WO2015032189A1 - 一种用于固定床苯胺精馏残渣资源化利用的催化剂及其制备方法 - Google Patents

一种用于固定床苯胺精馏残渣资源化利用的催化剂及其制备方法 Download PDF

Info

Publication number
WO2015032189A1
WO2015032189A1 PCT/CN2014/073063 CN2014073063W WO2015032189A1 WO 2015032189 A1 WO2015032189 A1 WO 2015032189A1 CN 2014073063 W CN2014073063 W CN 2014073063W WO 2015032189 A1 WO2015032189 A1 WO 2015032189A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
solution
oxide
nitrate
oxides
Prior art date
Application number
PCT/CN2014/073063
Other languages
English (en)
French (fr)
Inventor
梅华
陈浩
於德伟
张聪颖
王辉
黎源
陈忠英
倪自林
姜庆梅
曹善健
杨在刚
瞿君
宋锦宏
胡兵波
Original Assignee
万华化学集团股份有限公司
万华化学(宁波)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 万华化学集团股份有限公司, 万华化学(宁波)有限公司 filed Critical 万华化学集团股份有限公司
Priority to US14/913,853 priority Critical patent/US20160207876A1/en
Priority to EP14842933.5A priority patent/EP3042719B1/en
Publication of WO2015032189A1 publication Critical patent/WO2015032189A1/zh
Priority to US15/720,103 priority patent/US9926259B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/62Preparation of compounds containing amino groups bound to a carbon skeleton by cleaving carbon-to-nitrogen, sulfur-to-nitrogen, or phosphorus-to-nitrogen bonds, e.g. hydrolysis of amides, N-dealkylation of amines or quaternary ammonium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/86Chromium
    • B01J23/866Nickel and chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8871Rare earth metals or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/035Precipitation on carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/68Preparation of compounds containing amino groups bound to a carbon skeleton from amines, by reactions not involving amino groups, e.g. reduction of unsaturated amines, aromatisation, or substitution of the carbon skeleton
    • C07C209/70Preparation of compounds containing amino groups bound to a carbon skeleton from amines, by reactions not involving amino groups, e.g. reduction of unsaturated amines, aromatisation, or substitution of the carbon skeleton by reduction of unsaturated amines
    • C07C209/72Preparation of compounds containing amino groups bound to a carbon skeleton from amines, by reactions not involving amino groups, e.g. reduction of unsaturated amines, aromatisation, or substitution of the carbon skeleton by reduction of unsaturated amines by reduction of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/33Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of rings other than six-membered aromatic rings
    • C07C211/34Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of rings other than six-membered aromatic rings of a saturated carbon skeleton
    • C07C211/35Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of rings other than six-membered aromatic rings of a saturated carbon skeleton containing only non-condensed rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/30Constitutive chemical elements of heterogeneous catalysts of Group III (IIIA or IIIB) of the Periodic Table
    • B01J2523/36Yttrium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/30Constitutive chemical elements of heterogeneous catalysts of Group III (IIIA or IIIB) of the Periodic Table
    • B01J2523/37Lanthanides
    • B01J2523/3706Lanthanum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/30Constitutive chemical elements of heterogeneous catalysts of Group III (IIIA or IIIB) of the Periodic Table
    • B01J2523/37Lanthanides
    • B01J2523/3712Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/40Constitutive chemical elements of heterogeneous catalysts of Group IV (IVA or IVB) of the Periodic Table
    • B01J2523/41Silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/40Constitutive chemical elements of heterogeneous catalysts of Group IV (IVA or IVB) of the Periodic Table
    • B01J2523/48Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/60Constitutive chemical elements of heterogeneous catalysts of Group VI (VIA or VIB) of the Periodic Table
    • B01J2523/67Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/60Constitutive chemical elements of heterogeneous catalysts of Group VI (VIA or VIB) of the Periodic Table
    • B01J2523/68Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/80Constitutive chemical elements of heterogeneous catalysts of Group VIII of the Periodic Table
    • B01J2523/84Metals of the iron group
    • B01J2523/845Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/80Constitutive chemical elements of heterogeneous catalysts of Group VIII of the Periodic Table
    • B01J2523/84Metals of the iron group
    • B01J2523/847Nickel
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the present invention relates to a catalyst and a process for the preparation thereof, and more particularly to a catalyst for use in the utilization of a fixed bed aniline rectification residue and a process for the preparation thereof.
  • Aniline is a colorless oily liquid with strong odor and toxic. It is an important chemical intermediate and is widely used in the production of rubber additives, dyes, photographic chemicals, pharmaceuticals, pesticides, explosives and polyurethanes.
  • the production methods include a phenol amination method, an iron powder reduction method, and a nitrobenzene catalytic hydrogenation method.
  • the hydrogenation process is divided into fixed bed gas phase hydrogenation and fluidized bed gas phase hydrogenation processes depending on the type of reactor used.
  • Fixed bed gas phase hydrogenation has the advantages of simple process, low maintenance cost, no need to separate catalyst, low reaction temperature and good product quality.
  • due to poor heat transfer of fixed bed local overheating is easy to cause side reaction and catalyst deactivation. Therefore, the activity cycle of the catalyst is short.
  • the fluidized bed reactor has good heat transfer conditions, avoids local overheating, reduces side reactions, and prolongs the service life of the catalyst, but the operation is complicated, the catalyst wears up, and the operation and maintenance costs are high.
  • the liquid phase hydrogenation method has a gas-liquid two-phase reaction, the reaction heat is easily removed, the equipment is simple, the operation and maintenance costs are low, but the introduction cost is high.
  • the aniline production process adopts a liquid phase catalytic hydrogenation process, desulfurization and decarburization of the raw material nitrobenzene by an oxidation system, mixing and pretreatment of nitrobenzene and hydrogen, and carrying out the reaction in a fluidized bed reactor, and the catalyst flows through the reaction. Recycling is reused. Since the reaction has water formation, the crude product is extracted after the reaction. Purification, recovery of unreacted nitrobenzene, and distillation to obtain aniline, enrichment in the distillation column to obtain aniline rectification residue, the source of aniline rectification residue has two main aspects: First, nitrobenzene in hydrogenation During the reaction, a part of high boilers are formed due to excess hydrogen. Second, the cyclohexanone intermediate formed during the hydrogenation reaction reacts with aniline to form a Schiff base tar, which is a black sticky with a pungent odor.
  • Another object of the present invention is to provide a process for preparing a catalyst for the utilization of a fixed bed aniline rectification residue, which is simple in operation and has good catalyst stability.
  • Still another object of the present invention is to provide a use of the above catalyst for the resource utilization of an aniline rectification residue.
  • a catalyst for the utilization of a fixed bed aniline rectification residue based on the total weight of the catalyst, the catalyst component and content are as follows:
