WO2015029686A1 - センサ異常判定装置 - Google Patents

センサ異常判定装置 Download PDF

Info

Publication number
WO2015029686A1
WO2015029686A1 PCT/JP2014/070172 JP2014070172W WO2015029686A1 WO 2015029686 A1 WO2015029686 A1 WO 2015029686A1 JP 2014070172 W JP2014070172 W JP 2014070172W WO 2015029686 A1 WO2015029686 A1 WO 2015029686A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
power element
determination
sensor
temperature sensor
Prior art date
Application number
PCT/JP2014/070172
Other languages
English (en)
French (fr)
Inventor
初樹 森永
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to CN201480047423.7A priority Critical patent/CN105493391B/zh
Priority to US14/906,568 priority patent/US9823140B2/en
Priority to MX2016002514A priority patent/MX346018B/es
Priority to JP2015534104A priority patent/JP6070849B2/ja
Priority to RU2016111025A priority patent/RU2625455C1/ru
Priority to EP14839086.7A priority patent/EP3041126B1/en
Publication of WO2015029686A1 publication Critical patent/WO2015029686A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20927Liquid coolant without phase change
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20945Thermal management, e.g. inverter temperature control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K15/00Testing or calibrating of thermometers
    • G01K15/007Testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K17/00Measuring quantity of heat
    • G01K17/06Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device
    • G01K17/08Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device based upon measurement of temperature difference or of a temperature

