WO2015029686A1 - センサ異常判定装置 - Google Patents
センサ異常判定装置 Download PDFInfo
- Publication number
- WO2015029686A1 WO2015029686A1 PCT/JP2014/070172 JP2014070172W WO2015029686A1 WO 2015029686 A1 WO2015029686 A1 WO 2015029686A1 JP 2014070172 W JP2014070172 W JP 2014070172W WO 2015029686 A1 WO2015029686 A1 WO 2015029686A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- temperature
- power element
- determination
- sensor
- temperature sensor
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/20218—Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/2089—Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
- H05K7/20927—Liquid coolant without phase change
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/2089—Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
- H05K7/20945—Thermal management, e.g. inverter temperature control
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K15/00—Testing or calibrating of thermometers
- G01K15/007—Testing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K17/00—Measuring quantity of heat
- G01K17/06—Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device
- G01K17/08—Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device based upon measurement of temperature difference or of a temperature
Definitions
- the present invention relates to a sensor abnormality determination device that determines abnormality of a temperature sensor that detects the temperature of a power element based on the difference between the temperature of the power element and the temperature of cooling water that cools the power element.
- the temperature of cooling water for cooling the power element is estimated. Then, a deviation between the estimated cooling water temperature and the actual cooling water temperature actually detected using the cooling water temperature sensor is obtained, and if this deviation is equal to or greater than a predetermined abnormality determination threshold value, a sensor that determines that there is an abnormality in the cooling water temperature sensor
- An abnormality determination device is known (see, for example, Patent Document 1). In this sensor abnormality determination device, when the estimated cooling water temperature is equal to or higher than the upper limit value, the abnormality determination of the cooling water temperature sensor is not executed.
- the abnormality determination threshold value that is a criterion for abnormality determination of the cooling water temperature sensor is a constant value. That is, the abnormality determination threshold for deviation when the estimated cooling water temperature is higher than the actual cooling water temperature and the abnormality determination threshold for deviation when the estimated cooling water temperature is lower than the actual cooling water temperature are set to the same value.
- the temperature of the power element rises. For this reason, it is known that the temperature of the estimated cooling water temperature estimated based on the power element temperature also increases, and the deviation between the estimated cooling water temperature and the actual cooling water temperature becomes large.
- the abnormality determination threshold value has to be set to a value larger than the temperature deviation that occurs when the maximum current flows through the power element in order to prevent erroneous determination.
- the cooling water temperature sensor cannot determine the abnormality unless the deviation between the estimated cooling water temperature and the actual cooling water temperature is increased to some extent.
- An object of the present invention is to provide a sensor abnormality determination device that can determine the above.
- a sensor abnormality determination device of the present invention includes a power element, a cooling water circuit in which cooling water for cooling the power element circulates, a temperature sensor for detecting the temperature of the power element, and the cooling
- the present invention is applied to a semiconductor module that includes a water temperature sensor that detects the temperature of cooling water circulating in the water circuit, and includes an abnormality determination unit and a determination temperature setting unit.
- the abnormality determination unit determines that the temperature sensor is abnormal when a difference between a detection temperature of the temperature sensor and a detection water temperature of the water temperature sensor is larger than a predetermined determination temperature difference.
- the determination temperature setting unit indicates a determination temperature difference when the detection temperature of the temperature sensor is lower than the detection water temperature of the water temperature sensor, and a determination temperature when the detection temperature of the temperature sensor is higher than the detection water temperature of the water temperature sensor. Set to a lower value than the difference.
- the abnormality determination unit determines abnormality of the temperature sensor when the difference between the detected temperature of the temperature sensor and the detected water temperature of the water temperature sensor is larger than a predetermined determination temperature difference.
- the determination temperature difference serving as a criterion for determining the abnormality is lower than when the detected temperature of the temperature sensor is higher than the detected water temperature of the water temperature sensor. Is set. That is, when the detected temperature of the temperature sensor is lower than the detected temperature of the water temperature sensor, it is considered that the temperature rise of the power element due to the current flowing through the power element is suppressed.
- the detected temperature of the temperature sensor is higher than the detected temperature of the water temperature sensor, it is considered that a relatively large current flows through the power element and the temperature of the power element is rising. Further, when the temperature rise of the power element is suppressed, the difference between the temperature detected by the temperature sensor and the temperature detected by the water temperature sensor is reduced. Therefore, the judgment temperature difference when the current flowing through the power element is small and the temperature rise of the power element is considered to be suppressed is lower than the judgment temperature difference when the power element temperature is considered to be rising. By setting to, the abnormality of the temperature sensor can be determined even if the difference between the detected temperature of the temperature sensor and the detected water temperature of the water temperature sensor is small.
- FIG. 1 is an overall system diagram illustrating a motor unit on which a sensor abnormality determination device according to a first embodiment is mounted. It is a flowchart which shows the flow of the temperature sensor abnormality determination process performed in the sensor abnormality determination apparatus of Example 1.
- FIG. It is a conceptual diagram which shows the abnormality determination area
- FIG. 1 is an overall system diagram illustrating a motor unit on which a sensor abnormality determination device according to a first embodiment is mounted. It is a flowchart which shows the flow of the temperature sensor abnormality determination process performed in the sensor abnormality determination apparatus of Example 1.
- FIG. It is a conceptual diagram which shows the abnormality determination area
- Example 1 shown in the drawings.
- Example 1 First, the configuration of the sensor abnormality determination device according to the first embodiment will be described separately as “motor unit overall system configuration” and “temperature sensor abnormality determination processing configuration”.
- FIG. 1 is an overall system diagram illustrating a motor unit in which the sensor abnormality determination device according to the first embodiment is mounted.
- FIG. 1 an overall system configuration of a motor unit including the sensor abnormality determination device according to the first embodiment will be described.
- the sensor abnormality determination device is mounted on the motor unit 1 shown in FIG. That is, the motor unit 1 is mounted as a travel drive source for an electric vehicle (not shown) such as a hybrid vehicle or an electric vehicle.
- the motor unit 1 includes a motor 2, an inverter (semiconductor module) 3, and a cooling system 4.
- the motor 2 is a synchronous motor in which a permanent magnet is embedded in a rotor and a stator coil is wound around a stator.
- the motor 2 has a motor water jacket 2a through which cooling water 41 (to be described later) of the cooling system 4 flows.
- the inverter 3 has a power element 3a, generates three-phase AC power to be applied to the motor 2 based on a control command from a motor controller (not shown), and controls the motor 2.
- the power element 3a is, for example, an IGBT (Insulated Gate Bipolar Transistor) module that plays a major role as a main switch of an inverter that outputs three-phase AC power.
- the power element 3a has a power element water jacket 3b through which the cooling water 41 flows.
- the inverter 3 also includes a temperature sensor 51 for detecting the temperature of the power element 3a, a water temperature sensor 52 for detecting the temperature of the cooling water 41 flowing through the power element water jacket 3b, and a current flowing through the power element 3a.
- a current sensor 53 is provided.
- the cooling system 4 includes a cooling water circulation path (cooling water circuit) 42 through which cooling water 41 for cooling the power element 3 a of the motor 2 and the inverter 3 circulates, a water pump 43, and a radiator 44.
- the cooling water 41 is an antifreeze liquid (LLC; coolant).
- the cooling water circulation path 42 is a flow path through which the cooling water 41 flows, and along the flow of the cooling water 41, the water pump 43 ⁇ the motor water jacket 2a ⁇ the power element water jacket 3b ⁇ the radiator 44 ⁇ the water pump 43.
- the water pump 43 is an electric pump that applies pressure to the cooling water 41 flowing through the cooling water circulation path 42 and forcibly circulates the cooling water 41 in the cooling water circulation path 42.
- the radiator 44 is provided in the middle of the cooling water circulation path 42 and cools the cooling water 41 sucked into the water pump 43 by exchanging heat between the cooling water 41 and the outside air.
- the cooling water 41 sent out by the water pump 43 first exchanges heat with the motor 2 in the motor water jacket 2a to cool the motor 2. Then, it flows into the power element water jacket 3 b provided in the power element 3 a of the inverter 3. In the power element water jacket 3b, heat exchange is performed with the power element 3a to cool the power element 3a. Then, it flows into the radiator 44, is air-cooled, is sucked into the water pump 43 again, and then sent out.
