WO2015033586A1 - ロータリ圧縮機 - Google Patents

ロータリ圧縮機 Download PDF

Info

Publication number
WO2015033586A1
WO2015033586A1 PCT/JP2014/051979 JP2014051979W WO2015033586A1 WO 2015033586 A1 WO2015033586 A1 WO 2015033586A1 JP 2014051979 W JP2014051979 W JP 2014051979W WO 2015033586 A1 WO2015033586 A1 WO 2015033586A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil supply
hole
eccentric
compression
shaft
Prior art date
Application number
PCT/JP2014/051979
Other languages
English (en)
French (fr)
Inventor
駒井 裕二
尚哉 両角
進吾 矢羽々
Original Assignee
株式会社富士通ゼネラル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社富士通ゼネラル filed Critical 株式会社富士通ゼネラル
Priority to EP14842888.1A priority Critical patent/EP3043070B1/en
Priority to CN201480025092.7A priority patent/CN105164422B/zh
Priority to US14/897,075 priority patent/US9951774B2/en
Priority to AU2014316483A priority patent/AU2014316483B2/en
Publication of WO2015033586A1 publication Critical patent/WO2015033586A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/023Lubricant distribution through a hollow driving shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/0085Prime movers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/025Lubrication; Lubricant separation using a lubricant pump