Definitions

  • the present invention relates to a sensor abnormality determination device that determines abnormality of a temperature sensor that detects the temperature of a power element based on the difference between the temperature of the power element and the temperature of cooling water that cools the power element.
  • the temperature of cooling water for cooling the power element is estimated. Then, a deviation between the estimated cooling water temperature and the actual cooling water temperature actually detected using the cooling water temperature sensor is obtained, and if this deviation is equal to or greater than a predetermined abnormality determination threshold value, a sensor that determines that there is an abnormality in the cooling water temperature sensor
  • An abnormality determination device is known (see, for example, Patent Document 1). In this sensor abnormality determination device, when the estimated cooling water temperature is equal to or higher than the upper limit value, the abnormality determination of the cooling water temperature sensor is not executed.
  • the abnormality determination threshold value that is a criterion for abnormality determination of the cooling water temperature sensor is a constant value. That is, the abnormality determination threshold for deviation when the estimated cooling water temperature is higher than the actual cooling water temperature and the abnormality determination threshold for deviation when the estimated cooling water temperature is lower than the actual cooling water temperature are set to the same value.
  • the temperature of the power element rises. For this reason, it is known that the temperature of the estimated cooling water temperature estimated based on the power element temperature also increases, and the deviation between the estimated cooling water temperature and the actual cooling water temperature becomes large.
  • the abnormality determination threshold value has to be set to a value larger than the temperature deviation that occurs when the maximum current flows through the power element in order to prevent erroneous determination.
  • the cooling water temperature sensor cannot determine the abnormality unless the deviation between the estimated cooling water temperature and the actual cooling water temperature is increased to some extent.
  • An object of the present invention is to provide a sensor abnormality determination device that can determine the above.
  • a sensor abnormality determination device of the present invention includes a power element, a cooling water circuit in which cooling water for cooling the power element circulates, a temperature sensor for detecting the temperature of the power element, and the cooling
  • the present invention is applied to a semiconductor module that includes a water temperature sensor that detects the temperature of cooling water circulating in the water circuit, and includes an abnormality determination unit and a determination temperature setting unit.
  • the abnormality determination unit determines that the temperature sensor is abnormal when a difference between a detection temperature of the temperature sensor and a detection water temperature of the water temperature sensor is larger than a predetermined determination temperature difference.
  • the determination temperature setting unit indicates a determination temperature difference when the detection temperature of the temperature sensor is lower than the detection water temperature of the water temperature sensor, and a determination temperature when the detection temperature of the temperature sensor is higher than the detection water temperature of the water temperature sensor. Set to a lower value than the difference.
  • the abnormality determination unit determines abnormality of the temperature sensor when the difference between the detected temperature of the temperature sensor and the detected water temperature of the water temperature sensor is larger than a predetermined determination temperature difference.
  • the determination temperature difference serving as a criterion for determining the abnormality is lower than when the detected temperature of the temperature sensor is higher than the detected water temperature of the water temperature sensor. Is set. That is, when the detected temperature of the temperature sensor is lower than the detected temperature of the water temperature sensor, it is considered that the temperature rise of the power element due to the current flowing through the power element is suppressed.
  • the detected temperature of the temperature sensor is higher than the detected temperature of the water temperature sensor, it is considered that a relatively large current flows through the power element and the temperature of the power element is rising. Further, when the temperature rise of the power element is suppressed, the difference between the temperature detected by the temperature sensor and the temperature detected by the water temperature sensor is reduced. Therefore, the judgment temperature difference when the current flowing through the power element is small and the temperature rise of the power element is considered to be suppressed is lower than the judgment temperature difference when the power element temperature is considered to be rising. By setting to, the abnormality of the temperature sensor can be determined even if the difference between the detected temperature of the temperature sensor and the detected water temperature of the water temperature sensor is small.
  • FIG. 1 is an overall system diagram illustrating a motor unit on which a sensor abnormality determination device according to a first embodiment is mounted. It is a flowchart which shows the flow of the temperature sensor abnormality determination process performed in the sensor abnormality determination apparatus of Example 1.
  • FIG. It is a conceptual diagram which shows the abnormality determination area
  • FIG. 1 is an overall system diagram illustrating a motor unit on which a sensor abnormality determination device according to a first embodiment is mounted. It is a flowchart which shows the flow of the temperature sensor abnormality determination process performed in the sensor abnormality determination apparatus of Example 1.
  • FIG. It is a conceptual diagram which shows the abnormality determination area
  • Example 1 shown in the drawings.
  • Example 1 First, the configuration of the sensor abnormality determination device according to the first embodiment will be described separately as “motor unit overall system configuration” and “temperature sensor abnormality determination processing configuration”.
  • FIG. 1 is an overall system diagram illustrating a motor unit in which the sensor abnormality determination device according to the first embodiment is mounted.
  • FIG. 1 an overall system configuration of a motor unit including the sensor abnormality determination device according to the first embodiment will be described.
  • the sensor abnormality determination device is mounted on the motor unit 1 shown in FIG. That is, the motor unit 1 is mounted as a travel drive source for an electric vehicle (not shown) such as a hybrid vehicle or an electric vehicle.
  • the motor unit 1 includes a motor 2, an inverter (semiconductor module) 3, and a cooling system 4.
  • the motor 2 is a synchronous motor in which a permanent magnet is embedded in a rotor and a stator coil is wound around a stator.
  • the motor 2 has a motor water jacket 2a through which cooling water 41 (to be described later) of the cooling system 4 flows.
  • the inverter 3 has a power element 3a, generates three-phase AC power to be applied to the motor 2 based on a control command from a motor controller (not shown), and controls the motor 2.
  • the power element 3a is, for example, an IGBT (Insulated Gate Bipolar Transistor) module that plays a major role as a main switch of an inverter that outputs three-phase AC power.
  • the power element 3a has a power element water jacket 3b through which the cooling water 41 flows.
  • the inverter 3 also includes a temperature sensor 51 for detecting the temperature of the power element 3a, a water temperature sensor 52 for detecting the temperature of the cooling water 41 flowing through the power element water jacket 3b, and a current flowing through the power element 3a.
  • a current sensor 53 is provided.
  • the cooling system 4 includes a cooling water circulation path (cooling water circuit) 42 through which cooling water 41 for cooling the power element 3 a of the motor 2 and the inverter 3 circulates, a water pump 43, and a radiator 44.
  • the cooling water 41 is an antifreeze liquid (LLC; coolant).
  • the cooling water circulation path 42 is a flow path through which the cooling water 41 flows, and along the flow of the cooling water 41, the water pump 43 ⁇ the motor water jacket 2a ⁇ the power element water jacket 3b ⁇ the radiator 44 ⁇ the water pump 43.
  • the water pump 43 is an electric pump that applies pressure to the cooling water 41 flowing through the cooling water circulation path 42 and forcibly circulates the cooling water 41 in the cooling water circulation path 42.
  • the radiator 44 is provided in the middle of the cooling water circulation path 42 and cools the cooling water 41 sucked into the water pump 43 by exchanging heat between the cooling water 41 and the outside air.
  • the cooling water 41 sent out by the water pump 43 first exchanges heat with the motor 2 in the motor water jacket 2a to cool the motor 2. Then, it flows into the power element water jacket 3 b provided in the power element 3 a of the inverter 3. In the power element water jacket 3b, heat exchange is performed with the power element 3a to cool the power element 3a. Then, it flows into the radiator 44, is air-cooled, is sucked into the water pump 43 again, and then sent out.
  • the motor unit 1 is provided with a controller (sensor abnormality determination device) 5.
  • a controller sensor abnormality determination device
  • Various detection signals from the temperature sensor 51, the water temperature sensor 52, and the current sensor 53 are input to the controller 5.
  • this controller 5 performs the temperature sensor abnormality determination process mentioned later, performs abnormality determination of the temperature sensor 51, and has the abnormality determination part 5a and the determination temperature setting part 5b.
  • the abnormality determination unit 5a is an arithmetic circuit that determines that the temperature sensor 51 is abnormal when the difference between the detected temperature of the temperature sensor 51 and the detected water temperature of the water temperature sensor 52 is larger than a predetermined determination temperature difference. is there. In addition, the abnormality determination unit 5a does not determine whether the temperature sensor 51 is abnormal when the current flowing through the power element 3a is equal to or greater than a preset first current determination value Imth1. On the other hand, when the current flowing through the power element 3a continues below a preset second current determination value Imth2 for a predetermined time, or when the vehicle is stopped, a predetermined time has elapsed since the cooling water 41 circulated through the cooling water circulation path 42. If all the conditions are satisfied, the abnormality of the temperature sensor 51 is determined.
  • the determination temperature setting unit 5b is an arithmetic circuit that sets a determination temperature difference used in the abnormality determination unit 5a. In this determination temperature setting unit 5 b, a determination temperature difference when the detection temperature of the temperature sensor 51 is lower than the detection water temperature of the water temperature sensor 52 is determined, and a determination when the detection temperature of the temperature sensor 51 is higher than the detection water temperature of the water temperature sensor 52. Set to a value lower than the temperature difference.
  • FIG. 2 is a flowchart illustrating the flow of the temperature sensor abnormality determination process executed by the controller of the first embodiment.
  • the temperature sensor abnormality determination processing configuration of the first embodiment will be described with reference to FIG.
  • step S1 a high motor current determination time Tth1 is set, and the process proceeds to step S2.
  • the “high motor current determination time” is a determination criterion when determining whether or not the current applied to the motor 2 (motor current value), that is, the current flowing through the power element 3a of the inverter 3 is large. It's time. Note that if the current flowing through the power element 3a is greater than a preset first current determination value Imth1, it is determined to be “high”.
  • the “high motor current determination time” is set to a determination margin time in consideration of, for example, a noise component of the motor current.
  • step S2 following the setting of the high motor current determination time Tth1 in step S1, a low motor current determination time Tth2 is set, and the process proceeds to step S3.
  • the “low motor current determination time” is a determination criterion for determining whether or not the current applied to the motor 2 (motor current value), that is, the current flowing through the power element 3a of the inverter 3 is small. It's time. Note that if the current flowing through the power element 3a is smaller than the preset second current determination value Imth2, it is determined to be “low”.
  • the “low motor current determination time” is set by taking into consideration the thermal time constant of the power element 3a in the determination margin time considering the noise component of the motor current, for example.
  • step S3 following the setting of the low motor current determination time Tth2 in step S2, the temperature rise of the power element 3a at the time of high motor current is set, and the process proceeds to step S4.
  • the power element 3a generates heat when a current flows, but the temperature rises as the flowing current increases. That is, when the motor current value (first current determination value Imth1) determined to be high is flowing, the temperature of the power element 3a rises. Therefore, in this step S3, the first current determination value Imth1 has flowed.
  • Set rising power element temperature The temperature rise is set based on a map obtained by calculating or actually measuring the temperature rise of the power element 3a with respect to the motor current.
  • step S4 following the setting of the rising temperature in step S3, a first determination temperature difference is calculated, and the process proceeds to step S5.
  • the “first determination temperature difference” means that the temperature of the power element 3a (detected temperature detected by the temperature sensor 51) is higher than the temperature of the cooling water 41 (detected water temperature detected by the water temperature sensor 52). Sometimes, this is a value that serves as a reference for determining abnormality of the temperature sensor 51.
  • This “first determination temperature difference” is obtained based on the following equation (1).
  • First judgment temperature difference detection error + rising temperature + judgment margin (1) Note that the “rising temperature” in the equation (1) is the value obtained in step S3.
  • step S5 following the calculation of the first determination temperature difference in step S4, the second determination temperature difference is calculated, and the process proceeds to step S6.
  • the “second determination temperature difference” means that the temperature of the power element 3a (detected temperature detected by the temperature sensor 51) is lower than the temperature of the cooling water 41 (detected water temperature detected by the water temperature sensor 52). Sometimes, this is a value that serves as a reference for determining abnormality of the temperature sensor 51.
  • step S6 following the calculation of the second determination temperature difference in step S5, after the cooling water 41 that cools the power element 3a starts to circulate in the cooling water circulation path 42, a predetermined circulation required time set in advance is set. Judge whether or not it has passed. If YES (necessary circulation time has elapsed), the process proceeds to step S7. If NO (circulation required time has not elapsed), it is determined that the cooling water 41 is not sufficiently circulated and the process proceeds to step S11.
  • the “required circulation time” is a time that is considered necessary for the temperature distribution of the cooling water 41 circulating in the cooling water circulation path 42 to be uniform, and can be set to an arbitrary value.
  • step S7 following the determination that the necessary circulation time has elapsed in step S6, it is determined whether or not the vehicle on which the motor unit 1 is mounted is in a stopped state. If YES (stopped), the process proceeds to step S8. In the case of NO (during traveling), the motor torque necessary for traveling is output from the motor 2 and the process proceeds to step S11.
  • step S8 following the determination that the vehicle is stopped in step S7, the current flowing through the power element 3a of the inverter 3 that is the motor current value is detected, and the process proceeds to step S9.
  • the current flowing through the power element 3a is detected by the current sensor 53.
  • step S9 following the detection of the current in step S8, it is determined whether or not the motor current value (current flowing through the power element 3a) detected in step S8 is large. If YES (the motor current is large), the motor current is large and the temperature of the power element 3a is high, and the process proceeds to step S11. If NO (the motor current is not large), the process proceeds to step S10.
  • the case where the motor current is large means that the current flowing through the power element 3a exceeds the preset first current determination value Imth1 for the high motor current determination time Tth1 set in step S1. This is the case.
  • the high motor current determination time Tth1 is a time set to avoid erroneous determination that the motor current is large due to the influence of current noise.
  • the thermal time constant of the power element 3a is sufficiently large with respect to the high motor current determination time Tth1 set in this way, and there is no problem.
  • the temperature rise of the power element 3a is calculated in consideration of the temperature rise. Specifically, in step S3, it is calculated from the following equation (3), not from the map.
  • Rise temperature map detection temperature (rise temperature calculated based on the map) + Increased temperature of the power element 3a when the high motor current determination time elapses in the maximum motor current state (3)
  • step S10 following the determination that the motor current is not large in step S9, it is determined whether or not the motor current value detected in step S8 (current flowing through the power element 3a) is small. If YES (small motor current), the process proceeds to step S12. If NO (the motor current is not small), it is assumed that the motor current is not small and the temperature of the power element 3a is expected to be high to some extent, and the process proceeds to step S11.
  • the case where the motor current is small means that the state in which the current flowing through the power element 3a is lower than the preset second current determination value Imth2 continues for the low motor current determination time Tth2 set in step S2. This is the case.
  • step S11 it is determined that the necessary circulation time has not elapsed in step S6, or it is determined that the vehicle is running in step S7, or it is determined that the motor current is large in step S9, or in step S10 Following the determination that the motor current is not small, the abnormality determination of the temperature sensor 51 is not executed, and the process proceeds to the end. That is, if the predetermined required circulation time has not elapsed since the start of circulation of the cooling water 41, it is considered that the cooling water temperature distribution is not uniform and variation (unevenness) remains in the cooling water circulation path 42.
  • the cooling water temperature detected by the water temperature sensor 52 reflects the variation (unevenness) in the cooling water temperature distribution, and it is considered that the abnormality determination of the temperature sensor 51 is erroneously determined.
  • a relatively large current flows through the power element 3a of the inverter 3 in order to output a necessary motor torque from the motor 2.
  • the current flowing through the power element 3a is large to some extent, the power element temperature rises and the temperature difference from the cooling water 41 becomes large. Therefore, it is conceivable that the abnormality determination of the temperature sensor 51 is erroneously determined.
  • the process proceeds to step S11 and the abnormality determination of the temperature sensor 51 is not executed.
  • step S12 following the determination that the motor current is small in step S10, the temperature sensor 51 detects the temperature of the power element 3a, and the water temperature sensor 52 determines the temperature of the cooling water 41 flowing through the power element water jacket 3b. Detect and proceed to step S13.
