16 to 18, respectively.
  • Tetraprenyl- ⁇ -curcumene cyclase is an amino acid sequence of tetraprenyl- ⁇ -curcumene cyclase produced by Bacillus bacteria and / or a tetraprenyl- ⁇ -curcumene cyclase gene possessed by Bacillus bacteria. It may be obtained by genetic engineering based on the base sequence.
  • the tetraprenyl- ⁇ -curcumene cyclase gene used in the genetic engineering production of tetraprenyl- ⁇ -curcumene cyclase includes a polynucleotide having a base sequence of a wild-type gene possessed by a Bacillus bacterium, or And a polynucleotide synthesized based on the base sequence of the wild-type gene.
  • GenBank Polynucleotide No. 2130781 to No. 2132658 of the genome sequence of CP001982.1 (SEQ ID No. 19, GenBank: No. 2130781 base of the genome sequence of CP001982.1 is the first base) (Base sequence) is known.
  • GenBank Polynucleotide No. 2130781 to No. 2132658 of the genome sequence of CP001982.1 (SEQ ID No. 19, GenBank: No. 2130781 base of the genome sequence of CP001982.1 is the first base) (Base sequence) is known.
  • Bacillus subtilis a polynucleotide (SEQ ID NO: 20) described in GenBank: AB618206 is known.
  • the polynucleotide encoding tetraprenyl- ⁇ -curcumene cyclase has a base sequence in which one or several bases are substituted, deleted, inserted or added in each base sequence shown in SEQ ID NOs: 19 to 21. And a polynucleotide encoding a polypeptide having a function of generating an ambrain from 3-deoxyacireol A.
  • the number of bases substituted, deleted, inserted or added in each base sequence represented by SEQ ID NOs: 19 to 21 is preferably 1 to 20, more preferably 1 to 10, still more preferably 1. ⁇ 5.
  • polynucleotide encoding tetraprenyl- ⁇ -curcumene cyclase for example, 80% or more, preferably 90% or more, more preferably 95% or more with respect to the entire base sequences shown in SEQ ID NOs: 19 to 21 More preferably 97% or more, more preferably 98% or more, particularly preferably 99% or more, and a polypeptide that retains the function of generating ambrain from 3-deoxyacireol A
  • a polynucleotide encoding is included.
  • the polynucleotide encoding tetraprenyl- ⁇ -curcumene cyclase includes a polynucleotide that hybridizes under stringent conditions to each complementary strand of the nucleotide sequences represented by SEQ ID NOs: 19 to 21.
  • a polynucleotide encoding a polypeptide that retains the function of generating an ambrain from deoxyacireol A is included. Hybridization conditions and stringent conditions are the same as those described for the mutant squalene-hopene cyclase.
  • tetraprenyl- ⁇ -curcumene cyclase examples include a polypeptide encoded by the nucleotide sequence represented by any of SEQ ID NOs: 19 to 21, and the nucleotide sequence represented by SEQ ID NO: 19 or SEQ ID NO: 20 encodes it. And a polypeptide encoded by the base sequence represented by SEQ ID NO: 19.
  • the recombinant vector used for expressing the polynucleotide encoding tetraprenyl- ⁇ -curcumene cyclase is not particularly limited and can be expressed in Escherichia coli such as pColdTF, or in Bacillus subtilis such as pHT01. And vectors that can be expressed in yeast such as pYES2.
  • Escherichia coli such as pColdTF
  • Bacillus subtilis such as pHT01.
  • yeast yeast
  • the host bacterium to which the enzyme expression vector is to be introduced can be appropriately selected according to the type of the recombinant vector used. For example, Escherichia coli such as BL21 (DE3), 168 strains such as Bacillus subtilis, Saccharomyces cerevisiae And yeasts.
  • the recombinant vector may have a promoter, a splicing signal, a poly A addition signal, a selection marker, a ribosome binding sequence (SD sequence), a terminator such as NOS, and the like as necessary.
  • a selection marker for example, known ones such as kanamycin resistance gene, ampicillin resistance gene, antibiotic resistance gene such as tetracycline resistance gene are used without particular limitation.
  • the recombinant vector may contain a reporter gene for confirming the introduction of the target gene. Examples of such a reporter gene include GUS ( ⁇ -glucuronidase) gene, luciferase gene, GFP (green fluorescent protein) gene and the like.
  • Tetraprenyl- ⁇ -curcumene cyclase is produced by culturing a transformant obtained by introducing an enzyme expression vector into bacteria or the like.
  • the medium used for culturing the transformant may be a commonly used medium, and is appropriately selected according to the type of host. For example, when culturing E. coli, LB medium or the like is used. Antibiotics according to the type of selection marker may be added to the medium.
  • Tetraprenyl- ⁇ -curcumene cyclase may be a product obtained by extracting and purifying an enzyme from a culture solution obtained by culturing a transformant capable of expressing the enzyme. Moreover, you may use the extract containing the enzyme extracted from the transformant in a culture solution as it is. A known method may be applied as an enzyme extraction method from the transformant.
  • the enzyme extraction step may include, for example, disrupting the transformant in an extraction solvent and separating the cell contents from the transformant fragments. The obtained cell contents contain the target tetraprenyl- ⁇ -curcumene cyclase.
  • a known method capable of disrupting the transformant and recovering the enzyme solution may be applied.
  • Examples thereof include ultrasonic disruption and glass bead disruption.
  • the crushing conditions are not particularly limited as long as the enzyme is not inactivated, such as 10 ° C. or less and 15 minutes.
  • Examples of the method for separating the cell contents from the crushed pieces of microorganisms include sedimentation separation, centrifugation, filtration separation, and combinations of these two or more separation methods. Separation conditions using these methods are known to those skilled in the art, and in the case of centrifugation, for example, 8,000 ⁇ g to 15,000 ⁇ g and 10 minutes to 20 minutes.
  • the extraction solvent may be one that is usually used as a solvent for enzyme extraction, and examples thereof include a Tris-HCl buffer solution and a potassium phosphate buffer solution.
  • the pH of the extraction solvent is preferably from 3 to 10, more preferably from 6 to 8, from the viewpoint of enzyme stability.
  • the extraction solvent may contain a surfactant.
  • the surfactant include nonionic surfactants and zwitterionic surfactants.
  • Nonionic surfactants include polyoxyethylene sorbitan fatty acid esters such as poly (oxyethylene) sorbitan monooleate (Tween 80), alkyl glucosides such as n-octyl ⁇ -D-glucoside, sucrose stearate, etc. Sucrose fatty acid esters and polyglycerin fatty acid esters such as polyglycerin stearate.
  • zwitterionic surfactants include N, N-dimethyl-N-dodecylglycine betaine, which is an alkylbetaine.
  • Triton X-100 Triton X-100
  • polyoxyethylene (20) cetyl ether Brij-58
  • nonylphenol ethoxylate Tegitol NP-40
  • concentration of the surfactant in the extraction solvent is preferably 0.001% by mass to 10% by mass, more preferably 0.10% by mass to 3.0% by mass, and 0.10% by mass from the viewpoint of enzyme stability. % To 1.0% by mass is more preferable.
  • the extraction solvent preferably contains a reducing agent such as dithiothreitol or ⁇ -mercaptoethanol from the viewpoint of enzyme activity.
  • a reducing agent such as dithiothreitol or ⁇ -mercaptoethanol
  • dithiothreitol is preferable.
  • concentration of dithiothreitol in the extraction solvent is preferably 0.1 mM to 1 M, more preferably 1 mM to 10 mM. Due to the presence of dithiothreitol in the extraction solvent, structures such as disulfide bonds in the enzyme are easily retained, and the enzyme activity tends to increase.
  • the extraction solvent preferably contains a chelating agent such as ethylenediaminetetraacetic acid (EDTA) from the viewpoint of enzyme activity.
  • EDTA ethylenediaminetetraacetic acid
  • concentration of EDTA in the extraction solvent is preferably 0.01 mM to 1 M, more preferably 0.1 mM to 10 mM. Due to the presence of EDTA in the extraction solvent, metal ions that can lower the enzyme activity are chelated, so that the enzyme activity tends to increase more.
  • the extraction solvent may contain known components that can be added to the enzyme extraction solvent.
  • Tetraprenyl- ⁇ -curcumene cyclase may be used alone or in combination of two or more. There are no particular restrictions on the conditions for the reaction of tetraprenyl- ⁇ -curcumene cyclase and 3-deoxyacireol A as long as the enzymatic reaction can proceed.
  • the reaction temperature and reaction time can be appropriately selected based on the activity of tetraprenyl- ⁇ -curcumene cyclase and the like. From the viewpoint of reaction efficiency, the reaction temperature and reaction time are, for example, 4 ° C. to 100 ° C. and 0.1 hour to 48 hours, preferably 30 ° C. to 60 ° C. and 16 hours to 24 hours.
  • the pH condition is, for example, 3 to 10 and preferably 6 to 8 from the viewpoint of reaction efficiency.
  • the reaction solvent is not particularly limited as long as it does not inhibit the enzyme reaction, and a commonly used buffer or the like can be used. Further, for example, the same extraction solvent used in the enzyme extraction step can be used. In addition, an extract containing tetraprenyl- ⁇ -curcumene cyclase (eg, a cell-free extract) may be used as it is in the reaction as an enzyme solution.
  • the concentration ratio between tetraprenyl- ⁇ -curcumene cyclase and its substrate 3-deoxyacireol A in the umbrain production reaction is the molar ratio of substrate to enzyme (substrate / enzyme) from the viewpoint of reaction efficiency. 10 to 10000 is preferable, 100 to 5000 is more preferable, 1000 to 3000 is more preferable, and 1000 to 2000 is still more preferable. From the viewpoint of reaction efficiency, the concentration of 3-deoxyacireol A used for the enzyme reaction is preferably 0.000001% by mass to 0.002% by mass, and preferably 0.00001% by mass to 0.001% by mass with respect to the total mass of the reaction solvent. 0002 mass% is more preferable.
  • the reaction step of reacting tetraprenyl- ⁇ -curcumene cyclase and 3-deoxyacireol A may be repeated a plurality of times. Thereby, the yield of an umbrain can be raised.
  • purify etc. may be included.
  • the timing and amount of charging are appropriately determined depending on the concentration of tetraprenyl- ⁇ -curcumene cyclizing enzyme in the reaction solution, the base mass remaining in the reaction solution, and the like. Can be set.
  • the method for producing an umbrain of the present invention comprises a 3-deoxyacireol A production step and an umbrain production step, it is derived from an alicyclobacillus bacterium from the viewpoint of the efficiency of production of the umbrain and the simplicity of the production method.
  • 3-deoxyakileol A obtained by reacting mutant squalene-hopene cyclase with squalene reacts with tetraprenyl- ⁇ -curcumene cyclase derived from Bacillus bacteria to produce ambrain It is preferable that the method includes.
  • 3-deoxyakileol A obtained by the reaction of mutated squalene-hopene cyclase derived from alicyclobacillus acidocardarius and squalene is converted to tetramethyl derived from Bacillus megaterium or Bacillus subtilis.
  • a method comprising reacting a prenyl- ⁇ -curcumene cyclase to produce an ambrain.
  • the method for producing an umbrella of the present invention may further include a purification step for purifying the produced umbrella brain.
  • the method for purifying the umbrain is not particularly limited as long as the umbrain in the reaction solution can be taken out, and may be appropriately selected from commonly used purification methods. Specific examples of the purification method include solvent extraction, recrystallization, distillation, column chromatography, HPLC and the like.
  • Example 1 Using the squalene as a material, the embrane is formed by two steps: a step of reacting a mutant squalene-hopene cyclase with squalene and a step of reacting a tetraprenyl- ⁇ -curcumene cyclase with 3-deoxyakileol A. Obtained.
  • the reaction scheme of the two steps is shown below.
  • Squalene 50 mg was mixed with Triton X-100 (1 g) and solubilized, and then added to buffer A (5 mL) to prepare a squalene solution. The total amount of this squalene solution was added to the cell-free extract A to obtain a reaction solution, which was incubated at 60 ° C. for 16 hours.
  • the molar ratio (substrate / enzyme) between squalene (substrate) and mutant squalene-hopene cyclase (enzyme) was about 1000.
  • the 3-deoxyacireol A (35 mg) obtained in the above step (1) was mixed and solubilized with Triton X-100 (700 mg), and then added to buffer B (5 mL) to add 3-deoxyacireol A solution.
  • the total amount of the 3-deoxyacireol A solution was added to the cell-free extract B (180 mL) to obtain a reaction solution, which was incubated at 30 ° C. for 16 hours.
  • the molar ratio (substrate / enzyme) of 3-deoxyacireol A (substrate) to tetraprenyl- ⁇ -curcumene cyclase (enzyme) was about 1000.
  • the structure of the umbrain was confirmed by a gas chromatography mass spectrometer (GC-MS) and a nuclear magnetic resonance apparatus (NMR). Also, the optical rotation almost agreed with the literature values.
  • Example 2 The steps (1) and (2) were carried out in the same manner as in Example 1 except that the tetraprenyl- ⁇ -curcumene cyclase was changed from an enzyme derived from Bacillus megaterium to an enzyme derived from Bacillus subtilis. Brain synthesis was performed.
  • the tetraprenyl- ⁇ -curcumene cyclase used in Example 2 is an enzyme encoded by a polynucleotide represented by SEQ ID NO: 20 and has an amino acid sequence represented by SEQ ID NO: 17.
  • Example 1 As a result, in the same manner as in Example 1, it was possible to synthesize umbrain from squalene via 3-deoxyakileol A.
  • the yield of the synthesized ambrain was about 10% of the case where tetraprenyl- ⁇ -curcumene cyclase derived from Bacillus megaterium was used (Example 1).
  • an ambrain can be easily produced from 3-deoxyakileol A.
  • an ambrain can be easily produced from squalene via 3-deoxyakileol A.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