Definitions

  • the present invention relates to a rotary compressor used in an air conditioner or a refrigerator.
  • an oil supply mechanism that includes an electric element in a sealed container and a rotary compression element that is connected to the electric element via a drive shaft, and supplies lubricating oil that accumulates at the bottom of the sealed container to a sliding portion of the rotary compression element.
  • the rotary compression element has two bearings for supporting the drive shaft and a cylinder provided between the bearings, and the drive shaft is fitted in the cylinder.
  • a plurality of horizontal holes that are equal to or lower than the discharge pressure and that extend from the through hole toward the outer peripheral surface of the drive shaft are provided, and each of the horizontal holes functions as either an oil supply passage or a gas passage. Head to the outer surface The transverse bore number, shifted 90 ° out of phase with each other, the sealed type rotary compressor compressive stress of the drive shaft is provided on a side effect has been disclosed (e.g., see Patent Document 1).
  • the present invention has been made in view of the above, and the strength of the drive shaft (rotating shaft) can be ensured, the oil supply to the sliding portion is not intermittent, and the processing cost does not increase. It aims at obtaining the rotary compressor provided with the drive shaft.
  • the present invention provides a sealed vertical compression in which a refrigerant discharge portion is provided in the upper portion and a refrigerant suction portion is provided in the lower portion and lubricating oil is stored.
  • a compressor casing disposed at a lower portion of the compressor casing, compressing the refrigerant sucked from the suction section and discharging the refrigerant from the discharge section, and disposed at an upper portion of the compressor casing,
  • a motor for driving the compression part via the oil supply mechanism, and an oil supply mechanism for supplying the lubricating oil stored in the lower part of the compressor housing to the sliding part of the compression part through the oil supply vertical hole and the oil supply horizontal hole of the rotary shaft
  • the oil supply lateral hole of the oil supply mechanism is provided in the same direction as the eccentric direction of the eccentric part provided in the rotary shaft and revolving the annular piston of the compression part in the cylinder, and from the same direction.
  • the direction opposite to the rotation direction of the rotating shaft Characterized in that it is formed between the direction shifted 80 ° phase.
  • FIG. 1 is a longitudinal sectional view showing an embodiment of a rotary compressor according to the present invention.
  • FIG. 2 is a cross-sectional view seen from above the first and second compression portions of the embodiment.
  • FIG. 3 is a side view of the lower portion of the rotating shaft according to the first embodiment.
  • FIG. 4 is a longitudinal sectional view of an oil supply pipe according to the first embodiment.
  • FIG. 5 is a side view of the pump blade according to the first embodiment.
  • FIG. 6A is a cross-sectional view taken along the line AA in FIG.
  • FIG. 6B is a cross-sectional view taken along the line BB in FIG.
  • FIG. 7 is a view taken from the bottom of FIG.
  • FIG. 3 is a diagram illustrating an action state of the refrigerant compression load on the rotation shaft when the rotation angle of the eccentric portion of the rotation shaft is 270 °.
  • FIG. 8 is a diagram illustrating the relationship between the rotation angle of the eccentric portion of the rotation shaft and the refrigerant compression load.
  • FIG. 9 is a diagram illustrating an action state of the refrigerant compression load on the rotation shaft of the conventional rotary compressor described in Patent Document 1 when the rotation angle of the eccentric portion of the rotation shaft is 270 °.
  • FIG. 10 is a side view of the lower part of the rotating shaft according to the second embodiment.
  • 11A is a cross-sectional view taken from the bottom along the line DD in FIG.
  • FIG. 11B is a cross-sectional view taken along the line EE in FIG.
  • FIG. 12 is an F arrow view seen from the bottom of FIG. 10, and is a diagram illustrating an action state of the refrigerant compression load on the rotation shaft when the rotation angle of the eccentric portion of the rotation shaft is 180 °.
  • FIG. 13 is an F arrow view seen from the bottom of FIG. 10 and is a diagram illustrating an action state of the refrigerant compression load on the rotation shaft when the rotation angle of the eccentric portion of the rotation shaft is 270 °.
  • FIG. 14 is a diagram illustrating the positions of the oil supply lateral holes of the third embodiment.
  • FIG. 15 is a diagram illustrating the positions of the oil supply lateral holes of the fourth embodiment.
  • FIG. 16 is a diagram illustrating the positions of the oil supply lateral holes of the fifth embodiment.
  • FIG. 17 is a diagram illustrating the positions of the oil supply lateral holes of the sixth embodiment.
  • FIG. 18 is a diagram illustrating the positions of the oil supply lateral holes of the seventh embodiment.
  • FIG. 1 is a longitudinal sectional view showing an embodiment of a rotary compressor according to the present invention
  • FIG. 2 is a transverse sectional view seen from above the first and second compression portions of the embodiment.
  • the rotary compressor 1 As shown in FIG. 1, the rotary compressor 1 according to the embodiment is disposed at a lower portion of a sealed vertical cylindrical compressor housing 10 and an upper portion of the compressor housing 10. And a motor 11 that drives the compression unit 12 via the rotary shaft 15.
  • the stator 111 of the motor 11 is formed in a cylindrical shape, and is fixed by being shrink-fitted on the inner peripheral surface of the compressor housing 10.
  • the rotor 112 of the motor 11 is disposed inside the cylindrical stator 111 and is fixed by being shrink-fitted to a rotating shaft 15 that mechanically connects the motor 11 and the compression unit 12.
  • the compression unit 12 includes a first compression unit 12S and a second compression unit 12T that is arranged in parallel with the first compression unit 12S and stacked on the upper side of the first compression unit 12S. As shown in FIG. 2, the first and second compression parts 12S and 12T are arranged on the first and second side projecting parts 122S and 122T in a radial manner with the first and second suction holes 135S and 135T, , Annular first and second cylinders 121S and 121T provided with second vane grooves 128S and 128T are provided.
  • first and second cylinder inner walls 123S and 123T are formed in the first and second cylinders 121S and 121T concentrically with the rotating shaft 15 of the motor 11.
  • first and second annular pistons 125S and 125T having an outer diameter smaller than the cylinder inner diameter are arranged, respectively, and the first and second cylinder inner walls 123S and 123T,
  • the first and second working chambers 130S and 130T are formed between the first and second annular pistons 125S and 125T for sucking, compressing and discharging the refrigerant gas.
  • First and second vane grooves 128S and 128T are formed in the first and second cylinders 121S and 121T in the radial direction from the first and second cylinder inner walls 123S and 123T over the entire cylinder height.
  • Flat plate-like first and second vanes 127S and 127T are slidably fitted into the second vane grooves 128S and 128T, respectively.
  • first and second vane grooves 128S and 128T are communicated with the first and second vane grooves 128S and 128T from the outer periphery of the first and second cylinders 121S and 121T at the back of the first and second vane grooves 128S and 128T.
  • First and second spring holes 124S and 124T are formed.
  • First and second vane springs (not shown) that press the back surfaces of the first and second vanes 127S and 127T are inserted into the first and second spring holes 124S and 124T.
  • first and second vane 127S and 127T are moved from the inside of the first and second vane grooves 128S and 128T by the repulsive force of the first and second vane springs.
  • the first and second working chambers 130S, 130T are protruded into the working chambers 130S, 130T, their tips abutting against the outer peripheral surfaces of the first and second annular pistons 125S, 125T, and the first and second vanes 127S, 127T.
  • 130T is partitioned into first and second suction chambers 131S and 131T and first and second compression chambers 133S and 133T.
  • first and second cylinders 121S and 121T communicate with the inner portions of the first and second vane grooves 128S and 128T and the interior of the compressor housing 10 through the opening R shown in FIG.
  • First and second pressure introducing passages 129S and 129T are formed in which the compressed refrigerant gas in the housing 10 is introduced and back pressure is applied to the first and second vanes 127S and 127T by the pressure of the refrigerant gas. .
  • first and second suction chambers 131S and 131T communicate with the outside in order to suck the refrigerant from the outside into the first and second suction chambers 131S and 131T.
  • Second suction holes 135S and 135T are provided.
  • an intermediate partition plate 140 is disposed between the first cylinder 121S and the second cylinder 121T, and the first working chamber 130S (see FIG. 2) of the first cylinder 121S and the second cylinder.
  • the second working chamber 130T (see FIG. 2) of 121T is partitioned and closed.
  • a lower end plate 160S is disposed at the lower end of the first cylinder 121S, and closes the first working chamber 130S of the first cylinder 121S.
  • An upper end plate 160T is disposed at the upper end portion of the second cylinder 121T, and closes the second working chamber 130T of the second cylinder 121T.
  • a secondary bearing portion 161S is formed on the lower end plate 160S, and the secondary shaft portion 151 of the rotary shaft 15 is rotatably supported by the secondary bearing portion 161S.
  • a main bearing portion 161T is formed on the upper end plate 160T, and the main shaft portion 153 of the rotary shaft 15 is rotatably supported by the main bearing portion 161T.
  • the rotating shaft 15 includes a first eccentric portion 152S and a second eccentric portion 152T that are eccentric with a phase difference of 180 ° from each other.
  • the first eccentric portion 152S is connected to the first annular piston 125S of the first compression portion 12S.
  • the second eccentric portion 152T is rotatably fitted to the second annular piston 125T of the second compression portion 12T.
  • the first and second annular pistons 125S and 125T move in the first and second cylinders 121S and 121T counterclockwise in FIG. 2 along the first and second cylinder inner walls 123S and 123T. Revolving and following this, the first and second vanes 127S and 127T reciprocate. Due to the movement of the first and second annular pistons 125S and 125T and the first and second vanes 127S and 127T, the volumes of the first and second suction chambers 131S and 131T and the first and second compression chambers 133S and 133T are continuous.
  • the compressor 12 continuously sucks, compresses and discharges the refrigerant gas.
  • a lower muffler cover 170S is disposed below the lower end plate 160S, and a lower muffler chamber 180S is formed between the lower end plate 160S. And the 1st compression part 12S is opened to lower muffler room 180S. That is, a first discharge hole 190S (see FIG. 2) that connects the first compression chamber 133S of the first cylinder 121S and the lower muffler chamber 180S is provided in the vicinity of the first vane 127S of the lower end plate 160S. A first discharge valve 200S that prevents the backflow of the compressed refrigerant gas is disposed in the hole 190S.