  • step S13 following the detection of the power element temperature and the cooling water temperature in step S12, the difference between the temperature of the power element 3a detected in step S12 and the temperature of the cooling water 41 (hereinafter referred to as temperature difference ⁇ T). Is calculated, and the process proceeds to step S14.
  • This temperature difference ⁇ T is obtained based on the following equation (4).
  • Temperature difference ⁇ T temperature of power element 3a ⁇ temperature of cooling water 41 (4)
  • step S14 following the calculation of the temperature difference ⁇ T in step S13, the temperature difference ⁇ T calculated in step S13 is equal to or smaller than the first determination temperature difference set in step S4, and this temperature difference ⁇ T ⁇ first It is determined whether or not the determination temperature difference state has continued for a preset first determination time. If YES (temperature difference ⁇ T ⁇ first determination temperature difference and determination time ⁇ first determination time), the process proceeds to step S15. If NO (temperature difference ⁇ T> first determination temperature difference or determination time ⁇ first determination time), the process proceeds to step S16.
  • the “first determination time” is a time during which the influence of noise of the temperature of the power element 3a and the temperature of the cooling water 41 can be avoided, and can be set to an arbitrary value.
  • step S15 following the determination that temperature difference ⁇ T ⁇ first determination temperature difference and determination time ⁇ first determination time in step S14, the temperature difference ⁇ T calculated in step S13 is the first value set in step S5. It is determined whether or not the temperature difference is equal to or greater than 2 determination temperature difference and the temperature difference ⁇ T ⁇ second determination temperature difference state continues for a preset second determination time. If YES (temperature difference ⁇ T ⁇ second determination temperature difference and determination time ⁇ second determination time), the process proceeds to step S17. If NO (temperature difference ⁇ T ⁇ second determination temperature difference or determination time ⁇ second determination time), the process proceeds to step S16.
  • the “second determination time” is a time during which the influence of noise of the temperature of the power element 3a and the temperature of the cooling water 41 can be avoided, and can be set to an arbitrary value.
  • step S16 temperature difference ⁇ T in step S14> first determination temperature difference, or determination time ⁇ first determination time, or temperature difference ⁇ T in step S15 ⁇ second determination temperature difference, or determination. Subsequent to the determination that time ⁇ second determination time, it is determined that the temperature difference 51 is large, it is determined that an abnormality has occurred in the temperature sensor 51, and the process proceeds to the end.
  • step S17 following the determination that temperature difference ⁇ T ⁇ second determination temperature difference and determination time ⁇ second determination time in step S15, temperature difference ⁇ T is within a predetermined range (the second determination temperature difference is equal to or greater than the first determination temperature difference). It is determined that there is no abnormality in the temperature sensor 51, and the process proceeds to the end.
  • the amount of heat generated by the power element increases with the current of the power element.
  • the power element has a heat generation limit, and it is necessary to control the temperature so that the temperature does not exceed the heat generation limit. For this reason, if the temperature of the power element is detected using a temperature sensor and the current of the power element is not limited according to the detected temperature, the temperature of the power element may exceed the heat generation limit and be damaged.
  • the power element may still be damaged unless it is detected and the necessary current limit is made.
  • the sensor output may be 0 V or may be equivalent to the power supply voltage.
  • the sensor output exceeds a certain range, it is generally determined that an abnormality has occurred.
  • the sensor output is fixed at an intermediate value, the sensor output is offset by a predetermined range, or the abnormality is such that the gain of the sensor output with respect to the temperature is different from the reference, the above method cannot detect the abnormality. It was.
  • FIG. 3 is a conceptual diagram illustrating an abnormality determination region and a normal determination region in the sensor abnormality determination device according to the first embodiment.
  • the abnormality determination operation of the first embodiment will be described with reference to FIG.
  • Example 1 in order to execute the abnormality determination of the temperature sensor 51, the temperature sensor abnormality determination process shown in the flowchart of FIG. 2 is executed. That is, in FIG. 2, the process proceeds from step S1 to step S2 to step S3, where “high motor current determination time Tth1”, “low motor current determination time Tth2”, and “rising temperature of power element 3a at high motor current” are set. Set each. When these values are set, the process proceeds from step S4 to step S5, and "first determination temperature difference” and "second determination temperature difference” are calculated.
  • the “first determination temperature difference” is a value serving as a reference when determining an abnormality of the temperature sensor 51 when the power element temperature is higher than the cooling water temperature.
  • the amount of heat generated by the power element increases according to the current flowing through the power element, so that the power element temperature rises as the current flows.
  • the temperature of the power element 3a and the temperature of the cooling water 41 are basically substantially equal, or the cooling water temperature is higher.
  • the cooling by the cooling water 41 cannot catch up with the temperature rise of the power element 3a, and the temperature of the power element 3a may be higher than the cooling water temperature.
  • the “first determination temperature difference” which is a reference when the power element temperature is higher than the cooling water temperature, is a situation in which a high current flows through the power element 3a and the power element temperature is considered to rise. This is a temperature that becomes a reference when the abnormality determination of the temperature sensor 51 is performed. Therefore, as shown in FIG. 3, the “first determination temperature difference” increases when a motor current value (first current determination value Imth1) determined to be high flows in addition to the detection error and the determination margin. The power element temperature (rising temperature) that will be calculated is added.
  • the rise temperature is added to the first determination temperature difference. Therefore, the abnormality determination of the temperature sensor 51 can be performed appropriately.
  • the “second determination temperature difference” is a value that serves as a reference when determining an abnormality of the temperature sensor 51 when the power element temperature is lower than the coolant temperature.
  • the case where the power element temperature is lower than the cooling water temperature is a case where the cooling with the cooling water 41 is sufficiently performed and the temperature rise of the power element 3a is suppressed. For this reason, it is considered that the power element temperature and the cooling water temperature do not greatly deviate.
  • the “second determination temperature difference” which is a reference when the power element temperature is lower than the cooling water temperature, is sufficiently cooled by the cooling water 41, and the power element temperature and the cooling water temperature greatly deviate from each other.
  • This is a value that serves as a reference when performing an abnormality determination of the temperature sensor 51 in a situation that is not likely to occur. Therefore, the “second determination temperature difference” is obtained by adding only the detection error and the determination margin as shown in FIG. Thereby, even if the power element temperature and the cooling water temperature are not greatly deviated, that is, even if the output of the temperature sensor 51 and the output of the water temperature sensor 52 are not greatly deviated, the abnormality of the temperature sensor 51 is determined. Can do.
  • step S ⁇ b> 6 it is determined whether or not a predetermined required circulation time has elapsed since the start of circulation of the cooling water 41. To do. If the necessary circulation time has not elapsed, the process proceeds to step S11, and abnormality determination of the temperature sensor 51 is not performed. Therefore, after waiting for the temperature distribution of the cooling water 41 in the cooling water circulation path 42 to become uniform, the abnormality determination of the temperature sensor 51 can be performed, and an erroneous determination caused by a variation occurring in the temperature distribution of the cooling water 41 can be made. Can be prevented.
  • step S7 it is determined whether the vehicle on which the motor unit 1 is mounted is stopped. If the vehicle is traveling (not stopped), the process proceeds to step S11, and the presence / absence of abnormality of the temperature sensor 51 is not determined. That is, while the vehicle is traveling, in order to output the motor torque necessary for traveling from the motor 2, the current flowing through the power element 3a, which is a motor current, increases. Therefore, it is conceivable that the power element temperature rises and greatly deviates from the cooling water temperature. At this time, since it is not determined whether or not the temperature sensor 51 is abnormal, erroneous determination can be prevented.
  • step S8 the process proceeds from step S8 to step S9, and it is determined whether or not the current flowing through the power element 3a is large. And if the electric current which is flowing into the power element 3a is large, it will progress to step S11 and will not perform abnormality determination of the temperature sensor 51.
  • FIG. Therefore, if the current flowing through the power element 3a is large and the abnormality determination of the temperature sensor 51 cannot be performed unless the power element temperature and the cooling water temperature are largely deviated from each other, the abnormality determination is refrained from being executed and an erroneous determination is generated. Can be prevented.
  • step S10 determines whether or not the current flowing through the power element 3a is small. If the current flowing through the power element 3a is not small, that is, if the current flowing through the power element 3a does not continuously fall below the second current determination value Imth2 during the low motor current determination time Tth2, step S11. And the abnormality determination of the temperature sensor 51 is not performed.
  • the temperature of the power element 3a rises, and the sensor abnormality cannot be determined unless the power element temperature and the cooling water temperature deviate greatly.
  • step S12 determines that the motor current is small
  • step S13 the process proceeds from step S12 to step S13 to step S14, and the temperature difference ⁇ T is compared with the first determination temperature difference. If the temperature difference ⁇ T exceeds the first determination temperature difference, the process proceeds to step S16, and it is determined that an abnormality has occurred in the temperature sensor 51. At this time, since the first determination time is set, the influence of noise of the power element temperature and the cooling water temperature can be avoided.
  • step S15 the temperature difference ⁇ T is compared with the second determination temperature difference. If the temperature difference ⁇ T is less than the second determination temperature difference, the process proceeds to step S16, and it is determined that an abnormality has occurred in the temperature sensor 51. If the temperature difference ⁇ T is greater than or equal to the second determination temperature difference, the process proceeds to step S17, and it is determined that no abnormality has occurred in the temperature sensor 51. At this time, since the second determination time is set, it is possible to avoid the influence of noise of the power element temperature and the cooling water temperature.
  • the determination temperature difference (second determination temperature difference) when the detection temperature of the temperature sensor 51 is lower than the detection water temperature of the water temperature sensor 52, and the detection temperature of the temperature sensor 51 are the water temperature. It is set to a value lower than the judgment temperature difference (first judgment temperature difference) when it is higher than the detected water temperature of the sensor 52. That is, when the power element temperature is higher than the cooling water temperature, the temperature rise of the power element 3a is added to the first determination temperature difference. The temperature rise of the power element 3a is such that the power element temperature is higher than the cooling water temperature. Is not included in the second judgment temperature difference when the temperature is low.
  • a determination temperature difference (second difference when the cooling water temperature is higher than the power element temperature)
  • the determination temperature difference can be set to a relatively small value, and the abnormality detection performance can be improved.
  • the current flowing through the power element 3a can be less than the maximum current of the applied system.
  • the first determination temperature difference includes a detection error and a determination margin.
  • the temperature rise included in the first judgment temperature difference is “temperature rise when the vehicle is stopped”, the value of the temperature rise to be added becomes small, and even if the temperature sensor output deviation is small, it is detected. It is possible to improve the abnormality detection performance.
  • the temperature increase included in the first determination temperature difference is “temperature increase at maximum current application”, the diagnosis frequency can be increased. In this way, by adjusting the value of the rising temperature, the weight of the abnormality detection performance and the diagnosis frequency can be arbitrarily set.
  • the motor current that enables abnormality determination may be, for example, a current during motor idle. It is done.
  • a sensor abnormality determination can always be executed in a motor idle state, and a determination temperature difference (second determination temperature difference) at this time is set to a small value. Detection performance can be improved.
  • the first current determination value Imth1 which is a reference for determining that the current flowing through the power element 3a is high, may be the current flowing through the power element 3a when the motor is idle.
  • a power element 3a a cooling water circuit (cooling water circulation path) 42 through which cooling water 41 for cooling the power element 3a circulates, a temperature sensor 51 for detecting the temperature of the power element 3a, and the cooling water circuit And a water temperature sensor 52 that detects the temperature of the cooling water 41 circulating through the semiconductor module 42.
  • An abnormality determination unit that determines that the temperature sensor 51 is abnormal when a difference (temperature difference) ⁇ T between a detection temperature of the temperature sensor 51 and a detection water temperature of the water temperature sensor 52 is larger than a predetermined determination temperature difference.
  • the semiconductor module (inverter) 3 includes a current sensor 53 that detects a current flowing through the power element 3a.
  • the abnormality determination unit 5a is configured not to execute the abnormality determination of the temperature sensor 51 when the current flowing through the power element 3a is greater than or equal to a preset first current determination value Imth1.
  • the abnormality determination unit 5a continues the state in which the current flowing through the power element 3a is equal to or less than the preset second current determination value Imth2 for a predetermined time (low motor current determination time Tth2), the abnormality of the temperature sensor 51 is detected. It was set as the structure which performs determination. As a result, in addition to the effect (1) or (2) above, even if the power element temperature has risen, it is possible to wait until the temperature of the power element 3a drops to determine the sensor abnormality. Even if the cooling water temperature is not greatly deviated, the abnormality of the temperature sensor 51 can be determined.
  • the semiconductor module (inverter) 3 is a control circuit for the motor 2 mounted on the vehicle as a travel drive source of the vehicle,
  • the abnormality determination unit 5a is configured to execute abnormality determination of the temperature sensor 51 when the vehicle is stopped.
  • the abnormality determination unit 5a executes abnormality determination of the temperature sensor 51 when a predetermined time (required circulation time) has elapsed since the circulation of the cooling water 41 for cooling the power element 3a has started.
  • the configuration thus, in addition to the effects (1) to (4) above, it is possible to determine whether the temperature sensor 51 is abnormal after waiting for the temperature distribution of the cooling water 41 in the cooling water circulation path 42 to become uniform. In addition, it is possible to prevent erroneous determination caused by variations occurring in the temperature distribution of the cooling water 41.
  • Example 1 Although the sensor abnormality determination apparatus of this invention has been demonstrated based on Example 1, it is not restricted to this Example about a concrete structure, The summary of the invention which concerns on each claim of a Claim Unless it deviates, design changes and additions are allowed.
  • the water temperature sensor 52 detects the temperature of the cooling water 41 flowing through the power element water jacket 3b included in the power element 3a, but is not limited thereto.
  • the water temperature sensor 52 only needs to detect the temperature of the cooling water 41 that cools the power element 3 a in the cooling system 4. For example, the cooling water temperature just before flowing into the radiator 44 or immediately after being discharged from the water pump 43.
  • the cooling water temperature may be detected.
  • the cooling water circulation path 42 between the position where the water temperature sensor 52 is provided and the temperature sensor 51 of the power element 3a is long or the cooling water flow rate is small, the cooling water 41 in contact with the power element 3a.
  • the cooling water 41 moves between the sensors based on the cooling water capacity and the cooling water flow rate between the temperature sensor 51 and the water temperature sensor 52. Ask for time to do. And the past temperature information for this time may be memorize
  • required. That is, if the time during which the cooling water 41 moves through the cooling water circulation path 42 in the order of the power element 3a ⁇ the water temperature sensor 52 is n seconds, ⁇ T power element temperature before n seconds ⁇ current cooling water temperature. .
  • the abnormality determination of the temperature sensor 51 is performed only when the vehicle is stopped.
  • the current of the power element 3a is determined from the current flowing in the power element 3a during steady running. An elevated temperature may be obtained.
  • the diagnosis opportunity can be increased.
  • the first current determination value Imth1 which serves as a reference when determining that the current flowing through the power element 3a is large, may be the current flowing through the power element 3a during steady running.
  • both abnormality determination control for abnormality determination during motor idle and abnormality determination during steady running may be implemented.
  • a small abnormality abnormality with a small deviation in sensor output
  • the abnormality determination frequency can be increased by enabling the abnormality determination to be performed even during steady running with a high appearance frequency.
  • the second current determination value Imth2 corresponding to each first current determination value Imth1 can also be set.
  • the relationship between the power element current and the power element rising temperature may be mapped, for example, so that the rising temperature of the power element 3a may be appropriately determined according to the current flowing through the power element 3a.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Inverter Devices (AREA)
  • Power Conversion In General (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Protection Of Static Devices (AREA)