 テトラプレニル-β-クルクメン環化酵素を3-デオキシアキレオールAに反応させて、アンブレインを得ること、を含むアンブレインの製造方法。

Description

アンブレインの製造方法
 本発明は、アンブレインの製造方法に関する。
 龍涎香(ambergris)は、7世紀ごろから世界各地で使用されてきた高級香料であり、漢方薬としても使用されている。龍涎香は、マッコウクジラが食物(タコ、イカ等)の不消化物を消化管分泌物により結石化させ、排泄したものと考えられているが、詳細な生成メカニズムは不明である。龍涎香の主成分はアンブレインであり、龍涎香が海上を浮遊する間に日光と酸素によって酸化分解を受け、各種の香りを持つ化合物を生成すると考えられている。
 龍涎香の主成分アンブレインは、香料又は薬剤として用いられているが、自然界から大量に入手することは不可能である。このため、種々の有機合成法が提案されている。
 例えば、特開平10-236996号公報には、(+)-アンブレインを簡便かつ安価に効率よく製造する方法として、アンブレノリドから、新規なスルホン酸誘導体を製造し、これにγ-シクロゲラニルハライドの光学活性体をカップリングさせる工程を含む方法が開示されている。
 また、Tetrahedron Asymmetry, (2006) Vol.17, pp.3037-3045には、(±)(5,5,8a-トリメチルオクタヒドロ-1H-スピロ[ナフタレン-2,2’-オキシラン]-1-イル)メタノールから合成した2-((1R,2R,4aS,8aS)-2-(メトキシメトキシ)-2,5,5,8a-テトラメチルデカヒドロナフタレン-1-イル)アセトアルデヒドと、(±)メチル 6-ヒドロキシ-2,2-ジメチルシクロヘキサンカルボキシレートから合成した5-((4-((S)-2,2-ジメチル-6-メチレンシクロヘキシル)ブタン-2-イル)スルホニル)-1-フェニル-1H-テトラゾールとを、Juliaカップリング反応によって収束的合成して、アンブレインを得る方法が開示されている。
 一方、スクアレン-ホペン環化酵素の変異型酵素(D377C、D377N、Y420H、Y420W等)を用いることによって、スクアレンから、単環性トリテルペンである3-デオキシアキレオールAを得る方法が知られている(Biosci. Biotechnol. Biochem., (1999) Vol.63, pp.2189-2198、Biosci. Biotechnol. Biochem., (2001) Vol.65, pp.2233-2242、Biosci. Biotechnol. Biochem., (2002) Vol.66, pp.1660-1670)。
 また、テトラプレニル-β-クルクメン環化酵素が、テトラプレニル-β-クルクメンから4環性のC35テルペノールを生成する反応と、スクアレンから2環性のトリテルペンを生成する反応と、の2つの反応に関与する二機能性酵素であることが報告されている(J. Am. Chem. Soc., (2011) Vol.133, pp.17540-17543)。
 従来のアンブレインの有機合成法は、多くの合成段階を必要とすることから、反応系が複雑であり、事業化には至っていない。またアンブレインの生成に関与する具体的な酵素は知られていない。
 したがって、本発明の目的は、従来知られている有機合成法よりも簡便にアンブレインを製造することができるアンブレインの製造方法を提供することにある。
 本発明は以下のとおりである。
 [1] テトラプレニル-β-クルクメン環化酵素を3-デオキシアキレオールAに反応させて、アンブレインを得ること、を含むアンブレインの製造方法。
 [2] テトラプレニル-β-クルクメン環化酵素が、バチルス属細菌由来である、[1]に記載のアンブレインの製造方法。
 [3] テトラプレニル-β-クルクメン環化酵素が、バチルス・メガテリウム、バチルス・サブチリス及びバチルス・リケニフォルミスのいずれか由来である、[1]又は[2]に記載のアンブレインの製造方法。
 [4] スクアレンから3-デオキシアキレオールAを生成可能な変異型スクアレン-ホペン環化酵素を、スクアレンに反応させて、3-デオキシアキレオールAを得ること、をさらに含む、[1]~[3]のいずれか1つに記載のアンブレインの製造方法。
 [5] 変異型スクアレン-ホペン環化酵素が、配列番号1で示されるアミノ酸配列における377位、420位、607位及び612位からなる群より選択される少なくとも1つの部位にアミノ酸置換を有する、[4]に記載のアンブレインの製造方法。
 [6] 変異型スクアレン-ホペン環化酵素が、配列番号2、配列番号3、配列番号4、配列番号5、配列番号6、配列番号7及び配列番号8のいずれかで示されるアミノ酸配列を有する、[4]又は[5]に記載のアンブレインの製造方法。
 [7] テトラプレニル-β-クルクメン環化酵素が、配列番号16、配列番号17及び配列番号18のいずれかで示されるアミノ酸配列を有する、[1]~[6]のいずれか1つに記載のアンブレインの製造方法。
 本発明によれば、従来知られている有機合成法よりも簡便にアンブレインを製造することができるアンブレインの製造方法が提供される。
 本明細書において「工程」との語は、独立した工程だけでなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。
 本明細書において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値および最大値として含む範囲を示す。
 本明細書において組成物中の各成分の量は、組成物中に各成分に該当する物質が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の物質の合計量を意味する。
 本発明において、アミノ酸配列におけるアミノ酸残基を、当技術分野で周知の一文字表記(例えば、グリシン残基を「G」)又は三文字表記(例えば、グリシン残基を「Gly」)で表現する場合がある。
 本発明において、タンパク質及びポリペプチドのアミノ酸配列に関する「%」は、特に断らない限り、アミノ酸残基の個数を基準とする。
 以下に、本発明の実施の形態について説明する。これらの説明及び実施例は本発明を例示するものであり、本発明の範囲を制限するものではない。
 本発明のアンブレインの製造方法は、テトラプレニル-β-クルクメン環化酵素を3-デオキシアキレオールAに反応させてアンブレインを得ること、を含むアンブレインの製造方法である。
 本発明では、テトラプレニル-β-クルクメン環化酵素を3-デオキシアキレオールAに反応させてアンブレインを製造するので、アンブレインを簡便に製造することができる。
 テトラプレニル-β-クルクメン環化酵素は、C30の直鎖不飽和炭化水素であるスクアレンから2環性テルペノールを生成する酵素であると知られていたが、片末端に単環を有する3-デオキシアキレオールAを基質として利用可能であることが明らかとなった。また、テトラプレニル-β-クルクメン環化酵素は、3-デオキシアキレオールAを基質として利用すると、3-デオキシアキレオールAの環状化されていない端を選択的に環化させて、両末端環化化合物を生成することが明らかとなった。本発明は、これらの知見に基づくものである。テトラプレニル-β-クルクメン環化酵素の上記活性により、片末端に単環を有する3-デオキシアキレオールAを材料として、1種の酵素を用いて簡便にアンブレインを製造することができる。
 本発明のアンブレインの製造方法は、テトラプレニル-β-クルクメン環化酵素を3-デオキシアキレオールAに反応させて、アンブレインを得ること(以下、「アンブレイン生成工程」という)を含み、必要に応じて他の工程を含む。
 アンブレインは、(1R,4aα)-1-[(E)-6-[(S)-2,2-ジメチル-6-メチレンシクロヘキシル]-4-メチル-3-ヘキセニル]デカヒドロ-2,5,5,8aβ-テトラメチルナフタレン-2α-オールであり、組成式C3052O、分子量428.745の両末端環化化合物であり、以下の構造を有するトリテルペンアルコールである(CAS登録番号:473-03-0)。
Figure JPOXMLDOC01-appb-C000001
 本発明のアンブレインの製造方法では、3-デオキシアキレオールAを、テトラプレニル-β-クルクメン環化酵素の基質として利用する。
 3-デオキシアキレオールAは、(S)-1,1-ジメチル-3-メチレン-2-((3E,7E,11E)-3,8,12,16-テトラメチルヘプタデカ-3,7,11,15-テトラエン-1-イル)シクロヘンキサンであり、組成式C3050であり、以下の構造を有する片末端環化化合物である。該化合物が、本発明においてアンブレインを生成するための材料として用いられる。3-デオキシアキレオールAの入手方法については特に制限はなく、化学合成によって得たものであってもよく、既存化合物から酵素反応を用いて得たものであってもよい。
Figure JPOXMLDOC01-appb-C000002
 本発明の製造方法は、変異型スクアレン-ホペン環化酵素を、スクアレンに反応させて、3-デオキシアキレオールAを得ること(以下、「3-デオキシアキレオールA生成工程」という)をさらに含むことが好ましい。これにより、変異型スクアレン-ホペン環化酵素とテトラプレニル-β-クルクメン環化酵素とを用いた2つの酵素反応によって、安価なスクアレンを材料としてアンブレインを効率よく簡便に製造することができる。
[3-デオキシアキレオールA生成工程]
 3-デオキシアキレオールA生成工程では、スクアレンから3-デオキシアキレオールAを生成可能な変異型スクアレン-ホペン環化酵素を、スクアレンに反応させて、3-デオキシアキレオールAを得る。本明細書において、「変異型スクアレン-ホペン環化酵素」とは、特に断らない限り、スクアレンから3-デオキシアキレオールAを生成可能な変異型スクアレン-ホペン環化酵素を指す。
 本発明において、変異型スクアレン-ホペン環化酵素とは、野生型スクアレン-ホペン環化酵素を改変した酵素であり、かつ、スクアレンから3-デオキシアキレオールAを生成可能な酵素である。野生型スクアレン-ホペン環化酵素は、スクアレンを閉環して、5環性のホペン又はホパノールを生成する酵素(EC5.4.99.-)として知られており、アリシクロバチルス属、ザイモモナス属、ブラジリゾビウム属等の原核生物に広く存在している。野生型スクアレン-ホペン環化酵素のアミノ酸配列は既に公知であり、例えば、アリシクロバチルス・アシドカルダリウス(Alicyclobacillus acidocaldarius)の野生型スクアレン-ホペン環化酵素のアミノ酸配列(配列番号1)(表1)は、GenBankアクセッション番号:AB007002に示されている。
Figure JPOXMLDOC01-appb-T000003
 変異型スクアレン-ホペン環化酵素は、野生型スクアレン-ホペン環化酵素のアミノ酸配列に変異を有し、スクアレンから単環の3-デオキシアキレオールAを生成可能な活性を有する酵素である。野生型スクアレン-ホペン環化酵素のアミノ酸配列に変異が含まれると、不完全な環化反応が生じ、スクアレンと反応させた場合には、野生型では五環化合物を生成するところ、単環化合物が生成可能となることが知られている。
 変異型スクアレン-ホペン環化酵素としては、3-デオキシアキレオールAの生成効率の観点から、配列番号1に示されるアミノ酸配列において、377位、420位、607位及び612位からなる群より選択される少なくとも1つの部位にアミノ酸置換を有する変異型スクアレン-ホペン環化酵素が好ましく、これらの部位の1つ又は2つに変異を有する変異型スクアレン-ホペン環化酵素がより好ましく、これらの部位のいずれか1つに変異を有する変異型スクアレン-ホペン環化酵素が更に好ましい。
