WO2015029950A1 - グラビア印刷用水系コーティング剤およびガスバリア性フィルム - Google Patents

グラビア印刷用水系コーティング剤およびガスバリア性フィルム Download PDF

Info

Publication number
WO2015029950A1
WO2015029950A1 PCT/JP2014/072174 JP2014072174W WO2015029950A1 WO 2015029950 A1 WO2015029950 A1 WO 2015029950A1 JP 2014072174 W JP2014072174 W JP 2014072174W WO 2015029950 A1 WO2015029950 A1 WO 2015029950A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
gas barrier
film
polyurethane resin
coating agent
Prior art date
Application number
PCT/JP2014/072174
Other languages
English (en)
French (fr)
Inventor
神永 純一
沙耶佳 星
悠希 尾村
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Priority to EP14840030.2A priority Critical patent/EP3040386B1/en
Priority to CN201480047334.2A priority patent/CN105492551B/zh
Publication of WO2015029950A1 publication Critical patent/WO2015029950A1/ja
Priority to US15/047,039 priority patent/US20160160063A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/048Forming gas barrier coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0804Manufacture of polymers containing ionic or ionogenic groups
    • C08G18/0819Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups
    • C08G18/0823Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups containing carboxylate salt groups or groups forming them
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3271Hydroxyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/34Carboxylic acids; Esters thereof with monohydroxyl compounds
    • C08G18/348Hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3893Low-molecular-weight compounds having heteroatoms other than oxygen containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/703Isocyanates or isothiocyanates transformed in a latent form by physical means
    • C08G18/705Dispersions of isocyanates or isothiocyanates in a liquid medium
    • C08G18/706Dispersions of isocyanates or isothiocyanates in a liquid medium the liquid medium being water
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/721Two or more polyisocyanates not provided for in one single group C08G18/73 - C08G18/80
    • C08G18/724Combination of aromatic polyisocyanates with (cyclo)aliphatic polyisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/757Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing at least two isocyanate or isothiocyanate groups linked to the cycloaliphatic ring by means of an aliphatic group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7628Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring containing at least one isocyanate or isothiocyanate group linked to the aromatic ring by means of an aliphatic group
    • C08G18/7642Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring containing at least one isocyanate or isothiocyanate group linked to the aromatic ring by means of an aliphatic group containing at least two isocyanate or isothiocyanate groups linked to the aromatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate groups, e.g. xylylene diisocyanate or homologues substituted on the aromatic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/033Printing inks characterised by features other than the chemical nature of the binder characterised by the solvent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/102Printing inks based on artificial resins containing macromolecular compounds obtained by reactions other than those only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/106Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/14Printing inks based on carbohydrates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D129/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Coating compositions based on hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Coating compositions based on derivatives of such polymers
    • C09D129/02Homopolymers or copolymers of unsaturated alcohols
    • C09D129/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2401/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2401/08Cellulose derivatives
    • C08J2401/26Cellulose ethers
    • C08J2401/28Alkyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2429/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2429/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2429/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2475/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/008Additives improving gas barrier properties