  • the lower muffler chamber 180S is one chamber formed in an annular shape, and the lower end plate 160S, the first cylinder 121S, the intermediate partition plate 140, the second cylinder 121T, and the upper end plate 160T are arranged on the discharge side of the first compression unit 12S. This is a part of the communication path that communicates with the upper muffler chamber 180T through the refrigerant path 136 (see FIG. 2) that passes through.
  • the lower muffler chamber 180S reduces the pressure pulsation of the discharged refrigerant gas.
  • a first discharge valve presser 201S for limiting the amount of deflection opening of the first discharge valve 200S is fixed to the first discharge valve 200S by a rivet together with the first discharge valve 200S.
  • the first discharge hole 190S, the first discharge valve 200S, and the first discharge valve presser 201S constitute a first discharge valve portion of the lower end plate 160S.
  • an upper muffler cover 170T is disposed above the upper end plate 160T, and an upper muffler chamber 180T is formed between the upper end plate 160T and the upper muffler cover 170T.
  • a second discharge hole 190T (see FIG. 2) that communicates the second compression chamber 133T of the second cylinder 121T and the upper muffler chamber 180T is provided, and the second discharge hole 190T. Is provided with a reed valve type second discharge valve 200T for preventing the backflow of the compressed refrigerant gas.
  • a second discharge valve presser 201T for limiting the deflection opening amount of the second discharge valve 200T is fixed to the second discharge valve 200T by a rivet together with the second discharge valve 200T.
  • the upper muffler chamber 180T reduces the pressure pulsation of the discharged refrigerant.
  • the second discharge hole 190T, the second discharge valve 200T, and the second discharge valve presser 201T constitute a second discharge valve portion of the upper end plate 160T.
  • the first cylinder 121S, the lower end plate 160S, the lower muffler cover 170S, the second cylinder 121T, the upper end plate 160T, the upper muffler cover 170T, and the intermediate partition plate 140 are integrally fastened by a plurality of through bolts 175 and the like.
  • the outer peripheral portion of the upper end plate 160T is fixed to the compressor housing 10 by spot welding, and the compression portion 12 is fixed to the compressor housing 10. .
  • the first and second through holes 101 and 102 are passed through the outer peripheral wall of the cylindrical compressor housing 10 in order from the lower part in the axial direction so as to pass the first and second suction pipes 104 and 105. Is provided.
  • an accumulator 25 formed of an independent cylindrical sealed container is held by an accumulator holder 252 and an accumulator band 253 on the outer side of the compressor housing 10.
  • a system connection tube 255 connected to the evaporator of the refrigeration cycle is connected to the center of the top of the accumulator 25, and one end of the bottom through hole 257 provided at the bottom of the accumulator 25 extends to the upper part inside the accumulator 25.
  • the other ends of the first and second suction pipes 104 and 105 are connected to the first and second low-pressure communication pipes 31S and 31T.
  • the first and second low-pressure connecting pipes 31S and 31T that guide the low-pressure refrigerant of the refrigeration cycle to the first and second compression parts 12S and 12T through the accumulator 25 are the first and second suction pipes 104,
  • the first and second cylinders 121S and 121T are connected to the first and second suction holes 135S and 135T (see FIG. 2) via the 105. That is, the first and second suction holes 135S and 135T are connected in parallel to the evaporator of the refrigeration cycle.
  • a discharge pipe 107 is connected to the top of the compressor housing 10 as a discharge unit that is connected to the refrigeration cycle and discharges high-pressure refrigerant gas to the condenser side of the refrigeration cycle. That is, the first and second discharge holes 190S and 190T are connected to the condenser of the refrigeration cycle.
  • Lubricating oil is enclosed in the compressor housing 10 up to the height of the second cylinder 121T. Further, the lubricating oil is sucked up from an oil supply pipe 16 attached to the lower end portion of the rotating shaft 15 by a pump blade 157 (see FIG. 5) to be described later and inserted into the lower portion of the rotating shaft 15, and circulates through the compressing portion 12. Then, the sliding part is lubricated and a minute gap in the compression part 12 is sealed.
  • FIGS. 3 is a side view of the lower part of the rotating shaft of the first embodiment
  • FIG. 4 is a longitudinal sectional view of an oil supply pipe of the first embodiment
  • FIG. 5 is a side view of a pump blade of the first embodiment
  • 6A is a cross-sectional view taken along line AA in FIG. 3
  • FIG. 6B is a cross-sectional view seen from below along line BB in FIG. 7 is a view taken from the bottom of FIG. 3, and is a diagram showing an action state of the refrigerant compression load on the rotation shaft when the rotation angle of the eccentric portion of the rotation shaft is 270 °
  • FIG. It is a figure which shows the relationship between the rotation angle of the eccentric part of a rotating shaft, and a refrigerant
  • the rotating shaft 15 has a compression portion 12 (see FIG. 5) from the fitting vertical hole 155b, the oil supply vertical holes 155 and 155a, and the oil supply vertical hole 155 in order from the bottom. 1), first and second oil supply lateral holes 156a and 156b for supplying lubricating oil are provided.
  • the fitting vertical hole 155 b is formed with an inner diameter larger than the inner diameter of the oil supply vertical hole 155.
  • the oil supply pipe 16 is made of a soft material such as copper or aluminum, has a suction port 16a at the lower end, and is open at the upper end.
  • the pump blade 157 is made of a steel plate, and includes a blade portion 157a and a base portion 157b formed wider than the blade portion 157a.
  • the blade portion 157a has a shape twisted by 180 ° and twisted.
  • Width H 1 of the base portion 157b can have a dimensional relationship of the inside diameter [phi] D 1 and interference fit of the oil supply pipe 16 (H 1> ⁇ D 1) , pump vanes 157 are secured to the oil supply pipe 16.
  • the blade portion 157 a of the pump blade 157 is inserted into the oil supply vertical hole 155 of the rotary shaft 15, and the upper portion of the oil supply pipe 16 is press-fitted and fitted into the fitting vertical hole 155 b to fix the oil supply pipe 16 to the rotary shaft 15.
  • the length of the oil supply pipe 16 is approximately twice the depth of the fitting vertical hole 155b of the rotating shaft 15, and the lower part of the oil supply pipe 16 protrudes below the fitting vertical hole 155b.
  • the first oil supply lateral hole 156a of the oil supply mechanism 159A of the first embodiment is formed on the auxiliary shaft portion 151 side of the first eccentric portion 152S of the rotary shaft 15, As viewed from below in the rotational direction of the rotary shaft 15 (downward in FIGS. 6-1 and 7) with respect to the eccentric direction of the first eccentric portion 152S (downward in FIGS. 3 and 6-1, left in FIG. 7). It is formed as a lateral through hole of the rotating shaft 15 in a direction shifted by 40 ° in the opposite direction to the clockwise direction.
  • the second oil supply lateral hole 156b of the oil supply mechanism 159A is formed on the main shaft portion 153 side of the second eccentric portion 152T of the rotating shaft 15, and the second eccentric portion.
  • the phase is shifted by 40 ° in the direction opposite to the rotational direction of the rotating shaft 15 (clockwise as viewed from below in FIG. 6-2) with respect to the eccentric direction of 152T (upward in FIGS. 3 and 6-2). In the direction, it is formed as a lateral through hole of the rotary shaft 15.
  • Conventional oil supply lateral holes were formed in a direction orthogonal to the eccentric directions of the first and second eccentric portions 152S and 152T in view of the ease of fixing the rotary shaft 15 during drilling. Drilling the first and second oil supply lateral holes 156a and 156b according to the first embodiment is performed by fixing the first and second eccentric portions 152S and 152T to the horizontal plane by using a dedicated jig. Good.
  • the first and second eccentric portions are in a high compression ratio (high load) condition such as during heating operation of the rotary compressor 1.
  • 152S, 152T is the maximum due to the compression reaction force of the refrigerant when rotated approximately 270 ° clockwise from the dead point (when the eccentric direction is directed to the first and second vanes 127S, 127T positions). Take the load.
  • the maximum load is applied from the direction shifted by 50 ° clockwise from the eccentric direction of the first eccentric portion 152S (leftward direction in FIG. 7), and the eccentric direction of the first eccentric portion 152S.
  • the first oil supply lateral hole 156a formed in a direction shifted by 40 ° counterclockwise from the (leftward direction in FIG. 7) is a neutral axis direction in which no stress is generated with respect to the bending moment acting on the rotary shaft 15. No high tensile / compressive stress is generated around the first oil supply lateral hole 156a having a low strength. Accordingly, the first refueling lateral hole 156a does not cause the rotating shaft 15 to have insufficient strength.
  • FIG. 9 is a diagram showing an action state of the refrigerant compression load on the rotation shaft of the conventional rotary compressor described in Patent Document 1 when the rotation angle of the eccentric portion of the rotation shaft is 270 °.
  • the first oil supply horizontal hole 956a is located in a direction shifted by 40 ° in the clockwise direction from the neutral axis, and the first oil supply horizontal hole is located.
  • the hole 956b is located in a direction in which the phase is shifted by 50 ° counterclockwise from the neutral axis. Therefore, a high compressive stress is generated around the conventional first oil supply lateral holes 956a and 956b.
  • the first oil supply lateral hole 156a of the first embodiment is advantageous in terms of stress as compared with the conventional first oil supply lateral holes 956a and 956b, because high tensile / compressive stress is not generated in the periphery.
  • first oil supply horizontal holes 156a have openings on the peripheral surface of the rotary shaft 15 spaced apart from each other by 180 °, the oil supply intervals are equal compared to the conventional first oil supply horizontal holes 956a and 956b. .
  • first oil supply lateral hole 156a is a lateral through hole, and the machining cost is low because only one drilling process is required.
  • the first oil supply horizontal hole 156a of the first embodiment has been described above.
  • the second oil supply horizontal hole 156b has the same function and effect as the first oil supply horizontal hole 156a, and thus the description thereof is omitted.
  • the oil supply mechanism 159A according to the first embodiment including the oil supply pipe 16, the pump blade 157, the oil supply vertical holes 155 and 155a, the first and second oil supply horizontal holes 156a and 156b, and the like described above is provided at the lower portion of the compressor housing 10.