 変異型スクアレン-ホペン環化酵素における上述した変異部位は、相対的なものであり、例えば、「377位」とは、377位よりもN末端側のアミノ酸残基が1つ欠失している場合には、実際には376位となる。また、野生型スクアレン-ホペン環化酵素のアミノ酸配列が、当該酵素を本来的に保有する生物種に応じて、スクアレン-ホペン環化酵素の本来の機能とは無関係な種固有のバリエーションを含む場合には、当業界において公知の方法でアライメントを行った後の部位に読み替えるものとする。
 変異型スクアレン-ホペン環化酵素におけるアミノ酸置換は、野生型のアミノ酸残基に対して他のアミノ酸残基を置換するものである。野生型のアミノ酸残基と置換する他のアミノ酸残基としては、置換後の変異型スクアレン-ホペン環化酵素がスクアレンから3-デオキシアキレオールAを生成可能なアミノ酸残基であれば、いずれのアミノ酸残基であってもよい。
 変異型スクアレン-ホペン環化酵素における変異部位及び置換アミノ酸としては、配列番号1で示されるアミノ酸配列において下記の変異部位及び置換アミノ酸が好ましい。
(i)377位のアスパラギン酸残基(D)がシステイン残基(C)又はアスパラギン残基(N)に置換。
(ii)420位のチロシン残基(Y)がヒスチジン残基(H)又はトリプトファン残基(W)に置換。
(iii)607位のロイシン残基(L)がフェニルアラニン残基(F)又はトリプトファン残基(W)に置換。
(iv)612位のチロシン残基(Y)がアラニン残基(A)に置換。
 変異型スクアレン-ホペン環化酵素としては、配列番号1に示されるアミノ酸配列において、上記(i)~(iv)からなる群より選択される少なくとも1つの置換を有する酵素が好ましく、上記(i)~(iv)からなる群より選択される1つ又は2つの置換を有する酵素がより好ましく、上記(i)~(iv)からなる群より選択される1つの置換を有する酵素が更に好ましい。
 変異型スクアレン-ホペン環化酵素は、スクアレンから3-デオキシアキレオールAを生成する機能が保持されれば、野生型スクアレン-ホペン環化酵素のアミノ酸配列において、上述した変異部位以外に、1個又は数個のアミノ酸残基が置換、欠失、挿入又は付加された配列を有していてもよい。この場合、置換、欠失、挿入又は付加される1個又は数個のアミノ酸残基の数は、アミノ酸残基のタンパク質の立体構造における位置、アミノ酸残基の種類等によっても異なるが、具体的には好ましくは1~20個、より好ましくは1~10個、更に好ましくは1~5個である。
 変異型スクアレン-ホペン環化酵素は、由来は特に制限されず、例えば、アリシクロバチルス属細菌、ザイモモナス属細菌、又はブラジリゾビウム属細菌に由来する変異型スクアレン-ホペン環化酵素であることが好ましい。酵素活性の観点から、変異型スクアレン-ホペン環化酵素は、アリシクロバチルス属細菌に由来する変異型スクアレン-ホペン環化酵素であることがより好ましく、中でも、アリシクロバチルス・アシドカルダリウスに由来する変異型スクアレン-ホペン環化酵素であることが特に好ましい。
 変異型スクアレン-ホペン環化酵素としては、酵素活性の観点から、以下に記載のポリペプチドA~G(配列番号2~8)が好ましい。表2中、「mutation」で示された変異以外のアミノ酸残基は、配列番号1で示されるアミノ酸配列におけるアミノ酸残基と同一である。
Figure JPOXMLDOC01-appb-T000004
 変異型スクアレン-ホペン環化酵素を構成するポリペプチドA~Gには、それぞれ、配列番号2~8で示される各アミノ酸配列において1個又は数個のアミノ酸残基が置換、欠失、挿入又は付加されたアミノ酸配列を有し、かつ、スクアレンから3-デオキシアキレオールAを生成する機能が保持されたポリペプチドが包含される。配列番号2~8で示される各アミノ酸配列において置換、欠失、挿入又は付加されるアミノ酸残基の数は、具体的には好ましくは1~20個、より好ましくは1~10個、更に好ましくは1~5個である。
 変異型スクアレン-ホペン環化酵素を構成するポリペプチドA~Gには、それぞれ、配列番号2~8で示される各アミノ酸配列全体に対して、例えば80%以上、好ましくは90%以上、より好ましくは95%以上、より好ましくは97%以上、より好ましくは98%以上、特に好ましくは99%以上の配列同一性を有し、かつ、スクアレンから3-デオキシアキレオールAを生成する機能が保持されたポリペプチドが包含される。
 変異型スクアレン-ホペン環化酵素を発現可能なポリヌクレオチドは、野生型の配列情報に基づいて入手可能である。変異型スクアレン-ホペン環化酵素を発現可能なポリヌクレオチドとしては、例えば、配列番号9~15で示される塩基配列を有するポリヌクレオチドA~Gが挙げられる(表3)。表3中、「mutation site」で示された部位以外は、アリシクロバチルス・アシドカルダリウスの野生型スクアレン-ホペン環化酵素遺伝子の塩基配列(GenBankアクセッション番号:AB007002)と同一である。
Figure JPOXMLDOC01-appb-T000005
 ポリヌクレオチドA~Gには、それぞれ、配列番号9~15で示される各塩基配列において1個又は数個の塩基が置換、欠失、挿入又は付加された塩基配列を有し、かつ、スクアレンから3-デオキシアキレオールAを生成する機能が保持されたポリペプチドをコードするポリヌクレオチドが包含される。配列番号9~15で示される各塩基配列において置換、欠失、挿入又は付加される塩基の数は、具体的には好ましくは1~20個、より好ましくは1~10個、更に好ましくは1~5個である。
 ポリヌクレオチドA~Gには、それぞれ、配列番号9~15で示される各塩基配列全体に対して、例えば80%以上、好ましくは90%以上、より好ましくは95%以上、より好ましくは97%以上、より好ましくは98%以上、特に好ましくは99%以上の配列同一性を有し、かつ、スクアレンから3-デオキシアキレオールAを生成する機能が保持されたポリペプチドをコードするポリヌクレオチドが包含される。
 ポリヌクレオチドA~Gには、それぞれ、配列番号9~15で示される塩基配列の各相補鎖に対してストリンジェントな条件下でハイブリダイズするポリヌクレオチドであって、スクアレンから3-デオキシアキレオールAを生成する機能が保持されたポリペプチドをコードするポリヌクレオチドが包含される。
 ハイブリダイゼーションは、公知の方法又は公知の方法に準じる方法、例えば、Molecular Cloning 3rd (J. Sambrook et al., Cold Spring Harbor Lab. Press, 2001) に記載の方法等に従って行うことができる。ストリンジェントな条件とは、特異的なハイブリッドが形成され、非特異的なハイブリッドが形成されない条件をいう。典型的なストリンジェントな条件としては、例えば、カリウム濃度約25mM~約50mM、及びマグネシウム濃度約1.0mM~約5.0mMが挙げられる。本発明の条件の1例として、Tris-HCl緩衝液(pH8.6)、25mMのKCl、及び1.5mMのMgCl中においてハイブリダイゼーションを行う条件が挙げられるが、これに限定されるものではない。他のストリンジェントな条件としては、Molecular Cloning 3rd (J. Sambrook et al., Cold Spring Harbor Lab. Press, 2001) に記載されている。当業者は、ハイブリダイゼーション反応の条件、即ちハイブリダイゼーション反応液の塩濃度等を変化させることによって、ストリンジェントな条件を容易に選択することができる。
 変異型スクアレン-ホペン環化酵素をコードするポリヌクレオチドを発現させるために用いられる組換えベクターとしては、特に制限はなく、pET-3a等の大腸菌で発現可能なベクター、pHT01等の枯草菌で発現可能なベクター、pYES2等の酵母で発現可能なベクターなどが挙げられる。変異型スクアレン-ホペン環化酵素をコードするポリヌクレオチドをこれらのベクターに導入することにより、酵素発現用ベクターを得ることができる。酵素発現用ベクターの導入対象となる宿主細菌としては、用いられる組換えベクターの種類に応じて適宜選択可能であり、例えば、BL21(DE3)等の大腸菌、168株等の枯草菌、サッカロマイセス・セレビシエ等の酵母などが挙げられる。
 組換えベクターは、必要に応じて、プロモーター、スプライシングシグナル、ポリA付加シグナル、選択マーカー、リボソーム結合配列(SD配列)、NOSなどのターミネーター等を有していてもよい。選択マーカーとしては、例えば、カナマイシン耐性遺伝子、アンピシリン耐性遺伝子、テトラサイクリン耐性遺伝子等の抗生物質耐性遺伝子などの公知のものが、特に制限なく用いられる。
 組換えベクターは、目的とする遺伝子の導入を確認するためのレポーター遺伝子を含んでいてもよい。このようなレポーター遺伝子としては、GUS(β-グルクロニダーゼ)遺伝子、ルシフェラーゼ遺伝子、GFP(緑色蛍光タンパク質)遺伝子等が挙げられる。
 変異型スクアレン-ホペン環化酵素は、酵素発現用ベクターを細菌等に導入することによって得られた形質転換体を培養することにより生成される。形質転換体の培養に用いられる培地は、通常用いられる培地でよく、宿主の種類に応じて適宜選択される。例えば、大腸菌を培養する場合には、LB培地等が用いられる。培地には、選択マーカーの種類に応じた抗生物質が添加されていてもよい。
 変異型スクアレン-ホペン環化酵素は、当該酵素を発現可能な形質転換体を培養することにより得られた培養液から酵素を抽出し精製したものであってもよい。また、培養液中の形質転換体から抽出された酵素を含む抽出液をそのまま用いてもよい。形質転換体からの酵素の抽出方法は、公知の方法を適用してよい。酵素の抽出工程は、例えば、形質転換体を抽出溶媒中で破砕し、細胞内容物を形質転換体の破砕片と分離することを含んでよい。得られた細胞内容物には、目的とする変異型スクアレン-ホペン環化酵素が含まれている。本明細書では、細胞から抽出し細胞の破砕片と分離した細胞内容物を「無細胞抽出液」と称する。
 形質転換体の破砕方法、細胞内容物と微生物体の破砕片との分離方法、抽出溶媒の組成及びpH条件については、後述するアンブレイン生成工程での記載事項と同一の事項が、そのまま適用される。
 変異型スクアレン-ホペン環化酵素は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 変異型スクアレン-ホペン環化酵素とスクアレンとの反応の条件は、酵素反応が進行可能な条件であれば特に制限はない。例えば、反応温度及び反応時間は、変異型スクアレン-ホペン環化酵素の活性等に基づいて適宜選択することができる。反応温度及び反応時間は、反応効率の観点から、例えば4℃~100℃及び0.1時間~48時間であり、30℃~60℃及び16時間~24時間が好ましい。pH条件は、反応効率の観点から、例えば3~10であり、6~8が好ましい。
 反応溶媒は、酵素反応を阻害しないものであれば特に制限はなく、通常用いられる緩衝液等を用いることができる。また、例えば、酵素の抽出工程で使用する抽出溶媒と同一のものを用いることができる。また、変異型スクアレン-ホペン環化酵素を含む抽出液(例えば、無細胞抽出液)を酵素液としてそのまま反応に用いてもよい。
 3-デオキシアキレオールA生成反応における変異型スクアレン-ホペン環化酵素と、その基質であるスクアレンとの濃度比は、反応効率の観点から、酵素に対する基質のモル濃度比(基質/酵素)として、10~10000が好ましく、100~5000がより好ましく、1000~3000がより好ましく、1000~2000が更に好ましい。
 酵素反応に用いるスクアレンの濃度は、反応効率の観点から、反応溶媒の全質量に対して0.000001質量%~0.002質量%が好ましく、0.00001質量%~0.0002質量%がより好ましい。
 変異型スクアレン-ホペン環化酵素を用いた反応により得られる3-デオキシアキレオールAは、公知の方法で精製した後に、テトラプレニル-β-クルクメン環化酵素との反応に供することができる。
