WO2015030142A1 - B型肝炎の慢性化の素因の検出方法 - Google Patents

B型肝炎の慢性化の素因の検出方法 Download PDF

Info

Publication number
WO2015030142A1
WO2015030142A1 PCT/JP2014/072649 JP2014072649W WO2015030142A1 WO 2015030142 A1 WO2015030142 A1 WO 2015030142A1 JP 2014072649 W JP2014072649 W JP 2014072649W WO 2015030142 A1 WO2015030142 A1 WO 2015030142A1
Authority
WO
WIPO (PCT)
Prior art keywords
hla
dpb1
hepatitis
allyl
progression
Prior art date
Application number
PCT/JP2014/072649
Other languages
English (en)
French (fr)
Inventor
徳永 勝士
裕美 澤井
雅史 溝上
奈央 西田
Original Assignee
国立大学法人東京大学
独立行政法人国立国際医療研究センター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学, 独立行政法人国立国際医療研究センター filed Critical 国立大学法人東京大学
Priority to US14/914,791 priority Critical patent/US20160304976A1/en
Priority to EP14841107.7A priority patent/EP3040422A4/en
Priority to JP2015534311A priority patent/JP6521382B2/ja
Priority to BR112016004317A priority patent/BR112016004317A2/pt
Priority to KR1020167005824A priority patent/KR20160040677A/ko
Priority to CN201480047093.1A priority patent/CN105612259A/zh
Publication of WO2015030142A1 publication Critical patent/WO2015030142A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/70Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving virus or bacteriophage
    • C12Q1/701Specific hybridization probes
    • C12Q1/706Specific hybridization probes for hepatitis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/118Prognosis of disease development
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/172Haplotypes