Abstract

 パワー素子(3a)と、パワー素子(3a)を冷却する冷却水(41)が循環する冷却水循環路(42)と、パワー素子(3a)の温度を検出する温度センサ(51)と、冷却水循環路(42)を循環する冷却水(41)の温度を検出する水温センサ(52)と、を備えるインバータ(3)に適用され、温度センサ(51)の検出温度と水温センサ(52)の検出水温の温度差(ΔT)が予め設定した判定温度差よりも大きいときに、温度センサ(51)が異常であると判定する異常判定部(5a)と、温度センサ(51)の検出温度が水温センサ(52)の検出水温よりも低いときの判定温度差を、温度センサ(51)の検出温度が水温センサ(52)の検出水温よりも高いときの判定温度差よりも、低い値に設定する判定温度設定部(5b)と、を備える構成とした。

Description

センサ異常判定装置
 本発明は、パワー素子の温度と、このパワー素子を冷却する冷却水の温度との差に基づいて、パワー素子の温度を検出する温度センサの異常を判定するセンサ異常判定装置に関する発明である。
 従来、パワー素子の温度に基づいて、このパワー素子を冷却する冷却水の温度を推定する。そして、推定冷却水温と、冷却水温センサを用いて実際に検出した実冷却水温との偏差を求め、この偏差が所定の異常判定閾値以上であれば、冷却水温センサに異常があると判定するセンサ異常判定装置が知られている(例えば、特許文献1参照)。
 なお、このセンサ異常判定装置では、推定冷却水温が上限値以上の場合には、冷却水温センサの異常判定を実行しない。
特開2009-284597号公報
 ところで、従来のセンサ異常判定装置では、推定冷却水温と実冷却水温との偏差のみに着眼しており、冷却水温センサの異常判定の基準となる異常判定閾値は一定値であった。すなわち、推定冷却水温が実冷却水温よりも高い場合の偏差に対する異常判定閾値と、推定冷却水温が実冷却水温よりも低い場合の偏差に対する異常判定閾値は、同じ値に設定されていた。
 ここで、パワー素子に電流が流れると、このパワー素子の温度が上昇する。そのため、パワー素子温度に基づいて推定する推定冷却水温の温度も上昇し、この推定冷却水温と実冷却水温との偏差が大きくなることが分かっている。そのため、異常判定閾値は、誤判断を防止するため、パワー素子に最大電流が流れているときに生じる温度偏差よりも大きい値にしなければならなかった。
 これにより、推定冷却水温と実冷却水温の偏差がある程度大きくならなければ、冷却水温センサが異常を判定できない、という問題があった。
 本発明は、上記問題に着目してなされたもので、パワー素子の温度と、パワー素子を冷却する冷却水温度とのずれが小さい場合であっても、パワー素子温度を検出する温度センサの異常を判定できるセンサ異常判定装置を提供することを目的とする。
 上記目的を達成するため、本発明のセンサ異常判定装置は、パワー素子と、前記パワー素子を冷却する冷却水が循環する冷却水回路と、前記パワー素子の温度を検出する温度センサと、前記冷却水回路を循環する冷却水の温度を検出する水温センサと、を備える半導体モジュールに適用され、異常判定部と、判定温度設定部と、を備えている。
 前記異常判定部は、前記温度センサの検出温度と前記水温センサの検出水温の差が、予め設定した判定温度差よりも大きいときに、前記温度センサが異常であると判定する。
 前記判定温度設定部は、前記温度センサの検出温度が前記水温センサの検出水温よりも低いときの判定温度差を、前記温度センサの検出温度が前記水温センサの検出水温よりも高いときの判定温度差よりも、低い値に設定する。
 本発明のセンサ異常判定装置では、異常判定部により、温度センサの検出温度と水温センサの検出水温の差が所定の判定温度差よりも大きいときに、温度センサの異常が判定される。ここで、異常判定の基準となる判定温度差は、温度センサの検出温度が水温センサの検出水温よりも低いときには、温度センサの検出温度が水温センサの検出水温よりも高いときよりも低い値に設定される。
 すなわち、温度センサの検出温度が水温センサの検出温度よりも低いときには、パワー素子に流れる電流によるパワー素子の温度上昇は抑えられていると考えられる。一方、温度センサの検出温度が水温センサの検出温度よりも高いときには、パワー素子に比較的大きな電流が流れ、パワー素子の温度は上昇していると考えられる。また、パワー素子の温度上昇が抑制されているときには、温度センサの検出温度と水温センサの検出温度との差が小さくなる。
 そこで、パワー素子に流れる電流が小さくてパワー素子の温度上昇が抑えられていると考えられるときの判定温度差を、パワー素子温度が上昇していると考えられるときの判定温度差よりも低い値に設定することで、温度センサの検出温度と水温センサの検出水温の差が小さくても温度センサの異常を判定することができる。
実施例1のセンサ異常判定装置を搭載したモータユニットを示す全体システム図である。 実施例1のセンサ異常判定装置において実行される温度センサ異常判定処理の流れを示すフローチャートである。 実施例1のセンサ異常判定装置における異常判定領域と正常判定領域を示す概念図である。
 以下、本発明のセンサ異常判定装置を実施するための形態を、図面に示す実施例1に基づいて説明する。
 (実施例1)
 まず、実施例1のセンサ異常判定装置における構成を「モータユニット全体システム構成」、「温度センサ異常判定処理構成」に分けて説明する。
 [モータユニット全体システム構成]
 図1は、実施例1のセンサ異常判定装置を搭載したモータユニットを示す全体システム図である。以下、図1に基づき、実施例1のセンサ異常判定装置を備えたモータユニットの全体システム構成を説明する。
 実施例1におけるセンサ異常判定装置は、図1に示すモータユニット1に搭載されている。すなわち、このモータユニット1は、ハイブリッド車両や電気自動車等の電動車両(不図示)の走行駆動源として搭載されるものである。
このモータユニット1は、モータ2と、インバータ(半導体モジュール)3と、冷却システム4と、を有している。
 前記モータ2は、ロータに永久磁石を埋設しステータにステータコイルが巻き付けられた同期型モータである。このモータ2は、冷却システム4の後述する冷却水41が流れるモータ用ウォータジャケット2aを有している。
 前記インバータ3は、パワー素子3aを有しており、図示しないモータコントローラからの制御指令に基づいてモータ2に印加する三相交流電力を作り出し、このモータ2を制御する。前記パワー素子3aは、例えば三相交流電力を出力するインバータの主スイッチとして主要な役割を担うIGBT(Insulated Gate Bipolar Transistor)モジュール等である。このパワー素子3aは、冷却水41が流れるパワー素子用ウォータジャケット3bを有している。
 また、このインバータ3には、パワー素子3aの温度を検出する温度センサ51と、パワー素子用ウォータジャケット3bを流れる冷却水41の温度を検出する水温センサ52と、パワー素子3aに流れる電流を検出する電流センサ53と、が設けられている。
 前記冷却システム4は、モータ2及びインバータ3のパワー素子3aを冷却する冷却水41が循環する冷却水循環路(冷却水回路)42と、ウォータポンプ43と、放熱器44と、を有している。
前記冷却水41は、不凍液(LLC;クーラント)である。
前記冷却水循環路42は、冷却水41が流れる流路であり、冷却水41の流れに沿って、ウォータポンプ43→モータ用ウォータジャケット2a→パワー素子用ウォータジャケット3b→放熱器44→ウォータポンプ43の順に接続している。
前記ウォータポンプ43は、冷却水循環路42を流れる冷却水41に圧力をかけ、冷却水41を冷却水循環路42内で強制的に循環させる電動ポンプである。
前記放熱器44は、冷却水循環路42の途中位置に設けられ、冷却水41を外気と熱交換させることでウォータポンプ43に吸い込まれる冷却水41を冷却する。
 すなわち、この冷却システム4では、ウォータポンプ43によって送り出された冷却水41は、まずモータ用ウォータジャケット2aにおいて、モータ2と熱交換を行い、このモータ2を冷却する。その後、インバータ3のパワー素子3aに設けられたパワー素子用ウォータジャケット3bに流れこむ。そして、パワー素子用ウォータジャケット3bにおいて、パワー素子3aと熱交換を行い、このパワー素子3aを冷却する。そして、放熱器44に流れ込んで空冷され、再びウォータポンプ43に吸い込まれた後、送り出される。
 さらに、このモータユニット1には、制御器(センサ異常判定装置)5が設けられている。この制御器5には、温度センサ51、水温センサ52、電流センサ53からの各種検出信号が入力される。そして、この制御器5は、後述する温度センサ異常判定処理を実行し、温度センサ51の異常判定を行うものであり、異常判定部5aと、判定温度設定部5bと、を有している。
 前記異常判定部5aは、温度センサ51の検出温度と水温センサ52の検出水温の差が、予め設定した判定温度差よりも大きいときに、この温度センサ51が異常であると判定する演算回路である。
また、この異常判定部5aでは、パワー素子3aに流れる電流が予め設定した第1電流判定値Imth1以上のときには、温度センサ51の異常判定を行わない。一方、パワー素子3aに流れる電流が予め設定した第2電流判定値Imth2以下の状態を所定時間継続したとき、車両停止状態のとき、冷却水循環路42を冷却水41が循環してから所定時間経過したとき、のすべての条件を満たしたら、温度センサ51の異常判定を行う。
 前記判定温度設定部5bは、異常判定部5aにて用いる判定温度差を設定する演算回路である。この判定温度設定部5bでは、温度センサ51の検出温度が水温センサ52の検出水温よりも低いときの判定温度差を、温度センサ51の検出温度が水温センサ52の検出水温よりも高いときの判定温度差よりも、低い値に設定する。
 [温度センサ異常判定処理構成]
 図2は、実施例1の制御器にて実行される温度センサ異常判定処理の流れを示すフローチャートである。以下、図2に基づき、実施例1の温度センサ異常判定処理構成について説明する。
 ステップS1では、高モータ電流判定時間Tth1を設定し、ステップS2へ進む。
ここで、「高モータ電流判定時間」とは、モータ2に印加される電流(モータ電流値)、つまりインバータ3のパワー素子3aに流れる電流が大きいか否かを判定する際の判定基準となる時間である。なお、パワー素子3aに流れる電流は、予め設定した第1電流判定値Imth1よりも大きければ「高い」と判定される。そして、この「高モータ電流判定時間」は、例えばモータ電流のノイズ成分等を考慮した判定マージン時間に設定する。
 ステップS2では、ステップS1での高モータ電流判定時間Tth1の設定に続き、低モータ電流判定時間Tth2を設定し、ステップS3へ進む。
ここで、「低モータ電流判定時間」とは、モータ2に印加される電流(モータ電流値)、つまりインバータ3のパワー素子3aに流れる電流が小さいか否かを判定する際の判定基準となる時間である。なお、パワー素子3aに流れる電流は、予め設定した第2電流判定値Imth2よりも小さければ、「低い」と判定される。そして、この「低モータ電流判定時間」は、例えばモータ電流のノイズ成分等を考慮した判定マージン時間に、パワー素子3aの熱時定数を加味して設定する。
 ステップS3では、ステップS2での低モータ電流判定時間Tth2の設定に続き、高モータ電流時のパワー素子3aの上昇温度を設定し、ステップS4へ進む。
ここで、パワー素子3aは電流が流れると発熱するが、流れる電流が高いほど温度が上昇する。つまり、高いと判定されるモータ電流値(第1電流判定値Imth1)が流れているときには、パワー素子3aの温度は上昇するため、このステップS3では、第1電流判定値Imth1が流れたことで上昇するパワー素子温度を設定する。なお、この上昇温度は、予めモータ電流に対するパワー素子3aの上昇温度を計算又は実測してマップ化しておき、このマップに基づいて設定する。
 ステップS4では、ステップS3での上昇温度の設定に続き、第1判定温度差を演算し、ステップS5へ進む。
ここで、「第1判定温度差」とは、パワー素子3aの温度(温度センサ51によって検出された検出温度)が、冷却水41の温度(水温センサ52によって検出された検出水温)よりも高いときに、温度センサ51の異常を判定する際の基準になる値である。この「第1判定温度差」は、下記式(1)に基づいて求められる。
  第1判定温度差 = 検出誤差 + 上昇温度 + 判定マージン  …(1)
なお、式(1)における「上昇温度」は、ステップS3にて求めた値である。
 ステップS5では、ステップS4での第1判定温度差の演算に続き、第2判定温度差を演算し、ステップS6へ進む。
ここで、「第2判定温度差」とは、パワー素子3aの温度(温度センサ51によって検出された検出温度)が、冷却水41の温度(水温センサ52によって検出された検出水温)よりも低いときに、温度センサ51の異常を判定する際の基準になる値である。この「第2判定温度差」は、下記式(2)に基づいて求められる。
  第2判定温度差 = 検出誤差 + 判定マージン  …(2)