 3-デオキシアキレオールAの精製方法としては、反応液中の3-デオキシアキレオールAを取り出すことができれば特に制限されず、通常用いられる精製方法から適宜選択してよい。精製方法として具体的には、溶媒抽出、再結晶、蒸留、カラムクロマトグラフィー、高速液体クロマトグラフィー(HPLC)等が挙げられる。
 変異型スクアレン-ホペン環化酵素とスクアレンとが反応する反応工程は、複数回繰り返してもよい。これにより、3-デオキシアキレオールAの収率を高めることができる。反応工程を複数回繰り返す場合には、基質となるスクアレンを反応系に再投入する工程、公知の方法により酵素を失活させた後、反応液中の反応生成物を回収及び精製する工程等を含むものであってもよい。スクアレンの再投入を行う場合には、反応液中の変異型スクアレン-ホペン環化酵素の濃度、反応液中に残存する基質量等によって、投入する時期、投入量を適宜設定することができる。
[アンブレイン生成工程]
 アンブレイン生成工程では、テトラプレニル-β-クルクメン環化酵素を3-デオキシアキレオールAに反応させて、アンブレインを得る。
 テトラプレニル-β-クルクメン環化酵素は、EC4.2.1.129に分類され、水とテトラプレニル-β-クルクメンからバチテルペノールAを生成する反応、又は、スクアレンから8α-ヒドロキシポリポダ-13,17,21-トリエンを生成する反応を触媒し得る酵素である。
 テトラプレニル-β-クルクメン環化酵素は、バチルス属細菌等の細菌が生成する酵素として知られている。反応効率の観点から、テトラプレニル-β-クルクメン環化酵素は、バチルス属細菌に由来のものが好ましい。
 バチルス属細菌由来のテトラプレニル-β-クルクメン環化酵素は、バチルス・メガテリウム(Bacillus megaterium)、バチルス・サブチリス(Bacillus subtilis)、バチルス・リケニフォルミス(Bacillus licheniformis)等に由来する酵素が好ましく、反応効率の観点から、バチルス・メガテリウム又はバチルス・サブチリスに由来する酵素がより好ましく、バチルス・メガテリウムに由来する酵素が特に好ましい。
 バチルス属細菌のテトラプレニル-β-クルクメン環化酵素のアミノ酸配列は公知である。
 バチルス・メガテリウム由来のテトラプレニル-β-クルクメン環化酵素のアミノ酸配列は、GenBankアクセッション番号:ADF38987に示されている(配列番号16)(表4)。
 バチルス・サブチリス由来のテトラプレニル-β-クルクメン環化酵素のアミノ酸配列は、GenBankアクセッション番号:AB618206に示されている(配列番号17)(表5)。
 バチルス・リケニフォルミス由来のテトラプレニル-β-クルクメン環化酵素のアミノ酸配列は、GenBankアクセッション番号:AAU41134に示されている(配列番号18)(表6)。
 反応効率の観点から、テトラプレニル-β-クルクメン環化酵素としては、配列番号16、配列番号17又は配列番号18で示されるアミノ酸配列を有するテトラプレニル-β-クルクメン環化酵素が好ましく、配列番号16で示されるアミノ酸配列を有するテトラプレニル-β-クルクメン環化酵素がより好ましい。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 テトラプレニル-β-クルクメン環化酵素には、配列番号16~18で示される各アミノ酸配列において1個又は数個のアミノ酸残基が置換、欠失、挿入又は付加されたアミノ酸配列を有し、かつ、3-デオキシアキレオールAからアンブレインを生成する機能が保持されたポリペプチドが包含される。配列番号16~18で示される各アミノ酸配列において置換、欠失、挿入又は付加されるアミノ酸残基の数は、具体的には好ましくは1~20個、より好ましくは1~10個、更に好ましくは1~5個である。
 テトラプレニル-β-クルクメン環化酵素には、配列番号16~18で示される各アミノ酸配列全体に対して、それぞれ、例えば80%以上、好ましくは90%以上、より好ましくは95%以上、より好ましくは97%以上、より好ましくは98%以上、特に好ましくは99%以上の配列同一性を有し、かつ、3-デオキシアキレオールAからアンブレインを生成する機能が保持されたポリペプチドが包含される。
 テトラプレニル-β-クルクメン環化酵素は、バチルス属細菌が作るテトラプレニル-β-クルクメン環化酵素のアミノ酸配列、及び/又は、バチルス属細菌が保有するテトラプレニル-β-クルクメン環化酵素遺伝子の塩基配列に基づいて、遺伝子工学的に得られたものであってもよい。テトラプレニル-β-クルクメン環化酵素を遺伝子工学的に製造する際に用いるテトラプレニル-β-クルクメン環化酵素遺伝子としては、バチルス属細菌が保有する野生型遺伝子の塩基配列を有するポリヌクレオチド、又は、当該野生型遺伝子の塩基配列に基づいて合成されたポリヌクレオチドが挙げられる。
 バチルス属細菌が保有するテトラプレニル-β-クルクメン環化酵素遺伝子の塩基配列は、公知である。
 バチルス・メガテリウムについては、GenBank:CP001982.1のゲノム配列の2130781番~2132658番のポリヌクレオチド(配列番号19、GenBank:CP001982.1のゲノム配列の第2130781番目の塩基を第1番目の塩基とする塩基配列)が知られている。
 バチルス・サブチリスについては、GenBank:AB618206に記載のポリヌクレオチド(配列番号20)が知られている。
 バチルス・リケニフォルミスについては、GenBank:CP000002.3のゲノム配列の2209539番~2211428番のポリヌクレオチド(配列番号21、GenBank:CP000002.3のゲノム配列の第2209539番目の塩基を第1番目の塩基とする塩基配列)が知られている。
 テトラプレニル-β-クルクメン環化酵素をコードするポリヌクレオチドには、配列番号19~21で示される各塩基配列において1個又は数個の塩基が置換、欠失、挿入又は付加された塩基配列を有し、かつ、3-デオキシアキレオールAからアンブレインを生成する機能が保持されたポリペプチドをコードするポリヌクレオチドが包含される。配列番号19~21で示される各塩基配列において置換、欠失、挿入又は付加される塩基の数は、具体的には好ましくは1~20個、より好ましくは1~10個、更に好ましくは1~5個である。
 テトラプレニル-β-クルクメン環化酵素をコードするポリヌクレオチドには、配列番号19~21で示される各塩基配列全体に対して、例えば80%以上、好ましくは90%以上、より好ましくは95%以上、より好ましくは97%以上、より好ましくは98%以上、特に好ましくは99%以上の配列同一性を有し、かつ、3-デオキシアキレオールAからアンブレインを生成する機能が保持されたポリペプチドをコードするポリヌクレオチドが包含される。
 テトラプレニル-β-クルクメン環化酵素をコードするポリヌクレオチドには、配列番号19~21で示される塩基配列の各相補鎖に対してストリンジェントな条件下でハイブリダイズするポリヌクレオチドであって、3-デオキシアキレオールAからアンブレインを生成する機能が保持されたポリペプチドをコードするポリヌクレオチドが包含される。ハイブリダイゼーションの条件及びストリンジェントな条件は、変異型スクアレン-ホペン環化酵素について記述した条件と同一である。
 テトラプレニル-β-クルクメン環化酵素として、例えば、配列番号19~21のいずれかで示される塩基配列がコードするポリペプチドが挙げられ、配列番号19又は配列番号20で示される塩基配列がコードするポリペプチドが挙げられ、配列番号19で示される塩基配列がコードするポリペプチドが挙げられる。
 テトラプレニル-β-クルクメン環化酵素をコードするポリヌクレオチドを発現させるために用いられる組換えベクターとしては、特に制限はなく、pColdTF等の大腸菌で発現可能なベクター、pHT01等の枯草菌で発現可能なベクター、pYES2等の酵母で発現可能なベクターなどが挙げられる。テトラプレニル-β-クルクメン環化酵素をコードするポリヌクレオチドをこれらのベクターに導入することにより、酵素発現用ベクターを得ることができる。酵素発現用ベクターの導入対象となる宿主細菌としては、用いられる組換えベクターの種類に応じて適宜選択可能であり、例えば、BL21(DE3)等の大腸菌、168株等の枯草菌、サッカロマイセス・セレビシエ等の酵母などが挙げられる。
 組換えベクターは、必要に応じて、プロモーター、スプライシングシグナル、ポリA付加シグナル、選択マーカー、リボソーム結合配列(SD配列)、NOSなどのターミネーター等を有していてもよい。選択マーカーとしては、例えば、カナマイシン耐性遺伝子、アンピシリン耐性遺伝子、テトラサイクリン耐性遺伝子等の抗生物質耐性遺伝子などの公知のものが、特に制限なく用いられる。
 組換えベクターは、目的とする遺伝子の導入を確認するためのレポーター遺伝子を含んでいてもよい。このようなレポーター遺伝子としては、GUS(β-グルクロニダーゼ)遺伝子、ルシフェラーゼ遺伝子、GFP(緑色蛍光タンパク質)遺伝子等が挙げられる。
 テトラプレニル-β-クルクメン環化酵素は、酵素発現用ベクターを細菌等に導入することによって得られた形質転換体を培養することにより生成される。形質転換体の培養に用いられる培地は、通常用いられる培地でよく、宿主の種類に応じて適宜選択される。例えば、大腸菌を培養する場合には、LB培地等が用いられる。培地には、選択マーカーの種類に応じた抗生物質が添加されていてもよい。
 テトラプレニル-β-クルクメン環化酵素は、当該酵素を発現可能な形質転換体を培養することにより得られた培養液から酵素を抽出し精製したものであってもよい。また、培養液中の形質転換体から抽出された酵素を含む抽出液をそのまま用いてもよい。形質転換体からの酵素の抽出方法は、公知の方法を適用してよい。酵素の抽出工程は、例えば、形質転換体を抽出溶媒中で破砕し、細胞内容物を形質転換体の破砕片と分離することを含んでよい。得られた細胞内容物には、目的とするテトラプレニル-β-クルクメン環化酵素が含まれている。
 形質転換体の破砕方法としては、形質転換体を破砕して、酵素液を回収可能な公知の方法を適用してよく、例えば、超音波破砕、ガラスビーズ破砕等が挙げられる。破砕の条件は、特に制限はなく、10℃以下及び15分間などの、酵素が失活しない条件であればよい。
 細胞内容物と微生物体の破砕片との分離方法としては、沈降分離、遠心分離、濾過分離及びこれらの2つ以上の分離方法の組み合わせ等が挙げられる。これらの方法を用いた分離条件は当業者には公知であり、遠心分離の場合には例えば、8,000×g~15,000×g及び10分間~20分間である。
 抽出溶媒としては、酵素抽出の溶媒として通常用いられるものでよく、例えば、Tris-HCl緩衝液、リン酸カリウム緩衝液等が挙げられる。抽出溶媒のpHは、酵素の安定性の点で、3~10が好ましく、6~8がより好ましい。
 抽出溶媒には、界面活性剤が含まれていてもよい。界面活性剤としては、非イオン界面活性剤、両性イオン界面活性等が挙げられる。非イオン界面活性剤としては、ポリ(オキシエチレン)ソルビタンモノオレイン酸エステル(Tween 80)等のポリオキシエチレンソルビタン脂肪酸エステル、n-オクチルβ-D-グルコシド等のアルキルグルコシド、ショ糖ステアリン酸エステル等のショ糖脂肪酸エステル、ポリグリセリンステアリン酸エステル等のポリグリセリン脂肪酸エステル等が挙げられる。両性イオン界面活性剤としては、アルキルベタインであるN,N-ジメチル-N-ドデシルグリシンベタイン等が挙げられる。これら以外にも、トライトンX-100(Triton X-100)、ポリオキシエチレン(20)セチルエーテル(Brij-58)、ノニルフェノールエトキシレート(Tergitol NP-40)等の当技術分野で一般的に用いられる界面活性剤が利用可能である。