Definitions

  • the present invention relates to a method for detecting a predisposition to chronicity and / or pathological progression of hepatitis B, comprising alleles related to chronicity and / or pathological progress of hepatitis B, and examination of chronic hepatitis B or its pathological progress And a reagent for detecting a predisposition for hepatitis B chronicity and / or pathological progress, and a test kit for chronicity and / or pathological progress of hepatitis B containing the reagent.
  • Hepatitis B virus HBV
  • Hepatitis B virus HBV
  • Acute hepatitis develops symptoms after a latent period of 1 to 6 months after infection, and begins to recover within a few weeks.
  • 1-2% of patients who develop acute hepatitis are at risk of developing fulminant hepatitis, and 70-80% of those who develop fulminant hepatitis die.
  • the infected HBV is not excluded from the body and becomes a carrier when it settles in the liver for more than 6 months.
  • 80 to 90% of carriers go through an asymptomatic period, a transient hepatitis stage, and a hepatitis sedation stage, and then continue as an asymptomatic carrier.
  • Chronic carriers of hepatitis B virus are distributed in Southeast Asia and the East Pacific region, and in particular, it is said that there are approximately 1.5 million hepatitis B infected people in Japan.
  • HLA-DP Although there has been a report comparing the allele frequency between the group of chronic hepatitis B patients and the comparison control group (Non-patent Document 1), in the study of the allyl frequency, the non-hepatitis patient group was used as the comparison control group. Therefore, there is a problem that it is unclear whether the difference between the group of patients with chronic hepatitis B and the group of healthy subjects is reflected in the experimental results. In addition, the relationship with HLA-DPB allyl has not been investigated with respect to disease progression.
  • the present invention performs analysis using a group of healthy subjects, a group of HBV patients, a group of chronic hepatitis B, and a group of hepatitis B disease progression (cirrhosis or liver cancer), and is sensitive to chronic hepatitis B and disease progression.
  • a method for detecting a genetic predisposition to hepatitis B and / or disease progression, including alleles associated with chronicity and / or disease progression of hepatitis B Method for examining hepatitis B, cirrhosis or liver cancer, reagent for detection of predisposition for chronicity of hepatitis B and / or pathological progress, and chronicity and / or pathological progress of hepatitis B containing the reagent
  • the purpose is to provide a test kit.
  • the present inventors carried out typing related to HLA-DP using a group of healthy subjects, a group of HBV patients, a group of chronic hepatitis B, and a group of hepatitis B pathologic conditions (cirrhosis or liver cancer), and chronic hepatitis B Allyl related to chemistry was found.
  • a method for detecting predisposition for hepatitis B chronicity and pathological progression a method for examining chronic hepatitis B, cirrhosis or liver cancer, chronicity of hepatitis B and pathological progression
  • a reagent for detecting a predisposition and a test kit for chronicity and progression of hepatitis B containing the reagent have been constructed.
  • a method for detecting a predisposition to chronicity of hepatitis B and / or pathological progress comprising the following: a) a step of comparing an allele associated with chronicity of hepatitis B and / or progression of a disease state with a base sequence or amino acid sequence corresponding to the allele in a specimen; b) analyzing whether the base or amino acid residue at the site corresponding to the allyl of the specimen matches the base or amino acid residue of the allyl; and c) whether hepatitis B in the specimen is chronic and / or Identifying whether the disease state has progressed.
  • the present invention relates to a method for detecting a genetic predisposition for chronicity and / or pathological progression of hepatitis B, comprising allele associated with chronicity and / or pathological progression of hepatitis B, chronic hepatitis B / or pathological progress thereof
  • the present invention relates to a reagent for detecting a predisposition for chronicity of hepatitis B and / or pathological progress, and a test kit for detecting chronicity and / or pathological progress of hepatitis B containing the reagent.
  • the present invention will be described below.
  • Alleles related to chronification and / or pathological progress of hepatitis B according to the present invention
  • the present invention relates to alleles related to chronification and / or pathological progress of hepatitis B.
  • Alleles related to chronicity of hepatitis B and disease progression are sensitive to chronicity and disease progression of hepatitis B (hepatitis B is likely to become chronic and easy to progress) or resistant. It refers to allyl (hepatitis B is less likely to become chronic and difficult to progress).
  • chronicization of hepatitis B refers to a state in which HBV is persistently infected, and the onset factors are as follows: infection of mother and infant from HBV persistently infected person (vertical infection); When blood or body fluid of a person with persistent HBV infection enters the body for reasons such as medical practice; as a result of infection with HBV during use of an immunosuppressant or anticancer agent that reduces the body's immunity, Examples include cases in which HBV cannot be eliminated from the body and persistent infection occurs; and cases in which a healthy person has recently been infected with a foreign type HBV such as a genotype A type Western type, an Asian type, or an African type.
  • liver cirrhosis B a group that shifts from chronic HBV to cirrhosis or liver cancer is referred to as “pathological progression of hepatitis B” of the present invention.
  • Liver cirrhosis refers to a condition in which the fibers formed when the liver damaged by hepatitis virus infection is repaired spread to the liver. This may cause hepatic encephalopathy or jaundice.
  • Hepatoma refers to hepatocellular carcinoma caused by hepatitis virus infection.
  • the search for alleles related to chronicity of hepatitis B and / or progression of pathological condition is made by preparing genomic DNA from a biological sample collected from a chronic hepatitis B patient, cirrhosis or liver cancer patient or a healthy person, and directly This is performed by analyzing the gene sequence by a sequence method or the like. Since the novel allyl thus obtained is found in patients with chronic hepatitis B or cirrhosis or liver cancer, it is highly related to chronicity of hepatitis B and / or progression of pathological conditions. This is a promising candidate as an allyl according to the present invention.
  • test can be performed. For example, the appearance rate of the candidate allele in the group having chronicity of hepatitis B and the group of healthy persons is calculated, respectively, and the association between the candidate allele and chronicity of hepatitis B is statistically tested.
  • the test can be performed by a statistically appropriate method such as ⁇ 2 test or Fisher's exact test (Fischer's exact test), and the significance level may be corrected if necessary.
  • the method for detecting allyl is not particularly limited, and can be selected from methods known to those skilled in the art.
  • TaqMan PCR method MALDI-TOF / MS method, ASO (allele-specific oligonucleotide) method, direct sequencing method, RFLP method, invader method, TGGE, DGGE method, MutY enzyme method, microarray, protein truncation test (PTT) method
  • PTT protein truncation test
  • the present inventors performed HLA-DPB1 typing on Japanese HBV patient group 489 samples and healthy control group 467 samples, Korean HBV patient group 340 samples and healthy control group 140 samples, and chronication of hepatitis B HLA-DPB1 * 05: 01 and HLA-DPB1 * 09: 01 as alleles sensitive to HLA-DPB1 * 04: 02, HLA-DPB1 * 04: 02 and HLA-DPB1 * 04 as alleles resistant to chronic hepatitis B 01 and HLA-DPB1 * 02: 01 were identified.
  • HLA-DPB1 * 02: 01 was identified as an allyl resistant to the progression of chronic hepatitis B.
  • HLA is a human major histocompatibility complex (MHC), a membrane protein that binds to foreign antigen peptides such as grafts, bacteria, and viruses and presents them to T cells.
  • MHC human major histocompatibility complex
  • HLA is known to contain many alleles, and this information is described in HLA nomenclature (http://hla.alleles.org/announcement.html).
  • HLA nomenclature http://hla.alleles.org/announcement.html.
  • the notation of allyl and polymorphism in this specification is based on the notation method by HLA nomenclature.
  • GenBank NIH genetic sequence database
  • DDBJ DNA Data Bank of Japan
  • sequence data relating to the allele may be used as the sequence data relating to the allele.
  • the cDNA of HLA-DPB1 * 05: 01 has 917 bases
  • AY804138 SEQ ID NO: 1
  • AAW78743 SEQ ID NO: 2
  • the HLA-DPB1 * 09: 01 cDNA has 907 bases and is registered in GenBank as AY804139 (SEQ ID NO: 3) and 258 amino acids as AAW78744 (SEQ ID NO: 4).
  • the HLA-DPB1 * 04: 02 cDNA has 917 bases and is registered in GenBank as AY804137 (SEQ ID NO: 5) and 258 amino acids as AAW78742 (SEQ ID NO: 6).
  • the HLA-DPB1 * 04: 01 cDNA has 883 bases and is registered in GenBank as AY804136 (SEQ ID NO: 7) and 258 amino acids as AAW78741 (SEQ ID NO: 8).
  • the cDNA of HLA-DPB1 * 02: 01 has 908 bases and is registered in GenBank as AY804134 (SEQ ID NO: 9) and amino acid 258 residues as AAW78739 (SEQ ID NO: 10).
  • FIG. 1 shows the alignment with the allyl of the present invention.
  • the above allyl HLA-DPB1 * 05: 01, HLA-DPB1 * 09: 01, HLA-DPB1 * 04: 02, HLA-DPB1 * 04: 01 and HLA-DPB1 * 02: 01 are referred to as “B of the present invention.
  • Alleles related to chronicity of hepatitis B and / or progression of pathological conditions "," Allyl related to chronicity of hepatitis B of the present invention ",” Allyl according to the present invention ", Sometimes referred to as SNP.
  • the allyl used in the present invention includes not only single-stranded and double-stranded DNA but also its RNA complement, which may be naturally derived or artificially produced.
  • DNA include genomic DNA, cDNA corresponding to the genomic DNA, chemically synthesized DNA, DNA amplified by PCR, a combination thereof, and a hybrid of DNA and RNA. It is not limited.
  • the term “polynucleotide” refers to a polynucleotide in which two or more nucleotides are bonded, and includes a polynucleotide having a length generally referred to as an oligonucleotide.
  • the polynucleotide in the present invention may be DNA or RNA.
  • nucleotide sequences can be obtained by preparing probes using appropriate fragments by methods known to those skilled in the art, and using these probes by known hybridization methods such as colony hybridization, plaque hybridization, Southern blotting, etc. Rally and genomic libraries.
  • hybridization methods such as colony hybridization, plaque hybridization, Southern blotting, etc. Rally and genomic libraries.
  • DNA Cloning 1 Core Techniques, A Practical Approach 2nd ed.” (Oxford University (1995); Section 2.10) for hybridization conditions. Can do.
  • the present invention relates to the above-described chronic hepatitis B and / or pathological progress of the present invention.
  • the present invention relates to a method (typing method) for detecting a predisposition to chronicity and / or progression of hepatitis B using allele (also referred to as “polymorphism” or “SNP” in the following description).
  • a step of comparing an allele associated with chronicity and / or progression of hepatitis B with a base sequence or amino acid sequence corresponding to the allele in a specimen is, in other words, SEQ ID NOs: 1 to 10 This is detection of alleles of the base sequence and amino acid sequence shown.
  • allyl detection can be performed at the gene level or protein level.
  • genomic DNA or mRNA can be prepared from a specimen, and alleles related to chronicity of hepatitis B of the present invention in the genomic DNA or mRNA can be detected based on the nucleotide sequence.
  • human HLA-DP molecular protein is prepared from the specimen, and for example, using antibodies etc., HLA-DPB1 * 09: 01, HLA-DPB1 * 05: 01, HLA-DPB1 * 04: 02, HLA-DPB1 * 04: 01 and / or HLA-DPB1 * 02: 01 allele can be detected.
  • Genomic DNA or mRNA prepared by a method well known to those skilled in the art can be used based on the biological sample collected from the above.
  • the biological sample collected from the specimen used in the method of the present invention can be, for example, specimen cells or tissues, hair, stool, urine, saliva, cells, cells scraped from the nasal mucosa, etc. It is not limited to.
  • Genomic DNA can be prepared by any known method, for example, phenol / chloroform method, cetyltrimethylammonium bromide (CTAB) method and the like.
  • mRNA can be prepared by any known method, such as the guanidine isothiocyanate method.
  • a commercially available kit may be used for the preparation of genomic DNA or mRNA. Examples of the kit include Wizard Genomic DNA Purification Kit (Promega) for preparing genomic DNA, and NucleoTrap (registered trademark) mRNA Kit (Clontech) for preparing mRNA.
  • cDNA may be synthesized from mRNA for the detection of allele described below. As a cDNA synthesis method, any method known in the art may be used.
  • cDNA can be synthesized from RNA by reverse transcriptase-polymerase chain reaction (RT-PCR) using random primers or poly-T primers.
  • RT-PCR reverse transcriptase-polymerase chain reaction
  • And / or the detection of HLA-DPB1 * 02: 01 allele can be detected using any means of detecting a genetic polymorphism known in the art.
  • HLA-DPB1 * 09: 01, HLA-DPB1 * 05: 01, HLA-DPB1 * are directly sequenced using genomic DNA or cDNA derived from mRNA.
  • HLA-DPB1 * 04: 01 and / or HLA-DPB1 * 02: 01 alleles can be detected.
  • cDNA is prepared from the genomic DNA or mRNA prepared above; HLA-DPB1 * 09: 01, HLA-DPB1 * 05: 01, HLA-DPB1 * 04: 02, HLA-
  • the region containing DPB1 * 04: 01 and / or HLA-DPB1 * 02: 01 allele is cloned into a vector or amplified by PCR; and the nucleotide sequence of the region is determined.
  • cloning can be performed by screening from a cDNA library using an appropriate probe.
  • the vector can clone by amplifying by PCR reaction using a suitable primer, and ligating to a suitable vector. Furthermore, it can be subcloned into another vector, but is not limited thereto.
  • the vector include pBlue-Script (trademark) SK (+) (Stratagene), pGEM-T (Promega), pAmp (TM: Gibco-BRL), p-Direct (Clontech), pCR2.1-TOPO (Invitrogene) ) And other commercially available plasmid vectors, viral vectors, artificial chromosome vectors and cosmid vectors.
  • any known method can be used.
  • the genomic DNA or mRNA derived from the specimen is amplified.
  • the sample has the allyl according to the present invention homologous, and the PCR product is generated from the allylic primer according to the present invention and other allylic primers. If so, the specimen will have the allyl according to the present invention in heterogeneity.
  • the other allele primer generates a PCR product, it indicates that the sample does not have the allyl according to the present invention.
  • a region containing the allyl according to the present invention to be detected is amplified by PCR. Subsequently, this PCR product is cleaved with a restriction enzyme suitable for the allyl according to the present invention. PCR products digested with restriction enzymes are separated by gel electrophoresis and visualized by ethidium bromide staining. By comparing the fragment length with the molecular weight markers and the fragment lengths generated by other allyl and allyl controls according to the present invention, the presence of the allyl according to the present invention in the sample can be detected. (2-2-4) Hybridization method The allyl according to the present invention can also be detected by utilizing hybridization.
  • the hybridization method is a method for determining the presence or absence of an allyl according to the present invention based on the property that a sample-derived genomic DNA or mRNA hybridizes with a complementary DNA molecule (for example, an oligonucleotide probe).
  • This hybridization method can be performed using various techniques for hybridization and detection such as known hybridization such as colony hybridization, plaque hybridization, Southern blotting and the like. For details on the hybridization procedure, see Molecular Cloning, A Laboratory Manual 3rd ed.
  • hybridization can also be detected using a DNA chip.
  • an allyl-specific oligonucleotide probe according to the present invention is designed and affixed to a solid support. Then, the DNA sample derived from the specimen is brought into contact with the DNA chip to detect hybridization.
  • the TaqMan PCR method is a method in which an allele-specific Taqman probe and Taq polymerase are used to simultaneously detect SNP and amplify a region containing SNP.
  • the Taqman probe is an oligonucleotide of about 20 bases labeled with a fluorescent substance at the 5 ′ end and a quencher at the 3 ′ end, and is designed to hybridize to a target SNP site.
  • Taq polymerase has 5′-3 ′ nuclease activity.
  • the Taqman probe When the allyl region is amplified using PCR primers designed to amplify the region containing the target allele in the presence of these Taqman probes and Taq polymerase, the Taqman probe is in parallel with the amplification and the target allyl site of the template DNA. Hybridize to.
  • the extension reaction from the forward primer side reaches the Taqman probe hybridized to the template, the fluorescent substance bound to the 5 ′ end of the Taqman probe is cleaved by the 5 ′ nuclease activity of Taq polymerase. As a result, the released fluorescent substance is not affected by the quencher and generates fluorescence.
  • SNP detection can be performed by measuring the fluorescence intensity.
  • a method combined with a primer extension method can also be mentioned.
  • This method enables high-throughput analysis, and includes the steps of 1) PCR, 2) PCR product purification, 3) primer extension reaction, 4) extension product purification, 5) mass spectrometry, and 6) genotype determination.
  • a primer extension reaction is performed using a genotyping primer designed so that the 3 'end is directly adjacent to the SNP site.
  • the PCR product is denatured at high temperature and excess genotyping primer is added and annealed.
  • ddNTP and DNA polymerase are added to the reaction system and subjected to a thermal cycle reaction, an oligomer that is one base longer than the genotyping primer is generated.
  • the one base-long oligomer generated in this extension reaction varies depending on the allele, depending on the above design of the genotyping primer.
  • the purified extension reaction product is subjected to mass spectrometry and analyzed from the mass spectrum.
  • MF20 / 10S is a system that employs this method.
  • complementary and non-complementary primers are used in an ultra-fine region of about 1 femtoliter (1/1000 trillion liter).
  • the translational diffusion time at the level of one molecule of a fluorescent label primer amplified by the conventional PCR method is measured and analyzed.
  • DNA chip method is one of the types that can achieve high throughput.
  • a DNA chip is obtained by aligning and fixing various types of DNA probes on a substrate, and a labeled DNA sample is hybridized on the chip to detect a fluorescent signal from the probe.
  • Snipper method An example of a SNP typing method using a gene amplification method other than the PCR method is the Snipper method.
  • This method is an SNP typing method applying the RCA (rolling circle amplification) method, which is a DNA amplification method in which circular single-stranded DNA is used as a template and DNA polymerase synthesizes complementary strand DNA while moving on it.
  • the probe is an oligo DNA with a length of 80-90 bases, and contains a 10-20 base length sequence complementary to each of the 5 'and 3' ends of the target SNP at both ends. Designed to be The probe is designed so that the 3 'end of the probe is a complementary sequence to the target allele.
  • the probe will be circularized, but if the 3' end of the probe is mismatched, the probe will not be circularized. Further, the probe has a backbone sequence of 40-50 bases in length, and includes a sequence complementary to two types of RCA amplification primers.
  • Examples of the SNP typing method using a gene amplification method other than the PCR method include a typing method using the UCAN method and the LAMP method.
  • the UCAN method is an application of the ICAN method, a gene isothermal amplification method developed by Takara Bio.
  • a DNA-RNA-DNA chimeric oligonucleotide (DRD) is used as a primer precursor. This DRD primer precursor is designed so that the DNA portion at the 3 ′ end is modified so that replication of the template DNA by DNA polymerase does not occur, and the RNA portion binds to the SNP site.
  • the LAMP method is a gene isothermal amplification method developed by Eiken Chemical Co., Ltd. and defines six regions (F3c, F2c, F1c from the 3 'end side, B3, B2, B1 from the 5' end side) of the target gene. Amplification is performed using four types of primers (FIP primer, F3 primer, BIP primer, B3 primer) for the six regions. For the purpose of typing, only the target SNP site (one base) is required between F1 and B1, and the FIP primer and the BIP primer are designed so that one base of the SNP comes to the 5 ′ end.
  • a DNA synthesis reaction occurs from the dumbbell structure, which is the starting structure of the LAMP method, and the amplification reaction proceeds continuously.
  • the DNA synthesis reaction from the dumbbell structure does not occur and the amplification reaction does not proceed.
  • the Invader method is a method using two types of non-fluorescently labeled probes (allele probe, invader probe), one type of fluorescently labeled probe (FRET probe), and cleavase, which is an endonuclease, without using a nucleic acid amplification method.
  • the allele probe has a sequence complementary to the template DNA on the 3 'end side from the SNP site, and has a sequence unrelated to the template DNA called a flap on the 5' side of the probe.
  • the invader probe has a complementary sequence 5 'from the SNP site of the template DNA, and the base corresponding to the SNP site has an arbitrary base.
  • the FRET probe has a sequence complementary to the flap sequence on the 3 'side.
  • One 5 'side is labeled with a fluorescent dye and a quencher, but the FRET probe is designed to form a double strand in the molecule and is usually quenched.
  • the 3 'end (arbitrary base portion) of the invader probe enters the SNP site when the allele probe forms a double strand with the template DNA.
  • the cleavase recognizes the structure invaded by the base and cleaves the flap portion of the allele probe.
  • the 3 'end of the flap enters the intramolecular double-stranded portion of the FRET probe.
  • cleavase recognizes a structure in which a flap base has entered the FRET probe and cleaves the fluorescent dye of the FRET probe. Since the fluorescent dye is separated from the quencher, fluorescence is generated. If the allele probe does not match the allele, the specific structure recognized by cleavase is not formed, and the flap is not cleaved.
  • primers for the detection of allele it is designed to be a primer suitable for the region to be amplified and the typing method.
  • the region can be completely amplified, and the sequence can be designed based on sequences near both ends of the region.
  • Primer design methods are well known in the art, and primers that can be used in the present invention satisfy conditions that allow specific annealing, such as length and base composition (melting temperature) at which specific annealing is possible.
  • the length of the region to be amplified is not limited as long as typing is not hindered, and may be appropriately increased or decreased depending on the detection method.
  • an allyl site is included in a part of the region to be amplified, but the position of the site in the region to be amplified is not limited, and may be arranged at an appropriate position according to a detection method (typing method). Therefore, in designing the primer, the positional relationship between the primer and the allyl site can be freely designed according to the detection method, and the nucleotide sequences represented by SEQ ID NOs: 1, 3, 5, 7, and 9 including the allyl to be detected are included.
  • the primer can be designed in consideration of the characteristics of the typing method.
  • the length that exhibits the function as a primer is preferably 10 to 100 bases or more, usually 15 to 50 bases, preferably 15 to 30 bases.
  • Tm melting temperature
  • known primer design software can be used for confirmation of Tm.
  • the probe When a probe is used for allyl detection, the probe is designed to recognize the allyl moiety.
  • the allyl site may be recognized at any location in the probe in accordance with the typing method, and may be recognized at the end of the probe depending on the typing method.
  • the allele-detecting polynucleotide When used as a probe, the length of the base sequence complementary to the genomic DNA is usually 15 to 200, preferably 15 to 100 bases, more preferably 15 to 50 bases. May be longer or shorter. (2-2-7) Preferred Allyl Detection Method for the Present Invention