Definitions

  • the present invention is used for dry foods, confectionery, bread, delicacy and other foods that dislike moisture and oxygen, and disposable packaging, pharmaceutical products such as tablets, powdered medicines, poultices, patches, etc., and has a gas barrier property by gravure printing.
  • the present invention relates to an aqueous coating agent for gravure printing and a gas barrier film which are preferably used for forming a film. More specifically, the present invention relates to a water-based coating agent for gravure printing and a gas barrier film used in the packaging field that requires high gas barrier properties and transparency capable of recognizing contents.
  • the gas barrier layer has been provided on a substrate such as a film or paper by a sputtering method, a vapor deposition method, a wet coating method, a printing method, or the like.
  • a metal foil made of a metal such as aluminum, a metal vapor deposition film, a resin film such as polyvinyl alcohol, an ethylene-vinyl alcohol copolymer, or polyvinylidene chloride is used (for example, Patent Documents 1 to 4). 5).
  • metal foil and metal vapor-deposited film are excellent in gas barrier properties, they are opaque, so the contents cannot be confirmed, or because they are inferior in elasticity, cracks occur at a few percent elongation, and the gas barrier There are a number of problems, such as reduced performance and the need to dispose of it as non-combustible material upon disposal after use.
  • the gas barrier layer made of polyvinylidene chloride resin film shows good gas barrier properties that do not depend on humidity, but may be a source of harmful substances such as dioxins during disposal. Packaging materials containing system substances tend to be disliked.
  • a gas barrier layer made of a resin film of non-chlorinated polyvinyl alcohol or ethylene-vinyl alcohol copolymer shows high gas barrier properties in a low-humidity atmosphere, but is dependent on humidity. There was a drawback that it was greatly reduced. Further, other gas barrier resin films were inferior to the gas barrier properties of polyvinylidene chloride resin films and polyvinyl alcohol resin films in a low-humidity atmosphere.
  • resin films in which a resin and an inorganic layered mineral are combined have been proposed.
  • this resin film in order to improve the gas barrier property, it is necessary to arrange the inorganic layered mineral so that the inorganic layered mineral is regularly distributed inside the film.
  • the inorganic layered minerals are arranged so that the inorganic layered minerals are regularly distributed, the cohesive force of the resin film and the adhesion force of the resin film to the base material are reduced. It was extremely difficult to achieve both sufficient adhesion strength.
  • a gas barrier in which water-based polyurethane is added to a composite of the above-described polyvinyl alcohol, ethylene-vinyl alcohol copolymer, and the like and a layered compound to improve the adhesion between the composite and the substrate.
  • this gas barrier film has insufficient gas barrier properties under high humidity of 80% RH or higher.
  • a gas barrier resin laminated film having a low humidity dependence and a low humidity dependence has been proposed, which comprises a polyurethane resin having a high urethane group concentration and a high urea group concentration, and a polyamine compound.
  • Patent Document 7 discloses a gas barrier resin laminated film having a low humidity dependence and a low humidity dependence.
  • this gas barrier film is inferior in gas barrier property to the resin film made of polyvinylidene chloride and the like, and its application range as a gas barrier packaging material is limited.
  • the gas barrier film is required to have a laminate strength that does not deteriorate over time in a laminated film in which another film is bonded to the gas barrier film by applying an adhesive to the gas barrier film side (on the film).
  • Japanese Unexamined Patent Publication No. 2001-287294 Japanese Unexamined Patent Publication No. 11-165369 Japanese Unexamined Patent Publication No. 6-93133 Japanese Unexamined Patent Publication No. 9-150484 Japanese Patent No. 3764109 Japanese Patent No. 3351208 Japanese Patent No. 4434907 Japanese Patent Laid-Open No. 11-70608
  • the present invention has been made in view of the above circumstances, and is formed from an aqueous coating agent for gravure printing that has excellent gas barrier properties in a high-humidity atmosphere and has gravure printing suitability, and an aqueous coating agent for gravure printing.
  • An object of the present invention is to provide a gas barrier film having a gas barrier film that has sufficient adhesion strength and film cohesive strength as a packaging material for a long period of time and has little deterioration in laminate strength.
  • the aqueous coating agent for gravure printing includes an aqueous polyurethane resin (A) containing a polyurethane resin having an acid group and a polyamine compound, a water-soluble polymer (B), and an inorganic layered mineral (C ) As a main constituent, and the solid content ratio of the aqueous polyurethane resin (A), the water-soluble polymer (B), and the inorganic layered mineral (C) in the total solid content is as described below. And the total solid concentration is 5% by mass or more, the viscosity at 23 ° C.
  • the inorganic layered mineral (C) may be water-swellable synthetic mica.
  • the gas barrier film according to the second aspect of the present invention includes a base film formed from a plastic material, and an aqueous system for gravure printing according to the first aspect described above on one side of the base film or both sides of the base film. And a gas barrier film formed by a coating agent.
  • the water-based coating agent for gravure printing according to the first aspect of the present invention contains an aqueous polyurethane resin (A), a water-soluble polymer (B), and an inorganic layered mineral (C) as main constituent components.
  • the solid content ratio is adjusted to a predetermined range, the total solid content concentration is 5% by mass or more, the viscosity at 23 ° C. is 50 mPa ⁇ s or less, and the water-soluble polymer (B) has a saponification degree of 95%.
  • a polyvinyl alcohol resin having a polymerization degree of 300 to 1700 is used.
  • a gravure printing method using a gravure printing machine forms a coating film with a predetermined thickness on a substrate or the like on the same line as the printing line of the printing layer. Can be coated.
  • the coating and printing of the aqueous coating agent can be performed in-line with a single multicolor printing machine.
  • productivity can be improved.
  • the gas barrier film formed from the aqueous coating agent for gravure printing which is formed by a known gravure printing method, has the above-described configuration.
  • the gas barrier property is excellent in a high humidity atmosphere, and the adhesion between the gas barrier coating and the substrate and the cohesive force of the gas barrier coating are also good. Therefore, by using the gas barrier film having the above gas barrier film as a packaging material, the quality retention of the contents can be improved and utilized as various packaging materials.
  • the gas barrier film according to the second aspect of the present invention is formed by the water-based coating agent for gravure printing according to the first aspect, and includes an aqueous polyurethane resin (A), a water-soluble polymer (B), and an inorganic layered mineral (C ) As a main constituent component.
  • the gas barrier film according to the second aspect is excellent in gas barrier properties in a high humidity atmosphere by adjusting the solid content blending ratio of these components to a predetermined range, and the adhesion between the gas barrier film and the substrate. In addition, the cohesive strength of the gas barrier film is also good for a long time.
  • the adhesive strength is applied to the gas barrier film side (on the film) of the gas barrier film according to the second embodiment, so that the laminate film is less deteriorated in the laminated film laminated with another film. Therefore, the gas barrier film according to the second embodiment can be used as various packaging materials by using the gas barrier film as a packaging material to improve the quality retention of the contents.
  • Embodiments of an aqueous coating agent for gravure printing and a gas barrier film of the present invention will be described.
  • the present embodiment is specifically described in order to make the gist of the invention better understood, and does not limit the present invention unless otherwise specified.
  • the aqueous coating agent for gravure printing comprises an aqueous polyurethane resin (A) containing a polyurethane resin having an acid group and a polyamine compound, a water-soluble polymer (B), and an inorganic layered mineral (C).
  • the solid content blending ratio of the aqueous polyurethane resin (A), the water-soluble polymer (B), and the inorganic layered mineral (C) in the total solid content included as the main constituent components is in the range described below, and
  • the water-soluble polymer (B) is a polyvinyl alcohol resin having a total solid concentration of 5% by mass or more, a viscosity at 23 ° C.
  • Aqueous polyurethane resin (A) 5-60% by mass Water-soluble polymer (B) 25-80% by mass Inorganic layered mineral (C) 8-20% by mass
  • Examples of the acid group of the polyurethane resin (anionic self-emulsifying polyurethane resin) constituting the aqueous polyurethane resin (A) include a carboxyl group and a sulfonic acid group.
  • the acid group may be located at the terminal or side chain of the polyurethane resin, but is preferably located at least in the side chain.
  • This acid group can usually be neutralized by a neutralizing agent (base) and may form a salt with the base.
  • an acid group can couple
  • the acid value of the polyurethane resin can be selected within a range where water solubility or water dispersibility can be imparted, but is preferably 5 to 100 mgKOH / g, more preferably 10 to 70 mgKOH / g, and 15 to Particularly preferred is 60 mg KOH / g.
  • the acid value of the polyurethane resin is low, the water-solubility and water-dispersibility of the polyurethane resin are insufficient, and the uniform dispersibility of the polyurethane resin and other materials and the dispersion stability of the coating agent are reduced. If the acid value of the polyurethane resin is too high, the water resistance and gas barrier property of the gas barrier film will be reduced. They can be avoided by setting the above numerical range.
  • the total concentration of urethane groups and urea groups (urea groups) in the polyurethane resin is preferably 15% by mass or more, and more preferably 20 to 60% by mass from the viewpoint of gas barrier properties.
  • the total concentration of urethane groups and urea groups (urea groups) is low, the gas barrier properties of the gas barrier coating are lowered. If the total concentration of urethane groups and urea groups (urea groups) is too high, the gas barrier coating becomes stiff and brittle. Therefore, the total concentration of urethane groups and urea groups (urea groups) in the polyurethane resin is preferably in the range of 20 to 60% by mass.
  • the urethane group concentration and the urea group concentration are the molecular weight of the urethane group (59 g / equivalent) or the molecular weight of the urea group (primary amino group (amino group): 58 g / equivalent, secondary amino group (imino group): 57 g / Equivalent) means a value obtained by dividing the molecular weight of the repeating structural unit of the polyurethane resin.
  • the urethane group concentration and the urea group concentration can be calculated based on the charged base of the reaction components, that is, the use ratio of each component.
  • the polyurethane resin preferably has at least a rigid unit (unit composed of a hydrocarbon ring) and a short chain unit (for example, a unit composed of a hydrocarbon chain). That is, the repeating structural unit of the polyurethane resin is derived from a polyisocyanate component, a polyhydroxy acid component, a polyol component, and a chain extender component (particularly, at least a polyisocyanate component), and is a hydrocarbon ring (aromatic and non-aromatic). It is preferable to include at least one of the hydrocarbon rings.
  • the proportion of units composed of hydrocarbon rings in the repeating structural unit of the polyurethane resin is preferably 10 to 70% by mass, more preferably 15 to 65% by mass, and 20 to 60% by mass.
  • the number average molecular weight of the polyurethane resin can be appropriately selected, but is preferably 800 to 1,000,000, more preferably 800 to 200,000, and further preferably 800 to 100,000. preferable. If the number average molecular weight of the polyurethane resin is too high, the viscosity of the coating agent increases, which is not preferable. When the number average molecular weight of the polyurethane resin is too low, the barrier property of the gas barrier film is lowered. Therefore, the above numerical range is preferable.
  • the polyurethane resin may be crystalline in order to enhance gas barrier properties.
  • the glass transition point of the polyurethane resin is preferably 100 ° C. or higher (eg, about 100 to 200 ° C.), more preferably 110 ° C.
  • the glass transition point of the polyurethane resin is less than 100 ° C., the gas barrier property of the gas barrier film is lowered, which is not preferable. Moreover, in the polyurethane resin satisfying the preferred ranges of the above items, it is substantially unlikely that the glass transition point of the polyurethane resin will be 150 ° C. or higher.
  • the aqueous polyurethane resin (A) contains a neutralizing agent and is preferably formed in a state where the polyurethane resin is dissolved or dispersed in an aqueous medium.
  • the aqueous medium include water, a water-soluble solvent, a hydrophilic solvent, or a mixed solvent thereof.
  • the aqueous medium is preferably water or an aqueous solvent containing water as a main component.
  • the hydrophilic solvent include alcohols such as ethanol and isopropanol; ketones such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran; cellosolves; carbitols; and nitriles such as acetonitrile.
  • the aqueous polyurethane resin (A) may be in any form of an aqueous solution in which the above polyurethane resin is dissolved in an aqueous medium, or an aqueous dispersion in which the above polyurethane resin is dispersed in an aqueous medium.
  • the average particle diameter of the dispersed particles (polyurethane resin particles) is not particularly limited, and is preferably 20 to 500 nm, more preferably 25 to 300 nm, and more preferably 30 to 200 nm. Is particularly preferred.
  • the average particle size of the dispersed particles is too large, the uniform dispersibility between the dispersed particles and other materials and the dispersion stability of the coating agent are lowered, and the gas barrier property of the gas barrier film is lowered.
  • the production method of the water-based polyurethane resin (A) is not particularly limited, and usual polyurethane resin water-based technologies such as an acetone method and a prepolymer method are used.
  • a urethanization catalyst such as an amine catalyst, a tin catalyst, or a lead catalyst may be used as necessary.
  • aqueous polyurethane resin (A) can be prepared by reacting at least one of them. More specifically, a polyisocyanate compound, a polyhydroxy acid, and a polyol component are reacted in an inert organic solvent (especially a hydrophilic or water-soluble organic solvent), and a prepolymer having an isocyanate group at the terminal is reacted. A polymer is produced.
  • aqueous polyurethane resin (A) can be prepared by removing the organic solvent.
  • gas barrier properties are expressed by bonding a polyamine compound as a crosslinking agent and an acid group of the polyurethane resin.
  • the bond between the polyamine compound and the acid group of the polyurethane resin may be an ionic bond (for example, an ionic bond between a tertiary amino group and a carboxyl group) or a covalent bond (for example, an amide bond).
  • a polyamine compound various polyamines having two or more basic nitrogen atoms selected from the group consisting of a primary amino group, a secondary amino group, and a tertiary amino group are used.
  • the polyamine compound constituting the aqueous polyurethane resin (A) is not particularly limited as long as it can bind to an acid group and improve the gas barrier property, and various compounds are used.
  • the polyamine compound preferably has an amine value of 100 to 1900 mgKOH / g, more preferably 150 to 1900 mgKOH / g (eg, 200 to 1700 mgKOH / g), and 200 to 1900 mgKOH / g (eg, 300 to It is particularly preferred that 1500 mg KOH / g) polyamine is used.
  • the amine value of the polyamine compound may be about 300 to 1900 mgKOH / g.
  • the water-soluble polymer (B) is a polymer that can be completely dissolved in water at room temperature or a polymer that can be finely dispersed in water at room temperature.
  • the water-soluble polymer (B) is not particularly limited as long as it is a compound that can penetrate and coordinate (intercalate) between unit crystal layers of the inorganic layered mineral (C) described later.