 抽出溶媒中の界面活性剤の濃度は、酵素の安定性の観点から、0.001質量%~10質量%が好ましく、0.10質量%~3.0質量%がより好ましく、0.10質量%~1.0質量%が更に好ましい。
 抽出溶媒には、酵素活性の観点から、ジチオスレイトール、β-メルカプトエタノール等の還元剤が含まれていることが好ましい。還元剤としては、ジチオスレイトールが好ましい。抽出溶媒中のジチオスレイトールの濃度は、0.1mM~1Mが好ましく、1mM~10mMがより好ましい。抽出溶媒中にジチオスレイトールが存在することによって、酵素におけるジスルフィド結合等の構造が保持されやすくなり、酵素活性がより上昇する傾向がある。
 抽出溶媒には、酵素活性の観点から、エチレンジアミン四酢酸(EDTA)等のキレート剤が含まれていることが好ましい。抽出溶媒中のEDTAの濃度は、0.01mM~1Mが好ましく、0.1mM~10mMがより好ましい。抽出溶媒中にEDTAが存在することによって、酵素活性を低下させ得る金属イオンがキレートされるため、酵素活性がより上昇する傾向がある。
 抽出溶媒には、上記の成分以外に、酵素抽出溶媒に添加可能な公知の成分が含まれていてよい。
 テトラプレニル-β-クルクメン環化酵素は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 テトラプレニル-β-クルクメン環化酵素と3-デオキシアキレオールAとの反応の条件は、酵素反応が進行可能な条件であれば特に制限はない。例えば、反応温度及び反応時間は、テトラプレニル-β-クルクメン環化酵素の活性等に基づいて適宜選択することができる。反応温度及び反応時間は、反応効率の観点から、例えば4℃~100℃及び0.1時間~48時間であり、30℃~60℃及び16時間~24時間が好ましい。pH条件は、反応効率の観点から、例えば3~10であり、6~8が好ましい。
 反応溶媒は、酵素反応を阻害しないものであれば特に制限はなく、通常用いられる緩衝液等を用いることができる。また、例えば、酵素の抽出工程で使用する抽出溶媒と同一のものを用いることができる。また、テトラプレニル-β-クルクメン環化酵素を含む抽出液(例えば、無細胞抽出液)を酵素液としてそのまま反応に用いてもよい。
 アンブレイン生成反応におけるテトラプレニル-β-クルクメン環化酵素と、その基質である3-デオキシアキレオールAとの濃度比は、反応効率の観点から、酵素に対する基質のモル濃度比(基質/酵素)として、10~10000が好ましく、100~5000がより好ましく、1000~3000がより好ましく、1000~2000が更に好ましい。
 酵素反応に用いる3-デオキシアキレオールAの濃度は、反応効率の観点から、反応溶媒の全質量に対して0.000001質量%~0.002質量%が好ましく、0.00001質量%~0.0002質量%がより好ましい。
 テトラプレニル-β-クルクメン環化酵素と3-デオキシアキレオールAとが反応する反応工程は、複数回繰り返してもよい。これにより、アンブレインの収率を高めることができる。反応工程を複数回繰り返す場合には、基質となる3-デオキシアキレオールAを反応系に再投入する工程、公知の方法により酵素を失活させた後、反応液中の反応生成物を回収及び精製する工程等を含むものであってもよい。3-デオキシアキレオールAの再投入を行う場合には、反応液中のテトラプレニル-β-クルクメン環化酵素の濃度、反応液中に残存する基質量等によって、投入する時期、投入量を適宜設定することができる。
 本発明のアンブレインの製造方法は、3-デオキシアキレオールA生成工程とアンブレイン生成工程とを含む場合、アンブレインの生成効率及び製造方法の簡便性の観点から、アリシクロバチルス属細菌に由来する変異型スクアレン-ホペン環化酵素とスクアレンとの反応により得られた3-デオキシアキレオールAに、バチルス属細菌に由来するテトラプレニル-β-クルクメン環化酵素を反応させて、アンブレインを生成することを含む方法であることが好ましい。より好ましくは、アリシクロバチルス・アシドカルダリウスに由来する変異型スクアレン-ホペン環化酵素とスクアレンとの反応により得られた3-デオキシアキレオールAに、バチルス・メガテリウム又はバチルス・サブチリスに由来するテトラプレニル-β-クルクメン環化酵素を反応させて、アンブレインを生成することを含む方法である。
[その他の工程]
 本発明のアンブレインの製造方法は、生成されたアンブレインを精製する精製工程をさらに含んでもよい。アンブレインの精製方法としては、反応液中のアンブレインを取り出すことができれば特に制限されず、通常用いられる精製方法から適宜選択してよい。精製方法として具体的には、溶媒抽出、再結晶、蒸留、カラムクロマトグラフィー、HPLC等が挙げられる。
 得られた生成物がアンブレインであることは、ガスクロマトグラフィー質量分析計(GC-MS)及び核磁気共鳴装置(NMR)を用いて常法により確認できる。
 以下、本発明を実施例にて詳細に説明する。しかしながら、本発明はそれらに何ら限定されるものではない。
[実施例1]
 スクアレンを材料とし、変異型スクアレン-ホペン環化酵素をスクアレンに反応させる工程と、テトラプレニル-β-クルクメン環化酵素を3-デオキシアキレオールAに反応させる工程と、の2工程によりアンブレインを得た。当該2工程の反応スキームを以下に示す。
Figure JPOXMLDOC01-appb-C000009
(1)3-デオキシアキレオールAの合成
 変異型スクアレンーホペン環化酵素(配列番号2)をコードするポリヌクレオチド(配列番号9)を含む組換えベクターで形質転換した大腸菌BL21(DE3)(Biosci. Biotechnol. Biochem., (1999) Vol.63, pp.2189-2198)を用意した。この形質転換体を、アンピシリン(50mg/L)含有LB培地(6L)に植菌し、37℃で16時間振とう培養した。培養後、遠心(6,000×g、10分間)によって集菌した。菌体を50mMのTris-HCl緩衝液(pH8.0)で洗浄した後、300mLの緩衝液A[50mMのTris-HCl緩衝液(pH8.0),1v/v%のTritonX-100を含有。]で懸濁し、UP2005 sonicator(Hielscher Ultrasonics, Teltow, Germany)を用いて超音波破砕(4℃、15分間)した。破砕処理後の試料を遠心(12,000×g、15分間)し、遠心後に得られた上清を無細胞抽出液Aとした。
 スクアレン(50mg)をTritonX-100(1g)に混合して可溶化した後に緩衝液A(5mL)に添加してスクアレン液を調製した。このスクアレン液全量を無細胞抽出液Aに加えて反応液とし、60℃で16時間インキュベートした。反応液において、スクアレン(基質)と変異型スクアレン-ホペン環化酵素(酵素)とのモル比(基質/酵素)は、約1000であった。
 インキュベート後に、15質量%水酸化カリウム含有エタノール溶液(KOH/MeOH,450mL)を反応液へ添加して、酵素反応を停止させた。その後、反応液へn-ヘキサン(750mL)を添加して、反応生成物の抽出を3回行った。得られた抽出物を、シリカゲルカラムクロマトグラフィー(溶媒:n-ヘキサン)に供し、純粋な3-デオキシアキレオールA(42.2mg)を得た。3-デオキシアキレオールAの構造は、ガスクロマトグラフィー質量分析計(GC-MS)及び核磁気共鳴装置(NMR)によって確認した。
(2)アンブレインの合成
 バチルス・メガテリウム由来のテトラプレニル-β-クルクメン環化酵素(配列番号16)をコードするポリヌクレオチド(配列番号19)を組み込んだ組換えベクターで形質転換した大腸菌BL21(DE3)(J. Am. Chem. Soc., (2011) Vol.133, pp.17540-17543)を用意した。この形質転換体をLB培地(18L)に植菌し、37℃で3時間振とう培養した。培養後、0.1Mのイソプロピル-β-チオガラクトピラノシド(IPTG)を添加し、15℃で24時間振とうを行い、テトラプレニル-β-クルクメン環化酵素の発現を誘導した。
 その後、遠心(6,000×g、10分間)によって集菌した菌体を、50mMのTris-HCl緩衝液(pH8.0)で洗浄した後、540mLの緩衝液B[50mMのTris-HCl緩衝液(pH7.5)、0.1v/v%のTritonX-100、2.5mMのジチオスレイトール、1mMのEDTAを含有。]で懸濁し、UP2005 sonicator(Hielscher Ultrasonics, Teltow, Germany)を用いて超音波破砕(4℃、20分間)した。破砕処理後の試料を遠心(12,300×g、20分間)し、遠心後に得られた上清を無細胞抽出液Bとした。
 前記工程(1)で得られた3-デオキシアキレオールA(35mg)をTritonX-100(700mg)に混合して可溶化した後に緩衝液B(5mL)に添加して3-デオキシアキレオールA液を調製した。この3-デオキシアキレオールA液の全量を無細胞抽出液B(180mL)に加えて反応液とし、30℃で16時間インキュベートした。反応液において、3-デオキシアキレオールA(基質)とテトラプレニル-β-クルクメン環化酵素(酵素)とのモル比(基質/酵素)は、約1000であった。
 インキュベート後に、15質量%水酸化カリウム含有エタノール溶液(KOH/MeOH、220mL)を反応液へ添加し、さらに70℃で30分加熱処理して、酵素反応を停止させた。その後、反応液へn-ヘキサン(400mL)を添加して、反応生成物の抽出を3回行った。得られた抽出物を、TritonX-100(470mg)に添加して可溶化し、緩衝液B(5mL)に添加した後、無細胞抽出液B(180mL)に加え、上記同様にインキュベート、反応停止、及びn-ヘキサン抽出を行った。次いでさらに1回、上記同様に、抽出物の可溶化、無細胞抽出液Bへの添加、インキュベート、反応停止、及びn-ヘキサン抽出を行った。
 得られた抽出物を、シリカゲルカラムクロマトグラフィー(溶媒:n-ヘキサン、n-ヘキサン:酢酸エチル=100:20、容量比)に供し、n-ヘキサン:酢酸エチル=100:20画分を得た。得られた画分を濃縮し、HPLC(溶媒:n-ヘキサン:THF=100:20)に供し、純粋なアンブレイン(0.4mg)を得た。アンブレインの構造は、ガスクロマトグラフィー質量分析計(GC-MS)及び核磁気共鳴装置(NMR)によって確認した。また旋光度も文献値とほぼ一致した。
[実施例2]
 テトラプレニル-β-クルクメン環化酵素を、バチルス・メガテリウム由来の酵素からバチルス・サブチリス由来の酵素に変更した以外は、実施例1と同様にして前記工程(1)及び(2)を行い、アンブレインの合成を行った。実施例2で使用したテトラプレニル-β-クルクメン環化酵素は、配列番号20で示されるポリヌクレオチドでコードされる酵素であり、配列番号17で示されるアミノ酸配列を有する。
 その結果、実施例1と同様に、スクアレンから3-デオキシアキレオールAを経てアンブレインを合成できた。合成されたアンブレインの収量は、バチルス・メガテリウム由来のテトラプレニル-β-クルクメン環化酵素を用いた場合(実施例1)の10%程度であった。
 本発明によれば、テトラプレニル-β-クルクメン環化酵素を用いることによって、3-デオキシアキレオールAからアンブレインを簡便に製造することができる。
 本発明によれば、変異型スクアレン-ホペン環化酵素とテトラプレニル-β-クルクメン環化酵素とを用いることによって、スクアレンから3-デオキシアキレオールAを経てアンブレインを簡便に製造することができる。
 2013年9月5日に出願された日本国特許出願2013-184143号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (6)