  • a preferred allyl detection method for the present invention may be a PCR-SSOP (Sequence Specific Oligonucleotide probe) method using PCR, and this method is used.
  • HLA-DPB1 * 09: 01, HLA-DPB1 * 05: 01, HLA-DPB1 * 04: 02, HLA-DPB1 * 04: 01 and / or HLA-DPB1 * 02: 01 alleles can be detected.
  • PCR-SSOP amplifies the above-mentioned allyl-containing region of the sample by PCR using a biotin-labeled primer.
  • the amplified DNA is made into single-stranded DNA and specifically bound to a probe which is a specific sequence.
  • a probe is fixed to a microbead that is color-coded with a fluorescent dye, and a fluorescent signal is obtained by binding of fluorescently labeled streptadipine via biotin from the microbead to which the amplified DNA is bound.
  • a fluorescent signal is obtained by binding of fluorescently labeled streptadipine via biotin from the microbead to which the amplified DNA is bound.
  • the gene type can be determined from the type of beads to which the amplified DNA is bound.
  • a commercially available kit may be used for the method. Examples of the kit include, but are not limited to, xMAP (registered trademark) technology (Luminex) that can discriminate many polymorphisms at once. The outline of the method of the present invention using this method will be described below.
  • An amplification reaction using the prepared genomic DNA as a template is performed using a polynucleotide such as an amplifiable primer or probe, and a nucleic acid fragment having the above base sequence is amplified.
  • the polynucleotide used for the detection of allele is based on the nucleotide sequence shown in SEQ ID NOs: 1, 3, 5, 7, and 9, and is a known oligonucleotide synthesis method according to the detection method of the primer or probe and the applicable detection method. And may be synthesized using a commercially available chemical synthesizer. A person skilled in the art synthesizes polynucleotides using known methods based on the nucleotide sequences shown in SEQ ID NOs: 1, 3, 5, 7, and 9 and their complementary strands and the position information of the allyl according to the present invention. can do.
  • a polynucleotide may be modified using a fluorescent dye or a nucleotide derivative modified with biotin or the like, or a fluorescent dye or the like may be bound to the synthesized polynucleotide.
  • the synthesis method is also known.
  • a PCR reaction is carried out by allowing the above-mentioned primers and heat-resistant DNA polymerase to act on the genomic DNA prepared from the specimen.
  • the above method can be easily carried out by those skilled in the art according to “Molecular Cloning, A Laboratory Manual 3rd ed.” (Cold Spring Harbor Press (2001)), etc., but the conditions for the PCR reaction of the present invention are as follows. For example, the following conditions can be mentioned. Denaturation temperature: 90-100 ° C Annealing temperature: 40-70 ° C Elongation temperature: 60-75 ° C The number of cycles described above: about 30 to 50 times In order to increase the specificity of amplification, the amplification reaction may be performed twice or more using two or more sets of primers.
  • the primer used in each amplification reaction may be designed at the same position, or may be designed inside the position of the primer in the first amplification.
  • the nucleic acid fragment of the region containing the allele base sequence according to the present invention can be specifically amplified using the sample genomic DNA as a template.
  • the base sequence is determined, and the determined base sequence is compared with the base sequence of the allyl according to the present invention. Thereby, it can be determined whether the sample has the allyl according to the present invention.
  • a known method can be used to purify the obtained PCR product. For example, methods using kits such as Wizard SV Gel PCR clean-UP System (Promega), GENECLEAN (Funakoshi), QIAquick PCR purification Kits (QIAGEN), ExoSAP-IT (GE Healthcare Bioscience), DEAE-cellulose filter paper There are a method of using, a method of using a dialysis tube and the like.
  • any method known in the art may be used, including, for example, a direct sequencing method in which the sequence can be determined without cloning the amplified nucleic acid fragment into a vector. Not.
  • the sequencing method can be easily carried out using a commercially available kit such as CEQTMDTCS Quick Start Kit (BECKMAN), BigDye Terminator Cycle Sequencing Ready Ready Kit ABI310 (Applied Biosystems).
  • the direct sequencing method it is preferable to use a primer that can specifically determine the base sequence of the allyl-containing region according to the present invention.
  • the primer set to be used can be designed by a known method.
  • the base sequence is compared with the base sequence of the allyl according to the present invention.
  • the allyl according to the present invention can also be detected. Specifically, the allyl according to the present invention can be detected by using an antibody that can specifically recognize the DP molecule having the allyl according to the present invention.
  • the antibody can be prepared by an immunological method using a peptide consisting of any region of the amino acid sequences shown in SEQ ID NOs: 2, 4, 6, 8, and 10 as an antigen.
  • the method for producing an antibody and the method for detecting an DP molecule having an allyl according to the present invention using an antibody can be performed using methods known in the art.
  • HLA-DPB1 * 04: 02, HLA-DPB1 * 04: 01 and HLA-DPB1 * 02: 01 allyl Indicates that the specimen is resistant to the onset of hepatitis B, and HLA-DPB1 * 05: 01 and HLA-DPB1 * 09: 01 allyl are associated with chronicity of hepatitis B.
  • HLA-DPB1 * 02: 01 allyl indicates that the sample is resistant to progression of chronic hepatitis B.
  • the method of the present invention can also be said to be a method of examining chronic hepatitis B or pathological progress using the allyl according to the present invention.
  • “Positive rate” related to chronic hepatitis B refers to the proportion of patients with one or more sensitive alleles related to chronic hepatitis B or resistant allyls related to chronic hepatitis B The percentage of patients who have none or one.
  • HLA-DPB1 * 05: 01 and HLA-DPB1 * 09: 01 which is a sensitive allele for hepatitis B chronicity
  • the “positive rate” regarding the progression of hepatitis B among 206 patients with cirrhosis and liver cancer, there is no HLA-DPB1 * 02: 01 which is a resistant allele for the progression of hepatitis B or Since there are 203 patients with only one and three with two, the positive rate is 98.5%.
  • the “positive rate” regarding the progression of hepatitis B refers to the positive rate regarding patients with cirrhosis and liver cancer.
  • the presence or absence of onset susceptibility to chronicity of hepatitis B is important information not only for chronic patients with hepatitis B but also for non-chronic patients. For example, selection of treatment methods and drugs for chronic hepatitis B and chronicity This is important information regarding prevention / prevention of hepatitis B.
  • the presence of this HLA-DPB1 * 05: 01, HLA-DPB1 * 04: 02, HLA-DPB1 * 09: 01, HLA-DPB1 * 04: 01, HLA-DPB1 * 02: 01 allyl is homo- or hetero- Either of these may be used. This is because humans have two types of genes derived from father and mother.
  • the present inventors include a certain resistant allyl and a sensitive allyl among a resistant allyl resistant to chronic hepatitis B and a sensitive allele sensitive to chronic hepatitis B.
  • the odds ratio (OR; Odds Ratio) in the 95% confidence interval for 1380 HBV patient groups and 1225 healthy control groups was determined.
  • the odds ratio OR is the ratio between the odds OsP of the HBV patient group and the odds OsC of the healthy control group for the human group having a certain allyl combination.
  • the odds OsP of this HBV patient group is calculated
  • odds OsC of this healthy control group is calculated
  • the human group having only one HLA-DPB1 * 05: 01 or HLA-DPB1 * 09: 01 as the sensitive allele will be described.
  • the odds OsP of the HBV patient group is 0.42 for the human having the specific allyl combination shown in this specific example.
  • out of 1225 healthy control groups 477 have the specific allyl combination shown in this specific example. That is, for the human having the specific allyl combination shown in this specific example, the odds OsC of the healthy control group is 0.63. Therefore, for the human having the specific allyl combination shown in this specific example, the odds ratio OR, that is, the ratio of the odds OsP in the HBV patient group to the odds OsC in the healthy control group is 0.67.
  • the odds ratio OR is smaller than 1, it can be said that a human having a specific allyl combination is resistant to chronic hepatitis B.
  • a human having a specific allyl combination is resistant to chronic hepatitis B.
  • only one of HLA-DPB1 * 04: 02, HLA-DPB1 * 04: 01, or HLA-DPB1 * 02: 01 is used as a resistant allyl, and HLA-DPB1 is used as a sensitive allyl.
  • HLA-DPB1 is used as a sensitive allyl. It can be said that a human having only one of either * 05: 01 or HLA-DPB1 * 09: 01 is resistant to chronic hepatitis B.
  • HLA-DPB1 allyl is a combination shown in the above specific example, It was revealed that the specimen has resistance to chronic hepatitis B.
  • the present inventors have derived that it can be said that a human having only one resistant allyl and only one sensitive allele is resistant to chronic hepatitis B. From this, it can be said that a human having two kinds of alleles derived from a father and a mother each have only one resistant allyl and one sensitive allele is resistant to chronic hepatitis B. That is, by using the allyl according to the present invention, it is possible to determine the onset resistance or susceptibility to chronicity or progression of hepatitis B based on a combination of two types of alleles derived from a father and a mother.
  • the reagent for detecting allyl is useful as a reagent for testing for chronicity or progression of hepatitis B.
  • the reagent can also be used to determine the onset resistance or susceptibility to chronicity of hepatitis B or the progression of disease state.
  • the allyl according to the present invention various primers and probes, an antibody capable of specifically binding to the allyl according to the present invention, reagents used simultaneously when performing SNP typing (for example, deoxynucleotide 3 In addition to phosphoric acid (dNTPs), DNA polymerase, buffer, etc.) and positive control, it can be used as a reagent in combination with other solvents and solutes.
  • reagents used simultaneously when performing SNP typing for example, deoxynucleotide 3 In addition to phosphoric acid (dNTPs), DNA polymerase, buffer, etc.
  • dNTPs phosphoric acid
  • DNA polymerase DNA polymerase
  • buffer etc.
  • positive control positive control
  • it can be used as a reagent in combination with other solvents and solutes.
  • distilled water, pH buffer reagent, salt, protein, surfactant and the like can be combined.
  • a part of the allele-detecting polynucleotide according to the present invention such as a probe or a primer, HLA-DPB1 * 09: 01, HLA-DPB1 * 05: 01, HLA-DPB1 * 04: 02, A sequence unrelated to HLA-DPB1 * 04: 01 and / or HLA-DPB1 * 02: 01 allyl or the like may be contained.
  • the allele-detecting polynucleotide according to the present invention may be a DNA and RNA chimera.
  • the allele-detecting polynucleotide according to the present invention may be labeled with a fluorescent substance or a binding affinity substance such as biotin or digoxin.
  • the reagent of the present invention may further contain a reaction reagent such as a buffer constituting a reaction solution, a dNTP mixture, enzymes (polymerase, etc.).
  • a reaction reagent is a reagent having a label detectable by an appropriate chemical or physical detection means.
  • a labeling agent used in a measurement method using such a labeling substance for example, a fluorescent substance, an enzyme, a radioisotope, a luminescent substance and the like are used.
  • An ELISA method using an enzyme for labeling is widely used. Fluorescamine, fluorescein isothiocyanate, etc.
  • luminescent substance examples include luciferin, lucigenin, luminol, luminol derivatives and the like.
  • reaction medium includes a buffer solution that gives the optimal conditions for the reaction or is useful for stabilizing the reaction product, a stabilizer for the reactant, and the like.
  • Kit for detecting predisposition for chronicity or pathological progression of hepatitis B containing allyl according to the present invention When detecting a predisposition for chronicity or pathological progression of hepatitis B using the allyl according to the present invention No special conditions, operations etc. are required. It is carried out according to the usual conditions and operations in each method, and a suitable measurement system can be constructed by adding some modifications if necessary.
  • the reagent of the present invention it is possible to make the most convenient and efficient measurement for that purpose by making the reagent of the present invention into a kit.
  • a kit quantitative analysis can be performed efficiently in a normal laboratory or laboratory without the need for special analytical equipment, skilled operation, and advanced knowledge.
  • the configuration and form of the assay kit are not particularly limited, and the content thereof is not limited as long as the predetermined purpose can be achieved. Generally, it is composed of an instruction manual relating to the means for detecting allyl according to the present invention, a reaction reagent, a reaction medium in which the reaction is carried out, a base material that provides a place for the assay, and the like.
  • a collation sample, a detector, or the like for use as a comparison reference or for creating a calibration curve may be included.
  • the detection confirmation means for gene introduction of the present invention include those capable of detecting the above-mentioned label such as a spectroscope, a radiation detector, and a light scattering detector.
  • the above-described method of the present invention may be used in combination with other alleles related to chronicity or progression of hepatitis B.
  • the allyl used is HLA-DPB1 * 09: 01, HLA-DPB1 * 05: 01, HLA-DPB1 * 04: 02, HLA-DPB1 * 04: 01 and / or HLA-DPB1 * 02: 01
  • allyl in a sequence other than the above sequence may be used.
  • the method of the present invention is based on the detection of allyl.
  • allyl is defined as a base change occurring at a frequency of 1% or more of the population, and it is a rare variation with less than 1%.
  • the allyl combined in the present invention may be less than 1% regardless of the frequency of allyl in addition to the above allyl.
  • the allele combined with the present invention may be present anywhere in the gene related to chronification of hepatitis B, and is present in the exon, intron, 3′-UTR or 5′-UTR and its adjacent region, and the promoter region. May be.
  • Such polynucleotides for detecting alleles can be prepared by those skilled in the art using the method described in the above “(2-2) Detection of alleles”.
  • the number of alleles is not particularly limited, and may be any one of substitution, deletion, insertion and addition of 1 to several tens of bases.
  • polymorphisms such as single nucleotide polymorphism (SNP), restriction fragment length polymorphism (RFLP), variable number of tandem repeat (VNTR), and microsatellite polymorphism Also good.
  • Allyl may be a known polymorph or a new polymorph.
  • a polymorphism serving as a detection target candidate can be selected from publicly known polymorphisms disclosed in public databases such as GenBank.
  • public data: ENSEMBL (http://www.ensembl.org/) can be used for selection, and a protype can also be used.
  • the selection method and typing method of SNPs constituting the haplotype are as described above.
  • the evaluation of whether the haplotype is associated with hepatitis B chronicity or pathological progression can be judged by a statistical test as in the Examples.
  • alleles according to the present invention are preferable in terms of increasing the reliability of diagnosis because hepatitis B chronicity or pathological progress can be determined more quickly and accurately.
  • the purpose is to do.
  • Samples derived from 488 Japanese HBV patients and 464 healthy persons, 251 Korean HBV patients and 140 healthy persons were prepared as follows using a QIAamp DNA Mini kit (QIAGEN). First, after pipetting 20 ⁇ l of QIAGEN Protease into a microtube, 200 ⁇ l of each sample was added. Further, Buffer AL was added and mixed for 15 seconds, followed by incubation at 56 ° C.
  • the microtube was then spun down for a few seconds to collect the solution on the inside of the lid. Further, 200 ⁇ l of ethanol (100%) was added to the sample and vortexed again for 15 seconds, and then a 1.5 ml microtube was spun down for several seconds to collect the solution attached to the inside of the lid. The solution was applied to a QIAamp Mini spin column and centrifuged at 6,000 ⁇ g for 1 minute. The QIAamp Mini spin column was opened, 500 ⁇ l of Buffer AW1 was added, and centrifuged at 6,000 ⁇ g for 1 minute.
  • the QIAamp Mini spin column was opened, 500 ⁇ l Buffer AW2 was added, and centrifuged at 20,000 ⁇ g for 3 minutes.
  • the QIAamp Mini spin column was opened and 200 ⁇ l Buffer AE or purified water was added. After incubating at room temperature for 1 minute, the mixture was centrifuged at 6,000 ⁇ g for 1 minute to recover DNA from each specimen.
  • 4-digit HLA typing was performed using the LABType SSO HLA DPA1 / DPB1 kit (One Lambda) or WAKFlow HLA-DPB1 typing kit (Yunaga Pharmaceutical) using the PCR-SSOP method.
  • the experiment was performed according to the instructions, and a multiplex measurement system (Luminex) using xMAP technology was used. Specifically, 24.5 ⁇ l of amplification reagent and 0.5 ⁇ l of DNA polymerase solution were added to 2 ⁇ l of the above DNA sample, and PCR reaction was performed under the following conditions. Denaturation temperature: 93 ° C.
  • the Luminex LuXYP block temperature was set to 37 ° C., and measurement was performed using a template file corresponding to the Lot number of the bead mix.
  • the CSV file of the measurement result was opened with WAKFlow (registered trademark) Typing Software, and the positive / negative of each fluorescent bead was automatically determined based on the cutoff value described in the determination table. In the automatic determination, beads having a fluorescence intensity equal to or higher than the cut-off value were positive, beads having a fluorescence intensity equal to or lower than the cut-off value were negative, and the HLA genotype was determined from the positive / negative pattern of each bead.
  • Table 1 shows a comparison of the HLA-DPB1 allele frequency in the HBV patient group and the healthy group in Japan and Korea.
  • HLA-DPB1 * 04: 02, HLA-DPB1 * 04: 01 and HLA-DPB1 * 02: 01 alleles may be resistant to the onset of chronic hepatitis B.
  • HLA-DPB1 * 05: 01 and HLA-DPB1 * 09: 01 alleles were shown to be susceptible to the onset of chronic hepatitis B.
  • HLA-DPB1 * 04 02 allele has been shown to be resistant to onset of chronic hepatitis B
  • HLA-DPB1 * 05: 01 allele is chronic in hepatitis B It was shown to have susceptibility to onset.
  • onset resistance alleles HLA-DPB1 * 04: 02, HLA-DPB1 *
  • Table 1 04:01, HLA-DPB1 * 02: 01 the positive rate in hepatitis B patients was calculated.
  • 488 Japanese HBV patients with sensitive allele there were 410 patients with either 1 or 2 of HLA-DPB1 * 05: 01 or HLA-DPB1 * 09: 01.
  • the positive rate was 84.02%.
  • HLA-DPB1 * 04: 02, HLA-DPB1 * 04: 01, HLA-DPB1 * 02: 01 were missing or had 450
  • the positive rate was 92.21%.
  • Table 2 shows a comparison of the HLA-DPB1 allele frequency in the HBV pathological group and the chronic hepatitis B group in Japan and Korea. As a result, it was shown that HLA-DPB1 * 02: 01 allyl is resistant to progression of chronic hepatitis B in both Japan and Korea.
  • Table 3 shows the retention frequency of a single HLA-DPB1 allele in HBV patient groups and healthy control groups in Japan.
  • the left table (1stset) shows the results for 488 Japanese HBV patients and 464 healthy persons
  • the right table (2ndset) shows 892 Japanese HBV patients and 761 healthy persons. The result about is shown.
  • the present inventors detected 15 types of HLA-DPB1 alleles from the HBV patient group and the healthy control group in 1stset. These 15 types of HLA-DPB1 alleles include HLA-DPB1 * 01: 01, HLA-DPB1 * 02: 01, HLA-DPB1 * 02: 02, HLA-DPB1 * 03: 01, HLA-DPB1 * 04: 01 , HLA-DPB1 * 04: 02, HLA-DPB1 * 05: 01, HLA-DPB1 * 06: 01, HLA-DPB1 * 09: 01, HLA-DPB1 * 13: 01, HLA-DPB1 * 14: 01, HLA -DPB1 * 17: 01, HLA-DPB1 * 19: 01, HLA-DPB1 * 29: 01, and HLA-DPB1 * 41: 01 are included.
  • HLA-DPB1 * 02: 01 allele a human in which a certain type of HLA-DPB1 allele was detected was included in the HBV patient group or the healthy control group.
  • 182 people were included in the HBV patient group, and 227 were included in the healthy control group. That is, among the humans in which HLA-DPB1 * 02: 01 allele was detected, the number of HBV patients was 182 and the number of healthy persons was 227.
  • HLA-DPB1 * 02: 01 allele a human in which a certain type of HLA-DPB1 allele was detected was included in the HBV patient group or the healthy control group.
  • 333 people were included in the HBV patient group
  • 368 people were included in the healthy control group. That is, among humans in which HLA-DPB1 * 02: 01 allele was detected, the number of HBV patients was 333, and the number of healthy persons was 368.
  • the present inventors calculated the odds ratio (OR *; Odds Ratio) in the 95% confidence interval for the HBV patient group and the healthy control group for each of 1stset and 2ndset.
  • the odds ratio OR * is the ratio of the odds OsP * of the HBV patient group to the odds OsC * of the healthy control group for a human group having a certain HLA-DPB1 allele.
  • the odds OsP * of this HBV patient group is determined by the ratio of the number of HBV patients having a specific HLA-DPB1 * allele among the number of HBV patients.
  • odds OsC * of this healthy control group is calculated
  • odds ratio OR * is smaller than 1, it can be said that the sample is resistant to chronicity of hepatitis B.
  • the odds ratio OR * is 1 or more, it can be said that the sample is sensitive to the chronicity of hepatitis B.
  • HLA-DPB1 * 02: 01, HLA-DPB1 * 04: 01, and HLA-DPB1 * 04: 02 allyl indicate that the specimen is resistant to chronic hepatitis B.
  • HLA-DPB1 * 05: 01 and HLA-DPB1 * 09: 01 alleles were shown to be sensitive to chronic hepatitis B.
  • the present inventors show the combinations of the above-mentioned HLA-DPB1 allyl having resistance to chronic hepatitis B and HLA-DPB1 allyl having sensitivity to chronic hepatitis B as shown in Table 4. I examined it.
  • Table 4 shows the possession frequency for the combination of two types of HLA-DPB1 alleles derived from the father and the mother in the HBV patient group and the healthy control group in Japan.
  • the left table shows the results for 1380 HBV patients, and the right table shows the results for 1225 healthy individuals.
  • the present inventors are resistant or sensitive to the chronicity of hepatitis B. We focused on this point.
  • Table 5 shows HLA-DPB1 having resistance to chronic hepatitis B, among the combinations of two types of HLA-DPB1 alleles derived from father and mother in HBV patient group and healthy control group in Japan.
  • the retention frequency of HLA-DPB1 allele when attention is paid to the combination of allyl and HLA-DPB1 allyl having susceptibility to chronicity of hepatitis B is shown.
  • HLA-DPB1 * 04: 02 HLA-DPB1 * 04: 01
  • HLA-DPB1 * 02: 01 HLA-DPB1 * 02: 01 as a resistant allyl
  • HLA-DPB1 * 05: 01 HLA-DPB1 * 05: 01 as a sensitive allyl
  • 411 people were included in the HBV patient group
  • 477 people were included in the healthy control group.
  • 411 have the allyl combination shown in this example.
  • 477 people have the specific allyl combination shown in this specific example.
  • the probability Pp that an HBV patient has the allyl combination shown in this specific example is 0.297
  • the probability Ph that the healthy person has the allyl combination shown in this specific example is 0.388. Therefore, for the human having the allyl combination shown in this specific example, the odds OsP of the HBV patient group is 0.42, and the odds OsC of the healthy control group is 0.63. From this, for the human having the allyl combination shown in this specific example, the ratio of the odds OsP of the HBV patient group to the odds OsC of the healthy control group, that is, the odds ratio OR was derived to be 0.67. .
  • hepatitis B of the present invention By analyzing alleles related to chronicity of hepatitis B of the present invention in HBV patient groups, elucidation of molecular mechanism of hepatitis B chronification specialized in Asians including Japanese and drug discovery There is industrial applicability that target candidate molecules can be identified. In addition, by analyzing HBV carriers, it is possible to classify the carriers into groups that are likely to become chronic and those that are difficult to become chronic, and it is possible to provide information useful for determining subsequent treatment policies. There is sex. Furthermore, in addition to the allele, there is an industrial applicability in that medical costs can be reduced by developing a test kit that includes SNPs of other immune-related genes.