- the motor unit 1 is provided with a controller (sensor abnormality determination device) 5.
- a controller sensor abnormality determination device
- Various detection signals from the temperature sensor 51, the water temperature sensor 52, and the current sensor 53 are input to the controller 5.
- this controller 5 performs the temperature sensor abnormality determination process mentioned later, performs abnormality determination of the temperature sensor 51, and has the abnormality determination part 5a and the determination temperature setting part 5b.
- the abnormality determination unit 5a is an arithmetic circuit that determines that the temperature sensor 51 is abnormal when the difference between the detected temperature of the temperature sensor 51 and the detected water temperature of the water temperature sensor 52 is larger than a predetermined determination temperature difference. is there. In addition, the abnormality determination unit 5a does not determine whether the temperature sensor 51 is abnormal when the current flowing through the power element 3a is equal to or greater than a preset first current determination value Imth1. On the other hand, when the current flowing through the power element 3a continues below a preset second current determination value Imth2 for a predetermined time, or when the vehicle is stopped, a predetermined time has elapsed since the cooling water 41 circulated through the cooling water circulation path 42. If all the conditions are satisfied, the abnormality of the temperature sensor 51 is determined.
- the determination temperature setting unit 5b is an arithmetic circuit that sets a determination temperature difference used in the abnormality determination unit 5a. In this determination temperature setting unit 5 b, a determination temperature difference when the detection temperature of the temperature sensor 51 is lower than the detection water temperature of the water temperature sensor 52 is determined, and a determination when the detection temperature of the temperature sensor 51 is higher than the detection water temperature of the water temperature sensor 52. Set to a value lower than the temperature difference.
- FIG. 2 is a flowchart illustrating the flow of the temperature sensor abnormality determination process executed by the controller of the first embodiment.
- the temperature sensor abnormality determination processing configuration of the first embodiment will be described with reference to FIG.
- step S1 a high motor current determination time Tth1 is set, and the process proceeds to step S2.
- the “high motor current determination time” is a determination criterion when determining whether or not the current applied to the motor 2 (motor current value), that is, the current flowing through the power element 3a of the inverter 3 is large. It's time. Note that if the current flowing through the power element 3a is greater than a preset first current determination value Imth1, it is determined to be “high”.
- the “high motor current determination time” is set to a determination margin time in consideration of, for example, a noise component of the motor current.
- step S2 following the setting of the high motor current determination time Tth1 in step S1, a low motor current determination time Tth2 is set, and the process proceeds to step S3.
- the “low motor current determination time” is a determination criterion for determining whether or not the current applied to the motor 2 (motor current value), that is, the current flowing through the power element 3a of the inverter 3 is small. It's time. Note that if the current flowing through the power element 3a is smaller than the preset second current determination value Imth2, it is determined to be “low”.
- the “low motor current determination time” is set by taking into consideration the thermal time constant of the power element 3a in the determination margin time considering the noise component of the motor current, for example.
- step S3 following the setting of the low motor current determination time Tth2 in step S2, the temperature rise of the power element 3a at the time of high motor current is set, and the process proceeds to step S4.
- the power element 3a generates heat when a current flows, but the temperature rises as the flowing current increases. That is, when the motor current value (first current determination value Imth1) determined to be high is flowing, the temperature of the power element 3a rises. Therefore, in this step S3, the first current determination value Imth1 has flowed.
- Set rising power element temperature The temperature rise is set based on a map obtained by calculating or actually measuring the temperature rise of the power element 3a with respect to the motor current.
- step S4 following the setting of the rising temperature in step S3, a first determination temperature difference is calculated, and the process proceeds to step S5.
- the “first determination temperature difference” means that the temperature of the power element 3a (detected temperature detected by the temperature sensor 51) is higher than the temperature of the cooling water 41 (detected water temperature detected by the water temperature sensor 52). Sometimes, this is a value that serves as a reference for determining abnormality of the temperature sensor 51.
- This “first determination temperature difference” is obtained based on the following equation (1).
- First judgment temperature difference detection error + rising temperature + judgment margin (1) Note that the “rising temperature” in the equation (1) is the value obtained in step S3.
- step S5 following the calculation of the first determination temperature difference in step S4, the second determination temperature difference is calculated, and the process proceeds to step S6.
- the “second determination temperature difference” means that the temperature of the power element 3a (detected temperature detected by the temperature sensor 51) is lower than the temperature of the cooling water 41 (detected water temperature detected by the water temperature sensor 52). Sometimes, this is a value that serves as a reference for determining abnormality of the temperature sensor 51.
- step S6 following the calculation of the second determination temperature difference in step S5, after the cooling water 41 that cools the power element 3a starts to circulate in the cooling water circulation path 42, a predetermined circulation required time set in advance is set. Judge whether or not it has passed. If YES (necessary circulation time has elapsed), the process proceeds to step S7. If NO (circulation required time has not elapsed), it is determined that the cooling water 41 is not sufficiently circulated and the process proceeds to step S11.
- the “required circulation time” is a time that is considered necessary for the temperature distribution of the cooling water 41 circulating in the cooling water circulation path 42 to be uniform, and can be set to an arbitrary value.
- step S7 following the determination that the necessary circulation time has elapsed in step S6, it is determined whether or not the vehicle on which the motor unit 1 is mounted is in a stopped state. If YES (stopped), the process proceeds to step S8. In the case of NO (during traveling), the motor torque necessary for traveling is output from the motor 2 and the process proceeds to step S11.
- step S8 following the determination that the vehicle is stopped in step S7, the current flowing through the power element 3a of the inverter 3 that is the motor current value is detected, and the process proceeds to step S9.
- the current flowing through the power element 3a is detected by the current sensor 53.
- step S9 following the detection of the current in step S8, it is determined whether or not the motor current value (current flowing through the power element 3a) detected in step S8 is large. If YES (the motor current is large), the motor current is large and the temperature of the power element 3a is high, and the process proceeds to step S11. If NO (the motor current is not large), the process proceeds to step S10.
- the case where the motor current is large means that the current flowing through the power element 3a exceeds the preset first current determination value Imth1 for the high motor current determination time Tth1 set in step S1. This is the case.
- the high motor current determination time Tth1 is a time set to avoid erroneous determination that the motor current is large due to the influence of current noise.
- the thermal time constant of the power element 3a is sufficiently large with respect to the high motor current determination time Tth1 set in this way, and there is no problem.
- the temperature rise of the power element 3a is calculated in consideration of the temperature rise. Specifically, in step S3, it is calculated from the following equation (3), not from the map.
- Rise temperature map detection temperature (rise temperature calculated based on the map) + Increased temperature of the power element 3a when the high motor current determination time elapses in the maximum motor current state (3)
- step S10 following the determination that the motor current is not large in step S9, it is determined whether or not the motor current value detected in step S8 (current flowing through the power element 3a) is small. If YES (small motor current), the process proceeds to step S12. If NO (the motor current is not small), it is assumed that the motor current is not small and the temperature of the power element 3a is expected to be high to some extent, and the process proceeds to step S11.
- the case where the motor current is small means that the state in which the current flowing through the power element 3a is lower than the preset second current determination value Imth2 continues for the low motor current determination time Tth2 set in step S2. This is the case.
- step S11 it is determined that the necessary circulation time has not elapsed in step S6, or it is determined that the vehicle is running in step S7, or it is determined that the motor current is large in step S9, or in step S10 Following the determination that the motor current is not small, the abnormality determination of the temperature sensor 51 is not executed, and the process proceeds to the end. That is, if the predetermined required circulation time has not elapsed since the start of circulation of the cooling water 41, it is considered that the cooling water temperature distribution is not uniform and variation (unevenness) remains in the cooling water circulation path 42.
- the cooling water temperature detected by the water temperature sensor 52 reflects the variation (unevenness) in the cooling water temperature distribution, and it is considered that the abnormality determination of the temperature sensor 51 is erroneously determined.
- a relatively large current flows through the power element 3a of the inverter 3 in order to output a necessary motor torque from the motor 2.