 ステップS6では、ステップS5での第2判定温度差の演算に続き、パワー素子3aを冷却する冷却水41が冷却水循環路42内で循環を開始してから、予め設定した所定の循環必要時間を経過したか否かを判断する。YES(循環必要時間経過)の場合には、ステップS7へ進む。NO(循環必要時間未経過)の場合には、冷却水41が十分に循環していないとしてステップS11へ進む。
ここで「循環必要時間」は、冷却水循環路42内で循環する冷却水41の温度分布が均等になるために必要と考えられる時間であり、任意の値に設定できる。
 ステップS7では、ステップS6での循環必要時間経過との判断に続き、モータユニット1が搭載された車両が停車状態であるか否かを判断する。YES(停車中)の場合には、ステップS8へ進む。NO(走行中)の場合には、モータ2から走行に必要なモータトルクが出力されているとしてステップS11へ進む。
ここで、車両の停車判断は、図示しない車速センサによって検出された車両速度が、停車と判断できる程度の所定値(=ゼロ)よりも小さいときに行われる。
 ステップS8では、ステップS7での車両停車中との判断に続き、モータ電流値であるインバータ3のパワー素子3aに流れている電流を検出し、ステップS9へ進む。このパワー素子3aに流れている電流は、電流センサ53によって検出される。
 ステップS9では、ステップS8での電流の検出に続き、このステップS8で検出したモータ電流値(パワー素子3aに流れている電流)が大きいか否かを判断する。YES(モータ電流大きい)の場合は、モータ電流が大きくてパワー素子3aの温度が高いとしてステップS11に進む。NO(モータ電流大きくない)の場合は、ステップS10へ進む。
ここで、モータ電流が大きい場合とは、パワー素子3aに流れている電流が予め設定した第1電流判定値Imth1を上回った状態を、ステップS1にて設定した高モータ電流判定時間Tth1の間継続した場合である。
なお、高モータ電流判定時間Tth1は、電流ノイズの影響でモータ電流が大きいと誤判定することを避けるために設定した時間である。一般的には、このように設定した高モータ電流判定時間Tth1に対して、パワー素子3aの熱時定数は十分に大きく、問題はない。しかしながら、高モータ電流判定時間Tth1が経過した後のパワー素子3aの温度上昇を無視できない場合には、その温度上昇分を考慮してパワー素子3aの上昇温度を算出する。具体的には、ステップS3において、マップから求めるのではなく、下記式(3)から算する。
  上昇温度 = マップ検出温度(マップに基づいて求めた上昇温度)
        + モータ電流最大の状態で高モータ電流判定時間経過したときのパワー素子3aの上昇温度   …(3)
 ステップS10では、ステップS9でのモータ電流が大きくないとの判断に続き、ステップS8で検出したモータ電流値(パワー素子3aに流れている電流)が小さいか否かを判断する。YES(モータ電流小さい)の場合は、ステップS12へ進む。NO(モータ電流小さくない)の場合は、モータ電流が小さくなく、パワー素子3aの温度がある程度高いことが予想されるとしてステップS11に進む。
ここで、モータ電流が小さい場合とは、パワー素子3aに流れている電流が予め設定した第2電流判定値Imth2を下回った状態を、ステップS2にて設定した低モータ電流判定時間Tth2の間継続した場合である。
 ステップS11では、ステップS6での循環必要時間未経過との判断、又は、ステップS7での車両走行中との判断、又は、ステップS9でのモータ電流が大きいとの判断、又は、ステップS10でのモータ電流が小さくないとの判断に続き、温度センサ51の異常判定を実行せず、エンドへ進む。
すなわち、冷却水41の循環開始から所定の循環必要時間が経過していなければ、冷却水循環路42内において、冷却水温度分布が均等ではなく、ばらつき(むら)が残っていると考えられる。そのため、水温センサ52によって検出される冷却水温度に、冷却水温度分布のばらつき(むら)の影響が反映されてしまい、温度センサ51の異常判定を誤判定することが考えられる。
また、車両が走行中では、モータ2から必要なモータトルクを出力させるため、インバータ3のパワー素子3aに比較的大きな電流が流れると考えられる。また、例え車両走行中でなくても、パワー素子3aに流れる電流がある程度大きければ、パワー素子温度が上昇し、冷却水41との温度差が大きくなってしまう。そのため、温度センサ51の異常判定を誤判定することが考えられる。
このように、温度センサ51の異常判定において、誤判定すると思われる状況においては、このステップS11へと進んで温度センサ51の異常判定を実行しない。
 ステップS12では、ステップS10でのモータ電流が小さいとの判断に続き、温度センサ51によってパワー素子3aの温度を検出すると共に、水温センサ52によってパワー素子用ウォータジャケット3bを流れる冷却水41の温度を検出し、ステップS13へ進む。
 ステップS13では、ステップS12でのパワー素子温度及び冷却水温度の検出に続き、このステップS12にて検出したパワー素子3aの温度と、冷却水41の温度との差(以下、温度差ΔTという)を演算し、ステップS14へ進む。この温度差ΔTは、下記式(4)に基づき求める。
   温度差ΔT = パワー素子3aの温度 - 冷却水41の温度   …(4)
 ステップS14では、ステップS13での温度差ΔTの演算に続き、このステップS13にて演算した温度差ΔTがステップS4にて設定した第1判定温度差以下であって、この温度差ΔT≦第1判定温度差の状態が予め設定した第1判定時間の間継続したか否かを判断する。YES(温度差ΔT≦第1判定温度差、且つ、判定時間≧第1判定時間)の場合には、ステップS15へ進む。NO(温度差ΔT>第1判定温度差、又は、判定時間<第1判定時間)の場合は、ステップS16へ進む。
なお、「第1判定時間」は、パワー素子3aの温度と冷却水41の温度のノイズの影響を回避できる時間であり、任意の値に設定できる。
 ステップS15では、ステップS14での温度差ΔT≦第1判定温度差、且つ、判定時間≧第1判定時間との判断に続き、ステップS13にて演算した温度差ΔTがステップS5にて設定した第2判定温度差以上であって、この温度差ΔT≧第2判定温度差の状態が予め設定した第2判定時間の間継続したか否かを判断する。YES(温度差ΔT≧第2判定温度差、且つ、判定時間≧第2判定時間)の場合には、ステップS17へ進む。NO(温度差ΔT<第2判定温度差、又は、判定時間<第2判定時間)の場合は、ステップS16へ進む。なお、「第2判定時間」は、パワー素子3aの温度と冷却水41の温度のノイズの影響を回避できる時間であり、任意の値に設定できる。
 ステップS16では、ステップS14での温度差ΔT>第1判定温度差、又は、判定時間<第1判定時間との判断、又は、ステップS15での温度差ΔT<第2判定温度差、又は、判定時間<第2判定時間との判断に続き、温度差ΔTが大きいとして、温度センサ51に異常が発生していると判定し、エンドへ進む。
 ステップS17では、ステップS15での温度差ΔT≧第2判定温度差、且つ、判定時間≧第2判定時間との判断に続き、温度差ΔTが所定範囲(第2判定温度差以上、第1判定温度差以下)内に収まっているとして、温度センサ51に異常が発生していないと判定し、エンドへ進む。
 次に、作用を説明する。
 まず、「比較例のセンサ異常判定装置における課題」を説明し、続いて、実施例1のセンサ異常判定装置における「異常判定作用」を説明する。
 [比較例のセンサ異常判定装置における課題]
 電気自動車の走行駆動となるモータコントロールユニットでは、モータに適切な電流を流すことで必要なモータトルクが発生するように制御する。ここで、モータに適切な電流を流すためには、電源とモータの間にパワー素子を有すインバータを配置し、モータに印可する電流が目標値となるようにパワー素子3aをパルス駆動している。
 一般に、パワー素子の発熱量はパワー素子の電流に応じて増加する。またパワー素子には発熱限界があり、この発熱限界を超えない適切な温度になるように温度管理する必要がある。このため、温度センサを用いてパワー素子の温度を検出し、検出された温度に応じてパワー素子の電流を制限しなければ、パワー素子の温度が発熱限界を超えて破損するおそれがあった。
 ところで温度センサに異常が発生した場合には、異常があることを検知して必要な電流制限をしなければ、やはりパワー素子が破損するおそれがある。ここで、温度センサの異常としては、センサ出力が0Vになる場合や、電源電圧相当になる場合があり、センサ出力がある範囲を超えた場合に異常発生と判断するのが一般的である。しかしながら,センサ出力が中間値で固着したり、センサ出力が所定範囲オフセットしたり、温度に対するセンサ出力のゲインが基準と異なるような異常の場合では、上記の方法では異常を検知することができなかった。
 このため、一つのパワー素子に対して複数の温度センサを装備し、それぞれの温度センサからのセンサ出力が異なる場合に異常発生と判定する方法が考えられる。しかしながら、この方法では、一つのパワー素子に対して温度センサを少なくとも2個装備する必要があり、センサ装備スペースやコスト増加の課題が発生してしまう。
 [異常判定作用]
 図3は、実施例1のセンサ異常判定装置における異常判定領域と正常判定領域を示す概念図である。以下、図3に基づき、実施例1の異常判定作用を説明する。
 実施例1において、温度センサ51の異常判定を実行するには、図2にフローチャートで示す温度センサ異常判定処理を実行する。すなわち、図2において、ステップS1→ステップS2→ステップS3へと進み、「高モータ電流判定時間Tth1」、「低モータ電流判定時間Tth2」、「高モータ電流時のパワー素子3aの上昇温度」をそれぞれ設定する。そして、これらの値を設定したら、ステップS4→ステップS5へと進み、「第1判定温度差」、「第2判定温度差」を演算する。
 ここで、「第1判定温度差」は、パワー素子温度が冷却水温度よりも高いときに、温度センサ51の異常を判定する際の基準になる値である。
上述のように、パワー素子の発熱量はパワー素子に流れる電流に応じて増加するので、電流が流れるほどパワー素子温度は上昇する。このとき、パワー素子3aは、冷却水41と熱交換することで冷却されるため、パワー素子3aの温度と冷却水41の温度は基本的にほぼ等しい、もしくは冷却水温度の方が高くなる。しかし、パワー素子3aに流れる電流が高い場合では、冷却水41による冷却がパワー素子3aの温度上昇に追いつかず、パワー素子3aの温度の方が冷却水温度よりも高くなることがある。
 すなわち、パワー素子温度が冷却水温度よりも高いときの基準である「第1判定温度差」は、パワー素子3aに高い電流が流れていて、パワー素子温度が上昇していると考えられる状況において、温度センサ51の異常判定を行う際の基準になる温度である。
そのため、この「第1判定温度差」は、図3に示すように、検出誤差と判定マージンに加え、高いと判定されるモータ電流値(第1電流判定値Imth1)が流れているときに上昇するであろうパワー素子温度(上昇温度)を加算して求める。
これにより、パワー素子3aの温度上昇が冷却水41による冷却性能を上回り、パワー素子3aの温度が最大発熱温度となっても、第1判定温度差には、この上昇温度が加味されているので、温度センサ51の異常判定を適切に行うことができる。
 一方、「第2判定温度差」は、パワー素子温度が冷却水温度よりも低いときに、温度センサ51の異常を判定する際の基準になる値である。
ここで、パワー素子温度が冷却水温度よりも低い場合とは、冷却水41による冷却が十分に行われ、パワー素子3aの温度上昇が抑制されている場合である。そのため、パワー素子温度と冷却水温度とが大きく乖離することはないと考えられる場合となる。
 すなわち、パワー素子温度が冷却水温度よりも低いときの基準である「第2判定温度差」は、冷却水41による冷却が十分機能していて、パワー素子温度と冷却水温度とが大きく乖離することはないと考えられる状況において、温度センサ51の異常判定を行う際の基準になる値である。
そのため、この「第2判定温度差」は、図3に示すように、検出誤差と判定マージンのみを加算して求める。
これにより、パワー素子温度と冷却水温度が大きく乖離していなくても、つまり、温度センサ51の出力と水温センサ52の出力とが大きくずれていなくても、温度センサ51の異常を判定することができる。
 さらに、第1判定温度差及び第2判定温度差を演算したら、図2に示すフローチャートにおいて、ステップS6へと進み、冷却水41の循環開始から所定の循環必要時間が経過したか否かを判断する。そして、循環必要時間が経過していなければステップS11へと進み、温度センサ51の異常判定を行わない。
そのため、冷却水循環路42内における冷却水41の温度分布が均一になるのを待ってから温度センサ51の異常判定を行うことができ、冷却水41の温度分布に生じたばらつきによって生じる誤判定を防止することができる。
 また、循環必要時間が経過し、冷却水41の温度分布が均一になったと判断できれば、ステップS7へと進み、モータユニット1を搭載した車両が停車しているか否かを判断する。そして、走行中(停車中でない)であればステップS11へと進み、温度センサ51の異常の有無を判定しない。