  • Examples of the water-soluble polymer (B) include polyvinyl alcohol and derivatives thereof, cellulose derivatives such as carboxymethylcellulose and hydroxyethylcellulose, starches such as oxidized starch, etherified starch and dextrin, polyvinylpyrrolidone, polyacrylic acid and polymethacrylic acid.
  • the water-soluble polymer (B) is preferably a compound in which at least one kind is a polyvinyl alcohol polymer and derivatives thereof, and particularly preferably a polyvinyl alcohol resin having a saponification degree of 95% or more and a polymerization degree of 300 to 1700. .
  • the polymerization degree of the polyvinyl alcohol resin exceeds 1700
  • the viscosity of the water-based coating agent increases, and it becomes difficult to uniformly mix with other components. Therefore, in the gas barrier film in which the polymerization degree of the polyvinyl alcohol resin exceeds 1700, problems such as a decrease in gas barrier property and adhesion are caused, and in the gravure printing using the gravure printing machine, the film forming state is deteriorated.
  • the solid content concentration is lowered to lower the viscosity, the amount of the liquid component of the coating agent applied to the film increases as the solid content concentration is decreased.
  • the increase in the drying energy of the liquid component of the coating agent and the increase in the drying time cause the line speed to decrease, leading to a decrease in productivity, which is not preferable.
  • the number of times of overcoating on the film must be increased. That is, by using a polyvinyl alcohol resin having a polymerization degree of 1700 or less, an increase in the viscosity of the aqueous coating agent can be suppressed.
  • the polyvinyl alcohol resin and other components can be uniformly mixed and dispersed. Therefore, it is possible to reduce the viscosity of the aqueous coating agent when the polyvinyl alcohol resin has a high concentration. And the stabilization of the characteristic of a water-system coating agent, the reduction of the application amount by the high concentration of polyvinyl alcohol resin, and the reduction of a drying load are enabled, and it contributes also to the improvement in the productivity in gravure printing.
  • the inorganic layered mineral (C) is an inorganic compound in which ultrathin unit crystal layers overlap to form one layered particle.
  • a compound that swells and cleaves in water is preferable, and among these, a clay compound having swellability in water is particularly preferable.
  • the inorganic layered mineral (C) is a clay compound having a property of absorbing water and swelling when water is coordinated between ultrathin unit crystal layers.
  • a clay compound includes a layer in which Si 4+ is coordinated with O 2 ⁇ to form a tetrahedral structure, and Al 3+ , Mg 2+ , Fe 2+ , Fe 3+, etc.
  • This clay compound may be a natural compound or a synthesized compound.
  • inorganic layered mineral (C) include hydrated silicates such as phyllosilicate minerals.
  • Antigolite group clay minerals such as golite and chrysotile, smectite group clay minerals such as montmorillonite, beidellite, nontronite, saponite, hectorite, saconite, stevensite, vermiculite group clay minerals such as vermiculite, muscovite, phlogopite, etc.
  • Mica margarite, tetrasilic mica, teniolite such as mica or mica clay minerals.
  • These inorganic layered minerals (C) are used alone or in combination of two or more.
  • smectite group clay minerals such as montmorillonite and mica group clay minerals such as water-swellable mica are particularly preferable.
  • the size of the inorganic layered mineral (C) is preferably an average particle size of 10 ⁇ m or less and a thickness of 500 nm or less from the viewpoint that when the aspect ratio is high, the film has excellent barrier properties.
  • the inorganic layered minerals (C) at least one of them is particularly preferably a water-swellable synthetic mica having an average particle diameter of 1 to 10 ⁇ m and a thickness of 10 to 100 nm.
  • water-swellable synthetic mica is used as the inorganic layered mineral (C)
  • the water-swellable synthetic mica has high compatibility with the aqueous polyurethane resin (A) and the water-soluble polymer (B).
  • the water-swellable synthetic mica since the water-swellable synthetic mica has fewer impurities than natural mica, the gas barrier film does not cause a decrease in gas barrier property or a film cohesion due to impurities. Furthermore, since the water-swellable synthetic mica has a fluorine atom in the crystal structure, it contributes to suppressing the humidity dependence of the gas barrier property of the gas barrier film formed from the aqueous coating agent. In addition, the water-swellable synthetic mica has a higher aspect ratio than other water-swellable inorganic layered minerals, so that the maze effect works more effectively, and is formed from an aqueous coating agent. This contributes to high gas barrier properties of the gas barrier coating.
  • the water-based coating agent for gravure printing has a solid content ratio of the aqueous polyurethane resin (A), the water-soluble polymer (B), and the inorganic layered mineral (C) in the total solid content. It is the range described below.
  • the blending ratio of the aqueous polyurethane resin (A) in the total solid content is 5 to 60% by mass, preferably 5 to 55% by mass, more preferably 5 to 50% by mass. It is particularly preferable that the content is% by mass.
  • the solid content ratio of the aqueous polyurethane resin (A) in the total solid content is less than 5% by mass, the wettability and adhesion between the gas barrier film formed from the aqueous coating agent and the base film are insufficient. To do.
  • the solid content blending ratio of the aqueous polyurethane resin (A) exceeds 60% by mass, the film cohesive strength of the gas barrier film formed from the water-based coating agent is lowered with time.
  • the mixing ratio of the aqueous polyurethane resin (A) in the solid content is preferably in the above numerical range.
  • the blending ratio of the water-soluble polymer (B) in the total solid content is 25 to 80% by mass, preferably 30 to 80% by mass, more preferably 30 to 75% by mass, and 35 to It is particularly preferably 75% by mass.
  • the cohesive strength as a gas barrier film formed from the water-based coating agent decreases with time.
  • the solid content ratio of the water-soluble polymer (B) exceeds 80% by mass, wettability and adhesion between the gas barrier film and the base film are insufficient.
  • the stability over time of the cohesive strength of the gas barrier coating and the adhesion strength of the gas barrier coating to the substrate, the wettability of the gas barrier coating to the substrate film, and the gas barrier properties of the gas barrier coating in a high humidity atmosphere In order to achieve both, it is particularly preferable to use the above numerical range.
  • the coordination ratio (intercalation) between the unit crystal layers of the inorganic layered mineral (C) is increased by increasing the solid content ratio of the water-soluble polymer (B). It can be increased. Thereby, it is guessed that a gas-barrier film with little deterioration over time of the laminate strength can be produced.
  • the blending ratio of the inorganic layered mineral (C) in the total solid content is 8 to 20% by mass, preferably 8 to 18% by mass, more preferably 10 to 18% by mass. It is particularly preferable that the content is% by mass.
  • the solid content blending ratio of the inorganic layered mineral (C) in the total solid content is less than 8% by mass, sufficient gas barrier properties cannot be obtained for the gas barrier film formed from the aqueous coating agent.
  • the solid content ratio of the inorganic layered mineral (C) exceeds 20% by mass, the adhesion between the gas barrier film formed from the aqueous coating agent and the base film and the aqueous coating agent are formed.
  • the cohesive strength of the gas barrier film decreases with time. If the solid content ratio is outside the specified range, and the cohesive strength of the gas barrier coating and the adhesion strength of the gas barrier coating to the substrate decrease over time, apply an adhesive to the gas barrier coating side (on the coating).
  • the laminate strength deteriorates with time.
  • the above numerical range is used. It is particularly preferred.
  • a water-soluble or water-dispersible reactive curing agent when added to the aqueous coating agent, the substrate adhesion, film cohesive strength, water resistance are further increased. And solvent resistance are improved.
  • reactive curing agents include water-dispersible (water-soluble) polyisocyanates, water-dispersible (water-soluble) carbodiimides, water-soluble epoxy compounds, water-dispersible (water-soluble) oxazolidone compounds, water-soluble aziridine compounds, and the like.
  • the water-based coating agent according to the present embodiment may contain various additives as long as the gas barrier property and the strength as a laminated film for packaging are not impaired.
  • additives include antioxidants, weathering agents, heat stabilizers, lubricants, crystal nucleating agents, ultraviolet absorbers, plasticizers, antistatic agents, colorants, fillers, surfactants, and silane coupling agents. Can be mentioned.
  • the aqueous coating agent according to the present embodiment mainly contains water as a solvent, and may contain a solvent that dissolves in water or is uniformly mixed with water.
  • the solvent include alcohols such as methanol, ethanol and isopropanol, ketones such as acetone and methyl ethyl ketone, ethers such as tetrahydrofuran, nitriles such as cellosolves, carbitols and acetonitrile.
  • the aqueous coating agent according to the present embodiment includes an aqueous polyurethane resin (A), a water-soluble polymer (B), and an inorganic layered mineral (C) as main components, and occupies the total solid content.
  • the solid content ratio of (A), water-soluble polymer (B), and inorganic layered mineral (C) is 5 to 60% by mass of aqueous polyurethane resin (A), and 25 to 80% by mass of water-soluble polymer (B).
  • the inorganic layered mineral (C) is 8 to 20% by mass, it does not contain a compound that can be a source of harmful substances during disposal.
  • the water-based polyurethane resin (A) has a gas barrier property because it has a rigid molecular skeleton unlike a general polyurethane resin.
  • the water-based polyurethane resin (A) has a low humidity dependency since the dry film is insoluble in water, as is the case with general polyurethane resins. Therefore, when the aqueous polyurethane resin (A) is used, a film having gas barrier properties is formed.
  • the gas barrier property of the aqueous polyurethane resin (A) alone is greatly inferior to that of polyvinylidene chloride resin and the like.
  • the gas barrier property is improved according to the amount of the inorganic layered mineral (C) added, and a gas barrier property equal to or higher than that of the polyvinylidene chloride resin can be obtained.
  • a gas barrier coating obtained by combining a water-soluble polymer (B) (for example, a polyvinyl alcohol resin) and a water-swellable inorganic layered mineral (C) has been conventionally known.
  • the film Since the cohesive force and the adhesion strength of the film to the substrate are reduced, it is necessary to add a crosslinking component. However, since the addition of the crosslinking component hinders uniform molecular arrangement with high gas barrier properties, the film is formed in a high-humidity atmosphere with a composite of the water-soluble polymer (B) and the water-swellable inorganic layered mineral (C). It was extremely difficult to achieve both high gas barrier properties and sufficient adhesion strength.
  • the gas barrier film is required to have a laminate strength that does not deteriorate with time in a laminated film in which another film is laminated by applying an adhesive to the gas barrier film side (on the film).
  • the water-based coating agent for gravure printing according to the present embodiment includes an aqueous polyurethane resin (A), a water-soluble polymer (B), and an inorganic layered mineral (C) as main components, and a solid content blend of these components.
  • the ratio is adjusted to a predetermined range, the total solid content concentration is 5 mass% or more, the viscosity at 23 ° C. is 50 mPa ⁇ s or less, and the water-soluble polymer (B) has a saponification degree of 95% or more and a polymerization degree of 300.
  • a polyvinyl alcohol resin of ⁇ 1700 is used.
  • the viscosity is low despite the high solid content concentration.
  • the gravure printing aqueous coating agent according to the present embodiment the gravure printing method using a known gravure printing machine, the same thickness as the printing line of the printing layer, a predetermined thickness to the substrate, etc.
  • the aqueous coating agent can be coated on the film so as to obtain a coating film of At this time, the coating can be repeated a plurality of times in order to obtain a predetermined film thickness, but the predetermined film thickness can be obtained with a smaller number of coatings.
  • the gravure printing aqueous coating agent according to the present embodiment has the above-described configuration, so that the speed of the production line is increased in the step of coating the coating agent on the substrate (printing process by gravure printing). can do.
  • the gravure printing water-based coating agent according to the present embodiment has an effect of increasing productivity because it does not slow down the printing process.
  • the gravure printing water-based coating agent according to the present embodiment has the above-described configuration, and thus is formed by a known gravure printing method, and the high humidity of the gas barrier film formed from the gravure printing water-based coating agent. It is possible to achieve both high gas barrier properties in an atmosphere and sufficient adhesion strength (film cohesion) as a laminated film for packaging over a long period of time. Moreover, the gas barrier film formed from the aqueous coating agent for gravure printing according to this embodiment has excellent gas barrier properties in a high humidity atmosphere, and also has good adhesion to the substrate and cohesion.
  • the decrease in the laminate strength is small. . Therefore, by using the gas barrier film having the gas barrier film as a packaging material, the quality retention of the contents can be improved and utilized as various packaging materials. Furthermore, the water-based coating agent for gravure printing according to this embodiment can reduce the generation of harmful substances at the time of disposal.
  • the gas barrier film according to the second embodiment of the present invention includes a base film formed from a plastic material and the gravure printing according to the first embodiment of the present invention on one side of the base film or both sides of the base film. And a gas barrier film formed by the water-based coating agent. That is, the above film is a gas barrier film containing, as main components, an aqueous polyurethane resin (A) containing a polyurethane resin having an acid group and a polyamine compound, a water-soluble polymer (B), and an inorganic layered mineral (C). It is.
  • A aqueous polyurethane resin
  • B water-soluble polymer
  • C inorganic layered mineral
  • the ratio of the water-based polyurethane resin (A), water-soluble polymer (B), and inorganic layered mineral (C) in the gas barrier film is in the following range.
  • the water-based polyurethane resin (A), the water-soluble polymer (B), and the inorganic layered mineral (C) in the gas-barrier film that is a constituent component of the gas-barrier film according to the present embodiment are the “ It is the same as the compound in “Aqueous Coating Agent for Gravure Printing”.
  • the saponification degree of the water-soluble polymer (B) is preferably 95% or more.
  • the inorganic layered mineral (C) is preferably water-swellable synthetic mica.
  • the amount of the aqueous polyurethane resin (A) is less than 5% by mass, the wettability and adhesion between the gas barrier film and the substrate film are insufficient.
  • the water-based polyurethane resin (A) exceeds 60% by mass, the adhesion strength between the gas barrier film and the base film is lowered with time.
  • the water-soluble polymer (B) is less than 25% by mass, the cohesive strength as a gas barrier film decreases with the passage of time.
  • the water-soluble polymer (B) exceeds 80% by mass, the wettability and adhesion between the gas barrier film and the substrate film are insufficient.
  • the gas barrier property of the gas barrier film in a high humidity atmosphere is lowered.
  • the inorganic layered mineral (C) When the inorganic layered mineral (C) is less than 8% by mass, sufficient gas barrier properties of the gas barrier film cannot be obtained. On the other hand, if the inorganic layered mineral (C) exceeds 20% by mass, the adhesion between the gas barrier coating and the base film and the cohesive strength of the coating will decrease with time. When the solid content ratio is outside the specified range, and the cohesive strength of the gas barrier film and the adhesion strength between the gas barrier film and the substrate decrease over time, dry lamination is performed on the gas barrier film side (on the film). In laminated films laminated with other films, the laminate strength deteriorates with time.