- the current flowing through the power element 3a is large to some extent, the power element temperature rises and the temperature difference from the cooling water 41 becomes large. Therefore, it is conceivable that the abnormality determination of the temperature sensor 51 is erroneously determined.
- the process proceeds to step S11 and the abnormality determination of the temperature sensor 51 is not executed.
- step S12 following the determination that the motor current is small in step S10, the temperature sensor 51 detects the temperature of the power element 3a, and the water temperature sensor 52 determines the temperature of the cooling water 41 flowing through the power element water jacket 3b. Detect and proceed to step S13.
- step S13 following the detection of the power element temperature and the cooling water temperature in step S12, the difference between the temperature of the power element 3a detected in step S12 and the temperature of the cooling water 41 (hereinafter referred to as temperature difference ⁇ T). Is calculated, and the process proceeds to step S14.
- This temperature difference ⁇ T is obtained based on the following equation (4).
- Temperature difference ⁇ T temperature of power element 3a ⁇ temperature of cooling water 41 (4)
- step S14 following the calculation of the temperature difference ⁇ T in step S13, the temperature difference ⁇ T calculated in step S13 is equal to or smaller than the first determination temperature difference set in step S4, and this temperature difference ⁇ T ⁇ first It is determined whether or not the determination temperature difference state has continued for a preset first determination time. If YES (temperature difference ⁇ T ⁇ first determination temperature difference and determination time ⁇ first determination time), the process proceeds to step S15. If NO (temperature difference ⁇ T> first determination temperature difference or determination time ⁇ first determination time), the process proceeds to step S16.
- the “first determination time” is a time during which the influence of noise of the temperature of the power element 3a and the temperature of the cooling water 41 can be avoided, and can be set to an arbitrary value.
- step S15 following the determination that temperature difference ⁇ T ⁇ first determination temperature difference and determination time ⁇ first determination time in step S14, the temperature difference ⁇ T calculated in step S13 is the first value set in step S5. It is determined whether or not the temperature difference is equal to or greater than 2 determination temperature difference and the temperature difference ⁇ T ⁇ second determination temperature difference state continues for a preset second determination time. If YES (temperature difference ⁇ T ⁇ second determination temperature difference and determination time ⁇ second determination time), the process proceeds to step S17. If NO (temperature difference ⁇ T ⁇ second determination temperature difference or determination time ⁇ second determination time), the process proceeds to step S16.
- the “second determination time” is a time during which the influence of noise of the temperature of the power element 3a and the temperature of the cooling water 41 can be avoided, and can be set to an arbitrary value.
- step S16 temperature difference ⁇ T in step S14> first determination temperature difference, or determination time ⁇ first determination time, or temperature difference ⁇ T in step S15 ⁇ second determination temperature difference, or determination. Subsequent to the determination that time ⁇ second determination time, it is determined that the temperature difference 51 is large, it is determined that an abnormality has occurred in the temperature sensor 51, and the process proceeds to the end.
- step S17 following the determination that temperature difference ⁇ T ⁇ second determination temperature difference and determination time ⁇ second determination time in step S15, temperature difference ⁇ T is within a predetermined range (the second determination temperature difference is equal to or greater than the first determination temperature difference). It is determined that there is no abnormality in the temperature sensor 51, and the process proceeds to the end.
- the amount of heat generated by the power element increases with the current of the power element.
- the power element has a heat generation limit, and it is necessary to control the temperature so that the temperature does not exceed the heat generation limit. For this reason, if the temperature of the power element is detected using a temperature sensor and the current of the power element is not limited according to the detected temperature, the temperature of the power element may exceed the heat generation limit and be damaged.
- the power element may still be damaged unless it is detected and the necessary current limit is made.
- the sensor output may be 0 V or may be equivalent to the power supply voltage.
- the sensor output exceeds a certain range, it is generally determined that an abnormality has occurred.
- the sensor output is fixed at an intermediate value, the sensor output is offset by a predetermined range, or the abnormality is such that the gain of the sensor output with respect to the temperature is different from the reference, the above method cannot detect the abnormality. It was.
- FIG. 3 is a conceptual diagram illustrating an abnormality determination region and a normal determination region in the sensor abnormality determination device according to the first embodiment.
- the abnormality determination operation of the first embodiment will be described with reference to FIG.
- Example 1 in order to execute the abnormality determination of the temperature sensor 51, the temperature sensor abnormality determination process shown in the flowchart of FIG. 2 is executed. That is, in FIG. 2, the process proceeds from step S1 to step S2 to step S3, where “high motor current determination time Tth1”, “low motor current determination time Tth2”, and “rising temperature of power element 3a at high motor current” are set. Set each. When these values are set, the process proceeds from step S4 to step S5, and "first determination temperature difference” and "second determination temperature difference” are calculated.
- the “first determination temperature difference” is a value serving as a reference when determining an abnormality of the temperature sensor 51 when the power element temperature is higher than the cooling water temperature.
- the amount of heat generated by the power element increases according to the current flowing through the power element, so that the power element temperature rises as the current flows.
- the temperature of the power element 3a and the temperature of the cooling water 41 are basically substantially equal, or the cooling water temperature is higher.
- the cooling by the cooling water 41 cannot catch up with the temperature rise of the power element 3a, and the temperature of the power element 3a may be higher than the cooling water temperature.
- the “first determination temperature difference” which is a reference when the power element temperature is higher than the cooling water temperature, is a situation in which a high current flows through the power element 3a and the power element temperature is considered to rise. This is a temperature that becomes a reference when the abnormality determination of the temperature sensor 51 is performed. Therefore, as shown in FIG. 3, the “first determination temperature difference” increases when a motor current value (first current determination value Imth1) determined to be high flows in addition to the detection error and the determination margin. The power element temperature (rising temperature) that will be calculated is added.
- the rise temperature is added to the first determination temperature difference. Therefore, the abnormality determination of the temperature sensor 51 can be performed appropriately.
- the “second determination temperature difference” is a value that serves as a reference when determining an abnormality of the temperature sensor 51 when the power element temperature is lower than the coolant temperature.
- the case where the power element temperature is lower than the cooling water temperature is a case where the cooling with the cooling water 41 is sufficiently performed and the temperature rise of the power element 3a is suppressed. For this reason, it is considered that the power element temperature and the cooling water temperature do not greatly deviate.
- the “second determination temperature difference” which is a reference when the power element temperature is lower than the cooling water temperature, is sufficiently cooled by the cooling water 41, and the power element temperature and the cooling water temperature greatly deviate from each other.
- This is a value that serves as a reference when performing an abnormality determination of the temperature sensor 51 in a situation that is not likely to occur. Therefore, the “second determination temperature difference” is obtained by adding only the detection error and the determination margin as shown in FIG. Thereby, even if the power element temperature and the cooling water temperature are not greatly deviated, that is, even if the output of the temperature sensor 51 and the output of the water temperature sensor 52 are not greatly deviated, the abnormality of the temperature sensor 51 is determined. Can do.
- step S ⁇ b> 6 it is determined whether or not a predetermined required circulation time has elapsed since the start of circulation of the cooling water 41. To do. If the necessary circulation time has not elapsed, the process proceeds to step S11, and abnormality determination of the temperature sensor 51 is not performed. Therefore, after waiting for the temperature distribution of the cooling water 41 in the cooling water circulation path 42 to become uniform, the abnormality determination of the temperature sensor 51 can be performed, and an erroneous determination caused by a variation occurring in the temperature distribution of the cooling water 41 can be made. Can be prevented.
- step S7 it is determined whether the vehicle on which the motor unit 1 is mounted is stopped. If the vehicle is traveling (not stopped), the process proceeds to step S11, and the presence / absence of abnormality of the temperature sensor 51 is not determined. That is, while the vehicle is traveling, in order to output the motor torque necessary for traveling from the motor 2, the current flowing through the power element 3a, which is a motor current, increases. Therefore, it is conceivable that the power element temperature rises and greatly deviates from the cooling water temperature. At this time, since it is not determined whether or not the temperature sensor 51 is abnormal, erroneous determination can be prevented.
- step S8 the process proceeds from step S8 to step S9, and it is determined whether or not the current flowing through the power element 3a is large. And if the electric current which is flowing into the power element 3a is large, it will progress to step S11 and will not perform abnormality determination of the temperature sensor 51.