  1.  テトラプレニル-β-クルクメン環化酵素を3-デオキシアキレオールAに反応させて、アンブレインを得ること、を含むアンブレインの製造方法。
  2.  テトラプレニル-β-クルクメン環化酵素が、バチルス属細菌由来である、請求項1に記載のアンブレインの製造方法。
  3.  テトラプレニル-β-クルクメン環化酵素が、バチルス・メガテリウム、バチルス・サブチリス及びバチルス・リケニフォルミスのいずれか由来である、請求項1又は請求項2に記載のアンブレインの製造方法。
  4.  スクアレンから3-デオキシアキレオールAを生成可能な変異型スクアレン-ホペン環化酵素を、スクアレンに反応させて、3-デオキシアキレオールAを得ること、をさらに含む、請求項1~請求項3のいずれか1項に記載のアンブレインの製造方法。
  5.  変異型スクアレン-ホペン環化酵素が、配列番号1で示されるアミノ酸配列における377位、420位、607位及び612位からなる群より選択される少なくとも1つの部位にアミノ酸置換を有する、請求項4に記載のアンブレインの製造方法。
  6.  変異型スクアレン-ホペン環化酵素が、配列番号2、配列番号3、配列番号4、配列番号5、配列番号6、配列番号7及び配列番号8のいずれかで示されるアミノ酸配列を有する、請求項4又は請求項5に記載のアンブレインの製造方法。
PCT/JP2014/071333 2013-09-05 2014-08-12 アンブレインの製造方法 WO2015033746A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/916,216 US9902979B2 (en) 2013-09-05 2014-08-12 Method for producing ambrein
EP14842894.9A EP3042960B1 (en) 2013-09-05 2014-08-12 Method for producing ambrein
JP2015535401A JP6429243B2 (ja) 2013-09-05 2014-08-12 アンブレインの製造方法
CN201480046980.7A CN105579585B (zh) 2013-09-05 2014-08-12 龙涎香醇的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-184143 2013-09-05
JP2013184143 2013-09-05