Abstract

 本発明の課題は、B型肝炎の慢性化及び/又は病態進展に関連のあるアリルを含む、B型肝炎の慢性化及び/又は病態進展の素因の検出方法を提供することである。当該課題は、B型慢性肝炎患者群と健常者群との相違が正確に反映されたB型肝炎の慢性化及び/又は病態進展に感受性及び抵抗性のアリルを同定し、当該アリルと、検体中の前記アリルに対応する塩基配列又はアミノ酸配列を比較する工程;検体の前記塩基配列中のアリルに対応する部位の塩基が、アリルの塩基と一致するかを解析する工程;及び検体のB型肝炎が慢性化しているか及び/又は病態が進展しているかを特定する工程;を含む、方法、当該方法を用いて検査を行う方法、当該方法に用いる試薬及び当該試薬を含む検査キットの提供により解決される。

Description

B型肝炎の慢性化の素因の検出方法
 本発明は、B型肝炎の慢性化及び/又は病態進展に関連のあるアリルを含む、B型肝炎の慢性化及び/又は病態進展の素因の検出方法、慢性B型肝炎又はその病態進展の検査を行う方法、B型肝炎の慢性化及び/又は病態進展の素因の検出のための試薬及び当該試薬を含むB型肝炎の慢性化及び/又は病態進展の検査キットに関する。
 世界人口の1/3にあたる人々がB型肝炎ウイルス(HBV)に感染しているといわれている。B型肝炎は、一過性に終息する一過性感染と慢性肝炎に大別される。急性肝炎は感染後1~6か月後の潜伏期間を経て症状が出現し、数週間で回復過程に入る。しかし急性肝炎を発症した患者のうち1~2%の人は劇症肝炎を発症する危険性があり、劇症肝炎を発症した人の70~80%は死亡する。
 一方、感染したHBVが体内から排除されず6か月以上にわたって肝臓の中に住み着くことでキャリアとなる。キャリアの8~9割は無症候期、一過性の肝炎期、肝炎沈静期を経て、その後は無症候キャリアのまま経過する。しかし、1~2割は慢性肝炎に移行し、さらに、その一部が肝硬変や肝がんへと移行する。B型肝炎ウイルス慢性保菌者は東南アジアや東太平洋地域に多く分布し、特に、日本にはおよそ150万人のB型肝炎感染者がいるといわれている。
 このように、HBV感染後の経過は多岐にわたり、主として慢性肝炎、肝がんに関与するウイルス側の遺伝要因が調べられてきた。しかしながら、近年では、宿主側の遺伝要因の探索も進み、日本人を含むアジア人サンプルを用いたゲノムワイド関連解析(Genome Wide Association Study: GWAS)により、B型慢性肝炎(CHB)に関連する新たな遺伝要因が報告されている。HBV持続感染やウイルス排除にはHLA-DPA1及びHLA-DPB1の関連が示唆されており(非特許文献1、非特許文献2)、HLA-DRと連鎖不平衡のあるHLA-DQの関与も示唆された(非特許文献3)。しかしながら、GWASを用いた解析では、慢性化に関与するそれ以外の強い遺伝要因は見つかっていない。また、がん化についても近年のGWASにより、中国から幾つかの宿主遺伝要因が報告されている(非特許文献4及び5)。
Kamatani Y, Wattanapokayakit S, Ochi H, Kawaguchi T, Takahashi A, et al. (2009) A genome-wide association study identifies variants in the HLA-DP locus associated with chronic hepatitis B in Asians. Nat Genet 41: 591-595. Nishida N, et.al., Genome-Wide Association Study Confirming Association of HLA-DP with Protection against Chronic Hepatitis B and Viral Clearance in Japanese and Korean Plos ONE June 2012 vol. 7, Issue 5, e39175 Mbarek H, Ochi H, Urabe Y, Kumar V, Kubo M, et al. (2011) A genome-wide association study of chronic hepatitis B identified novel risk locus in a Japanese population. Hum Mol Genet 20: 3884-3892 Li S, Qian J, Yang Y, Zhao W, Dai J, et al. (2012) GWAS Identifies Novel Susceptibility Loci on 6p21.32 and 21q21.3 for Hepatocellular Carcinoma in Chronic Hepatitis B Virus Carriers. PloS Genet 7(5): e39175 Jiang DK, Sun J, Cao G, Liu Y, Lin D, et al. (2013) Genetic variants in STAT4 and HLA-DQ genes confer risk of hepatitis B virus-related hepatocellular carcinoma. Nat Genet 45: 72-5
 HLA-DPについては、アリル頻度をB型慢性肝炎患者群と比較対照群で比較した報告があるものの(非特許文献1)、当該アリル頻度の研究では、比較対照群として非肝炎患者群を用いているため、当該実験結果にはB型慢性肝炎患者群と健常者群との相違が反映されているか不明確であるという問題があった。また、病態進展に関してはHLA-DPBアリルとの関連は調べられていない。
 そこで、本発明は、健常者群、HBV患者群、B型慢性肝炎群及びB型肝炎病態進展群(肝硬変又は肝がん)を用いて解析を実施し、B型慢性肝炎及び病態進展に感受性及び抵抗性のアリルを同定することにより、B型肝炎の慢性化及び/又は病態進展に関連のあるアリルを含む、B型肝炎の慢性化及び/又は病態進展の遺伝素因の検出方法、慢性B型肝炎、肝硬変又は肝がんの検査を行う方法、B型肝炎の慢性化及び/又は病態進展の素因の検出のための試薬及び当該試薬を含むB型肝炎の慢性化及び/又は病態進展の検査キットを提供することを目的とする。
 本発明者らは、健常者群、HBV患者群、B型慢性肝炎群及びB型肝炎病態進展群(肝硬変又は肝がん)を用いてHLA-DPに関するタイピングを実施し、B型肝炎の慢性化に関連するアリルを見出した。それにより、当該アリルを用いた、B型肝炎の慢性化及び病態進展の素因の検出方法、慢性B型肝炎、肝硬変又は肝がんの検査を行う方法、B型肝炎の慢性化及び病態進展の素因の検出のための試薬及び当該試薬を含むB型肝炎の慢性化及び病態進展の検査キットを構築するに至った。
 すなわち、本発明は以下のとおりである。
(1) B型肝炎の慢性化及び/又は病態進展の素因の検出方法であって、以下の:
 a)B型肝炎の慢性化及び/又は病態進展に関連のあるアリルと、検体中の前記アリルに対応する塩基配列又はアミノ酸配列を比較する工程;
 b)検体の前記アリルに対応する部位の塩基又はアミノ酸残基が、アリルの塩基又はアミノ酸残基と一致するかを解析する工程;及び
 c)検体のB型肝炎が慢性化しているか及び/又は病態が進展しているかを特定する工程;を含む、方法。
(2) (1)記載の方法であって、B型肝炎の慢性化及び/又は病態進展に関連のあるアリルがB型肝炎の慢性化及び/又は病態進展に感受性であるか又は抵抗性である、方法。
(3) (2)記載の方法であって、前記B型肝炎の慢性化及び/又は病態進展に関連のあるアリルの組み合わせが、前記感受性のあるアリルのみの組み合わせ、前記抵抗性のあるアリルのみの組み合わせ、又は前記感受性のあるアリルと前記抵抗性のあるアリルとの組み合わせのいずれかの組み合わせである、方法。
(4) (2)又は(3)記載の方法であって、前記B型肝炎の慢性化に感受性のあるアリルがHLA-DPB1*05:01及びHLA-DPB1*09:01であり、前記B型肝炎の慢性化に抵抗性のあるアリルがHLA-DPB1*04:02、HLA-DPB1*04:01及びHLA-DPB1*02:01であり、前記B型慢性肝炎の病態進展に抵抗性のあるアリルがHLA-DPB1*02:01である、方法。
(5) (2)~(4)いずれか1項記載の方法であって、前記B型肝炎の慢性化に抵抗性のあるアリルの組み合わせが、HLA-DPB1*02:01、HLA-DPB1*04:01又はHLA-DPB1*04:02と、HLA-DPB1*05:01又はHLA-DPB1*09:01である、方法。 
(6) (1)~(5)記載の方法により、B型肝炎の慢性化及び/又は病態進展の検査を行う方法。
(7) B型肝炎の慢性化及び/又は病態進展に関連のあるアリルを検出するプライマーを含む、B型肝炎の慢性化及び/又は病態進展の素因の検出のための試薬。
(8) (7)記載の試薬であって、前記B型肝炎の慢性化及び/又は病態進展に関連のあるアリルがB型肝炎の慢性化及び/又は病態進展に感受性であるか又は抵抗性である、試薬。
(9) (8)記載の試薬であって、B型肝炎の慢性化及び/又は病態進展に関連のあるアリルの組み合わせが、前記感受性のあるアリルのみの組み合わせ、前記抵抗性のあるアリルのみの組み合わせ、又は前記感受性のあるアリルと前記抵抗性のあるアリルとの組み合わせのいずれかの組み合わせである、試薬。
(10) (8)又は(9)記載の試薬であって、前記B型肝炎の慢性化に感受性のあるアリルがHLA-DPB1*05:01及びHLA-DPB1*09:01であり、前記B型肝炎の慢性化に抵抗性のあるアリルがHLA-DPB1*04:02、HLA-DPB1*04:01及びHLA-DPB1*02:01であり、前記B型慢性肝炎の病態進展に抵抗性のあるアリルがHLA-DPB1*02:01である、試薬。
(11) (8)~(10)いずれか1項記載の試薬であって、前記B型肝炎の慢性化に抵抗性のあるアリルの組み合わせが、HLA-DPB1*02:01、HLA-DPB1*04:01又はHLA-DPB1*04:02と、HLA-DPB1*05:01又はHLA-DPB1*09:01である、試薬。
(12) (7)~(11)いずれか1項記載のB型肝炎の慢性化及び/又は病態進展に関連のあるアリルを含む、B型肝炎の慢性化及び/又は病態進展の素因の検出のための試薬を含むキット。
 本発明のB型肝炎の慢性化及び/又は病態進展に関連するアリルをHBV患者群に対して解析することにより、B型肝炎慢性化及び/又は病態進展の分子機構の解明や創薬ターゲット候補分子の同定が可能になる。また、HBVキャリアに対して解析することにより、当該キャリアを慢性化及び病態進展がおきやすい群と慢性化及び病態進展がおきにくい群とに分類することが可能となり、その後の治療方針の決定に役立つ情報を提供できるという利点がある。それにより、B型肝炎の慢性化及び/又は病態進展を予防し、進行を防止し、適切な治療を行うことが可能となる。
 また、B型肝炎慢性化及び病態進展の遺伝要因に関しては、日本人を含むアジア人と欧米人の間で同様な傾向があるか否かということが明らかではない。本発明のB型肝炎の慢性化及び/又は病態進展に関連するアリルにより、日本人を含むアジア人に特化したB型肝炎慢性化及び/又は病態進展の治療方針の決定や創薬ターゲット候補分子の同定が可能となる。
 さらに、当該アリルに加えて、他の免疫関連遺伝子のSNPも含むより精度の高い検査キットの開発も可能となるという効果がある。
本発明に係るアリルとDPB1*01:01:01のアミノ酸配列とのアラインメントを示す図である。
 本発明は、B型肝炎の慢性化及び/又は病態進展に関連のあるアリルを含む、B型肝炎の慢性化及び/又は病態進展の遺伝素因の検出方法、慢性B型肝炎/又はその病態進展の検査を行う方法、B型肝炎の慢性化及び/又は病態進展の素因の検出のための試薬及び当該試薬を含むB型肝炎の慢性化及び/又は病態進展の検査キットに関する。以下に本発明を説明する。
 (1)本発明に係るB型肝炎の慢性化及び/又は病態進展に関連のあるアリル
 本発明はB型肝炎の慢性化及び/又は病態進展に関連のあるアリルに関する。B型肝炎の慢性化、病態進展に関連のあるアリルとは、B型肝炎の慢性化、病態進展に感受性である(B型肝炎が慢性化しやすく、病態進展しやすい)か又は抵抗性である(B型肝炎が慢性化しにくく、病態進展しにくい)アリルをいう。
 本発明において、「B型肝炎の慢性化」とは、HBVが持続感染している状態をいい、発症要因としては、以下の:HBV持続感染者からの母児感染(垂直感染);乳幼児期の医療行為等の理由で、HBV持続感染者の血液や体液が体内に侵入した場合;体の免疫力が低下するような免疫抑制剤や抗がん剤の使用中にHBVに感染した結果、HBVを体内から排除できずに持続感染を起こす場合;及び健常者が近年ジェノタイプA型という欧米型やアジア・アフリカ型等の外来種HBVに感染した場合等があげられる。このように、HBVに感染すると、8~9割が無症候キャリアとなるが、1~2割は慢性肝炎に移行する。さらにその中の一部が肝硬変や肝がんへ移行する。そこで、HBVの慢性化から肝硬変や肝がんに移行する群を、本発明の「B型肝炎の病態進展」という。「肝硬変」とは、肝炎ウイルス感染により損傷した肝臓が修復されるときにできる線維が肝臓に拡がった状態をいい、肝臓が硬くなったために腹水や食道静脈瘤が生じたり、肝臓機能が低下するために肝性脳症や黄疸が生じたりする原因となる。「肝がん」とは、肝炎ウイルスの感染が原因で生じる肝細胞がんをいう。
 B型肝炎の慢性化及び/又は病態進展に関連のあるアリルの検索は、慢性B型肝炎患者、肝硬変又は肝がん患者又は健常人から採取した生物学的試料からゲノムDNAを調製し、ダイレクトシークエンス法等によって遺伝子配列を解析することによって行う。このようにして得られた新規アリルは、慢性B型肝炎患者又は肝硬変又は肝がん患者から見出されたものであるため、B型肝炎の慢性化及び/又は病態進展との関連性が高い、本発明に係るアリルとして有望な候補である。上記のように選択したアリルとB型肝炎の慢性化及び/又は病態進展との関連性を確認するには、統計的な検定によって行うことができる。例えば、B型肝炎の慢性化を有する群と健常人群における該候補アリルの出現率をそれぞれ算出し、当該候補アリルとB型肝炎の慢性化との関連を統計的に検定する。検定は、χ2検定、フィッシャーの正確確率検定(Fischer’s exact test)等、統計学上適当な方法によって行うことができ、必要に応じて有意水準の補正を行ってもよい。
 上記アリルを検出する方法は、特に制限はなく、当業者にとって公知の方法の中から選択することができる。例えば、TaqMan PCR法、MALDI-TOF/MS法、ASO (allele-specific oligonucleotide)法、直接シークエンス法、RFLP法、インベーダー法、TGGE, DGGE法、MutY 酵素法、マイクロアレイ、Protein truncation test (PTT)法、Snipper法等の公知のタイピング方法の中から、目的等に応じて選択することができる。PCR法を応用した方法が多いが、PCR法によらない方法もある。
 本発明者らは、日本人のHBV患者群489検体と健常対照群467検体、韓国人のHBV患者群340検体と健常対照群140検体についてHLA-DPB1のタイピングを行い、B型肝炎の慢性化に感受性のあるアリルとしてHLA-DPB1*05:01及びHLA-DPB1*09:01を、B型肝炎の慢性化に抵抗性のあるアリルとしてHLA-DPB1*04:02、HLA-DPB1*04:01及びHLA-DPB1*02:01を同定した。また、B型慢性肝炎の病態進展に抵抗性のあるアリルとしてHLA-DPB1*02:01を同定した。HLAはヒトの主要組織適合性複合体(MHC; Major Histocompatibility Complex)であり、移植片や細菌、ウイルス等の外来抗原ペプチドと結合してT細胞に提示する膜タンパク質である。HLAには多くのアリルが存在することが知られており、これらの情報についてはHLA nomenclature (http://hla.alleles.org/announcement.html)等に記載がある。なお、本明細書のアリルや多型の表記は、HLA nomenclatureによる表記方法に基づく。
 上記アリルに関するシークエンスデータは、例えばGenBank(NIH genetic sequence database)や、DDBJ(DNA Data Bank of Japan)等のデータベースに登録されているデータを用いてよい。ここで、例えば、HLA-DPB1*05:01のcDNAは917塩基でありGenBankにAY804138(配列番号1)と、アミノ酸は258残基でAAW78743(配列番号2)と登録されている。HLA-DPB1*09:01のcDNAは907塩基でありGenBankにAY804139(配列番号3)と、アミノ酸は258残基でAAW78744(配列番号4)と登録されている。HLA-DPB1*04:02のcDNAは917塩基でありGenBankにAY804137(配列番号5)と、アミノ酸は258残基でAAW78742(配列番号6)と登録されている。HLA-DPB1*04:01のcDNAは883塩基でありGenBankにAY804136(配列番号7)と、アミノ酸は258残基でAAW78741(配列番号8)と登録されている。HLA-DPB1*02:01のcDNAは908塩基でありGenBankにAY804134(配列番号9)と、アミノ酸は258残基でAAW78739(配列番号10)と登録されている。DPB1*01:01:01のアミノ酸配列を配列番号11(AAW78748)に示し、本発明の上記アリルとのアラインメントを示したのが図1である。
 なお、上記のアリルHLA-DPB1*05:01、HLA-DPB1*09:01、HLA-DPB1*04:02、HLA-DPB1*04:01及びHLA-DPB1*02:01を「本発明のB型肝炎の慢性化及び/又は病態進展に関連のあるアリル」、「本発明のB型肝炎の慢性化に関連のあるアリル」「本発明に係るアリル」、また、アリルにかえて多型やSNPという場合がある。
 本発明で用いられるアリルは、一本鎖及び二本鎖のDNAのほか、そのRNA相補体も含み、天然由来のものであっても、人工的に作製したものであってもよい。DNAには、例えば、ゲノムDNAや、前記ゲノムDNAに対応するcDNA、化学的に合成されたDNA、PCRにより増幅されたDNA、及びそれらの組み合わせや、DNAとRNAのハイブリッドがあげられるがこれらに限定されない。なお、本発明においてポリヌクレオチドとは、ヌクレオチドが2以上結合しているものをいい、一般にオリゴヌクレオチドと言われる長さのものを含む。また本発明におけるポリヌクレオチドは、DNAでもRNAでもよい。
 これらの塩基配列は、当業者に公知の方法で適当な断片を用いてプローブを作製し、このプローブを用いてコロニーハイブリダイゼーション、プラークハイブリダイゼーション、サザンブロット等の公知のハイブリダイゼーション法により、cDNAライブラリー及びゲノムライブラリー等から得ることができる。
 ハイブリダイゼーション法の詳細な手順については、『Molecular Cloning, A Laboratory Manual 3rd ed.』(Cold Spring Harbor Press (2001);特にSection 6-7) 、『Current Protocols in Molecular Biology』(John Wiley & Sons (1987-1997);特にSection6.3-6.4)、『DNA Cloning 1: Core Techniques, A Practical Approach 2nd ed.』(Oxford University (1995);ハイブリダイゼーション条件については特にSection2.10) 等を参照することができる。
 (2)本発明に係るアリルを用いたB型肝炎の慢性化及び/又は病態進展の素因の検出方法
 本発明は、上記本発明のB型肝炎の慢性化及び/又は病態進展に関連のあるアリル(以下の記載では、「多型」「SNP」という場合もある)を用いてB型肝炎の慢性化及び/又は病態進展の素因を検出する方法(タイピング方法)に関する。具体的には、以下の工程:a)B型肝炎の慢性化及び/又は病態進展に関連のあるアリルと、検体中の前記アリルに対応する塩基配列又はアミノ酸配列を比較する工程;b)検体の前記アリルに対応する部位の塩基又はアミノ酸残基が、アリルの塩基又はアミノ酸残基と一致するかを解析する工程;及びc)検体のB型肝炎が慢性化しているか及び/又は病態が進展しているかを特定する工程;を含む。本発明の上記方法は、「(1)本発明のB型肝炎の慢性化及び/又は病態進展に関連のあるアリル」に記載したとおり、B型肝炎の慢性化に感受性のあるアリルはHLA-DPB1*05:01及びHLA-DPB1*09:01であり、B型肝炎の慢性化に抵抗性のあるアリルはHLA-DPB1*04:02、HLA-DPB1*04:01及びHLA-DPB1*02:01であり、B型慢性肝炎の病態進展に抵抗性のあるアリルはHLA-DPB1*02:01であるという知見に基づく。上記方法について以下に詳細に説明する。
 「a)B型肝炎の慢性化及び/又は病態進展に関連のあるアリルと、検体中の前記アリルに対応する塩基配列又はアミノ酸配列を比較する工程」は、換言すれば配列番号1~10で示される塩基配列及びアミノ酸配列のアリルの検出である。
 本発明では、アリルの検出は、遺伝子レベル又はタンパク質レベルで行うことができる。例えば、検体からゲノムDNA又はmRNAを調製し、塩基配列に基づいて、ゲノムDNA又はmRNAにおける本発明のB型肝炎の慢性化に関連のあるアリルを検出することができる。また、検体からヒトHLA-DP分子タンパク質を調製し、例えば抗体等を用いてDP分子におけるHLA-DPB1*09:01、HLA-DPB1*05:01、HLA-DPB1*04:02、HLA-DPB1*04:01及び/又はHLA-DPB1*02:01アリルを検出することができる。これらの方法について、以下簡単に説明する。
(2-1)検体からのゲノムDNA又はmRNA調製
 本発明の方法で用いる試料は、B型肝炎の慢性化及び/又は病態進展に感受性であるか又は抵抗性であるかを検査しようとする検体から採取した生物学的試料をもとに、当業者に周知の方法で調製したゲノムDNA又はmRNAを用いることができる。本発明の方法で用いる検体から採取する生物学的試料は、例えば、検体の細胞又は組織、毛髪、便、尿、唾液、細胞、鼻腔粘膜からこすりとった細胞等を用いることができるが、これらに限定されない。
 ゲノムDNAは、いかなる公知の方法によっても調製することができ、例えば、フェノール/クロロホルム法、セチルトリメチルアンモニウムブロミド(CTAB)法等があげられる。また、mRNAの調製もいかなる公知の方法によっても調製することができ、例えば、グアニジンイソチオシアネート法等があげられる。ゲノムDNA又はmRNAの調製には、市販のキットを用いてもよい。当該キットとしては、例えば、ゲノムDNAの調製用としては、Wizard Genomic DNA Purification Kit (Promega)、mRNAの調製用としては、NucleoTrap(登録商標)mRNA Kit(Clontech)等があげられる。なお、以下で説明するアリルの検出のために、mRNAからcDNAを合成してもよい。cDNAの合成方法は当技術分野で公知のいかなる方法をも用いてよい。例えば、ランダムプライマー又はポリTプライマーを用いて、RNAから逆転写酵素-ポリメラーゼ連鎖反応(RT-PCR)によりcDNAを合成することができる。
(2-2)アリルの検出
 上記のように調製したゲノムDNA又はmRNAにおけるHLA-DPB1*09:01、HLA-DPB1*05:01、HLA-DPB1*04:02、HLA-DPB1*04:01及び/又はHLA-DPB1*02:01アリルの検出は、当技術分野で公知のいかなる遺伝子多型検出手段を用いて検出することができる。例えば、直接配列決定法、ポリメラーゼ連鎖反応(PCR)、制限酵素断片長多型(RFLP)、ハイブリダイゼーション法、プライマー伸長反応、質量分光法等を用いる方法があげられるが、これらに限定されない。ただし、HLA-DRB1遺伝子では、特に第2エクソン内に多型部位が多数あるため、これらのアリルを検出するために、多数の多型を判別する必要がある。以下に当該方法について説明する。
(2-2-1)直接配列決定法
 本発明では、ゲノムDNA又はmRNA由来のcDNAを用いた直接配列決定法によりHLA-DPB1*09:01、HLA-DPB1*05:01、HLA-DPB1*04:02、HLA-DPB1*04:01及び/又はHLA-DPB1*02:01アリルを検出することができる。直接配列決定法は、上記で調製したゲノムDNA又はmRNAからcDNAを調製し;検出対象であるHLA-DPB1*09:01、HLA-DPB1*05:01、HLA-DPB1*04:02、HLA-DPB1*04:01及び/又はHLA-DPB1*02:01アリルを含む領域を、ベクターにクローニングするか又はPCRで増幅し;当該領域の塩基配列を決定する;ことにより行う。クローニングの方法としては、適切なプローブを用いてcDNAライブラリーからスクリーニングすることにより、クローニングすることができる。また、適切なプライマーを用いてPCR反応により増幅し、適切なベクターに連結することによりクローニングすることができる。さらに、別のベクターにサブクローニングすることもできるが、これらに限定されない。ベクターとしては、例えば、pBlue-Script(商標)SK(+)(Stratagene)、pGEM-T(Promega)、pAmp(TM: Gibco-BRL)、p-Direct(Clontech)、pCR2.1-TOPO(Invitrogene)等の市販のプラスミドベクター、ウイルスベクター、人口染色体ベクターやコスミドベクターを用いることができる。塩基配列の決定としては、公知のいかなる方法をも用いることができ、例えば、放射性マーカーヌクレオチドを使用する手動式配列決定法や、ダイターミネーターを使用する自動配列決定法があげられるが、これらに限定されない。このようにして得られた塩基配列に基づき、検体がHLA-DPB1*09:01、HLA-DPB1*05:01、HLA-DPB1*04:02、HLA-DPB1*04:01及び/又はHLA-DPB1*02:01アリルアリルに相当する配列を有するか否かを決定する。
(2-2-2)PCR法
 本発明に係るアリルは、PCR法を利用して検出することもできる。PCRは、本発明に係るアリルを有する配列又は他のアリルを有する配列にのみハイブリダイズするオリゴヌクレオチドプライマーを用いて行う。このプライマーセットを使用して検体のゲノムDNA又はmRNA由来のcDNAを増幅する。本発明に係るアリル用プライマーのみがPCR産物を生成した場合には、検体は本発明に係るアリルをホモで有し、本発明に係るアリル用プライマーと他のアリル用プライマーからのPCR産物が生成された場合には、検体は本発明に係るアリルをヘテロで有することになる。他のアリル用プライマーのみがPCR産物を生成した場合には、検体には本発明に係るアリルがないことが示される。
(2-2-3)PCR-RFLP法
 本発明に係るアリルは、制限酵素断片長多型(Restriction Fragment Length Polymorphism;RFLP)を利用して検出することもできる。まず、検出対象の本発明に係るアリルを含む領域をPCRで増幅する。続いてこのPCR産物を、本発明に係るアリルに適する制限酵素で切断する。制限酵素により消化されたPCR産物は、ゲル電気泳動で分離し、エチジウムブロマイド染色で可視化する。当該断片長を、分子量マーカー並びに他のアリル及び本発明に係るアリルの対照により生じた断片長と比較して、検体における本発明に係るアリルの存在を検出することができる。
(2-2-4)ハイブリダイゼーション法
 本発明に係るアリルは、ハイブリダイゼーションを利用して検出することもできる。ハイブリダイゼーション法は、検体由来のゲノムDNA又はmRNAが、それに対し相補的なDNA分子(例えばオリゴヌクレオチドプローブ)とハイブリダイズする性質に基づき、本発明に係るアリルの有無を決定する方法である。コロニーハイブリダイゼーション、プラークハイブリダイゼーション、サザンブロット等の公知のハイブリダイゼーション等のハイブリダイゼーション及び検出のための種々の技術を利用してこのハイブリダイゼーション法を行うことができる。ハイブリダイゼーション法の詳細な手順については、『Molecular Cloning, A Laboratory Manual 3rd ed.』(Cold Spring Harbor Press (2001);特にSection 6-7)、『Current Protocols in Molecular Biology』(John Wiley & Sons (1987-1997);特にSection6.3-6.4)、『DNA Cloning 1: Core Techniques, A Practical Approach 2nd ed.』(Oxford University(1995);ハイブリダイゼーション条件については特にSection2.10)等を参照することができる。さらに、ハイブリダイゼーションはDNAチップを利用して検出することもできる。当該方法としては、本発明に係るアリルに特異的なオリゴヌクレオチドプローブを設計し、それを固相支持体に貼りつけたものを用いる。そして、検体由来のDNAサンプルを当該DNAチップと接触させて、ハイブリダイゼーションを検出する。
(2-2-5)その他の方法
 例えば、TaqMan PCR法は、アレル特異的なTaqmanプローブとTaqポリメラーゼを用い、SNPの検出とSNPを含む領域の増幅とを同時並行で行う方法である。Taqmanプローブは、5’末端が蛍光物質、3’末端がクエンチャーで標識されている約20塩基前後のオリゴヌクレオチドであり、目的のSNP部位にハイブリダイズするよう設計されている。Taqポリメラーゼは5’-3’ヌクレアーゼ活性がある。これらのTaqmanプローブ及びTaqポリメラーゼ存在下で目的のアリルを含む領域を増幅するよう設計されたPCRプライマーを用いて該アリル領域を増幅すると、増幅と並行して、Taqmanプローブが鋳型DNAの目的アリル部位にハイブリダイズする。フォワードプライマー側からの伸長反応が、鋳型にハイブリダイズしたTaqmanプローブに到達すると、Taqポリメラーゼの5’ヌクレアーゼ活性により、Taqmanプローブの5’末端に結合していた蛍光物質が切断される。その結果、遊離した蛍光物質はクエンチャーの影響を受けなくなり、蛍光を発生する。蛍光強度の測定により、SNP検出が可能となる。
 MALDI-TOF/MS法を応用したSNPタイピング方法として、プライマー伸長法と組み合わせた方法もあげられる。この方法はハイスループットな解析が可能であり、1)PCR、2)PCR産物の精製、3)プライマー伸長反応、4)伸長産物の精製、5)質量分析、6)ジェノタイプ決定、のステップにより解析する。まずPCRによって、目的とするSNP部位を含む領域をゲノムDNAから増幅する。PCRプライマーは、アリル部位塩基と重複しないように設計する。そして、エキソヌクレアーゼとエビのアルカリホスファターゼ(shrimp alkaline phosphatase)を用いて酵素的除去方法により精製するかエタノール沈殿法を用いて精製する。次に、3’末端がSNP部位に直接隣接するように設計したジェノタイピングプライマーを用いて、プライマー伸長反応を行う。PCR産物を高温で変性し、過剰のジェノタイピングプライマーを加えて、アニールさせる。ddNTPとDNAポリメラーゼを反応系に添加し、サーマルサイクル反応させると、ジェノタイピングプライマーよりも1塩基長いオリゴマーが生じる。この伸長反応で生じる1塩基長いオリゴマーは、ジェノタイピングプライマーの上記設計により、アリルに応じて異なる。精製した伸長反応産物について質量分析を行い、マススペクトルから解析する。
 ハイスループットが可能なSNPタイピング法として、1分子蛍光分析法を応用した方法があげられる。例えば、MF20/10S(オリンパス)は、当該方法を採用したシステムである。具体的には、共焦点レーザー光学系と高感度光検出器を用いて、約1フェムトリットル(1000兆分の1リットル)の超微小領域中で、相補的・非相補的なプライマーを用いたPCR法によって増幅した蛍光ラベルプライマーの1分子レベルの並進拡散時間を計測及び解析するものである。
 またDNAチップによる方法も、ハイスループットが可能なタイピングの1つである。DNAチップは、基板上に多種類のDNAプローブを整列して固定したもので、標識したDNA試料をチップ上でハイブリダイゼーションし、プローブによる蛍光シグナルを検出する。
 PCR法以外の遺伝子増幅法を利用したSNPタイピング方法の例として、Snipper法があげられる。当該方法は、環状一本鎖DNAを鋳型としてDNAポリメラーゼがその上を移動しながら相補鎖DNAを合成するDNA増幅方法であるRCA(rolling circle amplification)法を応用したSNPタイピング法である。プローブは80-90塩基長のオリゴDNAで、標的SNPの5’及び3’末端近傍のそれぞれに相補的な10-20塩基長の配列を両末端に含んでおり、標的DNAにアニールして環状になるように設計されている。また、プローブの3’末端が標的アレルに相補的配列となるよう設計されている。プローブの3’末端が標的アレルと完全に相補的であれば、プローブは環状化されるが、プローブの3’末端がミスマッチであるとプローブは環状化されない。またプローブには、40-50塩基長のバックボーン配列があり、2種類のRCA増幅プライマーと相補的な配列が含まれる。
 PCR法以外の遺伝子増幅法を利用したSNPタイピング方法としては、例えば、UCAN法やLAMP法を利用したタイピング方法があげられる。UCAN法は、タカラバイオが開発した遺伝子等温増幅法であるICAN法を応用した方法である。UCAN法では、プライマー前駆体としてDNA-RNA-DNAキメラオリゴヌクレオチド(DRD)を用いる。このDRDプライマー前駆体は、DNAポリメラーゼによる鋳型DNAの複製が起こらないように、3'末端のDNAが修飾してあり、SNPサイトにRNA部分が結合するように設計されている。このDRDプライマー前駆体を鋳型とインキュベートすると、DRDプライマーと鋳型が完全にマッチしている場合のみ、共存するRNase Hが対合したDRDプライマーのRNA部分を切断する。これにより、プライマー3'末端は修飾DNAが外れて新しくなるため、DNAポリメラーゼによる伸長反応が進み、鋳型DNAが増幅される。一方、DRDプライマーと鋳型DNAがマッチしない場合、RNase HはDRDプライマーを切断せず、DNA増幅も起こらない。パーフェクトマッチしたDRDプライマー前駆体がRNase Hによって切断されたあとの増幅反応は、ICAN反応メカニズムによって進行する。
 LAMP法は、栄研化学によって開発された遺伝子等温増幅法で、標的遺伝子の6箇所の領域(3’末端側からF3c、F2c、F1c、5’末端側からB3、B2、B1)を規定し、当該6領域に対する4種類のプライマー(FIPプライマー、F3プライマー、BIPプライマー、B3プライマー)を用いて増幅する。タイピングを目的とする場合は、F1-B1間は標的SNP部位(1塩基)のみでよく、FIPプライマー及びBIPプライマーを、その5'端にSNPの1塩基がくるように設計する。WTアリルの場合、LAMP法の起点構造であるダンベル構造からDNAの合成反応が起こり、増幅反応が連続的に進行する。アリルがある場合は、ダンベル構造からのDNA合成反応が起こらず、増幅反応は進行しない。
 インベーダー(Invader)法は、核酸増幅法を用いず、2種類の非蛍光標識プローブ(アレルプローブ、インベーダープローブ)と1種類の蛍光標識プローブ(FRETプローブ)及びエンドヌクレアーゼであるcleavaseを用いる方法である。アレルプローブは、鋳型DNAに対しSNP部位から3’末端側に相補的な配列があり、プローブの5’側にフラップという鋳型DNAと無関係な配列がある。インベーダープローブは、鋳型DNAのSNP部位から5’側に相補的な配列があり、SNP部位に相当する部分の塩基は任意の塩基がある。FRETプローブは、3’側にフラップ配列に相補的な配列がある。一方の5’側は蛍光色素及びクエンチャーで標識されているが、FRETプローブは分子内で2本鎖を形成するよう設計されており、通常は消光されている。これらを鋳型DNAと反応させると、アレルプローブが鋳型DNAと2本鎖を形成したときに、SNP部位にインベーダープローブの3’末端(任意塩基部分)が侵入する。cleavaseは、当該塩基が侵入した構造を認識して、アレルプローブのフラップ部分を切断する。次に、この遊離したフラップがFRETプローブの相補配列と結合すると、フラップの3’末端がFRETプローブの分子内二本鎖部分に侵入する。cleavaseは、上記アレルプローブとインベーダープローブの場合と同様に、このFRETプローブにフラップの塩基が侵入した構造を認識し、FRETプローブの蛍光色素を切断する。蛍光色素はクエンチャーから離れるため、蛍光が発生する。アレルプローブがアレルとマッチしない場合は、cleavaseが認識する、上記特異的な構造が形成されないため、フラップは切断されない。
(2-2-6)アリルの検出に用いる物質
 本発明の方法でアリルを検出するポリヌクレオチドについて以下に説明する。
 アリルの検出にプライマーを用いる場合は、増幅する領域及びタイピング方法に即したプライマーとなるように設計する。例えば、上記領域を完全に増幅できることが好ましく、上記領域の両端付近の配列に基づいて配列を設計できる。プライマーの設計手法は当技術分野で周知であり、本発明において使用可能なプライマーは、特異的なアニーリングが可能な条件を満たす、例えば特異的なアニーリングが可能な長さ及び塩基組成(融解温度)を有するように設計される。増幅する領域の長さは、タイピングに支障がない限り制限はないし、検出方法により適宜増減してよい。また、増幅される領域の一部にはアリル部位が含まれるが、増幅される領域内における当該部位の位置に制限はなく、検出方法(タイピング方法)にしたがって適切な位置に配置してよい。そのためプライマーの設計にあたり、プライマーとアリル部位との位置関係は、検出方法にあわせて自由に設計でき、検出しようとするアリルを含む配列番号1、3、5、7及び9で示される塩基配列の一部領域(例えば、連続した50塩基長以上500塩基長以下)にハイブリダイズする限り、タイピング方法の特性を考慮しながら、プライマーを設計できる。プライマーとしての機能を発揮する長さとしては、10~100塩基以上が好ましく、通常15~50塩基、好ましくは15~30塩基である。また設計の際には、任意の核酸鎖の50%がその相補鎖とハイブリッドを形成する温度であるプライマーの融解温度(Tm)を確認することが好ましい。鋳型となるDNAとプライマーとが二本鎖を形成してアニーリングするためには、アニーリングの温度を最適化する必要があるが、その一方で、この温度をより低すぎると非特異的な反応がおこるため、好ましくないからである。Tmの確認には、公知のプライマー設計用ソフトウェアを利用することができる。
 アリルの検出にプローブを用いる場合は、プローブがアリル部位を認識するように設計する。プローブ設計において、アリル部位は、タイピング方法にあわせて、プローブ内のいずれかの場所で認識されればよく、タイピング方法によっては、プローブの末端で認識されてもよい。アリル検出用ポリヌクレオチドをプローブとする場合、ゲノムDNAに相補的な塩基配列の長さは、通常15~200、好ましくは15~100塩基、より好ましくは15~50塩基であるが、タイピング方法によってはこれより長くても短くてもよい。
(2-2-7)本発明に好ましいアリルの検出方法
 本発明の方法として好ましいアリルの検出方法はPCRを用いたPCR-SSOP(Sequence Specific Oligonucleotide probe)法であってよく、当該方法を利用してHLA-DPB1*09:01、HLA-DPB1*05:01、HLA-DPB1*04:02、HLA-DPB1*04:01及び/又はHLA-DPB1*02:01アリルを検出することができる。PCR-SSOPは具体的には、ビオチン標識したプライマーを用いてPCRで検体の上記アリルを含む領域を増幅する。増幅DNAを1本鎖DNAとし、特異的な配列であるプローブと特異的に結合させる。例えば、プローブを蛍光色素で色分けされたマイクロビーズに固定し、増幅DNAが結合したマイクロビーズからビオチンを介した蛍光標識ストレプトアジピンの結合による蛍光シグナルが得られるので、この蛍光シグナルの種類と増幅DNAの結合による蛍光を識別して同時に検出することで増幅DNAが結合したビーズの種類から遺伝子タイプが決定できる。当該方法には、市販のキットを用いてもよい。当該キットとしては、例えば、多数の多型を一度に判別できるxMAP(登録商標)テクノロジー(Luminex社)等があげられるが、これらに限定されない。本方法を用いた本発明の方法の概要を以下に説明する。
 まず、最初にHLA-DPB1*09:01、HLA-DPB1*05:01、HLA-DPB1*04:02、HLA-DPB1*04:01及び/又はHLA-DPB1*02:01アリルを含む領域を増幅可能なプライマーやプローブ等のポリヌクレオチドを用いて、調製したゲノムDNAを鋳型とした増幅反応を行い、上記塩基配列を有する核酸断片を増幅する。
 アリルの検出に用いるポリヌクレオチドは、配列番号1、3、5、7及び9で示される塩基配列をもとに、プライマー又はプローブの別及び適応する検出方法に合わせて、公知のオリゴヌクレオチド合成手法により化学合成することができ、市販の化学合成装置を用いて合成されてよい。当業者であれば、配列番号1、3、5、7及び9で示される塩基配列及びそれらの相補鎖並びに本発明に係るアリルの位置情報に基づいて、公知の方法を用いてポリヌクレオチドを合成することができる。さらに、当該オリゴヌクレオチドの合成において、蛍光色素やビオチン等で修飾されたヌクレオチド誘導体を利用して、ポリヌクレオチドを修飾したり、合成されたポリヌクレオチドに、蛍光色素等を結合したりしてもよく、その合成方法も公知である。
 そして、検体から調製したゲノムDNAに、上記プライマー及び耐熱性DNAポリメラーゼ等を作用させてPCR反応を行う。上記方法は、『Molecular Cloning, A Laboratory Manual 3rd ed.』(Cold Spring Harbor Press (2001))』等に従い、当業者であれば容易に行うことができるが、本発明のPCR反応の条件としては、例えば、以下の条件があげられる。
変性温度:90~100℃
アニーリング温度:40~70℃
伸長温度:60~75℃、
上記のサイクル数:30~50回程度
増幅の特異性を高めるために、2組以上のプライマーを用いて2回以上増幅反応を行ってもよい。その際、各増幅反応で用いるプライマーを、同じ位置に設計してもよく、最初の増幅におけるプライマーの位置よりも内側に設計してもよい。このようにして、検体のゲノムDNAを鋳型として、本発明に係るアリルの塩基配列を含む領域の核酸断片を特異的に増幅することができる。
 続いて、増幅した核酸断片を精製した後、塩基配列を決定し、決定した塩基配列と、本発明に係るアリルの塩基配列とを比較する。これにより、検体が本発明に係るアリルを有するかを決定することができる。得られたPCR産物の精製には公知の方法を用いることができる。例えば、Wizard SV Gel and PCR clean-UP System (Promega)、GENECLEAN(フナコシ)、QIAquick PCR purification Kits(QIAGEN)、ExoSAP-IT(GEヘルスケアバイオサイエンス)等のキットを用いる方法、DEAE-セルロース濾紙を用いる方法、透析チューブを用いる方法等がある。アガロースゲルを用いる場合には、アガロースゲル電気泳動を行い、塩基配列断片をアガロースゲルより切り出して、Wizard SV Gel and PCR clean-UP System (Promega)、GENECLEAN(フナコシ)、QIAquick Gel extraction Kits(QIAGEN)、フリーズ&スクイーズ法等により精製することができる。配列決定は、当技術分野で公知のいかなる方法をも用いてよく、例えば、増幅した核酸断片をベクターにクローニングせずに配列を決定することができるダイレクト・シーケンス法があげられるが、これらに限定されない。当該配列決定法としては、例えばCEQTMDTCS Quick Start Kit(BECKMAN)、BigDye Terminator Cycle Sequencing Ready Reaction Kit ABI310(Applied Biosystems)等の市販のキットを用いて簡易に行うことができる。上記のダイレクト・シーケンス法を行う場合には、本発明に係るアリルを含む領域の塩基配列を特異的に決定することができるプライマーを用いることが好ましい。用いるプライマーセットは公知の方法により設計できる。
 このように、検体における本発明に係るアリルに対応する領域の塩基配列を決定した後、その塩基配列と、本発明に係るアリルの塩基配列を比較する。
(2-3)B型肝炎の慢性化に関連のあるアリルと、検体から得られたアミノ酸配列中の前記アリルのアミノ酸配列に対応するアミノ酸配列を比較する工程
 本発明の方法としては、タンパク質レベルで本発明に係るアリルを検出することもできる。具体的には、本発明に係るアリルを有するDP分子を特異的に認識することができる抗体を用いることにより、本発明に係るアリルを検出することができる。当該抗体は、配列番号2、4、6、8及び10に示すアミノ酸配列のいずれの領域からなるペプチドを抗原として免疫学的方法により作製できる。抗体の作製方法、及び抗体を用いた本発明に係るアリルを有するDP分子の検出方法は、当技術分野で公知の方法を用いて行うことができる。
(2-4)B型肝炎の慢性化又は病態進展に対する発症抵抗性又は感受性の判定
 本発明において、HLA-DPB1*04:02、HLA-DPB1*04:01及びHLA-DPB1*02:01アリルは、当該検体がB型肝炎の慢性化に対して発症抵抗性を有することを示し、HLA-DPB1*05:01及びHLA-DPB1*09:01アリルは当該検体がB型肝炎の慢性化に対して発症感受性を有することを示し、HLA-DPB1*02:01アリルは当該検体がB型慢性肝炎の病態進展に抵抗性を有することを示す。この意味で、本発明の方法は、本発明に係るアリルを用いて慢性B型肝炎又は病態進展の検査を行う方法ともいえる。
 さらに、B型肝炎慢性化又は病態進展に対する発症感受性アリル及び発症抵抗性アリルを診断実用性の計算に用いて、B型肝炎患者におけるB型肝炎慢性化又は病態進展の陽性率を解析することにより評価することもできる。B型肝炎慢性化等に関する「陽性率」とは、患者全体のうち、B型肝炎慢性化等に関する感受性アリルが1又はそれ以上ある患者の割合又はB型肝炎化慢性化等に関する抵抗性アリルがないか1のみある患者の割合をいう。例えば、本明細書の実施例に記載した日本人HBV患者488人については、B型肝炎慢性化に関する感受性アリルであるHLA-DPB1*05:01又はHLA-DPB1*09:01のいずれかを1又は2有する患者は410人であり、いずれもないのは78人であるので、陽性率は84.02%となる。さらに、B型肝炎慢性化に関する抵抗性アリルであるHLA-DPB1*04:02、HLA-DPB1*04:01、HLA-DPB1*02:01がないか又は1つだけ有する患者は450人であり、いずれかを2つ有するのは38人であるので、陽性率は92.21%となる。また、B型肝炎の病態進展に関する「陽性率」については、肝硬変及び肝がん患者206人のうち、B型肝炎の病態進展に関する抵抗性アリルであるHLA-DPB1*02:01がないか又は1つだけ有する患者は203人であり、2つ有するのは3人であるので、陽性率は98.5%となる。ここで、B型肝炎の病態進展に関する「陽性率」とは、肝硬変及び肝がん患者に関する陽性率をいう。
 B型肝炎の慢性化等に対する発症感受性の有無は、B型肝炎の慢性患者だけでなく非慢性患者にとっても重要な情報であり、例えば、慢性B型肝炎の治療方法や治療薬の選定及び慢性B型肝炎の予防・発症防止に関する重要な情報となる。なお、このHLA-DPB1*05:01、HLA-DPB1*04:02、HLA-DPB1*09:01、HLA-DPB1*04:01、HLA-DPB1*02:01アリルの存在は、ホモ又はヘテロのいずれでもよい。ヒトは各遺伝子について父親由来と母親由来の2種類を有するからである。
 また、本発明者らは、B型肝炎の慢性化に抵抗性のある抵抗性アリルと、B型肝炎の慢性化に感受性のある感受性アリルとのうち、ある特定の抵抗性アリルと感受性アリルとの組み合わせを有するヒトについて、HBV患者群1380人と健常対照群1225人についての95%信頼区間におけるオッズ比(OR;Odds Ratio)を求めた。ここで、オッズ比ORとは、あるアリルの組み合わせを有するヒトの群についての、HBV患者群のオッズOsPと、健常対照群のオッズOsCとの比である。このHBV患者群のオッズOsPは、HBV患者数のうち、ある特定のアリルの組み合わせを有するHBV患者数の比によって求められる。また、この健常対照群のオッズOsCは、健常対照群の人数のうち、ある特定のアリルの組み合わせを有する健常対照群の人数の比によって求められる。以下、ある特定のアリルの組み合わせの具体例として、抵抗性アリルとしてHLA-DPB1*04:02、HLA-DPB1*04:01、またはHLA-DPB1*02:01のいずれかを1つだけ有し、感受性アリルとしてHLA-DPB1*05:01またはHLA-DPB1*09:01のいずれかを1つだけ有するヒトの群について説明する。
 この具体例において、HBV患者群1380人のうち、この具体例に示す特定のアリルの組み合わせを有するヒトは、411人である。すなわち、この具体例に示す特定のアリルの組み合わせを有するヒトについて、HBV患者群のオッズOsPは0.42である。また、この具体例において、健常対照群1225人のうち、この具体例に示す特定のアリルの組み合わせを有するヒトは、477人である。すなわち、この具体例に示す特定のアリルの組み合わせを有するヒトについて、健常対照群のオッズOsCは0.63である。したがって、この具体例に示す特定のアリルの組み合わせを有するヒトについて、オッズ比OR、すなわち、HBV患者群のオッズOsPと健常対照群のオッズOsCとの比は、0.67である。
 ここで、オッズ比ORが1より小さい場合には、特定のアリルの組み合わせを有するヒトが、B型肝炎の慢性化に抵抗性があるといえる。この具体例においては、抵抗性アリルとしてHLA-DPB1*04:02、HLA-DPB1*04:01、またはHLA-DPB1*02:01のいずれかを1つだけ有し、感受性アリルとしてHLA-DPB1*05:01またはHLA-DPB1*09:01のいずれかを1つだけ有するヒトは、B型肝炎の慢性化に抵抗性があるといえる。
 すなわち、父親由来と母親由来の2種類のHLA-DPB1アリルの存在が、抵抗性アリルと感受性アリルとのヘテロの場合において、少なくともHLA-DPB1アリルが上述の具体例に示す組み合わせの場合には、当該検体がB型肝炎の慢性化に対する抵抗性を有することが明らかになった。
 つまり、本発明者らは、抵抗性アリルを1つだけ有し、感受性アリルを1つだけ有するヒトは、B型肝炎の慢性化に抵抗性があるといえることを導いた。このことから、父親由来と母親由来の2種類のアリルが、抵抗性アリルと感受性アリルとを、それぞれ1つだけ有するヒトは、B型肝炎の慢性化に抵抗性があるといえる。つまり、本発明に係るアリルを用いることにより、父親由来と母親由来の2種類のアリルの組み合わせに基づいて、B型肝炎の慢性化又は病態進展に対する発症抵抗性又は感受性を判定することができる。
 (3)本発明に係るアリルを含むB型肝炎の慢性化又は病態進展の素因の検出のための試薬
 本発明に係るアリルを用いてB型肝炎の慢性化又は病態進展の素因を検出することができる。したがって、上記アリルを検出する試薬は、B型肝炎の慢性化又は病態進展の検査用試薬として有用である。当該試薬はB型肝炎の慢性化に対する発症抵抗性若しくは感受性又は病態進展を判定するためにも用いることができる。具体的には、上記の本発明に係るアリルや各種プライマーやプローブ、本発明に係るアリルに特異的に結合することができる抗体、SNPタイピングを行うときに同時に用いる試薬類(例えば、デオキシヌクレオチド3リン酸(dNTPs)やDNAポリメラーゼ、緩衝液等)や陽性コントロール等に加えて、他の溶媒や溶質と組み合わせて試薬とすることができる。たとえば、蒸留水、pH緩衝試薬、塩、タンパク質、界面活性剤等を組み合わせることができる。
また、タイピング法によっては、プローブ又はプライマー等の本発明に係るアリル検出用ポリヌクレオチドの一部に、HLA-DPB1*09:01、HLA-DPB1*05:01、HLA-DPB1*04:02、HLA-DPB1*04:01及び/又はHLA-DPB1*02:01アリル等とは無関係な配列が含まれていてもよい。さらに本発明に係るアリル検出用ポリヌクレオチドはDNAとRNAのキメラであってもよい。また本発明に係るアリル検出用ポリヌクレオチドは、蛍光物質や、ビオチン又はジゴキシンのような結合親和性物質で標識されていてもよい。
 また、本発明の試薬には特定のアリルを検出する手段のほか、さらに、反応液を構成するバッファー、dNTP混合物、酵素類(ポリメラーゼ等)等の反応試薬を含めてよい。反応試薬とは適当な化学的又は物理的検出手段により検出可能な標識を有する試薬である。そのような標識物質を用いる測定法に使用される標識剤として、たとえば蛍光物質、酵素、放射性同位元素、発光物質等が用いられる。標識に酵素を用いたELISA法は広く利用されている。蛍光物質として、フルオレスカミン、フルオレッセインイソチオシアネート等、酵素として、パーオキシダーゼ、アルカリホスファターゼ、リンゴ酸脱水酵素、α-グルコシダーゼ、α-ガラクトシダーゼ等、放射性同位元素として、125I、131I、3H、14C等、発光物質として、ルシフェリン、ルシゲニン、ルミノール、ルミノール誘導体等が例示される。
 さらに、反応媒体として、反応の至適条件を与えるか、反応生成物質の安定化等に有用な緩衝液、反応物質の安定化剤等が含まれる。
 (4)本発明に係るアリルを含むB型肝炎の慢性化又は病態進展の素因の検出のためのキット
 本発明に係るアリルを用いてB型肝炎の慢性化又は病態進展の素因を検出する場合、特別の条件、操作等は必要とされない。それぞれの方法における通常の条件、操作に準じて行なわれ、必要であれば若干の修飾を加えて好適な測定系を構築できる。
 そのためのもっとも簡便かつ効率的な測定を行なうことを可能とするのは、上記本発明の試薬をキット化することである。キット化により、通常の検査室又は実験室で、特殊な分析機器、熟練した操作、高度の知識は必要とせずに、効率的に定量を行なうことができる。アッセイキットの構成及び形態は、とくに限定されるものでなく所定の目的を達成できるものであればその内容は限定されない。一般には本発明に係るアリルを検出する手段に関する使用説明書、反応試薬、反応が行なわれる場となる反応媒体、アッセイの場を提供する基材等から構成される。さらに所望により、比較基準とするためのあるいは検量線を作成するための照合サンプル、検出器等も含んでもよい。本発明の遺伝子導入の検出確認手段としては、分光器、放射線検出器、光散乱検出器といった上記標識を検出可能なものがあげられる。
 (5)他のアリルとの組み合わせ
 本発明の上記方法は、他のB型肝炎の慢性化又は病態進展に関連のあるアリルと組み合わせて用いてよい。用いるアリルについては、HLA-DPB1*09:01、HLA-DPB1*05:01、HLA-DPB1*04:02、HLA-DPB1*04:01及び/又はHLA-DPB1*02:01アリルに関するアリルでよく、さらにB型肝炎の慢性化又は病態進展に関連するのであれば、上記配列以外の配列中のアリルでもよい。本発明の方法は、換言すればアリルの検出による。一般にアリルとは、塩基の変化が人口の1%以上の頻度で存在しているものと定義され、1%未満のものでまれなバリエーションという。本発明として組み合わされるアリルとしては、上記アリルのほか、アリルとしての存在頻度を問わず、1%未満のものであってもよい。また本発明と組み合わされるアリルは、B型肝炎の慢性化に関する遺伝子中のどこに存在していてもよく、エクソン、イントロン、3’-UTR又は5’-UTR及びその隣接領域、及びプロモーター領域に存在してもよい。当該他のアリルを検出するためのポリヌクレオチドについては、当業者であれば、上記「(2-2)アリルの検出」に記載した方法等を用いて作製できる。また、アリルの数も特に制限はなく、1から数十の塩基の置換・欠失・挿入・付加のいずれであってもよい。また、一塩基多型(SNP:single nucleotide polymorphism)、制限酵素切断断片長多型(RFLP: restriction fragment length polymorphism)、VNTR(variable number of tandem repeat)、マイクロサテライト多型等の多型であってもよい。
 アリルも多型として公知のものであっても新規な多型であってもよい。公知多型を検出対象とする場合は、例えば、公共データベース:GenBank等に公開されている公知多型の中から、検出対象候補となる多型を選択することができる。また、公的データ:ENSEMBL(http://www.ensembl.org/)を利用して、選択することもできるし、プロタイプも用いることができる。ハプロタイプを構成するSNPの選択方法及びタイピング方法については上記のとおりである。当該ハプロタイプがB型肝炎慢性化又は病態進展に関連するか否かの評価は実施例にあるように、統計学的検定によって判断できる。
 本発明に係るアリルと他のアリル等を組み合わせて用いるとB型肝炎慢性化又は病態進展をより迅速に精度よく判断できるため、診断の信頼度が高まる点でも好ましい。
 次に、本発明を実施例によって説明するが、本発明は、これらの実施例によって限定されるものではなく、様々な変形例が含まれる。
(本発明に係るアリルの検出)
 本実施例は、本発明を含むHLA-DPB1*04:02、HLA-DPB1*09:01、HLA-DPB1*05:01、HLA-DPB1*04:01及びHLA-DPB1*02:01を検出することを目的とする。
日本人のHBV患者488人と健常者464人、韓国人のHBV患者251人と健常者140人由来の各試料について、QIAamp DNA Mini kit(QIAGEN)を用いて以下のように調製した。まず、マイクロチューブにQIAGEN Protease20μlをピペッティングした後、各試料200μlを添加した。さらにBuffer ALを加えて15秒間混和した後、56℃で10分間インキュベートして試料を溶解した。その後、マイクロチューブを数秒間スピンダウンして蓋の内側についた溶液を収集した。さらに試料にエタノール(100%)200μlを添加し、再び15秒間ボルテックスした後、1.5ml マイクロチューブを数秒間スピンダウンして蓋の内側についた溶液を収集した。当該溶液をQIAamp Mini Spin Columnにカラムにアプライし、6,000×gで1分間遠心分離した。QIAamp Mini Spin Columnを開き、500μlのBuffer AW1を添加して6,000×gで1分間遠心分離した。QIAamp Mini Spin Columnを開き、500μlのBuffer AW2を添加して、20,000×gで3分間遠心分離した。QIAamp Mini Spin Column を開き、200μlのBuffer AE又は精製水を添加した。室温で1分間インキュベートした後、6,000×gで1分間遠心分離して、各検体由来のDNAを回収した。
 調製されたDNA試料を用いてPCR-SSOP法を利用したLABType SSO HLA DPA1/DPB1 kit (ワンラムダ)又はWAKFlow HLA-DPB1 typing kit (湧永製薬)を用いて、4桁のHLAタイピングを実施した。実験は説明書に従って行い、xMAPテクノロジーを利用したマルチプレックス測定システム(Luminex社)を利用した。具体的には、上記DNA試料2μlに増幅試薬24.5μl、DNAポリメラーゼ液0.5μlを加えて以下の条件でPCR反応を行った。
変性温度:93℃(30秒)
アニーリング温度:60℃(30秒)
伸長温度:72℃(30秒)
上記のサイクル数:40回
上記サイクル前に93℃(3分)、上記サイクル後に72℃(5分)の反応を行い、終了後は4℃で保存した。
 当該PCR終了後の増幅DNA5μlを、変性液5μlを分注した96穴PCRプレートの各ウエルに加えて、ボルテックスし、室温に5分間放置した。ハイブリダイゼーション溶液20μl、ビーズミックス3μl及びSAPE2μlを混合したハイブリミックス試薬25μlに上記の変性増幅DNAを加えてハイブリミックス溶液としてボルテックスで撹拌した。55℃に設定したサーマルサイクラーに上記ハイブリミックス溶液をセットして、30分間ハイブリダイゼーションを行った。洗浄液75μlを各ウエルに加え、1000×gで1分間遠心分離を行った。その後、上清を除去して、洗浄液75μlを各ウエルに加えた。Luminex XYPのブロック温度を37℃に設定して、ビーズミックスのLot番号に対応したテンプレートファイルを用いて測定した。測定結果のCSVファイルをWAKFlow(登録商標)Typing Softwareで開き、各蛍光ビーズの陽性・陰性を判定表に記載しているカットオフ値をもとに自動判定した。当該自動判定では、蛍光強度がカットオフ値以上を示すビーズを陽性、カットオフ値以下を示すビーズを陰性とし、各ビーズの陽性・陰性のパターンからHLAの遺伝子型を決定した。
 その結果を表1及び2に示す。
Figure JPOXMLDOC01-appb-T000001
 表1は、日本及び韓国におけるHBV患者群と健常者群のHLA-DPB1アリル頻度の比較を示す。これにより、日本人では、HLA-DPB1*04:02、HLA-DPB1*04:01及びHLA-DPB1*02:01アリルは、当該検体がB型肝炎の慢性化に対する発症抵抗性を有することが示され、HLA-DPB1*05:01及びHLA-DPB1*09:01アリルは当該検体がB型肝炎の慢性化に対する発症感受性を有することが示された。韓国人ではHLA-DPB1*04:02アリルは、当該検体がB型肝炎の慢性化に対する発症抵抗性を有することが示され、HLA-DPB1*05:01アリルは当該検体がB型肝炎の慢性化に対する発症感受性を有することが示された。
 表1に示されたB型肝炎慢性化に対する発症感受性アリル(HLA-DPB1*05:01、HLA-DPB1*09:01)及び発症抵抗性アリル(HLA-DPB1*04:02、HLA-DPB1*04:01、HLA-DPB1*02:01)について、B型肝炎患者における陽性率を計算した。その結果、日本人HBV患者488人で感受性アリルを有する場合を計算すると、HLA-DPB1*05:01又はHLA-DPB1*09:01のいずれかを1又は2つ有する患者は410人であったのに対し、当該アリルがない患者は78人であった。したがって、陽性率は84.02%となった。同様に抵抗性アリルの場合について計算すると、HLA-DPB1*04:02、HLA-DPB1*04:01、HLA-DPB1*02:01がないか又は1つ有するのは450人であったのに対し、いずれかを2つ有する患者は38人であった。したがって、陽性率は92.21%となった。
Figure JPOXMLDOC01-appb-T000002
 表2は、日本及び韓国におけるHBV病態進展群とB型慢性肝炎群のHLA-DPB1アリル頻度の比較を示す。これにより、日本及び韓国共に、HLA-DPB1*02:01アリルはB型慢性肝炎の病態進展に抵抗性があることが示された。
 表2に示されたB型肝炎の病態進展に対する抵抗性アリル(HLA-DPB1*02:01)について、肝硬変及び肝がん患者における陽性率を計算した。その結果、肝硬変及び肝がん患者206人のうち、HLA-DPB1*02:01がないか又は1つだけ有するのは203人であり、2つ有する患者は3人であった。したがって、陽性率は98.5%となった。
(本発明に係るアリルの検出;その2)
 本実施例は、本発明を含む父親由来と母親由来の2種類のHLA-DPB1アリルの存在がヘテロの場合において、当該検体がB型肝炎の慢性化に対する抵抗性を有するのか、感受性を有するのかという点を明らかにすることを目的とする。日本人のHBV患者1380人と健常者1225人由来の各試料についてHLAの遺伝子型を決定した。なお、この遺伝子型の決定の手順は、上述した本発明に係るアリルの検出における手順と同様であるため、説明を省略する。
 その結果を表3~5に示す。
Figure JPOXMLDOC01-appb-T000003
 表3は、日本におけるHBV患者群と健常対照群との、単一のHLA-DPB1アリルについての保有頻度を示す。この表3のうち、左表(1stset)は、日本人のHBV患者488人と健常者464人についての結果を示し、右表(2ndset)は、日本人のHBV患者892人と健常者761人についての結果を示す。
 本発明者らは、1stsetにおいて、HBV患者群と健常対照群とから15種類のHLA-DPB1アリルを検出した。この15種類のHLA-DPB1アリルには、HLA-DPB1*01:01、HLA-DPB1*02:01、HLA-DPB1*02:02、HLA-DPB1*03:01、HLA-DPB1*04:01、HLA-DPB1*04:02、HLA-DPB1*05:01、HLA-DPB1*06:01、HLA-DPB1*09:01、HLA-DPB1*13:01、HLA-DPB1*14:01、HLA-DPB1*17:01、HLA-DPB1*19:01、HLA-DPB1*29:01、及びHLA-DPB1*41:01が含まれる。これら、15種類のHLA-DPB1アリルそれぞれについて、ある種類のHLA-DPB1アリルが検出されたヒトが、HBV患者群と健常対照群とのいずれに含まれるかを計数した。一例として、HLA-DPB1*02:01アリルが検出されたヒトのうち、HBV患者群には182人が含まれ、健常対照群には227人が含まれていた。すなわち、HLA-DPB1*02:01アリルが検出されたヒトのうち、HBV患者数は182人であり、健常者数は227人であった。
 また、本発明者らは、2ndsetにおいて、HBV患者群と健常対照群とから18種類のHLA-DPB1アリルを検出した。この18種類のHLA-DPB1アリルには、HLA-DPB1*01:01、HLA-DPB1*02:01、HLA-DPB1*02:02、HLA-DPB1*03:01、HLA-DPB1*04:01、HLA-DPB1*04:02、HLA-DPB1*05:01、HLA-DPB1*06:01、HLA-DPB1*09:01、HLA-DPB1*13:01、HLA-DPB1*14:01、HLA-DPB1*17:01、HLA-DPB1*19:01、HLA-DPB1*21:01、HLA-DPB1*29:01、HLA-DPB1*36:01、HLA-DPB1*38:01、及びHLA-DPB1*41:01が含まれる。これら、18種類のHLA-DPB1アリルそれぞれについて、ある種類のHLA-DPB1アリルが検出されたヒトが、HBV患者群と健常対照群とのいずれに含まれるかを計数した。一例として、HLA-DPB1*02:01アリルが検出されたヒトのうち、HBV患者群には333人が含まれ、健常対照群には368人が含まれていた。すなわち、HLA-DPB1*02:01アリルが検出されたヒトのうち、HBV患者数は333人であり、健常者数は368人であった。
 また、本発明者らは、1stset及び2ndsetのそれぞれについて、HBV患者群と健常対照群についての95%信頼区間におけるオッズ比(OR*;Odds Ratio)を求めた。ここで、オッズ比OR*とは、あるHLA-DPB1アリルを有するヒトの群についての、HBV患者群のオッズOsP*と、健常対照群のオッズOsC*との比である。このHBV患者群のオッズOsP*は、HBV患者数のうち、ある特定のHLA-DPB1*アリルを有するHBV患者数の比によって求められる。また、この健常対照群のオッズOsC*は、健常対照群の人数のうち、ある特定のHLA-DPB1*アリルを有する健常対照群の人数の比によって求められる。ここで、オッズ比OR*が1より小さい場合には、当該検体が、B型肝炎の慢性化に抵抗性があるといえる。また、オッズ比OR*が1以上の場合には、当該検体が、B型肝炎の慢性化に感受性があるといえる。
 これにより、日本人では、HLA-DPB1*02:01、HLA-DPB1*04:01及びHLA-DPB1*04:02アリルは、当該検体がB型肝炎の慢性化に対する抵抗性を有することが示され、HLA-DPB1*05:01及びHLA-DPB1*09:01アリルは当該検体がB型肝炎の慢性化に対する感受性を有することが示された。
 さらに本発明者らは、上述したB型肝炎の慢性化に対する抵抗性を有するHLA-DPB1アリルと、B型肝炎の慢性化に対する感受性を有するHLA-DPB1アリルとの組み合わせについて、表4に示すようにして検討した。
Figure JPOXMLDOC01-appb-T000004
 表4は、日本におけるHBV患者群と健常対照群とにおける、父親由来と母親由来の2種類のHLA-DPB1アリルの組み合わせについての保有頻度を示す。この表4のうち、左表は、HBV患者1380人についての結果を示し、右表は、健常者1225人についての結果を示す。ここで、本発明者らは、父親由来と母親由来の2種類のHLA-DPB1アリルの存在がヘテロの場合において、当該検体がB型肝炎の慢性化に対する抵抗性を有するのか、感受性を有するのかという点に着目した。特に、B型肝炎の慢性化に対する抵抗性を有するHLA-DPB1アリルと、B型肝炎の慢性化に対する感受性を有するHLA-DPB1アリルとの組み合わせにおいて、当該検体がB型肝炎の慢性化に対する抵抗性を有するのか、感受性を有するのかという点に着目した。この結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5は、日本におけるHBV患者群と健常対照群とにおける、父親由来と母親由来の2種類のHLA-DPB1アリルの組み合わせのうち、特に、B型肝炎の慢性化に対する抵抗性を有するHLA-DPB1アリルと、B型肝炎の慢性化に対する感受性を有するHLA-DPB1アリルとの組み合わせに着目した場合の、HLA-DPB1アリルの保有頻度を示す。
 一例として、抵抗性アリルとしてHLA-DPB1*04:02、HLA-DPB1*04:01、またはHLA-DPB1*02:01のいずれかを1つ有し、感受性アリルとしてHLA-DPB1*05:01またはHLA-DPB1*09:01のいずれかを1つ有するヒトは、HBV患者群には411人が含まれ、健常対照群には477人が含まれていた。HBV患者群1380人のうち、この具体例に示すアリルの組み合わせを有するヒトは、411人である。また、健常対照群1225人のうち、この具体例に示す特定のアリルの組み合わせを有するヒトは、477人である。つまり、HBV患者が、この具体例に示すアリルの組み合わせを有する確率Ppは0.297であり、健常者が、この具体例に示すアリルの組み合わせを有する確率Phは0.388である。したがって、この具体例に示すアリルの組み合わせを有するヒトについて、HBV患者群のオッズOsPは0.42であり、健常対照群のオッズOsCは0.63である。ここから、この具体例に示すアリルの組み合わせを有するヒトについて、HBV患者群のオッズOsPと健常対照群のオッズOsCとの比、すなわち、オッズ比ORは、0.67であることが導出された。
 以上、本発明者によってなされた発明をその実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。
 本発明のB型肝炎の慢性化に関連するアリルをHBV患者群に対して解析することにより、特に、日本人を含むアジア人に特化したB型肝炎慢性化の分子機構の解明や創薬ターゲット候補分子の同定が可能になるという産業上利用可能性がある。また、HBVキャリアに対して解析することにより、当該キャリアを慢性化しやすい群と慢性化しにくい群とに分類することが可能となり、その後の治療方針の決定に役立つ情報を提供できるというという産業上利用性がある。さらに、当該アリルに加えて、他の免疫関連遺伝子のSNPも含む検査キットの開発により医療費削減も可能となるという点で産業上利用可能性がある。

Claims (12)

  1.  B型肝炎の慢性化及び/又は病態進展の素因の検出方法であって、以下の:
     a)B型肝炎の慢性化及び/又は病態進展に関連のあるアリルと、検体中の前記アリルに対応する塩基配列又はアミノ酸配列を比較する工程;
     b)検体の前記アリルに対応する部位の塩基又はアミノ酸残基が、アリルの塩基又はアミノ酸残基と一致するかを解析する工程;及び
     c)検体のB型肝炎が慢性化しているか及び/又は病態が進展しているかを特定する工程;
     を含む、方法。
  2.  請求項1記載の方法であって、B型肝炎の慢性化及び/又は病態進展に関連のあるアリルがB型肝炎の慢性化及び/又は病態進展に感受性であるか又は抵抗性である、方法。
  3.  請求項2記載の方法であって、前記B型肝炎の慢性化及び/又は病態進展に関連のあるアリルの組み合わせが、前記感受性のあるアリルのみの組み合わせ、前記抵抗性のあるアリルのみの組み合わせ、又は前記感受性のあるアリルと前記抵抗性のあるアリルとの組み合わせのいずれかの組み合わせである、方法。
  4.  請求項2又は3記載の方法であって、前記B型肝炎の慢性化に感受性のあるアリルがHLA-DPB1*05:01及びHLA-DPB1*09:01であり、前記B型肝炎の慢性化に抵抗性のあるアリルがHLA-DPB1*04:02、HLA-DPB1*04:01及びHLA-DPB1*02:01であり、前記B型肝炎の病態進展に抵抗性のあるアリルがHLA-DPB1*02:01である、方法。
  5.  請求項2~4いずれか1項記載の方法であって、前記B型肝炎の慢性化に抵抗性のあるアリルの組み合わせが、HLA-DPB1*02:01、HLA-DPB1*04:01又はHLA-DPB1*04:02と、HLA-DPB1*05:01又はHLA-DPB1*09:01である、方法。
  6.  請求項1~5いずれか1項記載の方法により、B型肝炎の慢性化及び/又は病態進展の検査を行う方法。
  7.  B型肝炎の慢性化及び/又は病態進展に関連のあるアリルを検出するプライマーを含む、B型肝炎の慢性化及び/又は病態進展の素因の検出のための試薬。
  8.  請求項7記載の試薬であって、前記B型肝炎の慢性化及び/又は病態進展に関連のあるアリルがB型肝炎の慢性化及び/又は病態進展に感受性であるか又は抵抗性である、試薬。
  9.  請求項8記載の試薬であって、B型肝炎の慢性化及び/又は病態進展に関連のあるアリルの組み合わせが、前記感受性のあるアリルのみの組み合わせ、前記抵抗性のあるアリルのみの組み合わせ、又は前記感受性のあるアリルと前記抵抗性のあるアリルとの組み合わせのいずれかの組み合わせである、試薬。
  10.  請求項8又は9項記載の試薬であって、前記B型肝炎の慢性化に感受性のあるアリルがHLA-DPB1*05:01及びHLA-DPB1*09:01であり、前記B型肝炎の慢性化に抵抗性のあるアリルがHLA-DPB1*04:02、HLA-DPB1*04:01及びHLA-DPB1*02:01であり、前記B型肝炎の病態進展に抵抗性のあるアリルがHLA-DPB1*02:01である、試薬。
  11.  請求項8~10いずれか1項記載の試薬であって、前記B型肝炎の慢性化に抵抗性のあるアリルの組み合わせが、HLA-DPB1*02:01、HLA-DPB1*04:01又はHLA-DPB1*04:02と、HLA-DPB1*05:01又はHLA-DPB1*09:01である、試薬。
  12.  請求項7~11いずれか1項記載のB型肝炎の慢性化及び/又は病態進展に関連のあるアリルを含む、B型肝炎の慢性化及び/又は病態進展の素因の検出のための試薬を含むキット。
PCT/JP2014/072649 2013-08-30 2014-08-28 B型肝炎の慢性化の素因の検出方法 WO2015030142A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US14/914,791 US20160304976A1 (en) 2013-08-30 2014-08-28 Method for detecting predisposition for hepatitis b to become chronic
EP14841107.7A EP3040422A4 (en) 2013-08-30 2014-08-28 Method for detecting predisposition for hepatitis b to become chronic
JP2015534311A JP6521382B2 (ja) 2013-08-30 2014-08-28 B型肝炎の慢性化及び/又は病態進展の遺伝要因の検出方法
BR112016004317A BR112016004317A2 (pt) 2013-08-30 2014-08-28 método e reagente para detecção de predisposição para cronicidade da hepatite b e/ou progresso patológico, método de inspeção da cronicidade da hepatite b e/ou do progresso patológico, e, kit
KR1020167005824A KR20160040677A (ko) 2013-08-30 2014-08-28 B 형 간염의 만성화 소인의 검출 방법
CN201480047093.1A CN105612259A (zh) 2013-08-30 2014-08-28 B型肝炎慢性化素因的检测方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013179634 2013-08-30
JP2013-179634 2013-08-30

Publications (1)

Publication Number Publication Date
WO2015030142A1 true WO2015030142A1 (ja) 2015-03-05

Family

ID=52586690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072649 WO2015030142A1 (ja) 2013-08-30 2014-08-28 B型肝炎の慢性化の素因の検出方法

Country Status (7)

Country Link
US (1) US20160304976A1 (ja)
EP (1) EP3040422A4 (ja)
JP (1) JP6521382B2 (ja)
KR (1) KR20160040677A (ja)
CN (1) CN105612259A (ja)
BR (1) BR112016004317A2 (ja)
WO (1) WO2015030142A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018074458A1 (ja) * 2016-10-18 2018-04-26 国立大学法人東京大学 方法及び診断薬

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060057670A1 (en) * 2004-09-10 2006-03-16 The Chinese University Of Hong Kong Genomic markers of hepatitis B virus associated with hepatocellular carcinomas
WO2013030786A1 (en) * 2011-08-31 2013-03-07 Centre Hospitalier Universitaire Vaudois Method for diagnosing or predicting hepatocellular carcinoma outcome

Non-Patent Citations (15)

* Cited by examiner, † Cited by third party
Title
"Current Protocols in Molecular Biology", 1987, JOHN WILEY & SONS
"DNA Cloning 1: Core Techniques, A Practical Approach", 1995
"Molecular Cloning, A Laboratory Manual", 2001, COLD SPRING HARBOR PRESS
JIANG DK ET AL.: "Genetic variants in STAT4 and HLA-DQ genes confer risk of hepatitis B virus-related hepatocellular carcinoma", NAT GENET, vol. 45, no. 1, January 2013 (2013-01-01), pages 72 - 75, XP055321049 *
JIANG DK; SUN J; CAO G; LIU Y; LIN D ET AL.: "Genetic variants in STAT4 and HLA-DQ genes confer risk of hepatitis B virus-related hepatocellular carcinoma", NAT GENET, vol. 45, 2013, pages 72 - 5
JUDITH REINDERS ET AL.: "Extended HLA-DPB1 polymorphism: an RNA approach for HLA-DPB1 typing", IMMUNOGENETICS, vol. 57, no. 10, 2005, pages 790 - 794, XP019331614 *
KAMATANI Y ET AL.: "A genome-wide association study identifies variants in the HLA-DP locus associated with chronic hepatitis B in Asians", NAT GENET, vol. 41, no. 5, 2009, pages 591 - 595, XP055321053 *
KAMATANI Y; WATTANAPOKAYAKIT S; OCHI H; KAWAGUCHI T; TAKAHASHI A ET AL.: "A genome-wide association study identifies variants in the HLA-DP locus associated with chronic hepatitis B in Asians", NAT GENET, vol. 41, 2009, pages 591 - 595
LI S ET AL.: "GWAS Identifies Novel Susceptibility Loci on 6p21.32 and 21q21.3 for Hepatocellular Carcinoma in Chronic Hepatitis B Virus Carriers", PLOS GENET, vol. 8, no. 7, 2012, pages E1002791, XP055321050 *
LI S; QIAN J; YANG Y; ZHAO W; DAI J ET AL.: "GWAS Identifies Novel Susceptibility Loci on 6p21.32 and 21 q21.3 for Hepatocellular Carcinoma in Chronic Hepatitis B Virus Carriers", PLOS GENET, vol. 7, no. 5, 2012, pages E39175
MBAREK H ET AL.: "A genome-wide association study of chronic hepatitis B identified novel risk locus in a Japanese population", HUM MOL GENET, vol. 20, no. 19, 2011, pages 3884 - 3892, XP055321051 *
MBAREK H; OCHI H; URABE Y; KUMAR V; KUBO M ET AL.: "A genome-wide association study of chronic hepatitis B identified novel risk locus in a Japanese population", HUM MOL GENET, vol. 20, 2011, pages 3884 - 3892
NISHIDA N ET AL.: "Genome-Wide Association Study Confirming Association of HLA-DP with Protection against Chronic Hepatitis B and Viral Clearance in Japanese and Korean", PLOS ONE, vol. 7, no. 6, June 2012 (2012-06-01), pages E39175, XP055321052 *
NISHIDA N: "Genome-Wide Association Study Confirming Association of HLA-DP with Protection against Chronic Hepatitis B and Viral Clearance in Japanese and Korean", PLOS ONE, vol. 7, no. 5, June 2012 (2012-06-01), pages E39175
See also references of EP3040422A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018074458A1 (ja) * 2016-10-18 2018-04-26 国立大学法人東京大学 方法及び診断薬
JPWO2018074458A1 (ja) * 2016-10-18 2019-08-08 国立大学法人 東京大学 方法及び診断薬

Also Published As

Publication number Publication date
BR112016004317A2 (pt) 2017-10-24
EP3040422A4 (en) 2017-05-10
US20160304976A1 (en) 2016-10-20
EP3040422A1 (en) 2016-07-06
CN105612259A (zh) 2016-05-25
JP6521382B2 (ja) 2019-05-29
KR20160040677A (ko) 2016-04-14
JPWO2015030142A1 (ja) 2017-03-02

Similar Documents

Publication Publication Date Title
Dwivedi et al. Diseases and molecular diagnostics: a step closer to precision medicine
JP6440658B2 (ja) 薬理ゲノミクスバイオマーカーを発見するための方法
Jakupciak et al. Performance of mitochondrial DNA mutations detecting early stage cancer
CN110484621B (zh) 一种肝癌早期预警的方法
WO2013060005A1 (zh) 一种强直性脊柱炎相关特异性单核苷酸多态性的检测方法及其试剂盒
JP4926079B2 (ja) 一塩基多型を含む乳癌に関連したポリヌクレオチド、それを含むマイクロアレイ及び診断キット、並びにそれを利用した乳癌の診断方法
JP6521382B2 (ja) B型肝炎の慢性化及び/又は病態進展の遺伝要因の検出方法
JP5757908B2 (ja) 多型検出用プローブ、多型検出方法、薬効評価方法、疾患予測方法及び多型検出用試薬キット
ES2445709T3 (es) Método para la identificación por técnicas moleculares de variantes genéticas que no codifican antígeno D (D-) y codifican antígeno C alterado (C+W)
WO2018074458A1 (ja) 方法及び診断薬
KR101724130B1 (ko) 장 베체트병 진단용 바이오마커 및 이의 용도
JP4889258B2 (ja) ウシ白血病発症に対する抵抗性の判定方法
JP2008545387A (ja) 心血管疾患診断のための方法及び構成
JP7461624B2 (ja) B型肝炎ワクチンに対する免疫応答性の遺伝的要因を検出する方法及びキット
JP6516128B2 (ja) 抗甲状腺薬誘発性無顆粒球症リスクを判定するための検査方法及び判定用キット
WO2024048753A1 (ja) ヘリコバクター・ピロリ除菌後の患者が胃癌を発症するリスクを評価する方法、ポリヌクレオチド及びキット
KR102511596B1 (ko) 단일염기다형성을 이용한 안지오텐신 전환효소억제제 이상반응 진단용 조성물 및 이를 이용한 방법
JP2022129868A (ja) B型肝炎ワクチンに対する免疫応答性の遺伝的要因を検出する方法及び試薬
JP6245796B2 (ja) 原発性胆汁性肝硬変の発症リスク予測マーカー、プローブ、プライマー及びキット並びに原発性胆汁性肝硬変の発症リスク予測方法
KR102158726B1 (ko) Itpr3 유전자 업스트림의 유전자간 영역을 포함하는 지연성 허혈 진단용 dna 메틸화 마커 조성물
JP5586164B2 (ja) 潰瘍性大腸炎患者の癌化リスクを決定する方法
Dwivedi et al. Molecular biotechnology for diagnostics
CN108251519B (zh) 轴前多指病的致病基因及其用途
US20100203503A1 (en) Genetic polymorphisms associated with myocardial infarction and uses thereof
US20060263817A1 (en) Genetic polymorphism associated with myocardial infarction and uses thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14841107

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015534311

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14914791

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167005824

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016004317

Country of ref document: BR

REEP Request for entry into the european phase

Ref document number: 2014841107

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014841107

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 112016004317

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160226