- FIG. Therefore, if the current flowing through the power element 3a is large and the abnormality determination of the temperature sensor 51 cannot be performed unless the power element temperature and the cooling water temperature are largely deviated from each other, the abnormality determination is refrained from being executed and an erroneous determination is generated. Can be prevented.
- step S10 determines whether or not the current flowing through the power element 3a is small. If the current flowing through the power element 3a is not small, that is, if the current flowing through the power element 3a does not continuously fall below the second current determination value Imth2 during the low motor current determination time Tth2, step S11. And the abnormality determination of the temperature sensor 51 is not performed.
- the temperature of the power element 3a rises, and the sensor abnormality cannot be determined unless the power element temperature and the cooling water temperature deviate greatly.
- step S12 determines that the motor current is small
- step S13 the process proceeds from step S12 to step S13 to step S14, and the temperature difference ⁇ T is compared with the first determination temperature difference. If the temperature difference ⁇ T exceeds the first determination temperature difference, the process proceeds to step S16, and it is determined that an abnormality has occurred in the temperature sensor 51. At this time, since the first determination time is set, the influence of noise of the power element temperature and the cooling water temperature can be avoided.
- step S15 the temperature difference ⁇ T is compared with the second determination temperature difference. If the temperature difference ⁇ T is less than the second determination temperature difference, the process proceeds to step S16, and it is determined that an abnormality has occurred in the temperature sensor 51. If the temperature difference ⁇ T is greater than or equal to the second determination temperature difference, the process proceeds to step S17, and it is determined that no abnormality has occurred in the temperature sensor 51. At this time, since the second determination time is set, it is possible to avoid the influence of noise of the power element temperature and the cooling water temperature.
- the determination temperature difference (second determination temperature difference) when the detection temperature of the temperature sensor 51 is lower than the detection water temperature of the water temperature sensor 52, and the detection temperature of the temperature sensor 51 are the water temperature. It is set to a value lower than the judgment temperature difference (first judgment temperature difference) when it is higher than the detected water temperature of the sensor 52. That is, when the power element temperature is higher than the cooling water temperature, the temperature rise of the power element 3a is added to the first determination temperature difference. The temperature rise of the power element 3a is such that the power element temperature is higher than the cooling water temperature. Is not included in the second judgment temperature difference when the temperature is low.
- a determination temperature difference (second difference when the cooling water temperature is higher than the power element temperature)
- the determination temperature difference can be set to a relatively small value, and the abnormality detection performance can be improved.
- the current flowing through the power element 3a can be less than the maximum current of the applied system.
- the first determination temperature difference includes a detection error and a determination margin.
- the temperature rise included in the first judgment temperature difference is “temperature rise when the vehicle is stopped”, the value of the temperature rise to be added becomes small, and even if the temperature sensor output deviation is small, it is detected. It is possible to improve the abnormality detection performance.
- the temperature increase included in the first determination temperature difference is “temperature increase at maximum current application”, the diagnosis frequency can be increased. In this way, by adjusting the value of the rising temperature, the weight of the abnormality detection performance and the diagnosis frequency can be arbitrarily set.
- the motor current that enables abnormality determination may be, for example, a current during motor idle. It is done.
- a sensor abnormality determination can always be executed in a motor idle state, and a determination temperature difference (second determination temperature difference) at this time is set to a small value. Detection performance can be improved.
- the first current determination value Imth1 which is a reference for determining that the current flowing through the power element 3a is high, may be the current flowing through the power element 3a when the motor is idle.
- a power element 3a a cooling water circuit (cooling water circulation path) 42 through which cooling water 41 for cooling the power element 3a circulates, a temperature sensor 51 for detecting the temperature of the power element 3a, and the cooling water circuit And a water temperature sensor 52 that detects the temperature of the cooling water 41 circulating through the semiconductor module 42.
- An abnormality determination unit that determines that the temperature sensor 51 is abnormal when a difference (temperature difference) ⁇ T between a detection temperature of the temperature sensor 51 and a detection water temperature of the water temperature sensor 52 is larger than a predetermined determination temperature difference.
- the semiconductor module (inverter) 3 includes a current sensor 53 that detects a current flowing through the power element 3a.
- the abnormality determination unit 5a is configured not to execute the abnormality determination of the temperature sensor 51 when the current flowing through the power element 3a is greater than or equal to a preset first current determination value Imth1.
- the abnormality determination unit 5a continues the state in which the current flowing through the power element 3a is equal to or less than the preset second current determination value Imth2 for a predetermined time (low motor current determination time Tth2), the abnormality of the temperature sensor 51 is detected. It was set as the structure which performs determination. As a result, in addition to the effect (1) or (2) above, even if the power element temperature has risen, it is possible to wait until the temperature of the power element 3a drops to determine the sensor abnormality. Even if the cooling water temperature is not greatly deviated, the abnormality of the temperature sensor 51 can be determined.
- the semiconductor module (inverter) 3 is a control circuit for the motor 2 mounted on the vehicle as a travel drive source of the vehicle,
- the abnormality determination unit 5a is configured to execute abnormality determination of the temperature sensor 51 when the vehicle is stopped.
- the abnormality determination unit 5a executes abnormality determination of the temperature sensor 51 when a predetermined time (required circulation time) has elapsed since the circulation of the cooling water 41 for cooling the power element 3a has started.
- the configuration thus, in addition to the effects (1) to (4) above, it is possible to determine whether the temperature sensor 51 is abnormal after waiting for the temperature distribution of the cooling water 41 in the cooling water circulation path 42 to become uniform. In addition, it is possible to prevent erroneous determination caused by variations occurring in the temperature distribution of the cooling water 41.
- Example 1 Although the sensor abnormality determination apparatus of this invention has been demonstrated based on Example 1, it is not restricted to this Example about a concrete structure, The summary of the invention which concerns on each claim of a Claim Unless it deviates, design changes and additions are allowed.
- the water temperature sensor 52 detects the temperature of the cooling water 41 flowing through the power element water jacket 3b included in the power element 3a, but is not limited thereto.
- the water temperature sensor 52 only needs to detect the temperature of the cooling water 41 that cools the power element 3 a in the cooling system 4. For example, the cooling water temperature just before flowing into the radiator 44 or immediately after being discharged from the water pump 43.
- the cooling water temperature may be detected.
- the cooling water circulation path 42 between the position where the water temperature sensor 52 is provided and the temperature sensor 51 of the power element 3a is long or the cooling water flow rate is small, the cooling water 41 in contact with the power element 3a.
- the cooling water 41 moves between the sensors based on the cooling water capacity and the cooling water flow rate between the temperature sensor 51 and the water temperature sensor 52. Ask for time to do. And the past temperature information for this time may be memorize
- required. That is, if the time during which the cooling water 41 moves through the cooling water circulation path 42 in the order of the power element 3a ⁇ the water temperature sensor 52 is n seconds, ⁇ T power element temperature before n seconds ⁇ current cooling water temperature. .
- the abnormality determination of the temperature sensor 51 is performed only when the vehicle is stopped.
- the current of the power element 3a is determined from the current flowing in the power element 3a during steady running. An elevated temperature may be obtained.
- the diagnosis opportunity can be increased.
- the first current determination value Imth1 which serves as a reference when determining that the current flowing through the power element 3a is large, may be the current flowing through the power element 3a during steady running.
- both abnormality determination control for abnormality determination during motor idle and abnormality determination during steady running may be implemented.
- a small abnormality abnormality with a small deviation in sensor output
- the abnormality determination frequency can be increased by enabling the abnormality determination to be performed even during steady running with a high appearance frequency.
- the second current determination value Imth2 corresponding to each first current determination value Imth1 can also be set.