  • the stored lubricating oil is pumped up from the oil supply pipe 16 and lubricates the auxiliary shaft portion 151, the compression portion 12, the main shaft portion 153, and the like.
  • FIG. 10 is a side view of the lower part of the rotating shaft of the second embodiment
  • FIG. 11-1 is a cross-sectional view seen from the bottom along the line DD in FIG. 10
  • FIG. FIG. 12 is a cross-sectional view taken from the bottom along the line EE of FIG. 10
  • FIG. 12 is a view taken from the bottom of FIG. 10 and shows the rotation axis when the rotation angle of the eccentric part of the rotation axis is 180 °
  • FIG. 13 is an F arrow view seen from the bottom of FIG. 10, and shows a state in which the rotation angle of the eccentric part of the rotation shaft is 270 °. It is a figure which shows the action state of a refrigerant
  • the first oil supply lateral hole 156 c of the oil supply mechanism 159 ⁇ / b> B of the second embodiment is formed on the auxiliary shaft portion 151 side of the first eccentric portion 152 ⁇ / b> S of the rotating shaft 15,
  • the first eccentric portion 152S is formed as a lateral through hole of the rotary shaft 15 in the same direction as the eccentric direction with respect to the eccentric direction (downward in FIGS. 10, 11-1 and 12).
  • the second oil supply lateral hole 156d of the oil supply mechanism 159B is formed on the main shaft portion 153 side of the second eccentric portion 152T of the rotating shaft 15, and the second eccentric portion. It is formed as a lateral through hole of the rotary shaft 15 in the same direction as the eccentric direction with respect to the eccentric direction of 152T (upward in FIGS. 10, 11-2 and 12).
  • the first and second eccentric parts 152S and 152T have dead points (the eccentric direction is the first in the cooling rated condition of the rotary compressor 1). (When facing the first and second vanes 127S and 127T positions), when receiving a maximum rotation due to the compression reaction force of the refrigerant, when rotated approximately 180 ° clockwise as viewed from below.
  • the maximum load is applied from the direction perpendicular to the eccentric direction of the first eccentric portion 152S (downward direction in FIG. 12) (left direction in FIG. 12), and the eccentricity of the first eccentric portion 152S occurs.
  • the first oil supply horizontal hole 156c formed in the same direction as the direction is directed to the neutral axis where no stress is generated with respect to the bending moment acting on the rotary shaft 15, and the first oil supply horizontal hole 156c and its surroundings are weak. There is no tension / compression concentrated stress.
  • the first and second eccentric portions 152S and 152T have dead points (the eccentric direction is the first direction).
  • the second vanes 127S and 127T are turned to the position of about 270 ° clockwise as viewed from below, the maximum load due to the compression reaction force of the refrigerant is received.
  • the maximum load is applied from the direction shifted by 50 ° clockwise from the eccentric direction of the first eccentric portion 152S (leftward direction in FIG. 13), and the eccentric direction of the first eccentric portion 152S.
  • the first oil supply lateral hole 156c formed in the same direction is positioned in a direction shifted by 40 ° in the clockwise direction from the neutral axis.
  • the first oil supply horizontal hole 956a is located in a direction shifted by 40 ° in the clockwise direction from the neutral shaft, and the first oil supply horizontal hole 956b. Is located in a direction that is 50 ° out of phase from the neutral axis in a counterclockwise direction. Therefore, an equivalent compressive stress is generated in one first oil supply horizontal hole 156c of the second embodiment relative to the conventional first oil supply horizontal hole 956a, but the other first oil supply horizontal hole 156c of the second embodiment is around The tensile stress generated in the above is smaller than the compressive stress generated around the conventional first oil supply lateral hole 956b, which is advantageous in terms of stress.
  • the first oil supply horizontal hole 156c has been described above.
  • the second oil supply horizontal hole 156d has exactly the same effect as the first oil supply horizontal hole 156c, and thus the description thereof is omitted.
  • the oil supply mechanism 159B including the oil supply pipe 16, the pump blade 157, the oil supply vertical holes 155 and 155a and the first and second oil supply horizontal holes 156c and 156d described above,
  • the stored lubricating oil is pumped up from the oil supply pipe 16 and lubricates the auxiliary shaft portion 151, the compression portion 12, the main shaft portion 153, and the like.
  • FIG. 14 is a view showing the positions of the oil supply lateral holes of the third embodiment.
  • the first oil supply lateral hole 156e of the third embodiment is formed on the side of the sub-shaft portion 151 of the first eccentric portion 152S of the rotating shaft 15, and the eccentric direction of the first eccentric portion 152S (in FIG. 14) In the direction shifted by 20 ° in the direction opposite to the rotation direction of the rotary shaft 15 (clockwise as viewed from below in FIG. 14) with respect to the left) (direction shifted by 20 ° from the neutral axis) , Formed as a horizontal through hole of the rotary shaft 15.
  • Example 3 the first oil supply of Example 3 is compared with the conventional rotary compressor described in Patent Document 1 shown in FIG. 9 in which the first oil supply lateral holes 956a and 956b are out of phase by 40 ° or more from the neutral shaft.
  • the lateral hole 156e is close to the neutral axis, and the tensile / compressive stress generated in the periphery is reduced, which is advantageous in terms of stress.
  • FIG. 15 is a diagram showing the positions of the oil supply lateral holes of the fourth embodiment.
  • the first oil supply horizontal hole 156g of the fourth embodiment is formed on the side of the sub-shaft portion 151 of the first eccentric portion 152S of the rotating shaft 15, and the eccentric direction of the first eccentric portion 152S (in FIG. 15) In the direction (60 ° phase shifted from the neutral axis) in the direction opposite to the rotation direction of the rotary shaft 15 (clockwise as viewed from below in FIG. 15) with respect to the left) , Formed as a horizontal through hole of the rotary shaft 15.
  • the first oil supply of Example 4 is compared with the conventional rotary compressor described in Patent Document 1 in which the first oil supply lateral holes 956a and 956b are shifted in phase by 40 ° or more from the neutral shaft shown in FIG.
  • the lateral hole 156g is close to the neutral axis, and the tensile / compressive stress generated in the periphery is reduced, which is advantageous in terms of stress.
  • FIG. 16 is a diagram showing the positions of the oil supply lateral holes of the fifth embodiment.
  • the first oil supply lateral hole 156i of the fifth embodiment is formed on the side of the sub-shaft portion 151 of the first eccentric portion 152S of the rotating shaft 15, and the eccentric direction of the first eccentric portion 152S (in FIG. In the direction shifted by 70 ° in the direction opposite to the rotation direction of the rotary shaft 15 (clockwise as viewed from below in FIG. 16) with respect to the left) (the direction shifted by 30 ° from the neutral axis). , Formed as a horizontal through hole of the rotary shaft 15.
  • the first oil supply of Example 4 is compared with the conventional rotary compressor described in Patent Document 1 in which the first oil supply lateral holes 956a and 956b are shifted in phase by 40 ° or more from the neutral shaft shown in FIG.
  • the lateral hole 156g is close to the neutral axis, and the tensile / compressive stress generated in the periphery is reduced, which is advantageous in terms of stress.
  • FIG. 17 is a view showing the positions of the oil supply lateral holes of the sixth embodiment.
  • the first oil supply lateral hole 156k of the sixth embodiment is formed on the side of the sub-shaft portion 151 of the first eccentric portion 152S of the rotating shaft 15, and the eccentric direction of the first eccentric portion 152S (in FIG. 17) In the direction shifted by 80 ° in the direction opposite to the rotation direction of the rotary shaft 15 (clockwise as viewed from the bottom in FIG. 17) with respect to the left) (direction shifted by 40 ° from the neutral axis). , Formed as a horizontal through hole of the rotary shaft 15.
  • the first oil supply horizontal hole 956a is located in a direction that is shifted by 40 ° in the clockwise direction from the neutral shaft, and the first oil supply horizontal hole 956b. Is located in a direction that is 50 ° out of phase from the neutral axis in a counterclockwise direction. Therefore, an equivalent compressive stress is generated around one first oil supply horizontal hole 156k of the sixth embodiment relative to the conventional first oil supply horizontal hole 956a, but the other first oil supply horizontal hole 156k of the sixth embodiment.
  • the tensile stress generated in the periphery is smaller than the compressive stress generated in the vicinity of the conventional first oil supply lateral hole 956b, which is advantageous in terms of stress.
  • FIG. 18 is a diagram showing the positions of the oil supply lateral holes of the seventh embodiment.
  • the first oil supply lateral hole 156m of the seventh embodiment is formed on the side of the sub-shaft portion 151 of the first eccentric portion 152S of the rotating shaft 15, and the eccentric direction of the first eccentric portion 152S (in FIG. 18)
  • the rotation axis in the direction shifted by 10 ° in the rotation direction of the rotation shaft 15 (clockwise as viewed from below in FIG. 18) (the direction shifted by 50 ° phase from the neutral axis) with respect to the left) It is formed as 15 lateral through holes.
  • the first oil supply horizontal hole 956a is located in a direction that is shifted by 40 ° in the clockwise direction from the neutral shaft, and the first oil supply horizontal hole 956b. Is located in a direction that is 50 ° out of phase from the neutral axis in a counterclockwise direction. Therefore, an equivalent compressive stress is generated around the other first oil supply horizontal hole 156m of the seventh embodiment relative to the conventional first oil supply horizontal hole 956b, but one first oil supply horizontal hole 156m of the seventh embodiment.
  • the tensile stress generated in the periphery is larger than the compressive stress generated in the periphery of the conventional first oil supply lateral hole 956a, which is disadvantageous in terms of stress.
  • the rotation angle at which the maximum load due to the compression reaction force of the refrigerant is applied to the first and second eccentric portions 152S and 152T of the rotary shaft 15 varies depending on the operating range set in the rotary compressor 1, but is approximately 180 ° to 270 °. Between. Therefore, as described in the first to sixth embodiments, the direction in which the oil supply lateral hole is formed is the same direction as the eccentric direction of the first and second eccentric portions 152S and 152T, and the rotational direction of the rotary shaft 15 from the same direction. And a direction shifted by 80 ° in the opposite direction.
  • the first and second oil supply horizontal holes 156a, 156b, 156c, 156d, 156e, 156g, 156i, and 156k are horizontal through holes of the rotary shaft 15.
  • a through hole is not required, it is good also as an oil supply horizontal hole of the one side connected to the oil supply vertical hole 155 only.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