Publications (1)

Publication Number Publication Date
WO2015033746A1 true WO2015033746A1 (ja) 2015-03-12

Family

ID=52628228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071333 WO2015033746A1 (ja) 2013-09-05 2014-08-12 アンブレインの製造方法

Country Status (5)

Country Link
US (1) US9902979B2 (ja)
EP (1) EP3042960B1 (ja)
JP (1) JP6429243B2 (ja)
CN (1) CN105579585B (ja)
WO (1) WO2015033746A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017150695A1 (ja) 2016-03-04 2017-09-08 国立大学法人新潟大学 変異型テトラプレニル-β-クルクメン環化酵素及びアンブレインの製造方法
WO2019045058A1 (ja) 2017-09-01 2019-03-07 国立大学法人新潟大学 アンブレインの効率的製造方法
US10294211B2 (en) 2015-04-24 2019-05-21 Givaudan S.A. Process for isolating and purifying ambrox
US10472655B2 (en) 2015-04-24 2019-11-12 Givaudan S.A. Enzymes and applications thereof
US10844412B2 (en) 2016-04-22 2020-11-24 Givaudan S. A. Solid form of (−)-Ambrox formed by a bioconversion of homofarnesol in the presence of a biocatalyst
WO2021193806A1 (ja) * 2020-03-25 2021-09-30 国立大学法人新潟大学 変異型テトラプレニル-β-クルクメン環化酵素及びそれを用いたアンブレインの製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107828709B (zh) * 2017-11-09 2021-06-25 天津大学 异源合成龙涎香醇的重组大肠杆菌及其构建方法
JP7053401B2 (ja) * 2018-08-06 2022-04-12 株式会社デンソー 新規環化物及び新規環化物の製造方法
US20230183761A1 (en) * 2019-07-10 2023-06-15 Firmenich Sa Biocatalytic method for the controlled degradation of terpene compounds
WO2021133171A1 (en) 2019-12-24 2021-07-01 Technische Universiteit Delft Recombinant fungal cell
NL2024578B1 (en) * 2019-12-24 2021-09-06 Univ Delft Tech Recombinant fungal cell

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10236996A (ja) 1997-02-21 1998-09-08 Kuraray Co Ltd 光学活性なアンブレインの製造方法および該製造方法に有用な中間体化合物並びに該中間体化合物の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0416912B1 (pt) * 2003-11-26 2020-01-28 Firmenich & Cie método para a produção de patchoulol, método para preparar uma patchoulol sintase funcional variante, construção de ácido nucleico, vetor, método de obtenção de uma célula hospedeira recombinante, célula de microrganismo hospedeira, método de fabricação de uma patchoulol sintase
US20160168595A1 (en) * 2013-07-04 2016-06-16 Antonius Cornelis Johannes Matheus JANSSEN Two-phase fermentation process for the production of an organic compound

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10236996A (ja) 1997-02-21 1998-09-08 Kuraray Co Ltd 光学活性なアンブレインの製造方法および該製造方法に有用な中間体化合物並びに該中間体化合物の製造方法

Non-Patent Citations (17)