  • Base film formed from plastic material examples include olefin resins such as poly C2-10 such as polyethylene, polypropylene, propylene-ethylene copolymer, polyester resins such as polyethylene terephthalate and polybutylene terephthalate, nylon 6 and the like.
  • Polyamide resin such as nylon 66 aliphatic polyamide, aromatic polyamide such as polymetaxylylene adipamide, polystyrene, polyvinyl acetate, ethylene-vinyl acetate copolymer, polyvinyl alcohol, ethylene-vinyl alcohol copolymer Films formed from vinyl resins such as, acrylic resins such as homo- or copolymers of (meth) acrylic monomers such as polymethyl methacrylate and polyacrylonitrile, cellophane and the like. These resins are used alone or in combination of two or more.
  • the substrate film at least one of a single layer film made of a single resin and a single layer or a laminated film using a plurality of resins is used.
  • a laminated substrate obtained by laminating these resins on another substrate may also be used.
  • the base film a polyolefin resin film (especially a polypropylene film), a polyester resin film (especially a polyethylene terephthalate resin film), a polyamide resin film (especially a nylon film) and the like are suitable. Used.
  • the base film may be an unstretched film, a uniaxial or biaxially oriented film, and a film that has been subjected to surface treatment (such as corona discharge treatment), anchor coat treatment, or undercoat treatment. May be. Furthermore, the base film may be a laminated film in which a plurality of resins or metals are laminated. In addition, the base film is subjected to corona treatment, low-temperature plasma treatment, etc. on the surface to be coated (surface on which the gas barrier film is formed), thereby providing good wettability to the coating agent and adhesion strength to the gas barrier film, Is obtained.
  • the thickness of the base film is not particularly limited, and is appropriately selected depending on the price and application, considering the suitability as a packaging material and the suitability of other films (layers), but is practically 3 to 200 ⁇ m. It is preferably 5 to 120 ⁇ m, more preferably 10 to 100 ⁇ m.
  • the gas barrier film according to the present embodiment may have a printing layer, an anchor coat layer, an overcoat layer, a light shielding layer, an adhesive layer, a heat seal layer, and the like as necessary.
  • the gas barrier coating containing the water-based polyurethane resin (A), the water-soluble polymer (B), and the inorganic layered mineral (C) as the main constituent components is formed on the substrate film by the known gravure printing method. After the water-based coating agent is applied, the solvent component is removed by drying.
  • the gas barrier film is formed on the base film by the following method.
  • an aqueous coating agent for gravure printing is applied to one side of a base film or both sides of a base film using a gravure printing method using a gravure multicolor printer.
  • the film formed by applying the coating agent is dried.
  • known drying methods such as hot air drying, hot roll drying, and infrared irradiation are used.
  • the gas barrier film and the printing layer can be formed in-line using a general gravure multicolor printer.
  • the gravure multicolor printing machine it is preferable to secure at least 1 to 2 units for forming a gas barrier layer (gas barrier film) and 1 unit (one color) for printing, preferably 3 units (corresponding to 3 colors)
  • the above is preferable.
  • the unit has room, overcoating and undercoating can be performed inline.
  • cost reduction can be achieved by integrating processes. In that case, even if it prints after forming a gas barrier film
  • the thickness of the dried gas barrier film formed on the base film is set according to the required gas barrier properties, but is preferably 0.1 to 5 ⁇ m, and preferably 0.2 to 2 ⁇ m. More preferred.
  • the thickness of the gas barrier film after drying is less than 0.1 ⁇ m, it is difficult to obtain a sufficient gas barrier property.
  • the thickness of the gas barrier coating after drying exceeds 5 ⁇ m, it is not only difficult to provide a uniform coating surface, but it is not preferable because it leads to an increase in drying load and an increase in production cost.
  • the thickness of the gas barrier coating after drying should be in the above numerical range (0.2 to 2 ⁇ m). Particularly preferred.
  • the gas barrier film according to this embodiment may contain various additives as long as the gas barrier property and the strength as a laminated film for packaging are not impaired.
  • additives include reactive curing agents such as polyisocyanates, carbodiimides, epoxy compounds, oxazolidone compounds, aziridine compounds, antioxidants, weathering agents, thermal stabilizers, lubricants, crystal nucleating agents, ultraviolet absorbers, plasticizers.
  • the gas barrier film according to the present embodiment can form a laminated film for gas barrier packaging that can be sealed by heat sealing by laminating a heat sealing layer that can be heat sealed.
  • a heat-sealing layer that can be heat-sealed by a known dry laminating method, an extrusion laminating method, or the like using a known adhesive such as polyurethane, polyester, or polyether. Can be laminated.
  • the gas barrier film according to the present embodiment is formed of the above-described aqueous coating agent for gravure printing, and includes an aqueous polyurethane resin (A), a water-soluble polymer (B), and an inorganic layered mineral (C) as main components.
  • A aqueous polyurethane resin
  • B water-soluble polymer
  • C inorganic layered mineral
  • the gas barrier film according to this embodiment has excellent gas barrier properties in a high humidity atmosphere, and adhesion between the gas barrier film and the substrate.
  • the cohesive strength of the gas barrier film is also good for a long time.
  • the gas barrier film according to the present embodiment as a packaging material, it is possible to improve the quality retention of the contents and to be used as various packaging materials. Moreover, the gas barrier film according to the present embodiment can reduce generation of harmful substances at the time of disposal.
  • this carboxyl group-containing urethane prepolymer solution was neutralized with 9.6 g of triethylamine at 40 ° C.
  • This neutralized carboxyl group-containing urethane prepolymer solution was added to 624.8 g of water, and dispersed in water with a homodisper (high-speed stirrer) to give 2-[(2-aminoethyl) amino] ethanol 21. 1 g was added to carry out a chain extension reaction.
  • methyl ethyl ketone was distilled off to obtain a polyurethane resin having a water-dispersed acid group having a solid content of 25% by mass, an average particle size of 90 nm, and an acid value of 26.9 mgKOH / g.
  • ⁇ - (2-aminoethyl) aminopropylmethyldimethoxysilane (amine value 544 mgKOH / g) is used as the polyamine compound, and the mixture is mixed at a ratio such that the molar ratio of acid groups to basic nitrogen atoms is 1/1. Then, an aqueous polyurethane resin of Production Example was obtained.
  • aqueous polyurethane resin (A) containing a polyurethane resin having an acid group and a polyamine compound hereinafter sometimes referred to as component (A)
  • the aqueous polyurethane resin of the above production example a polyurethane disperser manufactured by Mitsui Chemicals, Inc. John Takelac WPB-341 or polyurethane dispersion Takelac WPB-363 manufactured by Mitsui Chemicals was used.
  • the water-soluble polymer (B) hereinafter sometimes referred to as component (B)
  • the following three types of polyvinyl alcohol resins and carboxymethyl cellulose (CMC) were used. Poval PVA-105 manufactured by Kuraray Co., Ltd.
  • inorganic layered mineral (C) (hereinafter, sometimes referred to as component (C)), two types of water-swelling synthetic mica (Somasif MEB-3 manufactured by Corp Chemical, NTS-5 manufactured by Topy Industries), sodium hect Wright (Ntop-sol B2 manufactured by Topy Industries, Ltd.) and purified montmorillonite (Kunimine Industries Co., Ltd.
  • Kunipia-F Kunipia-F were used.
  • Component (A), component (B), and component (C) were blended at the solid content blending ratios shown in Tables 1 and 2, heated at 80 ° C., and mixed. Thereafter, the mixture is cooled to room temperature, diluted with ion-exchanged water and isopropanol so that 10% by mass in the solvent becomes isopropanol and the final solid content concentration becomes 9%.
  • the aqueous coating agents of Examples 1 to 16 were prepared by adding the curing agents described in 1 and 2 (water-soluble polysocyanate Takenate WD-725, Takenate WD-730 manufactured by Mitsui Chemicals, Inc.).
  • ком ⁇ онент (A) a polyester polyurethane resin aqueous solution hydran HW350 manufactured by DIC and a polyether polyurethane resin aqueous solution estrane H-38 manufactured by Daiichi Kogyo Seiyaku Co., Ltd. were used as general water-soluble polyurethane resins.
  • component (B) a polyvinyl alcohol resin POVAL PVA-117 (saponification degree 98 to 99%, polymerization degree 1700) manufactured by Kuraray Co., Ltd. was used.
  • component (C) water-swellable synthetic mica (Somasif MEB-3 manufactured by Corp Chemical Co.) was used.
  • Component (A), component (B), and component (C) were blended at the solid content blending ratio shown in Table 3, heated at 80 ° C., and mixed. Thereafter, this mixture is cooled to room temperature, diluted with ion-exchanged water and isopropanol so that 10% of the solvent becomes isopropanol and the final solid content concentration becomes 9%.
  • the aqueous curing agents of Comparative Examples 1 to 4 were prepared by adding the described curing agent (water-soluble polysocyanate Takenate WD-725 manufactured by Mitsui Chemicals).
  • component (A) the aqueous polyurethane resin of Production Example and polyurethane dispersion Takelac WPB-341 manufactured by Mitsui Chemicals, Inc. were used.
  • component (B) Kuraray polyvinyl alcohol resin Poval PVA-110 (saponification degree 98-99%, polymerization degree 1000) and carboxymethyl cellulose (CMC) were used.
  • component (C) water-swelling synthetic mica (Somasif MEB-3 manufactured by Corp Chemical Co.) and purified montmorillonite (Kunipia-F manufactured by Kunimine Industries Co., Ltd.) were used.
  • Component (A), component (B), and component (C) were blended at the solid content blending ratios shown in Tables 3 and 4, and heated and mixed at 80 ° C. Thereafter, the mixture was cooled to room temperature, diluted with ion-exchanged water and isopropanol so that 10% of the solvent became isopropanol and the final solid content concentration was 9%.
  • a curing agent described in Table 3 water-soluble polysocyanate Takenate WD-725 manufactured by Mitsui Chemicals, Inc. was added immediately before coating to prepare an aqueous coating agent.
  • Biaxially stretched polyethylene terephthalate film P-60 (thickness) manufactured by Toray Industries, Inc. using a gravure printer (9-color printer) manufactured by Fuji Machine Co., Ltd. using the aqueous coating agents of Examples 1 to 16 and Comparative Examples 1 to 21. 12 ⁇ m, PET), or a corona-treated surface of a biaxially stretched polypropylene film U-1 (thickness 20 ⁇ m, OPP) manufactured by Mitsui Chemicals Tosero Co., Ltd., was subjected to gravure printing, and Examples 1 to 16 and Comparative Examples 1 to 21 A gas barrier film was obtained.
  • the same aqueous coating agent is applied under the same conditions from the first unit to the third unit, and six color printing is performed using urethane-based gravure ink from the fourth unit to the ninth unit. went. Further, the line speed (printing speed) shown in Tables 1 to 4 was set, the oven temperature of the first unit to the third unit was set to 90 ° C., and the air volume was set to 105 m 3 / min. Using the gravure plates shown in Tables 1 to 4, the aqueous coating agent was applied over the number of times corresponding to the number of units shown in Tables 1 to 4, and the aqueous coating agent was applied in-line.
  • Polyester urethane adhesives (Takelac A-525 / Mitsui Chemicals, Mitsui Chemicals) were applied to the coating surfaces (gas barrier film-forming surfaces) of the gas barrier films of Examples 1 to 16 and Comparative Examples 1 to 21 by dry lamination.
  • a 30 ⁇ m-thick unstretched polypropylene film (CPP GLC manufactured by Mitsui Chemicals, Inc.) was laminated via Takenate A-52) and cured at 40 ° C. for 48 hours to obtain a laminated film.
  • the laminated film was cut into strips having a width of 15 mm, and the gas barrier film was peeled 90 ° at a rate of 300 mm / min with a tensile tester Tensilon (manufactured by A & D), and the laminate strength was measured. The results are shown in Tables 1 to 4.
  • a polyester urethane-based adhesive (Takelac A-525 / Mitsui Chemicals / Takenate A-52 / Mitsui Chemicals) was applied to the coating surfaces of the gas barrier films of Examples 1 to 16 and Comparative Examples 1 to 21 by dry lamination. Then, an unstretched polypropylene film having a thickness of 30 ⁇ m (CPP GLC manufactured by Mitsui Chemicals, Inc.) was laminated and cured at 40 ° C. for 48 hours to obtain a laminated film. This laminated film was further stored for 2 months in a thermostatic bath under conditions of 40 ° C. and humidity 75% RH.
  • This laminated film was cut into a strip shape having a width of 15 mm, and the gas barrier film was peeled 90 ° at a rate of 300 mm / min with a tensile tester Tensilon, and the laminate strength was measured. The results are shown in Tables 1 to 4.
  • the gas barrier films of Comparative Examples 1 to 21 have oxygen barrier properties (oxygen permeability (at 10 cm 3 / (m 2 ⁇ 24 h ⁇ atm) or less) at 20 ° C. and 80% RH atmosphere) And laminate strength (1.0 N / 15 mm or more) could not be achieved, and characteristics applicable as a gas barrier packaging material could not be obtained. From the results of Table 3, since the gas barrier films of Comparative Examples 1 to 4 use an aqueous polyurethane that does not contain a polyurethane resin having an acid group and a polyamine compound, the gas barrier properties of the aqueous polyurethane were low.
  • the gas barrier films of Comparative Examples 1 to 4 have a viscosity of more than 50 mPa ⁇ s at 23 ° C., so the film formation state by the gravure printing machine is poor, and the oxygen permeability is 20 ° C. and the humidity is 80% RH. The value exceeded 100 cm 3 / (m 2 ⁇ 24 h ⁇ atm), and it could not be said that there was an oxygen gas barrier property. From the results shown in Tables 3 and 4, the gas barrier films of Comparative Examples 5 to 12 have oxygen permeability or laminate strength in the absence of any of component (A), component (B), and component (C). One of the results was greatly inferior.
  • the blending ratio of any of component (A), component (B), and component (C) is outside the preferred range of the present application. is there. That is, the gas barrier films of Comparative Examples 13 to 18 have a blending ratio of any of Component (A) 5 to 60% by mass, Component (B) 25 to 80% by mass, and Component (C) 8 to 20% by mass. Therefore, either oxygen permeability or laminate strength was inferior. From the results shown in Table 4, the aqueous coating agent of Comparative Example 20 has a low solid content, so that a sufficient film thickness cannot be obtained, resulting in a deterioration in oxygen gas barrier properties.
  • the component (A), the component (B), and the component (C) are blended at the predetermined solid content blending ratio of the first embodiment and the second embodiment. . That is, in order to satisfy all the blending ratios of component (A) 5 to 60% by mass, component (B) 25 to 80% by mass, and component (C) 8 to 20% by mass, 20 ° C., humidity 80% RH
  • the value of the oxygen permeability under the atmosphere was 10 cm 3 / (m 2 ⁇ 24 h ⁇ atm) or less and had a good oxygen gas barrier property.
  • the gas barrier films of Examples 1 to 16 maintained a laminate strength of 1.0 N / 15 mm or more even after being stored in an atmosphere of 40 ° C. and 75% RH for 2 months. Sufficient strength was maintained as a packaging material under distribution conditions.
  • the water-based coating agent for gravure printing and the gas barrier film of the present invention have both high gas barrier properties in a high humidity atmosphere, sufficient adhesion strength of the gas barrier coating to the substrate, and cohesive strength of the gas barrier coating.
  • the water-based coating agent for gravure printing and the gas barrier film of the present invention are stored in a high humidity atmosphere for a long time in a laminated film laminated by applying an adhesive to the gas barrier film side (on the film).
  • the deterioration of the laminate strength with time is small. Therefore, it can be used in various fields as various packaging materials, and when used as a packaging material, the quality of the contents can be stably maintained over a long period of time.
  • the gas barrier laminate of the present invention can reduce the generation of harmful substances during disposal.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Molecular Biology (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