 上部に冷媒の吐出部が設けられ下部に冷媒の吸入部が設けられると共に潤滑油が貯留される密閉された縦置きの圧縮機筐体と、前記圧縮機筐体の下部に貯留された潤滑油を回転軸の給油縦孔及び給油横孔を通して圧縮部の摺動部分に供給する給油機構、を備えるロータリ圧縮機において、前記給油機構の給油横孔は、前記回転軸に設けられ前記圧縮部の環状ピストンをシリンダ内で公転させる偏心部の偏心方向と同一方向と、前記同一方向から前記回転軸の回転方向と逆方向に80°位相をずらした方向との間に形成されている。

Description

ロータリ圧縮機
 本発明は、空気調和機や冷凍機などに用いられるロータリ圧縮機に関する。
 従来、密閉容器内に電動要素とその電動要素に駆動軸を介して連結する回転圧縮要素とを備え、前記密閉容器の底部に溜まる潤滑油を前記回転圧縮要素の摺動部に給油する給油機構を有する密閉型回転圧縮機において、前記回転圧縮要素は、前記駆動軸を支持する二つの軸受と、その軸受間に設けられたシリンダとを有し、前記駆動軸は、前記シリンダ内で嵌合されたローラを公転運動させる偏心部と、外側は前記潤滑油が通過し内側は前記ローラの内周側に漏れた冷媒ガスが通過する部分を少なくとも備える貫通孔を有し、前記密閉容器内は吐出圧力以下であって、前記貫通孔から前記駆動軸外周面に向かう複数の横孔を設け、各々の横孔は給油通路もしくはガス通路のいずれか一方に機能し、前記貫通孔から前記駆動軸外周面に向かう複数の横孔を、互いに90°位相をずらし、前記駆動軸の圧縮応力が作用する側に設けた密閉型回転圧縮機が開示されている(例えば、特許文献1参照)。
特開2004-19506号公報
 しかしながら、上記従来の技術によれば、駆動軸の径が細い場合、複数の横孔を駆動軸の圧縮応力が作用する側に設けたとしても、90°離間では横孔間の距離が近く、駆動軸が強度不足になる、という問題がある。また、両方の横孔を給油通路として使用する場合、90°離間では、駆動軸の1回転のうち、給油されない区間が270°あり、給油が間欠的となって潤滑性能が悪い、という問題がある。また、90°離間した孔の加工は、駆動軸を90°回転させて行わなければならず、加工コストが嵩む、という問題がある。
 本発明は、上記に鑑みてなされたものであって、駆動軸(回転軸)の強度を確保することができ、摺動部への給油が間欠的にならず、加工コストが嵩むことのない駆動軸を備えたロータリ圧縮機を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、上部に冷媒の吐出部が設けられ下部に冷媒の吸入部が設けられると共に潤滑油が貯留される密閉された縦置きの圧縮機筐体と、該圧縮機筐体の下部に配置され、前記吸入部から吸入した冷媒を圧縮して前記吐出部から吐出する圧縮部と、前記圧縮機筐体の上部に配置され、回転軸を介して前記圧縮部を駆動するモータと、前記圧縮機筐体の下部に貯留された潤滑油を前記回転軸の給油縦孔及び給油横孔を通して前記圧縮部の摺動部分に供給する給油機構と、を備えるロータリ圧縮機において、前記給油機構の給油横孔は、前記回転軸に設けられ前記圧縮部の環状ピストンをシリンダ内で公転させる偏心部の偏心方向と同一方向と、前記同一方向から前記回転軸の回転方向と逆方向に80°位相をずらした方向との間に形成されていることを特徴とする。
 本発明によれば、強度を確保することができ、加工コストが低い回転軸を備えたロータリ圧縮機が得られる、という効果を奏する。
図1は、本発明に係るロータリ圧縮機の実施例を示す縦断面図である。 図2は、実施例の第1、第2の圧縮部の上から見た横断面図である。 図3は、実施例1の回転軸の下部の側面図である。 図4は、実施例1の給油パイプの縦断面図である。 図5は、実施例1のポンプ羽根の側面図である。 図6-1は、図3のA-A線に沿う下から見た断面図である。 図6-2は、図3のB-B線に沿う下から見た断面図である。 図7は、図3の下から見たC矢視図であり、回転軸の偏心部の回転角が270°のときの回転軸への冷媒圧縮荷重の作用状態を示す図である。 図8は、回転軸の偏心部の回転角と冷媒圧縮荷重との関係を示す図である。 図9は、回転軸の偏心部の回転角が270°のときの特許文献1に記載された従来のロータリ圧縮機の回転軸への冷媒圧縮荷重の作用状態を示す図である。 図10は、実施例2の回転軸の下部の側面図である。 図11-1は、図9のD-D線に沿う下から見た断面図である。 図11-2は、図9のE-E線に沿う下から見た断面図である。 図12は、図10の下から見たF矢視図であり、回転軸の偏心部の回転角が180°のときの回転軸への冷媒圧縮荷重の作用状態を示す図である。 図13は、図10の下から見たF矢視図であり、回転軸の偏心部の回転角が270°のときの回転軸への冷媒圧縮荷重の作用状態を示す図である。 図14は、実施例3の給油横孔の位置を示す図である。 図15は、実施例4の給油横孔の位置を示す図である。 図16は、実施例5の給油横孔の位置を示す図である。 図17は、実施例6の給油横孔の位置を示す図である。 図18は、実施例7の給油横孔の位置を示す図である。
 以下に、本発明にかかるロータリ圧縮機の実施例を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。
 図1は、本発明に係るロータリ圧縮機の実施例を示す縦断面図であり、図2は、実施例の第1、第2の圧縮部の上から見た横断面図である。
 図1に示すように、実施例のロータリ圧縮機1は、密閉された縦置き円筒状の圧縮機筐体10の下部に配置された圧縮部12と、圧縮機筐体10の上部に配置され、回転軸15を介して圧縮部12を駆動するモータ11と、を備えている。
 モータ11のステータ111は、円筒状に形成され、圧縮機筐体10の内周面に焼きばめされて固定されている。モータ11のロータ112は、円筒状のステータ111の内部に配置され、モータ11と圧縮部12とを機械的に接続する回転軸15に焼きばめされて固定されている。
 圧縮部12は、第1の圧縮部12Sと、第1の圧縮部12Sと並列に配置され第1の圧縮部12Sの上側に積層された第2の圧縮部12Tと、を備えている。図2に示すように、第1、第2の圧縮部12S、12Tは、第1、第2側方張出部122S、122Tに、放射状に第1、第2吸入孔135S、135T、第1、第2ベーン溝128S、128Tが設けられた環状の第1、第2シリンダ121S、121Tを備えている。
 図2に示すように、第1、第2シリンダ121S、121Tには、モータ11の回転軸15と同心に、円形の第1、第2シリンダ内壁123S、123Tが形成されている。第1、第2シリンダ内壁123S、123T内には、シリンダ内径よりも小さい外径の第1、第2環状ピストン125S、125Tが夫々配置され、第1、第2シリンダ内壁123S、123Tと、第1、第2環状ピストン125S、125Tとの間に、冷媒ガスを吸入し圧縮して吐出する第1、第2作動室130S、130Tが形成される。
 第1、第2シリンダ121S、121Tには、第1、第2シリンダ内壁123S、123Tから径方向に、シリンダ高さ全域に亘る第1、第2ベーン溝128S、128Tが形成され、第1、第2ベーン溝128S、128T内に、夫々平板状の第1、第2ベーン127S、127Tが、摺動自在に嵌合されている。
 図2に示すように、第1、第2ベーン溝128S、128Tの奥部には、第1、第2シリンダ121S、121Tの外周部から第1、第2ベーン溝128S、128Tに連通するように第1、第2スプリング穴124S、124Tが形成されている。第1、第2スプリング穴124S、124Tには、第1、第2ベーン127S、127Tの背面を押圧する第1、第2ベーンスプリング(図示せず)が挿入されている。
 ロータリ圧縮機1の起動時は、この第1、第2ベーンスプリングの反発力により、第1、第2ベーン127S、127Tが、第1、第2ベーン溝128S、128T内から第1、第2作動室130S、130T内に突出し、その先端が、第1、第2環状ピストン125S、125Tの外周面に当接し、第1、第2ベーン127S、127Tにより、第1、第2作動室130S、130Tが、第1、第2吸入室131S、131Tと、第1、第2圧縮室133S、133Tとに区画される。
 また、第1、第2シリンダ121S、121Tには、第1、第2ベーン溝128S、128Tの奥部と圧縮機筐体10内とを、図1に示す開口部Rで連通して圧縮機筐体10内の圧縮された冷媒ガスを導入し、第1、第2ベーン127S、127Tに、冷媒ガスの圧力により背圧をかける第1、第2圧力導入路129S、129Tが形成されている。
 第1、第2シリンダ121S、121Tには、第1、第2吸入室131S、131Tに外部から冷媒を吸入するために、第1、第2吸入室131S、131Tと外部とを連通させる第1、第2吸入孔135S、135Tが設けられている。
 また、図1に示すように、第1シリンダ121Sと第2シリンダ121Tの間には、中間仕切板140が配置され、第1シリンダ121Sの第1作動室130S(図2参照)と第2シリンダ121Tの第2作動室130T(図2参照)とを区画、閉塞している。第1シリンダ121Sの下端部には、下端板160Sが配置され、第1シリンダ121Sの第1作動室130Sを閉塞している。また、第2シリンダ121Tの上端部には、上端板160Tが配置され、第2シリンダ121Tの第2作動室130Tを閉塞している。
 下端板160Sには、副軸受部161Sが形成され、副軸受部161Sに、回転軸15の副軸部151が回転自在に支持されている。上端板160Tには、主軸受部161Tが形成され、主軸受部161Tに、回転軸15の主軸部153が回転自在に支持されている。
 回転軸15は、互いに180°位相をずらして偏心させた第1偏心部152Sと第2偏心部152Tとを備え、第1偏心部152Sは、第1の圧縮部12Sの第1環状ピストン125Sに回転自在に嵌合し、第2偏心部152Tは、第2の圧縮部12Tの第2環状ピストン125Tに回転自在に嵌合している。
 回転軸15が回転すると、第1、第2環状ピストン125S、125Tが、第1、第2シリンダ内壁123S、123Tに沿って第1、第2シリンダ121S、121T内を図2の反時計回りに公転し、これに追随して第1、第2ベーン127S、127Tが往復運動する。この第1、第2環状ピストン125S、125T及び第1、第2ベーン127S、127Tの運動により、第1、第2吸入室131S、131T及び第1、第2圧縮室133S、133Tの容積が連続的に変化し、圧縮部12は、連続的に冷媒ガスを吸入し圧縮して吐出する。