すなわち、車両走行中は、モータ2から走行に必要なモータトルクを出力させるために、モータ電流であるパワー素子3aに流れる電流が大きくなる。そのため、パワー素子温度が上昇し、冷却水温度に対して大きく乖離してしまうことが考えられる。このときには、温度センサ51の異常の有無を判定しないため、誤判定を防止することができる。
一方、車両停車中は、モータ2からモータトルクを出力する必要がないため、モータ電流であるパワー素子3aに流れる電流が小さくなり、パワー素子3aの温度上昇を抑制される。これにより、パワー素子温度が冷却水温度よりも低くなり、パワー素子温度と冷却水温度が大きく乖離していなくても、温度センサ51の異常を判定することができる。また、走行する車両には、必ず停車状態が生じるため、センサ異常の判定頻度機会を十分に確保することができ、異常検知性と判定頻度の両立を図ることができる。
 そして、車両停車中であればステップS8→ステップS9へと進み、パワー素子3aに流れている電流が大きいか否かを判断する。そして、パワー素子3aに流れている電流が大きければステップS11へと進み、温度センサ51の異常判定を行わない。
そのため、パワー素子3aに流れる電流が大きくて、パワー素子温度と冷却水温度が大きく乖離しなければ温度センサ51の異常判定をできない場合には、異常判定の実行が控えられ、誤判定の発生を防止することができる。
 また、パワー素子3aに流れている電流が大きくなければ、ステップS10へと進み、パワー素子3aに流れている電流が小さいか否かを判断する。そして、パワー素子3aに流れている電流が小さくなければ、すなわちパワー素子3aに流れている電流が、低モータ電流判定時間Tth2の間、継続して第2電流判定値Imth2を下回らなければステップS11へと進み、温度センサ51の異常判定を行わない。
ここで、例えばパワー素子3aに大きな電流が流れてしまうと、パワー素子3aは温度上昇してしまい、パワー素子温度と冷却水温度とが大きく乖離しなければセンサ異常を判定することができない。しかしながら、その後、パワー素子3aに流れている電流が、低モータ電流判定時間Tth2の間、継続して第2電流判定値Imth2を下回れば、パワー素子3aの温度上昇が抑制された状態が一定時間(低モータ電流判定時間Tth2)継続することとなり、パワー素子3aの温度が低下する。つまり、パワー素子温度が冷却水温度よりも低くなり、パワー素子温度と冷却水温度が大きく乖離していなくても、温度センサ51の異常を判定することができる。
 一方、モータ電流が小さいと判断されれば、ステップS12→ステップS13→ステップS14へと進んで、温度差ΔTと第1判定温度差とが比較される。そして、温度差ΔTが第1判定温度差を上回れば、ステップS16へと進んで、温度センサ51に異常が発生していると判断する。
このとき、第1判定時間を設定しているので、パワー素子温度と冷却水温度のノイズの影響を回避することができる。
 また、温度差ΔTが第1判定温度差以下であり、ステップS14においてYESと判断されれば、ステップS15へと進み、温度差ΔTが第2判定温度差と比較される。そして、温度差ΔTが第2判定温度差を下回れば、ステップS16へと進んで、温度センサ51に異常が発生していると判断する。また、温度差ΔTが第2判定温度差以上であれば、ステップS17へと進み、温度センサ51に異常が発生していないと判断する。
このとき、第2判定時間を設定しているので、パワー素子温度と冷却水温度のノイズの影響を回避することができる。
 以上説明したように、この実施例1では、温度センサ51の検出温度が水温センサ52の検出水温よりも低いときの判定温度差(第2判定温度差)を、温度センサ51の検出温度が水温センサ52の検出水温よりも高いときの判定温度差(第1判定温度差)よりも、低い値に設定している。
つまり、パワー素子温度が冷却水温度よりも高いときには、第1判定温度差にパワー素子3aの温度上昇分を加算するが、このパワー素子3aの温度上昇分は、パワー素子温度が冷却水温度よりも低いときの第2判定温度差には含めない。
 これは、パワー素子3aの発熱は、パワー素子温度が冷却水温度よりも高い場合のみ考慮すればよいためで、これにより、パワー素子温度よりも冷却水温度が高い場合の判定温度差(第2判定温度差)を比較的小さい値に設定することができ、異常検知性能を向上することができる。
 一方、第1判定温度差にはパワー素子3aの温度上昇分を加算したことで、パワー素子3aに流れる電流に起因するパワー素子温度の上昇分が原因で、冷却水温度とパワー素子温度との差が大きくなったとしても、温度センサ51に異常が発生したと誤判定することを防止できる。
 なお、図2に示すステップS3で上昇温度を設定する際に、パワー素子3aに流れている電流は、適用するシステムの最大電流未満とすることができる。これは、第1判定温度差に検知誤差や判定マージンを含めているからである。
また、第1判定温度差に含める上昇温度分を、「車両停車時の温度上昇分」とすれば、加算する上昇温度の値が小さくなり、温度センサ出力のずれが小さい異常であっても検出することができて、異常検知性能を向上することができる。一方、第1判定温度差に含める上昇温度分を、「最大電流印加時の温度上昇分」とすると、診断頻度を高めることができる。
このように、上昇温度の値を調整することで、異常検知性能と診断頻度の重みを任意に設定することができる。
 また、実施例1のセンサ異常判定処理をハイブリッド車両において実行する場合を考えると、異常判定を可能とするモータ電流(パワー素子3aに流れる電流)は、例えばモータアイドル中の電流とすることが考えられる。ハイブリッド車両では、車両停車状態は必ず存在するため、モータアイドル状態において必ずセンサ異常判定を実行でき、なおかつ、このときの判定温度差(第2判定温度差)が小さい値に設定されるため、異常検知性能を向上することができる。なお、この場合には、パワー素子3aに流れる電流を高いと判定する際の基準である第1電流判定値Imth1を、モータアイドル時にパワー素子3aに流れる電流とすればよい。
 次に、効果を説明する。
 実施例1のセンサ異常判定装置にあっては、下記に列挙する効果を得ることができる。
 (1) パワー素子3aと、前記パワー素子3aを冷却する冷却水41が循環する冷却水回路(冷却水循環路)42と、前記パワー素子3aの温度を検出する温度センサ51と、前記冷却水回路42を循環する冷却水41の温度を検出する水温センサ52と、を備える半導体モジュール(インバータ)3に適用され、
 前記温度センサ51の検出温度と前記水温センサ52の検出水温の差(温度差)ΔTが、予め設定した判定温度差よりも大きいときに、前記温度センサ51が異常であると判定する異常判定部5aと、
 前記温度センサ51の検出温度が前記水温センサ52の検出水温よりも低いときの判定温度差(第2判定温度差)を、前記温度センサ51の検出温度が前記水温センサ52の検出水温よりも高いときの判定温度差(第1判定温度差)よりも、低い値に設定する判定温度設定部5bと、
 を備える構成とした。
 これにより、パワー素子3aの温度と、パワー素子3aを冷却する冷却水41の温度とのずれが小さい場合であっても、パワー素子温度を検出する温度センサの異常を判定できる。
 (2) 前記半導体モジュール(インバータ)3は、前記パワー素子3aに流れる電流を検出する電流センサ53を備え、
 前記異常判定部5aは、前記パワー素子3aに流れる電流が予め設定した第1電流判定値Imth1以上のときには、前記温度センサ51の異常判定を実行しない構成とした。
 これにより、上記(1)の効果に加え、パワー素子3aに流れる電流が大きく、パワー素子温度と冷却水温度が大きく乖離しなければ温度センサ51の異常判定をできない場合に、異常判定の実行を控えることで、誤判定の発生を防止することができる。
 (3) 前記異常判定部5aは、前記パワー素子3aに流れる電流が予め設定した第2電流判定値Imth2以下の状態を所定時間(低モータ電流判定時間Tth2)継続したら、前記温度センサ51の異常判定を実行する構成とした。
 これにより、上記(1)又は(2)の効果に加え、例えパワー素子温度が上昇していても、パワー素子3aの温度が低下するまで待ってセンサ異常判定を行うことができ、パワー素子温度と冷却水温度が大きく乖離していなくても、温度センサ51の異常を判定することができる。
 (4) 前記半導体モジュール(インバータ)3は、車両の走行駆動源として前記車両に搭載されるモータ2の制御回路であり、
 前記異常判定部5aは、前記車両が停車状態のときに、前記温度センサ51の異常判定を実行する構成とした。
 これにより、上記(1)から(3)のいずれかの効果に加え、車両走行中は、モータ2から走行に必要なモータトルクを出力させるためにパワー素子3aに流れる電流が大きくなり、パワー素子温度が上昇し、冷却水温度に対して大きく乖離してしまう。このときには、温度センサ51の異常の有無を判定しないため、誤判定を防止することができる。
 (5) 前記異常判定部5aは、前記パワー素子3aを冷却する冷却水41の循環が開始してから所定時間(循環必要時間)が経過したときに、前記温度センサ51の異常判定を実行する構成とした。
 これにより、上記(1)から(4)のいずれかの効果に加え、冷却水循環路42内における冷却水41の温度分布が均一になるのを待ってから温度センサ51の異常判定を行うことができ、冷却水41の温度分布に生じたばらつきによって生じる誤判定を防止することができる。
 以上、本発明のセンサ異常判定装置を実施例1に基づき説明してきたが、具体的な構成については、この実施例に限られるものではなく、請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。
 実施例1では、水温センサ52は、パワー素子3aが有するパワー素子用ウォータジャケット3bを流れる冷却水41の温度を検出する例を示したが、これに限らない。水温センサ52は、冷却システム4において、パワー素子3aを冷却する冷却水41の温度を検出すればよいので、例えば、放熱器44に流れ込む直前の冷却水温度や、ウォータポンプ43から吐出された直後の冷却水温度を検出するものであってもよい。
ここで、水温センサ52を設けた位置とパワー素子3aの温度センサ51との間の冷却水循環路42が長かったり、冷却水流量が少なかったりする場合には、パワー素子3aに接した冷却水41が水温センサ52に接するまでの時間、又は、水温センサ52に接した冷却水41がパワー素子3aに接するまでの時間が長くなってしまう。このとき、冷却水41の温度が冷却水循環路42内で均一であれば問題ないが、冷却水41の温度分布にばらつき(むら)がある場合には、その温度分布のばらつきが、温度センサ51と水温センサ52の検出温度差に加算されてしまう。このため、温度センサ51に異常がないにも拘らず異常が発生していると誤判定することがあった。そのようなときには、冷却水41の各センサへの到着時間を加味して、双方のセンサの温度差ΔTを演算することで、誤判定を回避することができる。
 具体的には、図2に示すフローチャートのステップS13において温度差ΔTを演算する際に、温度センサ51と水温センサ52の間の冷却水容量と冷却水流量から、センサ間を冷却水41が移動する時間を求める。そして、この時間分の過去の温度情報を記憶しておき、過去の温度との温度差を求めてもよい。
すなわち、冷却水循環路42の内部をパワー素子3a→水温センサ52の順に冷却水41が移動する時間がn秒であれば、ΔT=n秒前のパワー素子温度 - 現在の冷却水温度、となる。
 また、実施例1では、車両停車中に限って温度センサ51の異常判定を行っているが、診断機会を増大するために、定常走行中にパワー素子3aに流れる電流から、このパワー素子3aの上昇温度を求めてもよい。この場合、異常判定の基準となる判定温度差は大きくなるが、診断機会を増大することができる。この場合では、パワー素子3aに流れる電流が大きいと判断する際の基準となる第1電流判定値Imth1を、定常走行中にパワー素子3aに流れる電流とすればよい。
 さらに、モータアイドル時の異常判定と、定常走行時の異常判定との両方の異常判定制御を実装してもよい。この場合、異常判定の基準となる判定温度差が比較的小さくなるモータアイドル時では、小さな異常(センサ出力のずれが小さい異常)を検知できる。一方、出現頻度の高い定常走行時でも異常判定が実行可能となることで、異常判定頻度の増大を図ることができる。この結果、異常検知性能と診断頻度の増大の両立を図ることができる。
なお、この場合では、それぞれの第1電流判定値Imth1に対応した第2電流判定値Imth2を設定することもできる。さらに、パワー素子電流とパワー素子上昇温度との関係を、例えばマップ化することで、パワー素子3aに流れる電流に応じてパワー素子3aの上昇温度を適宜求めてもよい。
関連出願の相互参照
 本出願は、2013年8月28日に日本国特許庁に出願された特願2013-176708に基づいて優先権を主張し、その全ての開示は完全に本明細書で参照により組み込まれる。