 グラビア印刷用水系コーティング剤であって、酸基を有するポリウレタン樹脂とポリアミン化合物とを含有する水性ポリウレタン樹脂(A)、水溶性高分子(B)、および無機層状鉱物(C)を主たる構成成分として含み、全固形分中に占める前記水性ポリウレタン樹脂(A)、前記水溶性高分子(B)、および前記無機層状鉱物(C)の固形分配合比率が以下に記載の範囲であり、かつ、全固形分濃度が5質量%以上、23℃における粘度が50mPa・s以下であり、前記水溶性高分子(B)は、鹸化度が95%以上かつ重合度が300~1700のポリビニルアルコール樹脂である。 水性ポリウレタン樹脂(A)5~60質量% 水溶性高分子(B)25~80質量% 無機層状鉱物(C)8~20質量%

Description

グラビア印刷用水系コーティング剤およびガスバリア性フィルム
 本発明は、乾燥食品・菓子・パン・珍味などの湿気や酸素を嫌う食品、および使い捨てカイロ、錠剤・粉末薬または湿布・貼付剤などの医薬品の包装材料に用いられ、グラビア印刷によるガスバリア性の皮膜の形成に好適に用いられるグラビア印刷用水系コーティング剤およびガスバリア性フィルムに関する。さらに、詳しくは、高いガスバリア性と内容物の認識が可能な透明性を必要とされる包装分野に用いられるグラビア印刷用水系コーティング剤およびガスバリア性フィルムに関する。
 本願は、2013年8月28日に、日本に出願された特願2013-177228号に基づき優先権を主張し、その内容をここに援用する。
 食品や医薬品などの包装に用いられる包装材料には、内容物の変質や腐敗などを抑制し、内容物の機能や性質を保持するために、水蒸気、酸素、およびその他の内容物を変質させる気体の進入を遮断する性質(ガスバリア性)が必要である。
 そのため、従来、これら包装材料には、ガスバリア性を有する材料からなるガスバリア層が設けられていた。これまで、ガスバリア層は、フィルムや紙などの基材上に、スパッタリング法や蒸着法、ウェットコーティング法や印刷法などにより設けられていた。また、ガスバリア層としては、アルミニウムなどの金属からなる金属箔や金属蒸着膜、ポリビニルアルコール、エチレン-ビニルアルコール共重合体、ポリ塩化ビニリデンなどの樹脂膜が用いられている(例えば、特許文献1~5参照)。
 しかしながら、金属箔や金属蒸着フィルムは、ガスバリア性には優れるものの、不透明であるため、内容物を確認することができなかったり、伸縮性に劣るため、数%の伸びでクラックが生じて、ガスバリア性が低下したり、使用後の廃棄時に、不燃物として処理する必要があるなど、数々の問題があった。
 また、ポリ塩化ビニリデンの樹脂膜からなるガスバリア層は、湿度依存性のない良好なガスバリア性を示すものの、廃棄処理などの際に、ダイオキシンなどの有害物質の発生源となりうる可能性が有り、塩素系物質を含む包装材料は嫌われる傾向にある。
 一方、非塩素系のポリビニルアルコールやエチレン-ビニルアルコール共重合体の樹脂膜からなるガスバリア層は、低湿度雰囲気では高いガスバリア性を示すものの、湿度依存性があるため、湿度の上昇とともにガスバリア性が大きく低下するという欠点があった。
 また、他のガスバリア性の樹脂膜は、ポリ塩化ビニリデンの樹脂膜や、低湿度雰囲気におけるポリビニルアルコールの樹脂膜のガスバリア性と比較すると劣っていた。
 これらの樹脂膜のガスバリア性を改善するために、樹脂と無機層状鉱物とを複合化した樹脂膜が提案されている。この樹脂膜では、ガスバリア性を向上させるために、膜の内部で無機層状鉱物が整然と分布するように無機層状鉱物を配列させる必要がある。しかしながら、無機層状鉱物が規則正しく分布するように無機層状鉱物を配列させるに伴って、樹脂膜の凝集力や樹脂膜の基材への密着力が低下するため、高いガスバリア性と、包装材料としての十分な密着強度と、を両立することが極めて難しかった。
 これに対し、前記のポリビニルアルコールやエチレン-ビニルアルコール共重合体などと、層状化合物と、の複合体に、水系ポリウレタンを添加して、複合体と基材との間の密着性を改善したガスバリア性フィルムが提案されている(例えば、特許文献6参照)。しかしながら、このガスバリア性フィルムは80%RH以上の高湿度下ではガスバリア性が十分ではなかった。
 一方、ウレタン基の濃度やウレア基の濃度が高いポリウレタン樹脂と、ポリアミン化合物と、からなり、基材に対する密着性が良好な、湿度依存性の低いガスバリア性樹脂積層フィルムが提案されている(例えば、特許文献7参照)。しかしながら、このガスバリア性フィルムは上記のポリ塩化ビニリデンなどからなる樹脂膜に比べガスバリア性が劣り、ガスバリア性包装材料としての適用範囲が限られていた。
 加えてガスバリア性フィルムには、ガスバリア性皮膜側(皮膜上)に接着剤を塗布することにより、他のフィルムをガスバリア性フィルムに張り合わせた積層フィルムにおいて、経時によって劣化しないラミネート強度が求められる。
 また、ガスバリア性包装材料の製造には、塗膜の形成に特化したコーティング装置が使用されていたが、製造効率向上のために、多色刷り可能なグラビア印刷機を使用し、基材へのガスバリア層の形成と絵柄の印刷とをインライン塗工(同一ラインでの連続塗工)で行う方法が検討されている(例えば、特許文献8参照)。しかしながら、この方法でガスバリア層を形成しようとすると、ガスバリア機能の発現に必要な層の厚みを確保するためにはコーティング液の濃度を高くしなければならず、必然的に粘度も高くなり、均一に膜を形成できないという問題があった。また、グラビア印刷機は、グラビアコーターとは異なり、乾燥ラインが短く、任意の長さに設定することができない。そのため、ガスバリア層に次の層を形成させる場合やガスバリア層に印刷が可能となるまで、ガスバリア層を乾燥させるには、印刷速度を落とさなくてはならず、グラビア印刷機を使用することによる製造効率向上の効果が十分に得られなかった。
日本国特開2001-287294号公報 日本国特開平11-165369号公報 日本国特開平6-93133号公報 日本国特開平9-150484号公報 日本国特許第3764109号公報 日本国特許第3351208号公報 日本国特許第4434907号公報 日本国特開平11-70608号公報
 本発明は、上記事情に鑑みてなされたものであって、高湿度雰囲気下におけるガスバリア性に優れ、グラビア印刷適性を有するグラビア印刷用水系コーティング剤、および、そのグラビア印刷用水系コーティング剤から形成されるガスバリア性の皮膜を備え、包装用材料として十分な密着強度や膜凝集強度を長期間有し、ラミネート強度の劣化の小さいガスバリア性フィルムを提供することを目的とする。
 本発明の第一態様に係るグラビア印刷用水系コーティング剤は、酸基を有するポリウレタン樹脂とポリアミン化合物とを含有する水性ポリウレタン樹脂(A)、水溶性高分子(B)、および無機層状鉱物(C)を主たる構成成分として含み、全固形分中に占める前記水性ポリウレタン樹脂(A)、前記水溶性高分子(B)、および前記無機層状鉱物(C)の固形分配合比率が以下に記載の範囲であり、かつ、全固形分濃度が5質量%以上、23℃における粘度が50mPa・s以下であり、前記水溶性高分子(B)は、鹸化度が95%以上かつ重合度が300~1700のポリビニルアルコール樹脂である。
 水性ポリウレタン樹脂(A)5~60質量%
 水溶性高分子(B)25~80質量%
 無機層状鉱物(C)8~20質量%
 前記グラビア印刷用水系コーティング剤においては、前記無機層状鉱物(C)が、水膨潤性合成雲母であってもよい。
 本発明の第二態様に係るガスバリア性フィルムは、プラスチック材料から形成される基材フィルムと、前記基材フィルムの片面または前記基材フィルムの両面に、上記第一態様に記載のグラビア印刷用水系コーティング剤により形成されたガスバリア性皮膜と、を備える。
 本発明の第一態様に係るグラビア印刷用水系コーティング剤は、水性ポリウレタン樹脂(A)、水溶性高分子(B)、および無機層状鉱物(C)を主たる構成成分として含み、これらの構成成分の固形分配合比率が所定の範囲に調整され、全固形分濃度が5質量%以上とされ、23℃における粘度が50mPa・s以下とされ、水溶性高分子(B)として、鹸化度が95%以上かつ重合度が300~1700のポリビニルアルコール樹脂が用いられる。第一態様に係るグラビア印刷用水系コーティング剤を用いることによって、グラビア印刷機によるグラビア印刷法により、印刷層の印刷ラインと同一のラインにて、基材などに所定の厚みの塗膜が形成されるようにコーティングすることができる。特に、1台の多色印刷機で水系コーティング剤のコーティングと印刷をインラインで行うことができる。また、基材などへのコーティング工程において、製造ラインの速度を速くすることができるので、生産性を高めることができる。
 また、第一態様に係るグラビア印刷用水系コーティング剤においては、上記のような構成を有することにより、公知のグラビア印刷法によって形成された、グラビア印刷用水系コーティング剤から形成されるガスバリア性皮膜が、高湿度雰囲気下におけるガスバリア性に優れており、ガスバリア性皮膜と基材との間の密着性やガスバリア性皮膜の凝集力も良好である。そのため、上記のガスバリア性皮膜を有するガスバリア性フィルムを包装用材料として用いることによって、内容物の品質保持性を高め、様々な包装用資材として活用することができる。
 本発明の第二態様に係るガスバリア性フィルムは、上記第一態様に係るグラビア印刷用水系コーティング剤により形成され、水性ポリウレタン樹脂(A)、水溶性高分子(B)、および無機層状鉱物(C)を主たる構成成分として含むガスバリア性皮膜を有する。これらの構成成分の固形分配合比率を所定範囲に調整することにより、第二態様に係るガスバリア性フィルムは、高湿度雰囲気下におけるガスバリア性に優れ、ガスバリア性皮膜と基材との間の密着性やガスバリア性皮膜の凝集力も長期間良好である。また、第二態様に係るガスバリア性フィルムのガスバリア性皮膜側(皮膜上)に、接着剤を塗布することにより、他のフィルムを張り合わせた積層フィルムにおいてラミネート強度の劣化が小さい。そのため、第二態様に係るガスバリア性フィルムは、包装用材料として用いることにより、内容物の品質保持性を高め、様々な包装用資材として活用することができる。
 本発明のグラビア印刷用水系コーティング剤およびガスバリア性フィルムの実施の形態について説明する。なお、本実施の形態は、発明の趣旨をより良く理解させるために具体的に説明するものであって、特に指定のない限り、本発明を限定するものではない。
「グラビア印刷用水系コーティング剤」
 第1実施形態に係るグラビア印刷用水系コーティング剤は、酸基を有するポリウレタン樹脂とポリアミン化合物とを含有する水性ポリウレタン樹脂(A)、水溶性高分子(B)、および無機層状鉱物(C)を主たる構成成分として含み、全固形分中に占める水性ポリウレタン樹脂(A)、水溶性高分子(B)、および無機層状鉱物(C)の固形分配合比率が以下に記載の範囲であり、かつ、全固形分濃度が5質量%以上、23℃における粘度が50mPa・s以下であり、水溶性高分子(B)は、鹸化度が95%以上かつ重合度が300~1700のポリビニルアルコール樹脂である。
 水性ポリウレタン樹脂(A)5~60質量%
 水溶性高分子(B)25~80質量%
 無機層状鉱物(C)8~20質量%
[水性ポリウレタン樹脂(A)]
 水性ポリウレタン樹脂(A)を構成するポリウレタン樹脂(アニオン性自己乳化型ポリウレタン樹脂)の酸基としては、カルボキシル基、スルホン酸基などが挙げられる。
 酸基は、ポリウレタン樹脂の末端又は側鎖に位置してもよいが、少なくとも側鎖に位置していることが好ましい。この酸基は、通常中和剤(塩基)により中和可能であり、塩基と塩を形成していてもよい。なお、酸基は水性ポリウレタン樹脂(A)を構成するポリアミン化合物のアミノ基(イミノ基または第三級窒素原子)と結合可能である。
 ポリウレタン樹脂の酸価は、水溶性又は水分散性を付与できる範囲で選択することができるが、5~100mgKOH/gであることが好ましく、10~70mgKOH/gであることがより好ましく、15~60mgKOH/gであることが特に好ましい。
 ポリウレタン樹脂の酸価が低いと、ポリウレタン樹脂の水溶性、水分散性が不十分となり、ポリウレタン樹脂と他の材料との均一分散性やコーティング剤の分散安定性の低下を招く。ポリウレタン樹脂の酸価が高すぎると、ガスバリア性皮膜の耐水性やガスバリア性の低下を招く。上記数値範囲とすることでそれらを回避できる。
 また、ポリウレタン樹脂のウレタン基およびウレア基(尿素基)の合計濃度は、ガスバリア性の観点から、15質量%以上であることが好ましく、20~60質量%であることがより好ましい。
 ウレタン基およびウレア基(尿素基)の合計濃度が低いと、ガスバリア性皮膜のガスバリア性が低下する。ウレタン基およびウレア基(尿素基)の合計濃度が高すぎるとガスバリア性皮膜が剛直で脆くなる。そのため、ポリウレタン樹脂のウレタン基およびウレア基(尿素基)の合計濃度は、20~60質量%の範囲が好ましい。
 なお、ウレタン基濃度およびウレア基濃度とは、ウレタン基の分子量(59g/当量)またはウレア基の分子量(一級アミノ基(アミノ基):58g/当量、二級アミノ基(イミノ基):57g/当量)をポリウレタン樹脂の繰り返し構成単位の分子量で除した値を意味する。
 なお、ポリウレタン樹脂として混合物を用いる場合、ウレタン基濃度およびウレア基濃度は反応成分の仕込みベース、すなわち各成分の使用割合をベースとして算出できる。
 ポリウレタン樹脂は、少なくとも剛直な単位(炭化水素環で構成された単位)と短鎖単位(例えば、炭化水素鎖で構成された単位)とを有していることが好ましい。すなわち、ポリウレタン樹脂の繰り返し構成単位は、ポリイソシアネート成分、ポリヒドロキシ酸成分、ポリオール成分、および鎖伸長剤成分(特に、少なくともポリイソシアネート成分)に由来して、炭化水素環(芳香族および非芳香族炭化水素環のうち少なくとも1つ)を含むことが好ましい。
 ポリウレタン樹脂の繰り返し構成単位における炭化水素環で構成された単位の割合は、10~70質量%であることが好ましく、15~65質量%であることがより好ましく、20~60質量%であることが特に好ましい。
 ポリウレタン樹脂の繰り返し構成単位における炭化水素環で構成された単位の割合が低いと、ガスバリア性皮膜のガスバリア性が低下する。ポリウレタン樹脂の繰り返し構成単位における炭化水素環で構成された単位の割合が高すぎると、ガスバリア性皮膜が剛直で脆くなる。そのため上記の数値範囲が好ましい。
 ポリウレタン樹脂の数平均分子量は、適宜選択可能であるが、800~1,000,000であることが好ましく、800~200,000であることがより好ましく、800~100,000であることがさらに好ましい。
 ポリウレタン樹脂の数平均分子量が高すぎると、コーティング剤の粘度が上昇し好ましくない。ポリウレタン樹脂の数平均分子量が低すぎると、ガスバリア性皮膜のバリア性の低下につながる。そのため上記の数値範囲が好ましい。
 ポリウレタン樹脂は、ガスバリア性を高めるため、結晶性であってもよい。
 また、ポリウレタン樹脂のガラス転移点は、100℃以上(例えば、100~200℃程度)であることが好ましく、110℃以上(例えば、110~180℃程度)であることがより好ましく、120℃以上(例えば、120~150℃程度)であることがさらに好ましい。
 ポリウレタン樹脂のガラス転移点が100℃未満では、ガスバリア性皮膜のガスバリア性が低下するため好ましくない。また、上記各項目の好ましい範囲を満たすポリウレタン樹脂において、ポリウレタン樹脂のガラス転移点が150℃以上となることは実質的に可能性が低い。
 水性ポリウレタン樹脂(A)は、中和剤を含み、上記のポリウレタン樹脂が水性媒体中に溶解あるいは分散した状態で形成されることが好ましい。
 水性媒体としては、水、水溶性溶媒、親水性溶媒、または、これらの混合溶媒が挙げられる。水性媒体としては、水または水を主成分として含む水性溶媒であることが好ましい。
 親水性溶媒としては、例えば、エタノール、イソプロパノールなどのアルコール類;アセトン、メチルエチルケトンなどのケトン類;テトラヒドロフランなどのエーテル類;セロソルブ類;カルビトール類;アセトニトリルなどのニトリル類などが挙げられる。
 水性ポリウレタン樹脂(A)は、水性媒体に上記のポリウレタン樹脂を溶解した水溶液、または、水性媒体に上記のポリウレタン樹脂を分散した水分散体のいずれの形態であってもよい。
 水分散体において、分散粒子(ポリウレタン樹脂粒子)の平均粒径は特に限定されるものではなく、20~500nmであることが好ましく、25~300nmであることがより好ましく、30~200nmであることが特に好ましい。
 分散粒子の平均粒子径が大きすぎると、分散粒子と他の材料との均一分散性やコーティング剤の分散安定性が低下し、ガスバリア性皮膜のガスバリア性低下を招く。また、分散粒子の平均粒子径が20nm未満の分散体を得るのは実質的に難しいとともに、分散粒子の平均粒子径が20nm未満の場合には、コーティング剤の分散安定性やガスバリア性皮膜のガスバリア性をさらに向上させるほどの効果は期待できない。
 水性ポリウレタン樹脂(A)の製造方法は、特に限定されるものではなく、アセトン法、プレポリマー法など、通常のポリウレタン樹脂の水性化技術が用いられる。
 また、ウレタン化反応では、必要に応じてアミン系触媒、錫系触媒、鉛系触媒などのウレタン化触媒を用いてもよい。
 例えば、アセトンなどのケトン類、テトラヒドロフランなどのエーテル類、アセトニトリルなどのニトリル類などの不活性有機溶媒中において、ポリイソシアネート化合物と、ポリヒドロキシ酸と、必要に応じて、ポリオール成分および鎖伸長剤成分のうち少なくとも1つと、を反応させることにより、水性ポリウレタン樹脂(A)を調製できる。より具体的には、不活性有機溶媒(特に、親水性または水溶性の有機溶媒)中、ポリイソシアネート化合物と、ポリヒドロキシ酸と、ポリオール成分と、を反応させて、末端にイソシアネート基を有するプレポリマーを生成させる。その後、末端にイソシアネート基を有するプレポリマーを中和剤で中和して水性媒体に溶解させ、または、分散させた後、鎖伸長剤成分を添加して中和されたプレポリマーを反応させ、有機溶媒を除去することにより、水性ポリウレタン樹脂(A)を調製できる。
 水性ポリウレタン樹脂(A)では、架橋剤としてのポリアミン化合物と、ポリウレタン樹脂の酸基と、を結合させることにより、ガスバリア性を発現させている。
 なお、ポリアミン化合物とポリウレタン樹脂の酸基との結合は、イオン結合(例えば、第三級アミノ基とカルボキシル基とのイオン結合など)であってもよく、共有結合(例えば、アミド結合など)であってもよい。
 そのため、ポリアミン化合物としては、第1級アミノ基、第2級アミノ基、および第3級アミノ基よりなる群から選択される2種以上の塩基性窒素原子を有する種々のポリアミン類が用いられる。