 図1に示すように、下端板160Sの下側には、下マフラーカバー170Sが配置され、下端板160Sとの間に下マフラー室180Sを形成している。そして、第1の圧縮部12Sは、下マフラー室180Sに開口している。すなわち、下端板160Sの第1ベーン127S近傍には、第1シリンダ121Sの第1圧縮室133Sと下マフラー室180Sとを連通する第1吐出孔190S(図2参照)が設けられ、第1吐出孔190Sには、圧縮された冷媒ガスの逆流を防止する第1吐出弁200Sが配置されている。
 下マフラー室180Sは、環状に形成された1つの室であり、第1の圧縮部12Sの吐出側を、下端板160S、第1シリンダ121S、中間仕切板140、第2シリンダ121T及び上端板160Tを貫通する冷媒通路136(図2参照)を通して上マフラー室180T内に連通させる連通路の一部である。下マフラー室180Sは、吐出冷媒ガスの圧力脈動を低減させる。また、第1吐出弁200Sに重ねて、第1吐出弁200Sの撓み開弁量を制限するための第1吐出弁押え201Sが、第1吐出弁200Sとともにリベットにより固定されている。第1吐出孔190S、第1吐出弁200S及び第1吐出弁押え201Sは、下端板160Sの第1吐出弁部を構成している。
 図1に示すように、上端板160Tの上側には、上マフラーカバー170Tが配置され、上端板160Tとの間に上マフラー室180Tを形成している。上端板160Tの第2ベーン127T近傍には、第2シリンダ121Tの第2圧縮室133Tと上マフラー室180Tとを連通する第2吐出孔190T(図2参照)が設けられ、第2吐出孔190Tには、圧縮された冷媒ガスの逆流を防止するリード弁型の第2吐出弁200Tが配置されている。また、第2吐出弁200Tに重ねて、第2吐出弁200Tの撓み開弁量を制限するための第2吐出弁押え201Tが、第2吐出弁200Tとともにリベットにより固定されている。上マフラー室180Tは、吐出冷媒の圧力脈動を低減させる。第2吐出孔190T、第2吐出弁200T及び第2吐出弁押え201Tは、上端板160Tの第2吐出弁部を構成している。
 第1シリンダ121S、下端板160S、下マフラーカバー170S、第2シリンダ121T、上端板160T、上マフラーカバー170T及び中間仕切板140は、複数の通しボルト175等により一体に締結されている。通しボルト175等により一体に締結された圧縮部12のうち、上端板160Tの外周部が、圧縮機筐体10にスポット溶接により固着され、圧縮部12を圧縮機筐体10に固定している。
 円筒状の圧縮機筐体10の外周壁には、軸方向に離間して下部から順に、第1、第2貫通孔101、102が、第1、第2吸入管104、105を通すために設けられている。また、圧縮機筐体10の外側部には、独立した円筒状の密閉容器からなるアキュムレータ25が、アキュムホルダー252及びアキュムバンド253により保持されている。
 アキュムレータ25の天部中心には、冷凍サイクルの蒸発器に接続するシステム接続管255が接続され、アキュムレータ25の底部に設けられた底部貫通孔257には、一端がアキュムレータ25の内部上方まで延設され、他端が、第1、第2吸入管104、105の他端に接続される第1、第2低圧連絡管31S、31Tが接続されている。
 冷凍サイクルの低圧冷媒をアキュムレータ25を介して第1、第2の圧縮部12S、12Tに導く第1、第2低圧連絡管31S、31Tは、吸入部としての第1、第2吸入管104、105を介して第1、第2シリンダ121S、121Tの第1、第2吸入孔135S、135T(図2参照)に接続されている。すなわち、第1、第2吸入孔135S、135Tは、冷凍サイクルの蒸発器に並列に接続されている。
 圧縮機筐体10の天部には、冷凍サイクルと接続し高圧冷媒ガスを冷凍サイクルの凝縮器側に吐出する吐出部としての吐出管107が接続されている。すなわち、第1、第2吐出孔190S、190Tは、冷凍サイクルの凝縮器に接続されている。
 圧縮機筐体10内には、およそ第2シリンダ121Tの高さまで潤滑油が封入されている。また、潤滑油は、回転軸15の下部に挿入される後述のポンプ羽根157(図5参照)により、回転軸15の下端部に取付けられた給油パイプ16から吸上げられ、圧縮部12を循環し、摺動部品の潤滑を行なうと共に、圧縮部12の微小隙間のシールをする。
 次に、図3~図8を参照して実施例のロータリ圧縮機の特徴的な構成である実施例1の給油機構について説明する。図3は、実施例1の回転軸の下部の側面図であり、図4は、実施例1の給油パイプの縦断面図であり、図5は、実施例1のポンプ羽根の側面図であり、図6-1は、図3のA-A線に沿う下から見た断面図であり、図6-2は、図3のB-B線に沿う下から見た断面図であり、図7は、図3の下から見たC矢視図であり、回転軸の偏心部の回転角が270°のときの回転軸への冷媒圧縮荷重の作用状態を示す図であり、図8は、回転軸の偏心部の回転角と冷媒圧縮荷重との関係を示す図である。
 図3、図6-1及び図6-2に示すように、回転軸15には、下部から順に、嵌合縦孔155b、給油縦孔155、155a及び給油縦孔155から圧縮部12(図1参照)に潤滑油を供給する第1、第2給油横孔156a、156bが設けられている。嵌合縦孔155bは、給油縦孔155の内径より大きい内径に形成されている。
 図4に示すように、給油パイプ16は、銅やアルミニウム等の柔らかい材質で製作され、下端に吸込口16aを有し、上端は開口している。図5に示すように、ポンプ羽根157は、鋼板製であり、羽根部157aと、羽根部157aより幅広に形成された基部157bとを有している。羽根部157aは、捩り加工されて180°捩られた形状となっている。
 給油パイプ16及びポンプ羽根157を回転軸15に組付けるときは、まず、ポンプ羽根157の基部157bを給油パイプ16内下部まで圧入固定する。基部157bの横幅Hは、給油パイプ16の内径φDとシマリバメの寸法関係(H>φD)となっていて、ポンプ羽根157は、給油パイプ16に固定される。
 次に、ポンプ羽根157の羽根部157aを回転軸15の給油縦孔155に挿入し、給油パイプ16の上部を嵌合縦孔155bに圧入、嵌合して給油パイプ16を回転軸15に固定する。給油パイプ16の長さは、回転軸15の嵌合縦孔155bの深さの略2倍となっていて、給油パイプ16の下部は、嵌合縦孔155bの下方へ突出する。
 図3、図6-1及び図7に示すように、実施例1の給油機構159Aの第1給油横孔156aは、回転軸15の第1偏心部152Sの副軸部151側に形成され、第1偏心部152Sの偏心方向(図3及び図6-1において下方、図7において左方)に対して回転軸15の回転方向(図6-1及び図7において、下から見ているので時計回り)と逆方向に40°位相をずらした方向に、回転軸15の横貫通孔として形成されている。
 図3及び図6-2に示すように、実施例1の給油機構159Aの第2給油横孔156bは、回転軸15の第2偏心部152Tの主軸部153側に形成され、第2偏心部152Tの偏心方向(図3及び図6-2において上方)に対して回転軸15の回転方向(図6-2において、下から見ているので時計回り)と逆方向に40°位相をずらした方向に、回転軸15の横貫通孔として形成されている。
 従来の給油横孔は、孔あけ加工時の回転軸15の固定のし易さから、第1、第2偏心部152S、152Tの偏心方向に直交する方向に形成されていた。実施例1の第1、第2給油横孔156a、156bの孔加工は、専用の治具を用いて第1、第2偏心部152S、152Tを水平面に対して傾斜させて固定して行なうとよい。
 図8に示すように、冷媒の一例としてR410Aを用いた場合の計算によれば、ロータリ圧縮機1の暖房運転時等の高圧縮比(高負荷)条件のとき、第1、第2偏心部152S、152Tは、死点(偏心方向が第1、第2ベーン127S、127T位置を向いたとき)から、下から見て時計回りに略270°回転したときに、冷媒の圧縮反力による最大荷重を受ける。
 このとき、図7に示すように、第1偏心部152Sの偏心方向(図7の左向き方向)から時計回りに50°位相をずらした方向から最大荷重がかかり、第1偏心部152Sの偏心方向(図7の左向き方向)から反時計回りに40°位相をずらした方向に形成された第1給油横孔156aは、回転軸15に作用する曲げモーメントに対して応力の発生しない中立軸の方向を向いていて、強度が弱い第1給油横孔156a周辺に、高い引張・圧縮応力は発生しない。従って、第1給油横孔156aにより回転軸15が強度不足になることはない。
 図9は、回転軸の偏心部の回転角が270°のときの特許文献1に記載された従来のロータリ圧縮機の回転軸への冷媒圧縮荷重の作用状態を示す図である。図9に示すように、特許文献1に記載された従来のロータリ圧縮機では、第1給油横孔956aは、中立軸から時計回りに40°位相をずらした方向に位置し、第1給油横孔956bは、中立軸から反時計回りに50°位相をずらした方向に位置している。そのため、従来の第1給油横孔956a、956b周辺には、高い圧縮応力が発生する。実施例1の第1給油横孔156aは、周辺に、高い引張・圧縮応力が発生しないので、従来の第1給油横孔956a、956bと比較して応力的に有利である。
 また、第1給油横孔156aは、回転軸15の周面の開口部が互いに180°離間しているので、従来の第1給油横孔956a、956bと比較して、給油間隔が均等になる。さらに、第1給油横孔156aは、横貫通孔であり、1回のドリル孔開け加工で済むので加工コストが低い。
 以上、実施例1の第1給油横孔156aについて説明したが、第2給油横孔156bについても第1給油横孔156aと作用効果が全く同様であるので、説明を省略する。
 以上説明した、給油パイプ16、ポンプ羽根157、給油縦孔155、155a及び第1、第2給油横孔156a、156b等を含む実施例1の給油機構159Aにより、圧縮機筐体10の下部に貯留された潤滑油は、給油パイプ16から汲み上げられ、副軸部151、圧縮部12及び主軸部153等を潤滑する。
 図10は、実施例2の回転軸の下部の側面図であり、図11-1は、図10のD-D線に沿う下から見た断面図であり、図11-2は、図10のE-E線に沿う下から見た断面図であり、図12は、図10の下から見たF矢視図であり、回転軸の偏心部の回転角が180°のときの回転軸への冷媒圧縮荷重の作用状態を示す図であり、図13は、図10の下から見たF矢視図であり、回転軸の偏心部の回転角が270°のときの回転軸への冷媒圧縮荷重の作用状態を示す図である。