Claims (5)

  1.  パワー素子と、前記パワー素子を冷却する冷却水が循環する冷却水回路と、前記パワー素子の温度を検出する温度センサと、前記冷却水回路を循環する冷却水の温度を検出する水温センサと、を備える半導体モジュールに適用され、
     前記温度センサの検出温度と前記水温センサの検出水温の差が、予め設定した判定温度差よりも大きいときに、前記温度センサが異常であると判定する異常判定部と、
     前記温度センサの検出温度が前記水温センサの検出水温よりも低いときの判定温度差を、前記温度センサの検出温度が前記水温センサの検出水温よりも高いときの判定温度差よりも、低い値に設定する判定温度設定部と、
     を備えることを特徴とするセンサ異常判定装置。
  2.  請求項1に記載されたセンサ異常判定装置において、
     前記半導体モジュールは、前記パワー素子に流れる電流を検出する電流センサを備え、
     前記異常判定部は、前記パワー素子に流れる電流が予め設定した第1電流判定値以上のときには、前記温度センサの異常判定を実行しない
     ことを特徴とするセンサ異常判定装置。
  3.  請求項1又は請求項2に記載されたセンサ異常判定装置において、
     前記異常判定部は、前記パワー素子に流れる電流が予め設定した第2電流判定値以下の状態を所定時間継続したら、前記温度センサの異常判定を実行する
     ことを特徴とするセンサ異常判定装置。
  4.  請求項1から請求項3のいずれか一項に記載されたセンサ異常判定装置において、
     前記半導体モジュールは、車両の走行駆動源として前記車両に搭載されるモータの制御回路であり、
     前記異常判定部は、前記車両が停車状態のときに、前記温度センサの異常判定を実行する
     ことを特徴とするセンサ異常判定装置。
  5.  請求項1から請求項4のいずれか一項に記載されたセンサ異常判定装置において、
     前記異常判定部は、前記パワー素子を冷却する冷却水の循環が開始してから所定時間が経過したときに、前記温度センサの異常判定を実行する
     ことを特徴とするセンサ異常判定装置。
PCT/JP2014/070172 2013-08-28 2014-07-31 センサ異常判定装置 WO2015029686A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201480047423.7A CN105493391B (zh) 2013-08-28 2014-07-31 传感器异常判定装置
US14/906,568 US9823140B2 (en) 2013-08-28 2014-07-31 Sensor abnormality determining apparatus
MX2016002514A MX346018B (es) 2013-08-28 2014-07-31 Aparato de determinación de anormalidad de detector.
JP2015534104A JP6070849B2 (ja) 2013-08-28 2014-07-31 センサ異常判定装置
RU2016111025A RU2625455C1 (ru) 2013-08-28 2014-07-31 Устройство определения анормальности датчика
EP14839086.7A EP3041126B1 (en) 2013-08-28 2014-07-31 Sensor abnormality determining apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013176708 2013-08-28
JP2013-176708 2013-08-28