- the relationship between the power element current and the power element rising temperature may be mapped, for example, so that the rising temperature of the power element 3a may be appropriately determined according to the current flowing through the power element 3a.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Inverter Devices (AREA)
- Power Conversion In General (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
- Protection Of Static Devices (AREA)
Abstract
Description
なお、このセンサ異常判定装置では、推定冷却水温が上限値以上の場合には、冷却水温センサの異常判定を実行しない。
ここで、パワー素子に電流が流れると、このパワー素子の温度が上昇する。そのため、パワー素子温度に基づいて推定する推定冷却水温の温度も上昇し、この推定冷却水温と実冷却水温との偏差が大きくなることが分かっている。そのため、異常判定閾値は、誤判断を防止するため、パワー素子に最大電流が流れているときに生じる温度偏差よりも大きい値にしなければならなかった。
これにより、推定冷却水温と実冷却水温の偏差がある程度大きくならなければ、冷却水温センサが異常を判定できない、という問題があった。
前記異常判定部は、前記温度センサの検出温度と前記水温センサの検出水温の差が、予め設定した判定温度差よりも大きいときに、前記温度センサが異常であると判定する。
前記判定温度設定部は、前記温度センサの検出温度が前記水温センサの検出水温よりも低いときの判定温度差を、前記温度センサの検出温度が前記水温センサの検出水温よりも高いときの判定温度差よりも、低い値に設定する。
すなわち、温度センサの検出温度が水温センサの検出温度よりも低いときには、パワー素子に流れる電流によるパワー素子の温度上昇は抑えられていると考えられる。一方、温度センサの検出温度が水温センサの検出温度よりも高いときには、パワー素子に比較的大きな電流が流れ、パワー素子の温度は上昇していると考えられる。また、パワー素子の温度上昇が抑制されているときには、温度センサの検出温度と水温センサの検出温度との差が小さくなる。
そこで、パワー素子に流れる電流が小さくてパワー素子の温度上昇が抑えられていると考えられるときの判定温度差を、パワー素子温度が上昇していると考えられるときの判定温度差よりも低い値に設定することで、温度センサの検出温度と水温センサの検出水温の差が小さくても温度センサの異常を判定することができる。
まず、実施例1のセンサ異常判定装置における構成を「モータユニット全体システム構成」、「温度センサ異常判定処理構成」に分けて説明する。
図1は、実施例1のセンサ異常判定装置を搭載したモータユニットを示す全体システム図である。以下、図1に基づき、実施例1のセンサ異常判定装置を備えたモータユニットの全体システム構成を説明する。
このモータユニット1は、モータ2と、インバータ(半導体モジュール)3と、冷却システム4と、を有している。
前記冷却水41は、不凍液(LLC;クーラント)である。
前記冷却水循環路42は、冷却水41が流れる流路であり、冷却水41の流れに沿って、ウォータポンプ43→モータ用ウォータジャケット2a→パワー素子用ウォータジャケット3b→放熱器44→ウォータポンプ43の順に接続している。
前記ウォータポンプ43は、冷却水循環路42を流れる冷却水41に圧力をかけ、冷却水41を冷却水循環路42内で強制的に循環させる電動ポンプである。
前記放熱器44は、冷却水循環路42の途中位置に設けられ、冷却水41を外気と熱交換させることでウォータポンプ43に吸い込まれる冷却水41を冷却する。
また、この異常判定部5aでは、パワー素子3aに流れる電流が予め設定した第1電流判定値Imth1以上のときには、温度センサ51の異常判定を行わない。一方、パワー素子3aに流れる電流が予め設定した第2電流判定値Imth2以下の状態を所定時間継続したとき、車両停止状態のとき、冷却水循環路42を冷却水41が循環してから所定時間経過したとき、のすべての条件を満たしたら、温度センサ51の異常判定を行う。
図2は、実施例1の制御器にて実行される温度センサ異常判定処理の流れを示すフローチャートである。以下、図2に基づき、実施例1の温度センサ異常判定処理構成について説明する。
ここで、「高モータ電流判定時間」とは、モータ2に印加される電流(モータ電流値)、つまりインバータ3のパワー素子3aに流れる電流が大きいか否かを判定する際の判定基準となる時間である。なお、パワー素子3aに流れる電流は、予め設定した第1電流判定値Imth1よりも大きければ「高い」と判定される。そして、この「高モータ電流判定時間」は、例えばモータ電流のノイズ成分等を考慮した判定マージン時間に設定する。
ここで、「低モータ電流判定時間」とは、モータ2に印加される電流(モータ電流値)、つまりインバータ3のパワー素子3aに流れる電流が小さいか否かを判定する際の判定基準となる時間である。なお、パワー素子3aに流れる電流は、予め設定した第2電流判定値Imth2よりも小さければ、「低い」と判定される。そして、この「低モータ電流判定時間」は、例えばモータ電流のノイズ成分等を考慮した判定マージン時間に、パワー素子3aの熱時定数を加味して設定する。
ここで、パワー素子3aは電流が流れると発熱するが、流れる電流が高いほど温度が上昇する。つまり、高いと判定されるモータ電流値(第1電流判定値Imth1)が流れているときには、パワー素子3aの温度は上昇するため、このステップS3では、第1電流判定値Imth1が流れたことで上昇するパワー素子温度を設定する。なお、この上昇温度は、予めモータ電流に対するパワー素子3aの上昇温度を計算又は実測してマップ化しておき、このマップに基づいて設定する。
ここで、「第1判定温度差」とは、パワー素子3aの温度(温度センサ51によって検出された検出温度)が、冷却水41の温度(水温センサ52によって検出された検出水温)よりも高いときに、温度センサ51の異常を判定する際の基準になる値である。この「第1判定温度差」は、下記式(1)に基づいて求められる。
第1判定温度差 = 検出誤差 + 上昇温度 + 判定マージン …(1)
なお、式(1)における「上昇温度」は、ステップS3にて求めた値である。
ここで、「第2判定温度差」とは、パワー素子3aの温度(温度センサ51によって検出された検出温度)が、冷却水41の温度(水温センサ52によって検出された検出水温)よりも低いときに、温度センサ51の異常を判定する際の基準になる値である。この「第2判定温度差」は、下記式(2)に基づいて求められる。
第2判定温度差 = 検出誤差 + 判定マージン …(2)
ここで「循環必要時間」は、冷却水循環路42内で循環する冷却水41の温度分布が均等になるために必要と考えられる時間であり、任意の値に設定できる。
ここで、車両の停車判断は、図示しない車速センサによって検出された車両速度が、停車と判断できる程度の所定値(=ゼロ)よりも小さいときに行われる。
ここで、モータ電流が大きい場合とは、パワー素子3aに流れている電流が予め設定した第1電流判定値Imth1を上回った状態を、ステップS1にて設定した高モータ電流判定時間Tth1の間継続した場合である。
なお、高モータ電流判定時間Tth1は、電流ノイズの影響でモータ電流が大きいと誤判定することを避けるために設定した時間である。一般的には、このように設定した高モータ電流判定時間Tth1に対して、パワー素子3aの熱時定数は十分に大きく、問題はない。しかしながら、高モータ電流判定時間Tth1が経過した後のパワー素子3aの温度上昇を無視できない場合には、その温度上昇分を考慮してパワー素子3aの上昇温度を算出する。具体的には、ステップS3において、マップから求めるのではなく、下記式(3)から算する。
上昇温度 = マップ検出温度(マップに基づいて求めた上昇温度)
+ モータ電流最大の状態で高モータ電流判定時間経過したときのパワー素子3aの上昇温度 …(3)
ここで、モータ電流が小さい場合とは、パワー素子3aに流れている電流が予め設定した第2電流判定値Imth2を下回った状態を、ステップS2にて設定した低モータ電流判定時間Tth2の間継続した場合である。
すなわち、冷却水41の循環開始から所定の循環必要時間が経過していなければ、冷却水循環路42内において、冷却水温度分布が均等ではなく、ばらつき(むら)が残っていると考えられる。そのため、水温センサ52によって検出される冷却水温度に、冷却水温度分布のばらつき(むら)の影響が反映されてしまい、温度センサ51の異常判定を誤判定することが考えられる。
また、車両が走行中では、モータ2から必要なモータトルクを出力させるため、インバータ3のパワー素子3aに比較的大きな電流が流れると考えられる。また、例え車両走行中でなくても、パワー素子3aに流れる電流がある程度大きければ、パワー素子温度が上昇し、冷却水41との温度差が大きくなってしまう。そのため、温度センサ51の異常判定を誤判定することが考えられる。
このように、温度センサ51の異常判定において、誤判定すると思われる状況においては、このステップS11へと進んで温度センサ51の異常判定を実行しない。
温度差ΔT = パワー素子3aの温度 - 冷却水41の温度 …(4)
なお、「第1判定時間」は、パワー素子3aの温度と冷却水41の温度のノイズの影響を回避できる時間であり、任意の値に設定できる。
まず、「比較例のセンサ異常判定装置における課題」を説明し、続いて、実施例1のセンサ異常判定装置における「異常判定作用」を説明する。
電気自動車の走行駆動となるモータコントロールユニットでは、モータに適切な電流を流すことで必要なモータトルクが発生するように制御する。ここで、モータに適切な電流を流すためには、電源とモータの間にパワー素子を有すインバータを配置し、モータに印可する電流が目標値となるようにパワー素子3aをパルス駆動している。
図3は、実施例1のセンサ異常判定装置における異常判定領域と正常判定領域を示す概念図である。以下、図3に基づき、実施例1の異常判定作用を説明する。