 図10、図11-1及び図12に示すように、実施例2の給油機構159Bの第1給油横孔156cは、回転軸15の第1偏心部152Sの副軸部151側に形成され、第1偏心部152Sの偏心方向(図10、図11-1及び図12において下方)に対して偏心方向と同一方向に、回転軸15の横貫通孔として形成されている。
 図10及び図11-2に示すように、実施例2の給油機構159Bの第2給油横孔156dは、回転軸15の第2偏心部152Tの主軸部153側に形成され、第2偏心部152Tの偏心方向(図10、図11-2及び図12において上方)に対して偏心方向と同一方向に、回転軸15の横貫通孔として形成されている。
 図8に示すように、冷媒としてR410Aを用いた場合の計算によれば、ロータリ圧縮機1の冷房定格条件のとき、第1、第2偏心部152S、152Tは、死点(偏心方向が第1、第2ベーン127S、127T位置を向いたとき)から、下から見て時計回りに略180°回転したときに、冷媒の圧縮反力による最大荷重を受ける。
 このとき、図12に示すように、第1偏心部152Sの偏心方向(図12の下向き方向)に対して垂直方向(図12の左方向)から最大荷重がかかり、第1偏心部152Sの偏心方向と同一方向に形成された第1給油横孔156cは、回転軸15に作用する曲げモーメントに対して応力の発生しない中立軸の方向を向いていて、強度が弱い第1給油横孔156c周辺に引張・圧縮の集中応力は発生しない。
 また、図8に示すように、ロータリ圧縮機1の暖房運転時等の高圧縮比(高負荷)条件のとき、第1、第2偏心部152S、152Tは、死点(偏心方向が第1、第2ベーン127S、127T位置を向いたとき)から、下から見て時計回りに略270°回転したときに、冷媒の圧縮反力による最大荷重を受ける。
 このとき、図13に示すように、第1偏心部152Sの偏心方向(図13の左向き方向)から時計回りに50°位相をずらした方向から最大荷重がかかり、第1偏心部152Sの偏心方向と同一方向に形成された第1給油横孔156cは、中立軸から時計回りに40°位相をずらした方向に位置している。
 図9に示す、特許文献1に記載された従来のロータリ圧縮機では、第1給油横孔956aは、中立軸から時計回りに40°位相をずらした方向に位置し、第1給油横孔956bは、中立軸から反時計回りに50°位相をずらした方向に位置している。そのため、従来の第1給油横孔956aに対して実施例2の一方の第1給油横孔156cには、同等の圧縮応力が発生するが、実施例2の他方の第1給油横孔156c周辺に発生する引張応力は、従来の第1給油横孔956b周辺に発生する圧縮応力よりも小さくなり、応力的に有利である。
 以上、第1給油横孔156cについて説明したが、第2給油横孔156dについても第1給油横孔156cと作用効果が全く同様であるので、説明を省略する。
 以上説明した、給油パイプ16、ポンプ羽根157、給油縦孔155、155a及び第1、第2給油横孔156c、156d等を含む実施例2の給油機構159Bにより、圧縮機筐体10の下部に貯留された潤滑油は、給油パイプ16から汲み上げられ、副軸部151、圧縮部12及び主軸部153等を潤滑する。
 図14は、実施例3の給油横孔の位置を示す図である。図14に示すように、実施例3の第1給油横孔156eは、回転軸15の第1偏心部152Sの副軸部151側に形成され、第1偏心部152Sの偏心方向(図14において左方)に対して回転軸15の回転方向(図14において、下から見ているので時計回り)と逆方向に20°位相をずらした方向(中立軸から20°位相をずらした方向)に、回転軸15の横貫通孔として形成されている。
 そのため、図9に示す、第1給油横孔956a、956bが中立軸から40°以上位相がずれている特許文献1に記載された従来のロータリ圧縮機に対して、実施例3の第1給油横孔156eは中立軸に近く、周辺に発生する引張・圧縮応力は小さくなり、応力的に有利である。
 図15は、実施例4の給油横孔の位置を示す図である。図15に示すように、実施例4の第1給油横孔156gは、回転軸15の第1偏心部152Sの副軸部151側に形成され、第1偏心部152Sの偏心方向(図15において左方)に対して回転軸15の回転方向(図15において、下から見ているので時計回り)と逆方向に60°位相をずらした方向(中立軸から20°位相をずらした方向)に、回転軸15の横貫通孔として形成されている。
 そのため、図9に示す、第1給油横孔956a、956bが中立軸から40°以上位相がずれている特許文献1に記載された従来のロータリ圧縮機に対して、実施例4の第1給油横孔156gは中立軸に近く、周辺に発生する引張・圧縮応力は小さくなり、応力的に有利である。
 図16は、実施例5の給油横孔の位置を示す図である。図16に示すように、実施例5の第1給油横孔156iは、回転軸15の第1偏心部152Sの副軸部151側に形成され、第1偏心部152Sの偏心方向(図16において左方)に対して回転軸15の回転方向(図16において、下から見ているので時計回り)と逆方向に70°位相をずらした方向(中立軸から30°位相をずらした方向)に、回転軸15の横貫通孔として形成されている。
 そのため、図9に示す、第1給油横孔956a、956bが中立軸から40°以上位相がずれている特許文献1に記載された従来のロータリ圧縮機に対して、実施例4の第1給油横孔156gは中立軸に近く、周辺に発生する引張・圧縮応力は小さくなり、応力的に有利である。
 図17は、実施例6の給油横孔の位置を示す図である。図17に示すように、実施例6の第1給油横孔156kは、回転軸15の第1偏心部152Sの副軸部151側に形成され、第1偏心部152Sの偏心方向(図17において左方)に対して回転軸15の回転方向(図17において、下から見ているので時計回り)と逆方向に80°位相をずらした方向(中立軸から40°位相をずらした方向)に、回転軸15の横貫通孔として形成されている。
 図9に示す、特許文献1に記載された従来のロータリ圧縮機では、第1給油横孔956aは、中立軸から時計回りに40°位相をずらした方向に位置し、第1給油横孔956bは、中立軸から反時計回りに50°位相をずらした方向に位置している。そのため、従来の第1給油横孔956aに対して実施例6の一方の第1給油横孔156k周辺には、同等の圧縮応力が発生するが、実施例6の他方の第1給油横孔156k周辺に発生する引張応力は、従来の第1給油横孔956b周辺に発生する圧縮応力よりも小さくなり、応力的に有利である。
 図18は、実施例7の給油横孔の位置を示す図である。図18に示すように、実施例7の第1給油横孔156mは、回転軸15の第1偏心部152Sの副軸部151側に形成され、第1偏心部152Sの偏心方向(図18において左方)に対して回転軸15の回転方向(図18において、下から見ているので時計回り)に10°位相をずらした方向(中立軸から50°位相をずらした方向)に、回転軸15の横貫通孔として形成されている。
 図9に示す、特許文献1に記載された従来のロータリ圧縮機では、第1給油横孔956aは、中立軸から時計回りに40°位相をずらした方向に位置し、第1給油横孔956bは、中立軸から反時計回りに50°位相をずらした方向に位置している。そのため、従来の第1給油横孔956bに対して実施例7の他方の第1給油横孔156m周辺には、同等の圧縮応力が発生するが、実施例7の一方の第1給油横孔156m周辺に発生する引張応力は、従来の第1給油横孔956a周辺に発生する圧縮応力よりも大きくなり、応力的に不利である。
 回転軸15の第1、第2偏心部152S、152Tに、冷媒の圧縮反力による最大荷重がかかる回転角は、ロータリ圧縮機1に設定される運転範囲により異なるものの、略180°~270°の間となる。それ故、実施例1~6で説明したように、給油横孔を形成する方向は、第1、第2偏心部152S、152Tの偏心方向と同一方向と、同一方向から回転軸15の回転方向と逆方向に80°位相をずらした方向との間に形成すればよい。
 また、実施例1~6では、第1、第2給油横孔156a、156b、156c、156d、156e、156g、156i、156kは、回転軸15の横貫通孔としたが、給油性能上、横貫通孔を必要としない場合には、給油縦孔155に連通する片側だけの給油横孔としてもよい。
 1 ロータリ圧縮機
 10 圧縮機筐体
 11 モータ
 12 圧縮部
 15 回転軸
 16 給油パイプ
 16a 吸込口
 25 アキュムレータ
 31S 第1低圧連絡管
 31T 第2低圧連絡管
 101 第1貫通孔
 102 第2貫通孔
 104 第1吸入管
 105 第2吸入管
 107 吐出管(吐出部)
 111 ステータ
 112 ロータ
 12S 第1の圧縮部
 12T 第2の圧縮部
 121S 第1シリンダ(シリンダ)
 121T 第2シリンダ(シリンダ)
 122S 第1側方張出部
 122T 第2側方張出部
 123S 第1シリンダ内壁(シリンダ内壁)
 123T 第2シリンダ内壁(シリンダ内壁)
 124S 第1スプリング穴
 124T 第2スプリング穴
 125S 第1環状ピストン(環状ピストン)
 125T 第2環状ピストン(環状ピストン)
 127S 第1ベーン(ベーン)
 127T 第2ベーン(ベーン)
 128S 第1ベーン溝(ベーン溝)
 128T 第2ベーン溝(ベーン溝)
 129S 第1圧力導入路
 129T 第2圧力導入路
 130S 第1作動室(作動室)
 130T 第2作動室(作動室)
 131S 第1吸入室(吸入室)
 131T 第2吸入室(吸入室)
 133S 第1圧縮室(圧縮室)
 133T 第2圧縮室(圧縮室)
 135S 第1吸入孔(吸入孔)
 135T 第2吸入孔(吸入孔)
 136 冷媒通路
 140 中間仕切板
 151 副軸部
 152S 第1偏心部(偏心部)
 152T 第2偏心部(偏心部)
 153 主軸部
 155 給油縦孔
 155a 給油縦孔
 155b 嵌合縦孔
 156a、156c 第1給油横孔(給油横孔)
 156b、156d 第2給油横孔(給油横孔)
 157 ポンプ羽根
 157a 羽根部
 157b 基部
 159A、159B 給油機構
 160S 下端板(端板)
 160T 上端板(端板)
 161S 副軸受部
 161T 主軸受部
 170S 下マフラーカバー
 170T 上マフラーカバー
 175 通しボルト
 180S 下マフラー室
 180T 上マフラー室
 190S 第1吐出孔(吐出孔)
 190T 第2吐出孔(吐出孔)
 200S 第1吐出弁
 200T 第2吐出弁
 201S 第1吐出弁押え
 201T 第2吐出弁押え
 252 アキュムホルダー
 253 アキュムバンド
 255 システム接続管
 R 開口部