Publications (1)

Publication Number Publication Date
WO2015029686A1 true WO2015029686A1 (ja) 2015-03-05

Family

ID=52586260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070172 WO2015029686A1 (ja) 2013-08-28 2014-07-31 センサ異常判定装置

Country Status (8)

Country Link
US (1) US9823140B2 (ja)
EP (1) EP3041126B1 (ja)
JP (1) JP6070849B2 (ja)
CN (1) CN105493391B (ja)
MX (1) MX346018B (ja)
MY (1) MY161719A (ja)
RU (1) RU2625455C1 (ja)
WO (1) WO2015029686A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017139872A1 (en) * 2016-02-17 2017-08-24 Tm4 Inc. Power inverter with dynamic current limiting
JP2017184471A (ja) * 2016-03-30 2017-10-05 株式会社ケーヒン インバータ冷却装置の水抜け検知装置
JP2018042368A (ja) * 2016-09-07 2018-03-15 本田技研工業株式会社 電力変換装置の故障検知装置及び車両
KR101918350B1 (ko) 2016-09-01 2018-11-14 현대자동차주식회사 스위치 소자 온도센서의 고장 판단 방법 및 그 시스템
JP2020156144A (ja) * 2019-03-18 2020-09-24 トヨタ自動車株式会社 液冷式インバータ

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014182694A (ja) * 2013-03-21 2014-09-29 Fujitsu Ltd センサ故障検知装置、方法、およびプログラム
RU2699073C1 (ru) * 2016-08-23 2019-09-03 Ниссан Мотор Ко., Лтд. Способ обнаружения анормальностей температуры для устройства преобразования мощности и устройство обнаружения анормальностей температуры для устройства преобразования мощности
CN108466552B (zh) * 2017-02-23 2023-06-16 株式会社杰士汤浅国际 故障诊断装置、蓄电装置以及故障诊断方法
WO2019124311A1 (ja) * 2017-12-18 2019-06-27 Ntn株式会社 モータ搭載自動車の駆動制御装置
CN110274707A (zh) * 2018-03-15 2019-09-24 英飞凌科技股份有限公司 对功率组件的运行状态的监控
DE102019203692A1 (de) * 2019-03-19 2020-09-24 Robert Bosch Gmbh Verfahren zur Plausibilisierung mindestens einer Kühlmitteltemperatur in einer Antriebseinheit für ein Elektrofahrzeug und Antriebseinheit für ein Elektrofahrzeug
KR20210136237A (ko) * 2020-05-07 2021-11-17 현대자동차주식회사 친환경 차량의 오일 승온 시스템 및 방법
JP7533498B2 (ja) * 2022-02-09 2024-08-14 トヨタ自動車株式会社 冷却システムの制御装置
DE102022122563A1 (de) 2022-09-06 2024-03-07 Tdk Electronics Ag Temperatursensor und Sensoranordnung

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008005615A (ja) * 2006-06-22 2008-01-10 Nissan Motor Co Ltd 電動車両のモータ出力制御装置
JP2009284597A (ja) 2008-05-20 2009-12-03 Toyota Motor Corp パワーコントロールユニットの冷却装置

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4895005A (en) * 1988-12-29 1990-01-23 York International Corporation Motor terminal box mounted solid state starter
EP0540565A1 (en) * 1990-07-20 1993-05-12 Phoenix Energy Systems Inc. Heating and cooling system for air space in a building
KR930008226A (ko) 1991-10-19 1993-05-21 강진구 삶는 세탁기의 안전장치
US6265699B1 (en) * 2000-05-24 2001-07-24 American Water Heater Company Water heater with electronic control
US7346274B2 (en) * 1999-07-27 2008-03-18 Bradenbaugh Kenneth A Water heater and method of controlling the same
JP2002009284A (ja) * 2000-06-19 2002-01-11 Mitsubishi Electric Corp 電力用半導体素子及び電力用半導体装置
US20050213634A1 (en) * 2002-11-19 2005-09-29 Avraham Sadeh Remote measurement and control for a heating element
FR2868605A1 (fr) * 2004-03-31 2005-10-07 Renault Sas Dispositif et procede de refroidissement d'un module de puissance d'une pile a combustible
US7293914B2 (en) * 2005-10-28 2007-11-13 Eiko Electric Products Corp. Temperature detecting heater with indicating structure for aquarium
JP4836693B2 (ja) * 2006-07-06 2011-12-14 株式会社リコー 温度検出回路、温度検出回路を有する半導体装置及び温度検出方法
DE602007014170D1 (de) * 2006-12-13 2011-06-09 Brother Ind Ltd Temperaturdetektor und Aufzeichnungsgerät damit
JP5239198B2 (ja) * 2007-04-06 2013-07-17 トヨタ自動車株式会社 冷却システム制御装置
US8112164B2 (en) * 2007-09-27 2012-02-07 Balboa Instruments, Inc. Low maintenance spa control system
KR100952985B1 (ko) * 2007-12-04 2010-04-15 주식회사 경동네트웍 난방시스템 제어방법
JP5182073B2 (ja) 2008-12-25 2013-04-10 日産自動車株式会社 冷却異常検知装置及び冷却異常検知方法
JP2011005982A (ja) * 2009-06-26 2011-01-13 Denso Corp 車両用空調装置
US8406932B2 (en) * 2009-09-28 2013-03-26 Balboa Instruments, Inc. Spa control with improved heater management system
JP5378264B2 (ja) * 2010-02-19 2013-12-25 富士重工業株式会社 電気自動車のインバータ冷却装置
CN102135453A (zh) * 2010-12-10 2011-07-27 奇瑞汽车股份有限公司 电机温度监测方法及系统、功率控制方法及系统
RU2452927C1 (ru) * 2011-03-23 2012-06-10 Государственное образовательное учреждение высшего профессионального образования "Сибирская государственная геодезическая академия" (ГОУВПО "СГГА") Устройство для калибровки датчиков теплового потока
JP5757772B2 (ja) * 2011-04-13 2015-07-29 ルネサスエレクトロニクス株式会社 半導体装置、及びデータ生成方法
CN102883475A (zh) * 2011-07-14 2013-01-16 东莞市恒越实业有限公司 一种具有工作状态指示的加热感温器
JP2014136462A (ja) * 2013-01-15 2014-07-28 Toyota Boshoku Corp ヒータ制御装置
DE102013204467A1 (de) * 2013-03-14 2014-09-18 Zf Friedrichshafen Ag Anordnung zum Testen einer Einrichtung zum Schutz eines elektronischen Bauelements gegen Überhitzung und zugehöriges Verfahren
JP5907236B2 (ja) * 2013-12-11 2016-04-26 株式会社デンソー 温度検出装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008005615A (ja) * 2006-06-22 2008-01-10 Nissan Motor Co Ltd 電動車両のモータ出力制御装置
JP2009284597A (ja) 2008-05-20 2009-12-03 Toyota Motor Corp パワーコントロールユニットの冷却装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017139872A1 (en) * 2016-02-17 2017-08-24 Tm4 Inc. Power inverter with dynamic current limiting
JP2017184471A (ja) * 2016-03-30 2017-10-05 株式会社ケーヒン インバータ冷却装置の水抜け検知装置
KR101918350B1 (ko) 2016-09-01 2018-11-14 현대자동차주식회사 스위치 소자 온도센서의 고장 판단 방법 및 그 시스템
US10209145B2 (en) 2016-09-01 2019-02-19 Hyundai Motor Company Failure diagnosis method and system of temperature sensor of switch device
JP2018042368A (ja) * 2016-09-07 2018-03-15 本田技研工業株式会社 電力変換装置の故障検知装置及び車両
JP2020156144A (ja) * 2019-03-18 2020-09-24 トヨタ自動車株式会社 液冷式インバータ
JP7298220B2 (ja) 2019-03-18 2023-06-27 株式会社デンソー 液冷式インバータ

Also Published As

Publication number Publication date
CN105493391A (zh) 2016-04-13
JP6070849B2 (ja) 2017-02-01
RU2625455C1 (ru) 2017-07-14
MX2016002514A (es) 2016-05-31
CN105493391B (zh) 2018-02-27
MX346018B (es) 2017-03-02
MY161719A (en) 2017-05-15
EP3041126A1 (en) 2016-07-06
EP3041126A4 (en) 2016-09-14
JPWO2015029686A1 (ja) 2017-03-02
US20160161347A1 (en) 2016-06-09
EP3041126B1 (en) 2018-09-19
US9823140B2 (en) 2017-11-21

Similar Documents

Publication Publication Date Title
JP6070849B2 (ja) センサ異常判定装置
US9768668B2 (en) Cooling system of power converter for on-vehicle rotary electric machine
JP6402841B2 (ja) 電力変換装置の温度異常検出方法および電力変換装置の温度異常検出装置
WO2018037472A1 (ja) 電力変換装置の温度異常検出方法および電力変換装置の温度異常検出装置
JP2015130769A (ja) モータシステム制御装置
US20140062373A1 (en) Motor driving device and method of protecting motor driving device
JPWO2013190619A1 (ja) 内燃機関の冷却制御装置
US12088154B2 (en) Cooling control device, electric system, and cooling control method
JP6299368B2 (ja) 半導体素子温度推定装置
US9935527B2 (en) Temperature estimation apparatus for rotating electric machine
JP2018117400A (ja) 車輌の駆動装置、及び車輌
JP5760865B2 (ja) 車両用モータ温度検出装置
JP2018042414A (ja) 冷却異常検出装置
JP2010173445A (ja) ハイブリッド車両の冷却システム
JP2018115869A (ja) 寿命推定装置、及び車輌
JP6137452B2 (ja) 電動車両用冷却装置
JP2008187861A (ja) モータ制御装置、モータ制御方法及び車両用駆動制御装置
JP2021136819A5 (ja)
JP2008236955A (ja) 冷却システムおよびその制御方法並びに車両
JP2008187862A (ja) モータ制御装置、及びモータ制御方法
JP2020054165A (ja) 電動車両の制御装置
US20220340147A1 (en) Control apparatus for electric motor and vehicle
JP2013031365A (ja) 回転電機システム制御装置
JP2016220387A (ja) 回転電機の温度制御装置
JP2014193001A (ja) 冷却システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480047423.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14839086

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015534104

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14906568

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/002514

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201601965

Country of ref document: ID

REEP Request for entry into the european phase

Ref document number: 2014839086

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014839086

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016111025

Country of ref document: RU

Kind code of ref document: A