 水性ポリウレタン樹脂(A)を構成するポリアミン化合物としては、酸基と結合し、かつ、ガスバリア性を向上できるものであれば特に限定されず、種々の化合物が用いられる。
 ポリアミン化合物としては、アミン価が100~1900mgKOH/gであることが好ましく、150~1900mgKOH/g(例えば、200~1700mgKOH/g)であることがより好ましく、200~1900mgKOH/g(例えば、300~1500mgKOH/g)のポリアミンが用いられることが特に好ましい。ポリアミン化合物のアミン価は、300~1900mgKOH/g程度であってもよい。
[水溶性高分子(B)]
 水溶性高分子(B)は、常温で水に完全に溶解可能な高分子、または、常温で水に微分散可能な高分子のことである。
 水溶性高分子(B)としては、後述する無機層状鉱物(C)の単位結晶層間に侵入し、配位(インターカレーション)することが可能な化合物であれば、特に限定されない。水溶性高分子(B)としては、例えば、ポリビニルアルコールおよびその誘導体、カルボキシメチルセルロース、ヒドロキシエチルセルロースなどのセルロース誘導体、酸化でんぷん、エーテル化でんぷん、デキストリンなどのでんぷん類、ポリビニルピロリドン、ポリアクリル酸、ポリメタクリル酸またはそのエステル、塩類およびそれらの共重合体、スルホイソフタル酸などの極性基を含有する共重合ポリエステル、ポリヒドロキシエチルメタクリレートおよびその共重合体などのビニル系重合体、ウレタン系高分子、または、これらの各種重合体のカルボキシル基などが変性した官能基変性重合体などが挙げられる。
 水溶性高分子(B)は、少なくとも1種類がポリビニルアルコール系重合体およびその誘導体である化合物が好ましく、特に好ましくは、鹸化度が95%以上かつ重合度が300~1700のポリビニルアルコール樹脂である。
 ポリビニルアルコール樹脂は、鹸化度や重合度が高い程、吸湿膨潤性が低くなる。
 ポリビニルアルコール樹脂の鹸化度が95%より低いと、十分なガスバリア性が得られ難い。
 また、ポリビニルアルコール樹脂の重合度が300より低いと、ガスバリア性の低下を招く。一方、ポリビニルアルコール樹脂の重合度が1700を超えると、水系コーティング剤の粘度が上がり、他の成分と均一に混合することが難しくなる。そのため、ポリビニルアルコール樹脂の重合度が1700を超えたガスバリア性皮膜においてはガスバリア性や密着性の低下といった不具合を招いたり、グラビア印刷機を使用したグラビア印刷においては成膜状態の悪化を招いたりする。また、固形分濃度を下げて、粘度を下げる場合には、固形分濃度が減少した分、フィルムに塗布するコーティング剤の液体成分の量が増加する。そのため、コーティング剤の液体成分の乾燥エネルギーの増大および乾燥時間の増大によりライン速度が低下し、生産性の低下を招いたりするため好ましくない。また、一回でフィルムに塗布できる固形分量が減少するため、フィルムに重ね塗りする回数を増やさなくてはならなくなる。すなわち、重合度が1700以下のポリビニルアルコール樹脂を用いることにより、水系コーティング剤の粘度の上昇を抑えることができる。また、ポリビニルアルコール樹脂と他の成分とを均一に混合させ、分散させることができる。そのため、ポリビニルアルコール樹脂が高濃度である場合における水系コーティング剤の低粘度化が実現される。そして、水系コーティング剤の特性の安定化と、ポリビニルアルコール樹脂の高濃度化による塗布量の低減および乾燥負荷の低減と、を可能にし、グラビア印刷での生産性の向上にも寄与している。
[無機層状鉱物(C)]
 無機層状鉱物(C)は、極薄の単位結晶層が重なって1つの層状粒子を形成している無機化合物である。
 無機層状鉱物(C)としては、水中で膨潤し、へき開する化合物が好ましく、これらの中でも、特に水への膨潤性を有する粘土化合物が好ましく用いられる。より具体的には、無機層状鉱物(C)は、極薄の単位結晶層間に水が配位されることによって、水を吸収し、膨潤する性質を有する粘土化合物である。粘土化合物は、一般には、Si4+がO2-に対して配位して四面体構造を構成する層と、Al3+、Mg2+、Fe2+、Fe3+などが、O2-およびOHに対して配位して八面体構造を構成する層とが、1対1あるいは2対1で結合し、積み重なって層状構造を形成する化合物である。この粘土化合物は、天然の化合物であっても、合成された化合物であってもよい。
 無機層状鉱物(C)の代表的なものとしては、フィロケイ酸塩鉱物などの含水ケイ酸塩が挙げられ、例えば、ハロイサイト、カオリナイト、エンデライト、ディッカイト、ナクライトなどのカオリナイト族粘土鉱物、アンチゴライト、クリソタイルなどのアンチゴライト族粘土鉱物、モンモリロナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、ソーコナイト、スチブンサイトなどのスメクタイト族粘土鉱物、バーミキュライトなどのバーミキュライト族粘土鉱物、白雲母、金雲母などの雲母、マーガライト、テトラシリリックマイカ、テニオライトなど雲母またはマイカ族粘土鉱物などが挙げられる。
 これらの無機層状鉱物(C)は、1種または2種以上が組み合わせられて用いられる。
 これらの無機層状鉱物(C)の中でも、モンモリロナイトなどのスメクタイト族粘土鉱物、水膨潤性雲母などのマイカ族粘土鉱物が特に好ましい。
 無機層状鉱物(C)の大きさは、アスペクト比が高いと、フィルムのバリア性に優れているという観点から、平均粒径10μm以下であり、厚さ500nm以下であることが好ましい。無機層状鉱物(C)の中でも、少なくとも1種類が平均粒径1~10μmであり、厚さ10~100nmである水膨潤性の合成雲母が特に好ましい。
 無機層状鉱物(C)として、水膨潤性の合成雲母を用いると、水膨潤性の合成雲母は、水性ポリウレタン樹脂(A)および水溶性高分子(B)との相溶性が高い。また、水膨潤性の合成雲母は、天然系の雲母に比べて不純物が少ないため、ガスバリア性皮膜において、不純物に由来するガスバリア性の低下や膜凝集力の低下を招くことがない。さらに、水膨潤性の合成雲母は、結晶構造内にフッ素原子を有することから、水系コーティング剤から形成されるガスバリア性皮膜のガスバリア性の湿度依存性を低く抑えることにも寄与する。加えて、上記水膨潤性の合成雲母は、他の水膨潤性の無機層状鉱物に比べて、高いアスペクト比を有することから、迷路効果がより効果的に働き、特に水系コーティング剤から形成されるガスバリア性皮膜のガスバリア性が高く発現するのに寄与する。
 本実施形態に係るグラビア印刷用水系コーティング剤は、全固形分中に占める前記水性ポリウレタン樹脂(A)、前記水溶性高分子(B)、および前記無機層状鉱物(C)の固形分配合比率が以下に記載の範囲である。
 水性ポリウレタン樹脂(A)5~60質量%
 水溶性高分子(B)25~80質量%
 無機層状鉱物(C)8~20質量%
 本実施形態において、全固形分中に占める水性ポリウレタン樹脂(A)の配合比率は、5~60質量%であり、5~55質量%が好ましく、5~50質量%がより好ましく、5~45質量%であることが特に好ましい。
 全固形分中に占める水性ポリウレタン樹脂(A)の固形分配合比率が5質量%より少ないと、水系コーティング剤から形成されるガスバリア性皮膜と基材フィルムとの間の濡れ性および密着性が不足する。
 一方、水性ポリウレタン樹脂(A)の固形分配合比率が60質量%を超えると、水系コーティング剤から形成されるガスバリア性皮膜の、時間経過に伴った膜凝集強度の低下を引き起こす。
 また、下記に示す全固形分中に占める水溶性高分子(B)の固形分配合比率および全固形分中に占める無機層状鉱物(C)の固形分配合比率の配合比率を満たす上で、全固形分中に占める水性ポリウレタン樹脂(A)の配合比率は上記数値範囲となることが好ましい。
 本実施形態において、全固形分中に占める水溶性高分子(B)の配合比率は、25~80質量%であり、30~80質量%が好ましく、30~75質量%がより好ましく、35~75質量%であることが特に好ましい。
 全固形分中に占める水溶性高分子(B)の固形分配合比率が25質量%より少ないと、水系コーティング剤から形成されるガスバリア性皮膜としての凝集強度が時間の経過に伴い低下する。一方、水溶性高分子(B)の固形分配合比率が80質量%を超えると、ガスバリア性皮膜と基材フィルムとの間の濡れ性および密着性が不足する。
 また、ガスバリア性皮膜の凝集強度およびガスバリア性皮膜の基材への密着強度の経時安定性と、ガスバリア性皮膜の基材フィルムへの濡れ性およびガスバリア性皮膜の高湿度雰囲気下でのガスバリア性と、を両立するために、上記数値範囲とすることが特に好ましい。
 本実施形態に係る水系コーティング剤においては、水溶性高分子(B)の固形分配合比率を多くすることにより、無機層状鉱物(C)の単位結晶層間への配位(インターカレーション)割合を増やすことができると考えられる。これにより、ラミネート強度の経時劣化の少ないガスバリア性フィルムを作製することができると推察される。
 本実施形態において、全固形分中に占める無機層状鉱物(C)の配合比率は、8~20質量%であり、8~18質量%が好ましく、10~18質量%がより好ましく、10~15質量%であることが特に好ましい。
 全固形分中に占める無機層状鉱物(C)の固形分配合比率が8質量%より少ないと、水系コーティング剤から形成されるガスバリア性皮膜に、十分なガスバリア性が得られない。一方、無機層状鉱物(C)の固形分配合比率が20質量%を超えると、水系コーティング剤から形成されるガスバリア性皮膜と基材フィルムとの間の密着性、および、水系コーティング剤から形成されるガスバリア性皮膜の凝集強度が時間の経過とともに低下する。
 固形分配合比率が所定の範囲外であり、ガスバリア性皮膜の凝集強度、ガスバリア性皮膜の基材への密着強度が経時により低下する場合、ガスバリア性皮膜側(皮膜上)に接着剤を塗布することにより他のフィルムを張り合わせた積層フィルムにおいて、経時によりラミネート強度が劣化してゆく。
 また、ガスバリア性皮膜の凝集強度およびガスバリア性皮膜の基材への密着強度の経時安定性と、ガスバリア性皮膜の高湿度雰囲気下でのガスバリア性と、を両立するために、上記数値範囲とすることが特に好ましい。
 また、本実施形態に係るグラビア印刷用水系コーティング剤においては、水溶性または水分散性の反応性硬化剤が上記水系コーティング剤に添加されると、さらに、基材密着性、膜凝集強度、耐水性、および耐溶剤性が向上する。
 反応性硬化剤としては、水分散性(水溶性)ポリイソシアネート、水分散性(水溶性)カルボジイミド、水溶性エポキシ化合物、水分散性(水溶性)オキサゾリドン化合物、水溶性アジリジン系化合物などが挙げられる。
 さらに、本実施形態に係る水系コーティング剤は、ガスバリア性および包装用積層フィルムとしての強度を損なわない範囲内であれば、各種の添加剤が含まれていてもよい。
 添加剤としては、例えば、酸化防止剤、耐候剤、熱安定剤、滑剤、結晶核剤、紫外線吸収剤、可塑剤、帯電防止剤、着色剤、フィラー、界面活性剤、シランカップリング剤などが挙げられる。
 本実施形態に係る水系コーティング剤は、溶媒としては、水を主として含み、水に溶解または水と均一に混合する溶媒を含んでいてもよい。
 溶媒としては、例えば、メタノール、エタノール、イソプロパノールなどのアルコール類、アセトン、メチルエチルケトンなどのケトン類、テトラヒドロフランなどのエーテル類、セロソルブ類、カルビトール類、アセトニトリルなどのニトリル類などが挙げられる。
 また、本実施形態に係る水系コーティング剤は、水性ポリウレタン樹脂(A)、水溶性高分子(B)、および無機層状鉱物(C)を主たる構成成分として含み、全固形分中に占める水性ポリウレタン樹脂(A)、水溶性高分子(B)、および無機層状鉱物(C)の固形分配合比率が、水性ポリウレタン樹脂(A)5~60質量%、水溶性高分子(B)25~80質量%、無機層状鉱物(C)8~20質量%であるので、廃棄時に有害物質の発生源となりうる化合物を含まない。
 水性ポリウレタン樹脂(A)は、一般的なポリウレタン樹脂と異なり、剛直な分子骨格を備えるためガスバリア性を有する。加えて、水性ポリウレタン樹脂(A)は、一般的なポリウレタン樹脂と同様に、乾燥皮膜は水に不溶であるため、湿度依存性が低い。そのため、水性ポリウレタン樹脂(A)を用いると、ガスバリア性を備えた皮膜が形成される。しかし、水性ポリウレタン樹脂(A)単体のガスバリア性は、ポリ塩化ビニリデン樹脂などに比べると大きく劣る。そこで、無機層状鉱物(C)を添加することにより、無機層状鉱物(C)の添加量に応じてガスバリア性が向上し、ポリ塩化ビニリデン樹脂と同等以上のガスバリア性が得られる。しかし、無機層状鉱物(C)の添加量が増えるに従って、皮膜の凝集力が急激に弱まり、包装用積層フィルムとしての密着強度を維持できない。
 また、水溶性高分子(B)(例えば、ポリビニルアルコール樹脂など)と、水膨潤性の無機層状鉱物(C)と、を複合化した、ガスバリア性皮膜は従来から知られていたが、皮膜の凝集力および皮膜の基材への密着強度が低下するため、架橋成分を加える必要があった。
 しかし、架橋成分の添加が、ガスバリア性の高い、均一な分子配列を妨げるため、水溶性高分子(B)と水膨潤性の無機層状鉱物(C)とを複合化した皮膜の高湿度雰囲気下における高いガスバリア性と十分な密着強度の両立は極めて困難であった。
 加えてガスバリア性フィルムには、ガスバリア性皮膜側(皮膜上)に接着剤を塗布することにより他のフィルムを張り合わせた積層フィルムにおいて、経時によって劣化しないラミネート強度が求められる。
 本実施形態に係るグラビア印刷用水系コーティング剤は、水性ポリウレタン樹脂(A)、水溶性高分子(B)、および無機層状鉱物(C)を主たる構成成分として含み、これらの構成成分の固形分配合比率が所定範囲に調整され、全固形分濃度が5質量%以上、23℃における粘度が50mPa・s以下とされ、水溶性高分子(B)として、鹸化度が95%以上かつ重合度が300~1700のポリビニルアルコール樹脂が用いられる。本実施形態に係るグラビア印刷用水系コーティング剤においては、固形分濃度が高いにも関わらず、粘度が低い。そのため、本実施形態に係るグラビア印刷用水系コーティング剤を用いることによって、公知のグラビア印刷機を用いたグラビア印刷法により、印刷層の印刷ラインと同一のラインにて、基材などへ所定の厚みの塗膜となるように、上記水系コーティング剤をフィルムにコーティングすることができる。この際、所定の膜厚を得るために複数回コーティングを繰り返すことができるが、より少ないコーティング回数にて、所定の膜厚を得ることができる。また、本実施形態に係るグラビア印刷用水系コーティング剤は、前記のような構成を有することにより、コーティング剤を基材などにコーティングする工程(グラビア印刷による印刷工程)において、製造ラインの速度を速くすることができる。このように、本実施形態に係るグラビア印刷用水系コーティング剤は、印刷工程の速度を落とさないため、生産性を高める効果を有する。
 また、本実施形態に係るグラビア印刷用水系コーティング剤は、前記のような構成を有することにより、公知のグラビア印刷法によって形成した、グラビア印刷用水系コーティング剤から形成されるガスバリア性皮膜の高湿度雰囲気下における高いガスバリア性と、包装用積層フィルムとして十分な密着強度(膜凝集力)と、を長期間にわたり両立することができる。
 また、本実施形態に係るグラビア印刷用水系コーティング剤から形成されるガスバリア性皮膜は、高湿度雰囲気下におけるガスバリア性に優れ、基材への密着性および凝集力も良好である。また、本実施形態に係るグラビア印刷用水系コーティング剤から形成されるガスバリア性皮膜側(皮膜上)に、接着剤を塗布することにより他のフィルムを張り合わせた積層フィルムでは、ラミネート強度の低下が小さい。そのため、前記のガスバリア性皮膜を有するガスバリア性フィルムを包装用材料として用いることによって、内容物の品質保持性を高め、様々な包装用資材として活用することができる。
 さらに、本実施形態に係るグラビア印刷用水系コーティング剤は、廃棄時における有害物質の発生を少なくすることができる。
「ガスバリア性フィルム」
 本発明の第2実施形態に係るガスバリア性フィルムは、プラスチック材料から形成される基材フィルムと、基材フィルムの片面または基材フィルムの両面に、上記の本発明の第1実施形態のグラビア印刷用水系コーティング剤により形成されたガスバリア性皮膜と、を備える。
 すなわち、上記皮膜は、酸基を有するポリウレタン樹脂とポリアミン化合物とを含有する水性ポリウレタン樹脂(A)、水溶性高分子(B)、および無機層状鉱物(C)を主たる構成成分として含むガスバリア性皮膜である。また、ガスバリア性皮膜中に占める水性ポリウレタン樹脂(A)、水溶性高分子(B)、および無機層状鉱物(C)の比率は以下の範囲である。
 水性ポリウレタン樹脂(A)5~60質量%
 水溶性高分子(B)25~80質量%
 無機層状鉱物(C)8~20質量%
 本実施形態に係るガスバリア性フィルムの構成成分であるガスバリア性皮膜中の、水性ポリウレタン樹脂(A)、水溶性高分子(B)、および無機層状鉱物(C)は、第1実施形態に係る「グラビア印刷用水系コーティング剤」における化合物と同様である。
 本実施形態に係るガスバリア性フィルムの構成成分であるガスバリア性皮膜において、水溶性高分子(B)の鹸化度は95%以上であることが好ましい。
 また、本実施形態に係るガスバリア性フィルムの構成成分であるガスバリア性皮膜において、無機層状鉱物(C)は水膨潤性合成雲母であることが好ましい。
 水性ポリウレタン樹脂(A)が5質量%より少ないと、ガスバリア性皮膜と基材フィルムとの間の濡れ性および密着性が不足する。一方、水性ポリウレタン樹脂(A)が60質量%を超えると、ガスバリア性皮膜と基材フィルムとの、時間経過に伴った密着強度の低下が引き起こされる。
 水溶性高分子(B)が25質量%より少ないと、ガスバリア性皮膜としての凝集強度が時間の経過に伴い低下する。一方、水溶性高分子(B)が80質量%を超えると、ガスバリア性皮膜と基材フィルムとの間の濡れ性および密着性が不足する。また、高湿度雰囲気下におけるガスバリア性皮膜のガスバリア性が低下する。
 無機層状鉱物(C)が8質量%より少ないと、ガスバリア性皮膜の十分なガスバリア性が得られない。一方、無機層状鉱物(C)が20質量%を超えると、ガスバリア性皮膜と基材フィルムとの間の密着性、および、その皮膜の凝集強度が時間の経過とともに低下する。
 固形分配合比率が所定の範囲外であり、ガスバリア性皮膜の凝集強度およびガスバリア性皮膜と基材との密着強度が経時により低下する場合、ガスバリア性皮膜側(皮膜上)に、ドライラミネーション加工により他のフィルムを張り合わせた積層フィルムにおいて、経時によりラミネート強度が劣化してゆく。
[プラスチック材料から形成される基材フィルム]