上述のように、パワー素子の発熱量はパワー素子に流れる電流に応じて増加するので、電流が流れるほどパワー素子温度は上昇する。このとき、パワー素子3aは、冷却水41と熱交換することで冷却されるため、パワー素子3aの温度と冷却水41の温度は基本的にほぼ等しい、もしくは冷却水温度の方が高くなる。しかし、パワー素子3aに流れる電流が高い場合では、冷却水41による冷却がパワー素子3aの温度上昇に追いつかず、パワー素子3aの温度の方が冷却水温度よりも高くなることがある。
そのため、この「第1判定温度差」は、図3に示すように、検出誤差と判定マージンに加え、高いと判定されるモータ電流値(第1電流判定値Imth1)が流れているときに上昇するであろうパワー素子温度(上昇温度)を加算して求める。
これにより、パワー素子3aの温度上昇が冷却水41による冷却性能を上回り、パワー素子3aの温度が最大発熱温度となっても、第1判定温度差には、この上昇温度が加味されているので、温度センサ51の異常判定を適切に行うことができる。
ここで、パワー素子温度が冷却水温度よりも低い場合とは、冷却水41による冷却が十分に行われ、パワー素子3aの温度上昇が抑制されている場合である。そのため、パワー素子温度と冷却水温度とが大きく乖離することはないと考えられる場合となる。
そのため、この「第2判定温度差」は、図3に示すように、検出誤差と判定マージンのみを加算して求める。
これにより、パワー素子温度と冷却水温度が大きく乖離していなくても、つまり、温度センサ51の出力と水温センサ52の出力とが大きくずれていなくても、温度センサ51の異常を判定することができる。
そのため、冷却水循環路42内における冷却水41の温度分布が均一になるのを待ってから温度センサ51の異常判定を行うことができ、冷却水41の温度分布に生じたばらつきによって生じる誤判定を防止することができる。
すなわち、車両走行中は、モータ2から走行に必要なモータトルクを出力させるために、モータ電流であるパワー素子3aに流れる電流が大きくなる。そのため、パワー素子温度が上昇し、冷却水温度に対して大きく乖離してしまうことが考えられる。このときには、温度センサ51の異常の有無を判定しないため、誤判定を防止することができる。
一方、車両停車中は、モータ2からモータトルクを出力する必要がないため、モータ電流であるパワー素子3aに流れる電流が小さくなり、パワー素子3aの温度上昇を抑制される。これにより、パワー素子温度が冷却水温度よりも低くなり、パワー素子温度と冷却水温度が大きく乖離していなくても、温度センサ51の異常を判定することができる。また、走行する車両には、必ず停車状態が生じるため、センサ異常の判定頻度機会を十分に確保することができ、異常検知性と判定頻度の両立を図ることができる。
そのため、パワー素子3aに流れる電流が大きくて、パワー素子温度と冷却水温度が大きく乖離しなければ温度センサ51の異常判定をできない場合には、異常判定の実行が控えられ、誤判定の発生を防止することができる。
ここで、例えばパワー素子3aに大きな電流が流れてしまうと、パワー素子3aは温度上昇してしまい、パワー素子温度と冷却水温度とが大きく乖離しなければセンサ異常を判定することができない。しかしながら、その後、パワー素子3aに流れている電流が、低モータ電流判定時間Tth2の間、継続して第2電流判定値Imth2を下回れば、パワー素子3aの温度上昇が抑制された状態が一定時間(低モータ電流判定時間Tth2)継続することとなり、パワー素子3aの温度が低下する。つまり、パワー素子温度が冷却水温度よりも低くなり、パワー素子温度と冷却水温度が大きく乖離していなくても、温度センサ51の異常を判定することができる。
このとき、第1判定時間を設定しているので、パワー素子温度と冷却水温度のノイズの影響を回避することができる。
このとき、第2判定時間を設定しているので、パワー素子温度と冷却水温度のノイズの影響を回避することができる。
つまり、パワー素子温度が冷却水温度よりも高いときには、第1判定温度差にパワー素子3aの温度上昇分を加算するが、このパワー素子3aの温度上昇分は、パワー素子温度が冷却水温度よりも低いときの第2判定温度差には含めない。
また、第1判定温度差に含める上昇温度分を、「車両停車時の温度上昇分」とすれば、加算する上昇温度の値が小さくなり、温度センサ出力のずれが小さい異常であっても検出することができて、異常検知性能を向上することができる。一方、第1判定温度差に含める上昇温度分を、「最大電流印加時の温度上昇分」とすると、診断頻度を高めることができる。
このように、上昇温度の値を調整することで、異常検知性能と診断頻度の重みを任意に設定することができる。
実施例1のセンサ異常判定装置にあっては、下記に列挙する効果を得ることができる。
前記温度センサ51の検出温度と前記水温センサ52の検出水温の差(温度差)ΔTが、予め設定した判定温度差よりも大きいときに、前記温度センサ51が異常であると判定する異常判定部5aと、
前記温度センサ51の検出温度が前記水温センサ52の検出水温よりも低いときの判定温度差(第2判定温度差)を、前記温度センサ51の検出温度が前記水温センサ52の検出水温よりも高いときの判定温度差(第1判定温度差)よりも、低い値に設定する判定温度設定部5bと、
を備える構成とした。
これにより、パワー素子3aの温度と、パワー素子3aを冷却する冷却水41の温度とのずれが小さい場合であっても、パワー素子温度を検出する温度センサの異常を判定できる。
前記異常判定部5aは、前記パワー素子3aに流れる電流が予め設定した第1電流判定値Imth1以上のときには、前記温度センサ51の異常判定を実行しない構成とした。
これにより、上記(1)の効果に加え、パワー素子3aに流れる電流が大きく、パワー素子温度と冷却水温度が大きく乖離しなければ温度センサ51の異常判定をできない場合に、異常判定の実行を控えることで、誤判定の発生を防止することができる。
これにより、上記(1)又は(2)の効果に加え、例えパワー素子温度が上昇していても、パワー素子3aの温度が低下するまで待ってセンサ異常判定を行うことができ、パワー素子温度と冷却水温度が大きく乖離していなくても、温度センサ51の異常を判定することができる。
前記異常判定部5aは、前記車両が停車状態のときに、前記温度センサ51の異常判定を実行する構成とした。
これにより、上記(1)から(3)のいずれかの効果に加え、車両走行中は、モータ2から走行に必要なモータトルクを出力させるためにパワー素子3aに流れる電流が大きくなり、パワー素子温度が上昇し、冷却水温度に対して大きく乖離してしまう。このときには、温度センサ51の異常の有無を判定しないため、誤判定を防止することができる。
これにより、上記(1)から(4)のいずれかの効果に加え、冷却水循環路42内における冷却水41の温度分布が均一になるのを待ってから温度センサ51の異常判定を行うことができ、冷却水41の温度分布に生じたばらつきによって生じる誤判定を防止することができる。
ここで、水温センサ52を設けた位置とパワー素子3aの温度センサ51との間の冷却水循環路42が長かったり、冷却水流量が少なかったりする場合には、パワー素子3aに接した冷却水41が水温センサ52に接するまでの時間、又は、水温センサ52に接した冷却水41がパワー素子3aに接するまでの時間が長くなってしまう。このとき、冷却水41の温度が冷却水循環路42内で均一であれば問題ないが、冷却水41の温度分布にばらつき(むら)がある場合には、その温度分布のばらつきが、温度センサ51と水温センサ52の検出温度差に加算されてしまう。このため、温度センサ51に異常がないにも拘らず異常が発生していると誤判定することがあった。そのようなときには、冷却水41の各センサへの到着時間を加味して、双方のセンサの温度差ΔTを演算することで、誤判定を回避することができる。
すなわち、冷却水循環路42の内部をパワー素子3a→水温センサ52の順に冷却水41が移動する時間がn秒であれば、ΔT=n秒前のパワー素子温度 - 現在の冷却水温度、となる。
なお、この場合では、それぞれの第1電流判定値Imth1に対応した第2電流判定値Imth2を設定することもできる。さらに、パワー素子電流とパワー素子上昇温度との関係を、例えばマップ化することで、パワー素子3aに流れる電流に応じてパワー素子3aの上昇温度を適宜求めてもよい。
Claims (5)
- パワー素子と、前記パワー素子を冷却する冷却水が循環する冷却水回路と、前記パワー素子の温度を検出する温度センサと、前記冷却水回路を循環する冷却水の温度を検出する水温センサと、を備える半導体モジュールに適用され、
前記温度センサの検出温度と前記水温センサの検出水温の差が、予め設定した判定温度差よりも大きいときに、前記温度センサが異常であると判定する異常判定部と、
前記温度センサの検出温度が前記水温センサの検出水温よりも低いときの判定温度差を、前記温度センサの検出温度が前記水温センサの検出水温よりも高いときの判定温度差よりも、低い値に設定する判定温度設定部と、
を備えることを特徴とするセンサ異常判定装置。 - 請求項1に記載されたセンサ異常判定装置において、
前記半導体モジュールは、前記パワー素子に流れる電流を検出する電流センサを備え、
前記異常判定部は、前記パワー素子に流れる電流が予め設定した第1電流判定値以上のときには、前記温度センサの異常判定を実行しない
ことを特徴とするセンサ異常判定装置。 - 請求項1又は請求項2に記載されたセンサ異常判定装置において、
前記異常判定部は、前記パワー素子に流れる電流が予め設定した第2電流判定値以下の状態を所定時間継続したら、前記温度センサの異常判定を実行する
ことを特徴とするセンサ異常判定装置。 - 請求項1から請求項3のいずれか一項に記載されたセンサ異常判定装置において、
前記半導体モジュールは、車両の走行駆動源として前記車両に搭載されるモータの制御回路であり、
前記異常判定部は、前記車両が停車状態のときに、前記温度センサの異常判定を実行する
ことを特徴とするセンサ異常判定装置。 - 請求項1から請求項4のいずれか一項に記載されたセンサ異常判定装置において、
前記異常判定部は、前記パワー素子を冷却する冷却水の循環が開始してから所定時間が経過したときに、前記温度センサの異常判定を実行する
ことを特徴とするセンサ異常判定装置。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201480047423.7A CN105493391B (zh) | 2013-08-28 | 2014-07-31 | 传感器异常判定装置 |
US14/906,568 US9823140B2 (en) | 2013-08-28 | 2014-07-31 | Sensor abnormality determining apparatus |
MX2016002514A MX346018B (es) | 2013-08-28 | 2014-07-31 | Aparato de determinación de anormalidad de detector. |