* Cited by examiner, † Cited by third party
Title
BIOSCI. BIOTECHNOL. BIOCHEM., vol. 63, 1999, pages 2189 - 2198
BIOSCI. BIOTECHNOL. BIOCHEM., vol. 65, 2001, pages 2233 - 2242
BIOSCI. BIOTECHNOL. BIOCHEM., vol. 66, 2002, pages 1660 - 1670
DAIJIRO UEDA ET AL.: "Squalene no Ryo Mattan Kanka: Onoceroid Gosei Koso o Hajimete no Dotei Oyobi Ryuzenko Shuseibun ambrein no Koso Gosei", JAPANESE SOCIETY OF ENZYME ENGINEERING DAI 71 KAI KOENKAI KOEN YOSHISHU, 26 April 2014 (2014-04-26), pages 27, XP008183059 *
DATABASE UNIPROTKB [online] 1 May 2013 (2013-05-01), VEITH B ET AL.: "Definiton: SubName: Full=Squalene--hopene cyclase SqhC; EC =5.4.99.17", XP008183063, retrieved from UNIPROT Database accession no. Q65II0 *
J AM. CHEM. SOC., vol. 133, 2011, pages 17540 - 17543
J. AM. CHEM. SOC., vol. 133, 2011, pages 17540 - 17543
J. SAMBROOK ET AL.: "Molecular Cloning, 3rd", 2001, COLD SPRING HARBOR LAB. PRESS
SATO T ET AL.: "Bifunctional triterpene/sesquarterpene cyclase: tetraprenyl- beta-curcumene cyclase is also squalene cyclase in Bacillus megaterium", J. AM. CHEM. SOC., vol. 133, 2011, pages 17540 - 17543, XP055325758 *
SATO T ET AL.: "Catalytic function of the residues of phenylalanine and tyrosine conserved in squalene-hopene cyclases", BIOSCI. BIOTECHNOL. BIOCHEM., vol. 65, 2001, pages 2233 - 2242, XP055325755 *
SATO T ET AL.: "Functional analyses of Tyr420 and Leu607 of Alicyclobacillus acidocaldarius squalene-hopene cyclase. Neoachillapentaene, a novel triterpene with the 1,5,6- trimethylcyclohexene moiety produced through folding of the constrained boat structure", BIOSCI. BIOTECHNOL. BIOCHEM., vol. 66, 2002, pages 1660 - 1670, XP055325756 *
SATO T ET AL.: "Functional analysis of the DXDDTA motif in squalene-hopene cyclase by site-directed mutagenesis experiments: initiation site of the polycyclization reaction and stabilization site of the carbocation intermediate of the initially cyclized A-ring", BIOSCI. BIOTECHNOL. BIOCHEM., vol. 63, 1999, pages 2189 - 2198, XP055325754 *
SATO T ET AL.: "Sesquarterpenes (C35 terpenes) biosynthesized via the cyclization of a linear C35 isoprenoid by a tetraprenyl-beta-curcumene synthase and a tetraprenyl-beta-curcumene cyclase: identification of a new terpene cyclase", J. AM. CHEM. SOC., vol. 133, 2011, pages 9734 - 9737, XP055325757 *
See also references of EP3042960A4
TETRAHEDRON ASYMMETRY, vol. 17, 2006, pages 3037 - 3045
TSUTOMU SATO ET AL.: "Tetraprenyl-beta-Curcumene Kanka Koso no Saranaru Noryoku no Kaiseki", JAPAN SOCIETY FOR BIOSCIENCE, BIOTECHNOLOGY, AND AGROCHEMISTRY TAIKAI KOEN YOSHISHU, 5 March 2013 (2013-03-05), pages 4C22A08, XP008182931 *
UEDA D ET AL.: "Cyclization of Squalene from Both Termini: Identification of an Onoceroid Synthase and Enzymatic Synthesis of Ambrein", J. AM. CHEM. SOC., vol. 135, 25 November 2013 (2013-11-25), XP055325753 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11466299B2 (en) 2015-04-24 2022-10-11 Givaudan S.A. Enzymes and applications thereof
US10294211B2 (en) 2015-04-24 2019-05-21 Givaudan S.A. Process for isolating and purifying ambrox
US10472655B2 (en) 2015-04-24 2019-11-12 Givaudan S.A. Enzymes and applications thereof
US11021722B2 (en) 2015-04-24 2021-06-01 Givaudan S.A. Enzymes and applications thereof
JP7036386B2 (ja) 2016-03-04 2022-03-15 国立大学法人 新潟大学 変異型テトラプレニル-β-クルクメン環化酵素及びアンブレインの製造方法
CN109072216A (zh) * 2016-03-04 2018-12-21 国立大学法人新潟大学 变异型四异戊烯基-β-姜黄烯环化酶及龙涎香醇的制备方法
JPWO2017150695A1 (ja) * 2016-03-04 2019-02-14 国立大学法人 新潟大学 変異型テトラプレニル−β−クルクメン環化酵素及びアンブレインの製造方法
US10844407B2 (en) 2016-03-04 2020-11-24 Niigata University Variant type tetraprenyl-β-curcumene cyclase and method for producing ambrein
CN115011572A (zh) * 2016-03-04 2022-09-06 国立大学法人新潟大学 变异型四异戊烯基-β-姜黄烯环化酶及龙涎香醇的制备方法
CN109072216B (zh) * 2016-03-04 2022-08-30 国立大学法人新潟大学 变异型四异戊烯基-β-姜黄烯环化酶及龙涎香醇的制备方法
WO2017150695A1 (ja) 2016-03-04 2017-09-08 国立大学法人新潟大学 変異型テトラプレニル-β-クルクメン環化酵素及びアンブレインの製造方法
US11401541B2 (en) 2016-04-22 2022-08-02 Givaudan S.A. Solid form of (-)-Ambrox formed by a bioconversion of homofarnesol in the presence of a biocatalyst
US10844412B2 (en) 2016-04-22 2020-11-24 Givaudan S. A. Solid form of (−)-Ambrox formed by a bioconversion of homofarnesol in the presence of a biocatalyst
US11773419B2 (en) 2016-04-22 2023-10-03 Givaudan Sa Solid form of (-)-Ambrox formed by a bioconversion of homofarnesol in the presence of a biocatalyst
US11414655B2 (en) 2017-09-01 2022-08-16 Niigata University Efficient method for producing ambrein
JPWO2019045058A1 (ja) * 2017-09-01 2020-12-17 国立大学法人 新潟大学 アンブレインの効率的製造方法
WO2019045058A1 (ja) 2017-09-01 2019-03-07 国立大学法人新潟大学 アンブレインの効率的製造方法
JP7333913B2 (ja) 2017-09-01 2023-08-28 国立大学法人 新潟大学 アンブレインの効率的製造方法
WO2021193806A1 (ja) * 2020-03-25 2021-09-30 国立大学法人新潟大学 変異型テトラプレニル-β-クルクメン環化酵素及びそれを用いたアンブレインの製造方法

Also Published As

Publication number Publication date
EP3042960A4 (en) 2017-01-25
EP3042960A1 (en) 2016-07-13
CN105579585A (zh) 2016-05-11
EP3042960B1 (en) 2018-05-30
JP6429243B2 (ja) 2018-11-28
JPWO2015033746A1 (ja) 2017-03-02
US20160304911A1 (en) 2016-10-20
CN105579585B (zh) 2019-03-15
US9902979B2 (en) 2018-02-27

Similar Documents

Publication Publication Date Title
JP6429243B2 (ja) アンブレインの製造方法
Matsuda et al. Complete biosynthetic pathway of anditomin: nature’s sophisticated synthetic route to a complex fungal meroterpenoid
AU2013307289A1 (en) Genes and processes for the production of clavine-type alkaloids
CN113930404B (zh) 一种酶法合成手性枸橼酸托法替布中间体的方法
CN110777155A (zh) 最小霉素生物合成基因簇、重组菌及其应用
WO2017150695A1 (ja) 変異型テトラプレニル-β-クルクメン環化酵素及びアンブレインの製造方法
CN115404249A (zh) 一种(s)-尼古丁中间体的制备方法及其应用
JP2002520033A (ja) β−ラクタムシンセターゼ活性を有するポリペプチドを用いることを特徴とするクラバム誘導体の製法
CN114032222B (zh) 糖链延伸糖基转移酶突变体及其编码基因以及基因工程菌和它们的应用
CN111094571B (zh) 龙涎香醇的有效制备方法
JP2013132226A (ja) (−)−3a,6,6,9a−テトラメチルドデカヒドロナフト[2,1−b]フランの製造方法
CN109971802B (zh) 一种酶法拆分制备(s)-1,2,3,4-四氢异喹啉-1-甲酸及其衍生物的方法
CN113174377A (zh) 羰基还原酶、突变体及其在制备地尔硫卓中间体中的应用
WO2015119219A1 (ja) 新規β-グルコシダーゼおよび同酵素を用いる易分解性セサミノール配糖体の製造方法
CN110835639B (zh) 一种制备(s)-1,2,3,4-四氢异喹啉-1-甲酸及其衍生物的方法
CN114277024A (zh) 一种新型三萜合酶及其应用
CN108690836B (zh) 一种环己酮单加氧酶及其在合成拉唑中的应用
CN114480315B (zh) 一种Baeyer-Villiger单加氧酶及其在布立西坦合成中的应用
CN110643650A (zh) (s)-1-苄基-1,2,3,4,5,6,7,8-八氢异喹啉类化合物的制备方法
CN114921428B (zh) 一种Baeyer-Villiger单加氧酶及其用途
AU2018285734A1 (en) Demethylation of reticuline and derivatives thereof with fungal cytochrome P450
CN109486789B (zh) 一种立体选择性提高的菜豆环氧化物水解酶突变体
CN111518779B (zh) 一种恶唑环化酶基因及其编码蛋白和应用
WO2021193806A1 (ja) 変異型テトラプレニル-β-クルクメン環化酵素及びそれを用いたアンブレインの製造方法
CN110317849B (zh) 一种制备(s)-1,2,3,4-四氢异喹啉-1-甲酸及其衍生物的方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480046980.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14842894

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015535401

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14916216

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014842894

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014842894

Country of ref document: EP