 プラスチック材料から形成される基材フィルムとしては、例えば、ポリエチレン、ポリプロピレン、プロピレン-エチレン共重合体などのポリC2-10などのオレフィン系樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレートなどのポリエステル系樹脂、ナイロン6、ナイロン66の脂肪族系ポリアミド、ポリメタキシリレンアジパミドなどの芳香族ポリアミドなどのポリアミド系樹脂、ポリスチレン、ポリ酢酸ビニル、エチレン-酢酸ビニル共重合体、ポリビニルアルコール、エチレン-ビニルアルコール共重合体などのビニル系樹脂、ポリメチルメタクリレート、ポリアクリロニトリルなどの(メタ)アクリル系単量体の単独または共重合体などのアクリル系樹脂、セロファンなどから形成されるフィルムが挙げられる。これらの樹脂は、1種または2種以上が組み合わせられて用いられる。
 基材フィルムとしては、単一の樹脂で構成された単層フィルム、および、複数の樹脂を用いた単層または積層フィルムのうち少なくとも1つが用いられる。また、これらの樹脂を他の基材(金属、木材、紙、セラミックスなど)に積層した積層基材を用いてもよい。
 これらの中でも、基材フィルムとしては、ポリオレフィン系樹脂フィルム(特に、ポリプロピレンフィルムなど)、ポリエステル系樹脂フィルム(特に、ポリエチレンテレフタレート系樹脂フィルム)、ポリアミド系樹脂フィルム(特に、ナイロンフィルム)などが好適に用いられる。
 基材フィルムは、未延伸フィルムであってもよく、一軸または二軸延伸配向フィルムであってもよく、表面処理(コロナ放電処理など)、アンカーコート処理、またはアンダーコート処理を行ったフィルムであってもよい。さらに、基材フィルムは、複数の樹脂や金属などを積層した積層フィルムであってもよい。
 また、基材フィルムは、コーティングする面(ガスバリア性皮膜を形成する面)に、コロナ処理、低温プラズマ処理などを施すことにより、コーティング剤に対する良好な濡れ性と、ガスバリア性皮膜に対する接着強度と、が得られる。
 基材フィルムの厚さは、特に限定されず、包装材料としての適性や他の皮膜(層)の積層適性を考慮しつつ、価格や用途によって適宜選択されるが、実用的には3~200μmであり、好ましくは5~120μmであり、より好ましくは10~100μmである。
 さらに、本実施形態に係るガスバリア性フィルムは、必要に応じて、印刷層、アンカーコート層、オーバーコート層、遮光層、接着剤層、ヒートシール層などを有していてもよい。
 水性ポリウレタン樹脂(A)、水溶性高分子(B)、および無機層状鉱物(C)を主たる構成成分として含むガスバリア性皮膜は、公知のグラビア印刷法により、基材フィルム上に、上記のグラビア印刷用水系コーティング剤を塗工した後、溶媒成分を乾燥除去して形成される。
 基材フィルム上にガスバリア性皮膜を形成するには、以下の方法によって行う。まず、グラビア多色印刷機によるグラビア印刷法を用いて、基材フィルムの片面または基材フィルムの両面に、グラビア印刷用水系コーティング剤を塗布する。その後、コーティング剤の塗布により形成された皮膜を乾燥する。
 グラビア印刷用水系コーティング剤を乾燥する方法としては、熱風乾燥、熱ロール乾燥、赤外線照射など、公知の乾燥方法が用いられる。
 本実施形態においては、一般的なグラビア多色印刷機を用いて、ガスバリア性皮膜と印刷層との形成をインラインで行うことができる。グラビア多色印刷機は、ガスバリア層(ガスバリア性皮膜)を形成するために、最低1ユニットから2ユニット、印刷のために1ユニット(1色)を確保できることが好ましく、3ユニット(3色対応)以上であることが好ましい。さらに、ユニットに余裕があれば、オーバーコートやアンダーコートをインラインで行うこともできる。食品や医薬品の包装材料の場合、印刷がある構成が一般的であるため、工程の統合によるコストダウンを図ることができる。その場合、基材フィルム上にガスバリア性皮膜を形成してから印刷を行っても、基材フィルム上に印刷してからガスバリア性皮膜を形成しても構わない。
 基材フィルム上に形成した乾燥後のガスバリア性皮膜の厚さは、求められるガスバリア性に応じて設定されるが、0.1~5μmであることが好ましく、0.2~2μmであることがより好ましい。
 乾燥後のガスバリア性皮膜の厚さが0.1μm未満では、十分なガスバリア性が得られ難い。一方、乾燥後のガスバリア性皮膜の厚さが5μmを超えると、均一な塗膜面を設けることが難しいばかりでなく、乾燥負荷の増大、製造コストの増大につながり好ましくない。
 また、上記ガスバリア性、乾燥負荷の低減、および製造コスト低減を、より高いレベルで両立するために、乾燥後のガスバリア性皮膜の厚さは上記数値範囲(0.2~2μm)とすることが特に好ましい。
 本実施形態に係るガスバリア性フィルムは、ガスバリア性や包装用積層フィルムとしての強度を損なわない範囲内であれば、各種の添加剤が含まれていてもよい。
 添加剤としては、例えば、ポリイソシアネート、カルボジイミド、エポキシ化合物、オキサゾリドン化合物、アジリジン系化合物などの反応性硬化剤、酸化防止剤、耐候剤、熱安定剤、滑剤、結晶核剤、紫外線吸収剤、可塑剤、帯電防止剤、着色剤、フィラー、界面活性剤、シランカップリング剤などが挙げられる。
 また、本実施形態に係るガスバリア性フィルムは、ヒートシール可能な熱融着層を積層することにより、熱シールによって密封可能なガスバリア性包装用積層フィルムを形成できる。
 本実施形態に係るガスバリア性フィルムでは、ポリウレタン系、ポリエステル系、ポリエーテル系などの公知の接着剤を用いて、公知のドライラミネート法、エクストルージョンラミネート法などにより、ヒートシール可能な熱融着層を積層することが可能である。
 本実施形態に係るガスバリア性フィルムは、上記のグラビア印刷用水系コーティング剤により形成され、水性ポリウレタン樹脂(A)、水溶性高分子(B)、および無機層状鉱物(C)を主たる構成成分として含むガスバリア性皮膜を有する。これらの構成成分の固形分配合比率を所定範囲に調整することにより、本実施形態に係るガスバリア性フィルムは、高湿度雰囲気下におけるガスバリア性に優れ、ガスバリア性皮膜と基材との間の密着性やガスバリア性皮膜の凝集力も長期間良好である。また、本実施形態に係るガスバリア性フィルムのガスバリア性皮膜側(皮膜上)に、接着剤の塗布により他のフィルムを張り合わせた積層フィルムにおいてラミネート強度の劣化が小さい。そのため、本実施形態に係るガスバリア性フィルムは、包装用材料として用いることにより、内容物の品質保持性を高め、様々な包装用資材として活用することができる。
 また、本実施形態に係るガスバリア性フィルムは、廃棄時における有害物質の発生を少なくすることができる。
 以下、実施例および比較例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
[製造例]
 メタキシリレンジイソシアネート(以下、「mXDI」と記載することがある。)を45.5g、1,3-ビス(イソシアネートメチル)シクロヘキサン(以下、「水添XDI」と記載することがある。)を93.9g、エチレングリコール24.8g、ジメチロールプロピオン酸13.4g、および溶剤としてメチルエチルケトン80.2gを混合し、窒素雰囲気下、70℃にて5時間反応させ、カルボキシル基含有ウレタンプレポリマー溶液を調製した。
 次いで、このカルボキシル基含有ウレタンプレポリマー溶液を、40℃にて、トリエチルアミン9.6gにより中和した。
 この中和したカルボキシル基含有ウレタンプレポリマー溶液を、水624.8gに添加し、ホモディスパー(高速撹拌器)により、水中で分散させて、2-[(2-アミノエチル)アミノ]エタノール21.1gを添加して鎖伸長反応を行った。その後、メチルエチルケトンを留去することにより、固形分25質量%、平均粒径90nm、酸価26.9mgKOH/gの水分散型の酸基を有するポリウレタン樹脂を得た。
 次いで、ポリアミン化合物としてγ-(2-アミノエチル)アミノプロピルメチルジメトキシシラン(アミン価544mgKOH/g)を用い、酸基と塩基性窒素原子とのモル比が1/1となる比率で混合して、製造例の水性ポリウレタン樹脂を得た。
[実施例1~16]
 酸基を有するポリウレタン樹脂とポリアミン化合物とを含有する水性ポリウレタン樹脂(A)(以下、成分(A)と記すことがある。)として、上記製造例の水性ポリウレタン樹脂、三井化学社製のポリウレタンディスパージョン タケラックWPB-341、または、三井化学社製のポリウレタンディスパージョン タケラックWPB-363を用いた。
 水溶性高分子(B)(以下、成分(B)と記すことがある。)として、以下に示す3種類のポリビニルアルコール樹脂、および、カルボキシルメチルセルロース(CMC)を用いた。
 クラレ社製ポバールPVA-105(鹸化度98~99%、重合度500)。
 クラレ社製ポバールPVA-110(鹸化度98~99%、重合度1100)。
 クラレ社製ポバールPVA-117(鹸化度98~99%、重合度1700)。
 無機層状鉱物(C)(以下、成分(C)と記すことがある。)として、水膨潤性合成雲母2種(コープケミカル社製ソマシフMEB-3、トピー工業社製NTS-5)、ナトリウムヘクトライト(トピー工業社製NHT-ゾルB2)、および、精製モンモリロナイト(クニミネ工業社製クニピア-F)を用いた。
 成分(A)、成分(B)、および成分(C)を、表1および2に示す固形分配合比率で配合して、80℃にて加熱し、混合した。その後、この混合物を室温まで冷却して、溶媒中の10質量%がイソプロパノールとなり、最終的な固形分濃度が9%となるように、イオン交換水とイソプロパノールで希釈し、塗工直前に表1および2に記載の硬化剤(三井化学社製水溶性ポリソシアネート タケネートWD-725、タケネートWD-730)を添加して、実施例1~16の水系コーティング剤を調製した。
[比較例1~4]
 成分(A)の代わりに、一般的な水溶性ポリウレタン樹脂として、DIC社製ポリエステルポリウレタン樹脂水溶液ハイドランHW350、および、第一工業製薬社製ポリエーテルポリウレタン樹脂水溶液エストランH-38を用いた。
 成分(B)として、クラレ社製ポリビニルアルコール樹脂 ポバールPVA-117(鹸化度98~99%、重合度1700)を用いた。
 成分(C)として、水膨潤性合成雲母(コープケミカル社製ソマシフMEB-3)を用いた。
 成分(A)、成分(B)、および成分(C)を、表3に示す固形分配合比率で配合して、80℃にて加熱し、混合した。その後、この混合物を室温まで冷却して、溶媒中の10%がイソプロパノールとなり、最終的な固形分濃度が9%となるように、イオン交換水とイソプロパノールで希釈し、塗工直前に表3に記載の硬化剤(三井化学社製水溶性ポリソシアネート タケネートWD-725)を添加して比較例1~4の水系コーティング剤を調製した。
[比較例5~21]
 成分(A)として、製造例の水性ポリウレタン樹脂、および、三井化学社製のポリウレタンディスパージョン タケラックWPB-341を用いた。
 成分(B)として、クラレ社製ポリビニルアルコール樹脂 ポバールPVA-110(鹸化度98~99%、重合度1000)、および、カルボキシルメチルセルロース(CMC)を用いた。
 成分(C)として、水膨潤性合成雲母(コープケミカル社製ソマシフMEB-3)、および、精製モンモリロナイト(クニミネ工業社製クニピア-F)を用いた。
 成分(A)、成分(B)、および成分(C)を、表3および4に示す固形分配合比率で配合して、80℃にて加熱、混合した。その後、この混合物を室温まで冷却して、溶媒中の10%がイソプロパノールとなり、最終的な固形分濃度が9%となるように、イオン交換水とイソプロパノールで希釈して、比較例7~9、13~21については、塗工直前に表3に記載の硬化剤(三井化学社製水溶性ポリソシアネート タケネートWD-725)を添加して、水系コーティング剤を調製した。
 実施例1~16、比較例1~21の水系コーティング剤を用いて、富士機械社製のグラビア印刷機(9色印刷機)により、東レ社製二軸延伸ポリエチレンテレフタレートフィルムP-60(厚さ12μm、PET)、あるいは、三井化学東セロ社製二軸延伸ポリプロピレンフィルムU-1(厚さ20μm、OPP)のコロナ処理面に、グラビア印刷を行い、実施例1~16および比較例1~21のガスバリア性フィルムを得た。
 なお、グラビア印刷では、第1ユニットから第3ユニットにて同一の水系コーティング剤を同条件で塗工し、第4ユニットから第9ユニットにてウレタン系グラビアインキを用いて6色のカラー印刷を行った。
 また、表1~4に示すラインスピード(印刷速度)に設定し、第1ユニットから第3ユニットのオーブンの温度を90℃に設定し、風量を105m/minに設定した。表1~4に示すグラビア版を用いて、表1~4に示すユニット数に相当する回数分、水系コーティング剤を塗り重ね、水系コーティング剤のインライン塗工を行った。
[評価]
(粘度測定)
 実施例1~16、比較例1~21の水系コーティング剤について、振動式粘度計を用いて、23℃における粘度を測定した。結果を表1~4に示す。
(酸素ガスバリア性)
 実施例1~16、比較例1~21のガスバリア性フィルムについて、酸素透過度測定装置(MOCON社製OXTRAN-2/20)を用いて、20℃、湿度80%RHの雰囲気下、酸素ガスバリア性を測定した。結果を表1~4に示す。
(ラミネート強度)
 実施例1~16、比較例1~21のガスバリア性フィルムのコーティング面(ガスバリア性皮膜形成面)に、ドライラミネーション加工により、ポリエステルウレタン系接着剤(三井化学社製タケラックA-525/三井化学社製タケネートA-52)を介して、厚さ30μmの未延伸ポリプロピレンフィルム(三井化学東セロ社製CPP GLC)をラミネートし、40℃にて48時間養生し、積層フィルムを得た。
 この積層フィルムを15mm幅の短冊状にカットし、引張試験機テンシロン(エーアンドデイ社製)により、ガスバリア性フィルムを、300mm/分の速度で90°剥離させて、ラミネート強度を測定した。結果を表1~4に示す。
(40℃、湿度75%RHの条件下において2ヶ月保存した積層フィルムのラミネート強度)
 実施例1~16、比較例1~21のガスバリア性フィルムのコーティング面に、ドライラミネーション加工により、ポリエステルウレタン系接着剤(三井化学社製タケラックA-525/三井化学社製タケネートA-52)を介して、厚さ30μmの未延伸ポリプロピレンフィルム(三井化学東セロ社製CPP GLC)をラミネートし、40℃にて48時間養生し、積層フィルムを得た。この積層フィルムをさらに40℃、湿度75%RHの条件下における恒温槽にて2ヶ月間保管した。
 この積層フィルムを15mm幅の短冊状にカットし、引張試験機テンシロンにより、ガスバリア性フィルムを、300mm/分の速度で90°剥離させて、ラミネート強度を測定した。結果を表1~4に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表3および4の結果から、比較例1~21のガスバリア性フィルムは、酸素バリア性(20℃、80%RHの雰囲気下における酸素透過度(10cm/(m・24h・atm)以下)とラミネート強度(1.0N/15mm以上)を両立することができず、ガスバリア性包装材として適用できる特性が得られなかった。
 表3の結果から、比較例1~4のガスバリア性フィルムは、酸基を有するポリウレタン樹脂とポリアミン化合物とを含有しない水性ポリウレタンを用いているため、水性ポリウレタンのガスバリア性が低かった。また、比較例1~4のガスバリア性フィルムは、23℃における粘度が50mPa・sを超えるため、グラビア印刷機による成膜状態が悪く、20℃、湿度80%RHの雰囲気下における酸素透過度の値が100cm/(m・24h・atm)を超えてしまい、酸素ガスバリア性があるとはいえなかった。
 表3および4の結果から、比較例5~12のガスバリア性フィルムは、成分(A)、成分(B)、および成分(C)のいずれかが存在しない場合、酸素透過度か、ラミネート強度のいずれかが大きく劣る結果となった。
 表4の結果に示すように、比較例13~18のガスバリア性フィルムは、成分(A)、成分(B)、および成分(C)のいずれかの配合比が、本願の好適な範囲外である。すなわち、比較例13~18のガスバリア性フィルムは、成分(A)5~60質量%、成分(B)25~80質量%、および成分(C)8~20質量%のうちいずれかの配合比を満たさないため、酸素透過度か、ラミネート強度のいずれかが劣る結果となった。
 表4の結果から、比較例20の水系コーティング剤は、固形分濃度が低いために、充分な膜厚が得られず、酸素ガスバリア性が悪化する結果となった。
 表4の結果から、比較例21において、充分な膜厚を得ようとしてグラビア版の版深を深くすることにより、水系コーティング剤の塗布量を増やしたところ、水系コーティング剤の乾燥が不十分となり、印刷速度を落とさなければならず、生産性の悪化を招いた。
 表3および4の結果から、比較例1~4、10~12、14、および19の水系コーティング剤は、粘度が高いために、グラビア印刷での成膜状態が悪く、酸素ガスバリア性が悪化する結果となった。
 一方、表1および2の結果から、実施例1~16の水系コーティング剤は、いずれも良好なグラビア印刷適性が確認された。実施例1~16のガスバリア性フィルムにおいては、成分(A)、成分(B)、および成分(C)が、第1実施形態および第2実施形態の所定の固形分配合比率で配合されている。すなわち、成分(A)5~60質量%、成分(B)25~80質量%、および成分(C)8~20質量%の全ての配合比の条件を満たすため、20℃、湿度80%RHの雰囲気下における酸素透過度の値が10cm/(m・24h・atm)以下と、良好な酸素ガスバリア性を有していた。加えて、実施例1~16のガスバリア性フィルムは、40℃、75%RHの雰囲気に2ヵ月間保管した後においても、1.0N/15mm以上のラミネート強度を維持しており、一般的な流通条件における包装材料として十分な強度を維持していた。
 本発明のグラビア印刷用水系コーティング剤およびガスバリア性フィルムは、高湿度雰囲気下における高いガスバリア性、および、ガスバリア性皮膜の基材への十分な密着強度とガスバリア性皮膜の凝集強度とを両立する。加えて、本発明のグラビア印刷用水系コーティング剤およびガスバリア性フィルムは、ガスバリア性皮膜側(皮膜上)に接着剤を塗布することにより張り合わせた積層フィルムにおいて、高湿度雰囲気下で長期間保管されても、経時によるラミネート強度の劣化が小さい。そのため、各種包装材料として種々の分野に利用することができ、包装材料として利用した場合、長期間に渡って内容物の品質を安定に保持できる。さらに、本発明のガスバリア性積層体は、廃棄時における有害物質の発生を少なくすることができる。

Claims (3)

  1.  グラビア印刷用水系コーティング剤であって、
     酸基を有するポリウレタン樹脂とポリアミン化合物とを含有する水性ポリウレタン樹脂(A)、水溶性高分子(B)、および無機層状鉱物(C)を主たる構成成分として含み、
     全固形分中に占める前記水性ポリウレタン樹脂(A)、前記水溶性高分子(B)、および前記無機層状鉱物(C)の固形分配合比率が以下に記載の範囲であり、かつ、全固形分濃度が5質量%以上、23℃における粘度が50mPa・s以下であり、
     前記水溶性高分子(B)は、鹸化度が95%以上かつ重合度が300~1700のポリビニルアルコール樹脂である
     グラビア印刷用水系コーティング剤。
     水性ポリウレタン樹脂(A)5~60質量%
     水溶性高分子(B)25~80質量%
     無機層状鉱物(C)8~20質量%
  2.  前記無機層状鉱物(C)は、水膨潤性合成雲母である請求項1に記載のグラビア印刷用水系コーティング剤。
  3.  ガスバリア性フィルムであって、
     プラスチック材料から形成される基材フィルムと、
     前記基材フィルムの片面または前記基材フィルムの両面に、請求項1または2に記載のグラビア印刷用水系コーティング剤により形成されたガスバリア性皮膜と、
     を備えた
     ガスバリア性フィルム。
PCT/JP2014/072174 2013-08-28 2014-08-25 グラビア印刷用水系コーティング剤およびガスバリア性フィルム WO2015029950A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14840030.2A EP3040386B1 (en) 2013-08-28 2014-08-25 Water-based coating agent for gravure printing and gas barrier film
CN201480047334.2A CN105492551B (zh) 2013-08-28 2014-08-25 凹版印刷用水系涂布剂及气体阻隔性薄膜
US15/047,039 US20160160063A1 (en) 2013-08-28 2016-02-18 Water-based coating agent for gravure printing and gas barrier film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013177228A JP6326740B2 (ja) 2013-08-28 2013-08-28 グラビア印刷用水系コーティング剤およびガスバリア性フィルム
JP2013-177228 2013-08-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/047,039 Continuation US20160160063A1 (en) 2013-08-28 2016-02-18 Water-based coating agent for gravure printing and gas barrier film

Publications (1)

Publication Number Publication Date
WO2015029950A1 true WO2015029950A1 (ja) 2015-03-05

Family

ID=52586507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072174 WO2015029950A1 (ja) 2013-08-28 2014-08-25 グラビア印刷用水系コーティング剤およびガスバリア性フィルム

Country Status (6)

Country Link
US (1) US20160160063A1 (ja)
EP (1) EP3040386B1 (ja)
JP (1) JP6326740B2 (ja)
CN (1) CN105492551B (ja)
TW (1) TWI627240B (ja)
WO (1) WO2015029950A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017133935A1 (en) 2016-02-03 2017-08-10 Basf Se One-component aqueous coating compositions containing polyurethane and phyllosilicates for oxygen barrier coatings
EP3287500A4 (en) * 2015-04-22 2018-11-14 Toppan Printing Co., Ltd. Coating agent and gas barrier film
JP2019188783A (ja) * 2018-04-27 2019-10-31 凸版印刷株式会社 ガスバリア性フィルム

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6524781B2 (ja) * 2015-04-22 2019-06-05 凸版印刷株式会社 コーティング剤およびガスバリア性フィルム
EP3483230A4 (en) * 2016-08-04 2020-03-11 Toppan Printing Co., Ltd. CARRIER FILM FOR A TAPE MATERIAL AND TAPE MATERIAL
JP6852948B2 (ja) * 2016-08-12 2021-03-31 大日精化工業株式会社 インキ組成物及び包装材料
JP6805427B2 (ja) * 2016-12-20 2020-12-23 凸版印刷株式会社 保冷ライナ
KR102083885B1 (ko) * 2018-05-23 2020-03-03 주식회사 삼성잉크 거친 표면 질감을 구현할 수 있는 그라비어 인쇄용 잉크 조성물
JP7135506B2 (ja) * 2018-07-03 2022-09-13 Dic株式会社 インキ、および印刷物
JP7314512B2 (ja) * 2019-01-18 2023-07-26 凸版印刷株式会社 ガスバリア性フィルム
CN113631654A (zh) * 2019-03-29 2021-11-09 三菱化学株式会社 树脂组合物、薄膜和多层结构体
JP7230641B2 (ja) * 2019-03-29 2023-03-01 凸版印刷株式会社 ガスバリア性フィルム
US20220228024A1 (en) * 2019-06-07 2022-07-21 Mitsui Chemicals, Inc. Coating agent and laminate
JP7363162B2 (ja) * 2019-07-26 2023-10-18 Toppanホールディングス株式会社 ガスバリア性フィルム

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0693133A (ja) 1992-07-29 1994-04-05 Sumitomo Chem Co Ltd ガスバリア性樹脂組成物およびフィルム
JPH09150484A (ja) 1995-09-29 1997-06-10 Toray Ind Inc ガスバリアフィルム
JPH09151265A (ja) * 1995-11-30 1997-06-10 Toray Ind Inc ガスバリアフィルム
JPH1170608A (ja) 1997-08-28 1999-03-16 Toppan Printing Co Ltd ガスバリア性材料の製造方法
JPH11165369A (ja) 1997-12-02 1999-06-22 Toppan Printing Co Ltd ガスバリアフィルム
JP2001287294A (ja) 2000-04-10 2001-10-16 Toppan Printing Co Ltd 腰強度と耐衝撃性に優れた透明ガスバリア性積層体
JP2005139436A (ja) * 2003-10-15 2005-06-02 Mitsui Takeda Chemicals Inc ガスバリア性水性樹脂組成物及びそれを用いた積層フィルム
JP2005139435A (ja) * 2003-10-15 2005-06-02 Mitsui Takeda Chemicals Inc 水性ポリウレタン樹脂組成物及び積層フィルム
JP2005138581A (ja) * 2003-10-15 2005-06-02 Futamura Chemical Co Ltd ガスバリアフィルム
JP3764109B2 (ja) 2002-02-13 2006-04-05 ダイセル化学工業株式会社 カイロ用包装フィルム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5149591A (en) * 1991-03-28 1992-09-22 The Goodyear Tire & Rubber Company Blends of polyvinyl alcohol and polyurethane water dispersions for increased humidity resistance of water soluble white sidewall paints
JP3203287B2 (ja) * 1994-01-26 2001-08-27 呉羽化学工業株式会社 ガスバリヤー性積層体及びその製造方法
CA2191804A1 (en) * 1995-12-05 1997-06-06 Taiichi Sakaya Laminated film
US6364987B1 (en) * 1999-03-10 2002-04-02 Kuraray Co., Ltd. Method for producing gas barrier film
JP4524463B2 (ja) * 1999-07-27 2010-08-18 三井化学株式会社 ガスバリア性ポリウレタン樹脂及びこれを含むガスバリア性フィルム
CN100360309C (zh) * 2001-09-18 2008-01-09 株式会社德山 阻气性薄膜、阻气性涂覆剂及其制造方法
JP2004002751A (ja) * 2002-03-27 2004-01-08 Jsr Corp ガスバリアコーティング組成物およびその製造方法
US20060009561A1 (en) * 2002-09-27 2006-01-12 Miyuki Kamoshita Gas barrier coating material and gas barrier laminates made by using the same
US9006338B2 (en) * 2003-10-15 2015-04-14 Mitsui Takeda Chemicals, Inc. Aqueous resin composition having gas barrier properties and laminated film using the same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0693133A (ja) 1992-07-29 1994-04-05 Sumitomo Chem Co Ltd ガスバリア性樹脂組成物およびフィルム
JPH09150484A (ja) 1995-09-29 1997-06-10 Toray Ind Inc ガスバリアフィルム
JPH09151265A (ja) * 1995-11-30 1997-06-10 Toray Ind Inc ガスバリアフィルム
JP3351208B2 (ja) 1995-11-30 2002-11-25 東レ株式会社 ガスバリアフィルム
JPH1170608A (ja) 1997-08-28 1999-03-16 Toppan Printing Co Ltd ガスバリア性材料の製造方法
JPH11165369A (ja) 1997-12-02 1999-06-22 Toppan Printing Co Ltd ガスバリアフィルム
JP2001287294A (ja) 2000-04-10 2001-10-16 Toppan Printing Co Ltd 腰強度と耐衝撃性に優れた透明ガスバリア性積層体
JP3764109B2 (ja) 2002-02-13 2006-04-05 ダイセル化学工業株式会社 カイロ用包装フィルム
JP2005139436A (ja) * 2003-10-15 2005-06-02 Mitsui Takeda Chemicals Inc ガスバリア性水性樹脂組成物及びそれを用いた積層フィルム
JP2005139435A (ja) * 2003-10-15 2005-06-02 Mitsui Takeda Chemicals Inc 水性ポリウレタン樹脂組成物及び積層フィルム
JP2005138581A (ja) * 2003-10-15 2005-06-02 Futamura Chemical Co Ltd ガスバリアフィルム
JP4434907B2 (ja) 2003-10-15 2010-03-17 三井化学ポリウレタン株式会社 水性ポリウレタン樹脂組成物及び積層フィルム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3040386A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3287500A4 (en) * 2015-04-22 2018-11-14 Toppan Printing Co., Ltd. Coating agent and gas barrier film
WO2017133935A1 (en) 2016-02-03 2017-08-10 Basf Se One-component aqueous coating compositions containing polyurethane and phyllosilicates for oxygen barrier coatings
US11136463B2 (en) 2016-02-03 2021-10-05 Basf Se One-component aqueous coating compositions containing polyurethane and phyllosilicates for oxygen barrier coatings
JP2019188783A (ja) * 2018-04-27 2019-10-31 凸版印刷株式会社 ガスバリア性フィルム

Also Published As

Publication number Publication date
EP3040386B1 (en) 2018-08-22
TW201512331A (zh) 2015-04-01
EP3040386A4 (en) 2017-04-26
CN105492551B (zh) 2018-11-09
JP2015044944A (ja) 2015-03-12
EP3040386A1 (en) 2016-07-06
US20160160063A1 (en) 2016-06-09
JP6326740B2 (ja) 2018-05-23
TWI627240B (zh) 2018-06-21
CN105492551A (zh) 2016-04-13

Similar Documents

Publication Publication Date Title
JP6326740B2 (ja) グラビア印刷用水系コーティング剤およびガスバリア性フィルム
JP6191221B2 (ja) 水系コーティング剤およびガスバリア性フィルム
JP6176239B2 (ja) ガスバリア性積層体
JP6331652B2 (ja) ガスバリア性フィルムおよびガスバリア性積層体
JP6287064B2 (ja) ガスバリア性フィルム
WO2009027648A1 (en) Gas barrier coating having improved bond strength
EP3287500B1 (en) Coating agent and gas barrier film
WO2013129515A1 (ja) ガスバリア性フィルム
JP2015044943A (ja) グラビア印刷用水系コーティング剤およびガスバリア性フィルム
JP2018149779A (ja) 水系コーティング剤およびこれを用いたガスバリア性フィルム
WO2015163450A1 (ja) ガスバリア性フィルムおよびガスバリア性積層体
JP7447799B2 (ja) ガスバリア性フィルム
JP7110709B2 (ja) ガスバリア性フィルム
JP6524781B2 (ja) コーティング剤およびガスバリア性フィルム
CN111989218A (zh) 阻气性膜

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480047334.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14840030

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014840030

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014840030

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IDP00201601302

Country of ref document: ID

NENP Non-entry into the national phase

Ref country code: DE