JP2015534104A JP6070849B2 (ja) | 2013-08-28 | 2014-07-31 | センサ異常判定装置 |
RU2016111025A RU2625455C1 (ru) | 2013-08-28 | 2014-07-31 | Устройство определения анормальности датчика |
EP14839086.7A EP3041126B1 (en) | 2013-08-28 | 2014-07-31 | Sensor abnormality determining apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013176708 | 2013-08-28 | ||
JP2013-176708 | 2013-08-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015029686A1 true WO2015029686A1 (ja) | 2015-03-05 |
Family
ID=52586260
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/070172 WO2015029686A1 (ja) | 2013-08-28 | 2014-07-31 | センサ異常判定装置 |
Country Status (8)
Country | Link |
---|---|
US (1) | US9823140B2 (ja) |
EP (1) | EP3041126B1 (ja) |
JP (1) | JP6070849B2 (ja) |
CN (1) | CN105493391B (ja) |
MX (1) | MX346018B (ja) |
MY (1) | MY161719A (ja) |
RU (1) | RU2625455C1 (ja) |
WO (1) | WO2015029686A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017139872A1 (en) * | 2016-02-17 | 2017-08-24 | Tm4 Inc. | Power inverter with dynamic current limiting |
JP2017184471A (ja) * | 2016-03-30 | 2017-10-05 | 株式会社ケーヒン | インバータ冷却装置の水抜け検知装置 |
JP2018042368A (ja) * | 2016-09-07 | 2018-03-15 | 本田技研工業株式会社 | 電力変換装置の故障検知装置及び車両 |
KR101918350B1 (ko) | 2016-09-01 | 2018-11-14 | 현대자동차주식회사 | 스위치 소자 온도센서의 고장 판단 방법 및 그 시스템 |
JP2020156144A (ja) * | 2019-03-18 | 2020-09-24 | トヨタ自動車株式会社 | 液冷式インバータ |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014182694A (ja) * | 2013-03-21 | 2014-09-29 | Fujitsu Ltd | センサ故障検知装置、方法、およびプログラム |
RU2699073C1 (ru) * | 2016-08-23 | 2019-09-03 | Ниссан Мотор Ко., Лтд. | Способ обнаружения анормальностей температуры для устройства преобразования мощности и устройство обнаружения анормальностей температуры для устройства преобразования мощности |
CN108466552B (zh) * | 2017-02-23 | 2023-06-16 | 株式会社杰士汤浅国际 | 故障诊断装置、蓄电装置以及故障诊断方法 |
WO2019124311A1 (ja) * | 2017-12-18 | 2019-06-27 | Ntn株式会社 | モータ搭載自動車の駆動制御装置 |
CN110274707A (zh) * | 2018-03-15 | 2019-09-24 | 英飞凌科技股份有限公司 | 对功率组件的运行状态的监控 |
DE102019203692A1 (de) * | 2019-03-19 | 2020-09-24 | Robert Bosch Gmbh | Verfahren zur Plausibilisierung mindestens einer Kühlmitteltemperatur in einer Antriebseinheit für ein Elektrofahrzeug und Antriebseinheit für ein Elektrofahrzeug |
KR20210136237A (ko) * | 2020-05-07 | 2021-11-17 | 현대자동차주식회사 | 친환경 차량의 오일 승온 시스템 및 방법 |
JP7533498B2 (ja) * | 2022-02-09 | 2024-08-14 | トヨタ自動車株式会社 | 冷却システムの制御装置 |
DE102022122563A1 (de) | 2022-09-06 | 2024-03-07 | Tdk Electronics Ag | Temperatursensor und Sensoranordnung |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008005615A (ja) * | 2006-06-22 | 2008-01-10 | Nissan Motor Co Ltd | 電動車両のモータ出力制御装置 |
JP2009284597A (ja) | 2008-05-20 | 2009-12-03 | Toyota Motor Corp | パワーコントロールユニットの冷却装置 |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4895005A (en) * | 1988-12-29 | 1990-01-23 | York International Corporation | Motor terminal box mounted solid state starter |
EP0540565A1 (en) * | 1990-07-20 | 1993-05-12 | Phoenix Energy Systems Inc. | Heating and cooling system for air space in a building |
KR930008226A (ko) | 1991-10-19 | 1993-05-21 | 강진구 | 삶는 세탁기의 안전장치 |
US6265699B1 (en) * | 2000-05-24 | 2001-07-24 | American Water Heater Company | Water heater with electronic control |
US7346274B2 (en) * | 1999-07-27 | 2008-03-18 | Bradenbaugh Kenneth A | Water heater and method of controlling the same |
JP2002009284A (ja) * | 2000-06-19 | 2002-01-11 | Mitsubishi Electric Corp | 電力用半導体素子及び電力用半導体装置 |
US20050213634A1 (en) * | 2002-11-19 | 2005-09-29 | Avraham Sadeh | Remote measurement and control for a heating element |
FR2868605A1 (fr) * | 2004-03-31 | 2005-10-07 | Renault Sas | Dispositif et procede de refroidissement d'un module de puissance d'une pile a combustible |
US7293914B2 (en) * | 2005-10-28 | 2007-11-13 | Eiko Electric Products Corp. | Temperature detecting heater with indicating structure for aquarium |
JP4836693B2 (ja) * | 2006-07-06 | 2011-12-14 | 株式会社リコー | 温度検出回路、温度検出回路を有する半導体装置及び温度検出方法 |
DE602007014170D1 (de) * | 2006-12-13 | 2011-06-09 | Brother Ind Ltd | Temperaturdetektor und Aufzeichnungsgerät damit |
JP5239198B2 (ja) * | 2007-04-06 | 2013-07-17 | トヨタ自動車株式会社 | 冷却システム制御装置 |
US8112164B2 (en) * | 2007-09-27 | 2012-02-07 | Balboa Instruments, Inc. | Low maintenance spa control system |
KR100952985B1 (ko) * | 2007-12-04 | 2010-04-15 | 주식회사 경동네트웍 | 난방시스템 제어방법 |
JP5182073B2 (ja) | 2008-12-25 | 2013-04-10 | 日産自動車株式会社 | 冷却異常検知装置及び冷却異常検知方法 |
JP2011005982A (ja) * | 2009-06-26 | 2011-01-13 | Denso Corp | 車両用空調装置 |
US8406932B2 (en) * | 2009-09-28 | 2013-03-26 | Balboa Instruments, Inc. | Spa control with improved heater management system |
JP5378264B2 (ja) * | 2010-02-19 | 2013-12-25 | 富士重工業株式会社 | 電気自動車のインバータ冷却装置 |