Claims (2)

  1.  上部に冷媒の吐出部が設けられ下部に冷媒の吸入部が設けられると共に潤滑油が貯留される密閉された縦置きの圧縮機筐体と、
     該圧縮機筐体の下部に配置され、前記吸入部から吸入した冷媒を圧縮して前記吐出部から吐出する圧縮部と、
     前記圧縮機筐体の上部に配置され、回転軸を介して前記圧縮部を駆動するモータと、
     前記圧縮機筐体の下部に貯留された潤滑油を前記回転軸の給油縦孔及び給油横孔を通して前記圧縮部の摺動部分に供給する給油機構と、
     を備えるロータリ圧縮機において、
     前記給油機構の給油横孔は、
     前記回転軸に設けられ前記圧縮部の環状ピストンをシリンダ内で公転させる偏心部の偏心方向と同一方向と、前記同一方向から前記回転軸の回転方向と逆方向に80°位相をずらした方向との間に形成されていることを特徴とするロータリ圧縮機。
  2.  前記給油横孔は、前記回転軸を貫通していることを特徴とする請求項1に記載のロータリ圧縮機。
PCT/JP2014/051979 2013-09-06 2014-01-29 ロータリ圧縮機 WO2015033586A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14842888.1A EP3043070B1 (en) 2013-09-06 2014-01-29 Rotary compressor
CN201480025092.7A CN105164422B (zh) 2013-09-06 2014-01-29 旋转式压缩机
US14/897,075 US9951774B2 (en) 2013-09-06 2014-01-29 Lubrication of a rotary compressor
AU2014316483A AU2014316483B2 (en) 2013-09-06 2014-01-29 Rotary compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-185722 2013-09-06
JP2013185722A JP5561421B1 (ja) 2013-09-06 2013-09-06 ロータリ圧縮機

Publications (1)

Publication Number Publication Date
WO2015033586A1 true WO2015033586A1 (ja) 2015-03-12

Family

ID=51417008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051979 WO2015033586A1 (ja) 2013-09-06 2014-01-29 ロータリ圧縮機

Country Status (6)

Country Link
US (1) US9951774B2 (ja)
EP (1) EP3043070B1 (ja)
JP (1) JP5561421B1 (ja)
CN (1) CN105164422B (ja)
AU (1) AU2014316483B2 (ja)
WO (1) WO2015033586A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6578932B2 (ja) 2015-12-21 2019-09-25 株式会社富士通ゼネラル ロータリ圧縮機
CN112594185B (zh) * 2020-12-04 2022-09-06 珠海格力节能环保制冷技术研究中心有限公司 泵体组件、压缩机以及具有其的空调器
EP4443005A1 (en) * 2022-06-17 2024-10-09 Samsung Electronics Co., Ltd. Rotary compressor, and home appliance comprising same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001073977A (ja) * 1999-09-03 2001-03-21 Sanyo Electric Co Ltd 2段圧縮式ロータリコンプレッサ
JP2004019506A (ja) 2002-06-14 2004-01-22 Hitachi Ltd 密閉型回転圧縮機
US20120174620A1 (en) * 2009-09-25 2012-07-12 Toshiba Carrier Corporation Hermetic compressor and refrigeration cycle equipment using the same
JP5014346B2 (ja) * 2006-08-22 2012-08-29 パナソニック株式会社 膨張機一体型圧縮機およびそれを備えた冷凍サイクル装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4640669A (en) * 1984-11-13 1987-02-03 Tecumseh Products Company Rotary compressor lubrication arrangement
CA1274494A (en) 1984-11-13 1990-09-25 Edwin L. Gannaway Rotary compressor lubrication arrangement
JPS61210285A (ja) * 1985-03-14 1986-09-18 Toshiba Corp 回転式圧縮機
JP2006300048A (ja) 2005-03-24 2006-11-02 Matsushita Electric Ind Co Ltd 密閉型圧縮機
JP4420040B2 (ja) 2007-02-19 2010-02-24 三菱電機株式会社 圧縮機
US8814546B2 (en) * 2009-08-10 2014-08-26 Lg Electronics Inc. Compressor
EP2489879A4 (en) * 2009-10-14 2015-08-05 Panasonic Ip Man Co Ltd COMPRESSOR
CN102734168A (zh) 2011-04-08 2012-10-17 广东美芝制冷设备有限公司 一种旋转式压缩机偏心曲轴的供油孔结构
CN102734171B (zh) 2012-07-03 2015-06-10 南京奥特佳新能源科技有限公司 商用涡旋式压缩机动平衡供油机构

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001073977A (ja) * 1999-09-03 2001-03-21 Sanyo Electric Co Ltd 2段圧縮式ロータリコンプレッサ
JP2004019506A (ja) 2002-06-14 2004-01-22 Hitachi Ltd 密閉型回転圧縮機
JP5014346B2 (ja) * 2006-08-22 2012-08-29 パナソニック株式会社 膨張機一体型圧縮機およびそれを備えた冷凍サイクル装置
US20120174620A1 (en) * 2009-09-25 2012-07-12 Toshiba Carrier Corporation Hermetic compressor and refrigeration cycle equipment using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3043070A4

Also Published As

Publication number Publication date
US20160131137A1 (en) 2016-05-12
AU2014316483B2 (en) 2017-02-16
EP3043070B1 (en) 2020-11-04
CN105164422B (zh) 2016-11-23
EP3043070A4 (en) 2017-05-24
JP2015052299A (ja) 2015-03-19
JP5561421B1 (ja) 2014-07-30
US9951774B2 (en) 2018-04-24
EP3043070A1 (en) 2016-07-13
CN105164422A (zh) 2015-12-16
AU2014316483A1 (en) 2015-12-17

Similar Documents

Publication Publication Date Title
JP6015055B2 (ja) ロータリ圧縮機
EP2530324B1 (en) Rotary compressor
EP2728192B1 (en) Rotary compressor
JP2014145318A (ja) ロータリ圧縮機
JP6112104B2 (ja) ロータリ圧縮機
JP6102760B2 (ja) ロータリ圧縮機
JP5561421B1 (ja) ロータリ圧縮機
JP2013076337A (ja) ロータリ圧縮機
JP2011208616A (ja) ロータリ圧縮機
JP5998522B2 (ja) ロータリ圧縮機
JP6274041B2 (ja) ロータリ圧縮機
JP6064726B2 (ja) ロータリ圧縮機
JP2013245628A (ja) ロータリ圧縮機
JP6064719B2 (ja) ロータリ圧縮機
JP5471992B2 (ja) ロータリ圧縮機
JP6233145B2 (ja) ロータリ圧縮機
JP5914975B2 (ja) ロータリ圧縮機の製造方法
JP5929050B2 (ja) ロータリ圧縮機
JP6051936B2 (ja) ロータリ圧縮機及びその組立方法
JP2012057533A (ja) ロータリ圧縮機
JP5418364B2 (ja) ロータリ圧縮機
JP2016089811A (ja) ロータリ圧縮機
JP6111695B2 (ja) ロータリ圧縮機
JP2013177857A (ja) 小容量ロータリ圧縮機
JP2017053361A (ja) ロータリ圧縮機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480025092.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14842888

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14897075

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014842888

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014842888

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014316483

Country of ref document: AU

Date of ref document: 20140129

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE