WO2024048753A1 - ヘリコバクター・ピロリ除菌後の患者が胃癌を発症するリスクを評価する方法、ポリヌクレオチド及びキット - Google Patents

ヘリコバクター・ピロリ除菌後の患者が胃癌を発症するリスクを評価する方法、ポリヌクレオチド及びキット Download PDF

Info

Publication number
WO2024048753A1
WO2024048753A1 PCT/JP2023/031975 JP2023031975W WO2024048753A1 WO 2024048753 A1 WO2024048753 A1 WO 2024048753A1 JP 2023031975 W JP2023031975 W JP 2023031975W WO 2024048753 A1 WO2024048753 A1 WO 2024048753A1
Authority
WO
WIPO (PCT)
Prior art keywords
base sequence
bases
seq
set forth
sequence set
Prior art date
Application number
PCT/JP2023/031975
Other languages
English (en)
French (fr)
Inventor
隆 福山
憲忠 小林
大賀 山▲崎▼
禎人 高橋
等 山▲崎▼
信江 二渡
俊和 大塚
和三郎 小泉
嘉伸 市来
佳奈子 坂口
Original Assignee
学校法人北里研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人北里研究所 filed Critical 学校法人北里研究所
Publication of WO2024048753A1 publication Critical patent/WO2024048753A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer

Definitions

  • the present invention relates to a method, polynucleotide, and kit for evaluating the risk of developing gastric cancer in a patient after Helicobacter pylori eradication.
  • This application claims priority based on Japanese Patent Application No. 2022-140097 filed in Japan on September 2, 2022, the contents of which are incorporated herein.
  • Helicobacter pylori infection is one of the causes of gastric cancer development.
  • oral eradication is covered by insurance.
  • cases in which Helicobacter pylori has been eradicated have a one-third risk of developing gastric cancer compared to non-eradicated patients.
  • this result indicates that there are cases where cancer occurs even after Helicobacter pylori is eradicated.
  • regular medical examinations are required for all cases of successful eradication, which does not reduce the medical economy and medical resources. Risk indicators such as those described above are unmet medical needs that are strongly sought after by medical professionals and patients.
  • Kitakyushu lung cancer antigen-1 (KK-LC-1) is a type of cancer/testis antigen. The inventors have so far revealed that KK-LC-1 can be used as a marker expressed in various cancers (see, for example, Patent Document 1).
  • An object of the present invention is to provide a technique for evaluating the risk of a patient developing gastric cancer after Helicobacter pylori eradication.
  • a method for evaluating the risk of a patient developing gastric cancer after Helicobacter pylori eradication comprising detecting the expression of the KK-LC-1 gene in a gastric tissue sample derived from the patient before Helicobacter pylori eradication.
  • the method comprises the step of: positive expression of the KK-LC-1 gene indicates that the patient is at risk of developing gastric cancer after eradication of Helicobacter pylori.
  • the real-time RT-PCR is performed in the presence of a single-stranded nucleic acid fragment that suppresses amplification of genomic DNA, and the single-stranded nucleic acid fragment has the 322nd and The method according to [4] or [5], which has a base sequence including the 323rd base, or the 1096th and 1097th bases, and has a base length of 20 to 50 bases. [7] The method according to [1], wherein the expression of the KK-LC-1 gene is detected at the protein level.
  • kits for evaluating the risk of a patient developing gastric cancer after eradication of Helicobacter pylori comprising a primer consisting of the nucleotide sequence set forth in SEQ ID NO: 1 and a primer consisting of the nucleotide sequence set forth in SEQ ID NO: 2. Including the kit.
  • the qPCR probe has a base sequence including the 195th and 196th bases in the base sequence set forth in SEQ ID NO: 3, and has a base length of 15 to 50 bases.
  • the kit according to [8] which has one or two base mutations with respect to the base sequence set forth in SEQ ID NO:3.
  • kits for evaluating the risk of a patient developing gastric cancer after Helicobacter pylori eradication, the kit comprising a substance that specifically binds to KK-LC-1 protein.
  • It has a base sequence including the 195th and 196th bases in the base sequence set forth in SEQ ID NO: 3, has a base length of 15 to 50 bases, and has a base sequence including the 195th and 196th bases in the base sequence set forth in SEQ ID NO.
  • It has a base sequence including the 322nd and 323rd bases or the 1096th and 1097th bases in the base sequence set forth in SEQ ID NO: 4, and has a length of 20 to 50 bases.
  • a method for detecting the expression of the KK-LC-1 gene in a biological sample the detection being performed by real-time RT-PCR, using a qPCR probe in the real-time RT-PCR, and is carried out in the presence of a single-stranded nucleic acid fragment that suppresses amplification of genomic DNA, and the single-stranded nucleic acid fragment is the 322nd and 323rd bases in the base sequence set forth in SEQ ID NO: 4, or A method having a base sequence containing the 1096th and 1097th bases, and having a base length of 20 to 50 bases.
  • the qPCR probe has a base sequence including the 195th and 196th bases in the base sequence set forth in SEQ ID NO:3, and has a base length of 15 to 50 bases, and The method according to [14], which has one or two base mutations with respect to the described base sequence.
  • FIG. 1 is a graph showing the 5-year cumulative incidence of gastric cancer in patients in the KK-LC-1 positive group and negative group in Experimental Example 1.
  • FIG. 2 is a graph showing the 5-year cumulative incidence of gastric cancer in patients in the KK-LC-1 positive group and negative group in Experimental Example 2.
  • FIG. 3 is a graph showing the results of real-time PCR in Experimental Example 3.
  • FIG. 4 is a graph showing the results of real-time PCR in Experimental Example 3.
  • FIG. 5 is a graph showing the results of real-time PCR in Experimental Example 3.
  • FIG. 6 is a graph showing the results of real-time PCR in Experimental Example 3.
  • FIG. 7 is a graph showing the results of real-time PCR in Experimental Example 4.
  • FIG. 8 is a graph showing the results of real-time PCR in Experimental Example 4.
  • FIG. 9 is a graph showing the results of real-time PCR in Experimental Example 5.
  • FIG. 10 is a graph showing the results of real-time PCR in Experimental Example 6.
  • FIG. 11 is
  • the present invention provides a method for assessing the risk of developing gastric cancer in a patient after eradication of Helicobacter pylori, comprising: KK-LC-
  • the present invention provides a method comprising the step of detecting the expression of KK-LC-1 gene, in which positive expression of the KK-LC-1 gene indicates that the patient is at risk of developing gastric cancer after eradication of Helicobacter pylori.
  • the NCBI accession number of the cDNA of the human KK-LC-1 gene is NM_001017978.4.
  • the NCBI accession number of the genomic DNA of the human KK-LC-1 gene is NC_000023.11.
  • the NCBI accession number of human KK-LC-1 protein is NP_001017978.1.
  • the method of this embodiment makes it possible to evaluate the risk of a patient developing gastric cancer after eradication of Helicobacter pylori. Until now, there was no technology to assess the risk of developing gastric cancer after Helicobacter pylori eradication.
  • gastric tissue sample a gastric tissue sample collected at the time of confirmation of Helicobacter pylori infection can be suitably used. If the expression of the KK-LC-1 gene is positive, it indicates that the patient is at risk of developing gastric cancer even after eradication of Helicobacter pylori. In this case, measures can be taken such as increasing the frequency of gastric cancer examinations for the patient.
  • the expression of the KK-LC-1 gene is negative, it indicates that the patient has a low risk of developing gastric cancer after eradication of Helicobacter pylori. In this case, the frequency of gastric cancer examinations of the patient can be reduced, and limited medical resources can be saved. In addition, it can alleviate the anxiety of patients who are concerned about the onset of gastric cancer, and reduce the psychological burden on patients.
  • the expression of the KK-LC-1 gene may be detected by endpoint RT-PCR.
  • endpoint RT-PCR means normal RT-PCR, which is not real-time RT-PCR.
  • the expression of the KK-LC-1 gene may be detected by real-time RT-PCR.
  • the risk of developing gastric cancer in patients after eradication of Helicobacter pylori can be determined using endpoint RT-PCR. can be compared and evaluated more accurately.
  • a qPCR probe also called a TaqMan (registered trademark) probe, is an oligonucleotide modified with a fluorescent substance and a quencher.
  • a qPCR probe specifically hybridizes to template DNA during an annealing step in a PCR reaction. In the qPCR probe, since a quenching substance is present on the probe, the generation of fluorescence is suppressed even when irradiated with excitation light.
  • the qPCR probe hybridized to the template is degraded by the 5' ⁇ 3' exonuclease activity of Taq DNA polymerase.
  • the fluorescent substance and the quencher are liberated, the suppression by the quencher is released, and fluorescence is emitted by irradiation with excitation light.
  • nucleic acid quantification takes advantage of linearity between the PCR amplification product, the number of cycles when the fluorescence intensity reaches a certain level, and the initial amount of target DNA. It is done as follows.
  • the difference between the Ct value of the KK-LC-1 gene and the Ct value of the KK-LC-1 gene may be determined using the Ct value of ⁇ -actin as a standard, and may be used as ⁇ Ct.
  • ⁇ Ct of -2 or more may be classified as a high expression group, ⁇ Ct of -5 or more but less than -2 as a medium expression group, and ⁇ Ct of less than -5 as a low expression group.
  • NCBI accession number of the human ⁇ -actin gene cDNA is NM_001101.5. Furthermore, the NCBI accession number of human ⁇ -actin protein is NP_001092.1.
  • the 5-year cumulative gastric cancer incidence rate was 40% in the high KK-LC-1 expression group, and 5% in the moderate expression group.
  • the 5-year cumulative incidence of gastric cancer was 0%. Therefore, it can be said that the smaller the ⁇ Ct is based on the Ct value of ⁇ -actin, the lower the risk of a patient developing gastric cancer after eradication of Helicobacter pylori.
  • the qPCR probe has a base sequence including the 195th and 196th bases in the base sequence set forth in SEQ ID NO: 3, has a base length of 15 to 50 bases, and has a base sequence of 15 to 50 bases, It is preferable that the base sequence has one or two base mutations with respect to the base sequence set forth in number 3.
  • Genomic DNA encoding KK-LC-1 has a first exon, an intron, and a second exon.
  • the base sequence of the genomic DNA of KK-LC-1 is shown in SEQ ID NO: 4.
  • the base sequence set forth in SEQ ID NO: 3 is the base sequence of the cDNA of the KK-LC-1 gene.
  • the 195th base in SEQ ID NO: 3 corresponds to the last base of the first exon of KK-LC-1.
  • the 196th base in SEQ ID NO: 3 corresponds to the first base of the second exon of KK-LC-1.
  • the qPCR probe preferably has a base sequence containing the 195th and 196th bases in the base sequence set forth in SEQ ID NO:3. That is, the qPCR probe is preferably one that hybridizes to the joining site between the first exon and the second exon in the cDNA of the KK-LC-1 gene.
  • Such a qPCR probe has reduced hybridization to the genomic DNA of the KK-LC-1 gene while maintaining its ability to hybridize to the cDNA of the KK-LC-1 gene. As a result, the cDNA of the KK-LC-1 gene can be detected more accurately.
  • the base length of the qPCR probe is not particularly limited as long as the Tm value of the qPCR probe can be appropriately set, and may be about 15 to 50 bases, for example, 15 to 40 bases, for example, 15 to 50 bases. It may be about 30 bases.
  • the qPCR probe may be modified with a minor groove binder (Minor Groove Binder, MGB).
  • MGB Minor Groove Binder
  • MGB is not particularly limited as long as it increases the Tm value, and examples include dihydropyrroloindole tripeptide (CDPI3), Hoechst 33258, and the like.
  • CDPI3 dihydropyrroloindole tripeptide
  • Hoechst 33258 and the like.
  • the qPCR probe preferably has one or two base mutations with respect to the base sequence of the cDNA of the KK-LC-1 gene (SEQ ID NO: 3).
  • a qPCR probe that hybridizes to the joining site between the first exon and the second exon in the cDNA of the KK-LC-1 gene may also hybridize to the genomic DNA of the KK-LC-1 gene.
  • the qPCR probe has one or two base mutations in the base sequence of the cDNA of the KK-LC-1 gene (SEQ ID NO: 3), the KK-LC While maintaining the ability to hybridize to the cDNA of the -1 gene, hybridization to the genomic DNA of the KK-LC-1 gene is reduced. As a result, the cDNA of the KK-LC-1 gene can be detected more accurately.
  • Examples of such qPCR probes include qPCR probes having the base sequence set forth in any one of SEQ ID NOs: 5 to 10. Among these, a qPCR probe having a base sequence set forth in any one of SEQ ID NOs: 7 to 10 is preferred.
  • the above real-time RT-PCR can also be performed in the presence of a single-stranded nucleic acid fragment that suppresses amplification of genomic DNA.
  • the above-mentioned single-stranded nucleic acid fragment contains the 322nd and 323rd bases or the 1096th and 1097th bases in the KK-LC-1 genomic DNA base sequence (SEQ ID NO: 4). It has a base sequence and preferably has a base length of 20 to 50 bases.
  • the base length of the single-stranded nucleic acid fragment is not particularly limited as long as the Tm value of the single-stranded nucleic acid fragment can be appropriately set, and may be about 20 to 50 bases, for example, 20 to 40 bases. For example, it may be from 25 to 35 bases, for example from 20 to 34 bases, for example from 20 to 31 bases.
  • the 1096th base in SEQ ID NO: 4 corresponds to the 1st base of the intron of KK-LC-1. Furthermore, the 1097th base in SEQ ID NO: 4 corresponds to the last base of the first exon of KK-LC-1.
  • a single-stranded nucleic acid fragment having a base sequence including the 1096th and 1097th bases in SEQ ID NO: 4 hybridizes to the connection site between the first exon and intron of the genomic DNA of KK-LC-1, Hybridization of the qPCR probe to KK-LC-1 genomic DNA can be suppressed. As a result, the cDNA of the KK-LC-1 gene can be detected more accurately.
  • the 322nd base in SEQ ID NO: 4 corresponds to the 1st base of the 2nd exon of KK-LC-1. Furthermore, the 323rd base in SEQ ID NO: 4 corresponds to the last base of the intron of KK-LC-1.
  • a single-stranded nucleic acid fragment having a base sequence including the 322nd and 323rd bases in SEQ ID NO: 4 hybridizes to the connection site between the intron and the second exon of the genomic DNA of KK-LC-1, Hybridization of the qPCR probe to KK-LC-1 genomic DNA can be suppressed. As a result, the cDNA of the KK-LC-1 gene can be detected more accurately.
  • Examples of such single-stranded nucleic acid fragments include single-stranded nucleic acid fragments having the base sequence set forth in any one of SEQ ID NOS: 11 to 13.
  • the expression of the KK-LC-1 gene may be detected at the protein level.
  • KK-LC-1 protein in the gastric tissue sample may be detected by ELISA, Western blotting, etc. using a substance that specifically binds to KK-LC-1. Specific binding substances will be described later.
  • the present invention provides a kit for evaluating the risk of a patient developing gastric cancer after eradication of Helicobacter pylori, the kit comprising a primer consisting of the nucleotide sequence set forth in SEQ ID NO: 1 and a primer set forth in SEQ ID NO: 2.
  • a kit containing a primer consisting of the base sequence is provided.
  • the kit of this embodiment further includes a qPCR probe, and the qPCR probe has a base sequence including the 195th and 196th bases in the base sequence set forth in SEQ ID NO: 3, and has a length of 15 bases. ⁇ 50 bases, and may have one or two base mutations with respect to the base sequence set forth in SEQ ID NO:3.
  • the qPCR probe is the same as described above.
  • the kit of the present embodiment further includes a single-stranded nucleic acid fragment that suppresses the amplification of genomic DNA, and the single-stranded nucleic acid fragment has the 322nd and 323rd bases in the base sequence set forth in SEQ ID NO: 4.
  • the base sequence may include the 1096th and 1097th bases, and the base length may be 20 to 50 bases.
  • the single-stranded nucleic acid fragment that suppresses the amplification of genomic DNA is the same as described above.
  • the kit of this embodiment may contain a substance that specifically binds to KK-LC-1 protein.
  • Specific binding substances for KK-LC-1 protein include antibodies against KK-LC-1, aptamers against KK-LC-1, and the like.
  • the antibody may be an antibody fragment.
  • Antibody fragments include F(ab') 2 , Fab', Fab, Fv, scFv, and the like.
  • examples of aptamers include nucleic acid aptamers, peptide aptamers, and the like.
  • kits the method for evaluating the risk of developing gastric cancer described above can be suitably carried out.
  • the present invention has a base sequence including the 195th and 196th bases in the base sequence set forth in SEQ ID NO: 3, and has a base length of 15 to 50 bases, A polynucleotide having one or two base mutations with respect to the base sequence described in is provided.
  • the polynucleotide of this embodiment is preferably modified with a fluorescent substance and a quencher and configured as a qPCR probe.
  • fluorescent substance those commonly used for qPCR probes can be used without particular limitation.
  • Specific fluorescent substances include, for example, fluorescein, Alexa488, ATTO542, Alexa647, FAM, Cy5, Cy3, and the like.
  • quenching substance those commonly used for qPCR probes can be used without particular limitation.
  • Specific quenching substances include, for example, Black Hole Quencher (BHQ) (registered trademark)-1, BHQ (registered trademark)-2, BHQ (registered trademark)-3, Iowa Black FQ, Iowa Black RQ, etc. .
  • BHQ Black Hole Quencher
  • BHQ registered trademark
  • BHQ registered trademark
  • BHQ registered trademark-3
  • Iowa Black FQ Iowa Black RQ
  • the quenching substance one is selected that can quench the fluorescence of the fluorescent substance used.
  • the polynucleotide of this embodiment can be suitably used as the above-mentioned qPCR probe.
  • the present invention has a base sequence containing the 322nd and 323rd bases, or the 1096th and 1097th bases in the base sequence set forth in SEQ ID NO: 4. , a polynucleotide having a base length of 20 to 50 bases.
  • the polynucleotide of this embodiment can be suitably used as the above-mentioned single-stranded nucleic acid fragment that suppresses amplification of genomic DNA.
  • More specific single-stranded nucleic acid fragments include, for example, single-stranded nucleic acid fragments having the base sequence set forth in any one of SEQ ID NOs: 11 to 13. As described above, by performing real-time RT-PCR in the presence of the single-stranded nucleic acid fragment of this embodiment, it becomes possible to more accurately detect the cDNA of the KK-LC-1 gene.
  • the present invention provides a method for detecting the expression of the KK-LC-1 gene in a biological sample, wherein the detection is performed by real-time RT-PCR, and in the real-time RT-PCR, a qPCR probe is used. , the real-time RT-PCR is performed in the presence of a single-stranded nucleic acid fragment that suppresses the amplification of genomic DNA, and the single-stranded nucleic acid fragment is located at the 322nd and 323rd nucleotides in the base sequence set forth in SEQ ID NO: 4.
  • the present invention provides a method in which the method has a base sequence including the base No. 1, or the 1096th and 1097th bases, and has a base length of 20 to 50 bases.
  • the single-stranded nucleic acid fragment is the same as described above.
  • the single-stranded nucleic acid fragment hybridizes to the first exon and intron junction of the genomic DNA of KK-LC-1, and the qPCR probe hybridizes to the genomic DNA of KK-LC-1. can be suppressed.
  • being able to detect more accurately means that false positive detection is suppressed compared to the case where the above-mentioned single-stranded nucleic acid fragment is not used.
  • biological samples include tissues, serum, plasma, cultured cells, cell culture supernatants, etc. derived from humans or non-human animals.
  • the qPCR probe has a base sequence including the 195th and 196th bases in the base sequence set forth in SEQ ID NO: 3, has a base length of 15 to 50 bases, and has a base sequence of It is preferable that the base sequence has one or two base mutations with respect to the base sequence set forth in number 3.
  • such a qPCR probe has reduced hybridization to the genomic DNA of the KK-LC-1 gene while maintaining its ability to hybridize to the cDNA of the KK-LC-1 gene. As a result, the cDNA of the KK-LC-1 gene can be detected more accurately.
  • such qPCR probes include, for example, qPCR probes having the base sequence set forth in any one of SEQ ID NOs: 5 to 10.
  • a qPCR probe having a base sequence set forth in any one of SEQ ID NOs: 7 to 10 is preferred.
  • Example 1 (Study by endpoint RT-PCR) From 111 patients after Helicobacter pylori eradication, gastric tissue samples collected before eradication were subjected to RT-PCR to detect the expression of the KK-LC-1 gene.
  • a primer consisting of the base sequence set forth in SEQ ID NO: 1 and a primer consisting of the base sequence set forth in SEQ ID NO: 2 were used.
  • agarose gel electrophoresis was performed, and the case where a visible band was detected was judged as positive, and the case where no visible band was detected was judged as negative.
  • the development of gastric cancer in each patient was followed up for 5 years after eradication of Helicobacter pylori.
  • FIG. 1 is a graph showing the 5-year cumulative incidence of gastric cancer in the KK-LC-1 positive group and the KK-LC-1 negative group.
  • the 5-year cumulative incidence of gastric cancer was 43%.
  • the 5-year cumulative incidence of gastric cancer was 1%.
  • a primer consisting of the base sequence set forth in SEQ ID NO: 1 and a primer consisting of the base sequence set forth in SEQ ID NO: 2 are used, and a qPCR probe (named “MGB -D”) was used.
  • MGB-D was a qPCR probe whose 5' end was modified with a fluorescent substance, and whose 3' end was modified with a quencher and a minor groove binder (Minor Groove Binder, MGB). MGB increases the Tm value.
  • the difference from the Ct value of the KK-LC-1 gene was determined and defined as ⁇ Ct. Based on the ⁇ Ct value, they were classified into a high KK-LC-1 expression group, a medium KK-LC-1 expression group, and a low KK-LC-1 expression group. Specifically, a case where ⁇ Ct was ⁇ 2 or more was defined as a high expression group. In addition, cases where ⁇ Ct was -5 or more and less than -2 were classified as a medium expression group. Furthermore, cases where ⁇ Ct was less than ⁇ 5 were classified as a low expression group.
  • FIG. 2 is a graph showing the 5-year cumulative incidence of gastric cancer in patients in each group.
  • the 5-year cumulative incidence of gastric cancer was 40%, and in the moderate expression group, the 5-year cumulative incidence of gastric cancer was 5%.
  • the 5-year cumulative incidence of gastric cancer was 0%.
  • the detection sensitivity of KK-LC-1 was increased by highly sensitive real-time RT-PCR.
  • the expression level of the KK-LC-1 gene in a patient's gastric tissue sample before Helicobacter pylori eradication is correlated with that the patient is at risk of developing gastric cancer after eradication.
  • Table 1 shows the presence or absence of MGB (Minor Groove Binder), number of mutations, and base length for each qPCR probe. All of the qPCR probes shown in Table 1 had base sequences containing the 195th and 196th bases in the cDNA base sequence of the KK-LC-1 gene (SEQ ID NO: 3). Therefore, all of the qPCR probes shown in Table 1 hybridized to the joining site between the first and second exons in the cDNA of the KK-LC-1 gene. Furthermore, the qPCR probe shown in Table 1 had 1 to 4 base mutations with respect to the base sequence of the cDNA of the KK-LC-1 gene (SEQ ID NO: 3). In Table 1, the number of mutations means the number of mutations relative to SEQ ID NO:3.
  • Hs02386421_g1 a commercially available qPCR probe (named "Hs02386421_g1", Thermo Fisher Scientific) for the cDNA of the KK-LC-1 gene was also used.
  • Hs02386421_g1 was a qPCR probe modified with a fluorescent substance at the 5' end and a quencher and MGB at the 3' end.
  • the base sequence of Hs02386421_g1 is not disclosed by the manufacturer, no mutations have been introduced into the base sequence of the cDNA of the KK-LC-1 gene.
  • FIG. 3 is a graph showing the results of real-time PCR using a plasmid containing the cDNA of the KK-LC-1 gene as a template.
  • the qPCR probe must react with the cDNA of the KK-LC-1 gene.
  • the vertical axis shows the fluorescence intensity (relative value), and the horizontal axis shows the cycle number.
  • the graph also shows the amount of plasmid containing cDNA of the KK-LC-1 gene used as a template.
  • FIG. 4 is a graph showing the results of real-time PCR using genomic DNA as a template.
  • the vertical axis shows the fluorescence intensity (relative value), and the horizontal axis shows the cycle number.
  • the graph also shows the amount of genomic DNA used as a template.
  • the genomic DNA the genomic DNA of H-111-TC, a human gastric cancer cell line, was used.
  • the qPCR probe does not react with genomic DNA.
  • FIG. 5 is a graph showing the results of real-time PCR using cDNA as a template.
  • the vertical axis shows the fluorescence intensity (relative value), and the horizontal axis shows the cycle number.
  • the graph also shows the amount of plasmid containing cDNA of the KK-LC-1 gene used as a template. The qPCR probe must react with the cDNA of the KK-LC-1 gene.
  • FIG. 6 is a graph showing the results of real-time PCR using genomic DNA as a template.
  • the vertical axis shows the fluorescence intensity (relative value), and the horizontal axis shows the cycle number.
  • the graph also shows the amount of genomic DNA used as a template.
  • the genomic DNA the genomic DNA of H-111-TC, a human gastric cancer cell line, was used.
  • the qPCR probe does not react with genomic DNA.
  • the base length is shown for each single-stranded nucleic acid fragment.
  • the single-stranded nucleic acid fragments shown in Table 2 suppressed the amplification of genomic DNA. All of the single-stranded nucleic acid fragments shown in Table 2 had base sequences containing the 322nd and 323rd bases in the KK-LC-1 genomic DNA base sequence (SEQ ID NO: 4). Therefore, all of the single-stranded nucleic acid fragments shown in Table 2 hybridized to the joining site between the intron and the second exon in the genomic DNA of KK-LC-1.
  • FIG. 7 is a graph showing the results of real-time PCR using genomic DNA as a template.
  • the vertical axis indicates fluorescence intensity (relative value), and the horizontal axis indicates cycle number.
  • the graph also shows the amount of genomic DNA used as a template.
  • the genomic DNA the genomic DNA of H-111-TC, a human gastric cancer cell line, was used.
  • the qPCR probe does not react with genomic DNA.
  • FIG. 8 is a graph showing the results of real-time PCR using cDNA as a template.
  • the vertical axis indicates fluorescence intensity (relative value), and the horizontal axis indicates cycle number.
  • the graph also shows the amount of plasmid containing cDNA of the KK-LC-1 gene used as a template. The qPCR probe must react with the cDNA of the KK-LC-1 gene.
  • FIG. 9 is a graph showing the results of real-time PCR using cDNA as a template.
  • the vertical axis shows the fluorescence intensity (relative value), and the horizontal axis shows the cycle number.
  • the graph also shows the amount of plasmid containing cDNA of the KK-LC-1 gene used as a template. The qPCR probe must react with the cDNA of the KK-LC-1 gene.
  • Hs02386421_g1 a commercially available qPCR probe (named "Hs02386421_g1", Thermo Fisher Scientific) for the cDNA of the KK-LC-1 gene was also used.
  • Hs02386421_g1 was a qPCR probe modified with a fluorescent substance at the 5' end and a quencher and MGB at the 3' end.
  • the base sequence of Hs02386421_g1 is not disclosed by the manufacturer, no mutations have been introduced into the base sequence of the cDNA of the KK-LC-1 gene.
  • the concentration of qPCR probe in the real-time PCR reaction solution was 0.25 ⁇ M. Furthermore, the concentration of single-stranded nucleic acid fragments in the real-time PCR reaction solution was 1.0 ⁇ M.
  • FIGS. 10 and 11 are graphs showing the results of real-time PCR using genomic DNA as a template.
  • the vertical axis shows the fluorescence intensity (relative value), and the horizontal axis shows the cycle number.
  • the graph also shows the amount of genomic DNA used as a template.
  • the genomic DNA the genomic DNA of H-111-TC, a human gastric cancer cell line, was used.
  • the qPCR probe does not react with genomic DNA.
  • a primer consisting of the base sequence set forth in SEQ ID NO: 1 and a primer consisting of the base sequence set forth in SEQ ID NO: 2 were used. After 40 cycles of PCR reaction, agarose gel electrophoresis was performed, and the case where a visible band was detected was judged as positive, and the case where no visible band was detected was judged as negative.
  • a primer consisting of the base sequence set forth in SEQ ID NO: 1 a primer consisting of the base sequence set forth in SEQ ID NO: 2, and the qPCR probe MGB-D shown in Table 1 above were used. Furthermore, real-time RT-PCR was performed in the presence or absence of Block1, a single-stranded nucleic acid fragment shown in Table 2 above. Using the Ct value of ⁇ -actin as a standard, the difference from the Ct value of the KK-LC-1 gene was determined and defined as ⁇ Ct.
  • Table 3 below shows the results using cancer tissue samples derived from breast cancer patients
  • Table 4 below shows the results using cancer tissue samples derived from colorectal cancer patients.
  • sample numbers 8 and 9 derived from breast cancer patients and sample numbers 3, 5, 6, and 8 derived from colorectal cancer patients expression of the KK-LC-1 gene was detected in the absence of Block1, but in the presence of Block1. No expression of the KK-LC-1 gene was detected. This result was considered to be a false positive result due to the qPCR probe reacting with genomic DNA in the absence of Block1. It was shown that in the presence of Block1, false positives were suppressed and accurate KK-LC-1 gene expression was detected.

Abstract

ヘリコバクター・ピロリ除菌後の患者が胃癌を発症するリスクを評価する方法であって、ヘリコバクター・ピロリ除菌前の前記患者由来の胃組織試料におけるKK-LC-1遺伝子の発現を検出する工程を含み、KK-LC-1遺伝子の発現が陽性であることが、前記患者がヘリコバクター・ピロリ除菌後に胃癌を発症するリスクがあることを示す、方法。

Description

ヘリコバクター・ピロリ除菌後の患者が胃癌を発症するリスクを評価する方法、ポリヌクレオチド及びキット
 本発明は、ヘリコバクター・ピロリ除菌後の患者が胃癌を発症するリスクを評価する方法、ポリヌクレオチド及びキットに関する。本願は、2022年9月2日に、日本に出願された特願2022-140097号に基づき優先権を主張し、その内容をここに援用する。
 ヘリコバクター・ピロリ感染が胃癌発症の原因の一つであることが知られている。現在、ヘリコバクター・ピロリ感染が発見された場合、内服による除菌が保険適用されている。ヘリコバクター・ピロリを除菌した症例は、非除菌群と比較して胃癌発症リスクが1/3になると報告されている。一方で、この結果は、ヘリコバクター・ピロリを除菌しても発癌する症例が存在することを示している。現時点で、ヘリコバクター・ピロリ除菌後に胃癌を発症するリスクを評価する技術は存在しない。つまり、除菌が成功しても、除菌前と同様に対象患者は発癌する不安を抱いたままとなる。さらに、除菌後の発癌リスク指標がないため、除菌成功例全例の定期検診が必要となり、医療経済、医療リソースについても軽減されない。上述したようなリスク指標は医療現場及び患者側からも強く求められているアンメットメディカルニーズである。
 ところで、癌/精巣抗原は、癌細胞と精巣以外では発現が認められないタンパク質の総称である。Kitakyushu lung cancer antigen-1(KK-LC-1)は、癌/精巣抗原の1種である。発明者らは、これまで、KK-LC-1が様々な癌に発現するマーカーとして使用できることを明らかにしてきた(例えば、特許文献1を参照)。
特許第6028253号公報
 本発明は、ヘリコバクター・ピロリ除菌後の患者が胃癌を発症するリスクを評価する技術を提供することを目的とする。
 本発明は以下の態様を含む。
[1]ヘリコバクター・ピロリ除菌後の患者が胃癌を発症するリスクを評価する方法であって、ヘリコバクター・ピロリ除菌前の前記患者由来の胃組織試料におけるKK-LC-1遺伝子の発現を検出する工程を含み、KK-LC-1遺伝子の発現が陽性であることが、前記患者がヘリコバクター・ピロリ除菌後に胃癌を発症するリスクがあることを示す、方法。
[2]KK-LC-1遺伝子の発現の検出がエンドポイントRT-PCRにより行われる、[1]に記載の方法。
[3]前記エンドポイントRT-PCRにおいて、配列番号1に記載の塩基配列からなるプライマー及び配列番号2に記載の塩基配列からなるプライマーを用いる、[2]に記載の方法。
[4]KK-LC-1遺伝子の発現の検出がリアルタイムRT-PCRにより行われる、[1]に記載の方法。
[5]前記リアルタイムRT-PCRにおいて、qPCRプローブを使用し、前記qPCRプローブが、配列番号3に記載の塩基配列における第195番目及び第196番目の塩基を含む塩基配列を有しており、塩基長が15~50塩基であり、配列番号3に記載の塩基配列に対して1又は2塩基の変異を有している、[4]に記載の方法。
[6]前記リアルタイムRT-PCRを、ゲノムDNAの増幅を抑制する一本鎖核酸断片の存在下で行い、前記一本鎖核酸断片が、配列番号4に記載の塩基配列における、第322番目及び第323番目の塩基、又は、第1096番目及び第1097番目の塩基を含む塩基配列を有しており、塩基長が20~50塩基である、[4]又は[5]に記載の方法。
[7]KK-LC-1遺伝子の発現の検出がタンパク質レベルで行われる、[1]に記載の方法。
[8]ヘリコバクター・ピロリ除菌後の患者が胃癌を発症するリスクを評価するためのキットであって、配列番号1に記載の塩基配列からなるプライマー及び配列番号2に記載の塩基配列からなるプライマーを含む、キット。
[9]qPCRプローブを更に含み、前記qPCRプローブが、配列番号3に記載の塩基配列における第195番目及び第196番目の塩基を含む塩基配列を有しており、塩基長が15~50塩基であり、配列番号3に記載の塩基配列に対して1又は2塩基の変異を有している、[8]に記載のキット。
[10]ゲノムDNAの増幅を抑制する一本鎖核酸断片を更に含み、前記一本鎖核酸断片が、配列番号4に記載の塩基配列における、第322番目及び第323番目の塩基、又は、第1096番目及び第1097番目の塩基を含む塩基配列を有しており、塩基長が20~50塩基である、[8]又は[9]に記載のキット。
[11]ヘリコバクター・ピロリ除菌後の患者が胃癌を発症するリスクを評価するためのキットであって、KK-LC-1タンパク質に対する特異的結合物質を含む、キット。
[12]配列番号3に記載の塩基配列における第195番目及び第196番目の塩基を含む塩基配列を有しており、塩基長が15~50塩基であり、配列番号3に記載の塩基配列に対して1又は2塩基の変異を有している、ポリヌクレオチド。
[13]配列番号4に記載の塩基配列における、第322番目及び第323番目の塩基、又は、第1096番目及び第1097番目の塩基を含む塩基配列を有しており、塩基長が20~50塩基である、ポリヌクレオチド。
[14]生体試料におけるKK-LC-1遺伝子の発現を検出する方法であって、前記検出をリアルタイムRT-PCRにより行い、前記リアルタイムRT-PCRにおいて、qPCRプローブを使用し、前記リアルタイムRT-PCRを、ゲノムDNAの増幅を抑制する一本鎖核酸断片の存在下で行い、前記一本鎖核酸断片が、配列番号4に記載の塩基配列における、第322番目及び第323番目の塩基、又は、第1096番目及び第1097番目の塩基を含む塩基配列を有しており、塩基長が20~50塩基である、方法。
[15]前記qPCRプローブが、配列番号3に記載の塩基配列における第195番目及び第196番目の塩基を含む塩基配列を有しており、塩基長が15~50塩基であり、配列番号3に記載の塩基配列に対して1又は2塩基の変異を有している、[14]に記載の方法。
 本発明により、ヘリコバクター・ピロリ除菌後の患者が胃癌を発症するリスクを評価する技術を提供することができる。
図1は、実験例1において、KK-LC-1陽性群と陰性群の患者における5年累積胃癌発症割合を示すグラフである。 図2は、実験例2において、KK-LC-1陽性群と陰性群の患者における5年累積胃癌発症割合を示すグラフである。 図3は、実験例3におけるリアルタイムPCRの結果を示すグラフである。 図4は、実験例3におけるリアルタイムPCRの結果を示すグラフである。 図5は、実験例3におけるリアルタイムPCRの結果を示すグラフである。 図6は、実験例3におけるリアルタイムPCRの結果を示すグラフである。 図7は、実験例4におけるリアルタイムPCRの結果を示すグラフである。 図8は、実験例4におけるリアルタイムPCRの結果を示すグラフである。 図9は、実験例5におけるリアルタイムPCRの結果を示すグラフである。 図10は、実験例6におけるリアルタイムPCRの結果を示すグラフである。 図11は、実験例6におけるリアルタイムPCRの結果を示すグラフである。
[ヘリコバクター・ピロリ除菌後の患者が胃癌を発症するリスクを評価する方法]
 一実施形態において、本発明は、ヘリコバクター・ピロリ除菌後の患者が胃癌を発症するリスクを評価する方法であって、ヘリコバクター・ピロリ除菌前の前記患者由来の胃組織試料におけるKK-LC-1遺伝子の発現を検出する工程を含み、KK-LC-1遺伝子の発現が陽性であることが、前記患者がヘリコバクター・ピロリ除菌後に胃癌を発症するリスクがあることを示す方法を提供する。
 発明者らは、ヘリコバクター・ピロリ除菌前の患者由来の胃組織試料において、KK-LC-1遺伝子の発現が陽性であると、当該患者がヘリコバクター・ピロリ除菌後に胃癌を発症するリスクがあることを見出し、本発明を完成させた。ヒトKK-LC-1遺伝子のcDNAのNCBIアクセッション番号はNM_001017978.4である。また、ヒトKK-LC-1遺伝子のゲノムDNAのNCBIアクセッション番号はNC_000023.11である。また、ヒトKK-LC-1タンパク質のNCBIアクセッション番号はNP_001017978.1である。
 実施例において後述するように、本実施形態の方法により、ヘリコバクター・ピロリ除菌後の患者が胃癌を発症するリスクを評価することができる。従来、ヘリコバクター・ピロリ除菌後に胃癌を発症するリスクを評価する技術は存在しなかった。
 胃組織試料としては、ヘリコバクター・ピロリへの感染確認時に採取した胃組織試料を好適に用いることができる。KK-LC-1遺伝子の発現が陽性であった場合、ヘリコバクター・ピロリ除菌後であっても当該患者が胃癌を発症するリスクがあることを示す。この場合、当該患者の胃癌の検査頻度を増やす等の対策をとることができる。
 KK-LC-1遺伝子の発現が陰性であった場合、ヘリコバクター・ピロリ除菌後の患者が胃癌を発症するリスクが低いことを示す。この場合、当該患者の胃癌の検査頻度を減らすことができ、限られた医療資源を節約することができる。また、胃癌の発症を心配する患者の不安をやわらげ、患者の心理的負担を減らすことができる。
 本実施形態の方法において、KK-LC-1遺伝子の発現の検出は、エンドポイントRT-PCRにより行われてもよい。この場合、配列番号1に記載の塩基配列からなるプライマー及び配列番号2に記載の塩基配列からなるプライマーを用いることが好ましい。ここで、エンドポイントRT-PCRとは、リアルタイムRT-PCRではない通常のRT-PCRを意味する。
 本実施形態の方法において、KK-LC-1遺伝子の発現の検出は、リアルタイムRT-PCRにより行われてもよい。実施例において後述するように、KK-LC-1遺伝子の発現の検出をリアルタイムRT-PCRにより行うことにより、ヘリコバクター・ピロリ除菌後の患者が胃癌を発症するリスクを、エンドポイントRT-PCRと比較してより正確に評価することができる。
 リアルタイムRT-PCRにおいて、qPCRプローブを使用することが好ましい。qPCRプローブは、TaqMan(登録商標)プローブとも呼ばれるものであり、蛍光物質及び消光物質で修飾されたオリゴヌクレオチドである。qPCRプローブは、PCR反応におけるアニーリング工程で鋳型DNAに特異的にハイブリダイズする。qPCRプローブは、プローブ上に消光物質が存在するため、励起光を照射しても蛍光の発生が抑制されている。
 その後の伸長反応ステップで、TaqDNAポリメラーゼが有する5’→3’エキソヌクレアーゼ活性により、鋳型にハイブリダイズしたqPCRプローブが分解される。その結果、蛍光物質及び消光物質が遊離し、消光物質による抑制が解除されて、励起光の照射により蛍光を発する。
 qPCRプローブを用いたリアルタイムRT-PCRでは、核酸の定量は、PCR増幅産物、すなわち、蛍光強度が一定量に達した時のサイクル数と、標的DNAの初期量に直線性が得られることを利用して行われる。
 リアルタイムRT-PCRにおいては、例えば、β-アクチンのCt値を基準として、KK-LC-1遺伝子のCt値との差を求め、ΔCtとしてもよい。この場合、例えば、ΔCtが-2以上の場合を高発現群、ΔCtが-5以上-2未満の場合を中発現群、ΔCtが-5未満の場合を低発現群と分類してもよい。
 ヒトβ-アクチン遺伝子のcDNAのNCBIアクセッション番号はNM_001101.5である。また、ヒトβ-アクチンタンパク質のNCBIアクセッション番号はNP_001092.1である。
 実施例において後述するように、KK-LC-1高発現群では、5年累積胃癌発症割合が40%であり、中発現群では、5年累積胃癌発症率が5%であった。これに対し、KK-LC-1低発現群では、5年累積胃癌発症割合が0%であった。したがって、β-アクチンのCt値を基準とした場合のΔCtが小さいほど、ヘリコバクター・ピロリ除菌後に患者が胃癌を発症するリスクが低いということができる。
 本実施形態の方法において、qPCRプローブは、配列番号3に記載の塩基配列における第195番目及び第196番目の塩基を含む塩基配列を有しており、塩基長が15~50塩基であり、配列番号3に記載の塩基配列に対して1又は2塩基の変異を有していることが好ましい。
 KK-LC-1をコードするゲノムDNAは、第1エクソン、イントロン、第2エクソンを有している。KK-LC-1のゲノムDNAの塩基配列を配列番号4に示す。
 配列番号3に記載の塩基配列は、KK-LC-1遺伝子のcDNAの塩基配列である。配列番号3における第195番目の塩基は、KK-LC-1の第1エクソンの最後の塩基に対応する。また、配列番号3における第196番目の塩基は、KK-LC-1の第2エクソンの第1番目の塩基に対応する。
 本実施形態の方法において、qPCRプローブは、配列番号3に記載の塩基配列における第195番目及び第196番目の塩基を含む塩基配列を有していることが好ましい。すなわち、qPCRプローブは、KK-LC-1遺伝子のcDNAにおける第1エクソンと第2エクソンの連結部位にハイブリダイズするものであることが好ましい。
 このようなqPCRプローブは、KK-LC-1遺伝子のcDNAに対するハイブリダイズ能を維持しつつ、KK-LC-1遺伝子のゲノムDNAへのハイブリダイズが低減されたものになる。この結果、KK-LC-1遺伝子のcDNAを、より正確に検出することが可能になる。
 また、qPCRプローブの塩基長は、qPCRプローブのTm値を適切に設定することができれば特に限定されず、15~50塩基程度であってよく、例えば15~40塩基であってもよく、例えば15~30塩基程度であってもよい。
 qPCRプローブは、マイナーグルーブバインダー(Minor Groove Binder、MGB)で修飾されていてもよい。MGBで修飾することにより、Tm値を上昇させることができる。このため、qPCRプローブをMGBで修飾した場合、qPCRプローブの塩基長をより短く設計することも可能になる。
 MGBとしては、Tm値を上昇させるものであれば特に限定されず、ジヒドロピロロインドールトリペプチド(CDPI3)、Hoechst33258等が挙げられる。
 また、本実施形態の方法において、qPCRプローブは、KK-LC-1遺伝子のcDNAの塩基配列(配列番号3)に対して1又は2塩基の変異を有していることが好ましい。
 KK-LC-1遺伝子のイントロンの塩基配列と、第2エクソンの塩基配列には類似している部分がある。このため、KK-LC-1遺伝子のcDNAにおける第1エクソンと第2エクソンの連結部位にハイブリダイズするqPCRプローブは、KK-LC-1遺伝子のゲノムDNAにもハイブリダイズしてしまう場合がある。
 これに対し、実施例において後述するように、qPCRプローブがKK-LC-1遺伝子のcDNAの塩基配列(配列番号3)に対して1又は2塩基の変異を有していると、KK-LC-1遺伝子のcDNAに対するハイブリダイズ能を維持しつつ、KK-LC-1遺伝子のゲノムDNAへのハイブリダイズが低減されたものになる。この結果、KK-LC-1遺伝子のcDNAを、より正確に検出することが可能になる。このようなqPCRプローブとしては、例えば、配列番号5~10のいずれかに記載の塩基配列を有するqPCRプローブが挙げられる。中でも、配列番号7~10のいずれかに記載の塩基配列を有するqPCRプローブが好ましい。
 本実施形態の方法において、上記のリアルタイムRT-PCRを、ゲノムDNAの増幅を抑制する一本鎖核酸断片の存在下で行うこともできる。上記の一本鎖核酸断片は、KK-LC-1のゲノムDNAの塩基配列(配列番号4)における、第322番目及び第323番目の塩基、又は、第1096番目及び第1097番目の塩基を含む塩基配列を有しており、塩基長が20~50塩基であることが好ましい。一本鎖核酸断片の塩基長は、一本鎖核酸断片のTm値を適切に設定することができれば特に限定されず、20~50塩基程度であってよく、例えば20~40塩基であってもよく、例えば25~35塩基であってもよく、例えば20~34塩基であってもよく、例えば20~31塩基であってもよい。
 配列番号4における第1096番目の塩基は、KK-LC-1のイントロンの第1番目の塩基に対応する。また、配列番号4における第1097番目の塩基は、KK-LC-1の第1エクソンの最後の塩基に対応する。
 したがって、配列番号4における第1096番目及び第1097番目の塩基を含む塩基配列を有する一本鎖核酸断片は、KK-LC-1のゲノムDNAの第1エクソンとイントロンの連結部位にハイブリダイズし、qPCRプローブがKK-LC-1のゲノムDNAにハイブリダイズすることを抑制することができる。この結果、KK-LC-1遺伝子のcDNAを、より正確に検出することが可能になる。
 配列番号4における第322番目の塩基は、KK-LC-1の第2エクソンの第1番目の塩基に対応する。また、配列番号4における第323番目の塩基は、KK-LC-1のイントロンの最後の塩基に対応する。
 したがって、配列番号4における第322番目及び第323番目の塩基を含む塩基配列を有する一本鎖核酸断片は、KK-LC-1のゲノムDNAのイントロンと第2エクソンの連結部位にハイブリダイズし、qPCRプローブがKK-LC-1のゲノムDNAにハイブリダイズすることを抑制することができる。この結果、KK-LC-1遺伝子のcDNAを、より正確に検出することが可能になる。このような一本鎖核酸断片としては、例えば、配列番号11~13のいずれかに記載の塩基配列を有する一本鎖核酸断片が挙げられる。
 本実施形態の方法において、KK-LC-1遺伝子の発現の検出がタンパク質レベルで行われてもよい。この場合、KK-LC-1に対する特異的結合物質を用いたELISA、ウエスタンブロッティング等により、胃組織試料中のKK-LC-1タンパク質を検出すればよい。特異的結合物質については後述する。
[ヘリコバクター・ピロリ除菌後の患者が胃癌を発症するリスクを評価するためのキット]
 一実施形態において、本発明は、ヘリコバクター・ピロリ除菌後の患者が胃癌を発症するリスクを評価するためのキットであって、配列番号1に記載の塩基配列からなるプライマー及び配列番号2に記載の塩基配列からなるプライマーを含むキットを提供する。
 本実施形態のキットは、qPCRプローブを更に含み、当該qPCRプローブが、配列番号3に記載の塩基配列における第195番目及び第196番目の塩基を含む塩基配列を有しており、塩基長が15~50塩基であり、配列番号3に記載の塩基配列に対して1又は2塩基の変異を有していてもよい。qPCRプローブについては上述したものと同様である。
 本実施形態のキットは、ゲノムDNAの増幅を抑制する一本鎖核酸断片を更に含み、前記一本鎖核酸断片が、配列番号4に記載の塩基配列における、第322番目及び第323番目の塩基、又は、第1096番目及び第1097番目の塩基を含む塩基配列を有しており、塩基長が20~50塩基であってもよい。ゲノムDNAの増幅を抑制する一本鎖核酸断片については上述したものと同様である。
 本実施形態のキットは、KK-LC-1タンパク質に対する特異的結合物質を含むものであってもよい。KK-LC-1タンパク質に対する特異的結合物質としては、KK-LC-1に対する抗体、KK-LC-1に対するアプタマー等が挙げられる。抗体は、抗体断片であってもよい。抗体断片としては、F(ab’)、Fab’、Fab、Fv、scFv等が挙げられる。また、アプタマーとしては、核酸アプタマー、ペプチドアプタマー等が挙げられる。
 これらのキットを用いて、上述した、胃癌を発症するリスクを評価する方法を好適に実施することができる。
[ポリヌクレオチド]
 一実施形態において、本発明は、配列番号3に記載の塩基配列における第195番目及び第196番目の塩基を含む塩基配列を有しており、塩基長が15~50塩基であり、配列番号3に記載の塩基配列に対して1又は2塩基の変異を有している、ポリヌクレオチドを提供する。
 本実施形態のポリヌクレオチドは、蛍光物質及び消光物質で修飾されてqPCRプローブとして構成されていることが好ましい。
 蛍光物質としては、qPCRプローブに通常用いられるものを特に制限なく用いることができる。具体的な蛍光物質としては、例えば、フルオレセイン、Alexa488、ATTO542、Alexa647、FAM、Cy5、Cy3等が挙げられる。
 消光物質としては、qPCRプローブに通常用いられるものを特に制限なく用いることができる。具体的な消光物質としては、例えば、Black Hole Quencher(BHQ)(登録商標)-1、BHQ(登録商標)-2、BHQ(登録商標)-3、Iowa Black FQ、Iowa Black RQ等が挙げられる。消光物質としては、使用する蛍光物質の蛍光を消光することができるものを選択する。
 本実施形態のポリヌクレチドは、上述したqPCRプローブとして好適に使用することができる。本実施形態のポリヌクレチドをqPCRプローブとして使用して、リアルタイムRT-PCRを行うことにより、KK-LC-1遺伝子のcDNAを、より正確に検出することが可能になる。
 別の実施形態において、本発明は、配列番号4に記載の塩基配列における、第322番目及び第323番目の塩基、又は、第1096番目及び第1097番目の塩基を含む塩基配列を有しており、塩基長が20~50塩基である、ポリヌクレオチドを提供する。本実施形態のポリヌクレオチドは、上述した、ゲノムDNAの増幅を抑制する一本鎖核酸断片として好適に使用することができる。
 より具体的な一本鎖核酸断片としては、例えば、配列番号11~13のいずれかに記載の塩基配列を有する一本鎖核酸断片が挙げられる。上述したように、本実施形態の一本鎖核酸断片の存在下でリアルタイムRT-PCRを行うことにより、KK-LC-1遺伝子のcDNAを、より正確に検出することが可能になる。
[生体試料におけるKK-LC-1遺伝子の発現を検出する方法]
 一実施形態において、本発明は、生体試料におけるKK-LC-1遺伝子の発現を検出する方法であって、前記検出をリアルタイムRT-PCRにより行い、前記リアルタイムRT-PCRにおいて、qPCRプローブを使用し、前記リアルタイムRT-PCRを、ゲノムDNAの増幅を抑制する一本鎖核酸断片の存在下で行い、前記一本鎖核酸断片が、配列番号4に記載の塩基配列における、第322番目及び第323番目の塩基、又は、第1096番目及び第1097番目の塩基を含む塩基配列を有しており、塩基長が20~50塩基である、方法を提供する。一本鎖核酸断片については上述したものと同様である。
 上述したように、一本鎖核酸断片は、KK-LC-1のゲノムDNAの第1エクソンとイントロンの連結部位にハイブリダイズし、qPCRプローブがKK-LC-1のゲノムDNAにハイブリダイズすることを抑制することができる。この結果、実施例において後述するように、KK-LC-1遺伝子のcDNAを、より正確に検出することが可能になる。ここで、より正確に検出することができるとは、上述した一本鎖核酸断片を使用しなかった場合と比較して、擬陽性の検出が抑制されることを意味する。
 本実施形態の方法において、生体試料としては、ヒト又は非ヒト動物由来の組織、血清、血漿、培養細胞、細胞培養上清等が挙げられる。
 本実施形態の方法において、qPCRプローブが、配列番号3に記載の塩基配列における第195番目及び第196番目の塩基を含む塩基配列を有しており、塩基長が15~50塩基であり、配列番号3に記載の塩基配列に対して1又は2塩基の変異を有していることが好ましい。上述したように、このようなqPCRプローブは、KK-LC-1遺伝子のcDNAに対するハイブリダイズ能を維持しつつ、KK-LC-1遺伝子のゲノムDNAへのハイブリダイズが低減されたものになる。この結果、KK-LC-1遺伝子のcDNAを、より正確に検出することが可能になる。上述したように、このようなqPCRプローブとしては、例えば、配列番号5~10のいずれかに記載の塩基配列を有するqPCRプローブが挙げられる。中でも、配列番号7~10のいずれかに記載の塩基配列を有するqPCRプローブが好ましい。
 次に実施例を示して本発明を更に詳細に説明するが、本発明は以下の実施例に限定されるものではない。
[実験例1]
(エンドポイントRT-PCRによる検討)
 ヘリコバクター・ピロリ除菌後の患者111症例において、除菌前に採取した胃組織試料をRT-PCRに供し、KK-LC-1遺伝子の発現を検出した。
 RT-PCRでは、配列番号1に記載の塩基配列からなるプライマー及び配列番号2に記載の塩基配列からなるプライマーを用いた。40サイクルのPCR反応後、アガロースゲル電気泳動を行い、目視可能なバンドが検出された場合を陽性、目視可能なバンドが検出されなかった場合を陰性と判断した。また、ヘリコバクター・ピロリ除菌後の各患者における胃癌の発症を5年間追跡調査した。
 図1は、KK-LC-1陽性群と陰性群における5年累積胃癌発症割合を示すグラフである。その結果、KK-LC-1陽性群では、5年累積胃癌発症割合が43%であった。これに対し、KK-LC-1陰性群では、5年累積胃癌発症割合が1%であった。
 この結果は、ヘリコバクター・ピロリ除菌前の患者の胃組織試料において、KK-LC-1遺伝子の発現が陽性であった場合、当該患者が除菌後に胃癌を発症するリスクがあることを示す。
[実験例2]
(リアルタイムRT-PCRによる検討)
 実験例1では、KK-LC-1陰性群からも発癌症例が認められた。そこで、より高感度なリアルタイムRT-PCRを用いて、KK-LC-1遺伝子発現の検出を実施した。
 ヘリコバクター・ピロリ除菌後の患者96症例において、除菌前に採取した胃組織試料をリアルタイムRT-PCRに供し、KK-LC-1遺伝子の発現を検出した。
 リアルタイムRT-PCRでは、配列番号1に記載の塩基配列からなるプライマー及び配列番号2に記載の塩基配列からなるプライマーを用い、更に、配列番号8に記載の塩基配列からなるqPCRプローブ(名称「MGB-D」)を使用した。MGB-Dは、5’末端に蛍光物質が修飾されており、3’末端に消光物質及びマイナーグルーブバインダー(Minor Groove Binder、MGB)が修飾されたqPCRプローブであった。MGBはTm値を上昇させるものである。
 β-アクチンのCt値を基準として、KK-LC-1遺伝子のCt値との差を求め、ΔCtとした。ΔCtの値により、KK-LC-1高発現群、KK-LC-1中発現群及びKK-LC-1低発現群に分類した。具体的には、ΔCtが-2以上の場合を高発現群とした。また、ΔCtが-5以上-2未満の場合を中発現群とした。また、ΔCtが-5未満の場合を低発現群とした。
 図2は、各群の患者の5年累積胃癌発症割合を示すグラフである。その結果、KK-LC-1高発現群では、5年累積胃癌発症割合が40%であり、中発現群では、5年累積胃癌発症率が5%であった。これに対し、KK-LC-1低発現群では、5年累積胃癌発症割合が0%であった。この結果は、高感度なリアルタイムRT-PCRにより、KK-LC-1の検出感度が上昇したことを示す。また、ヘリコバクター・ピロリ除菌前の患者の胃組織試料におけるKK-LC-1遺伝子の発現量に相関して、当該患者が除菌後に胃癌を発症するリスクがあることを示す。また、ヘリコバクター・ピロリ除菌前の患者の胃組織試料におけるKK-LC-1遺伝子の発現量が低値であった場合(ΔCtが-5未満の場合)、当該患者が除菌後に胃癌を発症するリスクは低いと判断することができることを示す。
[実験例3]
(qPCRプローブの検討1)
 配列番号1に記載の塩基配列からなるプライマー及び配列番号2に記載の塩基配列からなるプライマーを用い、更に、下記表1に示すqPCRプローブを使用して、ゲノムDNA及びKK-LC-1遺伝子のcDNAを含むプラスミドをリアルタイムPCRにより増幅した。リアルタイムPCRの反応液中のqPCRプローブの濃度は0.25μMであった。
Figure JPOXMLDOC01-appb-T000001
 表1中、各qPCRプローブについて、MGB(Minor Groove Binder)の有無、変異の数及び塩基長を示す。表1に示すqPCRプローブは全て、KK-LC-1遺伝子のcDNAの塩基配列(配列番号3)における第195番目及び第196番目の塩基を含む塩基配列を有していた。したがって、表1に示すqPCRプローブは全て、KK-LC-1遺伝子のcDNAにおける第1エクソンと第2エクソンの連結部位にハイブリダイズするものであった。また、表1に示すqPCRプローブは、KK-LC-1遺伝子のcDNAの塩基配列(配列番号3)に対して1~4塩基の変異を有していた。表1中、変異の数は配列番号3に対する変異の数を意味する。
 また、比較のために、KK-LC-1遺伝子のcDNAに対する市販のqPCRプローブ(名称「Hs02386421_g1」、サーモフィッシャーサイエンティフィック社)も使用した。Hs02386421_g1は、5’末端に蛍光物質が修飾されており、3’末端に消光物質及びMGBが修飾されたqPCRプローブであった。Hs02386421_g1の塩基配列はメーカー非公表であるが、KK-LC-1遺伝子のcDNAの塩基配列に対して変異は導入されていないものである。
 図3は、KK-LC-1遺伝子のcDNAを含むプラスミドを鋳型としたリアルタイムPCRの結果を示すグラフである。qPCRプローブは、KK-LC-1遺伝子のcDNAに反応しなくてはならない。図3中、縦軸は蛍光強度(相対値)を示し、横軸はサイクル数を示す。また、グラフには、鋳型として使用した、KK-LC-1遺伝子のcDNAを含むプラスミドの量を示す。
 その結果、MGB-A及びMGB-Bは、KK-LC-1遺伝子のcDNAに反応しないことが示された。これに対し、MGB-C及びMGB-Dは、KK-LC-1遺伝子のcDNAに反応性を示した。
 図4は、ゲノムDNAを鋳型としたリアルタイムPCRの結果を示すグラフである。図4中、縦軸は蛍光強度(相対値)を示し、横軸はサイクル数を示す。また、グラフには、鋳型として使用したゲノムDNAの量を示す。ゲノムDNAとしては、ヒト胃癌細胞株であるH-111-TCのゲノムDNAを使用した。qPCRプローブは、ゲノムDNAには反応しないことが好ましい。
 その結果、KK-LC-1遺伝子のcDNAに対する市販のqPCRプローブ(名称「Hs02386421_g1」)は、ゲノムDNAにも反応してしまうことが確認された。一方、MGB-C及びMGB-Dは、ゲノムDNAには反応しないことが確認された。
 図5は、cDNAを鋳型としたリアルタイムPCRの結果を示すグラフである。図5中、縦軸は蛍光強度(相対値)を示し、横軸はサイクル数を示す。また、グラフには、鋳型として使用した、KK-LC-1遺伝子のcDNAを含むプラスミドの量を示す。qPCRプローブは、KK-LC-1遺伝子のcDNAに反応しなくてはならない。
 その結果、図5左から、Non-MGB-E及びNon-MGB-Fは、MGB-Dと同等のCt値でKK-LC-1遺伝子のcDNAに反応することが示された。また、図5右から、Non-MGB-E及びNon-MGB-Fは、MGB-Dと比較して、感度がより高いことが示された。
 図6は、ゲノムDNAを鋳型としたリアルタイムPCRの結果を示すグラフである。図6中、縦軸は蛍光強度(相対値)を示し、横軸はサイクル数を示す。また、グラフには、鋳型として使用したゲノムDNAの量を示す。ゲノムDNAとしては、ヒト胃癌細胞株であるH-111-TCのゲノムDNAを使用した。qPCRプローブは、ゲノムDNAには反応しないことが好ましい。
 その結果、ゲノムDNAを10ng使用すると、MGB-D、Non-MGB-Eは、ゲノムDNAにも反応してしまうことが確認された。一方、Non-MGB-Fは、ゲノムDNAへの反応性が低いことが示された。
[実験例4]
(qPCRプローブの検討2)
 配列番号1に記載の塩基配列からなるプライマー、配列番号2に記載の塩基配列からなるプライマー、上記表1に示すqPCRプローブであるMGB-D、及び、下記表2に示す一本鎖核酸断片を使用して、ゲノムDNA及びKK-LC-1遺伝子のcDNAを含むプラスミドをリアルタイムPCRにより増幅した。リアルタイムPCRの反応液中のqPCRプローブの濃度は0.25μMであった。また、リアルタイムPCR反応液中の一本鎖核酸断片の濃度は1.0μMであった。
Figure JPOXMLDOC01-appb-T000002
 表2中、各一本鎖核酸断片について塩基長を示す。表2に示す一本鎖核酸断片は、ゲノムDNAの増幅を抑制するものであった。表2に示す一本鎖核酸断片は全てKK-LC-1のゲノムDNAの塩基配列(配列番号4)における第322番目及び第323番目の塩基を含む塩基配列を有していた。したがって、表2に示す一本鎖核酸断片は全て、KK-LC-1のゲノムDNAにおけるイントロンと第2エクソンの連結部位にハイブリダイズするものであった。
 図7は、ゲノムDNAを鋳型としたリアルタイムPCRの結果を示すグラフである。図7中、縦軸は蛍光強度(相対値)を示し、横軸はサイクル数を示す。また、グラフには、鋳型として使用したゲノムDNAの量を示す。ゲノムDNAとしては、ヒト胃癌細胞株であるH-111-TCのゲノムDNAを使用した。qPCRプローブは、ゲノムDNAには反応しないことが好ましい。
 その結果、ゲノムDNAを25ng使用すると、MGB-DはゲノムDNAにも反応してしまうことが確認された。一方、MGB-Dに、Block1、Block2、Block3のいずれかを共存させると、MGB-DのゲノムDNAへの反応が抑制されることが明らかとなった。
 図8は、cDNAを鋳型としたリアルタイムPCRの結果を示すグラフである。図8中、縦軸は蛍光強度(相対値)を示し、横軸はサイクル数を示す。また、グラフには、鋳型として使用した、KK-LC-1遺伝子のcDNAを含むプラスミドの量を示す。qPCRプローブは、KK-LC-1遺伝子のcDNAに反応しなくてはならない。
 その結果、MGB-Dに、Block1、Block2、Block3のいずれかを共存させても、MGB-Dの反応性には悪影響がないことが示された。むしろ、図8右に示すように、MGB-Dに、Block1、Block2、Block3のいずれかを共存させるとKK-LC-1遺伝子のcDNAの検出感度が上昇したことが示された。
[実験例5]
(qPCRプローブの検討3)
 配列番号1に記載の塩基配列からなるプライマー、配列番号2に記載の塩基配列からなるプライマー、上記表1に示すqPCRプローブであるNon-MGB-E又はNon-MGB-F、及び、上記表2に示す一本鎖核酸断片であるBlock1を使用して、ゲノムDNA及びKK-LC-1遺伝子のcDNAを含むプラスミドをリアルタイムPCRにより増幅した。リアルタイムPCRの反応液中のqPCRプローブの濃度は0.25μMであった。また、リアルタイムPCR反応液中の一本鎖核酸断片の濃度は1.0μMであった。また、比較のために、qPCRプローブとしてMGB-Dを使用した群も用意した。
 図9は、cDNAを鋳型としたリアルタイムPCRの結果を示すグラフである。図9中、縦軸は蛍光強度(相対値)を示し、横軸はサイクル数を示す。また、グラフには、鋳型として使用した、KK-LC-1遺伝子のcDNAを含むプラスミドの量を示す。qPCRプローブは、KK-LC-1遺伝子のcDNAに反応しなくてはならない。
 その結果、Non-MGB-E又はNon-MGB-Fに、Block1を共存させても、反応性には悪影響がないことが示された。
 以上の結果は、上記表1に示すqPCRプローブ、又は、上記表1に示すqPCRプローブと上記表2に示す一本鎖核酸断片との組み合わせが、KK-LC-1遺伝子の発現の検出に好適であることを示す。
[実験例6]
(qPCRプローブの検討4)
 配列番号1に記載の塩基配列からなるプライマー、配列番号2に記載の塩基配列からなるプライマー、上記表1に示すqPCRプローブである、MGB-D、Non-MGB-E、Non-MGB-F、及び、上記表2に示す一本鎖核酸断片であるBlock1を使用して、ゲノムDNAをリアルタイムPCRにより増幅した。
 また、比較のために、KK-LC-1遺伝子のcDNAに対する市販のqPCRプローブ(名称「Hs02386421_g1」、サーモフィッシャーサイエンティフィック社)も使用した。Hs02386421_g1は、5’末端に蛍光物質が修飾されており、3’末端に消光物質及びMGBが修飾されたqPCRプローブであった。Hs02386421_g1の塩基配列はメーカー非公表であるが、KK-LC-1遺伝子のcDNAの塩基配列に対して変異は導入されていないものである。
 リアルタイムPCRの反応液中のqPCRプローブの濃度は0.25μMであった。また、リアルタイムPCR反応液中の一本鎖核酸断片の濃度は1.0μMであった。
 図10及び図11は、ゲノムDNAを鋳型としたリアルタイムPCRの結果を示すグラフである。図10及び図11中、縦軸は蛍光強度(相対値)を示し、横軸はサイクル数を示す。また、グラフには、鋳型として使用したゲノムDNAの量を示す。ゲノムDNAとしては、ヒト胃癌細胞株であるH-111-TCのゲノムDNAを使用した。qPCRプローブは、ゲノムDNAには反応しないことが好ましい。
 その結果、Hs02386421_g1、MGB-D、Non-MGB-E、Non-MGB-Fは、ゲノムDNAにも反応してしまうことが確認された。一方、これらのqPCRプローブにBlock1を共存させると、ゲノムDNAへの反応が抑制されることが明らかとなった。
[実験例7]
(臨床検体を用いた検討)
 乳癌患者由来の癌組織試料及び大腸癌患者由来の癌組織試料をエンドポイントRT-PCR及びをリアルタイムRT-PCRにそれぞれ供し、KK-LC-1遺伝子の発現を検出した。
 エンドポイントRT-PCRでは、配列番号1に記載の塩基配列からなるプライマー及び配列番号2に記載の塩基配列からなるプライマーを用いた。40サイクルのPCR反応後、アガロースゲル電気泳動を行い、目視可能なバンドが検出された場合を陽性、目視可能なバンドが検出されなかった場合を陰性と判断した。
 リアルタイムRT-PCRでは、配列番号1に記載の塩基配列からなるプライマー及び配列番号2に記載の塩基配列からなるプライマー、上記表1に示すqPCRプローブであるMGB-Dを使用した。また、リアルタイムRT-PCRは、上記表2に示す一本鎖核酸断片であるBlock1の存在下又は非存在下で行った。β-アクチンのCt値を基準として、KK-LC-1遺伝子のCt値との差を求め、ΔCtとした。
 下記表3に乳癌患者由来の癌組織試料を使用した結果を示し、下記表4に大腸癌患者由来の癌組織試料を使用した結果を示す。その結果、大腸癌患者由来の検体番号7を除き、エンドポイントRT-PCRでは検出限界以下である場合においても、リアルタイムRT-PCRではKK-LC-1遺伝子の発現を検出することができた。大腸癌患者由来の検体番号7では、エンドポイントRT-PCR及びリアルタイムRT-PCRの双方において、KK-LC-1遺伝子の発現が検出されなかった。
 乳癌患者由来の検体番号8、9及び大腸癌患者由来の検体番号3、5、6、8では、Block1の非存在下でKK-LC-1遺伝子の発現が検出されたが、Block1の存在下ではKK-LC-1遺伝子の発現が検出されなかった。この結果は、Block1の非存在下ではqPCRプローブがゲノムDNAに反応した擬陽性の結果であると考えられた。Block1の存在下では、擬陽性が抑制され、正確なKK-LC-1遺伝子の発現が検出されたことが示された。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 本発明により、ヘリコバクター・ピロリ除菌後の患者が胃癌を発症するリスクを評価する技術を提供することができる。

Claims (15)

  1.  ヘリコバクター・ピロリ除菌後の患者が胃癌を発症するリスクを評価する方法であって、
     ヘリコバクター・ピロリ除菌前の前記患者由来の胃組織試料におけるKK-LC-1遺伝子の発現を検出する工程を含み、
     KK-LC-1遺伝子の発現が陽性であることが、前記患者がヘリコバクター・ピロリ除菌後に胃癌を発症するリスクがあることを示す、方法。
  2.  KK-LC-1遺伝子の発現の検出がエンドポイントRT-PCRにより行われる、請求項1に記載の方法。
  3.  前記エンドポイントRT-PCRにおいて、配列番号1に記載の塩基配列からなるプライマー及び配列番号2に記載の塩基配列からなるプライマーを用いる、請求項2に記載の方法。
  4.  KK-LC-1遺伝子の発現の検出がリアルタイムRT-PCRにより行われる、請求項1に記載の方法。
  5.  前記リアルタイムRT-PCRにおいて、qPCRプローブを使用し、前記qPCRプローブが、
     配列番号3に記載の塩基配列における第195番目及び第196番目の塩基を含む塩基配列を有しており、
     塩基長が15~50塩基であり、
     配列番号3に記載の塩基配列に対して1又は2塩基の変異を有している、請求項4に記載の方法。
  6.  前記リアルタイムRT-PCRを、ゲノムDNAの増幅を抑制する一本鎖核酸断片の存在下で行い、前記一本鎖核酸断片が、
     配列番号4に記載の塩基配列における、第322番目及び第323番目の塩基、又は、第1096番目及び第1097番目の塩基を含む塩基配列を有しており、
     塩基長が20~50塩基である、請求項4又は5に記載の方法。
  7.  KK-LC-1遺伝子の発現の検出がタンパク質レベルで行われる、請求項1に記載の方法。
  8.  ヘリコバクター・ピロリ除菌後の患者が胃癌を発症するリスクを評価するためのキットであって、配列番号1に記載の塩基配列からなるプライマー及び配列番号2に記載の塩基配列からなるプライマーを含む、キット。
  9.  qPCRプローブを更に含み、前記qPCRプローブが、
     配列番号3に記載の塩基配列における第195番目及び第196番目の塩基を含む塩基配列を有しており、
     塩基長が15~50塩基であり、
     配列番号3に記載の塩基配列に対して1又は2塩基の変異を有している、請求項8に記載のキット。
  10.  ゲノムDNAの増幅を抑制する一本鎖核酸断片を更に含み、前記一本鎖核酸断片が、
     配列番号4に記載の塩基配列における、第322番目及び第323番目の塩基、又は、第1096番目及び第1097番目の塩基を含む塩基配列を有しており、
     塩基長が20~50塩基である、請求項8又は9に記載のキット。
  11.  ヘリコバクター・ピロリ除菌後の患者が胃癌を発症するリスクを評価するためのキットであって、KK-LC-1タンパク質に対する特異的結合物質を含む、キット。
  12.  配列番号3に記載の塩基配列における第195番目及び第196番目の塩基を含む塩基配列を有しており、
     塩基長が15~50塩基であり、
     配列番号3に記載の塩基配列に対して1又は2塩基の変異を有している、ポリヌクレオチド。
  13.  配列番号4に記載の塩基配列における、第322番目及び第323番目の塩基、又は、第1096番目及び第1097番目の塩基を含む塩基配列を有しており、
     塩基長が20~50塩基である、ポリヌクレオチド。
  14.  生体試料におけるKK-LC-1遺伝子の発現を検出する方法であって、
     前記検出をリアルタイムRT-PCRにより行い、前記リアルタイムRT-PCRにおいて、qPCRプローブを使用し、
     前記リアルタイムRT-PCRを、ゲノムDNAの増幅を抑制する一本鎖核酸断片の存在下で行い、
     前記一本鎖核酸断片が、
     配列番号4に記載の塩基配列における、第322番目及び第323番目の塩基、又は、第1096番目及び第1097番目の塩基を含む塩基配列を有しており、
     塩基長が20~50塩基である、方法。
  15.  前記qPCRプローブが、
     配列番号3に記載の塩基配列における第195番目及び第196番目の塩基を含む塩基配列を有しており、
     塩基長が15~50塩基であり、
     配列番号3に記載の塩基配列に対して1又は2塩基の変異を有している、請求項14に記載の方法。
PCT/JP2023/031975 2022-09-02 2023-08-31 ヘリコバクター・ピロリ除菌後の患者が胃癌を発症するリスクを評価する方法、ポリヌクレオチド及びキット WO2024048753A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-140097 2022-09-02
JP2022140097 2022-09-02

Publications (1)

Publication Number Publication Date
WO2024048753A1 true WO2024048753A1 (ja) 2024-03-07

Family

ID=90097950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031975 WO2024048753A1 (ja) 2022-09-02 2023-08-31 ヘリコバクター・ピロリ除菌後の患者が胃癌を発症するリスクを評価する方法、ポリヌクレオチド及びキット

Country Status (1)

Country Link
WO (1) WO2024048753A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017195803A (ja) * 2016-04-26 2017-11-02 学校法人北里研究所 早期胃癌検出キット及び早期胃癌細胞の検出方法
JP2018512878A (ja) * 2015-04-20 2018-05-24 ネオゲノミクス ラボラトリーズ, インコーポレイテッド 次世代シークエンシングの感度を高めるための方法
WO2021037399A1 (en) * 2019-08-27 2021-03-04 F. Hoffmann-La Roche Ag Compositions and methods for amplification and detection of hepatitis b virus rna, including hbv rna transcribed from cccdna

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018512878A (ja) * 2015-04-20 2018-05-24 ネオゲノミクス ラボラトリーズ, インコーポレイテッド 次世代シークエンシングの感度を高めるための方法
JP2017195803A (ja) * 2016-04-26 2017-11-02 学校法人北里研究所 早期胃癌検出キット及び早期胃癌細胞の検出方法
WO2021037399A1 (en) * 2019-08-27 2021-03-04 F. Hoffmann-La Roche Ag Compositions and methods for amplification and detection of hepatitis b virus rna, including hbv rna transcribed from cccdna

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATABASE Nucleotide 19 June 2003 (2003-06-19), ANONYMOUS : "OGVEZ67TH ZM_0.7_1.5_KB Zea mays genomic clone ZMMBMa0546K14, genomic survey sequence.", XP093144934, retrieved from NCBI Database accession no. CC660145 *
DATABASE Nucleotide 21 August 2003 (2003-08-21), ANONYMOUS : "PUJEM31TD ZM_0.6_1.0_KB Zea mays genomic clone ZMMBTa0650E13, genomic survey sequence.", XP093144933, retrieved from NCBI Database accession no. CG180406. *
FUKUYAMA TAKASHI, FUTAWATARI NOBUE, YAMAMURA RUI, YAMAZAKI TAIGA, ICHIKI YOSHINOBU, EMA AKIRA, USHIKU HIDEKI, NISHI YATSUSHI, TAKA: "Expression of KK-LC-1, a cancer/testis antigen, at non-tumour sites of the stomach carrying a tumour", SCIENTIFIC REPORTS, vol. 8, no. 1, 1 December 2018 (2018-12-01), pages 6131, XP055805222, DOI: 10.1038/s41598-018-24514-9 *

Similar Documents

Publication Publication Date Title
EP1712639B1 (en) Method for the diagnosis of cancer by detecting circulating DNA and RNA
JP6770957B2 (ja) 試料中のpik3ca突然変異状態を決定する方法
JP7000658B2 (ja) 肝臓病変を評価する方法
WO2017201606A1 (en) Cell-free detection of methylated tumour dna
Yang et al. Technical validation of a next-generation sequencing assay for detecting clinically relevant levels of breast cancer–related single-nucleotide variants and copy number variants using simulated cell-free DNA
US20080145852A1 (en) Methods and compositions for detecting adenoma
JP6438119B2 (ja) ホットスポット変異の迅速かつ高感度の検出のための方法
WO2016115967A1 (zh) Y染色体甲基化位点作为前列腺癌诊断标志物的应用
WO2017112738A1 (en) Methods for measuring microsatellite instability
JP6543253B2 (ja) ゲノムの完全性及び/又は確定的制限酵素部位全ゲノム増幅によって得られたdna配列のライブラリの質を判定する方法及びキット
WO2019156054A1 (ja) Mlh1メチル化群判定用マーカー及び判定方法
Yokogami et al. Impact of PCR-based molecular analysis in daily diagnosis for the patient with gliomas
EP3368684B1 (en) Biomarker for breast cancer
KR102261606B1 (ko) 대장암 검출 방법
WO2010032797A1 (ja) 乳癌の転移の判定方法及び血清の評価方法
US20180223367A1 (en) Assays, methods and compositions for diagnosing cancer
WO2024048753A1 (ja) ヘリコバクター・ピロリ除菌後の患者が胃癌を発症するリスクを評価する方法、ポリヌクレオチド及びキット
US20230054587A1 (en) Multiplexed Assay Using Differential Fragment Size to Identify Cancer Specific Cell-Free DNA
JP2011097833A (ja) 特定の遺伝子のメチル化の頻度を、頭頸部腫瘍のバイオマーカーとして使用する方法
EP3075851B1 (en) Method for acquiring information on gastric cancer and kit for detection of gastric cancer
WO2024075828A1 (ja) アルツハイマー病を発症する可能性を判定するためのデータ収集方法及びキット
WO2015030142A1 (ja) B型肝炎の慢性化の素因の検出方法
US20240093302A1 (en) Non-invasive cancer detection based on dna methylation changes
WO2023112946A1 (ja) アルツハイマー病を発症する可能性を判定するためのデータ収集方法及びキット
Bendixen et al. One-instrument, objective microsatellite instability analysis using high-resolution melt

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23860515

Country of ref document: EP

Kind code of ref document: A1