  • NiO is an active component in a content of 5% to 40%
  • One or more of Fe oxide, Mo oxide, Cr oxide and Co oxide are the first promoter component, and the content is 2%-30% ;
  • oxides of La, oxides of Zr, oxides of Y and oxides of Ce are second promoter components in an amount of 10-30%;
  • the balance is the carrier.
  • the catalyst component and content are as follows: NiO is an active component, and the content is 15%-30%;
  • One or more of the oxide of Fe, the oxide of Mo, the oxide of Cr and the oxide of Co are the first promoter component, and the content is 5%-25% ;
  • the second catalytic component is 15-25%
  • the balance is the carrier.
  • the carrier is .
  • a preparation method for a catalyst for utilization of a fixed bed aniline rectification residue wherein nickel nitrate, a nitrate of a metal contained in the first and second promoter components is dissolved in water to form a metal nitrate mixture, and the mixture is mixed
  • the liquid and the alkali solution and the aqueous sodium silicate solution are added to the precipitation tank separately or together in a cocurrent manner; or the nitrates of the metal contained in the nickel nitrate, the sodium silicate, the first and second catalytic components are dissolved Forming a mixed liquid in water, and dropping it into the precipitation tank separately or together with the alkali solution; or dissolving the nitrate of the metal contained in the nickel nitrate, the first and second promoter components in water to form a metal nitrate Mixing liquid, adding the mixed solution and the alkali solution dissolved in sodium silicate to the precipitation tank separately or together; the pH value in the sedimentation tank is controlled between 7-8, and the obtained precipitate
  • the first cocatalyst component contains an oxide of molybdenum
  • it differs from the above preparation method in that a precipitate formed by other components other than molybdenum is immersed in an ammonium molybdate solution, and then calcined to form , smash.
  • the concentration of the metal ions in the metal nitrate mixture is controlled to be 0.3-5 mol/L.
  • the alkali solution is a Na 2 CO 3 aqueous solution, an aqueous NaOH solution or an aqueous ammonia solution, and the concentration is 0.5-10 mol/L.
  • the concentration of the sodium silicate aqueous solution or sodium silicate in the alkali solution is 0.1-lmol/L.
  • the temperature in the precipitation tank is controlled to be between 50 and 70 °C.
  • the calcination temperature is between 300 and 700 ° C, and the calcination time is 4 to 6 h.
  • the aging temperature is 60-80 ° C, the time is 4-8 h; the drying temperature is 100-150 ° C, and the time is 8-15 h.
  • the molding is performed by extruding the catalyst after extrusion or tableting, and pulverizing is to pulverize the catalyst to 10 to 20 mesh.
  • the aniline rectification residue is subjected to gas phase hydrotreating to obtain cyclohexylamine and dicyclohexylamine.
  • the monofunctional saturated alcohol is ethanol or methanol.
  • the catalyst loading amount was 10 ml, and the monofunctional saturated alcohol/aniline rectification residue had a mass ratio of 0.1 0.7 : 1, and was completely vaporized at the upper end of the reaction tube by injection with a micro metering pump.
  • the liquid phase volumetric space velocity is 0.6 ⁇ 1.5h—the reaction pressure is l ⁇ 4MPa, the reaction temperature is between 250 ⁇ 320°C, and the volume ratio of hydrogen to aniline rectification residue is 500 3000: 1, and the hydrogen flow rate is 150. ⁇ 400ml/min, before the reaction starts, the catalyst needs to be reduced.
  • the reduction temperature and time are 350-500 °C, 4h, and the reducing gas is 3 ⁇ 4 (50ml/min;).
  • the feed reaction is started and the product is sent to a gas chromatograph for quantitative analysis.
  • the catalyst has high activity and high selectivity.
  • the yield of cyclohexylamine and dicyclohexylamine is up to 36.8% and 40%, and the stability is good. After 200 hours of reaction, the product is selected. There is still no significant decline in sex.
  • the catalyst of the present invention does not open the ring in the small molecule, and the reaction principle can be referred to the following reaction formula:
  • the components in the catalyst of the invention are combined with each other to make the catalyst have high activity and stability.
  • M catalyst has good catalytic activity, it is easy to decrease in activity due to loss of active components, sintering and carbon deposition in high temperature reaction, and is prone to S poisoning.
  • the carrier and adding the first and second co-catalyst components By changing the carrier and adding the first and second co-catalyst components, the purpose of reducing the loss of active components and reducing the degree of carbon deposition and sintering can be achieved, thereby improving the stability and life of the catalyst.
  • Y has the function of adjusting the acidity and alkalinity of the catalyst surface, resisting carbon deposition and reducing the ring opening reaction.
  • Fe has a function of stabilizing the catalyst, and Mo, Cr, Zr, Ce, La or Co has the effect of reducing the carbon deposition of the catalyst and prolonging the life of the catalyst.
  • Figure 1 is a gas chromatogram of the product of Example 1 of the present invention. detailed description:
  • the fixed bed reactor in the examples was 100 cm long and 25 mm in inner diameter.
  • the reaction product was analyzed by an internal standard method using a Shimadzu GC-2014 gas chromatograph (hydrogen ion flame (FID) detector).
  • the analytical column is SE-30, capillary column ( ⁇ 1) 0.30 11111 ⁇ 30 111), gasification chamber 270 ° C, detector 270 ° C, column temperature 70 ° C, constant temperature lmin, then at 40 ° C / min rate Raise to 240 ° C, then constant temperature for 5 min.
  • the aniline rectification residue is derived from the aniline rectification apparatus of Ningbo Wanhua Polyurethane Co., Ltd.
  • Example 1
  • solution 8 200 ml of an aqueous ammonia solution having a mass concentration of 15% was placed, and it was designated as solution 8.
  • solution C 17 g of sodium silicate Na 2 SiO 3 was weighed and dissolved in 150 ml of water and designated as solution C.
  • solution A Lanthanum nitrate ( ⁇ 0 3 ) 3 ⁇ 63 ⁇ 40, which was dissolved in 300 ml of distilled water, was designated as solution A.
  • a Na 2 CO 3 solution having a concentration of 0.7 mol/L was placed, and 17 g of sodium silicate Na 2 SiO 3 was weighed and dissolved in 300 ml of a Na 2 CO 3 solution, and it was referred to as solution 8.
  • the water in the sedimentation tank was first heated to 70 ° C, and the solutions A and B were simultaneously added dropwise to the precipitation tank.
  • the pH and precipitation temperature were maintained at 8 and 70 ° C, respectively.
  • After the end of the precipitation keep the stirring speed and the precipitation temperature unchanged, aging for 4 h, filter and wash until neutral, and place the precipitate in an oven at 110 ° C for 12 h, until the end of drying, and roast at 500 ° C for 4 h in an air atmosphere.
  • solution 8 A NaOH solution having a concentration of 1 mol/L was placed, and 17 g of sodium silicate Na 2 SiO 3 was dissolved in 200 ml of an alkali solution, which was designated as solution 8.
  • Solution B was first poured into a precipitation tank and heated to 70 ° C, and solution A was slowly added dropwise to the precipitation tank during which the precipitation temperature was maintained at 70 ° C. After the end of the precipitation, keep the stirring speed and the precipitation temperature unchanged, aging for 4 h, filter and wash to neutral, and place the obtained precipitate in an oven at 110 ° C for 12 h, until the end of drying, and roast at 550 ° C in an air atmosphere. 4h, after grinding, tableting, crushing and sieving to 10-20 mesh, 24% NiO-10% Co 3 O 4 /39% SiO 2 -27%CeO 2 was obtained .
  • the catalyst evaluation was the same as in Example 2.
  • the yields of cyclohexylamine and dicyclohexylamine were 31.2% and 33.2%, respectively. After 200 h of reaction, the yield of cyclohexylamine and dicyclohexylamine was maintained at 28% and 32.5%.
  • Solution A was first poured into a precipitation tank and heated to 70 ° C, and solution B was slowly added dropwise to the precipitation tank during which the precipitation temperature was maintained at 70 ° C. After the end of the precipitation, keep the stirring speed and the precipitation temperature unchanged, aging for 4 h, filter and wash to neutrality, and place the obtained precipitate in an oven at 110 ° C for 12 h, until the end of drying, and roast at 600 ° C in an air atmosphere. 4h, after grinding, tableting, crushing and sieving to 10-20 mesh, 20% NiO-10% Co 3 O 4 /40% SiO 2 -30%CeO 2 was obtained .
  • the catalyst evaluation was the same as in Example 2, and the yields of cyclohexylamine and dicyclohexylamine were 30.1% and 23.7%, respectively. After 200 h of reaction, the yield of cyclohexylamine and dicyclohexylamine was maintained at 28.8% and 22.3%.
  • solution 8 200 ml of a Na 2 CO 3 solution having a concentration of 1 mol/L was prepared, and 14.6 g of sodium silicate Na 2 SiO 3 was dissolved therein, and it was referred to as solution 8.
  • the water in the precipitation tank was first heated to 70 ° C, and the solutions A and B were simultaneously added dropwise to the precipitation tank. During the preparation, the pH and precipitation temperature were maintained at 8 and 70 ° C, respectively. After the end of the precipitation, keep the stirring speed and the precipitation temperature unchanged, aging for 4 h, filter and wash until neutral, and place the precipitate in an oven at 110 ° C for 12 h, until the end of drying, and roast at 500 ° C for 4 h in an air atmosphere. Grinding, tableting Molding, crushing and sieving to 10-20 mesh, finally obtaining 24% NiO-25% Co 3 0 4 /36% Si0 2 -15% Y 2 0 3 .
  • the fixed bed reactor was charged with 10 ml of this catalyst, and it was reduced at 500 ° C. After the reduction, the temperature was lowered to 280 ° C, the pressure of the system was raised to 2.5 MPa and the feed was started. Ethanol and aniline were added. The rectification residue mass ratio was 0.3. The liquid space velocity was OJh- 1 , and the flow rate was 250 ml/min. After 10 hours of reaction, sampling analysis was started. The yields of cyclohexylamine and dicyclohexylamine were 37.2% and 41.5%, respectively. After 200 h of reaction, the yield of cyclohexylamine and dicyclohexylamine was maintained at 36.8% and 40.1%.
  • solution B 200 ml of 1 mol/L Na 2 CO 3 was prepared, and 14 g of sodium silicate Na 2 SiO 3 was dissolved therein, and it was designated as solution B.
  • the water in the precipitation tank was first heated to 70 ° C, and the solutions A and B were simultaneously added dropwise to the precipitation tank.
  • the pH and precipitation temperature were maintained at 8 and 70 ° C, respectively.
  • After the end of the precipitation keep the stirring speed and the precipitation temperature unchanged, aging for 4 h, filter and wash until neutral, and place the precipitate in an oven at 110 ° C for 12 h, until the end of drying, and roast at 500 ° C for 4 h in an air atmosphere.
  • the fixed bed reactor was charged with 10 ml of this catalyst, and it was reduced at 500 ° C. After the reduction, the temperature was lowered to 290 ° C, the system pressure was raised to 2.5 MPa and the feed was started. The mass ratio of aniline rectification residue was 0.4. The liquid space velocity was OJh- 1 , and the flow rate was 250 ml/min. After 10 hours of reaction, sampling and analysis were started. The yields of cyclohexylamine and dicyclohexylamine were 32.5% and 33.7%, respectively. After 200 h of reaction, the yield of cyclohexylamine and dicyclohexylamine was maintained at 31.7% and 32.1%.
  • Example 7 Weigh 16g of nickel nitrate Ni(N0 3 ) 2 ⁇ 63 ⁇ 40, llg of cobalt nitrate Co(N0 3 ) 2 ⁇ 63 ⁇ 40, 10g of ferric nitrate Fe(N0 3 ) 3 ⁇ 93 ⁇ 40, 10g of lanthanum nitrate ( ⁇ 0 3 ) 3 ⁇ 63 ⁇ 40, This was dissolved in 200 ml of water and recorded as solution A.
  • solution B 250 ml of 1 mol/L Na 2 CO 3 was prepared, and 16 g of sodium silicate Na 2 SiO 3 was dissolved therein, and it was designated as solution B.
  • the water in the precipitation tank was first heated to 70 ° C, and the solutions A and B were simultaneously added dropwise to the precipitation tank. During the preparation, the pH and precipitation temperature were maintained at 8 and 70 ° C, respectively. After the end of the precipitation, keep the stirring speed and the precipitation temperature unchanged, aging for 4 h, filter and wash until neutral, and place the precipitate in an oven at 110 ° C for 12 h, until the end of drying, and roast at 500 ° C for 5 h in an air atmosphere. After grinding, tableting, crushing and sieving to 10-20 mesh, 20% NiO-15% Co 3 O 4 - 10% Fe 2 O 3 /40% SiO 2 -15% Y 2 O 3 is finally obtained.
  • the fixed bed reactor was charged with 10 ml of this catalyst, and it was reduced at 500 ° C. After the reduction, the temperature was lowered to 300 ° C, the system pressure was raised to 2.5 MPa and the feed was started. The mass ratio of aniline rectification residue was 0.4. The liquid space velocity was OJh- 1 , and the flow rate was 250 ml/min. After 10 hours of reaction, sampling and analysis were started. The yields of cyclohexylamine and dicyclohexylamine were 36.9% and 40.2%, respectively. After 200 h of reaction, the yield of cyclohexylamine and dicyclohexylamine was maintained at 35.8% and 39.5%.
  • the water in the sedimentation tank was first heated to 70 ° C, and the solutions A and B were simultaneously added dropwise to the precipitation tank. During the preparation, the pH and precipitation temperature were maintained at 8 and 70 ° C, respectively. After the end of the precipitation, keep the stirring speed and the precipitation temperature unchanged, aging for 4 h, filter and wash to neutrality, and place the precipitate in an oven at 110 ° C for 12 h. After the drying is completed, the obtained catalyst is immersed in 200 ml, the concentration is 12.75.
  • solution B A 150 ml aqueous ammonia solution having a mass fraction of 20% was prepared and designated as solution B.
  • Solution A was first poured into a precipitation tank and heated to 70 ° C, and solution B was slowly added dropwise to the precipitation tank during which the precipitation temperature was maintained at 70 ° C. After the end of the precipitation, keep the stirring speed and the precipitation temperature unchanged, aging for 4h, filter and wash to neutral, and the obtained precipitate is placed in an oven at 110 ° C for 12 h, until the end of drying, in an air atmosphere at 600 ° C After calcination for 3 h, it was ground and tableted, and crushed and sieved to 10-20 mesh to obtain 24.5% NiO-7.2% Cr 2 0 3 /39.9% Si0 2 -28.4% Ce0 2 .
  • the catalyst evaluation was the same as in Example 2.
  • the yields of cyclohexylamine and dicyclohexylamine were 28.3% and 20.7%, respectively.
  • the yields of cyclohexylamine and dicyclohexylamine were maintained at 25.8% and 18.4%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种用于固定床苯胺精馏残渣资源化利用的催化剂及其制备方法。以催化剂总重计,该催化剂组分及含量如下:NiO为活性组分,含量为5%-40%;Fe、Mo、Cr或 Co的氧化物的一种或多种为第一助催化组分,含量为2%-30%;La、Zr、Y或 Ce的氧化物的一种或多种为第二助催化组分,含量为10-30%;余量为载体。该催化剂采用共沉淀法制备。该催化剂在废液处理过程中表现出较高的活性和稳定性,反应200h仍保持较高的精馏残渣的裂解率。

Description

技术领域
本发明涉及一种催化剂及其制备方法, 具体地说, 是涉及一种用于固定 床苯胺精馏残渣资源化利用的催化剂及其制备方法。
技术背景
苯胺为无色油状液体, 有强烈的气味, 有毒, 是一种重要的化工中间体, 被广泛地用于橡胶助剂、 染料、 感光化学品、 医药、 农药、 炸药及聚氨酯等 产品的生产, 其生产方法有苯酚氨化法、 铁粉还原法和硝基苯催化加氢法。
考虑到原料来源、 能耗及环境保护等方面, 大多数生产厂家采用硝基苯 催化加氢法。 加氢法又因采用的反应器形式不同分为固定床气相加氢和流化 床气相加氢两种工艺。 固定床气相加氢具有工艺简单、 维修费用低、 不需分 离催化剂、 反应温度低及产品质量好等优点, 但由于固定床传热不好, 易发 生局部过热而引起副反应及催化剂失活, 因此催化剂的活性周期短。 流化床 反应器传热状况好, 避免局部过热, 减少了副反应发生, 延长催化剂的使用 寿命, 但操作复杂, 催化剂磨损大, 操作及维修费用高。 液相加氢法存在气 液两相反应, 反应热移除容易, 设备简单, 操作、 维修费用低, 但引进费用 高。
通常, 苯胺生产工艺采用液相催化加氢工艺, 通过氧化系统对原料硝基 苯脱硫脱碳, 将硝基苯和氢气进行混合预处理, 在流化床反应器中进行反应, 催化剂流经反应器再循环回用。 由于反应有水生成, 反应后对粗产品进行萃 取精制, 回收未反应的硝基苯, 再通过精馏得到苯胺, 在精馏塔釜富集得到 苯胺精馏残渣, 苯胺精馏残渣的来源主要有两方面: 一是硝基苯在加氢反应 过程中由于氢气过量, 生成了部分高沸物, 二是加氢反应过程中生成的环己 酮中间体会和苯胺反应生成席夫基焦油, 其是一种具有剌激性气味的黑色粘
稠 环己基苯 胺 4-四氢咔唑
Figure imgf000004_0001
)、 对苯胺基苯胺 ( 苯酚、 N-环己
基 -1,2-二苯胺 (
Figure imgf000004_0002
), 长链垸 一 NH2), 那么两 水含有此氨基的物质就会发生脱氨反应, 产生含有一 NH—的大分子物质。 这 些原因造成苯胺精馏残渣黏度较大, 流动性差, 很难二次利用, 一般用作烧 火料、 防水材料。 这两种用途所消耗的量占苯胺精馏残渣总量的比例很低, 因此, 绝大部分苯胺精馏残渣被当作废液, 采用焚烧法进行处理, 但其焚烧 后会产生氮氧化物, 形成酸雨, 污染环境, 会降低农业、 渔业的产量。
如何将苯胺精馏残渣充分裂解, 得到一定量的高经济价值的产物, 将其 变废为宝, 尽可能地减少环境污染是本发明研究的课题。 目前, 尚没有一种 有效的方法对苯胺精馏残渣进行资源化利用。 发明内容
本发明的目的是提供一种用于固定床苯胺精馏残渣资源化利用的催化 剂, 该催化剂使得苯胺精馏残渣通过加氢裂化将其中高分子量物质的 C一 C, C一 N分子链打断, C=C分子链饱和, 降低其分子量, 降低体系黏度, 增强流 动性, 同时获得环己胺和二环己胺等有效物质, 以便于后续的分离操作。
本发明的另一个目的在于提供一种用于固定床苯胺精馏残渣资源化利用 的催化剂的制备方法, 该制备方法操作简单, 制得的催化剂稳定性好。
本发明的再一目的在于提供所述的催化剂在苯胺精馏残渣资源化利用的 用途。
为达到以上目的, 本发明的技术方案如下:
一种用于固定床苯胺精馏残渣资源化利用的催化剂, 以催化剂总重计, 该催化剂组分及含量如下:
NiO为活性组分, 含量为 5%-40%;
Fe的氧化物、 Mo的氧化物、 Cr的氧化物和 Co的氧化物的一种或多 种为第一助催化组分, 含量为 2%-30%;
La的氧化物、 Zr的氧化物、 Y的氧化物和 Ce的氧化物的一种或多 种为第二助催化组分, 含量为 10-30%;
余量为载体。
作为一种优选的方案, 以催化剂总重计, 该催化剂组分及含量如下: NiO为活性组分, 含量为 15%-30%;
Fe的氧化物、 Mo的氧化物、 Cr的氧化物和 Co的氧化物的一种或多 种为第一助催化组分, 含量为 5%-25%;
La的氧化物、 Zr的氧化物、 Y的氧化物和 Ce的氧化物的一种或多 种为第二助催化组分, 含量为 15-25%,
余量为载体。
本发明催化剂中, 所述的载体为 。
一种用于固定床苯胺精馏残渣资源化利用的催化剂的制备方法, 将硝酸 镍、 第一及第二助催化组分所含金属的硝酸盐溶于水中形成金属硝酸盐混合 液, 将混合液与碱溶液及硅酸钠水溶液分别或一起以并流的方式滴加到沉淀 槽中; 或将硝酸镍、 硅酸钠、 第一及第二助催化组分所含金属的硝酸盐溶于 水中形成混合液, 与碱溶液分别或一起以并流的方式滴加到沉淀槽中; 或将 硝酸镍、 第一及第二助催化组分所含金属的硝酸盐溶于水中形成金属硝酸盐 混合液, 将混合液与溶有硅酸钠的碱液分别或一起以并流的方式滴加到沉淀 槽中; 沉淀槽中 pH值控制在 7-8之间, 得到的沉淀物经老化、 过滤、 干燥、 焙烧处理后, 成型, 粉碎。
当第一助催化剂组分中含有钼的氧化物时, 其与上述制备方法的区别在 于将除钼外的其他组分形成的沉淀浸渍于钼酸铵盐溶液中, 然后经焙烧处理 后, 成型, 粉碎。
本发明制备方法中, 所述的金属硝酸盐混合液中金属离子的浓度控制在 0.3-5mol/L o
本发明制备方法中, 所述的碱液为 Na2C03水溶液、 NaOH水溶液或氨水 溶液, 浓度为 0.5-10mol/L。
本发明制备方法中, 所述的硅酸钠水溶液或硅酸钠在碱液中的浓度均为 0.1-lmol/L o
本发明制备方法中, 控制沉淀槽中的温度在 50~70°C之间。
本发明制备方法中, 焙烧温度在 300~700°C之间, 焙烧时间为 4~6h。 本发明制备方法中, 所述的老化的温度为 60~80°C, 时间 4~8h; 干燥的 温度 100~150°C, 时间 8~15h。
本发明制备方法中, 所述的成型是将焙烧后的催化剂挤条或压片成型, 粉碎是将催化剂粉碎至 10~20目。
本发明的催化剂或采用本发明的制备方法制备的催化剂在苯胺精馏残渣 资源化利用的用途, 以一官能度饱和醇作为稀释剂, 在一定的温度和压力下, 在所述催化剂的催化下, 利用气相加氢处理苯胺精馏残渣, 得到环己胺和二 环己胺。
所述的一官能度饱和醇是乙醇或者甲醇。
采用固定床反应器, 催化剂装填量 10ml, 一官能度饱和醇 /苯胺精馏残渣 质量比为 0.1 0.7 : 1, 借助微量计量泵进样, 在反应管上端被完全汽化。 液相 体积空速为 0.6~1.5h— 反应压力为 l~4MPa, 反应温度在 250~320°C之间, 氢 气用量与苯胺精馏残渣量的体积比为 500 3000: 1, 氢气流量为 150~400ml/min, 反应开始前, 需对催化剂进行还原, 还原温度和时间分别为 350-500 °C , 4h, 还原气为 ¾(50ml/min;)。待还原结束, 温度降至反应温度时, 开始进料反应, 产物送往气相色谱仪进行定量分析。 该催化剂具有高活性和 高选择性, 以精馏残渣质量计, 环己胺、 二环己胺的收率高达 36.8%、 40%, 同时具有较好的稳定性, 在反应 200h后, 产物选择性仍没有明显下降。
本发明催化剂处理苯胺精馏残渣的反应过程属于加氢裂化, 重点是通过 加氢裂化反应将精馏残渣中高分子量的物质中的 C一 C, C一 N分子链打断, C=C 分子链饱和, 降低体系黏度, 获得环己胺和二环己胺等小分子物质, 便 于后续的分离操作。 此外, 本发明的催化剂不会将小分子中的环打开, 其反 应原理可参考如下反应式:
Figure imgf000008_0001
本发明催化剂中各组分相互配合, 使得催化剂具有较高的活性及稳定性,
M催化剂虽然具有较好的催化活性, 但在高温反应中易因活性组分流失、 烧 结和积碳而活性降低, 且易发生 S 中毒。 通过改变载体、 添加第一及第二助 催化组分, 可以达到减少活性组分流失, 减少积碳及烧结程度的目的, 从而 提高催化剂的稳定性和寿命。 其中, Y 具有调节催化剂表面酸碱性、 抗积碳 和减少开环反应的作用。 Fe 具有稳定催化剂的作用, 而 Mo、 Cr、 Zr、 Ce、 La或 Co具有减小催化剂积碳, 延长催化剂的寿命的作用。 附图说明: 图 1为本发明实施例 1产物的气相色谱图。 具体实施方式:
下面结合实施例, 对本发明予以进一歩的说明, 但本发明不限于所列出 的实施例, 还应包括在本发明申请所附权利要求书定义的技术方案的等效改 进和变形。 实施例中固定床反应器尺寸为长 100 cm, 内径为 25 mm。 反应产物采用 岛津 GC-2014 气相色谱仪 (氢离子火焰 (FID) 检测器) 内标法分析。 分析 柱为 SE-30, 毛细管柱(<1)0.30 11111^ 30 111), 气化室 270°C, 检测器 270°C, 柱 温 70°C, 恒温 lmin, 然后以 40°C/min速率升到 240°C, 接着恒温 5min。
实施例中苯胺精馏残渣来源于宁波万华聚氨酯有限公司苯胺精馏装置。 实施例 1
分别称取 16g硝酸镍 Ni(N03) 2·6¾0、 20g硝酸铁 Fe(N03) 3·9¾0和 llg 硝酸镧 La N03) 3·6¾0, 将其溶于 300ml蒸馏水中, 记为溶液八。
配置质量浓度为 15%的氨水溶液 200ml, 记为溶液8。
称取 17g硅酸钠 Na2Si03并溶于 150ml水中, 记为溶液 C。
先将沉淀槽中的水 100ml加热至 50°C,再将溶液 A、 B和 C并流滴加到沉 淀槽中。 在制备过程中, pH值和沉淀温度分别维持在 7.5和 60 °C。 待沉淀结 束后, 保持搅拌速度和沉淀温度不变, 老化 4h, 过滤洗涤至中性, 将沉淀物 放置在 110°C烘箱中干燥 12h, 待干燥结束后, 于 400°C空气气氛下焙烧 4h, 再经研磨、 挤条成型, 破碎过筛至 10-20 目, 最终制得 20%NiO-20%Fe2O3/ 40%SiO2-20%La2O3
在固定床反应器中装填 10ml此催化剂, 在 400°C条件下对其进行还原, 待还原结束后, 温度降至反应温度 280°C, 将体系压力升至 1.5MPa并开始进 料, 乙醇与苯胺精馏残渣质量比为 0.2: 1。 液相空速为 0.711-1, ¾流量为 200ml/min,反应 10h后开始取样分析,环己胺和二环己胺的分别收率为 33.6%、 24%。 反应 200h后, 环己胺和二环己胺的收率分别保持在 31.2%、 24.6%。
实施例 2
分别称取 24g硝酸镍 Ni(N03) 2·6¾0、 20g硝酸铁 Fe(N03) 3·9¾0和 7g 硝酸钇 Υ(Ν03) 3·6¾0, 将其溶于 300ml蒸馏水中, 记为溶液 A。 配置浓度 为 0.7mol/L的 Na2C03溶液,称取 17g硅酸钠 Na2Si03溶于 300mlNa2CO3溶液 中, 记为溶液8。
先将沉淀槽中的水加热至 70°C, 再将溶液 A和 B并流滴加到沉淀槽中。 在制备过程中, pH值和沉淀温度分别维持在 8和 70°C。 待沉淀结束后, 保持 搅拌速度和沉淀温度不变, 老化 4h, 过滤洗涤至中性, 将沉淀物放置在 110°C 烘箱中干燥 12h, 待干燥结束, 于 500°C空气气氛下焙烧 4h, 再经研磨、 压片 成型,破碎过筛至 10-20目,最终制得 30%NiO-20%Fe2O3/40%SiO2-10%Y2O3
在固定床反应器中装填 10ml此催化剂, 在 450°C条件下对其进行还原, 待还原结束后,温度降至反应温度 300°C,将体系压力升至 2MPa并开始进料, 乙醇与苯胺精馏残渣质量比为 0.2。 液体空速为 OJh—1 , ¾流量为 250ml/min, 反应 10h后开始取样分析, 环己胺和二环己胺的收率分别为 36.8%、 40% 反 应 200h后, 环己胺和二环己胺的收率保持在 35.8%、 38.7%。
实施例 3
分别称取 20g硝酸镍 Ni(N03) 2·6¾0、 8g硝酸钴 Co(N03) 2·6Η20和 15g 硝酸铈 Ce(N03) 3·6¾0, 将其溶于 200ml蒸馏水中, 记为溶液八。
配置浓度为 lmol/L的 NaOH溶液, 将 17g硅酸钠 Na2Si03溶于 200ml碱 溶液中, 记为溶液8。
先将溶液 B倒至沉淀槽中,并加热至 70°C,再缓缓地将溶液 A滴加至沉淀 槽中, 在此期间维持沉淀温度在 70°C。 待沉淀结束后, 保持搅拌速度和沉淀 温度不变, 老化 4h, 过滤洗涤至中性, 将获得的沉淀物放置在 110°C烘箱中 干燥 12h, 待干燥结束, 于 550°C空气气氛下焙烧 4h, 再经研磨、 压片成型, 破碎过筛至 10-20目, 获得 24%NiO-10%Co3O4/39%SiO2-27%CeO2。 催化剂评价同实施例 2, 环己胺和二环己胺的收率分别为 31.2%、 33.2%。 经反应 200h后, 环己胺和二环己胺的收率保持在 28%、 32.5%。
实施例 4
分别称取 20g硝酸镍 Ni(N03) 2·6¾0、 17g硅酸钠 Na2Si03、 8g硝酸钴 Co(N03) 2·6¾0和 15g硝酸铈 Ce(N03) 3·6Η20, 将其溶于 200ml蒸馏水中, 记为溶液 A。
配置质量分数为 15%的氨水溶液 200 ml, 记为溶液8。
先将溶液 A倒至沉淀槽中,并加热至 70°C,再缓缓地将溶液 B滴加至沉淀 槽中, 在此期间维持沉淀温度在 70°C。 待沉淀结束后, 保持搅拌速度和沉淀 温度不变, 老化 4h, 过滤洗涤至中性, 将获得的沉淀物放置在 110°C烘箱中 干燥 12h, 待干燥结束, 于 600°C空气气氛下焙烧 4h, 再经研磨、 压片成型, 破碎过筛至 10-20目, 获得 20%NiO-10%Co3O4/40%SiO2-30%CeO2
催化剂评价同实施例 2, 环己胺和二环己胺收率分别为 30.1%、 23.7%。 反应 200h后, 环己胺和二环己胺的收率保持在 28.8%、 22.3%。
实施例 5
称取 18g硝酸镍 Ni(N03) 2·6¾0、 18g硝酸钴 Co(N03) 2·6¾0、 10g硝 酸钇 Υ(Ν03) 3·6¾0, 将其溶于 200ml的蒸馏水中, 记为溶液八。
配制浓度为 lmol/L的 Na2C03溶液 200ml, 并将 14.6g硅酸钠 Na2Si03溶 于其中, 记为溶液8。
先将沉淀槽中的水加热至 70°C, 在将溶液 A和 B并流滴加到沉淀槽中。 在制备过程中, pH值和沉淀温度分别维持在 8和 70°C。 待沉淀结束后, 保持 搅拌速度和沉淀温度不变, 老化 4h, 过滤洗涤至中性, 将沉淀物放置在 110°C 烘箱中干燥 12h, 待干燥结束, 于 500°C空气气氛下焙烧 4h, 再经研磨、 压片 成型,破碎过筛至 10-20目,最终制得 24%NiO-25%Co304/36%Si02-15%Y203。 固定床反应器中装填 10ml此催化剂, 在 500°C条件下对其进行还原, 待 还原结束后,温度降至反应温度 280°C,将体系压力升至 2.5MPa并开始进料, 乙醇与苯胺精馏残渣质量比为 0.3。 液体空速为 OJh—1 , ¾流量为 250ml/min, 反应 10h后开始取样分析, 环己胺和二环己胺的收率分别为 37.2%、 41.5%。 反应 200h后, 环己胺和二环己胺的收率保持在 36.8%、 40.1%。
实施例 6
称取 18g硝酸镍 Ni(N03) 2·6¾0、 18g硝酸钴 Co(N03) 2·6¾0、 3g硝酸 锆 Zr(N03) 4·5¾0、 5g硝酸铈 Ce(N03) 3·6¾0, 将其溶于 200ml水中, 记为 溶液 A。
配制 lmol/LNa2CO3200ml,将 14g硅酸钠 Na2Si03溶于其中,记为溶液 B。 先将沉淀槽中的水加热至 70°C, 在将溶液 A和 B并流滴加到沉淀槽中。 在制备过程中, pH值和沉淀温度分别维持在 8和 70°C。 待沉淀结束后, 保持 搅拌速度和沉淀温度不变, 老化 4h, 过滤洗涤至中性, 将沉淀物放置在 110°C 烘箱中干燥 12h, 待干燥结束, 于 500°C空气气氛下焙烧 4h, 再经研磨、 压片 成型, 破碎过筛至 10-20 目, 最终制得 24%NiO-25%Co304/36%Si02- 5%ZrO2-10%CeO2
固定床反应器中装填 10ml此催化剂, 在 500°C条件下对其进行还原, 待 还原结束后,温度降至反应温度 290 °C,,将体系压力升至 2.5MPa并开始进料, 乙醇与苯胺精馏残渣质量比为 0.4。 液体空速为 OJh—1 , ¾流量为 250ml/min, 反应 10h后开始取样分析, 环己胺和二环己胺的收率分别为 32.5%、 33.7%。 反应 200h后, 环己胺和二环己胺的收率保持在 31.7%、 32.1%。
实施例 7 称取 16g硝酸镍 Ni(N03) 2·6¾0、 llg硝酸钴 Co(N03) 2·6¾0、 10g硝 酸铁 Fe(N03) 3·9¾0、 10g硝酸钇 Υ(Ν03) 3·6¾0, 将其溶于 200ml水中, 记 为溶液 A。
配制 lmol/LNa2CO3250ml,将 16g硅酸钠 Na2Si03溶于其中,记为溶液 B。 先将沉淀槽中的水加热至 70°C, 在将溶液 A和 B并流滴加到沉淀槽中。 在制备过程中, pH值和沉淀温度分别维持在 8和 70°C。 待沉淀结束后, 保持 搅拌速度和沉淀温度不变, 老化 4h, 过滤洗涤至中性, 将沉淀物放置在 110°C 烘箱中干燥 12h, 待干燥结束, 于 500°C空气气氛下焙烧 5h, 再经研磨、 压片 成型 , 破碎 过筛至 10-20 目 , 最 终 制 得 20%NiO-15%Co3O4- 10%Fe2O3/40%SiO2-15%Y2O3
固定床反应器中装填 10ml此催化剂, 在 500°C条件下对其进行还原, 待 还原结束后,温度降至反应温度 300 °C,,将体系压力升至 2.5MPa并开始进料, 乙醇与苯胺精馏残渣质量比为 0.4。 液体空速为 OJh—1 , ¾流量为 250ml/min, 反应 10h后开始取样分析, 环己胺和二环己胺的收率分别为 36.9%、 40.2%。 反应 200h后, 环己胺和二环己胺的收率保持在 35.8%、 39.5%。
实施例 8
分别称取 24g硝酸镍 Ni(N03) 2·6¾0、 和 14g硝酸钇 Υ(Ν03) 3·6¾0, 将其溶于 300ml蒸馏水中, 记为溶液 A。配置浓度为 0.7mol/L的 Na2C03溶液 300ml, 称取 17g硅酸钠 Na2Si03溶于 Na2C03溶液中, 记为溶液^
先将沉淀槽中的水加热至 70°C, 再将溶液 A和 B并流滴加到沉淀槽中。 在制备过程中, pH值和沉淀温度分别维持在 8和 70°C。 待沉淀结束后, 保持 搅拌速度和沉淀温度不变, 老化 4h, 过滤洗涤至中性, 将沉淀物放置在 110°C 烘箱中干燥 12h, 待干燥结束, 将所得催化剂浸渍于 200ml, 浓度为 12.75g/L 的钼酸铵 ((ΝΗ4)6Μο7024 ·4Η20) 溶液中 5h, 于 500°C空气气氛下焙烧 4h, 再经研磨、 压片成型, 破碎过筛至 10-20 目, 最终制得 30%NiO- 10%MoO3/40%SiO2- 20%Y2O
在固定床反应器中装填 10ml此催化剂, 在 450°C条件下对其进行还原, 待还原结束后,温度降至反应温度 300°C,将体系压力升至 2MPa并开始进料, 乙醇与苯胺精馏残渣质量比为 0.2。 液体空速为 OJh—1 , ¾流量为 250ml/min, 反应 10h后开始取样分析, 环己胺和二环己胺的收率分别为 38.8%、 36.7%。 反应 200h后, 环己胺和二环己胺的收率保持在 36.2%、 34.5%。
实施例 9
分别称取 20g硝酸镍 Ni(N03) 2·6¾0、 17g硅酸钠 Na2Si03、 8g硝酸铬 Cr(N03) 3·9¾0和 15g硝酸铈 Ce(N03) 3·6Η20, 将其溶于 200ml蒸馏水中, 记为溶液8。
配置质量分数为 20%的氨水溶液 150ml, 记为溶液 B。
先将溶液 A倒至沉淀槽中,并加热至 70°C,再缓缓地将溶液 B滴加至沉淀 槽中, 在此期间维持沉淀温度在 70°C。 待沉淀结束后, 保持搅拌速度和沉淀 温度不变, 陈化 4h, 过滤洗涤至中性, 将获得的沉淀物放置在 110°C烘箱中 干燥 12h, 待干燥结束, 于 600°C空气气氛下焙烧 3h, 再经研磨、 压片成型, 破碎过筛至 10-20目, 获得 24.5%NiO-7.2%Cr203/39.9%Si02-28.4%Ce02
催化剂评价同实施例 2, 环己胺和二环己胺收率分别为 28.3%、 20.7%。 反应 200h后, 环己胺和二环己胺的收率保持在 25.8%、 18.4%。

Claims

权利 要 求
1. 一种用于固定床苯胺精馏残渣资源化利用的催化剂, 其特征在于, 以 催化剂总重计, 该催化剂组分及含量如下:
NiO为活性组分, 含量为 5%-40%;
Fe的氧化物、 Mo的氧化物、 Cr的氧化物和 Co的氧化物的一种或多 种为第一助催化组分, 含量为 2%-30%;
La的氧化物、 Zr的氧化物、 Y的氧化物和 Ce的氧化物的一种或多 种为第二助催化组分, 含量为 10-30%;
余量为载体。
2.根据权利要求 1所述的催化剂, 其特征在于, 以催化剂总重计, 该催化 剂组分及含量如下:
NiO为活性组分, 含量为 15%-30%;
Fe的氧化物、 Mo的氧化物、 Cr的氧化物和 Co的氧化物的一种或多 种为第一助催化组分, 含量为 5%-25%;
La的氧化物、 Zr的氧化物、 Y的氧化物和 Ce的氧化物的一种或多 种为第二助催化组分, 含量为 15-25%;
余量为载体。
3.根据权利要求 1或 2所述的催化剂, 其特征在于, 所述的载体为 S )^
4.根据权利要求 1-3中任一项所述的催化剂的制备方法, 其特征在于, 将 硝酸镍、 第一及第二助催化组分所含金属的硝酸盐溶于水中形成金属硝酸盐 混合液, 将混合液与碱溶液及硅酸钠水溶液分别或一起以并流的方式滴加到 沉淀槽中; 或将硝酸镍、 硅酸钠、 第一及第二助催化组分所含金属的硝酸盐 溶于水中形成混合液, 与碱溶液分别或一起以并流的方式滴加到沉淀槽中; 或将硝酸镍、 第一及第二助催化组分所含金属的硝酸盐溶于水中形成金属硝 酸盐混合液, 将混合液与溶有硅酸钠的碱液分别或一起以并流的方式滴加到 沉淀槽中; 沉淀槽中 pH值控制在 7-8之间, 得到的沉淀物经老化、 过滤、 干 燥、 焙烧处理后, 成型, 粉碎。
5.根据权利要求 4 所述的方法, 其特征在于: 所述的金属硝酸盐混合液 中金属离子的浓度控制在 0.3-5mol/L。
6.根据权利要求 4所述的方法, 其特征在于, 所述的碱液为 Na2C03水溶 液、 NaOH水溶液或氨水溶液, 浓度为 0.5~10mol/L。
7.根据权利要求 4 所述的方法, 其特征在于, 控制沉淀槽中的温度在 50~70°C之间。
8.根据权利要求 4 所述的方法, 其特征在于, 所述的老化的温度为 60-80 °C , 时间 4~8h; 干燥的温度 100~150°C, 时间 8~15h, 焙烧温度在 300~700°C之间, 焙烧时间为 4~6h。
9.根据权利要求 1-3任一项所述的催化剂及权利要求 4-8任一项所述的制 备方法制备的催化剂在苯胺精馏残渣资源化利用的用途, 其特征在于, 以一 官能度饱和醇作为稀释剂, 在一定的温度和压力下, 在所述催化剂的催化下 利用气相加氢处理苯胺精馏残渣, 得到环己胺和二环己胺。
10.根据权利要求 9所述的用途, 其特征在于, 所述的一官能度饱和醇是 乙醇或者甲醇。
11.根据权利要求 9所述的用途, 其特征在于, 采用固定床反应器, 一官 能度饱和醇 /苯胺精馏残渣质量比为 0.1 0.7: 1, 液相体积空速为 0.6~1.5h— 反应压力为 l~4MPa, 反应温度在 250 320 °C之间, 氢气用量与苯胺精馏残渣 量的体积比为 500 3000: 1。
PCT/CN2014/073063 2013-09-03 2014-03-07 一种用于固定床苯胺精馏残渣资源化利用的催化剂及其制备方法 WO2015032189A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/913,853 US20160207876A1 (en) 2013-09-03 2014-03-07 Catalyst used for resource utilization of a fixed bed aniline distillation residue and method for preparing said catalyst
EP14842933.5A EP3042719B1 (en) 2013-09-03 2014-03-07 Use of a catalyst for fixed bed aniline rectification residue recycling
US15/720,103 US9926259B1 (en) 2013-09-03 2017-09-29 Catalyst for fixed bed aniline rectification residue recycling and preparation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310396100.6A CN103480380B (zh) 2013-09-03 2013-09-03 一种用于固定床苯胺精馏残渣资源化利用的催化剂及其制备方法
CN201310396100.6 2013-09-03

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/913,853 A-371-Of-International US20160207876A1 (en) 2013-09-03 2014-03-07 Catalyst used for resource utilization of a fixed bed aniline distillation residue and method for preparing said catalyst
US15/720,103 Division US9926259B1 (en) 2013-09-03 2017-09-29 Catalyst for fixed bed aniline rectification residue recycling and preparation method

Publications (1)

Publication Number Publication Date
WO2015032189A1 true WO2015032189A1 (zh) 2015-03-12

Family

ID=49821166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/073063 WO2015032189A1 (zh) 2013-09-03 2014-03-07 一种用于固定床苯胺精馏残渣资源化利用的催化剂及其制备方法

Country Status (4)