CN102135453A (zh) * | 2010-12-10 | 2011-07-27 | 奇瑞汽车股份有限公司 | 电机温度监测方法及系统、功率控制方法及系统 |
RU2452927C1 (ru) * | 2011-03-23 | 2012-06-10 | Государственное образовательное учреждение высшего профессионального образования "Сибирская государственная геодезическая академия" (ГОУВПО "СГГА") | Устройство для калибровки датчиков теплового потока |
JP5757772B2 (ja) * | 2011-04-13 | 2015-07-29 | ルネサスエレクトロニクス株式会社 | 半導体装置、及びデータ生成方法 |
CN102883475A (zh) * | 2011-07-14 | 2013-01-16 | 东莞市恒越实业有限公司 | 一种具有工作状态指示的加热感温器 |
JP2014136462A (ja) * | 2013-01-15 | 2014-07-28 | Toyota Boshoku Corp | ヒータ制御装置 |
DE102013204467A1 (de) * | 2013-03-14 | 2014-09-18 | Zf Friedrichshafen Ag | Anordnung zum Testen einer Einrichtung zum Schutz eines elektronischen Bauelements gegen Überhitzung und zugehöriges Verfahren |
JP5907236B2 (ja) * | 2013-12-11 | 2016-04-26 | 株式会社デンソー | 温度検出装置 |
-
2014
- 2014-07-31 MX MX2016002514A patent/MX346018B/es active IP Right Grant
- 2014-07-31 CN CN201480047423.7A patent/CN105493391B/zh active Active
- 2014-07-31 MY MYPI2016700582A patent/MY161719A/en unknown
- 2014-07-31 RU RU2016111025A patent/RU2625455C1/ru active
- 2014-07-31 EP EP14839086.7A patent/EP3041126B1/en active Active
- 2014-07-31 WO PCT/JP2014/070172 patent/WO2015029686A1/ja active Application Filing
- 2014-07-31 US US14/906,568 patent/US9823140B2/en active Active
- 2014-07-31 JP JP2015534104A patent/JP6070849B2/ja active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008005615A (ja) * | 2006-06-22 | 2008-01-10 | Nissan Motor Co Ltd | 電動車両のモータ出力制御装置 |
JP2009284597A (ja) | 2008-05-20 | 2009-12-03 | Toyota Motor Corp | パワーコントロールユニットの冷却装置 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017139872A1 (en) * | 2016-02-17 | 2017-08-24 | Tm4 Inc. | Power inverter with dynamic current limiting |
JP2017184471A (ja) * | 2016-03-30 | 2017-10-05 | 株式会社ケーヒン | インバータ冷却装置の水抜け検知装置 |
KR101918350B1 (ko) | 2016-09-01 | 2018-11-14 | 현대자동차주식회사 | 스위치 소자 온도센서의 고장 판단 방법 및 그 시스템 |
US10209145B2 (en) | 2016-09-01 | 2019-02-19 | Hyundai Motor Company | Failure diagnosis method and system of temperature sensor of switch device |
JP2018042368A (ja) * | 2016-09-07 | 2018-03-15 | 本田技研工業株式会社 | 電力変換装置の故障検知装置及び車両 |
JP2020156144A (ja) * | 2019-03-18 | 2020-09-24 | トヨタ自動車株式会社 | 液冷式インバータ |
JP7298220B2 (ja) | 2019-03-18 | 2023-06-27 | 株式会社デンソー | 液冷式インバータ |
Also Published As
Publication number | Publication date |
---|---|
CN105493391A (zh) | 2016-04-13 |
JP6070849B2 (ja) | 2017-02-01 |
RU2625455C1 (ru) | 2017-07-14 |
MX2016002514A (es) | 2016-05-31 |
CN105493391B (zh) | 2018-02-27 |
MX346018B (es) | 2017-03-02 |
MY161719A (en) | 2017-05-15 |
EP3041126A1 (en) | 2016-07-06 |
EP3041126A4 (en) | 2016-09-14 |
JPWO2015029686A1 (ja) | 2017-03-02 |
US20160161347A1 (en) | 2016-06-09 |
EP3041126B1 (en) | 2018-09-19 |
US9823140B2 (en) | 2017-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6070849B2 (ja) | センサ異常判定装置 | |
US9768668B2 (en) | Cooling system of power converter for on-vehicle rotary electric machine | |
JP6402841B2 (ja) | 電力変換装置の温度異常検出方法および電力変換装置の温度異常検出装置 | |
WO2018037472A1 (ja) | 電力変換装置の温度異常検出方法および電力変換装置の温度異常検出装置 | |
JP2015130769A (ja) | モータシステム制御装置 | |
US20140062373A1 (en) | Motor driving device and method of protecting motor driving device | |
JPWO2013190619A1 (ja) | 内燃機関の冷却制御装置 | |
US12088154B2 (en) | Cooling control device, electric system, and cooling control method | |
JP6299368B2 (ja) | 半導体素子温度推定装置 | |
US9935527B2 (en) | Temperature estimation apparatus for rotating electric machine | |
JP2018117400A (ja) | 車輌の駆動装置、及び車輌 | |
JP5760865B2 (ja) | 車両用モータ温度検出装置 | |
JP2018042414A (ja) | 冷却異常検出装置 | |
JP2010173445A (ja) | ハイブリッド車両の冷却システム | |
JP2018115869A (ja) | 寿命推定装置、及び車輌 | |
JP6137452B2 (ja) | 電動車両用冷却装置 | |
JP2008187861A (ja) | モータ制御装置、モータ制御方法及び車両用駆動制御装置 | |
JP2021136819A5 (ja) | ||
JP2008236955A (ja) | 冷却システムおよびその制御方法並びに車両 | |
JP2008187862A (ja) | モータ制御装置、及びモータ制御方法 | |
JP2020054165A (ja) | 電動車両の制御装置 | |
US20220340147A1 (en) | Control apparatus for electric motor and vehicle | |
JP2013031365A (ja) | 回転電機システム制御装置 | |
JP2016220387A (ja) | 回転電機の温度制御装置 | |
JP2014193001A (ja) | 冷却システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480047423.7 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14839086 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015534104 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14906568 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2016/002514 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: IDP00201601965 Country of ref document: ID |
|
REEP | Request for entry into the european phase |
Ref document number: 2014839086 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014839086 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2016111025 Country of ref document: RU Kind code of ref document: A |