Country Link
US (2) US20160207876A1 (zh)
EP (1) EP3042719B1 (zh)
CN (1) CN103480380B (zh)
WO (1) WO2015032189A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103480380B (zh) * 2013-09-03 2015-04-22 万华化学集团股份有限公司 一种用于固定床苯胺精馏残渣资源化利用的催化剂及其制备方法
CN108067213B (zh) * 2016-11-15 2020-01-31 万华化学集团股份有限公司 一种用于苯胺精馏残渣资源化利用的催化剂及其制备方法
KR20180055154A (ko) * 2016-11-16 2018-05-25 주식회사 엘지화학 촉매의 제조 방법
CN107188329B (zh) * 2017-05-27 2020-06-26 南京工业大学 一种苯胺生产过程中工艺废水与精馏残液的联合净化方法
CN108047051B (zh) * 2017-12-12 2020-05-08 万华化学集团股份有限公司 复配分子筛催化剂用于催化裂化处理苯胺焦油的用途和方法
CN113149846A (zh) * 2021-05-31 2021-07-23 金城化学(江苏)有限公司 环己胺生产过程中副产物再次加氢工艺和装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1043699A (zh) * 1987-06-24 1990-07-11 新日本理化株式会社 环己胺类化合物的生产方法
US5705700A (en) * 1995-12-08 1998-01-06 Bayer Aktiengesellschaft Process for preparing a mixture of cyclohexylamine and dicyclohexylamine
CN101491762A (zh) * 2008-12-10 2009-07-29 上海泰禾(集团)有限公司 一种用于滴流床的负载型加氢催化剂及其制备方法
CN102218323A (zh) * 2011-04-22 2011-10-19 西北化工研究院 一种不饱和烃加氢催化剂及其制备方法和应用
CN102516087A (zh) * 2011-10-25 2012-06-27 江苏诺盟化工有限公司 一种高纯度二环己胺的资源化利用制备方法
CN102633649A (zh) * 2012-03-29 2012-08-15 山东潍焦集团有限公司 一种苯胺气相催化加氢合成环己胺的方法
CN103263928A (zh) * 2013-05-17 2013-08-28 南京工业大学 一种低中温分解n2o的复合氧化物催化剂及其制备方法
CN103480380A (zh) * 2013-09-03 2014-01-01 万华化学集团股份有限公司 一种用于固定床苯胺精馏残渣资源化利用的催化剂及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19860489B4 (de) * 1998-12-28 2008-05-08 Basf Ag Verfahren zur Hydrierung von Aldehyden und Verwendung eines Katalysators zur Reduktion eines Aldehyds zu einem Alkohol
DE10124600A1 (de) * 2001-05-21 2002-11-28 Basf Ag Ni/Ti02-Hydrierkatalysator
DE10211101A1 (de) * 2002-03-14 2003-09-25 Basf Ag Katalysatoren und Verfahren zur Herstellung von Aminen
CN101489979B (zh) * 2006-07-14 2015-04-08 巴斯夫欧洲公司 生产胺的方法
CN101411983A (zh) * 2008-11-27 2009-04-22 上海交通大学 用于催化臭氧氧化工艺的三元金属催化剂及其制备方法
JP5755236B2 (ja) * 2009-12-03 2015-07-29 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se アミンの製造のための触媒及びアミンの製造方法
WO2011067200A1 (de) * 2009-12-03 2011-06-09 Basf Se Katalysator und verfahren zur herstellung eines amins
CN102259005B (zh) * 2011-07-06 2013-01-09 中国华能集团清洁能源技术研究院有限公司 用于煤制天然气辅助甲烷化反应器的催化剂及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1043699A (zh) * 1987-06-24 1990-07-11 新日本理化株式会社 环己胺类化合物的生产方法
US5705700A (en) * 1995-12-08 1998-01-06 Bayer Aktiengesellschaft Process for preparing a mixture of cyclohexylamine and dicyclohexylamine
CN101491762A (zh) * 2008-12-10 2009-07-29 上海泰禾(集团)有限公司 一种用于滴流床的负载型加氢催化剂及其制备方法
CN102218323A (zh) * 2011-04-22 2011-10-19 西北化工研究院 一种不饱和烃加氢催化剂及其制备方法和应用
CN102516087A (zh) * 2011-10-25 2012-06-27 江苏诺盟化工有限公司 一种高纯度二环己胺的资源化利用制备方法
CN102633649A (zh) * 2012-03-29 2012-08-15 山东潍焦集团有限公司 一种苯胺气相催化加氢合成环己胺的方法
CN103263928A (zh) * 2013-05-17 2013-08-28 南京工业大学 一种低中温分解n2o的复合氧化物催化剂及其制备方法
CN103480380A (zh) * 2013-09-03 2014-01-01 万华化学集团股份有限公司 一种用于固定床苯胺精馏残渣资源化利用的催化剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3042719A4 *

Also Published As

Publication number Publication date
CN103480380A (zh) 2014-01-01
US9926259B1 (en) 2018-03-27
US20160207876A1 (en) 2016-07-21
EP3042719A4 (en) 2017-06-07
EP3042719A1 (en) 2016-07-13
CN103480380B (zh) 2015-04-22
EP3042719B1 (en) 2023-07-12
US20180065916A1 (en) 2018-03-08

Similar Documents

Publication Publication Date Title
US9926259B1 (en) Catalyst for fixed bed aniline rectification residue recycling and preparation method
CN106753549B (zh) 一种木质素解聚轻质酚类产物加氢处理制备烃类燃料的方法
CN102151568B (zh) 草酸二甲酯加氢制备乙二醇的催化剂及制备和应用
US10836696B2 (en) Method for increasing UV transmittance of ethylene glycol
CN106179351A (zh) 一种Cu‑Ni/Al2O3催化剂的制备方法及其产品和应用
CN108067213B (zh) 一种用于苯胺精馏残渣资源化利用的催化剂及其制备方法
CN102786424A (zh) 一种催化加氢制备3-氯-4-甲基苯胺的方法
CN101049562A (zh) 用卤代硝基苯催化加氢制卤代苯胺的催化剂及其制备方法
CN109317139A (zh) 一种硫掺杂活性炭负载贵金属催化剂的制备及其在卤代芳香硝基化合物加氢反应中的应用
CN105601588B (zh) N-羟乙基哌嗪联产哌嗪的合成方法
CN104028289A (zh) 碳化钛负载纳米金属催化剂及其还原制备氯代苯胺的方法
CN104557562A (zh) 二甲基乙醇胺直接催化胺化生产n,n,n,,n,-四甲基乙二胺的方法
CN104387340B (zh) 一种制备n‑甲基哌嗪及其催化剂的方法
CN106187956A (zh) 一种糠醛经原位加氢制备2‑甲基呋喃的方法
CN108084035A (zh) 一种无碱条件下己二腈直接氢化制己二胺的方法
CN104447379B (zh) 甲酰胺的制备方法
CN105294541B (zh) 2,2,6,6‑四甲基哌啶的合成方法
CN107983363B (zh) 连续制备1,2-丙二胺催化剂及其制备方法
CN106040253A (zh) 一种固定床催化加氢制端伯氨基聚醚催化剂的制备方法及应用
CN107597173A (zh) 一种苯酚羟基化合成苯二酚的催化剂及其制备方法
CN112452325A (zh) 一种3-羟基丁醛加氢制备1,3-丁二醇的催化剂及其制备方法、应用
CN104447680B (zh) 一种制备甲酰胺的方法
CN112452331B (zh) 一种用于1,3-丁二醇合成的加氢催化剂及其制备方法、应用
CN104496939A (zh) 一种催化加氢制备哌嗪或烷基哌嗪的方法
CN110560052A (zh) 一种含钌催化剂及其制备方法与用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14842933

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014842933

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014842933

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE